Science.gov

Sample records for phosphate cotransporter napi-iib

  1. Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase mTOR.

    PubMed

    Shojaiefard, Manzar; Lang, Florian

    2006-07-14

    Adequate phosphate homeostasis is of critical importance for a wide variety of functions including bone mineralization and energy metabolism. Phosphate balance is a function of intestinal absorption and renal elimination, which are both under tight hormonal control. Intestinal phosphate absorption is accomplished by the Na(+), phosphate cotransporter NaPi IIb (SLC34A2). Signaling mechanisms mediating hormonal regulation of SLC34A2 are incompletely understood. The mammalian target of rapamycin (mTOR) is a kinase regulating a variety of nutrient transporters. The present experiments explored whether mTOR regulates the activity of SLC34A2. In Xenopus oocytes expressing SLC34A2 but not in water injected oocytes phosphate (1 mM) induced a current (Ip) which was significantly enhanced by coexpression of mTOR. Preincubation of the oocytes for 24 h with rapamycin (50 nM) did not significantly affect Ip in the absence of mTOR but virtually abolished the increase of Ip following coexpression of mTOR. The wild type serum and glucocorticoid inducible kinase SGK1 and the constitutively active (S422D)SGK1 similarly stimulated Ip, an effect again reversed by rapamycin. Coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 significantly decreased Ip and abrogated the stimulating effect of mTOR on Ip. In conclusion, mTOR and SGK1 cooperate in the stimulation of the intestinal phosphate transporter SLC34A2. PMID:16730658

  2. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake24

    PubMed Central

    Kirchner, Séverine; Muduli, Anjali; Casirola, Donatella; Prum, Kannitha; Douard, Véronique; Ferraris, Ronaldo P

    2008-01-01

    Background While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. Objective We tested the hypothesis that luminal fructose regulates NaPi-2b. Design We perfused into the intestine fructose, glucose, and non-metabolizable or poorly transported glucose analogs as well as phlorizin. Results NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were ≈30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)–activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) enhanced and the fatty acid synthase–AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylene-butyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. Conclusions Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies ≈10% of caloric intake by Americans clearly affects absorption of

  3. Arsenate transport by sodium/phosphate cotransporter type IIb

    SciTech Connect

    Villa-Bellosta, Ricardo; Sorribas, Victor

    2010-08-15

    Arsenic is a metalloid that causes the dysfunction of critical enzymes, oxidative stress, and malignancies. In recent years several transporters of As{sup III} have been identified, including aquaglyceroporins (AQP) and multidrug resistance proteins (MRP). As{sup V} transport, however, has not been sufficiently studied because it has been assumed that arsenate is taken up by mammalian cells through inorganic phosphate (Pi) transporters. In this paper we have analyzed the role of Pi transporters in the uptake of arsenate by directly using {sup 73}As{sup V} as a radiotracer in phosphate transporter-expressing Xenopus laevis oocytes. The affinities of Pi transporters for H{sub 3}AsO{sub 4} were lower than the affinities for Pi. NaPiIIa, NaPiIIc, Pit1, and Pit2 showed a K{sub m} for arsenate that was > 1 mM (i.e., at least ten times lower than the affinities for Pi). The NaPiIIb isoform showed the highest affinity for As{sup V} in mouse (57 {mu}M), rat (51 {mu}M), and human (9.7 {mu}M), which are very similar to the affinities for Pi. Therefore, NaPiIIb can have a prominent role in the toxicokinetics of arsenic following oral exposure to freshwater or food contaminated with As{sup V}.

  4. Membrane Potential and Proton Cotransport of Alanine and Phosphate as Affected by Permeant Weak Acids in Lemna gibba1

    PubMed Central

    Basso, Barbara; Ullrich-Eberius, Cornelia I.

    1987-01-01

    The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with `high potential' and `low potential' plants and the maximum values af acid induced hyperpolarizations were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for [14C]alanine and 68% for 32P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O2 uptake rates did not change significantly. These results constitute good evidence that H+/solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value. PMID:16665758

  5. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia.

    PubMed

    Schlingmann, Karl P; Ruminska, Justyna; Kaufmann, Martin; Dursun, Ismail; Patti, Monica; Kranz, Birgitta; Pronicka, Ewa; Ciara, Elzbieta; Akcay, Teoman; Bulus, Derya; Cornelissen, Elisabeth A M; Gawlik, Aneta; Sikora, Przemysław; Patzer, Ludwig; Galiano, Matthias; Boyadzhiev, Veselin; Dumic, Miroslav; Vivante, Asaf; Kleta, Robert; Dekel, Benjamin; Levtchenko, Elena; Bindels, René J; Rust, Stephan; Forster, Ian C; Hernando, Nati; Jones, Glenville; Wagner, Carsten A; Konrad, Martin

    2016-02-01

    Idiopathic infantile hypercalcemia (IIH) is characterized by severe hypercalcemia with failure to thrive, vomiting, dehydration, and nephrocalcinosis. Recently, mutations in the vitamin D catabolizing enzyme 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) were described that lead to increased sensitivity to vitamin D due to accumulation of the active metabolite 1,25-(OH)2D3. In a subgroup of patients who presented in early infancy with renal phosphate wasting and symptomatic hypercalcemia, mutations in CYP24A1 were excluded. Four patients from families with parental consanguinity were subjected to homozygosity mapping that identified a second IIH gene locus on chromosome 5q35 with a maximum logarithm of odds (LOD) score of 6.79. The sequence analysis of the most promising candidate gene, SLC34A1 encoding renal sodium-phosphate cotransporter 2A (NaPi-IIa), revealed autosomal-recessive mutations in the four index cases and in 12 patients with sporadic IIH. Functional studies of mutant NaPi-IIa in Xenopus oocytes and opossum kidney (OK) cells demonstrated disturbed trafficking to the plasma membrane and loss of phosphate transport activity. Analysis of calcium and phosphate metabolism in Slc34a1-knockout mice highlighted the effect of phosphate depletion and fibroblast growth factor-23 suppression on the development of the IIH phenotype. The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia. Clinical and laboratory findings persist despite cessation of vitamin D prophylaxis but rapidly respond to phosphate supplementation. Therefore, early differentiation between SLC34A1 (NaPi-IIa) and CYP24A1 (24-hydroxylase) defects appears critical for targeted therapy in patients with IIH. PMID:26047794

  6. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.

    PubMed

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤1.8‰) occurred

  7. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P.

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8

  8. Knockdown of the sodium-dependent phosphate co-transporter 2b (NPT2b) suppresses lung tumorigenesis.

    PubMed

    Hong, Seong-Ho; Minai-Tehrani, Arash; Chang, Seung-Hee; Jiang, Hu-Lin; Lee, Somin; Lee, Ah-Young; Seo, Hwi Won; Chae, Chanhee; Beck, George R; Cho, Myung-Haing

    2013-01-01

    The sodium-dependent phosphate co-transporter 2b (NPT2b) plays an important role in maintaining phosphate homeostasis. In previous studies, we have shown that high dietary inorganic phosphate (Pi) consumption in mice stimulated lung tumorigenesis and increased NPT2b expression. NPT2b has also been found to be highly expressed in human lung cancer tissues. The association of high expression of NPT2b in the lung with poor prognosis in oncogenic lung diseases prompted us to test whether knockdown of NPT2b may regulate lung cancer growth. To address this issue, aerosols that contained small interfering RNA (siRNA) directed against NPT2b (siNPT2b) were delivered into the lungs of K-ras (LA1) mice, which constitute a murine model reflecting human lung cancer. Our results clearly showed that repeated aerosol delivery of siNPT2b successfully suppressed lung cancer growth and decreased cancer cell proliferation and angiogenesis, while facilitating apoptosis. These results strongly suggest that NPT2b plays a role lung tumorigenesis and represents a novel target for lung cancer therapy. PMID:24194864

  9. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers.

    PubMed

    Huber, Korinna; Zeller, Ellen; Rodehutscord, Markus

    2015-05-01

    Dietary phosphorus (P) is known as a main modulator of phosphate (Pi) transporter expression. The effect of supplemented mineral P with or without phytase on protein expression of two sodium-dependent Pi (NaPi) transporters and a calcium channel was studied in the small intestine of broilers. Thirty-six broilers were randomly assigned to six different diets at 15 days of age. Two levels of total P (tP, adjusted by monocalcium phosphate (MCP) supplementation), 0.39% (BD-) and 0.47% (BD+) were fed until day 25; and at each tP level, three levels of phytase were used with 0, 500, and 12,500 FTU/kg of an E. coli phytase. Mucosa samples from jejunum and ileum were taken and apical membranes were isolated by MgCl2 precipitation. Protein expression of NaPi IIb, NaPi type III (PiT1) and the calcium channel TRPV6 were semiquantitatively measured by Western blotting and jejunal mucosal phytase activity by measurement of Pi release. The jejunal NaPi IIb transporter was expressed with two distinct bands, which were modulated differently by diet. NaPi IIb Band1 increased (P < 0.05) and Band2 decreased (P < 0.05) with phytase supplementation but was not affected by MCP supplementation. This inverse modulation of Band1 and Band2 was significantly related to the amount of net absorbed P with higher expression of Band1 at higher amounts of net absorbed P. In addition, a second Pi transporter, PiT1, was detected in which ileal expression decreased (P < 0.05) in response to higher phytase supplementation. The expression of the calcium channel TRPV6 was increased in BD+ groups. A trend for an interaction between MCP and phytase supplementation on mucosal phytase activity was observed (P = 0.079) with a decrease in activity when BD+ with 12,500 FTU/kg phytase was fed. Chicken intestinal epithelial cells responded to dietary supplemented phytase and MCP by changing the Pi transporter expression in apical membranes. In conclusion, availability of Pi is most likely the key modulator of

  10. The sodium-phosphate co-transporter SLC34A2, and pulmonary alveolar microlithiasis: Presentation of an inbred family and a novel truncating mutation in exon 3

    PubMed Central

    Vismara, Marco Favio Michele; Colao, Emma; Fabiani, Fernanda; Bombardiere, Francesco; Tamburrini, Oscar; Alessio, Caterina; Manti, Francesco; Pelaia, Gerolamo; Romeo, Pasquale; Iuliano, Rodolfo; Perrotti, Nicola

    2015-01-01

    Pulmonary alveolar microlithiasis is a disorder in which many tiny fragments (microliths) of calcium phosphate gradually accumulate in alveoli. Loss of function mutations in the gene SLC34A2 coding for the sodium phosphate co-transporter (NaPi-IIb) are responsible for genetic forms of alveolar microlithiasis. We now report a consanguineous Italian family from Calabria with two affected members segregating alveolar microlithiasis in a recessive fashion. We describe, for the first time, a novel loss of function mutation in the gene coding for NaPi-IIb. A careful description of the clinical phenotype is provided together with technical details for direct sequencing of the gene. PMID:26744662

  11. Role of the sodium-dependent phosphate co-transporters and of the phosphate complexes of uranyl in the cytotoxicity of uranium in LLC-PK{sub 1} cells

    SciTech Connect

    Muller, D. . E-mail: dany.muller@kcl.ac.uk; Houpert, P. . E-mail: pascale.houpert@irsn.fr; Cambar, J. . E-mail: marie-helene.napoli@cea.fr

    2006-07-15

    Although uranium is a well-characterized nephrotoxic agent, very little is known at the cellular and molecular level about the mechanisms underlying the uptake and toxicity of this element in proximal tubule cells. The aim of this study was thus to characterize the species of uranium that are responsible for its cytotoxicity and define the mechanism which is involved in the uptake of the cytotoxic fraction of uranium using two cell lines derived from kidney proximal (LLC-PK{sub 1}) and distal (MDCK) tubule as in vitro models. Treatment of LLC-PK{sub 1} cells with colchicine, cytochalasin D, concanavalin A and PMA increased the sodium-dependent phosphate co-transport and the cytotoxicity of uranium. On the contrary, replacement of the extra-cellular sodium with N-methyl-D-glucamine highly reduced the transport of phosphate and the cytotoxic effect of uranium. Uranium cytotoxicity was also dependent upon the extra-cellular concentration of phosphate and decreased in a concentration-dependent manner by 0.1-10 mM phosphonoformic acid, a competitive inhibitor of phosphate uptake. Consistent with these observations, over-expression of the rat proximal tubule sodium-dependent phosphate co-transporter NaPi-IIa in stably transfected MDCK cells significantly increased the cytotoxicity of uranium, and computer modeling of uranium speciation showed that uranium cytotoxicity was directly dependent on the presence of the phosphate complexes of uranyl UO{sub 2}(PO{sub 4}){sup -} and UO{sub 2}(HPO{sub 4}){sub aq}. Taken together, these data suggest that the cytotoxic fraction of uranium is a phosphate complex of uranyl whose uptake is mediated by a sodium-dependent phosphate co-transporter system.

  12. Identification of the First Sodium Binding Site of the Phosphate Cotransporter NaPi-IIa (SLC34A1)

    PubMed Central

    Fenollar-Ferrer, Cristina; Forster, Ian C.; Patti, Monica; Knoepfel, Thomas; Werner, Andreas; Forrest, Lucy R.

    2015-01-01

    Transporters of the SLC34 family (NaPi-IIa,b,c) catalyze uptake of inorganic phosphate (Pi) in renal and intestinal epithelia. The transport cycle requires three Na+ ions and one divalent Pi to bind before a conformational change enables translocation, intracellular release of the substrates, and reorientation of the empty carrier. The electrogenic interaction of the first Na+ ion with NaPi-IIa/b at a postulated Na1 site is accompanied by charge displacement, and Na1 occupancy subsequently facilitates binding of a second Na+ ion at Na2. The voltage dependence of cotransport and presteady-state charge displacements (in the absence of a complete transport cycle) are directly related to the molecular architecture of the Na1 site. The fact that Li+ ions substitute for Na+ at Na1, but not at the other sites (Na2 and Na3), provides an additional tool for investigating Na1 site-specific events. We recently proposed a three-dimensional model of human SLC34a1 (NaPi-IIa) including the binding sites Na2, Na3, and Pi based on the crystal structure of the dicarboxylate transporter VcINDY. Here, we propose nine residues in transmembrane helices (TM2, TM3, and TM5) that potentially contribute to Na1. To verify their roles experimentally, we made single alanine substitutions in the human NaPi-IIa isoform and investigated the kinetic properties of the mutants by voltage clamp and 32P uptake. Substitutions at five positions in TM2 and one in TM5 resulted in relatively small changes in the substrate apparent affinities, yet at several of these positions, we observed significant hyperpolarizing shifts in the voltage dependence. Importantly, the ability of Li+ ions to substitute for Na+ ions was increased compared with the wild-type. Based on these findings, we adjusted the regions containing Na1 and Na3, resulting in a refined NaPi-IIa model in which five positions (T200, Q206, D209, N227, and S447) contribute directly to cation coordination at Na1. PMID:25992725

  13. Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1).

    PubMed

    Fenollar-Ferrer, Cristina; Forster, Ian C; Patti, Monica; Knoepfel, Thomas; Werner, Andreas; Forrest, Lucy R

    2015-05-19

    Transporters of the SLC34 family (NaPi-IIa,b,c) catalyze uptake of inorganic phosphate (Pi) in renal and intestinal epithelia. The transport cycle requires three Na(+) ions and one divalent Pi to bind before a conformational change enables translocation, intracellular release of the substrates, and reorientation of the empty carrier. The electrogenic interaction of the first Na(+) ion with NaPi-IIa/b at a postulated Na1 site is accompanied by charge displacement, and Na1 occupancy subsequently facilitates binding of a second Na(+) ion at Na2. The voltage dependence of cotransport and presteady-state charge displacements (in the absence of a complete transport cycle) are directly related to the molecular architecture of the Na1 site. The fact that Li(+) ions substitute for Na(+) at Na1, but not at the other sites (Na2 and Na3), provides an additional tool for investigating Na1 site-specific events. We recently proposed a three-dimensional model of human SLC34a1 (NaPi-IIa) including the binding sites Na2, Na3, and Pi based on the crystal structure of the dicarboxylate transporter VcINDY. Here, we propose nine residues in transmembrane helices (TM2, TM3, and TM5) that potentially contribute to Na1. To verify their roles experimentally, we made single alanine substitutions in the human NaPi-IIa isoform and investigated the kinetic properties of the mutants by voltage clamp and (32)P uptake. Substitutions at five positions in TM2 and one in TM5 resulted in relatively small changes in the substrate apparent affinities, yet at several of these positions, we observed significant hyperpolarizing shifts in the voltage dependence. Importantly, the ability of Li(+) ions to substitute for Na(+) ions was increased compared with the wild-type. Based on these findings, we adjusted the regions containing Na1 and Na3, resulting in a refined NaPi-IIa model in which five positions (T200, Q206, D209, N227, and S447) contribute directly to cation coordination at Na1. PMID:25992725

  14. Transfection-mediated expression of a dominant cAMP-resistant phenotype in the opossum kidney (OK) cell line prevents parathyroid hormone-induced inhibition of Na-phosphate cotransport. A protein kinase-A-mediated event.

    PubMed Central

    Segal, J H; Pollock, A S

    1990-01-01

    Sodium-phosphate cotransport in the PTH-responsive opossum kidney (OK) cell line is inhibited by PTH, cAMP, and activators of protein kinase C. In order to probe the role of cAMP, we stably transfected OK cells with an expression vector for a cAMP-binding mutation of the murine protein kinase A regulatory subunit. Two-dimensional electrophoresis of cAMP-binding proteins from transfected cells indicated a 20-fold overexpression of the mutant regulatory unit. Protein kinase A from these cells had a 20-fold increase in the concentration of cAMP required for half-maximal activation, 2.8 microM vs. 0.15 microM for wild type cells. In the transfected cells, Na-phosphate cotransport was insensitive to up to 1 mM 8-Br-cAMP and 1 microM PTH, while these same agonists caused a significant inhibition of transport in the wild type cells. The effects on Na-phosphate cotransport of the protein kinase C activators oleoyl-acetyl glycerol and tetradecanoyl-phorbol acetate, which were marked in the wild type cells, were still present, although attenuated, in the transfected mutants. With prolonged passage, the cAMP-insensitive phenotype reverted to wild type cAMP sensitivity despite continued selection for the cotransfected neo marker. The revertant cells had a normal cAMP requirement for half-maximal activation of protein kinase A, 0.13 microM, and the PTH and cAMP-sensitive inhibition of Na-phosphate cotransport was restored. We suggest that an intact and normally cAMP-sensitive protein kinase A pathway is an absolute requirement for PTH inhibition of Na-phosphate cotransport in the OK cell. Images PMID:2173719

  15. Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step.

    PubMed

    Patti, Monica; Ghezzi, Chiara; Forster, Ian C

    2013-09-01

    The SLC34 family of Na(+)-dependent inorganic phosphate cotransporters comprises two electrogenic isoforms (NaPi-IIa, NaPi-IIb) and an electroneutral isoform (NaPi-IIc). Both fulfill essential physiological roles in mammalian phosphate homeostasis. By substitution of three conserved amino acids, found in all electrogenic isoforms, at corresponding sites in NaPi-IIc, electrogenicity was re-established and the Na(+)/P i stoichiometry increased from 2:1 to 3:1. However, this engineered electrogenic construct (AAD-IIc) had a reduced apparent P i affinity and different presteady-state kinetics from the wild-type NaPi-IIa/b. We investigated AAD-IIc using electrophysiology and voltage clamp fluorometry to elucidate the compromised behavior. The activation energy for cotransport was threefold higher than for NaPi-IIc and 1.5-fold higher than for NaPi-IIa and the temperature dependence of presteady-state charge displacements suggested that the large activation energy was associated with the empty carrier reorientation. AAD-IIc shows a weak interaction of external Na(+) ions with the electric field, and thus retains the electroneutral cooperative interaction of two Na(+) ions preceding external P i binding of NaPi-IIc. Most of the presteady-state charge movement was accounted for by the empty carrier (in the absence of external P i ), and the cytosolic release of one Na(+) ion (in the presence of P i ). Simulations using a kinetic model recapitulated the presteady-state and steady-state behavior and allowed identification of two critical partial reactions: the final release of Na(+) to the cytosol and external P i binding. Fluorometric recordings from AAD-IIc mutants with Cys substituted at functionally important sites established that AAD-IIc undergoes substrate- and voltage-dependent conformational changes that correlated qualitatively with its presteady-state kinetics. PMID:23515872

  16. Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment.

    PubMed

    Saito, Atsushi; Nikolaidis, Nikolaos M; Amlal, Hassane; Uehara, Yasuaki; Gardner, Jason C; LaSance, Kathleen; Pitstick, Lori B; Bridges, James P; Wikenheiser-Brokamp, Kathryn A; McGraw, Dennis W; Woods, Jason C; Sabbagh, Yves; Schiavi, Susan C; Altinişik, Göksel; Jakopović, Marko; Inoue, Yoshikazu; McCormack, Francis X

    2015-11-11

    Pulmonary alveolar microlithiasis (PAM) is a rare, autosomal recessive lung disorder associated with progressive accumulation of calcium phosphate microliths. Inactivating mutations in SLC34A2, which encodes the NPT2b sodium-dependent phosphate cotransporter, has been proposed as a cause of PAM. We show that epithelial deletion of Npt2b in mice results in a progressive pulmonary process characterized by diffuse alveolar microlith accumulation, radiographic opacification, restrictive physiology, inflammation, fibrosis, and an unexpected alveolar phospholipidosis. Cytokine and surfactant protein elevations in the alveolar lavage and serum of PAM mice and confirmed in serum from PAM patients identify serum MCP-1 (monocyte chemotactic protein 1) and SP-D (surfactant protein D) as potential biomarkers. Microliths introduced by adoptive transfer into the lungs of wild-type mice produce marked macrophage-rich inflammation and elevation of serum MCP-1 that peaks at 1 week and resolves at 1 month, concomitant with clearance of stones. Microliths isolated by bronchoalveolar lavage readily dissolve in EDTA, and therapeutic whole-lung EDTA lavage reduces the burden of stones in the lungs. A low-phosphate diet prevents microlith formation in young animals and reduces lung injury on the basis of reduction in serum SP-D. The burden of pulmonary calcium deposits in established PAM is also diminished within 4 weeks by a low-phosphate diet challenge. These data support a causative role for Npt2b in the pathogenesis of PAM and the use of the PAM mouse model as a preclinical platform for the development of biomarkers and therapeutic strategies. PMID:26560359

  17. Foscarnet, an inhibitor of the sodium-phosphate cotransporter NaPi-IIa, inhibits phosphorylation of glycogen synthase kinase-3β by lithium in the rat kidney cortex.

    PubMed

    Uwai, Yuichi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2016-06-01

    Lithium, which is used in the treatment of and prophylaxis for bipolar disease, inhibits glycogen synthase kinase-3β (GSK3β) by producing its phosphorylated form (p-GSK3β). GSK3β plays a role in apoptosis and some kinds of acute kidney injuries, and the formation of p-GSK3β is considered to contribute to protection against acute kidney injury. We previously reported that the sodium-phosphate cotransporter NaPi-IIa (SLC34A1) mediated the reabsorption of lithium in the rat kidney. In the present study, the phosphorylation status of GSK3β in the kidney cortex of rats administered lithium chloride and foscarnet, a typical inhibitor of NaPi-IIa, was examined using Western blotting. Under a 2-h infusion of lithium chloride, the plasma concentration of lithium was 1.06 mEq/l, and its renal clearance was calculated as 1.18 ml/min/kg, which was 29.6% of creatinine clearance. The abundance of p-GSK3β in the kidney cortex was augmented by the administration of lithium. The simultaneous infusion of foscarnet increased the renal clearance of lithium and its ratio to creatinine clearance as well as the urinary excretion of phosphate. Foscarnet also inhibited the lithium-induced phosphorylation of GSK3β. These results suggest that the reabsorption of lithium by NaPi-IIa triggers the phosphorylation of GSK3β in the rat kidney cortex. PMID:27238574

  18. The Na+-phosphate cotransport system (NaPi-II) with a cleaved protein backbone: implications on function and membrane insertion

    PubMed Central

    Kohl, Beate; Wagner, Carsten A; Huelseweh, Birgit; Busch, Andreas E; Werner, Andreas

    1998-01-01

    Renal handling of inorganic phosphate (Pi) involves a Na+-Pi cotransport system which is well conserved between vertebrates. The members of this protein family, denoted NaPi-II, share a topology with, it is thought, eight transmembrane domains. The transporter is proposed to be proteolytically cleaved within a large hydrophilic loop in vivo. The consequences of an interrupted backbone were tested by constructing cDNA clones encoding different N- (1-3 and 1-5) and C-terminal (4-8 and 6-8) complementary fragments of NaPi-II from winter flounder. When the cognate fragments were used in combination (1-3 plus 4-8; 1-5 plus 6-8) they comprised the full complement of the putative transporter domains. None of the four individual fragments or the 1-5 plus 6-8 combination when expressed in Xenopus oocytes increased Pi flux. Coexpression of fragments 1-3 plus 4-8 stimulated transport activity identical to that for expressed wild-type NaPi-II with regard to pH dependency and Km for Na+ and Pi binding; however, the maximal transport rate (vmax) was lower. Immunohistochemistry on cryosections confined the functionally active 1-3 plus 4-8 combination to the oocyte membrane. This was not the case for the 1-5 plus 6-8 combination or any of the individual fragments, all of which failed to induce fluorescence. A second immunohistochemical approach using intact oocytes allowed determination of the extracellular regions of the protein. Epitopes within the loop between transmembrane domains 3 and 4 enhanced fluorescence. Neither N- nor C-terminal tags induced fluorescence. PMID:9508800

  19. PTH-induced internalization of a type IIa Na/Pi cotransporter in OK-cells.

    PubMed

    Jankowski, M; Biber, J; Murer, H

    1999-10-01

    Regulatory phenomena in brush border membrane sodium/phosphate (Na/Pi) cotransport are directly related to the type IIa Na/Pi-cotransporter and can be analyzed in opossum kidney cells (OK-cells). Parathyroid hormone (PTH) leads to a decreased expression of the type IIa Na/Pi-cotransporter protein at the apical cell surface. To provide evidence for PTH-induced membrane retrieval of the cotransporter protein we labeled OK-cell surface membrane protein NH2-groups with N-hydroxysuccinimide bound via a disulfide bond to biotin (NHS-SS-biotin) prior to or after treatment with PTH. Biotinylated transporters can be detected by streptavidin precipitation and Western blotting using type IIa Na/Pi-cotransporter specific antibodies. To detect only internalized biotinylated transporters biotin located at the cell surface was removed ("stripped") by disulfide bond splitting reagents under reducing conditions. Neither biotinylation per se, nor "stripping" interfered with PTH-induced inhibition of Na/Pi-cotransport activity. The internalization of the transporter was highly increased in response to PTH treatment. The data document that the first step in PTH regulation is internalization of the type IIa Na/Pi-cotransporter protein from the apical membrane. PMID:10555567

  20. Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variations in dietary phosphorus intake.

    PubMed

    Huber, K; Hempel, R; Rodehutscord, M

    2006-11-01

    The objective of this study was to explore the homeostatic response of jejunal and renal epithelia regarding the inorganic phosphate (P(i)) transport capacities to variations in dietary total phosphorus (tP) supply in hens. Adaptive processes were determined by quantitative measures of intake and excretion, P(i) transport studies across brush border membranes, and semiquantitative detection of sodium-dependent phosphate transporters (NaPi II) based on mRNA expression in the jejunum and kidney. Twelve hens (4/group) were adapted to 3 tP feeding levels in a pair-fed manner (60 g/d): low P diet with 0.073% tP, medium P diet with 0.204% tP, and high P diet with 0.343% tP. Excretion was measured during the last 5 d of a 16-d feeding period. After slaughtering, jejunal mucosa and renal cortex were removed. Tissues were used for (32)P uptake studies in brush-border membrane vesicles by rapid filtration technique and NaPi II mRNA expression studies by northern analyses. Plasma P(i) concentrations were additionally measured. The NaPi II transporter mRNA could specifically be detected in chicken jejunum and kidney. Functional parameters of Na(+)-dependent P(i) transport indicated that these transporters were involved in chicken P(i) transport across the apical membranes of jejunal and renal epithelia. Increased tP intake resulted in an increased overall tP excretion. Correlating individual data from all animals by linear regression highlighted that the adaptive decrease of renal P(i) transport capacity and NaPi IIa mRNA expression was associated with an increase in plasma P(i) levels and resulted in a higher tP excretion. Jejunal P(i) transport capacity and NaPi IIb mRNA expression did not react to variations in dietary tP supply. In conclusion, the homeostatic response was mainly based on the adaptive capacity of the kidney in hens. PMID:17032833

  1. Proton/Phosphate Stoichiometry in Uptake of Inorganic Phosphate by Cultured Cells of Catharanthus roseus (L.) G. Don

    PubMed Central

    Sakano, Katsuhiro

    1990-01-01

    Upon absorption of phosphate, cultured cells of Catharanthus roseus (L.) G. Don caused a rapid alkalinization of the medium in which they were suspended. The alkalinization continued until the added phosphate was completely exhausted from the medium, at which time the pH of the medium started to drop sharply toward the original pH value. Phosphate exposure caused the pH of the medium to increase from pH 3.5 to values as high as 5.8, while the rate of phosphate uptake was constant throughout (10-17 micromoles per hour per gram fresh weight). This indicates that no apparent pH optimum exists for the phosphate uptake by the cultured cells. The amount of protons cotransported with phosphate was calculated from the observed pH change up to the maximum alkalinization and the titration curve of the cell suspension. Proton/phosphate transport stoichiometry ranged from less than unity to 4 according to the amount of phosphate applied. At low phosphate doses, the stoichiometries were close to 4, while at high phosphate doses, smaller stoichiometries were observed. This suggests that, at high phosphate doses, activation of the proton pump is induced by the longer lasting proton influx acidifying the cytoplasm. The increased H+ efflux due to the proton pump could partially compensate protons taken up via the proton-phosphate cotransport system. Thus, the H+/H2PO4− stoichiometry of the cotransport is most likely to be 4. PMID:16667491

  2. Cation-chloride cotransporters in neuronal development, plasticity and disease

    PubMed Central

    Kaila, Kai; Price, Theodore J.; Payne, John A.; Puskarjov, Martin; Voipio, Juha

    2015-01-01

    Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K+–Cl− cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease. PMID:25234263

  3. Correlating charge movements with local conformational changes of a Na(+)-coupled cotransporter.

    PubMed

    Patti, Monica; Forster, Ian C

    2014-04-15

    To gain insight into the steady-state and dynamic characteristics of structural rearrangements of an electrogenic secondary-active cotransporter during its transport cycle, two measures of conformational change (pre-steady-state current relaxations and intensity of fluorescence emitted from reporter fluorophores) were investigated as a function of membrane potential and external substrate. Cysteines were substituted at three believed-new sites in the type IIb Na(+)-coupled inorganic phosphate cotransporter (SLC34A2 flounder isoform) that were predicted to be involved in conformational changes. Labeling at one site resulted in substantial suppression of transport activity, whereas for the other sites, function remained comparable to the wild-type. For these mutants, the properties of the pre-steady-state charge relaxations were similar for each, whereas fluorescence intensity changes differed significantly. Fluorescence changes could be accounted for by simulations using a five-state model with a unique set of apparent fluorescence intensities assigned to each state according to the site of labeling. Fluorescence reported from one site was associated with inward and outward conformations, whereas for the other sites, including four previously indentified sites, emissions were associated principally with one or the other orientation of the transporter. The same membrane potential change induced complementary changes in fluorescence at some sites, which suggested that the microenvironments of the respective fluorophores experience concomitant changes in polarity. In response to step changes in voltage, the pre-steady-state current relaxation and the time course of change in fluorescence intensity were described by single exponentials. For one mutant the time constants matched well with and without external Na(+), providing direct evidence that this label reports conformational changes accompanying intrinsic charge movement and cation interactions. PMID:24739161

  4. Correlating Charge Movements with Local Conformational Changes of a Na+-Coupled Cotransporter

    PubMed Central

    Patti, Monica; Forster, Ian C.

    2014-01-01

    To gain insight into the steady-state and dynamic characteristics of structural rearrangements of an electrogenic secondary-active cotransporter during its transport cycle, two measures of conformational change (pre-steady-state current relaxations and intensity of fluorescence emitted from reporter fluorophores) were investigated as a function of membrane potential and external substrate. Cysteines were substituted at three believed-new sites in the type IIb Na+-coupled inorganic phosphate cotransporter (SLC34A2 flounder isoform) that were predicted to be involved in conformational changes. Labeling at one site resulted in substantial suppression of transport activity, whereas for the other sites, function remained comparable to the wild-type. For these mutants, the properties of the pre-steady-state charge relaxations were similar for each, whereas fluorescence intensity changes differed significantly. Fluorescence changes could be accounted for by simulations using a five-state model with a unique set of apparent fluorescence intensities assigned to each state according to the site of labeling. Fluorescence reported from one site was associated with inward and outward conformations, whereas for the other sites, including four previously indentified sites, emissions were associated principally with one or the other orientation of the transporter. The same membrane potential change induced complementary changes in fluorescence at some sites, which suggested that the microenvironments of the respective fluorophores experience concomitant changes in polarity. In response to step changes in voltage, the pre-steady-state current relaxation and the time course of change in fluorescence intensity were described by single exponentials. For one mutant the time constants matched well with and without external Na+, providing direct evidence that this label reports conformational changes accompanying intrinsic charge movement and cation interactions. PMID:24739161

  5. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  6. Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes.

    PubMed Central

    Busch, A; Waldegger, S; Herzer, T; Biber, J; Markovich, D; Hayes, G; Murer, H; Lang, F

    1994-01-01

    Phosphate (Pi) reabsorption in renal proximal tubules involves Na+/Pi cotransport across the brush border membrane; its transport rate is influenced by the Na(+)-coupled transport of other solutes as well as by pH. In the present study, we have expressed a cloned rat renal brush border membrane Na+/Pi cotransporter (NaPi-2) in Xenopus laevis oocytes and have analyzed its electrophysiologic properties in voltage- and current-clamp studies. Addition of Pi to Na(+)-containing superfusates resulted in a depolarization of the membrane potential and, in voltage-clamped oocytes, in an inward current (IP). An analysis of the Na+ and/or Pi concentration dependence of IP suggested a Na+/Pi stoichiometry of 3:1. IP was increased by increasing the pH of the superfusate; this phenomenon seems to be mainly related to a lowering of the affinity for Na+ interaction by increasing H+ concentration. The present data suggest that known properties of Pi handling at the tubular/membrane level are "directly" related to specific characteristics of the transport molecule (NaPi-2) involved. Images PMID:8058781

  7. Phosphate salts

    MedlinePlus

    ... as a laxative to clean the bowels before surgery or intestinal tests. Healthcare providers sometimes give potassium phosphate intravenously (by IV) for treating low phosphate and high calcium levels in the blood, and for preventing low phosphate in patients who are being tube-fed.

  8. Effect of co-transporter blockers on non-synaptic epileptiform activity—computational simulation

    NASA Astrophysics Data System (ADS)

    Rodrigues Lopes, Mariana; Canton Santos, Luiz Eduardo; Márcio Rodrigues, Antônio; Antônio Duarte, Mario; Catelli Infantosi, Antonio Fernando; Alexandre Scorza, Fulvio; Arida, Ricardo Mario; Madureira, Ana Paula; Amaral da Silveira, Gilcélio; dos Santos, Ivans Carlos; Abrão Cavalheiro, Esper; Guimarães de Almeida, Antônio-Carlos

    2013-10-01

    The important role of cation-chloride co-transporters in epilepsy is being supported by an increasing number of investigations. However, enormous complexity is involved since the action of these co-transporters has effects on the ionic homeostasis influencing directly the neuronal excitability and the tissue propensity to sustain seizure. To unravel the complex mechanisms involving the co-transporters action during seizure, this paper shows simulations of non-synaptic epileptiform activity and the effect of the blockage of the two different types of cation-chloride co-transporters present in the brain: Na, K and 2Cl co-transporter (NKCC) and K and Cl co-transporter (KCC). The simulations were performed with an electrochemical model representing the non-synaptic structure of the granule cell layer of the dentate gyrus (DG) of the rat hippocampus. The simulations suggest: (i) the potassium clearance is based on the systemic interplay between the Na/K pump and the NKCC co-transporters; (ii) the simultaneous blockage of the NKCC of the neurons and KCC of glial cells acts efficiently suppressing the epileptiform activities; and (iii) the simulations show that depending on the combined blockage of the co-transporters, the epileptiform activities may be suppressed or enhanced.

  9. Phosphate transporters and their function.

    PubMed

    Biber, Jürg; Hernando, Nati; Forster, Ian

    2013-01-01

    Plasma phosphate concentration is maintained within a relatively narrow range by control of renal reabsorption of filtered inorganic phosphate (P(i)). P(i) reabsorption is a transcellular process that occurs along the proximal tubule. P(i) flux at the apical (luminal) brush border membrane represents the rate-limiting step and is mediated by three Na(+)-dependent P(i) cotransporters (members of the SLC34 and SLC20 families). The putative proteins responsible for basolateral P(i) flux have not been identified. The transport mechanism of the two kidney-specific SLC34 proteins (NaPi-IIa and NaPi-IIc) and of the ubiquitously expressed SLC20 protein (PiT-2) has been studied by heterologous expression to reveal important differences in kinetics, stoichiometry, and substrate specificity. Studies on the regulation of the abundance of the respective proteins highlight significant differences in the temporal responses to various hormonal and nonhormonal factors that can influence P(i) homeostasis. The phenotypes of mice deficient in NaPi-IIa and NaPi-IIc indicate that NaPi-IIa is responsible for most P(i) renal reabsorption. In contrast, in the human kidney, NaPi-IIc appears to have a relatively greater role. The physiological relevance of PiT-2 to P(i) reabsorption remains to be elucidated. PMID:23398154

  10. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition.

    PubMed Central

    Levi, M; Shayman, J A; Abe, A; Gross, S K; McCluer, R H; Biber, J; Murer, H; Lötscher, M; Cronin, R E

    1995-01-01

    Glucocorticoids are important regulators of renal phosphate transport. This study investigates the role of alterations in renal brush border membrane (BBM) sodium gradient-dependent phosphate transport (Na-Pi cotransporter) mRNA and protein abundance in the dexamethasone induced inhibition of Na-Pi cotransport in the rat. Dexamethasone administration for 4 d caused a 1.5-fold increase in the Vmax of Na-Pi cotransport (1785 +/- 119 vs. 2759 +/- 375 pmol/5 s per mg BBM protein in control, P < 0.01), which was paralleled by a 2.5-fold decrease in the abundance of Na-Pi mRNA and Na-Pi protein. There was also a 1.7-fold increase in BBM glucosylceramide content (528 +/- 63 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02). To determine whether the alteration in glucosylceramide content per se played a functional role in the decrease in Na-Pi cotransport, control rats were treated with the glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol (PDMP). The resultant 1.5-fold decrease in BBM glucosylceramide content (199 +/- 19 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02) was associated with a 1.4-fold increase in Na-Pi cotransport activity (1422 +/- 73 vs. 1048 +/- 85 pmol/5 s per mg BBM protein in control, P < 0.01), and a 1.5-fold increase in BBM Na-Pi protein abundance. Thus, dexamethasone-induced inhibition of Na-Pi cotransport is associated with a decrease in BBM Na-Pi cotransporter abundance, and an increase in glucosylceramide. Since primary alteration in BBM glucosylceramide content per se directly and selectively modulates BBM Na-Pi cotransport activity and Na-Pi protein abundance, we propose that the increase in BBM glucosylceramide content plays an important role in mediating the inhibitory effect of dexamethasone on Na-Pi cotransport activity. Images PMID:7615789

  11. Glucocorticoids differentially regulate Na-bile acid cotransport in normal and chronically inflamed rabbit ileal villus cells.

    PubMed

    Coon, Steven; Kekuda, Ramesh; Saha, Prosenjit; Sundaram, Uma

    2010-05-01

    Previous studies have demonstrated that apical Na-bile acid cotransport (ASBT) is inhibited during chronic ileitis by both a decrease in the affinity as well as a decrease in the number of cotransporters. Methylprednisolone (MP), a commonly used treatment for inflammatory bowel disease (IBD, e.g., Crohn's disease), has been shown to reverse the inhibition of several other Na-solute cotransporters during chronic enteritis. However, the effect of MP on ASBT in the chronically inflamed ileum is not known. MP stimulated ASBT in villus cells from the normal rabbit ileum by increasing the cotransporter expression without a change in the affinity of the cotransporter for bile acid. Western blot studies demonstrated an increase in cotransporter expression. MP reversed the inhibition of ASBT in villus cells from the chronically inflamed ileum. Kinetic studies demonstrated that the mechanism of MP-mediated reversal of ASBT inhibition was secondary to a restoration of both affinity as well as cotransporter numbers. Western blot analysis demonstrated restoration of cotransporter numbers after MP treatment of rabbits with chronic ileitis. Thus MP stimulates ASBT in the normal ileum by increasing cotransporter numbers. MP reverses the inhibition of ASBT during chronic ileitis. However, MP restores the diminished affinity as well as cotransporter expression levels during chronic ileitis. Thus MP differentially regulates ASBT in the normal and in the chronically inflamed ileum. PMID:20075140

  12. Glucocorticoids differentially regulate Na-bile acid cotransport in normal and chronically inflamed rabbit ileal villus cells

    PubMed Central

    Coon, Steven; Kekuda, Ramesh; Saha, Prosenjit

    2010-01-01

    Previous studies have demonstrated that apical Na-bile acid cotransport (ASBT) is inhibited during chronic ileitis by both a decrease in the affinity as well as a decrease in the number of cotransporters. Methylprednisolone (MP), a commonly used treatment for inflammatory bowel disease (IBD, e.g., Crohn's disease), has been shown to reverse the inhibition of several other Na-solute cotransporters during chronic enteritis. However, the effect of MP on ASBT in the chronically inflamed ileum is not known. MP stimulated ASBT in villus cells from the normal rabbit ileum by increasing the cotransporter expression without a change in the affinity of the cotransporter for bile acid. Western blot studies demonstrated an increase in cotransporter expression. MP reversed the inhibition of ASBT in villus cells from the chronically inflamed ileum. Kinetic studies demonstrated that the mechanism of MP-mediated reversal of ASBT inhibition was secondary to a restoration of both affinity as well as cotransporter numbers. Western blot analysis demonstrated restoration of cotransporter numbers after MP treatment of rabbits with chronic ileitis. Thus MP stimulates ASBT in the normal ileum by increasing cotransporter numbers. MP reverses the inhibition of ASBT during chronic ileitis. However, MP restores the diminished affinity as well as cotransporter expression levels during chronic ileitis. Thus MP differentially regulates ASBT in the normal and in the chronically inflamed ileum. PMID:20075140

  13. K-Cl cotransporters, cell volume homeostasis, and neurological disease.

    PubMed

    Kahle, Kristopher T; Khanna, Arjun R; Alper, Seth L; Adragna, Norma C; Lauf, Peter K; Sun, Dandan; Delpire, Eric

    2015-08-01

    K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773

  14. [Electrophysiology principles of Na(+)/HCO3(-) cotransporters].

    PubMed

    Chen, Li-Ming; Liu, Mei; Liu, Ying

    2016-06-25

    Ion channels and transporters represent two major types of pathways of transmembrane transport for ions. Distinct from ion channels which conduct passive ionic diffusion, ion transporters mediate active transport of ions. In the perspective of biochemistry, ion transporters are enzymes that catalyze the movement of ions across the plasma membrane. In the present review, we selected the Na(+)/HCO3(-) cotransporter (NBC) as an example to analyze the key biochemical and biophysical properties of ion transporters, including stoichiometry, turnover number and transport capacity. Moreover, we provided an analysis of the electrophysiological principles of NBC based on the laws of thermodynamics. Based on the thermodynamical analysis, we showed how the stoichiometry of an NBC determines the direction of its ion transport. Finally, we reviewed the methodology for experimental determination of the stoichiometry of NBC, as well as the physiological significance of the stoichiometry of NBCs in specific tissues. PMID:27350205

  15. K-Cl cotransporters, cell volume homeostasis, and neurological disease

    PubMed Central

    Kahle, Kristopher T.; Khanna, Arjun R.; Alper, Seth L.; Adragna, Norma C.; Lauf, Peter K.; Sun, Dandan; Delpire, Eric

    2016-01-01

    K+-Cl− cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773

  16. Robert K. Crane—Na+-glucose cotransporter to cure?

    PubMed Central

    Hamilton, Kirk L.

    2013-01-01

    Dr. Robert K. Crane made major contributions to our understanding of carbohydrate metabolism and transport of the intestine over a very long and productive career. This Perspective examines, briefly, his early life and academic positions, but more importantly, this Perspective highlights his contributions to the understanding of coupled Na+-glucose absorption by the small intestine. I discuss how his early hypothesis of a “cotransport” of sodium and glucose ushered in and provided the physiological explanation for the clinical treatment of acute diarrhea and cholera when using oral rehydration therapy (ORT). ORT saves millions of lives each year. Certainly, humankind is better off because of Crane's hypothesis of the Na+-glucose cotransporter that he put forth over 50 years ago? PMID:23525627

  17. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues

    SciTech Connect

    O'Grady, S.M.; Palfrey, H.C.; Field, M.

    1987-08-01

    This review summarizes our present understanding of Na-K-Cl cotransport and its physiological role in absorption and secretion of electrolytes and water in epithelial tissues. In the past several years an extensive literature about this cotransporter has developed due to its widespread distribution in a variety of cell types and its essential role in fluid and electrolyte transport in several epithelial tissues. We summarize this literature and speculate on the future characterization of this transport system. Although this review focuses on cotransport as it relates to absorptive and secretory processes in epithelia, important information concerning the pharmacology, stoichiometry, and regulation of Na-K-Cl cotransport in nonepithelial systems (i.e., erythrocytes, fibroblasts, squid axon, etc.) has been included to supplement areas that are less well established in the epithelial literature. 114 references.

  18. Regulation of vascular endothelial cell volume by Na-K-2Cl cotransport.

    PubMed

    O'Neill, W C; Klein, J D

    1992-02-01

    The relationship between cell volume and Na-K-2Cl cotransport was studied in cultured bovine aortic endothelial cells. Hypertonic cell shrinkage increased bumetanide-sensitive, Na- or Cl-dependent K influx without altering bumetanide-insensitive influx. Greater stimulation of cotransport was observed in cells shrunken isosmotically either by preincubation in K-free and Na-free medium or by preincubation in hypotonic medium. Cell swelling, produced by preincubation in isotonic high-K medium, inhibited bumetanide-sensitive K influx. Simultaneous measurements of [3H]bumetanide binding and K influx revealed an increased number of binding sites without an increased influx per binding site in shrunken cells. Bumetanide did not alter the volume or ion content of cells in isotonic or hypertonic medium, indicating that no net influx of ions occurs through cotransport under these conditions. In isosmotically shrunken cells, there was greater stimulation of bumetanide-sensitive influx than of bumetanide-sensitive efflux, resulting in net bumetanide-sensitive influx. Rapid recovery of cell K, Na, and water occurred over 10-20 min and was inhibited by bumetanide or by the removal of external Na or Cl. These data demonstrate that Na-K-2Cl cotransport in aortic endothelial cells is regulated by cell volume, possibly through changes in the number of functional cotransporters, and mediates a brisk regulatory volume increase in isosmotically shrunken cells. Although thermodynamically favored, no net influx occurs through Na-K-2Cl cotransport in cells of normal volume or in hypertonically shrunken cells. This suggests additional regulation of cotransport, perhaps through trans-inhibition by intracellular Cl. Regulation of cell volume by Na-K-2Cl cotransport may be important in maintaining endothelial integrity. PMID:1539632

  19. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells.

    PubMed

    Li, Xianwu; Yang, Hsueh-Ying; Giachelli, Cecilia M

    2008-08-01

    Vascular calcification is associated with increased risk of cardiovascular events that are the most common cause of death in patients with end-stage renal disease. Clinical and experimental studies indicate that hyperphosphatemia is a risk factor for vascular calcification and cardiovascular mortality in these patients. Our previous studies demonstrated that phosphate transport through the type III sodium-dependent phosphate cotransporter, Pit-1, was necessary for phosphate-induced calcification and osteochondrogenic phenotypic change in cultured human smooth muscle cells (SMC). BMP-2 is a potent osteogenic protein required for osteoblast differentiation and bone formation that has been implicated in vascular calcification. In the present study, we have examined the effects of BMP-2 on human SMC calcification in vitro. We found that treatment of SMC with BMP-2 enhanced elevated phosphate-induced calcification, but did not induce calcification under normal phosphate conditions. mRNAs for BMP receptors, including ALK2, ALK3, ALK6, BMPR-II, ActR-IIA and ActR-IIB were all detected in human SMCs. Mechanistically, BMP-2 dose-dependently stimulated phosphate uptake in SMC (200 ng/ml BMP-2 vs. vehicle: 13.94 vs. 7.09 nmol/30 min/mg protein, respectively). Real-time PCR and Western blot revealed the upregulation of Pit-1 mRNA and protein levels, respectively, by BMP-2. More importantly, inhibition of phosphate uptake by a competitive inhibitor of sodium-dependent phosphate cotransport, phosphonoformic acid, abrogated BMP-2-induced calcification. These results indicate that phosphate transport via Pit-1 is crucial in BMP-2-regulated SMC calcification. In addition, BMP-2-induced Runx2 and inhibited SM22 expression, indicating that it promotes osteogenic phenotype transition in these cells. Thus, BMP-2 may promote vascular calcification via increased phosphate uptake and induction of osteogenic phenotype modulation in SMC. PMID:18179800

  20. Proteinuria Increases Plasma Phosphate by Altering Its Tubular Handling.

    PubMed

    de Seigneux, Sophie; Courbebaisse, Marie; Rutkowski, Joseph M; Wilhelm-Bals, Alexandra; Metzger, Marie; Khodo, Stellor Nlandu; Hasler, Udo; Chehade, Hassib; Dizin, Eva; Daryadel, Arezoo; Stengel, Bénedicte; Girardin, E; Prié, Dominique; Wagner, Carsten A; Scherer, Philipp E; Martin, Pierre-Yves; Houillier, Pascal; Feraille, Eric

    2015-07-01

    Proteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD. Plasma fibroblast growth factor 23 (FGF-23) concentration, plasma phosphate concentration, and tubular reabsorption of phosphate increased during the proteinuric phase compared with the remission phase in nephrotic children. Cross-sectional analysis of a cohort of 1738 patients with CKD showed that albuminuria≥300 mg/24 hours is predictive of higher phosphate levels, independent of GFR and other confounding factors. Albuminuric patients also displayed higher plasma FGF-23 and parathyroid hormone levels. To understand the molecular mechanisms underlying these observations, we induced glomerular proteinuria in two animal models. Rats with puromycin-aminonucleoside-induced nephrotic proteinuria displayed higher renal protein expression of the sodium-phosphate co-transporter NaPi-IIa, lower renal Klotho protein expression, and decreased phosphorylation of FGF receptor substrate 2α, a major FGF-23 receptor substrate. These findings were confirmed in transgenic mice that develop nephrotic-range proteinuria resulting from podocyte depletion. In vitro, albumin did not directly alter phosphate uptake in cultured proximal tubule OK cells. In conclusion, we show that proteinuria increases plasma phosphate concentration independent of GFR. This effect relies on increased proximal tubule NaPi-IIa expression secondary to decreased FGF-23 biologic activity. Proteinuria induces elevation of both plasma phosphate and FGF-23 concentrations, potentially contributing to cardiovascular disease. PMID:25349200

  1. SLC5 Sodium-Anion Cotransporters and Renal Urate Transport

    NASA Astrophysics Data System (ADS)

    Mount, David B.; Kwon, Charles Y.; Plata, Consuelo; Romero, Michael F.; Zandi-Nejad, Kambiz

    2007-04-01

    Renal urate transport plays a key role in determining the concentration of circulating uric acid. The reabsorption of filtered urate by the renal proximal tubule appears to require apical sodium-dependent anion transport and the apical URAT1 urate-anion exchanger, in that sodium-dependent transport of lactate, ketoacids, nicotinate, and pyrazinoate (PZA) increases the intracellular concentration of substrates for the subsequent exchange with luminal urate. We have identified SLC5A8 and SLC5A12 as candidates for the sodium-anion cotransporter that collaborates with URAT1. Both transporters function as sodium-dependent nicotinate/monocarboxylate/PZA transporters. Localization studies reveal serial co-expression of these transporters with URAT1, with Slc5a12 in the early proximal tubule and Slc5a8 in S2 and S3 segments. Renal urate excretion is conceivably affected by changes in the activity of SLC5A8, SLC5A12, and/or URAT1, with implications for the pathogenesis of hyperuricemia, nephrolithiasis, and related disorders.

  2. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules

    SciTech Connect

    Crawford, J.M.; Gollan, J.L. )

    1988-07-01

    Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer ({sup 14}C)bilirubin-({sup 3}H)bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous ({sup 14}C)bilirubin monoglucuronide-({sup 3}H)bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism.

  3. Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures

    PubMed Central

    Puskarjov, Martin; Kahle, Kristopher T; Ruusuvuori, Eva; Kaila, Kai

    2014-01-01

    Seizures are a common manifestation of acute neurologic insults in neonates and are often resistant to the standard antiepileptic drugs that are efficacious in children and adults. The paucity of evidence-based treatment guidelines, coupled with a rudimentary understanding of disease pathogenesis, has made the current treatment of neonatal seizures empiric and often ineffective, highlighting the need for novel therapies. Key developmental differences in γ-aminobutyric acid (GABA)ergic neurotransmission between the immature and mature brain, and trauma-induced alterations in the function of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2, probably contribute to the poor efficacy of standard antiepileptic drugs used in the treatment of neonatal seizures. Although CCCs are attractive drug targets, bumetanide and other existing CCC inhibitors are suboptimal because of pharmacokinetic constraints and lack of target specificity. Newer approaches including isoform-specific NKCC1 inhibitors with increased central nervous system penetration, and direct and indirect strategies to enhance KCC2-mediated neuronal chloride extrusion, might allow therapeutic modulation of the GABAergic system for neonatal seizure treatment. PMID:24802699

  4. Molecular Physiology of the Thiazide-sensitive Sodium Chloride Cotransporter

    PubMed Central

    Ko, Benjamin; Hoover, Robert S.

    2010-01-01

    Purpose of review This review summarizes recent advances in the understanding of the molecular physiology and regulation of the thiazide-sensitive cotransporter (NCC). Recent findings Mutations of With-No-Lysine (WNK) Kinases 1 and 4 result in hyperactivity of NCC and FHHt (Familial Hyperkalemic Hypertension), a genetic syndrome of hypertension. Recent studies have shown that WNK1 and WNK4 activate the STE20 family protein kinases SPAK and OSR1, resulting in phosphorylation and activation of NCC. Additionally, a mouse knock-in model for a WNK4 FHHt mutant demonstrated increased SPAK/OSR1 and NCC phosphorylation. It is unclear how these studies fit with the data indicating that WNK4 inhibits NCC and the FHHt mutations of WNK4 are loss-of-function mutations. Another WNK kinase, WNK3, regulates NCC, activating NCC and antagonizing WNK4's effect. Recent studies examining the hormonal regulation of NCC have implicated angiotensin II and aldosterone in regulation of the WNK4-SPAK-NCC pathway. Angiotensin II may also play a role in pressure natriuresis via actions on NCC. Summary NCC is subject to a complex regulatory network of kinases which appear sensitive to alterations of the hormonal and physiologic milieu. PMID:19636250

  5. A Trafficking-Deficient Mutant of KCC3 Reveals Dominant-Negative Effects on K–Cl Cotransport Function

    PubMed Central

    Delpire, Eric

    2013-01-01

    The K–Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, does not move beyond the endoplasmic reticulum or the early Golgi, and thus fails to reach the plasma membrane. We establish through co-immunoprecipitation experiments that both wild-type and mutant KCC3 with KCC2 results in the formation of hetero-dimers. We further demonstrate that formation of these hetero-dimers prevents the proper trafficking of the cotransporter to the plasma membrane, resulting in a significant decrease in cotransporter function. This effect is due to interaction between the K–Cl cotransporter isoforms, as this was not observed when KCC3-E289G was co-expressed with NKCC1. Our studies also reveal that the glutamic acid residue is essential to K–Cl cotransporter function, as the corresponding mutation in KCC2 also leads to an absence of function. Interestingly, mutation of this conserved glutamic acid residue in the Na+-dependent cation-chloride cotransporters had no effect on NKCC1 function in isosmotic conditions, but diminished cotransporter activity under hypertonicity. Together, our data show that the glutamic acid residue (E289) is essential for proper trafficking and function of KCCs and that expression of a non-functional but full-length K–Cl cotransporter might results in dominant-negative effects on other K–Cl cotransporters. PMID:23593405

  6. Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells.

    PubMed

    Wu, Q; Delpire, E; Hebert, S C; Strange, K

    1998-12-01

    The function of the apical Na+-K+-2Cl- cotransporter in mammalian choroid plexus (CP) is uncertain and controversial. To investigate cotransporter function, we developed a novel dissociated rat CP cell preparation in which single, isolated cells maintain normal polarized morphology. Immunofluorescence demonstrated that in isolated cells the Na+-K+-ATPase, Na+-K+-2Cl- cotransporter, and aquaporin 1 water channel remained localized to the brush border, whereas the Cl-/HCO-3 (anion) exchanger type 2 was confined to the basolateral membrane. We utilized video-enhanced microscopy and cell volume measurement techniques to investigate cotransporter function. Application of 100 microM bumetanide caused CP cells to shrink rapidly. Elevation of extracellular K+ from 3 to 6 or 25 mM caused CP cells to swell 18 and 33%, respectively. Swelling was blocked completely by Na+ removal or by addition of 100 microM bumetanide. Exposure of CP cells to 5 mM BaCl2 induced rapid swelling that was inhibited by 100 microM bumetanide. We conclude that the CP cotransporter is constitutively active and propose that it functions in series with Ba2+-sensitive K+ channels to reabsorb K+ from cerebrospinal fluid to blood. PMID:9843718

  7. Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: Effects of seawater and smolting

    USGS Publications Warehouse

    Pelis, R.M.; Zydlewski, J.; McCormick, S.D.

    2001-01-01

    Na+-K+-2Cl- cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl- cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl- cotransporter abundance, large and numerous Na+-K+-2Cl- cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl- cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl- cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl- cotransporter in salt secretion by gill chloride cells of teleost fish.

  8. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  9. A reinvestigation of the secondary structure of functionally active vSGLT, the vibrio sodium/galactose cotransporter.

    PubMed

    Turk, Eric; Gasymov, Oktay K; Lanza, Seren; Horwitz, Joseph; Wright, Ernest M

    2006-02-01

    topology, that nearly a third of the total alpha-helical fraction lies in extramembrane domains, which distinguishes this cotransporter from the unrelated lactose and glycerol 3-phosphate transporters. PMID:16445289

  10. Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport.

    PubMed

    Charron, François M; Blanchard, Maxime G; Lapointe, Jean-Yves

    2006-05-15

    Detection of a significant transmembrane water flux immediately after cotransporter stimulation is the experimental basis for the controversial hypothesis of secondary active water transport involving a proposed stoichiometry for the human Na(+)/glucose cotransporter (SGLT1) of two Na(+), one glucose, and 264 water molecules. Volumetric measurements of Xenopus laevis oocytes coexpressing human SGLT1 and aquaporin can be used to detect osmotic gradients with high sensitivity. Adding 2 mM of the substrate alpha-methyl-glucose (alphaMG) created mild extracellular hypertonicity and generated a large cotransport current with minimal cell volume changes. After 20, 40, and 60 s of cotransport, the return to sugar-free, isotonic conditions was accompanied by measurable cell swelling averaging 0.051, 0.061, and 0.077 nl/s, respectively. These water fluxes are consistent with internal hypertonicities of 1.5, 1.7, and 2.2 mOsm for these cotransport periods. In the absence of aquaporin, the measured hypertonicites were 4.6, 5.0, and 5.3 mOsm for the same cotransport periods Cotransport-dependent water fluxes, previously assumed to be water cotransport, could be largely explained by hypertonicities of such amplitudes. Using intracellular Na(+) injection and Na(+)-selective electrode, the intracellular diffusion coefficient for Na(+) was estimated at 0.29 +/- 0.03 x 10(-5) cm(2) s(-1). Using the effect of intracellular alphaMG injection on the SGLT1-mediated outward current, the intracellular diffusion coefficient of alphaMG was estimated at 0.15 +/- 0.01 x 10(-5) cm(2) s(-1). Although these intracellular diffusion coefficients are much lower than in free aqueous solution, a diffusion model for a single solute in an oocyte would require a diffusion coefficient three times lower than estimated to explain the local osmolyte accumulation that was experimentally detected. This suggests that either the diffusion coefficients were overestimated, possibly due to the presence of

  11. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    PubMed

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. PMID:26511649

  12. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling.

    PubMed

    Xu, Jinxing; Yuan, Haoliang; Ran, Ting; Zhang, Yanmin; Liu, Haichun; Lu, Shuai; Xiong, Xiao; Xu, Anyang; Jiang, Yulei; Lu, Tao; Chen, Yadong

    2015-08-01

    Sodium-dependent glucose cotransporters (SGLTs) play an important role in glucose reabsorption in the kidney and have been identified as promising targets to treat diabetes. Because of the side effects like glucose and galactose malabsorption by targeting SGLT1, highly selective SGLT2 inhibitors are more promising in the treatment of diabetes. To understand the mechanism of selectivity, we conducted selectivity-based three-dimensional quantitative structure-activity relationship studies to highlight the structure requirements for highly selective SGLT2 inhibitors. The best comparative molecular field analysis and comparative molecular similarity indices analysis models showed the noncross-validated coefficient (r(2) ) of 0.967 and 0.943, respectively. The predicted correlation coefficients (r(2) pred ) of 0.974 and 0.938 validated the reliability and predictability of these models. Besides, homology models of SGLT2 and SGLT1 were also constructed to investigate the selective mechanism from structure-based perspective. Molecular dynamics simulation and binding free energy calculation were performed on the systems of a potent and selective compound interacting with SGLT2 and SGLT1 to compare the different binding modes. The simulation results showed that the stretch of the methylthio group on Met241 had an essential effect on the different binding modes between SGLT1 and SGLT2, which was consistent with the three-dimensional quantitative structure-activity relationship analysis. Hydrogen bond analysis and binding free energy calculation revealed that SGLT2 binding complex was more stable and favorable than SGLT1 complex, which was highly correlated with the experimental results. Our obtained results give useful information for the investigation of the inhibitors' selectivity between SGLT2 and SGLT1 and will help for further development of highly selective SGLT2 inhibitors. PMID:25753971

  13. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells.

    PubMed

    Hamann, Steffen; Herrera-Perez, José J; Zeuthen, Thomas; Alvarez-Leefmans, Francisco J

    2010-11-01

    Water transport by the Na+-K+-2Cl(-) cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl(-) fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored by intracellular self-quenching of the fluorescent dye calcein. Isosmotic removal of external Cl(-) or Na+ caused a rapid efflux of water from the cells, which was inhibited by bumetanide (10 μm). When returned to the control solution there was a rapid water influx that required the simultaneous presence of external Na+ and Cl(-). The water influx could proceed uphill, against a transmembrane osmotic gradient, suggesting that energy contained in the ion fluxes can be transferred to the water flux. The influx of water induced by changes in external [Cl(-)] saturated in a sigmoidal fashion with a Km of 60 mm, while that induced by changes in external [Na+] followed first order kinetics with a Km of about 40 mm. These parameters are consistent with ion transport mediated by NKCC1. Our findings support a previous investigation, in which we showed water transport by NKCC1 to be a result of a balance between ionic and osmotic gradients. The coupling between salt and water transport in NKCC1 represents a novel aspect of cellular water homeostasis where cells can change their volume independently of the direction of an osmotic gradient across the membrane. This has relevance for both epithelial and symmetrical cells. PMID:20819947

  14. Is it time to think about the sodium glucose co-transporter 2 sympathetically?

    PubMed

    Elliott, Rosemary H; Matthews, Vance B; Rudnicka, Caroline; Schlaich, Markus P

    2016-04-01

    Disturbances in glucose homeostasis are a key feature of the metabolic syndrome and type 2 diabetes. Renal glucose reabsorption is an important factor in glycaemic control. Glucose reabsorption in the proximal tubules is mediated by the sodium glucose co-transporter 2. The capacity for glucose reabsorption is increased in type 2 diabetes and contributes significantly to hyperglycaemia and impaired glucose control. Understanding the mechanisms underpinning the regulation of the sodium glucose co-transporter 2 is therefore of high clinical relevance. However, despite recent advances in the field and the availability of pharmacological inhibitors of this glucose transporter for the treatment of type 2 diabetes, the mechanisms that regulate sodium glucose co-transporter 2 expression are not fully understood. The sympathetic nervous system is an important modulator of glucose homeostasis, and sympathetic hyperactivity is a characteristic feature of obesity, the metabolic syndrome and type 2 diabetes. Sympathetic inhibition either achieved pharmacologically or by renal sympathetic denervation has been associated with improved glucose control. Importantly, sympathetic nerves innervate the proximal tubules of the kidney where they have been shown to regulate the expression of other transporters such as the sodium hydrogen exchanger 3. This review aims to explore the evidence for the regulation of sodium glucose co-transporter 2-mediated glucose reabsorption by the sympathetic nervous system. PMID:26369359

  15. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish

    USGS Publications Warehouse

    Hiroi, J.; Yasumasu, S.; McCormick, S.D.; Hwang, P.-P.; Kaneko, T.

    2008-01-01

    Cation-chloride cotransporters, such as the Na+/K +/2Cl- cotransporter (NKCC) and Na+/Cl - cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify 'freshwater-type' and 'seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na+/K+-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model by MRCs in

  16. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish.

    PubMed

    Hiroi, Junya; Yasumasu, Shigeki; McCormick, Stephen D; Hwang, Pung-Pung; Kaneko, Toyoji

    2008-08-01

    Cation-chloride cotransporters, such as the Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and Na(+)/Cl(-) cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify ;freshwater-type' and ;seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na(+)/K(+)-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na(+)/H(+) exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model

  17. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway.

    PubMed

    Seaayfan, Elie; Defontaine, Nadia; Demaretz, Sylvie; Zaarour, Nancy; Laghmani, Kamel

    2016-02-26

    Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome. PMID:26721884

  18. Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter.

    PubMed Central

    Xu, J C; Lytle, C; Zhu, T T; Payne, J A; Benz, E; Forbush, B

    1994-01-01

    By mediating the coupled movement of Na, K, and Cl ions across the plasma membrane of most animal cells, the bumetanide-sensitive Na-K-Cl cotransporter (NKCC) plays a vital role in the regulation of ionic balance and cell volume. The transporter is a central element in the process of vectorial salt transport in secretory and absorptive epithelia. A cDNA encoding a Na-K-Cl cotransport protein was isolated from a shark rectal gland library by screening with monoclonal antibodies to the native shark cotransporter. The 1191-residue protein predicted from the cDNA sequence has 12 putative transmembrane domains flanked by large cytoplasmic N and C termini. Regulatory phosphoacceptor residues in isolated peptides are identified as Thr-189 and Thr-1114 in the predicted sequence. Northern blot analysis identified a 7.4-kb mRNA in rectal gland and most other shark tissues; a 5.2-kb mRNA was restricted to shark kidney. Homology with an uncharacterized gene from Caenorhabditis elegans and with the thiazide-sensitive Na-Cl cotransporter of flounder urinary bladder was found over most of the coding region; shorter stretches of homology were found with a C. elegans cDNA and with an uncharacterized gene of cyanobacterium. Human HEK-293 cells have been stably transfected with the shark cDNA and shown to express Na-K-Cl cotransport activity with the bumetanide sensitivity of the shark protein. The expressed transporter is functionally quiescent in the host cells and can be activated by depleting the cells of chloride. Images PMID:8134373

  19. Na+ reabsorption in cultured rat epididymal epithelium via the Na+/nucleoside cotransporter.

    PubMed

    Leung, G P; Cheung, K H; Tse, C M; Wong, P Y

    2001-03-01

    The effect of nucleoside on Na+ reabsorption via Na+/nucleoside cotransporter in cultured rat epididymal epithelia was studied by short-circuit current (Isc) technique. Guanosine added apically stimulated Isc in a dose-dependent manner, with a median effective concentration (EC50) of 7 +/- 2 microM (mean +/- SEM). Removal of Na+ from the apical bathing solution or pretreatment with a nonspecific Na+/nucleoside cotransporter inhibitor, phloridzin, completely blocked the Isc response to guanosine. Moreover, the guanosine response was abolished by pretreatment of the tissue with ouabain, a Na+/K+-ATPase inhibitor, suggesting the involvement of Na+/nucleoside cotransporter on the apical side and Na+/K+-ATPase on the basolateral side in Na+ reabsorption. In contrast, the Isc response to guanosine was not affected after desensitization of purinoceptors by ATP. Addition of the Na+/K+/2Cl- symport inhibitor bumetanide to the basolateral side or the nonspecific Cl- channel blocker diphenylamine-2-carboxylate to the apical side showed no effect on the Isc response to guanosine, excluding stimulation of Cl- secretion by guanosine as the cause of the guanosine-induced Isc. The Isc response to purine nucleoside (guanosine and inosine) was much higher than that to pyrimidine nucleoside (thymidine and cytidine). Consistent with substrate specificity, results of reverse transcription-polymerase chain reaction revealed mRNA for concentrative nucleoside transporter (CNT2), which is a purine nucleoside-selective Na+/nucleoside cotransporter in the epididymis, but not for CNT1. It is suggested that the Na+/nucleoside cotransporter (i.e., CNT2) may be one of the elements involved in Na+ and fluid reabsorption in the epididymis, thereby providing an optimal microenvironment for the maturation and storage of spermatozoa. PMID:11207189

  20. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis.

    PubMed

    Rajasekeran, Harindra; Lytvyn, Yuliya; Cherney, David Z I

    2016-03-01

    Inhibition of sodium-glucose cotransporter 2 causes both glycosuria and natriuresis, leading to reductions in hyperglycemia, body weight, blood pressure, and proteinuria. The recently published EMPA-REG OUTCOME study demonstrated significant cardiovascular and mortality benefits of sodium-glucose cotransporter 2 inhibition with empagliflozin in patients with type 2 diabetes and established cardiovascular disease, and may suggest a broader role for sodium-glucose cotransporter 2 inhibition in patients with heart failure. PMID:26880444

  1. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

    PubMed Central

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2015-01-01

    Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K+-Cl− cotransporter (KCC2), is the principal Cl−-extruder, whereas Na+-K+-Cl− cotransporter (NKCC1), is the major Cl−-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features. PMID:25653592

  2. Modeling Glial Contributions to Seizures and Epileptogenesis: Cation-Chloride Cotransporters in Drosophila melanogaster

    PubMed Central

    Rusan, Zeid M.; Kingsford, Olivia A.; Tanouye, Mark A.

    2014-01-01

    Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl− cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi) of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24–48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl− cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed. PMID:24971529

  3. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  4. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  5. Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase

    PubMed Central

    Wallace, Breanna K.; Foroutan, Shahin

    2011-01-01

    Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive 86Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O2), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK. PMID:21562306

  6. Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase.

    PubMed

    Wallace, Breanna K; Foroutan, Shahin; O'Donnell, Martha E

    2011-08-01

    Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive (86)Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O(2)), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK. PMID:21562306

  7. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  8. Chloroquine Phosphate Oral

    MedlinePlus

    ... allergic to chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), hydroxychloroquine (Plaquenil), or any other drugs.tell your doctor ... taking chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), or hydroxychloroquine (Plaquenil).tell your doctor if you are pregnant ...

  9. Chloroquine Phosphate Oral

    MedlinePlus

    ... allergic to chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), hydroxychloroquine (Plaquenil), or any other drugs.tell your doctor and ... taking chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), or hydroxychloroquine (Plaquenil).tell your doctor if you are pregnant ...

  10. Uranium from phosphate ores

    SciTech Connect

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

  11. Janus kinase 3 regulates renal 25-hydroxyvitamin D 1α-hydroxylase expression, calcitriol formation, and phosphate metabolism.

    PubMed

    Umbach, Anja T; Zhang, Bingbing; Daniel, Christoph; Fajol, Abul; Velic, Ana; Hosseinzadeh, Zohreh; Bhavsar, Shefalee K; Bock, C-Thomas; Kandolf, Reinhard; Pichler, Bernd J; Amann, Kerstin U; Föller, Michael; Lang, Florian

    2015-04-01

    Calcitriol, a powerful regulator of phosphate metabolism and immune response, is generated by 25-hydroxyvitamin D 1α-hydroxylase in the kidney and macrophages. Renal 1α-hydroxylase expression is suppressed by Klotho and FGF23, the expression of which is stimulated by calcitriol. Interferon γ (INFγ) regulates 1α-hydroxylase expression in macrophages through transcription factor interferon regulatory factor-1. INFγ-signaling includes Janus kinase 3 (JAK3) but a role of JAK3 in the regulation of 1α-hydroxylase expression and mineral metabolism has not been shown. Thus, the impact of JAK3 deficiency on calcitriol formation and phosphate metabolism was measured. Renal interferon regulatory factor-1 and 1α-hydroxylase transcript levels, serum calcitriol and FGF23 levels, intestinal phosphate absorption as well as absolute and fractional renal phosphate excretion were significantly higher in jak3 knockout than in wild-type mice. Coexpression of JAK3 increased the phosphate-induced current in renal sodium-phosphate cotransporter-expressing Xenopus oocytes. Thus, JAK3 is a powerful regulator of 1α-hydroxylase expression and phosphate transport. Its deficiency leads to marked derangement of phosphate metabolism. PMID:25493954

  12. Furosemide-induced airway relaxation in guinea pigs: relation to Na-K-2Cl cotransporter function.

    PubMed

    Lavallee, S L; Iwamoto, L M; Claybaugh, J R; Dressel, M V; Sato, A K; Nakamura, K T

    1997-07-01

    This study tested the hypothesis that airway relaxation to furosemide is mediated via the Na-K-2Cl cotransporter. If this mechanism exists in airway smooth muscle like in vascular smooth muscle, changes in airway relaxation should be associated with changes in Na-K-2Cl cotransporter function, and both should be substrate dependent. Tracheal rings from newborn guinea pigs were bathed in standard (STD) or varying low Cl- concentration ([Cl-]) N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Isometric relaxation to 300 microM furosemide or 10(-8) to 10(-5) M salbutamol was measured. Airway segments were incubated with rubidium-86 (86Rb) in STD or varying low [Cl-] HEPES, with and without 300 microM furosemide or 25 microM salbutamol. Furosemide was unable to reduce 86Rb uptake at 10 mM [Cl-], although relaxation was still observed in 10 mM [Cl-]. Salbutamol did not affect 86Rb uptake. This study demonstrated that there is a furosemide-sensitive Na-K-2Cl cotransporter in newborn guinea pig trachea. However, the effect of furosemide on cotransporter function did not always directly correspond to differences in relaxation, suggesting that the Na-K-2Cl cotransporter may play a major, but not exclusive, role in furosemide-induced airway relaxation. PMID:9252558

  13. Cotransport of water by Na⁺-K⁺-2Cl⁻ cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2.

    PubMed

    Zeuthen, Thomas; Macaulay, Nanna

    2012-03-01

    The NKCC1 and NKCC2 isoforms of the mammalian Na⁺–K⁺–2Cl⁻ cotransporter were expressed in Xenopus oocytes and the relation between external ion concentration and water fluxes determined.Water fluxes were determined from changes in the oocytes volume and ion fluxes from 86Rb+ uptake. Isotonic increases in external K⁺ concentration elicited abrupt inward water fluxes in NKCC1; the K⁺ dependence obeyed one-site kinetics with a K₀.₅ of 7.5 mM. The water fluxes were blocked by bumetanide, had steep temperature dependence and could proceed uphill against an osmotic gradient of 20 mosmol l⁻¹. A comparison between ion and water fluxes indicates that 460 water molecules are cotransported for each turnover of the protein. In contrast, NKCC2 did not support water fluxes.Water transport in NKCC1 induced by increases in the external osmolarity had high activation energy and was blocked by bumetanide. The osmotic effects of NaCl were smaller than those of urea and mannitol. This supports the notion of interaction between ions and water in NKCC1 and allows for an estimate of around 600 water molecules transported per turnover of the protein. Osmotic gradients did not induce water transport in NKCC2. We conclude that NKCC1 plays a direct role for water balance in most cell types, while NKCC2 fulfils its role in the kidney of transporting ions but not water. The different behaviour of NKCC1 and NKCC2 is discussed on the basis of recent molecular models based on studies of structural and molecular dynamics. PMID:22250214

  14. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases.

    PubMed

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  15. Effect of gravity on Pseudomonas putida and kaolinite cotransport in water saturated porous media

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Chrysikopoulos, Constantinos V.

    2013-04-01

    Bacterial transport in porous media can be affected by several factors, such as cell concentration, water velocity, and attachment onto the solid matrix or suspended in the aqueous phase soil particles (e.g. clays). Gravity, also may significantly influence bacterial transport behavior in the subsurface. The present study aims to determine the gravity effect on transport and cotransport of bacteria species Pseudomonas (P.) putida and kaolinite colloid particles in porous media. Transport experiments were conducted under horizontal-, up- and down-flow conditions in water saturated columns packed with glass beads. These different flow modes represent different gravity effects, namely: no-, negative- and positive-gravity effect. Initial experiments were performed with bacteria and kaolinite alone in order to evaluate the effect of gravity on their individual transport characteristics. No significant gravity effect was observed on the transport of individual bacterial cells. In contrary, each different flow mode was found to differently affect kaolinite transport. Compared to the horizontal-flow mode, the kaolinite mass recovery was decreased during the up-flow mode, and increased during the down-flow mode. Finally, P. putida and kaolinite particles were injected simultaneously into the packed column in order to investigate their cotransport behavior under different flow modes. The experimental data indicated that the kaolinite-P. putida cotransport behavior was similar to that observed for the transport of individual kaolinite particles. It was observed that the P. putida mass recovery decreased during down-flow conditions. This phenomenon may be caused by the attachment of bacteria onto kaolinite particles, which were adsorbed onto the solid matrix.

  16. Cotransport of TiO2 nanoparticles and Pseudomonas putida in porous media

    NASA Astrophysics Data System (ADS)

    Zaharis, Ioannis; Manariotis, Ioannis D.; Chrysikopoulos, Constantinos V.

    2015-04-01

    The scope of this study was to investigate the cotransport of Pseudomonas putida and TiO2 nanoparticles (NPs) in porous media. Flowthrough experiments were conducted in glass columns with diameter of 2.5 cm and length of 30 cm, packed with 2-mm diameter spherical glass beads. Anatase TiO2 NPs solutions were prepared in distilled water of at two different concentrations: 5 and 50 mg/L. The concentration of P. putida solutions varied from 105 to 109 cfu/mL. Initially, transport experiments were conducted separately for P. putida and TiO2 NPs. Subsequently, TiO2 and P. putida cotransport experiments were conducted. The concentration of TiO2 NPs was measured by a fluorescence spectrophotometer and P. putida concentration was determined by plate counts on agar plates and optical density measurements. All experiments were conducted with two different flow rates: 1 and 2 mL/min. The transport experiments with P. putida exhibited similar transport behavior with the tracer (NaBr) indicating that there was not considerable retention. The mass recovery of P. putida was close to 100% in all of the transport experiments conducted. However, the transport experiments with TiO2 NPs suggested that a significant portion of the NPs was retained in the column. Based on the cotransport experimental data, it is evident that the transport of P. putida was not significantly affected by the presence of TiO2. It should be noted that the mass recovery of NPs in the transport and costransport experiments was between 40 and 60%.

  17. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases

    PubMed Central

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na+, K+ and 2Cl- inside the cell. It acts in concert with K+ Cl- co-transporter (KCC), which extrudes K+ and Cl- ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  18. Intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic.

    PubMed Central

    Umbach, J A; Coady, M J; Wright, E M

    1990-01-01

    The cloned rabbit intestinal Na+/glucose cotransporter was expressed in Xenopus oocytes, and transmembrane currents associated with this transporter were monitored using a two-electrode voltage clamp. Addition of D-glucose to a Na(+)-containing solution bathing these oocytes generated a current which was blocked by phlorizin. Water-injected control oocytes did not exhibit any currents under these conditions. The magnitude and shape of the currents were dependent on the extracellular glucose and Na+ concentrations and the membrane potential. At Vhold = -50 mV, the Km values for glucose and Na+ were 14 +/- 2 (N = 4) microM and 17 +/- 1 (N = 3) mM, respectively. These Km values and imax exhibited voltage dependence: increasing the membrane potential from -30 to -150 mV increased KGlcm and imax threefold and decreased KNam eightfold. The reversal potential (VR) of the phlorizin-sensitive, glucose-dependent current varied with log Nao+ (slope 46 +/- 6 [N = 9] mV). In the absence of sugar, a Na(+)-dependent, phlorizin-sensitive (Ki = 3 +/- 0.5 microM) current was detected only in RNA-injected oocytes. The amplitude of this current at -50 mV was 6 +/- 1% (N = 13) of the maximum current measured in the presence of D-glucose. The VR of this sugar-independent current varied with log Nao+ (slope 63 +/- 1 [N = 4] mV), indicating that the cotransporter may carry Na+ in the absence of sugar. We conclude that the Na+/glucose cotransporter is electrogenic and that investigations of currents associated with its operation can yield valuable insights into the mechanisms of solute translocation. PMID:1697483

  19. N-terminal Serine Dephosphorylation Is Required for KCC3 Cotransporter Full Activation by Cell Swelling*

    PubMed Central

    Melo, Zesergio; de los Heros, Paola; Cruz-Rangel, Silvia; Vázquez, Norma; Bobadilla, Norma A.; Pasantes-Morales, Herminia; Alessi, Dario R.; Mercado, Adriana; Gamba, Gerardo

    2013-01-01

    The K+:Cl− cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity. PMID:24043619

  20. Na+,Cl- cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).

    PubMed

    Hoffmann, E K; Sjøholm, C; Simonsen, L O

    1983-01-01

    Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system. PMID:6100866

  1. Role of Na+/H+ exchanger regulatory factor 1 in forward trafficking of the type IIa Na+-Pi cotransporter

    PubMed Central

    Ketchem, Corey J.; Khundmiri, Syed J.; Gaweda, Adam E.; Murray, Rebecca; Clark, Barbara J.; Weinman, Edward J.

    2015-01-01

    Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi. PMID:25995109

  2. Role of Na+/H+ exchanger regulatory factor 1 in forward trafficking of the type IIa Na+-Pi cotransporter.

    PubMed

    Ketchem, Corey J; Khundmiri, Syed J; Gaweda, Adam E; Murray, Rebecca; Clark, Barbara J; Weinman, Edward J; Lederer, Eleanor D

    2015-07-15

    Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi. PMID:25995109

  3. Tracers for monitoring the activity of sodium/glucose cotransporters in health and disease

    DOEpatents

    Wright, Ernest M; Barrio, Jorge R; Hirayama, Bruce A; Kepe, Vladimir

    2014-09-30

    Radiolabeled tracers for sodium/glucose cotransporters (SGLTs), their synthesis, and their use are provided. The tracers are methyl or ethyl pyranosides having an equatorial hydroxyl group at carbon-2 and a C 1 preferred conformation, radiolabeled with .sup.18F, .sup.123I, or .sup.124I, or free hexoses radiolabeled with .sup.18F, .sup.123I, or .sup.124. Also provided are in vivo and in vitro techniques for using these and other tracers as analytical and diagnostic tools to study glucose transport, in health and disease, and to evaluate therapeutic interventions.

  4. Sodium-glucose cotransporter-2 inhibition and the insulin: Glucagon ratio: Unexplored dimensions.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep; Patil, Shiva

    2015-01-01

    The sodium-glucose cotransporter 2 (SGLT-2) inhibitors are a novel class of glucose-lowering drugs which act by inhibiting the reabsorption of filtered glucose from the kidneys. Their effect on insulin and glucagon levels has recently been studied but is not fully explained. This communication proposes various hypotheses: A direct effect of SGLT-2 inhibition on the alpha cell receptors, a paracrine or intra-islet mediated effect on alpha cell sensitivity to glucose, and a calorie restriction mimetic action, to explain the impact of these drugs on the insulin glucagon ratio. PMID:25932403

  5. Modeling of phosphate ion transfer to the surface of osteoblasts under normal gravity and simulated microgravity conditions.

    PubMed

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S; Risbud, Makarand; Hu, Howard H; Shapiro, Irving M

    2004-11-01

    We have modeled the transport and accumulation of phosphate ions at the remodeling site of a trabecular bone consisting of osteoclasts and osteoblasts situated adjacent to each other in straining flows. Two such flows are considered; one corresponds to shear levels representative of trabecular bone conditions at normal gravity, the other corresponds to shear level that is representative of microgravity conditions. The latter is evaluated indirectly using a simulated microgravity environment prevailing in a rotating wall vessel bioreactor (RWV) designed by NASA. By solving the hydrodynamic equations governing the particle motion in a RWV using a direct numerical simulation (DNS) technique, the shear stress values on the surface of the microcarriers are found. In our present species transfer model, osteoclasts release phosphate ions (Pi) among other ions at bone resorption sites. Some of the ions so released are absorbed by the osteoblast, some accumulate at the osteoblast surface, and the remainder are advected away. The consumption of Pi by osteoblasts is assumed to follow Michaelis-Menten (MM) kinetics aided by a NaPi cotransporter system. MM kinetics views the NaPi cotransporter as a system for transporting extracellular Pi into the osteoblast. Our results show, for the conditions investigated here, the net accumulation of phosphate ions at the osteoblast surface under simulated microgravity conditions is higher by as much as a factor of three. Such increased accumulation may lead to enhanced apoptosis and may help explain the increased bone loss observed under microgravity conditions. PMID:15644348

  6. Phosphate, inositol and polyphosphates.

    PubMed

    Livermore, Thomas M; Azevedo, Cristina; Kolozsvari, Bernadett; Wilson, Miranda S C; Saiardi, Adolfo

    2016-02-15

    Eukaryotic cells have ubiquitously utilized the myo-inositol backbone to generate a diverse array of signalling molecules. This is achieved by arranging phosphate groups around the six-carbon inositol ring. There is virtually no biological process that does not take advantage of the uniquely variable architecture of phosphorylated inositol. In inositol biology, phosphates are able to form three distinct covalent bonds: phosphoester, phosphodiester and phosphoanhydride bonds, with each providing different properties. The phosphoester bond links phosphate groups to the inositol ring, the variable arrangement of which forms the basis of the signalling capacity of the inositol phosphates. Phosphate groups can also form the structural bridge between myo-inositol and diacylglycerol through the phosphodiester bond. The resulting lipid-bound inositol phosphates, or phosphoinositides, further expand the signalling potential of this family of molecules. Finally, inositol is also notable for its ability to host more phosphates than it has carbons. These unusual organic molecules are commonly referred to as the inositol pyrophosphates (PP-IPs), due to the presence of high-energy phosphoanhydride bonds (pyro- or diphospho-). PP-IPs themselves constitute a varied family of molecules with one or more pyrophosphate moiety/ies located around the inositol. Considering the relationship between phosphate and inositol, it is no surprise that members of the inositol phosphate family also regulate cellular phosphate homoeostasis. Notably, the PP-IPs play a fundamental role in controlling the metabolism of the ancient polymeric form of phosphate, inorganic polyphosphate (polyP). Here we explore the intimate links between phosphate, inositol phosphates and polyP, speculating on the evolution of these relationships. PMID:26862212

  7. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23

    PubMed Central

    Bergwitz, Clemens; Jüppner, Harald

    2015-01-01

    In contrast to the regulation of calcium homeostasis, which has been extensively studied over the past several decades, relatively little is known about the regulation of phosphate homeostasis. Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by PTH, 1,25(OH)2-vitamin D (1,25(OH)2D), dietary and serum phosphorus levels. Synthesis and secretion of FGF23 by osteocytes are positively regulated by 1,25(OH)2D and serum phosphorus and negatively regulated, through yet unknown mechanisms, by the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and by dentin matrix protein 1 (DMP1). In turn, FGF23 inhibits the synthesis of 1,25(OH)2D, and it may negatively regulate the secretion of parathyroid hormone (PTH) from the parathyroid glands. However, FGF23 synergizes with PTH to increase renal phosphate excretion by reducing expression of the renal sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Most insights gained into the regulation of phosphate homeostasis by these factors are derived from human genetic disorders and genetically engineered mice, which are reviewed in this paper. PMID:20059333

  8. Niacin and analogs for phosphate control in dialysis--perspective from a developing country.

    PubMed

    Sampathkumar, Krishnaswamy

    2009-12-01

    Hyperphosphatemia is an important modifiable risk factor in the dialysis population because it is linked to increased mortality. Existing phosphate-reducing agents either increase the risk of vascular calcification or are costly with high pill burden. Niacin shows promise as a cheap drug with low pill burden and a novel mode of action. Niacin and its metabolite nicotinamide inhibit the small intestinal sodium-phosphate cotransporter. Approximately 50% of intestinal phosphate absorption occurs through this route under physiological conditions. Studies performed on the dialysis population with niacin and nicotinamide have shown significant phosphate reduction with lowering of the calcium-phosphorus product. The well documented increase in serum HDL levels may also offer survival benefits. Side-effects include flushing, which is controlled with aspirin, diarrhea, and thrombocytopenia, which may be treatment-limiting. Niacin is cheap and phosphate reduction can be achieved by administration of one or two tablets per day. These factors will boost compliance in developing countries. Further basic research and large-scale clinical trials are needed in this field. PMID:19037739

  9. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome

    SciTech Connect

    Mastroianni, N.; De Fusco, M.; Casari, G.

    1996-11-01

    A hereditary defect of the distal tubule accounts for the clinical features of Gitelman syndrome (GS), an autosomal recessive disease characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. Recently, we cloned the cDNA coding for the human Na-Cl thiazide-sensitive cotransporter (TSC; also known as {open_quotes}NCCT{close_quotes} or {open_quotes}SLC12A3{close_quotes}) as a possible candidate for GS, and Simon et al., independently, described rotation in patients with GS. Now, we show 12 additional mutations consistent with a loss of function of the Na-Cl cotransporter in GS. Two missense replacements, R09W and P349L, are common to both studies and could represent ancient mutations. The other mutations include three deletions, two insertions, and six missense mutations. When all mutations from both studies are considered, missense mutations seem to be more frequently localized within the intracellular domains of the molecule, rather than in transmembrane or extracellular domains. One family, previously reported as a GS form with dominant inheritance, has proved to be recessive, with the affected child being a compound heterozygote. A highly informative intragenic tetranucleotide marker, useful for molecular diagnostic studies, has been identified at the acceptor splice site of exon 9. 12 refs., 3 figs., 2 tabs.

  10. Erythropoietin Attenuates Loss of Potassium Chloride Co-Transporters Following Prenatal Brain Injury

    PubMed Central

    Jantzie, L.L.; Getsy, P. M.; Firl, D. J.; Wilson, C.G.; Miller, R.H; Robinson, S.

    2014-01-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, neurodegenerative and cognitive disorders. During development upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guides the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis. PMID:24983520

  11. Inhibition of Na -P/sub i/ cotransporter in small gut brush border by phosphonocarboxylic acids

    SciTech Connect

    Loghman-Adham, M.; Szczepsanska-Konkel, M.; Yusufi, A.N.K.; Van Scoy, M.; Dousa, T.P.

    1987-02-01

    The authors examined the effect of phosphonoformic acid (PFA) and phosphonoacetic acid (PAA) upon Na -P/sub i/ cotransport in brush-border membrane (BBM) from small gut of rat. Both PFA and PAA inhibited the Na gradient-dependent uptake of TSP/sub i/ by BBM vesicles (BBMV) prepared from intestinal mucosa but had no effect on Na -dependent uptakes of D-(TH)glucose, L-(TH)proline, or ( UC)succinate. The uptake in the absence of Na gradient, or uptake at equilibrium period (180 min), was not affected by PFA or by PAA. A chemical analogue of PFA and PAA, phosphonopropionic acid, had only a minor inhibitory effect and phenylphosphonic acid was inactive. Neither PFA nor PAA influenced the activity of rat intestinal BBM alkaline phosphatase. The BBMV from rat jejunum had a much higher capacity for Na gradient-dependent uptake of TSP/sub i/ than BBMV from duodenum or ileum. The inhibition of BBMV TSP/sub i/ transport across rat jejunum by PFA is competitive. They suggest that PFA and PAA are specific inhibitors of Na gradient-dependent uptake of P/sub i/ by BBMV from small intestinal mucosa and that they could serve as useful experimental tools for the studies of intestinal Na -P/sub i/ cotransport.

  12. Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity

    PubMed Central

    Rinehart, Jesse; Maksimova, Yelena D.; Tanis, Jessica E.; Stone, Kathryn L.; Hodson, Caleb A.; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M.; Forbush, Biff; Joiner, Clinton H.; Gulcicek, Erol E.; Gallagher, Patrick G.; Lifton, Richard P.

    2010-01-01

    Summary Modulation of intracellular chloride concentration ([Cl−]i) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl− exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl−]I; however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl−]i and have implications for control of cell volume and neuronal function. PMID:19665974

  13. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  14. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  15. SKELETAL MUSCLE SODIUM GLUCOSE CO-TRANSPORTERS IN OLDER ADULTS WITH TYPE 2 DIABETES UNDERGOING RESISTANCE TRAINING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the expression of the sodium-dependent glucose co-transporter system (SGLT3) in skeletal muscle of Hispanic older adults with type 2 diabetes. Subjects (65+/-8 yr) were randomized to resistance training (3x/wk, n=13) or standard of care (controls, n=5) for 16 weeks. Skeletal muscle SGL...

  16. Determination of the Na+/Glucose Cotransporter (SGLT1) Turnover Rate Using the Ion-Trap Technique

    PubMed Central

    Longpré, Jean-Philippe; Lapointe, Jean-Yves

    2011-01-01

    The Na+/glucose cotransporter (SGLT1) is a membrane protein that couples the transport of two Na+ ions and one glucose molecule using the so-called alternating access mechanism. According to this principle, each cotransporter molecule can adopt either of two main conformations: one with the binding sites accessible to the extracellular solution and one with the binding sites facing the intracellular solution. The turnover rate (TOR) is the number of complete cycles that each protein performs per second. Determination of the TOR has important consequences for investigation of the cotransport mechanism, as none of the rate constants involved in mediating transport in a given direction (conformational changes and binding and unbinding reactions) can be slower than the TOR measured under the same conditions. In addition, the TOR can be used to estimate the number of cotransporter molecules involved in generating a given ensemble activity. In this study, we obtain an independent estimation of the TOR for human SGLT1 expressed in Xenopus laevis oocytes applying the ion-trap technique. This approach detects the quantity of ions released in or taken up from the restricted space existing between the oocyte plasma membrane and the tip of a large ion-selective electrode. Taking advantage of the fact that hSGLT1 in the absence of Na+ can cotransport glucose with protons, we used a pH electrode to determine a TOR of 8.00 ± 1.3 s−1 in the presence of 35 mM α-methyl-glucose at −150 mV (pH 5.5). For the same group of oocytes, a TOR of 13.3 ± 2.4 s−1 was estimated under near-Vmax conditions, i.e., in the presence of 90 mM Na+ and 5 mM α-methyl-glucose. Under these circumstances, the average cotransport current was −1.08 ± 0.61 μA (n = 14), and this activity was generated by an average of 3.6 ± 0.7 × 1011 cotransporter molecules/oocyte. PMID:21190656

  17. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  18. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    SciTech Connect

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  19. Biosynthesis of Dolichyl Phosphate

    PubMed Central

    Hopp, H. Esteban; Daleo, Gustavo R.; Romero, Pedro A.; Lezica, Rafael Pont

    1978-01-01

    This is the first report not only on the presence of polyprenyl phosphates and their site of synthesis in algae, but also on the formation of their sugar derivatives in this system. A glucose acceptor lipid was isolated from the nonphotosynthetic alga Prototheca zopfii. The lipid was acidic and resistant to mild acid and alkaline treatments. The glucosylated lipid was labile to mild acid hydrolysis and resistant to phenol treatment and catalytic hydrogenation, as dolichyl phosphate glucose is. These results are consistent with the properties of an α-saturated polyprenyl phosphate. The polyprenylic nature of the lipid was confirmed by biosynthesis from radioactive mevalonate. The [14C]lipid had the same chromatographic properties as dolichyl phosphate in DEAE-cellulose and Sephadex LH-20. Strong alkaline treatment and enzymic hydrolysis liberated free alcohols with chain lengths ranging from C90 to C105, C95 and C100 being the most abundant molecular forms. The glucose acceptor activity of the biosynthesized polyprenyl phosphate was confirmed. The ability of different subcellular fractions to synthesize dolichyl phosphate was studied. Mitochondria and the Golgi apparatus were the sites of dolichyl phosphate synthesis from mevalonate. PMID:16660269

  20. NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension

    PubMed Central

    Orlov, Sergei N.; Koltsova, Svetlana V.; Kapilevich, Leonid V.; Gusakova, Svetlana V.; Dulin, Nickolai O.

    2015-01-01

    This review summarizes the data on the functional significance of ubiquitous (NKCC1) and renal-specific (NKCC2) isoforms of electroneutral sodium, potassium and chloride cotransporters. These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid, respectively. Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume. However, the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds. PMID:26114157

  1. The Effect of Vanadate on Proton-Sucrose Cotransport in Ricinus Cotyledons 1

    PubMed Central

    Vreugdenhil, Dick; Spanswick, Roger M.

    1987-01-01

    The effects of orthovanadate on the uptake of sucrose by Ricinus cotyledons and on sucrose-coupled proton influx were measured in order to gain insight into the relationship to the plasma membrane proton pump. Vanadate had no effect on short-term sucrose uptake. In longterm experiments (>30 min) sucrose uptake was progressively inhibited, but only at high external sucrose concentrations. Vanadate did not affect proton efflux pumping in the absence of sucrose and neither did it change the initial rate of sucrose-coupled proton influx. However, it enhanced the maximal level of sucrose-induced alkalinization of the medium at all sucrose concentrations tested. This is interpreted as an inhibiting effect of vanadate on the proton pump that recycles protons during sucrose-proton cotransport. The sensitivity towards vanadate indicates that this proton pump is an ATPase. A second proton-translocating system, that is insensitive to vanadate, is postulated to function in the absence of sucrose. PMID:16665488

  2. Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy

    PubMed Central

    Kahle, Kristopher T; Merner, Nancy D; Friedel, Perrine; Silayeva, Liliya; Liang, Bo; Khanna, Arjun; Shang, Yuze; Lachance-Touchette, Pamela; Bourassa, Cynthia; Levert, Annie; Dion, Patrick A; Walcott, Brian; Spiegelman, Dan; Dionne-Laporte, Alexandre; Hodgkinson, Alan; Awadalla, Philip; Nikbakht, Hamid; Majewski, Jacek; Cossette, Patrick; Deeb, Tarek Z; Moss, Stephen J; Medina, Igor; Rouleau, Guy A

    2014-01-01

    The KCC2 cotransporter establishes the low neuronal Cl− levels required for GABAA and glycine (Gly) receptor-mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non-synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical association with idiopathic generalized epilepsy (IGE). These variants reside in conserved residues in the KCC2 cytoplasmic C-terminus, exhibit significantly impaired Cl−-extrusion capacities resulting in less hyperpolarized Gly equilibrium potentials (EGly), and impair KCC2 stimulatory phosphorylation at serine 940, a key regulatory site. These data describe a novel KCC2 variant significantly associated with a human disease and suggest genetically encoded impairment of KCC2 functional regulation may be a risk factor for the development of human IGE. PMID:24928908

  3. WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters.

    PubMed

    Rinehart, Jesse; Vázquez, Norma; Kahle, Kristopher T; Hodson, Caleb A; Ring, Aaron M; Gulcicek, Erol E; Louvi, Angeliki; Bobadilla, Norma A; Gamba, Gerardo; Lifton, Richard P

    2011-08-26

    NKCC1 and KCC2, related cation-chloride cotransporters (CCC), regulate cell volume and γ-aminobutyric acid (GABA)-ergic neurotranmission by modulating the intracellular concentration of chloride [Cl(-)]. These CCCs are oppositely regulated by serine-threonine phosphorylation, which activates NKCC1 but inhibits KCC2. The kinase(s) that performs this function in the nervous system are not known with certainty. WNK1 and WNK4, members of the WNK (with no lysine [K]) kinase family, either directly or via the downstream SPAK/OSR1 Ste20-type kinases, regulate the furosemide-sensitive NKCC2 and the thiazide-sensitive NCC, kidney-specific CCCs. What role the novel WNK2 kinase plays in this regulatory cascade, if any, is unknown. Here, we show that WNK2, unlike other WNKs, is not expressed in kidney; rather, it is a neuron-enriched kinase primarily expressed in neocortical pyramidal cells, thalamic relay cells, and cerebellar granule and Purkinje cells in both the developing and adult brain. Bumetanide-sensitive and Cl(-)-dependent (86)Rb(+) uptake assays in Xenopus laevis oocytes revealed that WNK2 promotes Cl(-) accumulation by reciprocally activating NKCC1 and inhibiting KCC2 in a kinase-dependent manner, effectively bypassing normal tonicity requirements for cotransporter regulation. TiO(2) enrichment and tandem mass spectrometry studies demonstrate WNK2 forms a protein complex in the mammalian brain with SPAK, a known phosphoregulator of NKCC1. In this complex, SPAK is phosphorylated at Ser-383, a consensus WNK recognition site. These findings suggest a role for WNK2 in the regulation of CCCs in the mammalian brain, with implications for both cell volume regulation and/or GABAergic signaling. PMID:21733846

  4. Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2

    PubMed Central

    Medina, Igor; Friedel, Perrine; Rivera, Claudio; Kahle, Kristopher T.; Kourdougli, Nazim; Uvarov, Pavel; Pellegrino, Christophe

    2014-01-01

    In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl−)-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl− concentration ([Cl−]i). Lowering [Cl−]i enhances inhibition, whereas raising [Cl−]i facilitates neuronal activity. A neuron's basal level of [Cl−]i, as well as its Cl− extrusion capacity, is critically dependent on the activity of the electroneutral K+-Cl− cotransporter KCC2, a member of the SLC12 cation-Cl− cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl− extrusion capacity of KCC2 that result in increases of [Cl−]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl− homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions. PMID:24567703

  5. Cotransport of viruses and clay particles in water saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2014-12-01

    This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦΧ174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles hindered the transport of the two viruses considered in this work. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦΧ174, and the capillary potential energy ofKGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water filmis the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO energy potential. Figure 1Schematic illustration of the various concentrations involved in the cotransport experiments for: (a) saturated and (b) unsaturated porous media.

  6. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  7. Phosphate control in dialysis

    PubMed Central

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-01-01

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients. PMID:24133374

  8. Inhibition of phosphatidylinositide 3-kinase in OK-cells reduces Na/Pi-cotransport but does not interfere with its regulation by parathyroid hormone.

    PubMed

    Pfister, M F; Brunskill, N J; Forgo, J; Stange, G; Biber, J; Murer, H

    1999-08-01

    The importance of phosphatidylinositide 3- kinase(s) [PI 3-kinase(s)] in membrane trafficking processes led us to examine its/their possible role in parathyroid-hormone- (PTH-) induced endocytosis and lysosomal degradation of the type IIa Na/Pi-cotransporter in opossum kidney cells (OK-cells). We used wortmannin, a potent inhibitor of several mammalian PI 3-kinase isoforms, and measured Na/Pi-cotransporter activity and type IIa Na/Pi-cotransporter protein expression; also the induction of a negative dominant subunit (Deltap85) was used to reduce PI 3-kinase activity. Wortmannin and Deltap85 led to a reduction of Na/Pi-cotransport activity but were unable to prevent its inhibition by PTH. Wortmannin led in a dose- and time-dependent manner to a reduction of Na/Pi-cotransport activity and transporter protein expression, and retarded their recovery from PTH-induced inhibition/degradation. The data suggest that a PI 3-kinase "controlled" mechanism is involved in the synthesis (and/or routing) of the apical type IIa Na/Pi-cotransporter in OK-cells. PMID:10398872

  9. Modelling of calcium phosphates

    NASA Astrophysics Data System (ADS)

    Calderin Hidalgo, Lazaro Juan

    This work is a contribution to a large scale joint experimental and theoretical effort to understand the biological properties of silicon doped calcium phosphates undertaken by Queen's University and Millenium Biologix Corp. We have modeled calcium phosphates and silicon doped calcium phosphates in close relation to experiment in order to study possible location of silicon in the lattice. Density functional theory has been used to study the structural and dynamical properties of small systems of calcium phosphates to gain preliminary information on phosphates and the performance of the theoretical methods. The same methods were used to investigate structural and electronic properties of larger scale calcium phosphate systems, while a classical shell model was developed to investigate the dynamical properties of such large and complex systems. In the context of the shell model a method was devised to calculate the dynamical matrix corrected for the long range Coulomb interaction in the long wave length limit. It was necessary also to develop a theoretical expression for the dielectric function in the context of the shell model. Infrared spectra and thermal parameters were calculated based on these methods. We also propose some directions for future research.

  10. Hsp70 and Hsp90 multichaperone complexes sequentially regulate thiazide-sensitive cotransporter endoplasmic reticulum-associated degradation and biogenesis.

    PubMed

    Donnelly, Bridget F; Needham, Patrick G; Snyder, Avin C; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L; Subramanya, Arohan R

    2013-05-01

    The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560

  11. Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media.

    PubMed

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P

    2015-07-21

    Attributable to their nanoscale size and slow phosphorus (P) release kinetics, hydroxyapatite nanoparticles (HANPs) are increasingly advocated as a promising P nanofertilizer. Additionally, HANPs have been extensively used to remediate soils, groundwater, and nuclear wastewaters contaminated with metals and radionuclides. Increasing application of HANPs for agronomic and environmental advantages will expedite their dissemination in subsurface environments. Because the biogeochemical cycling of P is intimately coupled with iron, it is anticipated that HANPs and released P from HANPs interact with iron oxides, particularly naturally occurring goethite nanoparticles (GNPs) because of their nanoscale size and high reactivity toward P. Here, we investigated the cotransport and retention of HANPs and GNPs in water-saturated sand columns under environmentally relevant transport conditions (pH and natural organic matter type and concentration). Our results indicated that the "size-selective retention", i.e., preferential retention of larger particles near the column inlet and elution of smaller particles occurred during cotransport of HANPs and GNPs, and the cotransport of both NPs is highly sensitive to solution chemistry that determines NPs dissolution, homo- and heteroaggregation, and co- and competitive-retention. These findings have important insights into application of HANPs as a promising P nanofertilizer and an in situ amendment for contaminated site remediation. PMID:26084013

  12. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters.

    PubMed

    Mercado, Adriana; de Los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette; Gamba, Gerardo

    2016-07-01

    The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms. PMID:27170636

  13. Photoinactivation of sodium-potassium-chloride cotransport in LLC-PK1/Cl 4 cells by bumetanide

    SciTech Connect

    Amsler, K.; Kinne, R.

    1986-05-01

    Rb+ uptake into LLC-PK1/Cl 4 cells can be subdivided into three components: 1) ouabain-sensitive uptake, 2) bumetanide-sensitive uptake, and 3) ouabain- and bumetanide-insensitive uptake. Exposure of cells to near-UV light in the presence of low concentrations of bumetanide produces a specific, irreversible inhibition of the bumetanide-sensitive uptake component, while not affecting the other two uptake components. Irreversible inhibition of bumetanide-sensitive transport is observed when measuring either cellular uptake or efflux and also when measuring /sup 86/Rb+ uptake into membrane vesicles. The irreversible inhibition is both concentration and time dependent and is blocked under conditions where the interaction of bumetanide with the Na+-K+-Cl- cotransporter is disturbed. We conclude that bumetanide, at low concentrations, can specifically and irreversibly inhibit the Na+-K+-Cl- cotransporter of LLC-PK1/Cl 4 cells. We suggest that this irreversible inhibition is the result of the photoactivation of an ether linkage in the bumetanide molecule, leading to a covalent binding of bumetanide to the Na+-K+-Cl- cotransporter.

  14. Vanadate and fluoride effects on Na sup + -K sup + -Cl sup minus cotransport in squid giant axon

    SciTech Connect

    Altamirano, A.A.; Breitwieser, G.E.; Russel, J.M. )

    1988-04-01

    The effects of vanadate and fluoride on the Na{sup +}-K{sup +}-Cl{sup {minus}} cotransporter of the squid giant axon were assessed. In axons not treated with these agents, intracellular dialysis with ATP-depleting fluids caused bumetanide-inhibitable {sup 36}Cl influx to fall with a half time of {approximately}16 min. In the presence of either 40 {mu}M vanadate or 5 mM fluoride, the decay of bumetanide-inhibitable {sup 36}Cl influx was significantly slowed; half time for vanadate-treated axons is 45 min and four fluoride-treated axons is 37 min. These agents are not exerting their effects on Na{sup +}-K{sup +}Cl{sup {minus}} cotransport by influencing the rate of ATP depletion of the axon, since they had no effect on the ATP hydrolysis rate of an optic ganglia homogenate. We therefore suggest that these data support the hypothesis that Na{sup +}-K{sup +}-Cl{sup {minus}} cotransport in squid axons is regulated by a phosphorylation-dephosphorylation mechanism and that vanadate and fluoride reduce the rate of dephosphorylation by inhibiting a protein phosphatase.

  15. Glucose-6-phosphate isomerase.

    PubMed

    Achari, A; Marshall, S E; Muirhead, H; Palmieri, R H; Noltmann, E A

    1981-06-26

    Glucose-6-phosphate isomerase (EC 5.3.1.9) is a dimeric enzyme of molecular mass 132000 which catalyses the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. The crystal structure of the enzyme from pig muscle has been determined at a nominal resolution of 2.6 A. The structure is of the alpha/beta type. Each subunit consists of two domains and the active site is in both the domain interface and the subunit interface (P.J. Shaw & H. Muirhead (1976), FEBS Lett. 65, 50-55). Each subunit contains 13 methionine residues so that cyanogen bromide cleavage will produce 14 fragments, most of which have been identified and at least partly purified. Sequence information is given for about one-third of the molecule from 5 cyanogen bromide fragments. One of the sequences includes a modified lysine residue. Modification of this residue leads to a parallel loss of enzymatic activity. A tentative fit of two of the peptides to the electron density map has been made. It seems possible that glucose-6-phosphate isomerase, triose phosphate isomerase and pyruvate kinase all contain a histidine and a glutamate residue at the active site. PMID:6115414

  16. Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading

    PubMed Central

    Steffensen, Annette B.; Sword, Jeremy; Croom, Deborah

    2015-01-01

    Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl−, and, accordingly, combined blockade of Cl−-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. SIGNIFICANCE STATEMENT Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular

  17. Annexin A2 Mediates Apical Trafficking of Renal Na+-K+-2Cl− Cotransporter*

    PubMed Central

    Dathe, Christin; Daigeler, Anna-Lena; Seifert, Wenke; Jankowski, Vera; Mrowka, Ralf; Kalis, Ronny; Wanker, Erich; Mutig, Kerim; Bachmann, Sebastian; Paliege, Alexander

    2014-01-01

    The furosemide-sensitive Na+-K+-2Cl− cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca2+-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter. PMID:24526686

  18. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Molecular cloning of a cDNA for a putative choline co-transporter from Limulus CNS.

    PubMed

    Wang, Y; Cao, Z; Newkirk, R F; Ivy, M T; Townsel, J G

    2001-05-01

    It is well documented that the sodium dependent, hemicholinium-3 sensitive, high affinity choline co-transporter is rate limiting in the biosynthesis of acetylcholine and is essential to cholinergic transmission. Until recently this transporter had eluded cloning. Okuda et al. (2000. Nature Neurosci. 3, 120-125) recently reported the successful cloning of the choline co-transporter in Caenorhabditis elegans (CHO-1) and rat (CHT1). We report herein the cloning of the choline co-transporter in the horseshoe crab, Limulus polyphemus. Through the use of a series of degenerate primers selected from consensus sequences of CHO-1 and CHT1, we generated two probes that were used to search a Limulus cDNA library produced from central nervous system (CNS) tissue. The full length nucleotide sequence of the Limulus homolog consists of 3368 bp which includes an open reading frame (ORF) that predicts a protein of 579 amino acids and two non-translation regions (NTR), one at the 3' end and the other at the 5' end. The amino acid sequence has 46% identity with rat CHT1 and 50% identity with both CHO-1 in C. elegans and the recently cloned human co-transporter (hCHT; Apparsundaram et al., 2000. Biochem. Biophys. Res. Commun. 276, 862-867; Okuda and Haga, 2000. FEBS Lett. 484, 92-97). Hydropathy plot analysis predicts the Limulus choline co-transporter (LChCoT) to have thirteen transmembrane domains (TMD), with the N-terminus oriented extracellularly and the C-terminus oriented intracellularly. Northern blot analyses using cDNA probes designed from LChCoT cDNA sequences revealed its distribution specifically in central nervous system structures. On the other hand it was not found in non-nervous tissues. The successful cloning of LChCoT, which was shown to be a member of the sodium-dependent glucose transporter family (SLGT), should prove useful in the determination of its physiological regulation, including its intracellular trafficking. PMID:11368908

  20. Fundamentals of phosphate transfer.

    PubMed

    Kirby, Anthony J; Nome, Faruk

    2015-07-21

    Historically, the chemistry of phosphate transfer-a class of reactions fundamental to the chemistry of Life-has been discussed almost exclusively in terms of the nucleophile and the leaving group. Reactivity always depends significantly on both factors; but recent results for reactions of phosphate triesters have shown that it can also depend strongly on the nature of the nonleaving or "spectator" groups. The extreme stabilities of fully ionised mono- and dialkyl phosphate esters can be seen as extensions of the same effect, with one or two triester OR groups replaced by O(-). Our chosen lead reaction is hydrolysis-phosphate transfer to water: because water is the medium in which biological chemistry takes place; because the half-life of a system in water is an accepted basic index of stability; and because the typical mechanisms of hydrolysis, with solvent H2O providing specific molecules to act as nucleophiles and as general acids or bases, are models for reactions involving better nucleophiles and stronger general species catalysts. Not least those available in enzyme active sites. Alkyl monoester dianions compete with alkyl diester monoanions for the slowest estimated rates of spontaneous hydrolysis. High stability at physiological pH is a vital factor in the biological roles of organic phosphates, but a significant limitation for experimental investigations. Almost all kinetic measurements of phosphate transfer reactions involving mono- and diesters have been followed by UV-visible spectroscopy using activated systems, conveniently compounds with good leaving groups. (A "good leaving group" OR* is electron-withdrawing, and can be displaced to generate an anion R*O(-) in water near pH 7.) Reactivities at normal temperatures of P-O-alkyl derivatives-better models for typical biological substrates-have typically had to be estimated: by extended extrapolation from linear free energy relationships, or from rate measurements at high temperatures. Calculation is free

  1. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition.

    PubMed

    Rajeev, S P; Cuthbertson, D J; Wilding, J P H

    2016-02-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are the latest addition to the class of oral glucose-lowering drugs. They have been rapidly adopted into clinical practice because of therapeutic advantages, including weight loss and reduction in blood pressure, in addition to glycaemic benefits and a low intrinsic risk of hypoglycaemia. Although there are extensive data on the clinical effects of SGLT2 inhibition, the metabolic effects of inhibiting renal glucose reabsorption have not been fully described. Recent studies have identified compensatory metabolic effects, such as an increase in endogenous glucose production, and have also shown an increase in glucagon secretion during SGLT2 inhibition. In addition, there is a discrepancy between the expected and observed weight loss found in clinical studies on SGLT2 inhibitors, probably as a result of changes in energy balance with this treatment approach. SGLT2 inhibition is likely to have intriguing effects on whole body metabolism which have not been fully elucidated, and which, if explained, might help optimize the use of this new class of medicines. PMID:26403227

  2. Osmoregulation requires brain expression of the renal Na-K-2Cl cotransporter NKCC2.

    PubMed

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T; Greenwood, Michael P; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; Mecawi, Andre de Souza; Vechiato, Fernanda M V; de Lima, Juliana B M; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep; Murphy, David

    2015-04-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats. PMID:25834041

  3. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives.

    PubMed

    John, Mathew; Gopinath, Deepa; Jagesh, Rejitha

    2016-01-01

    The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV) outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis. PMID:26904465

  4. Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume

    PubMed Central

    Leiserson, William M.; Forbush, Biff; Keshishian, Haig

    2010-01-01

    The nervous system is protected by blood barriers that use multiple systems to control extracellular solute composition, osmotic pressure, and fluid volume. In the human nervous system, misregulation of the extracellular volume poses serious health threats. Here we show that the glial cells that form the Drosophila blood-nerve barrier have a conserved molecular mechanism that regulates extracellular volume: the Serine/Threonine kinase Fray, which we previously showed is an ortholog of mammalian PASK/SPAK; and the Na-K-Cl cotransporter NCC69, which we show is an ortholog of human NKCC1. In mammals, PASK/SPAK binds to NKCC1 and regulates its activity. In Drosophila, larvae mutant for NCC69 develop a peripheral neuropathy, where fluid accumulates between glia and axons. The accumulation of fluid has no detectable impact on action potential conduction, suggesting that the role of NCC69 is to maintain volume or osmotic homeostasis. Drosophila NCC69 has kinetics similar to human NKCC1, and NKCC1 can rescue NCC69, suggesting that they function in a conserved physiological mechanism. We show that fray and NCC69 are coexpressed in nerve glia, interact in a yeast-two-hybrid assay, and have an essentially identical bulging nerve phenotype. We propose that normally functioning nerves generate extracellular solutes that are removed by NCC69 under the control of Fray. This mechanism may perform a similar role in humans, given that NKCC1 is expressed at the blood-brain barrier. PMID:21125654

  5. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases

    PubMed Central

    Bazúa-Valenti, Silvana

    2015-01-01

    The renal thiazide-sensitive Na+-Cl− cotransporter (NCC) is the salt transporter in the distal convoluted tubule. Its activity is fundamental for defining blood pressure levels. Decreased NCC activity is associated with salt-remediable arterial hypotension with hypokalemia (Gitelman disease), while increased activity results in salt-sensitive arterial hypertension with hyperkalemia (pseudohypoaldosteronism type II; PHAII). The discovery of four different genes causing PHAII revealed a complex multiprotein system that regulates the activity of NCC. Two genes encode for with-no-lysine (K) kinases WNK1 and WNK4, while two encode for kelch-like 3 (KLHL3) and cullin 3 (CUL3) proteins that form a RING type E3 ubiquitin ligase complex. Extensive research has shown that WNK1 and WNK4 are the targets for the KLHL3-CUL3 complex and that WNKs modulate the activity of NCC by means of intermediary Ste20-type kinases known as SPAK or OSR1. The understanding of the effect of WNKs on NCC is a complex issue, but recent evidence discussed in this review suggests that we could be reaching the end of the dark ages regarding this matter. PMID:25788573

  6. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives

    PubMed Central

    John, Mathew; Gopinath, Deepa; Jagesh, Rejitha

    2016-01-01

    The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV) outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis. PMID:26904465

  7. Sodium-glucose cotransporter-2 inhibitors and genital and urinary tract infections in type 2 diabetes.

    PubMed

    Arakaki, Richard F

    2016-05-01

    Coincident with the high and increasing worldwide prevalence of type 2 diabetes (T2D), a growing armamentarium of antidiabetes medications has been introduced to target different organ systems that play a role in the pathophysiology of T2D. Among these, the sodium-glucose cotransporter-2 (SGLT-2) inhibitors were introduced in the United States in 2013 as a new treatment option to address the hyperglycemia associated with T2D. SGLT-2 inhibitors decrease renal glucose reabsorption, resulting in glucosuria, alleviation of hyperglycemia, and modest weight loss and are associated with a low risk of hypoglycemia. The SGLT-2 inhibitors have been linked to an increased incidence of genital mycotic infections and, to a lesser extent, urinary tract infections, which may limit their utility in some patients. This review examines the prevalence, recurrence rates, treatment options, and responses to treatment of genital and urinary tract infections in patients with T2D receiving SGLT-2 inhibitors, with the aim of guiding clinicians in the most effective use of these agents for the treatment of hyperglycemia. PMID:26982554

  8. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects.

    PubMed

    Tahara, Atsuo; Takasu, Toshiyuki; Yokono, Masanori; Imamura, Masakazu; Kurosaki, Eiji

    2016-03-01

    The sodium-glucose cotransporter (SGLT) 2 offer a novel approach to treating type 2 diabetes by reducing hyperglycaemia via increased urinary glucose excretion. In the present study, the pharmacokinetic, pharmacodynamic, and pharmacologic properties of all six SGLT2 inhibitors commercially available in Japan were investigated and compared. Based on findings in normal and diabetic mice, the six drugs were classified into two categories, long-acting: ipragliflozin and dapagliflozin, and intermediate-acting: tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin. Long-acting SGLT2 inhibitors exerted an antihyperglycemic effect with lower variability of blood glucose level via a long-lasting increase in urinary glucose excretion. In addition, ipragliflozin and luseogliflozin exhibited superiority over the others with respect to fast onset of pharmacological effect. Duration and onset of the pharmacologic effects seemed to be closely correlated with the pharmacokinetic properties of each SGLT2 inhibitor, particularly with respect to high distribution and long retention in the target organ, the kidney. While all six SGLT2 inhibitors were significantly effective in increasing urinary glucose excretion and reducing hyperglycemia, our findings suggest that variation in the quality of daily blood glucose control associated with duration and onset of pharmacologic effects of each SGLT2 inhibitor might cause slight differences in rates of improvement in type 2 diabetes. PMID:26970780

  9. Prolactin regulates transcription of the ion uptake Na+/Cl− cotransporter (ncc) gene in zebrafish gill

    PubMed Central

    Breves, Jason P.; Serizier, Sandy B.; Goffin, Vincent; McCormick, Stephen D.; Karlstrom, Rolf O.

    2013-01-01

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na+/Cl− cotransporter (ncc; slc12a10.2), Na+/H+ exchanger (nhe3b; slc9a3.2), and epithelial Ca2+ channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl− uptake in zebrafish for the first time. PMID:23395804

  10. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill

    USGS Publications Warehouse

    Breves, Jason P.; Serizier, Sandy B.; Goffin, Vincent; McCormick, Stephen D.; Karlstrom, Rolf O.

    2013-01-01

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na+/Cl− cotransporter (ncc; slc12a10.2), Na+/H+ exchanger (nhe3b; slc9a3.2), and epithelial Ca2+ channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl− uptake in zebrafish for the first time.

  11. Functional asymmetry of the sodium-D-glucose cotransporter expressed in yeast secretory vesicles.

    PubMed

    Firnges, M A; Lin, J T; Kinne, R K

    2001-01-15

    The sodium-D-glucose cotransporter (SGLT1) was expressed in a yeast mutant strain NY 17 (sec6-4) that accumulates secretory vesicles at a nonpermissive temperature because of a block in the delivery of these vesicles to the plasma membrane. By differential centrifugation a microsomal fraction enriched in secretory vesicles was prepared with a high specific activity of the vanadate-sensitive H+-ATPase and invertase. In this membrane fraction one protein band of an apparent molecular weight of 55 kDa representing the nonglycosylated SGLT1 protein could be detected by immunochemical analysis. In addition, higher molecular weight protein bands probably representing dimers and aggregates were found. In transport studies with the microsomes D-glucose fluxes showed asymmetric properties: efflux experiments revealed the typical properties of the SGLT1 such as sodium dependence, inhibition by phlorizin and potential dependence. Influx of D-glucose showed no dependence on sodium and was not inhibited by phlorizin. Furthermore, the transporter exhibited a striking asymmetry with regard to the D-glucose affinity and the sugar specificity. These results suggest that the orientation of the SGLT1 expressed in yeast secretory vesicles is, indeed, inverted with regard to its configuration in the plasma membrane of epithelial cells. Moreover, there are striking functional differences between the periplasmic and cytoplasmic face of the transporter. PMID:11220364

  12. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight.

    PubMed

    Singh, Awadhesh Kumar

    2015-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from -0.5 to -0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism. PMID:26693421

  13. Antidiabetic Effect of Schisandrae Chinensis Fructus Involves Inhibition of the Sodium Glucose Cotransporter.

    PubMed

    Qu, Yue; Chan, Judy Yuet-Wa; Wong, Chun-Wai; Cheng, Ling; Xu, Chuanshan; Leung, Albert Wing-Nang; Lau, Clara Bik-San

    2014-11-18

    Preclinical Research Schisandrae Chinensis Fructus (SCF), the fruit of Schisandra chinensis (Turcz.) Baill. (family Schisandraceae) is traditionally used as a tonic and antidiabetic agent in Asia. In this study, SCF was investigated for its effects on sodium glucose cotransporters 1 and 2 (SGLT 1 and 2) expressed in a COS-7 cell line for its specificity in inhibiting SGLT2, which is a novel mechanism to screen for potential antidiabetic agents. Using a bioassay-guided fractionation, we then tried to isolate and identify the active fraction(s)/component(s). The ethanol extract of SCF at a concentration of 1 mg/mL significantly inhibited 89% of SGLT1 and 73% of SGLT2 activities in a [(14) C]-α-methyl-d-glucopyranoside ([(14) C]-AMG) uptake assay. Fractionation of the ethanol extract yielded nine fractions, of which F8, at a concentration of 1 mg/mL, was specific in inhibiting SGLT 2 (42% inhibition, P < 0.001), without inhibiting SGLT 1. Using LC/MS-MS, three compounds, deoxyschisandrin, schisandrin B (γ-schisandrin) and schisandrin were identified in F8 and their amounts quantified. However, subsequent evaluation in the [(14) C]-AMG uptake assay showed that these three compounds failed to inhibit SGLT 2 activity indicating that the SGLT active component(s) from SCF have yet to be identified. PMID:25407144

  14. Sodium glucose co-transporter inhibitors - A new class of old drugs.

    PubMed

    Malhotra, Aneeta; Kudyar, Surbhi; Gupta, Anil K; Kudyar, Rattan P; Malhotra, Pavan

    2015-01-01

    Sodium glucose co-transporter (SGLT) inhibitors are a new class of drugs which are used in the pharmacotherapy of Type-II diabetes, which happens to be a major risk factor for developing both micro as well as macro-vascular complications. These drugs inhibit the glucose reabsorption by inhibiting SGLT, which exhibits a novel and promising mechanism of action by promoting the urinary glucose excretion hence providing a basis of therapeutic intervention. Results of SGLT-II inhibitors are very encouraging as there is a significant elevation of GLP-1 level, which forms the basis of relevance in treatment of diabetes. It targets the HbA1C and keeps a check on its levels. It also exerts other positive benefits such as weight loss, reduction in blood glucose levels, reduction in blood pressure and improvement in insulin resistance and β-cell dysfunction: All contributing to effective glycemic control. SGLT inhibition will develop as effective modality as it has the capability of inhibiting reabsorption of greater percentage of filtered glucose load. PMID:26539362

  15. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors. PMID:26604280

  16. Sodium-Glucose Cotransporter 2 Inhibitors: Possible Anti-Atherosclerotic Effects Beyond Glucose Lowering.

    PubMed

    Yanai, Hidekatsu; Katsuyama, Hisayuki; Hamasaki, Hidetaka; Adachi, Hiroki; Moriyama, Sumie; Yoshikawa, Reo; Sako, Akahito

    2016-01-01

    The new drug for type 2 diabetes, the sodium-glucose cotransporter 2 (SGLT-2) inhibitor, is reversible inhibitor of SGLT-2, leading to reduction of renal glucose reabsorption and decrease of plasma glucose, in an insulin-independent manner. In addition to glucose control, the management of coronary risk factors is very important for patients with diabetes. Here we reviewed published articles about the possible anti-atherosclerotic effects beyond glucose lowering of the SGLT-2 inhibitors. We searched by using Pubmed, and found 770 published articles about SGLT-2 inhibitors. Among 10 kinds of SGLT-2 inhibitors, the number of published articles about dapagliflozin was the greatest among SGLT-2 inhibitors. Since SGLT-2 inhibitors have similar chemical structures, we concentrated on the published articles about dapagliflozin. SGLT-2 inhibitors are proved to be significantly associated with weight loss and reduction of blood pressure by a relatively large number of studies. The studies investigating effects of dapagliflozin on visceral fat, insulin sensitivity, serum lipids, inflammation and adipocytokines are very limited. An influence of increase in glucagon secretion by SGLT-2 inhibitors on metabolic risk factors remains unknown. PMID:26668677

  17. Cotransport of Pseudomonas putida and kaolinite particles through water-saturated columns packed with glass beads

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Chrysikopoulos, Constantinos V.

    2011-02-01

    This study is focused on Pseudomonas putida bacteria transport in porous media in the presence of suspended kaolinite clay particles. Experiments were performed with bacteria and kaolinite particles separately to determine their individual transport characteristics in water-saturated columns packed with glass beads. The results indicated that the mass recovery of bacteria and clay particles decreased as the pore water velocity decreased. Batch experiments were carried out to investigate the attachment of Pseudomonas putida onto kaolinite particles. The attachment process was adequately described by a Langmuir isotherm. Finally, bacteria and kaolinite particles were injected simultaneously into a packed column in order to investigate their cotransport behavior. The experimental data suggested that the presence of clay particles significantly inhibited the transport of bacteria in water-saturated porous media. The observed reduction of Pseudomonas putida recovery in the column outflow was attributed to bacteria attachment onto kaolinite particles, which were retained onto the solid matrix of the column. A mathematical model was developed to describe the transport of bacteria in the presence of suspended clay particles in one-dimensional water-saturated porous media. Model simulations were in good agreement with the experimental results.

  18. Mathematical modeling of bacteria and clay co-transport in porous media

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Chrysikopoulos, Constantinos V.

    2010-05-01

    The present study focuses on Pseudomonas putida bacteria transport in porous media in the presence of suspended kaolinite clay particles. Experiments were performed with bacteria and kaolinite particles separately to determine their individual transport characteristics in water saturated columns packed with glass beads. The results indicate that the mass recovery of bacteria and clay particles decreased as the pore water velocity decreased. Batch experiments were carried out to investigate the adsorption of Pseudomonas putida onto kaolinite particles. The adsorption process is adequately described by a Langmuir isotherm. Finally, bacteria and kaolinite particles were injected simultaneously into a packed column in order to investigate their co-transport behavior. The experimental data suggest that the presence of clay particles significantly inhibit the transport of bacteria in water saturated porous media. The observed reduction of Pseudomonas putida recovery at the column exit is attributed to bacteria attachment onto kaolinite particles, which are retained onto the solid matrix of the column. A mathematical model was developed to describe the transport of bacteria in the presence of suspended clay particles in one-dimensional water saturated porous media. Model simulations are in good agreement with the experimental results.

  19. Co-transport of Pseudomonas putida and kaolinite colloid particles through water saturated porous media

    NASA Astrophysics Data System (ADS)

    Vasiliadou, I. A.; Chrysikopoulos, C. V.

    2009-04-01

    Groundwater contamination is often associated with the presence of dissolved contaminants and/or suspended particles, which are either harmful biocolloids or toxic substances sorbed onto colloid particles. The present study focuses on the transport of bacteria in porous media in the presence of suspended kaolinite colloid particles. The bacteria used are the species Pseudomonas putida. Batch sorption experiments were conducted to investigate the adsorption of Pseudomonas putida onto the surfaces of kaolinite particles. The results from the batch experiments indicate that Pseudomonas putida significantly adsorbed onto kaolinite colloid particles. The adsorption process is adequately described by a Langmuir type isotherm. Transport experiments were conducted under various flow conditions in water saturated columns packed with glass beads. Initial flowthrough experiments were performed with bacteria and kaolinite alone in order to better understand their individual transport characteristics. Finally, Pseudomonas putida and kaolinite colloid particles were injected simultaneously into the packed column in order to investigate their co-transport behavior. The flowthrough experimental data suggest that the presence of the clay particles significantly inhibit the transport of bacteria in water saturated porous media. The observed reduction of Pseudomonas putida recovery at the packed column exit is mainly attributed to the attachment of bacteria onto kaolinite particles, which are adsorbed onto the solid matrix of the column.

  20. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents

    PubMed Central

    Vivian, Eva M

    2014-01-01

    Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM) achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM). The renal sodium-glucose co-transporter 2 (SGLT2) is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM. PMID:25598831

  1. Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns.

    PubMed

    Ma, Jie; Guo, Huaming; Lei, Mei; Wan, Xiaoming; Zhang, Hanzhi; Feng, Xiaojuan; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Transport of environmental pollutants through porous media is influenced by colloids. Co-transport of As(V) and soil colloids at different pH were systematically investigated by monitoring breakthrough curves (BTCs) in saturated sand columns. A solute transport model was applied to characterize transport and retention sites of As(V) in saturated sand in the presence of soil colloids. A colloid transport model and the DLVO theory were used to reveal the mechanism and hypothesis of soil colloid-promoted As(V) transport in the columns. Results showed that rapid transport of soil colloids, regulated by pH and ionic strength, promoted As(V) transport by blocking As(V) adsorption onto sand, although soil colloids had low adsorption for As(V). The promoted transport was more significant at higher concentrations of soil colloids (between 25 mg L(-1) and 150 mg L(-1)) due to greater blocking effect on As(V) adsorption onto the sand surfaces. The blocking effect of colloids was explained by the decreases in both instantaneous (equilibrium) As adsorption and first-order kinetic As adsorption on the sand surface sites. The discovery of this blocking effect improves our understanding of colloid-promoted As transport in saturated porous media, which provides new insights into role of colloids, especially colloids with low As adsorption capacity, in As transport and mobilization in soil-groundwater systems. PMID:27017140

  2. Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter.

    PubMed

    Kahle, Kristopher T; Flores, Bianca; Bharucha-Goebel, Diana; Zhang, Jinwei; Donkervoort, Sandra; Hegde, Madhuri; Hussain, Gulnaz; Duran, Daniel; Liang, Bo; Sun, Dandan; Bönnemann, Carsten G; Delpire, Eric

    2016-01-01

    Using exome sequencing, we identified a de novo mutation (c.2971A>G; T991A) in SLC12A6, the gene encoding the K(+)-Cl(-) cotransporter KCC3, in a patient with an early-onset, progressive, and severe peripheral neuropathy primarily affecting motor neurons. Normally, the WNK kinase-dependent phosphorylation of T(991) tonically inhibits KCC3; however, cell swelling triggers Thr(991) dephosphorylation to activate the transporter and restore cell volume. KCC3 T991A mutation in patient cells abolished Thr(991) phosphorylation, resulted in constitutive KCC3 activity, and compromised cell volume homeostasis. KCC3(T991A/T991A) mutant mice exhibited constitutive KCC3 activity and recapitulated aspects of the clinical, electrophysiological, and histopathological findings of the patient. These results suggest that the function of the peripheral nervous system depends on finely tuned, kinase-regulated KCC3 activity and implicate abnormal cell volume homeostasis as a previously unreported mechanism of axonal degeneration. PMID:27485015

  3. Interleukin 18 function requires both interleukin 18 receptor and Na-Cl co-transporter

    PubMed Central

    Wang, Jing; Sun, Chongxiu; Gerdes, Norbert; Liu, Conglin; Liao, Mengyang; Liu, Jian; Shi, Michael A.; He, Aina; Zhou, Yi; Sukhova, Galina K.; Chen, Huimei; Cheng, Xianwu; Kuzuya, Masafumi; Murohara, Toyoaki; Zhang, Jie; Cheng, Xiang; Jiang, Mengmeng; Shull, Gary E.; Rogers, Shaunessy; Yang, Chao-Ling; Ke, Qiang; Jelen, Sabina; Bindels, René; Ellison, David H.; Jarolim, Petr; Libby, Peter; Shi, Guo-Ping

    2015-01-01

    Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms1,2. Interruption of IL18 action reduces atherosclerosis in mice3,4. This study shows that the absence of IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E-deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding or signaling. IL18 antibody-mediated immunoprecipitation identified an interaction between IL18 and Na-Cl co-transporter (NCC), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney5. Yet, we find NCC expression and colocalization with IL18r in atherosclerotic lesions and both molecules form a complex. IL18 also binds to the cell surface and induces cell signaling and down-stream cytokine expression in NCC-transfected COS-7 cells that do not express IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or those lacking IL18r or NCC respond to IL18 binding or IL18 induction of cell signaling and cytokine and chemokine production, but those with combined deficiency of IL18r and NCC do not. This study identifies NCC as an IL18-binding protein that coordinates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis. PMID:26099046

  4. Sodium coupled glucose co-transporters contribute to hypothalamic glucose-sensing

    PubMed Central

    O'Malley, Dervla; Reimann, Frank; Simpson, Anna K; Gribble, Fiona M

    2007-01-01

    Specialised neurons within the hypothalamus have the ability to sense and respond to changes in ambient glucose concentrations. We investigated the mechanisms underlying glucose-triggered activity in glucose-excited (GE) neurons, using primary cultures of rat hypothalamic neurons monitored by fluorescence calcium imaging. 35% (738/2139) of neurons were excited by increasing glucose from 3 to 15mM, but only 9% (6/64) of these GE neurons were activated by tolbutamide, suggesting the involvement of a KATP channel-independent mechanism. α-Methylglucopyranoside (αMDG, 12mM), a non-metabolisable substrate of sodium glucose co-transporters (SGLTs), mimicked the effect of high glucose in 67% of GE neurons, and both glucose and αMDG-triggered excitation were blocked by Na+ removal or by the SGLT inhibitor, phloridzin (100nM). In the presence of 0.5mM glucose and tolbutamide, responses could also be triggered by 3.5mM αMDG, supporting a role for an SGLT-associated mechanism at low as well as high substrate concentrations. By RT-PCR, we detected SGLT1, SGLT3a, SGLT3b in both cultured neurons and adult rat hypothalamus. Our findings suggest a novel role for SGLTs in glucose-sensing by hypothalamic GE neurons. PMID:17130483

  5. Modeling dense-colloid and virus cotransport in three-dimensional porous media.

    PubMed

    Katzourakis, Vasileios E; Chrysikopoulos, Constantinos V

    2015-10-01

    A three-dimensional numerical model was developed to investigate the simultaneous transport (cotransport) of dense colloids and viruses in homogeneous, water saturated, porous media with horizontal uniform flow. The dense colloids are assumed to exist in two different phases: suspended in the aqueous phase, and attached reversibly and/or irreversibly onto the solid matrix. The viruses are assumed to exist in four different phases: suspended in aqueous phase, attached onto the solid matrix, attached onto suspended colloids, and attached onto colloids already attached onto the solid matrix. The viruses in each of the four phases are assumed to undergo inactivation with different rates. Moreover, the suspended dense colloids as well as viruses attached onto suspended dense colloids are assumed to exhibit a "restricted" settling velocity as a consequence of the gravitational force; whereas, viruses due to their small sizes and densities are assumed to have negligible "restricted" settling velocity. The governing differential equations were solved numerically with the finite difference schemes, implicitly or explicitly implemented. Model simulations have shown that the presence of dense colloid particles can either enhance or hinder the horizontal transport of viruses, but also can increase the vertical migration of viruses. PMID:26071628

  6. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    PubMed Central

    Singh, Awadhesh Kumar

    2015-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism. PMID:26693421

  7. LLC-PK sub 1 cells express Na sup + -lactate cotransport in apical membranes after confluency

    SciTech Connect

    Poustis-Delpont, C.; Mengual, R.; Sudaka, P. )

    1988-12-01

    L-({sup 3}H)lactate uptake was characterized in LLC-PK{sub 1} cell apical membrane vesicles obtained by intensive culture on microcarrier beads. The apical membrane preparation technique involved MgCl{sub 2} precipitation. Na{sup +}-dependent L-({sup 3}H)lactate uptake was present only after confluency; its appearance paralleled the subcellular localization of aminopeptidase in apical membranes. L-({sup 3}H)lactate uptake was Na{sup +}-dependent and electrogenic. Only the Na{sup +}-dependent component of L({sup 3}H)lactate uptake was saturable with one family of independent carriers. The apparent affinity constant was 1.1 {plus minus} 0.25 mM and the apparent maximal velocity was 29 {plus minus} 3 nmol{center dot}mg{sup {minus}1}{center dot}min{sup {minus}1}. The Na{sup +}-lactate cotransport stoichiometry was 2 Na{sup +} for 1 lactate. The specificity of the L-lactate transport system was compatible with that of the monocarboxylic acid pathway described previously brush-border membranes of kidney cortex and discrete from the tricarboxylic acid carrier, the D-glucose transporter, and the general pathway for anions. The LLC-PK{sub 1} cell line appears to be a useful tool for study of the regulation of L-lactate uptake and biosynthesis of the renal monocarboxylic acid transporter.

  8. Sodium tungstate decreases sucrase and Na+/D-glucose cotransporter in the jejunum of diabetic rats.

    PubMed

    Miró-Queralt, Montserrat; Guinovart, Joan J; Planas, Joana M

    2008-09-01

    Sodium tungstate reduces glycemia and reverts the diabetic phenotype in several induced and genetic animal models of diabetes. Oral administration of this compound has recently emerged as an effective treatment for diabetes. Here we examined the effects of 30 days of oral administration of tungstate on disaccharidase and Na+/D-glucose cotransporter (SGLT1) activity in the jejunum of control and streptozotocin-induced diabetic rats. Diabetes increased sucrase-specific activity in the jejunal mucosa but did not affect the activity of lactase, maltase, or trehalase. The abundance and the maximal rate of transport of SGLT1 in isolated brush-border membrane vesicles also increased. Tungstate decreased sucrase activity and normalized SGLT1 expression and activity in the jejunum of diabetic rats. Furthermore, tungstate did not change the affinity of SGLT1 for d-glucose and had no effect on the diffusional component. In control animals, tungstate had no effect on disaccharidases or SGLT1 expression. Northern blot analysis showed that the amount of specific SGLT1 mRNA was the same in the jejunum from all experimental groups, thereby indicating that changes in SGLT1 abundance are due to posttranscriptional mechanisms. We conclude that the antidiabetic effect of tungstate is partly due to normalization of the activity of sucrase and SGLT1 in the brush-border membrane of enterocytes. PMID:18617558

  9. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. PMID:26945065

  10. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus.

    PubMed

    Yan, Huan; Zhong, Guocai; Xu, Guangwei; He, Wenhui; Jing, Zhiyi; Gao, Zhenchao; Huang, Yi; Qi, Yonghe; Peng, Bo; Wang, Haimin; Fu, Liran; Song, Mei; Chen, Pan; Gao, Wenqing; Ren, Bijie; Sun, Yinyan; Cai, Tao; Feng, Xiaofeng; Sui, Jianhua; Li, Wenhui

    2014-01-01

    Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157-165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV. PMID:25409679

  11. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus.

    PubMed

    Yan, Huan; Zhong, Guocai; Xu, Guangwei; He, Wenhui; Jing, Zhiyi; Gao, Zhenchao; Huang, Yi; Qi, Yonghe; Peng, Bo; Wang, Haimin; Fu, Liran; Song, Mei; Chen, Pan; Gao, Wenqing; Ren, Bijie; Sun, Yinyan; Cai, Tao; Feng, Xiaofeng; Sui, Jianhua; Li, Wenhui

    2012-01-01

    Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157-165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV.DOI:http://dx.doi.org/10.7554/eLife.00049.001. PMID:23150796

  12. Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2

    PubMed Central

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T.; Greenwood, Michael P.; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; de Souza Mecawi, Andre; Vechiato, Fernanda M.V.; de Lima, Juliana B.M.; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep

    2015-01-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution—rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats. PMID:25834041

  13. Evidence for a specific glutamate/H/sup +/ cotransport in isolated mesophyll cells. [Asparagus sprengeri

    SciTech Connect

    McCutcheon, S.L.; Bown, A.W.

    1987-03-01

    Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO/sub 4/. Immediate alkalinization of the medium occurred on the addition of 1 millimolar concentrations of L-glutamate (Glu) and its analog L-methionine-D,L-sulfoximine (L-MSO). D-Glu and the L isomers of the protein amino acids did not elicit alkalinization. L-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar L-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H/sup +//10/sup 6/ cells minute. L-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of L-(U-/sup 14/C)glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by L-MSO. L-Glu had no influence on K/sup +/ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific L-Glu/proton uptake process is present in Asparagus mesophyll cells.

  14. Sodium glucose co-transporter inhibitors – A new class of old drugs

    PubMed Central

    Malhotra, Aneeta; Kudyar, Surbhi; Gupta, Anil K.; Kudyar, Rattan P.; Malhotra, Pavan

    2015-01-01

    Sodium glucose co-transporter (SGLT) inhibitors are a new class of drugs which are used in the pharmacotherapy of Type-II diabetes, which happens to be a major risk factor for developing both micro as well as macro-vascular complications. These drugs inhibit the glucose reabsorption by inhibiting SGLT, which exhibits a novel and promising mechanism of action by promoting the urinary glucose excretion hence providing a basis of therapeutic intervention. Results of SGLT-II inhibitors are very encouraging as there is a significant elevation of GLP-1 level, which forms the basis of relevance in treatment of diabetes. It targets the HbA1C and keeps a check on its levels. It also exerts other positive benefits such as weight loss, reduction in blood glucose levels, reduction in blood pressure and improvement in insulin resistance and β-cell dysfunction: All contributing to effective glycemic control. SGLT inhibition will develop as effective modality as it has the capability of inhibiting reabsorption of greater percentage of filtered glucose load. PMID:26539362

  15. Vasopressin alters the mechanism of apical Cl- entry from Na+:Cl- to Na+:K+:2Cl- cotransport in mouse medullary thick ascending limb

    SciTech Connect

    Sun, A.; Grossman, E.B.; Lombardi, M.; Hebert, S.C. )

    1991-02-01

    Experiments were performed using in vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na{sup +}:Cl{sup {minus}} cotransporter and on transport-related oxygen consumption (QO{sub 2}). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding one mM ouabain to, the basolateral solution (ouabain(zero-K+)) provided an index to apical cotransporter activity and was used to evaluate the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na{sup +} and Cl{sup {minus}}, but not K{sup +}, while the presence of AVP the apical cotransporter required all three ions. {sup 86}Rb{sup +} uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover, {sup 22}Na{sup +} uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure {sup 22}Na{sup +} uptake was strictly K{sup +}-dependent. The AVP-induced coupling of K{sup +} to the Na{sup +}:Cl{sup {minus}} cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular {sup 22}Na{sup +} uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na{sup +}:Cl{sup {minus}} cotransport to Na{sup +}:K{sup +}:2Cl{sup {minus}} cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K{sup +} to the apical Na{sup +}:Cl{sup {minus}} cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.

  16. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  17. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  18. Biomediated continuous release phosphate fertilizer

    SciTech Connect

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  19. Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation

    PubMed Central

    Mao, Shihong; Garzon-Muvdi, Tomás; Di Fulvio, Mauricio; Chen, Yanfang; Delpire, Eric; Alvarez, Francisco J.

    2012-01-01

    GABA depolarizes and excites central neurons during early development, becoming inhibitory and hyperpolarizing with maturation. This “developmental shift” occurs abruptly, reflecting a decrease in intracellular Cl− concentration ([Cl−]i) and a hyperpolarizing shift in Cl− equilibrium potential due to upregulation of the K+-Cl− cotransporter KCC2b, a neuron-specific Cl− extruder. In contrast, primary afferent neurons (PANs) are depolarized by GABA throughout adulthood because of expression of NKCC1, a Na+-K+-2Cl− cotransporter that accumulates Cl− above equilibrium. The GABAA-mediated depolarization of PANs determines presynaptic inhibition in the spinal cord, a key mechanism gating somatosensory information. Little is known about developmental changes in Cl− transporter expression and Cl− homeostasis in PANs. Whether NKCC1 is expressed in PANs of all phenotypes or is restricted to subpopulations (e.g., nociceptors) is debatable. Likewise, whether PANs express KCC2s is controversial. We investigated NKCC1 and K+-Cl− cotransporter expression in rat and mouse dorsal root ganglion (DRG) neurons with molecular methods. Using fluorescence imaging microscopy, we measured [Cl−]i in acutely dissociated rat DRG neurons (P0–P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and classified with phenotypic markers. DRG neurons of all sizes express two NKCC1 mRNAs, one full-length and a shorter splice variant lacking exon 21. Immunolabeling with validated antibodies revealed ubiquitous expression of NKCC1 in DRG neurons irrespective of postnatal age and phenotype. As maturation progresses [Cl−]i decreases gradually, persisting above equilibrium in >95% mature neurons. DRG neurons express mRNAs for KCC1, KCC3s, and KCC4, but not for KCC2s. Mechanisms underlying PANs' developmental changes in Cl− homeostasis are discussed and compared with those of central neurons. PMID:22457464

  20. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    SciTech Connect

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  1. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus.

    PubMed

    Fioretto, Paola; Giaccari, Andrea; Sesti, Giorgio

    2015-01-01

    Although antidiabetic agents have been developed to target one or more of the core defects of type 2 diabetes mellitus (T2DM), many patients do not achieve glycemic goals. Inhibition of the sodium-glucose cotransporter 2 (SGLT2) induces glycosuria, reduces glucose toxicity and improves insulin sensitivity and β-cell function. As the mechanism of action of SGLT2 inhibitors is different from other agents and completely insulin-independent, the use of these drugs might potentially be efficacious alone or in combination with any other antidiabetic drug, including insulin. Dapagliflozin is a highly selective and reversible SGLT2 inhibitor approved for use in adult patients with T2DM as monotherapy in patients intolerant of metformin or as adjunctive therapy in patients inadequately controlled on existing antidiabetic medications, including insulin. A literature search conducted using PubMed identified key publications related to the use of dapagliflozin in the treatment of patients with diabetes mellitus. No date limits were applied. This review focuses on the safety and efficacy of this SGLT2 inhibitor. Dapagliflozin produces dose-related reductions in glycosylated hemoglobin (HbA1c) as monotherapy and as add-on to other antidiabetic agents, with significant reductions in body weight. Hypoglycemia is uncommon. Preliminary data from a phase 2 pharmacokinetic/pharmacodynamic study suggest that dapagliflozin may also improve glycemic control in patients with type 1 diabetes mellitus. Clinical trials published to date show that dapagliflozin is safe and effective as monotherapy or as an add-on to insulin or oral antidiabetic agents in patients with T2DM. PMID:26474563

  2. Sodium glucose co-transporter 2 (SGLT2) inhibitors: new among antidiabetic drugs.

    PubMed

    Opie, L H

    2014-08-01

    Type 2 diabetes is characterized by decreased insulin secretion and sensitivity. The available oral anti-diabetic drugs act on many different molecular sites. The most used of oral anti-diabetic agents is metformin that activates glucose transport vesicles to the cell surface. Others are: the sulphonylureas; agents acting on the incretin system; GLP-1 agonists; dipetidylpeptidase-4 inhibitors; meglinitide analogues; and the thiazolidinediones. Despite these many drugs acting by different mechanisms, glycaemic control often remains elusive. None of these drugs have a primary renal mechanism of action on the kidneys, where almost all glucose excreted is normally reabsorbed. That is where the inhibitors of glucose reuptake (sodium-glucose cotransporter 2, SGLT2) have a unique site of action. Promotion of urinary loss of glucose by SGLT2 inhibitors embodies a new principle of control in type 2 diabetes that has several advantages with some urogenital side-effects, both of which are evaluated in this review. Specific approvals include use as monotherapy, when diet and exercise alone do not provide adequate glycaemic control in patients for whom the use of metformin is considered inappropriate due to intolerance or contraindications, or as add-on therapy with other anti-hyperglycaemic medicinal products including insulin, when these together with diet and exercise, do not provide adequate glycemic control. The basic mechanisms are improved β-cell function and insulin sensitivity. When compared with sulphonylureas or other oral antidiabetic agents, SGLT2 inhibitors provide greater HbA1c reduction. Urogenital side-effects related to the enhanced glycosuria can be troublesome, yet seldom lead to discontinuation. On this background, studies are analysed that compare SGLT2 inhibitors with other oral antidiabetic agents. Their unique mode of action, unloading the excess glycaemic load, contrasts with other oral agents that all act to counter the effects of diabetic

  3. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats.

    PubMed

    Kapoor, Sarika; Rodriguez, Daniel; Riwanto, Meliana; Edenhofer, Ilka; Segerer, Stephan; Mitchell, Katharyn; Wüthrich, Rudolf P

    2015-01-01

    The sodium-glucose-cotransporter-2 (SGLT2) inhibitor dapagliflozin (DAPA) induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD), we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d) or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group). Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d) and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d). DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min) and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min) after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated. PMID:25927597

  4. Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide

    PubMed Central

    Mao, Fengfeng; Jing, Zhiyi; Li, Yunfei; Liu, Yang; Peng, Bo; Yan, Huan; Qi, Yonghe; Sun, Yinyan; Guo, Ju-Tao; Sui, Jianhua; Wang, Fengchao; Li, Wenhui

    2015-01-01

    Hepatitis D virus (HDV) is the smallest virus known to infect human. About 15 million people worldwide are infected by HDV among those 240 million infected by its helper hepatitis B virus (HBV). Viral hepatitis D is considered as one of the most severe forms of human viral hepatitis. No specific antivirals are currently available to treat HDV infection and antivirals against HBV do not ameliorate hepatitis D. Liver sodium taurocholate co-transporting polypeptide (NTCP) was recently identified as a common entry receptor for HDV and HBV in cell cultures. Here we show HDV can infect mice expressing human NTCP (hNTCP-Tg). Antibodies against critical regions of HBV envelope proteins blocked HDV infection in the hNTCP-Tg mice. The infection was acute yet HDV genome replication occurred efficiently, evident by the presence of antigenome RNA and edited RNA species specifying large delta antigen in the livers of infected mice. The resolution of HDV infection appears not dependent on adaptive immune response, but might be facilitated by innate immunity. Liver RNA-seq analyses of HDV infected hNTCP-Tg and type I interferon receptor 1 (IFNα/βR1) null hNTCP-Tg mice indicated that in addition to induction of type I IFN response, HDV infection was also associated with up-regulation of novel cellular genes that may modulate HDV infection. Our work has thus proved the concept that NTCP is a functional receptor for HDV infection in vivo and established a convenient small animal model for investigation of HDV pathogenesis and evaluation of antiviral therapeutics against the early steps of infection for this important human pathogen. PMID:25902143

  5. Clustering of Neuronal K+-Cl− Cotransporters in Lipid Rafts by Tyrosine Phosphorylation*

    PubMed Central

    Watanabe, Miho; Wake, Hiroaki; Moorhouse, Andrew J.; Nabekura, Junichi

    2009-01-01

    The neuronal K+-Cl− cotransporter (KCC2) is a membrane transport protein that extrudes Cl− from neurons and helps maintain low intracellular [Cl−] and hyperpolarizing GABAergic synaptic potentials. Depolarizing γ-aminobutyric acid (GABA) responses in neonatal neurons and following various forms of neuronal injury are associated with reduced levels of KCC2 expression. Despite the importance for plasticity of inhibitory transmission, less is known about cellular mechanisms involved in more dynamic changes in KCC2 function. In this study, we investigated the role of tyrosine phosphorylation in KCC2 localization and function in hippocampal neurons and in cultured GT1-7 cells. Mutation to the putative tyrosine phosphorylation site within the long intracellular carboxyl terminus of KCC2(Y1087D) or application of the tyrosine kinase inhibitor genistein shifted the GABA reversal potential (EGABA) to more depolarized values, indicating reduced KCC2 function. This was associated with a change in the expression pattern of KCC2 from a punctate distribution to a more uniform distribution, suggesting that functional tyrosine-phosphorylated KCC2 forms clusters in restricted membrane domains. Sodium vanadate, a tyrosine phosphatase inhibitor, increased the proportion of KCC2 associated with lipid rafts membrane domains. Loss of tyrosine phosphorylation also reduced oligomerization of KCC2. A loss of the punctuate distribution and oligomerization of KCC2 and a more depolarized EGABA were seen when the 28-amino-acid carboxyl terminus of KCC2 was deleted. These results indicate that direct tyrosine phosphorylation of KCC2 results in membrane clusters and functional transport activity, suggesting a mechanism by which intracellular Cl− concentrations and GABA responses can be rapidly modulated. PMID:19679663

  6. [EMPAGLIFLOZIN (JARDIANCE) :Nw SGLT2 COTRANSPORTER INHIBITOR FOR TREATING TYPE 2 DIABETES].

    PubMed

    Scheen, A J

    2015-09-01

    Empagliflozin is a new inhibitor of sodiumglucose cotransporters type 2 (SGLT2) for the treatment of type 2 diabetes mellitus (T2DM). Its specific action inhibits glucose reabsorption in renal tubules and thus promotes glucosuria. This effect results in a reduction in fasting and postprandial glycaemia and a decrease of glycated haemoglobin (HbA(Ic)), independently of insulin. Furthermore, calorie urinary loss promotes weight reduction and osmotic diuresis lowers arterial blood pressure. The efficacy of empagliflozin increases according to the level of hyperglycaemia but decreases in patients with renal insufficiency. In 24 to 104-week controlled trials versus placebo, empagliflozin reduces HbA(1c) (approximately 0.8%), without hypoglycaemia (except in patients already treated with insulin or sulphonylureas). This improvement in glucose control is rather similar to that observed with active comparators (metformin, glimepiride or sitagliptin), with the advantage for empagliflozin of reducing body weight (approximately 2 kg) and blood pressure (systolic approximately 4 mm Hg and diastolic approximately 2 mm Hg). Empagliflozin has shown a cardiovascular protection in the EMPA-REG OUTCOME trial. Mycotic genital infections occur more frequently, especially in women, while a negligible increase in mild urinary tract infections may be observed. The risk of hypotension and volume depletion is low, although it should be carefully checked in more fragile and at risk patients. Empagliflozin (Jardiance), which is commercialized at the doses of 10 mg and 25 mg once daily, is indicated for the treatment of T2DM and reimbursed in Belgium with conditions as add-on to a background glucose-lowering therapy. PMID:26638450

  7. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish.

    PubMed

    Sussman, Caroline R; Zhao, Jinhua; Plata, Consuelo; Lu, Jing; Daly, Christopher; Angle, Nathan; DiPiero, Jennifer; Drummond, Iain A; Liang, Jennifer O; Boron, Walter F; Romero, Michael F; Chang, Min-Hwang

    2009-10-01

    Mutations in the electrogenic Na+/nHCO3- cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pH(i)), or intracellular Na+ activity (aNa(i)), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3- transport as well as similar drug sensitivity, including inhibition by 4,4'-diiso-thiocyano-2,2'-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3-. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology. PMID:19625604

  8. A Cation-Chloride Cotransporter Gene Is Required for Cell Elongation and Osmoregulation in Rice.

    PubMed

    Chen, Zhi Chang; Yamaji, Naoki; Fujii-Kashino, Miho; Ma, Jian Feng

    2016-05-01

    Rice (Oryza sativa) is characterized by having fibrous root systems; however, the molecular mechanisms underlying the root development are not fully understood. Here, we isolated a rice mutant with short roots and found that the mutant had a decreased cell size of the roots and shoots compared with wild-type rice. Map-based cloning combined with whole-genome sequencing revealed that a single nucleotide mutation occurred in a gene, which encodes a putative cation-chloride cotransporter (OsCCC1). Introduction of OsCCC1 cDNA into the mutant rescued the mutant growth, indicating that growth defects of both the roots and shoots are caused by loss of function of OsCCC1. Physiological analysis showed that the mutant had a lower concentration of Cl(-) and K(+) and lower osmolality in the root cell sap than the wild type at all KCl supply conditions tested; however, the mutant only showed a lower Na(+) concentration at high external Na(+) Expression of OsCCC1 in yeast increased accumulation of K(+), Na(+), and Cl(-) The expression of OsCCC1 was found in both the roots and shoots, although higher expression was found in the root tips. Furthermore, the expression in the roots did not respond to different Na(+), K(+), and Cl(-) supply. OsCCC1 was expressed in all cells of the roots, leaf, and basal node. Immunoblot analysis revealed that OsCCC1 was mainly localized to the plasma membrane. These results suggest that OsCCC1 is involved in the cell elongation by regulating ion (Cl(-), K(+), and Na(+)) homeostasis to maintain cellular osmotic potential. PMID:26983995

  9. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    PubMed

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-01

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT. PMID:24668812

  10. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter.

    PubMed

    Ivy, Jessica R; Oosthuyzen, Wilna; Peltz, Theresa S; Howarth, Amelia R; Hunter, Robert W; Dhaun, Neeraj; Al-Dujaili, Emad A S; Webb, David J; Dear, James W; Flatman, Peter W; Bailey, Matthew A

    2016-05-01

    Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic-pituitary-adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine(53)(pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess. PMID:26953322

  11. Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy.

    PubMed

    Karlócai, Mária R; Wittner, Lucia; Tóth, Kinga; Maglóczky, Zsófia; Katarova, Zoja; Rásonyi, György; Erőss, Loránd; Czirják, Sándor; Halász, Péter; Szabó, Gábor; Payne, John A; Kaila, Kai; Freund, Tamás F

    2016-09-01

    Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established. PMID:26427846

  12. Sodium-glucose co-transporter 2 inhibitors: from apple tree to 'Sweet Pee'.

    PubMed

    Hardman, Timothy C; Rutherford, Peter; Dubrey, Simon W; Wierzbicki, Anthony S

    2010-01-01

    The sodium-glucose co-transporter 2 (SGLT2), located in the plasma membrane of cells lining the proximal tubule, facilitates the reabsorbtion of glucose in the kidney. Inhibition of SGLT2 has the potential to reduce blood glucose and represents an opportune target for managing blood glucose. By promoting the excretion of glucose, SGLT2 inhibitors are the first anti-diabetic treatment to target the removal rather than the metabolic redirection of glucose. Their mechanism of action is independent of that of endogenous insulin status and thus provides a means of managing plasma glucose irrespective of a patient's glycaemic status or treatments being used in combination. Several candidate SGLT2 inhibitors based on the core glucoside structure of phlorizin are currently being developed, of which, the metabolically more stable aromatic and heteroaromatic C-glucosides have demonstrated the most promising preclinical and clinical data. The inhibition of SGLT2 by messenger antisense technology is also being investigated. Current indications suggest that short-term benefits, in terms of HbA1(c) reductions, are modest and it remains to be seen whether encouraging exogenous glucose disposal will result in long term patient benefits in terms of returning metabolic balance or even weight loss. Indications are that clinical efficacy will be greater with molecules based on an O-glucoside structure. Concerns have been raised over the safety of these agents, particularly a possible predisposition to urinary tract infections, but these concerns have yet to be confirmed in clinical studies. Clinical development programs will need to establish those patients most likely to benefit from inhibition of SGLT2. PMID:21128897

  13. Nonclinical safety of the sodium-glucose cotransporter 2 inhibitor empagliflozin.

    PubMed

    Bogdanffy, Matthew S; Stachlewitz, Robert F; van Tongeren, Susan; Knight, Brian; Sharp, Dale E; Ku, Warren; Hart, Susan Emeigh; Blanchard, Kerry

    2014-01-01

    Empagliflozin, a selective inhibitor of the renal tubular sodium-glucose cotransporter 2, was developed for treatment of type 2 diabetes mellitus. Nonclinical safety of empagliflozin was studied in a battery of tests to support global market authorization. Safety pharmacology studies indicated no effect of empagliflozin on measures of respiratory or central nervous system function in rats or cardiovascular safety in telemeterized dogs. In CD-1 mouse, Wistar Han rat, or beagle dogs up to 13, 26, or 52 weeks of treatment, respectively, empagliflozin exhibited a toxicity profile consistent with secondary supratherapeutic pharmacology related to glucose loss and included decreased body weight and body fat, increased food consumption, diarrhea, dehydration, decreased serum glucose and increases in other serum parameters reflective of increased protein catabolism, gluconeogenesis, and electrolyte imbalances, and urinary changes such as polyuria and glucosuria. Microscopic changes were consistently observed in kidney and included tubular nephropathy and interstitial nephritis (dog), renal mineralization (rat) and tubular epithelial cell karyomegaly, single cell necrosis, cystic hyperplasia, and hypertrophy (mouse). Empagliflozin was not genotoxic. Empagliflozin was not carcinogenic in female mice or female rats. Renal adenoma and carcinoma were induced in male mice only at exposures 45 times the maximum clinical dose. These tumors were associated with a spectrum of nonneoplastic changes suggestive of a nongenotoxic, cytotoxic, and cellular proliferation-driven mechanism. In male rats, testicular interstitial cell tumors and hemangiomas of the mesenteric lymph node were observed; both tumors are common in rats and are unlikely to be relevant to humans. These studies demonstrate the nonclinical safety of empagliflozin. PMID:25260362

  14. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. PMID:27600183

  15. Cotransport of graphene oxide and Cu(II) through saturated porous media.

    PubMed

    Zhou, D D; Jiang, X H; Lu, Y; Fan, W; Huo, M X; Crittenden, J C

    2016-04-15

    This study examines the cotransport of graphene oxide (GO) and Cu in porous media. The impacts of GO concentration and ion strength (IS) on Cu transport in laboratory packed columns were investigated. The results indicated that GO had fairly high mobility at a IS of 1mM, and could serve as an effective carrier of Cu(II). The facilitated transport was found to increase with increasing concentration of GO (CGO). The peak effluent concentration (C/C0)max of Cu was 0.57 at CGO of 120mg/L and IS=1mM and 0.13 at 40mg/L and IS=1mM. The Cu appears to be irreversibly adsorbed by the sand because no Cu appeared in the effluent in the absence of GO. However, the GO-facilitated Cu transport was reduced as the IS increased from 1 to 1000mM. In fact, the facilitated transport was zero percent at an IS of 1000mM. Particle size analysis, Zeta potential measurements and DLVO calculations demonstrated that higher IS values made the GO became unstable and it flocculated and attached to the sand. We also fed GO into the column pre-equilibrated by Cu as sequential elution experiments and found that the later introduced GO can complex the pre-adsorbed Cu from the sand surface because GO has a higher adsorption affinity for Cu. An advection-dispersion-retention numerical model was able to describe the Cu and GO transport in the column. Our work provides useful insights into fate, transport and risk assessment of heavy metal contaminants in the presence of engineered nanoparticles. PMID:26849335

  16. Molecular evidence for a role for K+-Cl− cotransporters in the kidney

    PubMed Central

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B.; Pasantes-Morales, Herminia; Mercado, Adriana

    2013-01-01

    K+-Cl− cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K+ diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K+ diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct. PMID:24089410

  17. Glucose affects monocarboxylate cotransporter (MCT) 1 expression during mouse preimplantation development.

    PubMed

    Jansen, Sarah; Esmaeilpour, Tahereh; Pantaleon, Marie; Kaye, Peter L

    2006-03-01

    Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. In the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (Km 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. In expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression. PMID:16514190

  18. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter

    PubMed Central

    Ivy, Jessica R.; Oosthuyzen, Wilna; Peltz, Theresa S.; Howarth, Amelia R.; Hunter, Robert W.; Dhaun, Neeraj; Al-Dujaili, Emad A.S.; Webb, David J.; Dear, James W.; Flatman, Peter W.

    2016-01-01

    Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic–pituitary–adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine53 (pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess. PMID:26953322

  19. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide

    PubMed Central

    Okuyama-Dobashi, Kaori; Kasai, Hirotake; Tanaka, Tomohisa; Yamashita, Atsuya; Yasumoto, Jun; Chen, Wenjia; Okamoto, Toru; Maekawa, Shinya; Watashi, Koichi; Wakita, Takaji; Ryo, Akihide; Suzuki, Tetsuro; Matsuura, Yoshiharu; Enomoto, Nobuyuki; Moriishi, Kohji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection. PMID:26592202

  20. PGE2 MEDIATES OENOCYTOID CELL LYSIS VIA A SODIUM-POTASSIUM-CHLORIDE COTRANSPORTER.

    PubMed

    Shrestha, Sony; Park, Jiyeong; Ahn, Seung-Joon; Kim, Yonggyun

    2015-08-01

    Prostaglandin E2 (PGE2 ) mediates immune responses of the beet armyworm, Spodoptera exigua, including oenocytoid cell lysis (a class of lepidopteran hemocytes: OCL) via its specific membrane receptor to release inactive prophenoloxidase (PPO) into hemolymph. PPO is activated into phenoloxidase in the plasma to play crucial roles in the immune responses of S. exigua. The mechanism of OCL has not been elucidated, however we posed the hypothesis that a rapid accumulation of sodium ions within the oenocytoids allows a massive influx of water by the ion gradient, which leads to the cell lysis. It remains unclear which sodium channel is responsible for the OCL in response to PGE2 . This study identified a specific sodium channel called sodium-potassium-chloride cotransporter 1 (Se-NKCC1) expressed in hemocytes of S. exigua and analyzed its function in the OCL in response to PGE2 . Se-NKCC1 encodes a basic membrane protein (pI value = 8.445) of 1,066 amino acid residues, which contains 12 putative transmembrane domains. Se-NKCC1 was expressed in all developmental stages and tissues. qPCR showed that bacterial challenge significantly induced its expression. A specific inhibitor of NKCC, bumetanide, prevented the OCL in a dose-dependent manner. When RNA interference (RNAi) using double-stranded RNA specific to Se-NKCC1 suppressed its expression, the OCL and PPO activation were significantly inhibited in response to PGE2 . The RNAi treatment also reduced nodule formation to bacterial challenge. These results suggest that Se-NKCC1 is associated with OCL by facilitating inward transport of ions in response to PGE2 . PMID:25845372

  1. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats

    PubMed Central

    Kapoor, Sarika; Rodriguez, Daniel; Riwanto, Meliana; Edenhofer, Ilka; Segerer, Stephan; Mitchell, Katharyn; Wüthrich, Rudolf P.

    2015-01-01

    The sodium-glucose-cotransporter-2 (SGLT2) inhibitor dapagliflozin (DAPA) induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD), we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d) or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group). Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d) and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d). DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min) and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min) after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated. PMID:25927597

  2. Protective Role of Sodium-Glucose Co-Transporter 2 Inhibition Against Vascular Complications in Diabetes.

    PubMed

    Yamagishi, Sho-Ichi; Matsui, Takanori

    2016-04-01

    Diabetic micro- and macroangiopathy are devastating vascular complications that could account for disabilities and high mortality rate in patients with diabetes. Indeed, diabetic nephropathy and retinopathy are the leading causes of end-stage renal failure and acquired blindness, respectively, and atherosclerotic cardiovascular diseases (CVD) accounts for about 60% of death in diabetic subjects. As a result, the average life span of diabetic patients is about 10-15 years shorter than that of non-diabetic subjects. Furthermore, tight blood glucose control might have no more than a marginal impact on CVD in general and on all-cause mortality in particular in diabetes. Therefore, therapeutic strategies that target vascular complications in diabetes need to be developed. Recently, selective inhibition of sodium-glucose co-transporter 2 (SGLT2) has been proposed as a potential therapeutic target for the treatment of patients with diabetes because of low risk of hypoglycemia and no weight gain. Because 90% of glucose filtered by the glomerulus is reabsorbed by a low-affinity/high-capacity SGLT2 expressed in the S1 and S2 segments of the proximal tubule, blockade of SGLT2 promotes urinary glucose excretion and as a result improves hyperglycemia in an insulin-independent manner. Moreover, we have shown that SGLT2-mediated glucose overload to tubular cells could elicit inflammatory and pro-apoptotic reactions in this cell, being directly involved in diabetic nephropathy. In addition, several clinical studies have also shown that SGLT2 inhibitors could reduce blood pressure, body weight, and serum uric acid levels and ameliorate cardiovascular risk in patients with diabetes. This review summarizes the pathophysiological role of SGLT2 in vascular complications in diabetes and its potential therapeutic interventions. PMID:26228073

  3. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity.

    PubMed

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone-kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  4. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  5. Expression of thiazide-sensitive Na{sup +}-Cl{sup -} cotransporter in the rat endolymphatic sac

    SciTech Connect

    Akiyama, Kosuke Miyashita, Takenori; Mori, Terushige; Inamoto, Ryuhei; Mori, Nozomu

    2008-07-11

    The endolymphatic sac (ES) is a part of the membranous labyrinth and is believed to absorb endolymph. It has been well-established that the endolymph absorption is dependent on several ion transporters in a manner similar to that in the kidney, and the ES is regulated by hormones such as aldosterone and vasopressin that also affect on the kidney. The thiazide-sensitive Na{sup +}, Cl{sup -} cotransporter (TSC) is an electroneutral cotransporter specific to the kidney that plays an important role in absorption of NaCl in renal tubules. In the inner ear, TSC expression has never been examined. The expression of TSC in the rat ES was examined by RT-PCR, in situ hybridization and immunohistochemistry. These analyses indicated that TSC genes and proteins were expressed in the rat ES. In contrast, it was not observed in the rat cochlea by RT-PCR. This is the first report confirming the expression of TSC in the ES.

  6. The K(+)-Cl(-) Cotransporter KCC2 and Chloride Homeostasis: Potential Therapeutic Target in Acute Central Nervous System Injury.

    PubMed

    Wu, Haijian; Che, Xiaoru; Tang, Junjia; Ma, Feiqiang; Pan, Kun; Zhao, Mingfei; Shao, Anwen; Wu, Qun; Zhang, Jianmin; Hong, Yuan

    2016-05-01

    The K(+)-Cl(-) cotransporter-2 (KCC2) is a well-known member of the electroneutral cation-chloride cotransporters with a restricted expression pattern to neurons. This transmembrane protein mediates the efflux of Cl(-) out of neurons and exerts a critical role in inhibitory γ-aminobutyric acidergic (GABAergic) and glycinergic neurotransmission. Moreover, KCC2 participates in the regulation of various physiological processes of neurons, including cell migration, dendritic outgrowth, spine morphology, and dendritic synaptogenesis. It is important to note that down-regulation of KCC2 is associated with the pathogenesis of multiple neurological diseases, which is of particular relevance to acute central nervous system (CNS) injury. In this review, we aim to survey the pathogenic significance of KCC2 down-regulation under the condition of acute CNS injuries. We propose that further elucidation of the molecular mechanisms regarding KCC2 down-regulation after acute CNS injuries is necessary because of potential promising avenues for prevention and treatment of acute CNS injury. PMID:25941074

  7. Identification of phlorizin binding domains in sodium-glucose cotransporter family: SGLT1 as a unique model system.

    PubMed

    Raja, Mobeen; Kinne, Rolf K H

    2015-08-01

    The sodium glucose cotransporter SGLT1 expressed mainly in the intestine and kidney has been explored extensively for understanding the mechanism of sugar cotransport and its inhibition by a classical competitive inhibitor, phlorizin (Pz). It has been shown that inhibition of SGLT1 by Pz involves its interaction followed by major conformational changes in the Pz binding domain (PBD) in C-terminal loop 13. However, the mechanism of Pz inhibition and its interaction with other members of SGLT is not known. In this hypothesis, we performed molecular modeling of SGLT1-loop 13 with Pz and carried out primary sequence analyses and secondary structure predictions to determine qualitatively similar PBDs in C-termini of human SGLT2-4, except for vSGLT, which contains an unstructured short C-terminus. The ranking of predictions of Pz interaction strongly agrees with the following ranking of previously reported Pz inhibition: SGLT2>SGLT1>SGLT4>SGLT3>vSGLT. In addition, the sugar binding residues were found to be quite conserved among all SGLT members investigated here. Based on these preliminary analyses, we propose that other Pz-sensitive SGLTs are also inhibited via mechanism similar to SGLT1 where an aglucone of Pz, phloretin, interacts with PBD and glucoside moiety with sugar binding residues. Our hypothesis sets the stage for future analyses on investigation of Pz interaction with SGLT family and further suggests that Pz modeling may be explored to design novel inhibitors targeting several SGLT members. PMID:26086341

  8. Pre-Clinical Models of Acquired Neonatal Seizures: Differential Effects of Injury on Function of Chloride Co-Transporters

    PubMed Central

    Kang, SK; Kadam, SD

    2014-01-01

    Hypoxic-ischemic encephalopathy [HIE] represents the most common acquired pathology associated with neonatal seizures. HIE-associated neonatal seizures are often difficult to control, due to their refractoriness to traditional anti-seizure agents. Developmentally regulated chloride gradients during early development make the neonatal brain more seizure-susceptible by depolarizing GABAAR-mediated currents, and therefore hindering inhibition by conventional anti-seizure drugs such as phenobarbital [PB] and benzodiazepines. Pharmaco-modulation of chloride co-transporters has become a current field of research in treating refractory neonatal seizures, and the basis of two clinical trials [NCT01434225; NCT00380531]. However, the recent termination of NEMO study [NCT01434225] on bumetanide, an NKCC1 antagonist, suggests that clinical utilization of bumetanide as an adjunct to treat neonatal seizures with PB may not be a viable option. Hence, re-evaluation of bumetanide as an adjunct through pre-clinical studies is warranted. Additionally, the model-specific variability in the efficacy of bumetanide in the pre-clinical models of neonatal seizures highlights the differential consequences of insults used to induce seizures in each pre-clinical model as worth exploration. Injury itself can significantly alter the function of chloride co-transporters, and therefore the efficacy of anti-seizure agents that follow. PMID:25590049

  9. Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program.

    PubMed Central

    Falk, S; Guay, A; Chenu, C; Patil, S D; Berteloot, A

    1998-01-01

    A computer program was developed to allow easy derivation of steady-state velocity and binding equations for multireactant mechanisms including or without rapid equilibrium segments. Its usefulness is illustrated by deriving the rate equation of the most general sequential iso ordered ter ter mechanism of cotransport in which two Na+ ions bind first to the carrier and mirror symmetry is assumed. It is demonstrated that this mechanism cannot be easily reduced to a previously proposed six-state model of Na+-D-glucose cotransport, which also includes a number of implicit assumptions. In fact, the latter model may only be valid over a restricted range of Na+ concentrations or when assuming very strong positive cooperativity for Na+ binding to the glucose symporter within a rapid equilibrium segment. We thus propose an equivalent eight-state model in which the concept of positive cooperativity is best explained within the framework of a polymeric structure of the transport protein involving a minimum number of two transport-competent and identical subunits. This model also includes an obligatory slow isomerization step between the Na+ and glucose-binding sequences, the nature of which might reflect the presence of functionally asymmetrical subunits. PMID:9533694

  10. Stoichiometry of the rat kidney Na+-HCO3- cotransporter expressed in Xenopus laevis oocytes.

    PubMed

    Heyer, M; Müller-Berger, S; Romero, M F; Boron, W F; Frömter, E

    1999-08-01

    The rat kidney Na+-HCO3- cotransporter (rkNBC) was expressed in Xenopus laevis oocytes and transport via rkNBC was studied with the patch-clamp technique in giant inside/out (i/o) or outside/out (o/o) membrane patches. The current/voltage (I/V) relation(s) of individual patches was(were) determined in solutions containing only Na+ and HCO3- as permeable ions. The current carried by rkNBC (INBC) was identified by its response to changing bath Na+ concentration(s) and quantified as the current blocked by 4, 4'-diisothiocyanatostilbene disulfonate (DIDS). The stoichiometric ratio (q) of HCO3- to Na+ transport was determined from zero-current (reversal) potentials. The results and conclusions are as follows. First, DIDS (250 micromol/l) blocks INBC irreversibly from both the extracellular and the intracellular surface. Second, in the presence of Na+ and HCO3- concentration gradients similar to those which rkNBC usually encounters in tubular cells, q was close to 2. The same value was also observed when the HCO3- concentration was 25 mmol/l throughout, but the Na+ concentration was either high (100 mmol/l) or low (10 mmol/l) on the extracellular or intracellular surface of the patch. These data demonstrate that in the oocyte cell membrane rkNBC works with q=2 as previously observed in a study of isolated microperfused tubules (Seki et al., Pflügers Arch 425:409, 1993), however, they do not exclude the possibility that in a different membrane and cytoplasmic environment rkNBC may operate with a different stoichiometry. Third, in most experiments bath application of up to 2 mmol/l ATP increased the DIDS-inhibitable conductance of i/o patches by up to twofold with a half saturation constant near 0.5 mmol/l. This increase was not associated with a change in q, nor with a shift in the I/V relationship which would suggest induction of active transport (pump current). Since the effect persisted after ATP removal and was not observed with the non-hydrolysable ATP analogue AMP

  11. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC.

    PubMed

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-12-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC. PMID:22966159

  12. A Cl− Cotransporter Selective for Nh4+ over K+ in Glial Cells of Bee Retina

    PubMed Central

    Marcaggi, Païkan; Coles, Jonathan A.

    2000-01-01

    There appears to be a flux of ammonium (NH4+/NH3) from neurons to glial cells in most nervous tissues. In bee retinal glial cells, NH4+/NH3 uptake is at least partly by chloride-dependant transport of the ionic form NH4+. Transmembrane transport of NH4+ has been described previously on transporters on which NH4+ replaces K+, or, more rarely, Na+ or H+, but no transport system in animal cells has been shown to be selective for NH4+ over these other ions. To see if the NH4+-Cl− cotransporter on bee retinal glial cells is selective for NH4+ over K+ we measured ammonium-induced changes in intracellular pH (pHi) in isolated bundles of glial cells using a fluorescent indicator. These changes in pHi result from transmembrane fluxes not only of NH4+, but also of NH3. To estimate transmembrane fluxes of NH4+, it was necessary to measure several parameters. Intracellular pH buffering power was found to be 12 mM. Regulatory mechanisms tended to restore intracellular [H+] after its displacement with a time constant of 3 min. Membrane permeability to NH3 was 13 μm s−1. A numerical model was used to deduce the NH4+ flux through the transporter that would account for the pHi changes induced by a 30-s application of ammonium. This flux saturated with increasing [NH4+]o; the relation was fitted with a Michaelis-Menten equation with Km ≈ 7 mM. The inhibition of NH4+ flux by extracellular K+ appeared to be competitive, with an apparent Ki of ∼15 mM. A simple standard model of the transport process satisfactorily described the pHi changes caused by various experimental manipulations when the transporter bound NH4+ with greater affinity than K+. We conclude that this transporter is functionally selective for NH4+ over K+ and that the transporter molecule probably has a greater affinity for NH4+ than for K+. PMID:10919861

  13. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter.

    PubMed

    Carey, Robert M; Schoeffel, Cynthia D; Gildea, John J; Jones, John E; McGrath, Helen E; Gordon, Lindsay N; Park, Min Jeong; Sobota, Rafal S; Underwood, Patricia C; Williams, Jonathan; Sun, Bei; Raby, Benjamin; Lasky-Su, Jessica; Hopkins, Paul N; Adler, Gail K; Williams, Scott M; Jose, Pedro A; Felder, Robin A

    2012-11-01

    Previous studies have demonstrated that single nucleotide polymorphisms (SNPs) of the sodium-bicarbonate co-transporter gene (SLC4A5) are associated with hypertension. We tested the hypothesis that SNPs in SLC4A5 are associated with salt sensitivity of blood pressure in 185 whites consuming an isocaloric constant diet with a randomized order of 7 days of low Na(+) (10 mmol/d) and 7 days of high Na(+) (300 mmol/d) intake. Salt sensitivity was defined as a ≥ 7-mm Hg increase in mean arterial pressure during a randomized transition between high and low Na(+) diet. A total of 35 polymorphisms in 17 candidate genes were assayed, 25 of which were tested for association. Association analyses with salt sensitivity revealed 3 variants that associated with salt sensitivity, 2 in SLC4A5 (P<0.001) and 1 in GRK4 (P=0.020). Of these, 2 SNPs in SLC4A5 (rs7571842 and rs10177833) demonstrated highly significant results and large effects sizes, using logistic regression. These 2 SNPs had P values of 1.0 × 10(-4) and 3.1 × 10(-4) with odds ratios of 0.221 and 0.221 in unadjusted regression models, respectively, with the G allele at both sites conferring protection. These SNPs remained significant after adjusting for body mass index and age (P=8.9 × 10(-5) and 2.6 × 10(-4) and odds ratios 0.210 and 0.286, respectively). Furthermore, the association of these SNPs with salt sensitivity was replicated in a second hypertensive population. Meta-analysis demonstrated significant associations of both SNPs with salt sensitivity (rs7571842 [P=1.2 × 10(-5)]; rs1017783 [P=1.1 × 10(-4)]). In conclusion, SLC4A5 variants are strongly associated with salt sensitivity of blood pressure in 2 separate white populations. PMID:22987918

  14. Molecular interactions between dipeptides, drugs and the human intestinal H+ -oligopeptide cotransporter hPEPT1.

    PubMed

    Sala-Rabanal, Monica; Loo, Donald D F; Hirayama, Bruce A; Turk, Eric; Wright, Ernest M

    2006-07-01

    The human intestinal proton-coupled oligopeptide transporter hPEPT1 has been implicated in the absorption of pharmacologically active compounds. We have investigated the interactions between a comprehensive selection of drugs, and wild-type and variant hPEPT1s expressed in Xenopus oocytes, using radiotracer uptake and electrophysiological methods. The beta-lactam antibiotics ampicillin, amoxicillin, cephalexin and cefadroxil, the antineoplastics delta-aminolevulinic acid (delta-ALA) and bestatin, and the neuropeptide N-acetyl-Asp-Glu (NAAG), were transported, as judged by their ability to evoke inward currents. When the drugs were added in the presence of the typical substrate glycylsarcosine (Gly-Sar), the inward currents were equal or less than that induced by Gly-Sar alone. This suggests that the drugs are transported at a lower turnover rate than Gly-Sar, but may also point towards complex interactions between dipeptides, drugs and the transporter. Gly-Sar and the drugs also modified the kinetics of hPEPT1 presteady-state charge movement, by causing a reduction in maximum charge (Qmax) and a shift of the midpoint voltage (V0.5) to more negative potentials. Our results indicate that the substrate selectivity of hPEPT1 is: Gly-Sar > NAAG, delta-ALA, bestatin > cefadroxil, cephalexin > ampicillin, amoxicillin. Based on steady-state and presteady-state analysis of Gly-Sar and cefadroxil transport, we proposed an extension of the 6-state kinetic model for hPEPT1 function that globally accounts for the observed presteady-state and steady-state kinetics of neutral dipeptide and drug transport. Our model suggests that, under saturating conditions, the rate-limiting step of the hPEPT1 transport cycle is the reorientation of the empty carrier within the membrane. Variations in rates of drug cotransport are predicted to be due to differences in affinity and turnover rate. Oral availability of drugs may be reduced in the presence of physiological concentrations of dietary

  15. Apical Na(+)-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus a...

  16. Phosphonomethyl analogues of hexose phosphates.

    PubMed

    Webster, D; Jondorf, W R; Dixon, H B

    1976-05-01

    The analogue of fructose 1,6-bisphosphate in which the phosphate group, -O-PO3H2, on C-6 is replaced by the phosphonomethyl group, -CH2-PO3H2, was made enzymically from the corresponding analogue of 3-phosphoglycerate. It was a substrate for aldolase, which was used to form it, but not for fructose 1,6-bisphosphatase. It was hydrolysed chemically to yield the corresponding analogue of fructose 6-phosphate [i.e. 6-deoxy-6-(phosphonomethyl)-D-fructose, or, more strictly, 6,7-dideoxy-7-phosphono-D-arabino-2-heptulose]. This proved to be a substrate for the sequential actions of glucose 6-phosphate isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Thus seven out of the nine enzymes of the glycolytic and pentose phosphate pathways so far tested catalyse the reactions of the phosphonomethyl isosteres of their substrates. PMID:7247

  17. Sphingosine 1-phosphate signalling.

    PubMed

    Mendelson, Karen; Evans, Todd; Hla, Timothy

    2014-01-01

    Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin. In vertebrates, S1P is secreted into the extracellular environment and signals via G protein-coupled S1P receptors to regulate cell-cell and cell-matrix adhesion, and thereby influence cell migration, differentiation and survival. The expression and localization of S1P receptors is dynamically regulated and controls vascular development, vessel stability and immune cell trafficking. In addition, crucial events during embryogenesis, such as angiogenesis, cardiogenesis, limb development and neurogenesis, are regulated by S1P signalling. Here, and in the accompanying poster, we provide an overview of S1P signalling in development and in disease. PMID:24346695

  18. Templated, layered manganese phosphate

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  19. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  20. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  1. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  2. Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors.

    PubMed

    Meredith, L W; Hu, K; Cheng, X; Howard, C R; Baumert, T F; Balfe, P; van de Graaf, K F; Protzer, U; McKeating, J A

    2016-01-01

    Hepatitis B virus (HBV) is one of the world's major unconquered infections, resulting in progressive liver disease, and current treatments rarely cure infection. A limitation to discovering new therapies is our limited knowledge of HBV entry and dissemination pathways that hinders the development of in vitro culture systems. To address this gap in our understanding we optimized the genesis of infectious lentiviral pseudoparticles (HBVpps). The recent discovery that the bile salt transporter sodium taurocholate co-transporting polypeptide (NTCP) acts as a receptor for HBV enabled us to assess the receptor dependency of HBVpp infection. HBVpps preferentially infect hepatoma cells expressing NTCP, whereas other non-liver cells engineered to express NTCP do not support infection, suggesting that additional hepatocyte-specific factors are required for HBVpp internalization. These results highlight the value of the HBVpp system to dissect the pathways of HBV entry and dissemination. PMID:26474824

  3. Novel Indole-N-glucoside, TA-1887 As a Sodium Glucose Cotransporter 2 Inhibitor for Treatment of Type 2 Diabetes.

    PubMed

    Nomura, Sumihiro; Yamamoto, Yasuo; Matsumura, Yosuke; Ohba, Kiyomi; Sakamaki, Shigeki; Kimata, Hirotaka; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Ueta, Kiichiro; Tsuda-Tsukimoto, Minoru

    2014-01-01

    Inhibition of the renal sodium glucose cotransporter (SGLT) increases urinary glucose excretion (UGE) and thus reduces blood glucose levels during hyperglycemia. To explore the potential of new antihyperglycemic agents, we synthesized and determined the human SGLT2 (hSGLT2) inhibitory potential of novel substituted 3-benzylindole-N-glucosides 6. Optimization of 6 resulted in the discovery of 3-(4-cyclopropylbenzyl)-4-fluoroindole-N-glucoside 6a-4 (TA-1887), a highly potent and selective hSGLT2 inhibitor, with pronounced antihyperglycemic effects in high-fat diet-fed KK (HF-KK) mice. Our results suggest the potential of indole-N-glucosides as novel antihyperglycemic agents through inhibition of renal SGLT2. PMID:24900773

  4. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport

    PubMed Central

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L. Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis. PMID:26839958

  5. Iron content of ferritin modulates its uptake by intestinal epithelium: implications for co-transport of prions.

    PubMed

    Bhupanapadu Sunkesula, Solomon Raju; Luo, Xiu; Das, Dola; Singh, Ajay; Singh, Neena

    2010-01-01

    The spread of Chronic Wasting Disease (CWD) in the deer and elk population has caused serious public health concerns due to its potential to infect farm animals and humans. Like other prion disorders such a sporadic Creutzfeldt-Jakob-disease of humans and Mad Cow Disease of cattle, CWD is caused by PrP-scrapie (PrPSc), a beta-sheet rich isoform of a normal cell surface glycoprotein, the prion protein (PrPC). Since PrPSc is sufficient to cause infection and neurotoxicity if ingested by a susceptible host, it is important to understand the mechanism by which it crosses the stringent epithelial cell barrier of the small intestine. Possible mechanisms include co-transport with ferritin in ingested food and uptake by dendritic cells. Since ferritin is ubiquitously expressed and shares considerable homology among species, co-transport of PrPSc with ferritin can result in cross-species spread with deleterious consequences. We have used a combination of in vitro and in vivo models of intestinal epithelial cell barrier to understand the role of ferritin in mediating PrPSc uptake and transport. In this report, we demonstrate that PrPSc and ferritin from CWD affected deer and elk brains and scrapie from sheep resist degradation by digestive enzymes, and are transcytosed across a tight monolayer of human epithelial cells with significant efficiency. Likewise, ferritin from hamster brains is taken up by mouse intestinal epithelial cells in vivo, indicating that uptake of ferritin is not limited by species differences as described for prions. More importantly, the iron content of ferritin determines its efficiency of uptake and transport by Caco-2 cells and mouse models, providing insight into the mechanism(s) of ferritin and PrPSc uptake by intestinal epithelial cells. PMID:20429907

  6. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats.

    PubMed

    Javdani, Fariba; Holló, Krisztina; Hegedűs, Krisztina; Kis, Gréta; Hegyi, Zoltán; Dócs, Klaudia; Kasugai, Yu; Fukazawa, Yugo; Shigemoto, Ryuichi; Antal, Miklós

    2015-09-01

    γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons. PMID:25764511

  7. Role of the potassium chloride cotransporter isoform 2-mediated spinal chloride homeostasis in a rat model of visceral hypersensitivity.

    PubMed

    Tang, Dong; Qian, Ai-Hua; Song, Dan-Dan; Ben, Qi-Wen; Yao, Wei-Yan; Sun, Jing; Li, Wei-Guang; Xu, Tian-Le; Yuan, Yao-Zong

    2015-05-01

    Visceral hypersensitivity represents an important hallmark in the pathophysiology of irritable bowel syndrome (IBS), of which the mechanisms remain elusive. The present study was designed to examine whether cation-chloride cotransporter (CCC)-mediated chloride (Cl(-)) homeostasis of the spinal cord is involved in chronic stress-induced visceral hypersensitivity. Chronic visceral hypersensitivity was induced by exposing male Wistar rats to water avoidance stress (WAS). RT-PCR, Western blotting, and immunohistochemistry were used to assess the expression of CCCs in the spinal cord. Patch-clamp recordings were performed on adult spinal cord slices to evaluate Cl(-) homeostasis and Cl(-) extrusion capacity of lamina I neurons. Visceral sensitivity was estimated by measuring the abdominal withdrawal reflex in response to colorectal distension (CRD). After 10 days of WAS exposure, levels of both total protein and the oligomeric form of the K(+)-Cl(-) cotransporter isoform 2 (KCC2), but not Na(+)-K(+)-2Cl(-) transporter isoform 1 (NKCC1), were significantly decreased in the dorsal horn of the lumbosacral spinal cord. The downregulation of KCC2 resulted in a depolarizing shifted equilibrium potential of GABAergic inhibitory postsynaptic current and impaired Cl(-) extrusion capacity in lamina I neurons of the lumbosacral spinal cord from WAS rats. Acute noxious CRD disrupted spinal KCC2 expression and function 2 h after the final distention in sham rats, but not in WAS rats. Pharmacological blockade of KCC2 activity by intrathecal injection of a KCC2 inhibitor [(dihydroindenyl)oxy] alkanoic acid enhanced visceral nociceptive sensitivity in sham rats, but not in WAS rats. These results suggest that KCC2 downregulation-mediated impairment of spinal cord Cl(-) homeostasis may play an important role in chronic stress-induced visceral hypersensitivity. PMID:25792562

  8. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. PMID:26747984

  9. Experimental investigation of human adenovirus cotransport with clay colloids and TiO2 nanoparticles in water saturated porous media

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Kokkinos, Petros; Tselepi, Maria A.; Kartoudis, Alexis; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V.

    2016-04-01

    Particles such as clay colloids (e.g. kaolinite and montmorillonite) and metal oxides (e.g. TiO2) have great potential for controlling the fate and transport of viruses in the subsurface. Although human adenoviruses (hAdVs) are used worldwide to indicate human fecal pollution in groundwater, their transport behavior in the subsurface environment is not fully understood. This study focuses on the effects of both clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b), and TiO2 nanoparticles (NPs), on hAdV transport and retention in porous media. Laboratory-scale cotransport experiments were conducted in columns packed with glass beads, at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The experimental results suggested that the presence of KGa-1b, STx-1b, and TiO2 NPs increased the attachment and inactivation of hAdVs, mainly due to the contribution of additional attachment sites. Retention of hAdVs by the packed column was shown to be highest in the presence of TiO2 NPs and lowest in the presence of KGa-1b. Moreover, the mass recovery values of both clay colloids and TiO2 NPs were affected by the presence of hAdVs, under all of the experimental conditions examined in this study. However, no distinct relationship between mass recovery and water velocity could be established from the present experimental cotransport results.

  10. Chemoenzymatic synthesis of polyprenyl phosphates.

    PubMed

    Hartley, Meredith D; Larkin, Angelyn; Imperiali, Barbara

    2008-05-01

    Polyprenyl phosphates, including undecaprenyl phosphate and dolichyl phosphate, are essential intermediates in several important biochemical pathways including N-linked protein glycosylation in eukaryotes and prokaryotes and prokaryotic cell wall biosynthesis. Herein, we describe the evaluation of three potential undecaprenol kinases as agents for the chemoenzymatic synthesis of polyprenyl phosphates. Target enzymes were expressed in crude cell envelope fractions and quantified via the use of luminescent lanthanide-binding tags (LBTs). The Streptococcus mutans diacylglycerol kinase (DGK) was shown to be a very useful agent for polyprenol phosphorylation using ATP as the phosphoryl transfer agent. In addition, the S. mutans DGK can be coupled with two Campylobacter jejuni glycosyltransferases involved in N-linked glycosylation to efficiently biosynthesize the undecaprenyl pyrophosphate-linked disaccharide needed for studies of PglB, the C. jejuni oligosaccharyl transferase. PMID:18374576

  11. SOURCE ASSESSMENT: PHOSPHATE FERTILIZER INDUSTRY

    EPA Science Inventory

    The report describes a study of air emissions, water effluents, and solid residues resulting from the manufacture of phosphate fertilizers. It includes the production of wet process phosphoric acid, superphosphoric acid, normal superphosphate, triple superphosphate, and ammonium ...

  12. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ferric chloride or ferric citrate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate,...

  13. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reaction of sodium phosphate with ferric chloride or ferric citrate. (b) The ingredient meets the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate...

  14. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reaction of sodium phosphate with ferric chloride or ferric citrate. (b) The ingredient meets the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate...

  15. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Erythromycin phosphate. 520.823 Section 520.823... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.823 Erythromycin phosphate. (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance...

  16. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Erythromycin phosphate. 520.823 Section 520.823... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.823 Erythromycin phosphate. (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance...

  17. Responses to phosphate deprivation in yeast cells.

    PubMed

    Yadav, Kamlesh Kumar; Singh, Neelima; Rajasekharan, Ram

    2016-05-01

    Inorganic phosphate is an essential nutrient because it is required for the biosynthesis of nucleotides, phospholipids and metabolites in energy metabolism. During phosphate starvation, phosphatases play a major role in phosphate acquisition by hydrolyzing phosphorylated macromolecules. In Saccharomyces cerevisiae, PHM8 (YER037W), a lysophosphatidic acid phosphatase, plays an important role in phosphate acquisition by hydrolyzing lysophosphatidic acid and nucleotide monophosphate that results in accumulation of triacylglycerol and nucleotides under phosphate limiting conditions. Under phosphate limiting conditions, it is transcriptionally regulated by Pho4p, a phosphate-responsive transcription factor. In this review, we focus on triacylglycerol metabolism in transcription factors deletion mutants involved in phosphate metabolism and propose a link between phosphate and triacylglycerol metabolism. Deletion of these transcription factors results in an increase in triacylglycerol level. Based on these observations, we suggest that PHM8 is responsible for the increase in triacylglycerol in phosphate metabolising gene deletion mutants. PMID:26615590

  18. Biphasic calcium phosphate in periapical surgery

    PubMed Central

    Suneelkumar, Chinni; Datta, Krithika; Srinivasan, Manali R; Kumar, Sampath T

    2008-01-01

    Calcium phosphate ceramics like hydroxyapatite and β -tricalcium phosphate (β -TCP) possess mineral composition that closely resembles that of the bone. They can be good bone substitutes due to their excellent biocompatibility. Biphasic calcium phosphate is a bone substitute which is a mixture of hydroxyapatite and β -tricalcium phosphate in fixed ratios. Studies have demonstrated the osteoconductive potential of this composition. This paper highlights the clinical use of biphasic calcium phosphate as a bone substitute in periapical surgery. PMID:20142892

  19. Primary structure and functional expression of a cDNA encoding the bile canalicular, purine-specific Na(+)-nucleoside cotransporter.

    PubMed

    Che, M; Ortiz, D F; Arias, I M

    1995-06-01

    We previously characterized a purine-specific Na(+)-nucleoside cotransport system in bile canalicular membrane. The function of this transport system may be related to conserving nucleosides and preventing cholestasis. We report here the isolation of a cDNA encoding a Na(+)-dependent nucleoside transporter from rat liver using an expression cloning strategy. The substrate specificities and kinetic characteristics of the cloned cotransporter are consistent with the properties of the Na(+)-dependent, purine-selective nucleoside transporter in bile canalicular membranes. The nucleotide sequence predicts a protein of 659 amino acids (72 kDa) with 14 putative membrane-spanning domains. Northern blot analysis showed that the transcripts are present in liver and several other tissues. Data base searches indicate significant sequence similarity to the pyrimidine-selective nucleoside transporter (cNT1) of rat jejunum. Although these two subtypes of Na(+)-nucleoside cotransporter have different substrate specificities and tissue localizations, they are members of a single gene family. PMID:7775409

  20. The human erythrocyte Cl-dependent Na-K cotransport system as a possible model for studying the action of loop diuretics.

    PubMed Central

    Ellory, J. C.; Stewart, G. W.

    1982-01-01

    1 The recent demonstration of the chloride-dependence of the red cell Na-K cotransport system suggests an analogy between this process and the active Cl- absorption in the ascending loop of Henle, which is the target transport system for loop diuretics. 2 Using red cell K influx, four known loop diuretics, six experimental frusemide analogues, two thiazides, two K-retaining diuretics and one organomercurial were compared for inhibitory potency on the red cell Na-K cotransport system. 3 Except for mersalyl, whose exact mode of action in the kidney is still in doubt, the inhibition of the red cell system by various loop diuretics was consistent with both published whole body diuretic data and isolated perfused tubule studies, while the system did not respond to the thiazides or the K-retaining diuretics. 4 It is concluded that the human red cell Na-K cotransport system is a possible valid model process on which to study the activity of loop diuretics. PMID:7074281

  1. Uranium phosphate biomineralization by fungi.

    PubMed

    Liang, Xinjin; Hillier, Stephen; Pendlowski, Helen; Gray, Nia; Ceci, Andrea; Gadd, Geoffrey Michael

    2015-06-01

    Geoactive soil fungi were investigated for phosphatase-mediated uranium precipitation during growth on an organic phosphorus source. Aspergillus niger and Paecilomyces javanicus were grown on modified Czapek-Dox medium amended with glycerol 2-phosphate (G2P) as sole P source and uranium nitrate. Both organisms showed reduced growth on uranium-containing media but were able to extensively precipitate uranium and phosphorus-containing minerals on hyphal surfaces, and these were identified by X-ray powder diffraction as uranyl phosphate species, including potassium uranyl phosphate hydrate (KPUO6 .3H2 O), meta-ankoleite [(K1.7 Ba0.2 )(UO2 )2 (PO4 )2 .6H2 O], uranyl phosphate hydrate [(UO2 )3 (PO4 )2 .4H2 O], meta-ankoleite (K(UO2 )(PO4 ).3H2 O), uramphite (NH4 UO2 PO4 .3H2 O) and chernikovite [(H3 O)2 (UO2 )2 (PO4 )2 .6H2 O]. Some minerals with a morphology similar to bacterial hydrogen uranyl phosphate were detected on A. niger biomass. Geochemical modelling confirmed the complexity of uranium speciation, and the presence of meta-ankoleite, uramphite and uranyl phosphate hydrate between pH 3 and 8 closely matched the experimental data, with potassium as the dominant cation. We have therefore demonstrated that fungi can precipitate U-containing phosphate biominerals when grown with an organic source of P, with the hyphal matrix serving to localize the resultant uranium minerals. The findings throw further light on potential fungal roles in U and P biogeochemistry as well as the application of these mechanisms for element recovery or bioremediation. PMID:25580878

  2. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. PMID:24556272

  3. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation.

    PubMed

    Lorin-Nebel, Catherine; Boulo, Viviane; Bodinier, Charlotte; Charmantier, Guy

    2006-12-01

    This study combines a cellular and molecular analysis of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC) to determine the osmoregulatory role of this protein in different tissues during the ontogeny of the sea bass. We have characterized the complete sequence of the NKCC1 isoform isolated from the sea bass gills and have identified, by immunofluorescence, NKCC1, and other isoforms, within the epithelium of the major osmoregulatory organs. Different (absorptive and secretory) functions have been attributed to this protein according to the tissue and salinity. The effects of short- (1-4 days), medium- (7-21 days) and long (6 months)-term freshwater (FW) adaptations were investigated, in comparison with seawater (SW)-maintained sea bass. In adult sea bass after long-term adaptation to FW and SW, the gills had the highest expression of NKCC mRNA compared with the median/posterior kidney and to the posterior intestine. Expression of NKCC mRNA in the kidney was 95% (SW) and 63% (FW) lower, and in the intestine 98% (SW) and 77% (FW) lower. Compared to SW-maintained sea bass, long-term FW adaptation induced a significant 5.6-fold decrease in the branchial NKCC gene expression whereas the intestinal and renal expressions did not vary significantly. The cells of the intestine and collecting ducts as well as a part of the epithelium lining the urinary bladder expressed NKCC apically. Within the gill chloride cells, NKCC was found basolaterally in SW-acclimated fish; some apically stained cells were detected after 7 days of FW exposure and their relative number increased progressively following FW acclimation. The appearance of FW-type chloride cells induces a functional shift of the gills from a secretory to an absorptive epithelium, which was only completed after long-term exposure to FW. Short- and medium-term exposure to FW induced a progressive decrease in total NKCC content and an increase in functionally different branchial chloride cells. During development, the

  4. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues

    PubMed Central

    Ando, Hideaki; Hirose, Matsumi; Gainche, Laura; Kawaai, Katsuhiro; Bonneau, Benjamin; Ijuin, Takeshi; Itoh, Toshiki; Takenawa, Tadaomi; Mikoshiba, Katsuhiko

    2015-01-01

    Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2. PMID:26509711

  5. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis.

    PubMed

    Razzaque, Mohammed S; Lanske, Beate

    2007-07-01

    Normal mineral ion homeostasis is tightly controlled by numerous endocrine factors that coordinately exert effects on intestine, kidney, and bone to maintain physiological balance. The importance of the fibroblast growth factor (FGF)-23-klotho axis in regulating mineral ion homeostasis has been proposed from recent research observations. Experimental studies suggest that 1) FGF23 is an important in vivo regulator of phosphate homeostasis, 2) FGF23 acts as a counter regulatory hormone to modulate the renal 1alpha-hydroxylase and sodium-phosphate cotransporter activities, 3) there is a trend of interrelationship between FGF23 and parathyroid hormone activities, 4) most of the FGF23 functions are conducted through the activation of FGF receptors, and 5) such receptor activation needs klotho, as a cofactor to generate downstream signaling events. These observations clearly suggest the emerging roles of the FGF23-klotho axis in maintaining mineral ion homeostasis. In this brief article, we will summarize how the FGF23-klotho axis might coordinately regulate normal mineral ion homeostasis, and how their abnormal regulation could severely disrupt such homeostasis to induce disease pathology. PMID:17592015

  6. Detergent phosphate bans and eutrophication

    SciTech Connect

    Lee, G.F.; Jones, R.A.

    1986-04-01

    The Vollenweider-OECD eutrophication model has been expanded to approximately 400 lakes. It is possible to make a quantitative prediction of the effects of a detergent phosphate ban and thereby to ascertain the potential benefits of such a ban. In order to assess the effect of a detergent phosphate ban on water quality it is necessary to know the percentage of phosphorus in the domestic waste water that enters the water body, either directly or indirectly, and the percentage of the total phosphorus load that is derived from domestic wastewater. Although detergent phosphate bans generally will not result in an overall improvement to water quality, there may be some situations in which eutrophication-related water quality would be improved by a ban. 8 references, 1 figure, 1 table.

  7. [Phosphate metabolism and iron deficiency].

    PubMed

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23. PMID:26813504

  8. Sodium taurocholate cotransporting polypeptide inhibition efficiently blocks hepatitis B virus spread in mice with a humanized liver.

    PubMed

    Nakabori, Tasuku; Hikita, Hayato; Murai, Kazuhiro; Nozaki, Yasutoshi; Kai, Yugo; Makino, Yuki; Saito, Yoshinobu; Tanaka, Satoshi; Wada, Hiroshi; Eguchi, Hidetoshi; Takahashi, Takeshi; Suemizu, Hiroshi; Sakamori, Ryotaro; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is a recently discovered hepatitis B virus (HBV) receptor. In the present study, we used TK-NOG mice with a humanized liver to examine the impact of endogenous NTCP expression on HBV infection. Upon inoculation with HBV, these mice exhibited clear viremia in 2 weeks, and serum HBV DNA levels gradually increased. The frequency of HBsAg-positive hepatocytes in the liver was 5.1 ± 0.6% at 2 weeks and increased with increasing HBV DNA levels, reaching 92.9 ± 2.8% at 10 to 12 weeks. In vivo siRNA-mediated NTCP knockdown before and after HBV inoculation significantly suppressed the levels of HBV replication and the frequency of HBsAg-positive hepatocytes at 2 weeks, whereas NTCP knockdown 13 weeks after infection did not affect these parameters. Similar to the humanized mouse livers in the early phase of HBV infection, human liver samples from chronic hepatitis B patients, especially those treated with nucleos(t)ide analogues, contained a considerable number of hepatocytes that were negative for the anti-HBs antibody. In conclusion, NTCP inhibition prevents the spread of HBV-infected hepatocytes in mice with a humanized liver. NTCP-targeted therapy has potential for regulating HBV infection in patients with chronic hepatitis B. PMID:27278060

  9. Thermodynamic and kinetic controls on cotransport of Pantoea agglomerans cells and Zn through clean and iron oxide coated sand columns.

    PubMed

    Kapetas, Leon; Ngwenya, Bryne T; Macdonald, Alan M; Elphick, Stephen C

    2012-12-18

    Recent observations that subsurface bacteria quickly adsorb metal contaminants raise concerns that they may enhance metal transport, given the high mobility of bacteria themselves. However, metal adsorption to bacteria is also reversible, suggesting that mobility within porous medium will depend on the interplay between adsorption-desorption kinetics and thermodynamic driving forces for adsorption. Till now there has been no systematic investigation of these important interactions. This study investigates the thermodynamic and kinetic controls of cotransport of Pantoea agglomerans cells and Zn in quartz and iron-oxide coated sand (IOCS) packed columns. Batch kinetic studies show that significant Zn sorption on IOCS takes place within two hours. Adsorption onto P. agglomerans surfaces reaches equilibrium within 30 min. Experiments in flow through quartz sand systems demonstrate that bacteria have negligible effect on zinc mobility, regardless of ionic strength and pH conditions. Zinc transport exhibits significant retardation in IOCS columns at high pH in the absence of cells. Yet, when mobile bacteria (non attached) are passed through simultaneously with zinc, no facilitated transport is observed. Adsorption onto cells becomes significant and plays a role in mobile metal speciation only once the IOCS is saturated with zinc. This suggests that IOCS exhibits stronger affinity for Zn than cell surfaces. However, when bacteria and Zn are preassociated on entering the column, zinc transport is initially facilitated. Subsequently, zinc partly desorbs from the cells and redistributes onto the IOCS as a result of the higher thermodynamic affinity for IOCS. PMID:23153272

  10. Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold

    PubMed Central

    Boettger, Thomas; Rust, Marco B.; Maier, Hannes; Seidenbecher, Thomas; Schweizer, Michaela; Keating, Damien J.; Faulhaber, Jörg; Ehmke, Heimo; Pfeffer, Carsten; Scheel, Olaf; Lemcke, Beate; Horst, Jürgen; Leuwer, Rudolf; Pape, Hans-Christian; Völkl, Harald; Hübner, Christian A.; Jentsch, Thomas J.

    2003-01-01

    K-Cl co-transporters are encoded by four homologous genes and may have roles in transepithelial transport and in the regulation of cell volume and cytoplasmic chloride. KCC3, an isoform mutated in the human Anderman syndrome, is expressed in brain, epithelia and other tissues. To investigate the physiological functions of KCC3, we disrupted its gene in mice. This severely impaired cell volume regulation as assessed in renal tubules and neurons, and moderately raised intraneuronal Cl– concentration. Kcc3–/– mice showed severe motor abnormalities correlating with a progressive neurodegeneration in the peripheral and CNS. Although no spontaneous seizures were observed, Kcc3–/– mice displayed reduced seizure threshold and spike-wave complexes on electrocorticograms. These resembled EEG abnormalities in patients with Anderman syndrome. Kcc3–/– mice also displayed arterial hypertension and a slowly progressive deafness. KCC3 was expressed in many, but not all cells of the inner ear K+ recycling pathway. These cells slowly degenerated, as did sensory hair cells. The present mouse model has revealed important cellular and systemic functions of KCC3 and is highly relevant for Anderman syndrome. PMID:14532115

  11. SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2.

    PubMed

    Reiche, Juliane; Theilig, Franziska; Rafiqi, Fatema H; Carlo, Anne-Sophie; Militz, Daniel; Mutig, Kerim; Todiras, Mihail; Christensen, Erik Ilsø; Ellison, David H; Bader, Michael; Nykjaer, Anders; Bachmann, Sebastian; Alessi, Dario; Willnow, Thomas E

    2010-06-01

    Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance. PMID:20385770

  12. The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines

    PubMed Central

    Gauvain, Grégory; Chamma, Ingrid; Chevy, Quentin; Cabezas, Carolina; Irinopoulou, Theano; Bodrug, Natalia; Carnaud, Michèle; Lévi, Sabine; Poncer, Jean Christophe

    2011-01-01

    The K-Cl cotransporter KCC2 plays an essential role in neuronal chloride homeostasis, and thereby influences the efficacy and polarity of GABA signaling. Although KCC2 is expressed throughout the somatodendritic membrane, it is remarkably enriched in dendritic spines, which host most glutamatergic synapses in cortical neurons. KCC2 has been shown to influence spine morphogenesis and functional maturation in developing neurons, but its function in mature dendritic spines remains unknown. Here, we report that suppressing KCC2 expression decreases the efficacy of excitatory synapses in mature hippocampal neurons. This effect correlates with a reduced postsynaptic aggregation of GluR1-containing AMPA receptors and is mimicked by a dominant negative mutant of KCC2 interaction with cytoskeleton but not by pharmacological suppression of KCC2 function. Single-particle tracking experiments reveal that suppressing KCC2 increases lateral diffusion of the mobile fraction of AMPA receptor subunit GluR1 in spines but not in adjacent dendritic shafts. Increased diffusion was also observed for transmembrane but not membrane-anchored recombinant neuronal cell adhesion molecules. We suggest that KCC2, likely through interactions with the actin cytoskeleton, hinders transmembrane protein diffusion, and thereby contributes to their confinement within dendritic spines. PMID:21878564

  13. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission

    PubMed Central

    Chamma, Ingrid; Chevy, Quentin; Poncer, Jean Christophe; Lévi, Sabine

    2012-01-01

    The K-Cl co-transporter KCC2 plays multiple roles in the physiology of central neurons and alterations of its function and/or expression are associated with several neurological conditions. By regulating intraneuronal chloride homeostasis, KCC2 strongly influences the efficacy and polarity of the chloride-permeable γ-aminobutyric acid (GABA) type A and glycine receptor (GlyR) mediated synaptic transmission. This appears particularly critical for the development of neuronal circuits as well as for the dynamic control of GABA and glycine signaling in mature networks. The activity of the transporter is also associated with transmembrane water fluxes which compensate solute fluxes associated with synaptic activity. Finally, KCC2 interaction with the actin cytoskeleton appears critical both for dendritic spine morphogenesis and the maintenance of glutamatergic synapses. In light of the pivotal role of KCC2 in the maturation and function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. These include development and activity-dependent modifications both at the transcriptional and post-translational levels. We emphasize the importance of post-translational mechanisms such as phosphorylation and dephosphorylation, oligomerization, cell surface stability, clustering and membrane diffusion for the rapid and dynamic regulation of KCC2 function. PMID:22363264

  14. Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog.

    PubMed

    Zeuthen, T; Hamann, S; la Cour, M

    1996-11-15

    1. The interaction between H+, lactate and H2O fluxes in the retinal membrane of the pigment epithelium from bullfrog Rana catesbiana was studied by means of ion-selective micro-electrodes. 2. Changes in intracellular pH and cell volume were recorded in response to abrupt changes in retinal solution concentration and/or osmolarity. 3. Two parallel pathways for water transport were identified across the retinal membrane, an osmotic one with a hydraulic water permeability of 3.2 x 10(-4) cm s-1 (osmol l-1)-1 and one which depended on the presence of lactate. 4. Addition of sodium lactate to the retinal solution caused cell shrinkages that were small compared with those produced by mannitol. The reflection coefficient for sodium lactate was 0.25. 5. Isosmotic replacement of Cl- with lactate caused an influx of water. Simultaneous acidification of the retinal solution from pH 7.4 to 6.4 enhanced the effect. The influx of water could proceed against osmotic gradients elicited by mannitol. 6. The interdependence of the fluxes of H+, lactate and H2O can be described as cotransport: the fluxes had a fixed ratio of about 109 mmol of lactic acid per litre of water, the flux of one species was able to energize the flux of the other two, and the fluxes exhibited saturation for increasing driving forces. 7. The Gibbs equation gives an accurate quantitative description of these coupled fluxes. PMID:8951707

  15. WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons.

    PubMed

    Friedel, Perrine; Kahle, Kristopher T; Zhang, Jinwei; Hertz, Nicholas; Pisella, Lucie I; Buhler, Emmanuelle; Schaller, Fabienne; Duan, JingJing; Khanna, Arjun R; Bishop, Paul N; Shokat, Kevan M; Medina, Igor

    2015-06-30

    Activation of Cl(-)-permeable γ-aminobutyric acid type A (GABAA) receptors elicits synaptic inhibition in mature neurons but excitation in immature neurons. This developmental "switch" in the GABA function depends on a postnatal decrease in intraneuronal Cl(-) concentration mediated by KCC2, a Cl(-)-extruding K(+)-Cl(-) cotransporter. We showed that the serine-threonine kinase WNK1 [with no lysine (K)] forms a physical complex with KCC2 in the developing mouse brain. Dominant-negative mutation, genetic depletion, or chemical inhibition of WNK1 in immature neurons triggered a hyperpolarizing shift in GABA activity by enhancing KCC2-mediated Cl(-) extrusion. This increase in KCC2 activity resulted from reduced inhibitory phosphorylation of KCC2 at two C-terminal threonines, Thr(906) and Thr(1007). Phosphorylation of both Thr(906) and Thr(1007) was increased in immature versus mature neurons. Together, these data provide insight into the mechanism regulating Cl(-) homeostasis in immature neurons, and suggest that WNK1-regulated changes in KCC2 phosphorylation contribute to the developmental excitatory-to-inhibitory GABA sequence. PMID:26126716

  16. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels.

    PubMed

    Hawley, Simon A; Ford, Rebecca J; Smith, Brennan K; Gowans, Graeme J; Mancini, Sarah J; Pitt, Ryan D; Day, Emily A; Salt, Ian P; Steinberg, Gregory R; Hardie, D Grahame

    2016-09-01

    Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors. PMID:27381369

  17. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors: Part 2. Antidiabetic effects in type 2 diabetic mice.

    PubMed

    Tahara, Atsuo; Takasu, Toshiyuki; Yokono, Masanori; Imamura, Masakazu; Kurosaki, Eiji

    2016-07-01

    Previously we investigated the pharmacokinetic, pharmacodynamic, and pharmacologic properties of all six sodium-glucose cotransporter (SGLT) 2 inhibitors commercially available in Japan using normal and diabetic mice. We classified the SGLT2 inhibitors with respect to duration of action as either long-acting (ipragliflozin and dapagliflozin) or intermediate-acting (tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin). In the present study, antidiabetic effects of repeated administration of these SGLT2 inhibitors in type 2 diabetic mice were investigated. When repeatedly administered for 4 weeks, all SGLT2 inhibitors significantly exhibited antihyperglycemic, antihyperinsulinemic, and pancreas-protective effects, as well as insulin resistance-improving effects. When compared at doses producing comparable reduction in hyperglycemia across all drugs, the antidiabetic effects of ipragliflozin and dapagliflozin were more potent than those of the other four drugs, but these differences among the six drugs were not statistically significant. Further, an oral glucose tolerance test performed after repeated administration demonstrated significant improvement in glucose tolerance only with ipragliflozin and dapagliflozin, implying improved insulin resistance and secretion. Taken together, these findings demonstrate that, although all SGLT2 inhibitors exert antidiabetic effects in type 2 diabetic mice, these pharmacologic effects might be slightly superior with the long-acting drugs, which are able to provide favorable blood glucose control throughout the day. PMID:27430987

  18. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents.

    PubMed

    Choi, Chang-Ik

    2016-01-01

    Diabetes mellitus is a chronic condition associated with the metabolic impairment of insulin actions, leading to the development of life-threatening complications. Although many kinds of oral antihyperglycemic agents with different therapeutic mechanisms have been marketed, their undesirable adverse effects, such as hypoglycemia, weight gain, and hepato-renal toxicity, have increased demand for the discovery of novel, safer antidiabetic drugs. Since the important roles of the sodium-glucose cotransporter 2 (SGLT2) for glucose homeostasis in the kidney were recently elucidated, pharmacological inhibition of SGLT2 has been considered a promising therapeutic target for the treatment of type 2 diabetes. Since the discovery of the first natural SGLT2 inhibitor, phlorizin, several synthetic glucoside analogs have been developed and introduced into the market. Furthermore, many efforts to find new active constituents with SGLT2 inhibition from natural products are still ongoing. This review introduces the history of research on the development of early-generation SGLT2 inhibitors, and recent progress on the discovery of novel candidates for SGLT2 inhibitor from several natural products that are widely used in traditional herbal medicine. PMID:27618891

  19. Diabetic Ketoacidosis in a Patient with Type 2 Diabetes After Initiation of Sodium-Glucose Cotransporter 2 Inhibitor Treatment.

    PubMed

    Storgaard, Heidi; Bagger, Jonatan I; Knop, Filip K; Vilsbøll, Tina; Rungby, Jørgen

    2016-02-01

    Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were recently introduced for the treatment of type 2 diabetes (T2D). SGLT2i lower plasma glucose by inhibiting the renal reuptake of glucose leading to glucosuria. Generally, these drugs are considered safe to use. However, recently, SGLT2i have been suggested to predispose to ketoacidosis. Here, we present a case of diabetic ketoacidosis (DKA) developed in an obese, poorly controlled male patient with T2D treated with the SGLT2i dapagliflozin. He was admitted with DKA 5 days after the initiation of treatment with the SGLT2i dapagliflozin. On admission, the primary symptoms were nausea and dizziness, and he was hypertensive (170/103) and tachycardic (119 bpm) and had mild hyperglycaemia (15.3 mmol/l), severe ketonuria and severe metabolic acidosis (pH 7.08). He responded well to infusions of insulin, glucose and saline and was discharged after 72 hr with insulin as the only glucose-lowering therapy. After 1 month, dapagliflozin was reintroduced as add-on to insulin with no recurrent signs of ketoacidosis. During acute illness or other conditions with increased insulin demands in diabetes, SGLT2i may predispose to the formation of ketone bodies and ensuing acidosis. PMID:26291182

  20. Sodium-glucose cotransporter-2 inhibitors and blood pressure decrease: a valuable effect of a novel antidiabetic class?

    PubMed

    Imprialos, Konstantinos P; Sarafidis, Pantelis A; Karagiannis, Asterios I

    2015-11-01

    Diabetes mellitus is a major issue of public health, affecting more than 300 million people worldwide. Inhibitors of the sodium-glucose cotransporter-2 (SGLT-2) in the renal proximal tubule are a novel class of agents for the treatment of type 2 diabetes mellitus. Inhibition of the SGLT-2 results in reduced glucose reabsorption and improvement in glycemic control. Alongside glucose excretion, SGLT-2 inhibitors also have mild natriuretic and diuretic effects, combining actions of a proximal tubule diuretic and an osmotic diuretic; these properties are expected to lead to small blood pressure (BP) reductions. Clinical studies with dapagliflozin, canagliflozin, empagliflozin, ipragliflozin, luseogliflozin, and tofogliflozin used either as monotherapy or add-on therapy and compared with placebo or active treatment have also examined the effect of these agents on BP as a secondary endpoint. Although with some differences between individual agents, all of the approved SGLT-2 inhibitors provided a mild but meaningful reduction in office SBP and DBP. Recent studies with the use of ambulatory blood pressure monitoring suggest that the magnitude of this BP reduction can be even greater. The aim of this review is to systematically summarize and present the studies reporting the effect of approved SGLT-2 inhibitors on BP. PMID:26372321

  1. Sodium-glucose co-transporter-2 inhibitors as add-on therapy to insulin: rationale and evidences.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are recently approved class of anti-hyperglycaemic agents for the treatment of type 2 diabetes mellitus (T2DM). SGLT-2I inhibits renal glucose reabsorption, thereby ensuing urinary glucose excretion in a dose-dependent manner. This caloric loss and osmotic diuresis, secondary to increased urinary glucose excretion, has a unique potential to counter insulin induced weight gain and fluid retention, with little potential of hypoglycemic exacerbation. Also, as these agents act independently of insulin secretion or action, they are effective even in long-standing diabetes with depleted β-cell reserve. Improvement in insulin sensitivity, as observed with SGLT-2I can also facilitate insulin action. Furthermore, significant reduction in total daily insulin dosage and reduction of body weight as observed during combination therapy renders SGLT-2I, a near-ideal partner to insulin. This review aims to evaluate the safety and efficacy of currently used SGLT-2I as an add-on to insulin therapy in the treatment of T2DM. PMID:26732230

  2. Exposure−response modelling for empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes

    PubMed Central

    Riggs, Matthew M; Seman, Leo J; Staab, Alexander; MacGregor, Thomas R; Gillespie, William; Gastonguay, Marc R; Woerle, Hans J; Macha, Sreeraj

    2014-01-01

    Aims To provide model-based clinical development decision support including dose selection guidance for empagliflozin, an orally administered sodium glucose cotransporter 2 inhibitor, through developed exposure−response (E−R) models for efficacy and tolerability in patients with type 2 diabetes mellitus (T2DM). Methods Five randomized, placebo-controlled, multiple oral dose studies of empagliflozin in patients with T2DM (n = 974; 1–100 mg once daily, duration ≤12 weeks) were used to develop E−R models for efficacy (glycosylated haemoglobin [HbA1c], fasting plasma glucose [FPG] and urinary glucose excretion). Two studies (n = 748, 12 weeks) were used to evaluate tolerability E−R. Results The efficacy model predicted maximal decreases in FPG and HbA1c of 16% and 0.6%, respectively, assuming a baseline FPG concentration of 8 mm (144 mg dl−1) and 10–25 mg every day empagliflozin targeted 80–90% of these maximums. Increases in exposure had no effect on incidence rates of hypoglycaemia (n = 4), urinary tract infection (n = 17) or genital/vulvovaginal-related (n = 16) events, although low prevalence rates may have precluded more accurate evaluation. Conclusions E−R analyses indicated that 10 and 25 mg once daily empagliflozin doses achieved near maximal glucose lowering efficacy. PMID:24964723

  3. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes.

    PubMed

    Baumann, Sebastian; Pohlmann, Thomas; Jungbluth, Marc; Brachmann, Andreas; Feldbrügge, Michael

    2012-06-01

    Long-distance transport of mRNAs is important in determining polarity in eukaryotes. Molecular motors shuttle large ribonucleoprotein complexes (mRNPs) containing RNA-binding proteins and associated factors along microtubules. However, precise mechanisms including the interplay of molecular motors and a potential connection to membrane trafficking remain elusive. Here, we solve the motor composition of transported mRNPs containing the RNA-binding protein Rrm4 of the pathogen Ustilago maydis. The underlying transport process determines the axis of polarity in infectious filaments. Plus-end-directed Kin3, a kinesin-3 type motor, mediates anterograde transport of mRNPs and is also present in transport units moving retrogradely. Split dynein Dyn1-Dyn2 functions in retrograde movement of mRNPs. Plus-end-directed conventional kinesin Kin1 is indirectly involved by transporting minus-end-directed dynein back to plus ends. Importantly, we additionally demonstrate that Rrm4-containing mRNPs colocalise with the t-SNARE Yup1 on shuttling endosomes and that functional endosomes are essential for mRNP movement. Either loss of Kin3 or removal of its lipid-binding pleckstrin-homology domain abolishes Rrm4-dependent movement without preventing colocalisation of Rrm4 and Yup1-positive endosomes. In summary, we uncovered the combination of motors required for mRNP shuttling along microtubules. Furthermore, intimately linked co-transport of endosomes and mRNPs suggests vesicle hitchhiking as mode of mRNP transport. PMID:22357951

  4. Mobilization and co-transport of pyrene in the presence of Pseudomonas aeruginosa UG2 biosurfactants in sandy soil columns

    SciTech Connect

    Lafrance, P.; Lapointe, M.

    1998-12-31

    Washing technologies are currently applied for the remediation of contaminated soils. The efficiency of biosurfactants produced by Pseudomonas aeruginosa strains to mobilize some hydrocarbons sorbed on soils has already been demonstrated. However, few studies have been made to define optimal procedures for the injection of these rhamnolipids in soil. This study examines (1) the efficiency of the biosurfactants produced by P. aeruginosa UG2 to mobilize pyrene from a contaminated sandy loam as compared to that of sodium dodecyl sulfate (SDS); (2) the injection procedures that might affect the efficiency of pyrene mobilization using UG2 biosurfactants; and (3) the co-transport of UG2 biosurfactants and pyrene. Based on the experimental results, it would be advantageous to use a high UG2 biosurfactant concentration, a high pore water velocity, and possibly a flow interruption of more than 15 h in order to reduce the injected volume and the duration of the treatment required. The 0.25% UG2 biosurfactant concentration greatly enhanced pyrene transport and could facilitate contaminant recovery.

  5. Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold.

    PubMed

    Boettger, Thomas; Rust, Marco B; Maier, Hannes; Seidenbecher, Thomas; Schweizer, Michaela; Keating, Damien J; Faulhaber, Jörg; Ehmke, Heimo; Pfeffer, Carsten; Scheel, Olaf; Lemcke, Beate; Horst, Jürgen; Leuwer, Rudolf; Pape, Hans-Christian; Völkl, Harald; Hübner, Christian A; Jentsch, Thomas J

    2003-10-15

    K-Cl co-transporters are encoded by four homologous genes and may have roles in transepithelial transport and in the regulation of cell volume and cytoplasmic chloride. KCC3, an isoform mutated in the human Anderman syndrome, is expressed in brain, epithelia and other tissues. To investigate the physiological functions of KCC3, we disrupted its gene in mice. This severely impaired cell volume regulation as assessed in renal tubules and neurons, and moderately raised intraneuronal Cl(-) concentration. Kcc3(-/-) mice showed severe motor abnormalities correlating with a progressive neurodegeneration in the peripheral and CNS. Although no spontaneous seizures were observed, Kcc3(-/-) mice displayed reduced seizure threshold and spike-wave complexes on electrocorticograms. These resembled EEG abnormalities in patients with Anderman syndrome. Kcc3(-/-) mice also displayed arterial hypertension and a slowly progressive deafness. KCC3 was expressed in many, but not all cells of the inner ear K(+) recycling pathway. These cells slowly degenerated, as did sensory hair cells. The present mouse model has revealed important cellular and systemic functions of KCC3 and is highly relevant for Anderman syndrome. PMID:14532115

  6. Sodium taurocholate cotransporting polypeptide inhibition efficiently blocks hepatitis B virus spread in mice with a humanized liver

    PubMed Central

    Nakabori, Tasuku; Hikita, Hayato; Murai, Kazuhiro; Nozaki, Yasutoshi; Kai, Yugo; Makino, Yuki; Saito, Yoshinobu; Tanaka, Satoshi; Wada, Hiroshi; Eguchi, Hidetoshi; Takahashi, Takeshi; Suemizu, Hiroshi; Sakamori, Ryotaro; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is a recently discovered hepatitis B virus (HBV) receptor. In the present study, we used TK-NOG mice with a humanized liver to examine the impact of endogenous NTCP expression on HBV infection. Upon inoculation with HBV, these mice exhibited clear viremia in 2 weeks, and serum HBV DNA levels gradually increased. The frequency of HBsAg-positive hepatocytes in the liver was 5.1 ± 0.6% at 2 weeks and increased with increasing HBV DNA levels, reaching 92.9 ± 2.8% at 10 to 12 weeks. In vivo siRNA-mediated NTCP knockdown before and after HBV inoculation significantly suppressed the levels of HBV replication and the frequency of HBsAg-positive hepatocytes at 2 weeks, whereas NTCP knockdown 13 weeks after infection did not affect these parameters. Similar to the humanized mouse livers in the early phase of HBV infection, human liver samples from chronic hepatitis B patients, especially those treated with nucleos(t)ide analogues, contained a considerable number of hepatocytes that were negative for the anti-HBs antibody. In conclusion, NTCP inhibition prevents the spread of HBV-infected hepatocytes in mice with a humanized liver. NTCP-targeted therapy has potential for regulating HBV infection in patients with chronic hepatitis B. PMID:27278060

  7. The Novel Role of the Kidney in Diabetes Management: Sodium-Glucose Co-Transporter 2 Inhibitors.

    PubMed

    Swislocki, Arthur L M; Jialal, Ishwarlal

    2015-09-01

    The global epidemic of diabetes continues to progress, despite efforts of public health agencies and health care systems to identify and treat impacted patients. Although lifestyle is the cornerstone of treatment, there is an array of pharmacologic agents now available, many in classes that did not exist a few years ago. In addition to insulin and its secretogogues, such as sulfonylureas, there are agents that improve insulin action, reduce gastric emptying, reduce glucagon concentrations, and sympathetic nervous system activity. A novel class recently entering the fray includes drugs that interfere with renal glucose reabsorption. These drugs, collectively called sodium-glucose co-transporter 2 (SGLT2) inhibitors, are available both as single agents and in various combinations. They work by promoting glycosuria and may have benefits that extend beyond lowering glycemia, such as weight loss and blood pressure reduction. This review focuses on several of these new agents and considers their efficacy and potential side effects. We address drugs approved for use in the United States at the time of this writing (March, 2015), but do not address recently approved combination agents. PMID:25893855

  8. Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes.

    PubMed

    Alahmari, Khalid A; Prabhakaran, Harini; Prabhakaran, Krishnan; Chandramoorthy, Harish C; Ramugounder, Ramakrishnan

    2015-06-12

    Manganese has shown to be involved in astrocyte swelling. Several factors such as transporters, exchangers and ion channels are attributed to astrocyte swelling as a result in the deregulation of cell volume. Products of oxidation and nitration have been implied to be involved in the pathophysiology of swelling; however, the direct link and mechanism of manganese induced astrocyte swelling has not been fully elucidated. In the current study, we used rat primary astrocyte cultures to investigate the activation of Na-K-Cl cotransporter-1 (NKCC1) a downstream mechanism for free radical induced astrocyte swelling as a result of manganese toxicity. Our results showed manganese, oxidants and NO donors as potent inducer of oxidation and nitration of NKCC1. Our results further confirmed that manganese (50 μM) increased the total protein, phosphorylation and activity of NKCC1 as well as cell volume (p < 0.05 vs. control). NKCC1 inhibitor (bumetanide), NKCC1-siRNA, antioxidants; DMTU, MnTBAP, tempol, catalase and Vit-E, NOS inhibitor; L-NAME, peroxinitrite scavenger; uric acid all significantly reversed the effects of NKCC1 activation (p < 0.05). From the current investigation we infer that manganese or oxidants and NO induced activation, oxidation/nitration of NKCC1 play an important role in the astrocyte swelling. PMID:25817889

  9. Neonatal allopregnanolone or finasteride administration modifies hippocampal K(+) Cl(-) co-transporter expression during early development in male rats.

    PubMed

    Mòdol, Laura; Casas, Caty; Llidó, Anna; Navarro, Xavier; Pallarès, Marc; Darbra, Sònia

    2014-09-01

    The maintenance of levels of endogenous neurosteroids (NS) across early postnatal development of the brain, particularly to the hippocampus, is crucial for their maturation. Allopregnanolone (Allop) is a NS that exerts its effect mainly through the modulation of the GABAA receptor (GABAAR). During early development, GABA, acting through GABAAR, that predominantly produces depolarization shifts to hyperpolarization in mature neurons, around the second postnatal week in rats. Several factors contribute to this change including the progressive increase of the neuron-specific K(+)/Cl(-) co-transporter 2 (KCC2) (a chloride exporter) levels. Thus, we aimed to analyze whether a different profile of NS levels during development is critical and can alter this natural progression of KCC2 stages. We administrated sustained Allop (20mg/kg) or Finasteride (5α-reductase inhibitor, 50mg/kg) from the 5th postnatal day (PD5) to PD9 and assessed changes in the hippocampal expression of KCC2 at transcript and protein levels as well as its active phosphorylated state in male rats. Taken together data indicated that manipulation of NS levels during early development influence KCC2 levels and point out the importance of neonatal NS levels for the hippocampal development. PMID:24861264

  10. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  11. Phosphate bonding to goethite and pyrolusite surfaces

    USGS Publications Warehouse

    Weiner, Eugene R.; Goldberg, M.C.; Boymel, P.M.

    1984-01-01

    Fourier transform infrared (FTIR) spectra were obtained from pure and phosphated goethite (??-FeOOH), and pyrolusite (MnO2). The nature of the phosphate-surface bond was determined to be binuclear for goethite and bidentate for pyrolusite.

  12. Long-Sought Vacuolar Phosphate Transporters Identified.

    PubMed

    Bucher, Marcel; Fabiańska, Izabela

    2016-06-01

    The vacuole is an important subcellular compartment that serves as main phosphate storage in plants among other functions. Three recent studies shed light on the underlying molecular mechanisms for vacuolar phosphate transport that had long remained unknown. PMID:27160805

  13. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  14. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  15. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  16. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  17. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  20. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  3. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  5. 40 CFR 721.5995 - Polyalkyl phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772)...

  6. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  7. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  9. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  11. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  12. Urea phosphate as granular or fluid fertilizers

    SciTech Connect

    Blouin, G.M.

    1984-01-01

    Studies are being conducted of the production and agronomic characteristics of the phosphoric acid-urea adduct, urea phosphate, and of the various granular and fluid fertilizers that can be produced from it. Flowsheets are given for the production of urea phosphate. Characteristics of unpurified and purified urea phosphate are also given. (DLC)

  13. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate...

  14. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  16. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  17. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  18. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate...

  19. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  20. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  1. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  3. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  5. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  6. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-,...

  7. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  8. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  9. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  10. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  11. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  12. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  13. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  14. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  16. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  17. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  19. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  20. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  1. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  3. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  5. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  6. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6285 Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally recognized as safe when used...

  7. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  8. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  10. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  11. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  12. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  13. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  14. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  15. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  16. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  17. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  19. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  3. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  4. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  7. Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis

    PubMed Central

    Jeschke, Andreas; Zehethofer, Nicole; Lindner, Buko; Krupp, Jessica; Schwudke, Dominik; Haneburger, Ina; Jovic, Marko; Backer, Jonathan M.; Balla, Tamas; Hilbi, Hubert; Haas, Albert

    2015-01-01

    Professional phagocytic cells ingest microbial intruders by engulfing them into phagosomes, which subsequently mature into microbicidal phagolysosomes. Phagosome maturation requires sequential fusion of the phagosome with early endosomes, late endosomes, and lysosomes. Although various phosphoinositides (PIPs) have been detected on phagosomes, it remained unclear which PIPs actually govern phagosome maturation. Here, we analyzed the involvement of PIPs in fusion of phagosomes with various endocytic compartments and identified phosphatidylinositol 4-phosphate [PI(4)P], phosphatidylinositol 3-phosphate [PI(3)P], and the lipid kinases that generate these PIPs, as mediators of phagosome–lysosome fusion. Phagosome–early endosome fusion required PI(3)P, yet did not depend on PI(4)P. Thus, PI(3)P regulates phagosome maturation at early and late stages, whereas PI(4)P is selectively required late in the pathway. PMID:25825728

  8. Seizure sensitivity is ameliorated by targeted expression of K+-Cl- cotransporter function in the mushroom body of the Drosophila brain.

    PubMed

    Hekmat-Scafe, Daria S; Mercado, Adriana; Fajilan, Adriel A; Lee, Ann W; Hsu, Richard; Mount, David B; Tanouye, Mark A

    2010-01-01

    The kcc(DHS1) allele of kazachoc (kcc) was identified as a seizure-enhancer mutation exacerbating the bang-sensitive (BS) paralytic behavioral phenotypes of several seizure-sensitive Drosophila mutants. On their own, young kcc(DHS1) flies also display seizure-like behavior and demonstrate a reduced threshold for seizures induced by electroconvulsive shock. The product of kcc shows substantial homology to KCC2, the mammalian neuronal K(+)-Cl(-) cotransporter. The kcc(DHS1) allele is a hypomorph, and its seizure-like phenotype reflects reduced expression of the kcc gene. We report here that kcc functions as a K(+)-Cl(-) cotransporter when expressed heterologously in Xenopus laevis oocytes: under hypotonic conditions that induce oocyte swelling, oocytes that express Drosophila kcc display robust ion transport activity observed as a Cl(-)-dependent uptake of the K(+) congener (86)Rb(+). Ectopic, spatially restricted expression of a UAS-kcc(+) transgene was used to determine where cotransporter function is required in order to rescue the kcc(DHS1) BS paralytic phenotype. Interestingly, phenotypic rescue is largely accounted for by targeted, circumscribed expression in the mushroom bodies (MBs) and the ellipsoid body (EB) of the central complex. Intriguingly, we observed that MB induction of kcc(+) functioned as a general seizure suppressor in Drosophila. Drosophila MBs have generated considerable interest especially for their role as the neural substrate for olfactory learning and memory; they have not been previously implicated in seizure susceptibility. We show that kcc(DHS1) seizure sensitivity in MB neurons acts via a weakening of chemical synaptic inhibition by GABAergic transmission and suggest that this is due to disruption of intracellular Cl(-) gradients in MB neurons. PMID:19884312

  9. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty.

    PubMed

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2016-06-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium-Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  10. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty

    PubMed Central

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2015-01-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium–Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  11. Increased Spinal Cord Na+-K+-2Cl− Cotransporter-1 (NKCC1) Activity Contributes to Impairment of Synaptic Inhibition in Paclitaxel-induced Neuropathic Pain*

    PubMed Central

    Chen, Shao-Rui; Zhu, Lihong; Chen, Hong; Wen, Lei; Laumet, Geoffroy; Pan, Hui-Lin

    2014-01-01

    Microtubule-stabilizing agents, such as paclitaxel (Taxol), are effective chemotherapy drugs for treating many cancers, and painful neuropathy is a major dose-limiting adverse effect. Cation-chloride cotransporters, such as Na+-K+-2Cl− cotransporter-1 (NKCC1) and K+-Cl− cotransporter-2 (KCC2), critically influence spinal synaptic inhibition by regulating intracellular chloride concentrations. Here we show that paclitaxel treatment in rats significantly reduced GABA-induced membrane hyperpolarization and caused a depolarizing shift in GABA reversal potential of dorsal horn neurons. However, paclitaxel had no significant effect on AMPA or NMDA receptor-mediated glutamatergic input from primary afferents to dorsal horn neurons. Paclitaxel treatment significantly increased protein levels, but not mRNA levels, of NKCC1 in spinal cords. Inhibition of NKCC1 with bumetanide reversed the paclitaxel effect on GABA-mediated hyperpolarization and GABA reversal potentials. Also, intrathecal bumetanide significantly attenuated hyperalgesia and allodynia induced by paclitaxel. Co-immunoprecipitation revealed that NKCC1 interacted with β-tubulin and β-actin in spinal cords. Remarkably, paclitaxel increased NKCC1 protein levels at the plasma membrane and reduced NKCC1 levels in the cytosol of spinal cords. In contrast, treatment with an actin-stabilizing agent had no significant effect on NKCC1 protein levels in the plasma membrane or cytosolic fractions of spinal cords. In addition, inhibition of the motor protein dynein blocked paclitaxel-induced subcellular redistribution of NKCC1, whereas inhibition of kinesin-5 mimicked the paclitaxel effect. Our findings suggest that increased NKCC1 activity contributes to diminished spinal synaptic inhibition and neuropathic pain caused by paclitaxel. Paclitaxel disrupts intracellular NKCC1 trafficking by interfering with microtubule dynamics and associated motor proteins. PMID:25253692

  12. Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes.

    PubMed

    Kouzuki, H; Suzuki, H; Ito, K; Ohashi, R; Sugiyama, Y

    1998-08-01

    As one of the Na+-dependent transporters responsible for the hepatic uptake of ligands, sodium taurocholate (TC) co-transporting polypeptide (NTCP) has been cloned from rat liver and its substrate specificity has been clarified by examining the inhibition of TC uptake mediated by NTCP. The contribution of NTCP to the Na+-dependent uptake of ligands into rat hepatocytes, however, still needs to be clarified. To determine the contribution of NTCP, we examined the uptake of ligands into primary cultured hepatocytes (cultured for 4 h) and into COS-7 cells, transiently expressing NTCP, and normalized the uptake of ligands with TC as a reference compound. Western Blot analysis indicated that NTCP was glycosylated much less extensively in the transfected COS-7 cells, although the expression level was comparable for the cultured hepatocytes and transfectant. Kinetic parameters for the Na+-dependent uptake of TC were similar for the cultured hepatocytes and NTCP-transfected COS-7 cells (Km = 17.7 vs. 17.4 microM; Vmax = 1.63 vs. 1.45 nmol/min/mg protein). Glycocholic acid and cholic acid were taken up by NTCP-transfected COS-7 cells. The contribution of NTCP to the Na+-dependent uptake of glycocholic acid into rat hepatocytes was approximately 80%, whereas that of cholic acid was 40%. In addition, the analysis indicated that the contribution of NTCP to the Na+-dependent uptake of several ligands (ouabain, ibuprofen, glutathione-conjugate of bromosulfophthalein, glucuronide- and sulfate-conjugates of 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole) was negligible. Thus, this is a convenient method to determine the contribution of NTCP to the uptake of ligands into hepatocytes. It is also suggested that multiple transport mechanisms are responsible for the Na+-dependent uptake of organic anions into hepatocytes. PMID:9694967

  13. Structural and functional characterization of the human NBC3 sodium/bicarbonate co-transporter carboxyl-terminal cytoplasmic domain.

    PubMed

    Loiselle, Frederick B; Jaschke, Paul; Casey, Joseph R

    2003-01-01

    The sodium bicarbonate co-transporter, NBC3, is expressed in a range of tissues including heart, skeletal muscle and kidney, where it modulates intracellular pH and bicarbonate levels. NBC3 has a three-domain structure: 67 kDa N-terminal cytoplasmic domain, 57 kDa membrane domain and an 11 kDa C-terminal cytoplasmic domain (NBC3Ct). The role of C-terminal domains as important regulatory regions is an emerging theme in bicarbonate transporter physiology. This study determined the functional role of human NBC3Ct and characterized its structure using biochemical techniques. The NBC3 C-terminal domain deletion mutant (NBC3DeltaCt) had only 12 +/- 5% of wild-type transport activity. This low activity is attributable to low steady-state levels of NBC3DeltaCt and almost complete retention inside the cell, as assessed by immunoblots and confocal microscopy, suggesting a role of NBC3Ct in cell surface processing. To characterize the structure of NBC3Ct, amino acids 1127-1214 of NBC3 were expressed as a GST fusion protein (GST.NBC3Ct). GST.NBC3Ct was cleaved with PreScission Protease and native NBC3Ct could be purified to 94% homogeneity. Gel permeation chromatography and sedimentation velocity ultracentrifugation of NBC3Ct indicated a Stokes radius of 26 and 30 angstroms, respectively. Shape modelling revealed NBC3Ct as a prolate shape with long and short axes of 19 and 2 nm, respectively. The circular dichroism spectra of NBC3Ct did not change over the pH 6.2-7.8 range, which rules out a large change of secondary structure as a component of pH sensor function. Proteolysis with trypsin and chymotrypsin identified two proteolytically sensitive regions, R1129 and K1183-K1186, which could form protein interaction sites. PMID:14578046

  14. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs.

    PubMed

    Marada, Venkata V V R; Flörl, Saskia; Kühne, Annett; Müller, Judith; Burckhardt, Gerhard; Hagos, Yohannes

    2015-01-01

    The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33μM, 26.4±2.34μM and 10.4±0.45μM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan. PMID:25481222

  15. Prenatal Hypoxia–Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone

    PubMed Central

    Jantzie, Lauren L.; Getsy, Paulina M.; Denson, Jesse L.; Firl, Daniel J.; Maxwell, Jessie R.; Rogers, Danny A.; Wilson, Christopher G.; Robinson, Shenandoah

    2015-01-01

    Infants who suffer perinatal brain injury, including those with encephalopathy of prematurity, are prone to chronic neurological deficits, including epilepsy, cognitive impairment, and behavioral problems, such as anxiety, inattention, and poor social interaction. These deficits, especially in combination, pose the greatest hindrance to these children becoming independent adults. Cerebral function depends on adequate development of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric acid (GABA) are initially excitatory. During the early postnatal period, GABAAR responses switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2. With extrusion of chloride by KCC2, the Cl− reversal potential shifts and GABA and glycine responses become inhibitory. We hypothesized that prenatal hypoxic–ischemic brain injury chronically impairs the developmental upregulation of KCC2 that is essential for cerebral circuit formation. Following late gestation hypoxia–ischemia (HI), diffusion tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression in the CA3 subfield. Together with decreased inhibitory post-synaptic currents during a critical window of development, we document for the first time that prenatal transient systemic HI in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive function in children who suffer perinatal brain injury. PMID:26388734

  16. Prenatal Hypoxia-Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone.

    PubMed

    Jantzie, Lauren L; Getsy, Paulina M; Denson, Jesse L; Firl, Daniel J; Maxwell, Jessie R; Rogers, Danny A; Wilson, Christopher G; Robinson, Shenandoah

    2015-01-01

    Infants who suffer perinatal brain injury, including those with encephalopathy of prematurity, are prone to chronic neurological deficits, including epilepsy, cognitive impairment, and behavioral problems, such as anxiety, inattention, and poor social interaction. These deficits, especially in combination, pose the greatest hindrance to these children becoming independent adults. Cerebral function depends on adequate development of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric acid (GABA) are initially excitatory. During the early postnatal period, GABAAR responses switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2. With extrusion of chloride by KCC2, the Cl(-) reversal potential shifts and GABA and glycine responses become inhibitory. We hypothesized that prenatal hypoxic-ischemic brain injury chronically impairs the developmental upregulation of KCC2 that is essential for cerebral circuit formation. Following late gestation hypoxia-ischemia (HI), diffusion tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression in the CA3 subfield. Together with decreased inhibitory post-synaptic currents during a critical window of development, we document for the first time that prenatal transient systemic HI in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive function in children who suffer perinatal brain injury. PMID:26388734

  17. The potassium–chloride cotransporter 2 promotes cervical cancer cell migration and invasion by an ion transport-independent mechanism

    PubMed Central

    Wei, Wei-Chun; Akerman, Colin J; Newey, Sarah E; Pan, Jiliu; Clinch, Nicholas W V; Jacob, Yves; Shen, Meng-Ru; Wilkins, Robert J; Ellory, J Clive

    2011-01-01

    Abstract K+–Cl− cotransporters (KCCs) play a fundamental role in epithelial cell function, both in the context of ionic homeostasis and also in cell morphology, cell division and locomotion. Unlike other ubiquitously expressed KCC isoforms, expression of KCC2 is widely considered to be restricted to neurons, where it is responsible for maintaining a low intracellular chloride concentration to drive hyperpolarising postsynaptic responses to the inhibitory neurotransmitters GABA and glycine. Here we report a novel finding that KCC2 is widely expressed in several human cancer cell lines including the cervical cancer cell line (SiHa). Membrane biotinylation assays and immunostaining showed that endogenous KCC2 is located on the cell membrane of SiHa cells. To elucidate the role of KCC2 in cervical tumuorigenesis, SiHa cells with stable overexpression or knockdown of KCC2 were employed. Overexpression of KCC2 had no significant effect on cell proliferation but dramatically suppressed cell spreading and stress fibre organization, while knockdown of KCC2 showed opposite effects. In addition, insulin-like growth factor 1 (IGF-1)-induced cell migration and invasiveness were significantly increased by overexpression of KCC2. KCC2-induced cell migration and invasion were not dependent on KCC2 transport function since overexpression of an activity-deficient mutant KCC2 still increased IGF-1-induced cell migration and invasion. Moreover, overexpression of KCC2 significantly diminished the number of focal adhesions, while knockdown of KCC2 increased their number. Taken together, our data establish that KCC2 expression and function are not restricted to neurons and that KCC2 serves to increase cervical tumourigenesis via an ion transport-independent mechanism. PMID:21911617

  18. Sodium-glucose cotransport inhibitors: mechanisms, metabolic effects and implications for the treatment of diabetic patients with chronic kidney disease.

    PubMed

    Vlotides, George; Mertens, Peter R

    2015-08-01

    Remarkable progress has been achieved in the field of diabetes with the development of incretin analogues, dipeptidyl peptidase IV inhibitors and novel insulin analogues; nevertheless, there is an unmet need for additional therapeutic options. Individualization of HbA1c target levels is a recent progress within the field. Approximately 50% of diabetics do not reach a previously aspired treatment goal of glycosylated HbA1 levels below 7% and often face a vicious circle with accelerated weight gain. Current antidiabetic therapeutics mainly target the decline in insulin secretion and ameliorate insulin resistance. In this regard a new generation of drugs, denoted gliflozines, that specifically interfere with sodium-glucose cotransporters (SGLT)-2 and exhibit a favourable impact on glucose metabolism in patients with type 2 diabetes are emerging as hopeful avenues. The resultant negative energy balance caused by glucosuria results in long-term weight losses, significantly reduced HbA1c levels approximating 0.5-1.0% and may in addition exert beneficial effects on blood pressure, reactive oxygen products and inflammatory mediators. Recent studies indicate improvement in β-cell glucose sensitivity and insulin sensitivity in patients treated with gliflozines, a decrease in tissue glucose disposal and interestingly an increase in endogenous glucose production. The list of side effects observed under SGLT2 inhibition includes increased rates of genitourinary infections, balanitis, vulvovaginitis, hypotensive episodes and acute deterioration of kidney function. Main questions towards the safety profile are still unanswered given that long-term clinical outcome data with SGLT2 inhibition are lacking and the cardiovascular safety profile is under scrutiny in large trials. Thus, the successful development of selective SGLT2 inhibitors for therapeutic use in diabetics has a huge potential to meet patients' needs. However, it awaits quick results from clinical trials with

  19. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters.

    PubMed

    Kang, Seok Kyu; Markowitz, Geoffrey J; Kim, Shin Tae; Johnston, Michael V; Kadam, Shilpa D

    2015-01-01

    Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy. PMID:26029047

  20. Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling.

    PubMed

    Tutakhel, Omar A Z; Jeleń, Sabina; Valdez-Flores, Marco; Dimke, Henrik; Piersma, Sander R; Jimenez, Connie R; Deinum, Jaap; Lenders, Jacques W; Hoenderop, Joost G J; Bindels, René J M

    2016-02-01

    The thiazide-sensitive NaCl cotransporter (NCC) is an important pharmacological target in the treatment of hypertension. The human SLC12A3 gene, encoding NCC, gives rise to three isoforms. Only the third isoform has been extensively investigated. The aim of the present study was, therefore, to establish the abundance and localization of the almost identical isoforms 1 and 2 (NCC1/2) in the human kidney and to determine their functional properties and regulation in physiological conditions. Immunohistochemical analysis of NCC1/2 in the human kidney revealed that NCC1/2 localizes to the apical plasma membrane of the distal convoluted tubule. Importantly, NCC1/2 mRNA constitutes ∼ 44% of all NCC isoforms in the human kidney. Functional analysis performed in the Xenopus laevis oocyte revealed that thiazide-sensitive (22)Na(+) transport of NCC1 was significantly increased compared with NCC3. Mimicking a constitutively active phosphorylation site at residue 811 (S811D) in NCC1 further augmented Na(+) transport, while a nonphosphorylatable variant (S811A) of NCC1 prevented this enhanced response. Analysis of human urinary exosomes demonstrated that water loading in human subjects significantly reduces the abundance of NCC1/2 in urinary exosomes. The present study highlights that previously underrepresented NCC1/2 is a fully functional thiazide-sensitive NaCl-transporting protein. Being significantly expressed in the kidney, it may constitute a unique route of renal NaCl reabsorption and could, therefore, play an important role in blood pressure regulation. PMID:26561651

  1. Sodium Glucose Cotransporter 2 (SGLT2) Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells

    PubMed Central

    Wakisaka, Masanori; Nagao, Tetsuhiko; Yoshinari, Mototaka

    2016-01-01

    Purpose Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT) in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2. Methods The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX) inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor. Results Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction. Conclusions These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells. PMID:26999015

  2. Cardiovascular outcomes of sodium-glucose cotransporter 2 inhibitors: A comprehensive review of clinical and preclinical studies.

    PubMed

    Ghosh, Raktim Kumar; Bandyopadhyay, Dhrubajyoti; Hajra, Adrija; Biswas, Monodeep; Gupta, Anjan

    2016-06-01

    Diabetes is a leading cause of morbidity and mortality worldwide. Management of diabetes is changing at a rapid pace. Three new classes of antidiabetic drugs including GLP-1 (Glucagon-like peptide 1), DPP-IV (Dipeptidyl peptidase IV) and SGLT2 (Sodium glucose cotransporter 2) inhibitors have been approved in the last few years. Treating diabetes with the antidiabetic drug does not always reduce the cardiovascular complications of diabetes. On the contrary, there was a huge controversy regarding the effect of rosiglitazone on cardiovascular risk reduction a few years ago. Since then, submission of postmarketing cardiovascular outcome study data has been mandated by US FDA and other drug regulatory agencies for newer antidiabetic medications. This is to avoid further premature claims regarding cardiovascular harm or safety of the newer classes. We already have some cardiovascular safety data available on DPP-IV and GLP-1 groups of medications. Dapagliflozin, canagliflozin, and empagliflozin are currently approved SGLT2 inhibitors. We do not have sufficient cardiovascular outcome data available for this novel class. However, this group of drugs, which act by increasing renal glucose excretion, have also shown some non-glycemic benefits including weight reduction, blood pressure control, diuretic action, renal protection, decrease in arterial stiffness and uric acid reduction. Empagliflozin, a new member of SGLT2 class, showed significant cardiovascular morbidity and mortality benefit in recently published EMPA-REG OUTCOME trial. The authors summarize all the published clinical and preclinical cardiovascular outcome data of SGLT2 inhibitors, including recently completed and ongoing major clinical trials in this comprehensive review. PMID:27017118

  3. A Cation-Chloride Cotransporter Gene Is Required for Cell Elongation and Osmoregulation in Rice1[OPEN

    PubMed Central

    Chen, Zhi Chang; Yamaji, Naoki; Fujii-Kashino, Miho

    2016-01-01

    Rice (Oryza sativa) is characterized by having fibrous root systems; however, the molecular mechanisms underlying the root development are not fully understood. Here, we isolated a rice mutant with short roots and found that the mutant had a decreased cell size of the roots and shoots compared with wild-type rice. Map-based cloning combined with whole-genome sequencing revealed that a single nucleotide mutation occurred in a gene, which encodes a putative cation-chloride cotransporter (OsCCC1). Introduction of OsCCC1 cDNA into the mutant rescued the mutant growth, indicating that growth defects of both the roots and shoots are caused by loss of function of OsCCC1. Physiological analysis showed that the mutant had a lower concentration of Cl− and K+ and lower osmolality in the root cell sap than the wild type at all KCl supply conditions tested; however, the mutant only showed a lower Na+ concentration at high external Na+. Expression of OsCCC1 in yeast increased accumulation of K+, Na+, and Cl−. The expression of OsCCC1 was found in both the roots and shoots, although higher expression was found in the root tips. Furthermore, the expression in the roots did not respond to different Na+, K+, and Cl− supply. OsCCC1 was expressed in all cells of the roots, leaf, and basal node. Immunoblot analysis revealed that OsCCC1 was mainly localized to the plasma membrane. These results suggest that OsCCC1 is involved in the cell elongation by regulating ion (Cl−, K+, and Na+) homeostasis to maintain cellular osmotic potential. PMID:26983995

  4. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

    PubMed

    Oguma, Takahiro; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Yoshida, Kumiko; Hikida, Kumiko; Obokata, Naoyuki; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Shiotani, Masaharu

    2015-09-01

    The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus. PMID:26105952

  5. Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 inhibitor Canagliflozin with SGLT1 and SGLT2.

    PubMed

    Ohgaki, Ryuichi; Wei, Ling; Yamada, Kazunori; Hara, Taiki; Kuriyama, Chiaki; Okuda, Suguru; Ueta, Kiichiro; Shiotani, Masaharu; Nagamori, Shushi; Kanai, Yoshikatsu

    2016-07-01

    Canagliflozin, a selective sodium/glucose cotransporter (SGLT) 2 inhibitor, suppresses the renal reabsorption of glucose and decreases blood glucose level in patients with type 2 diabetes. A characteristic of canagliflozin is its modest SGLT1 inhibitory action in the intestine at clinical dosage. To reveal its mechanism of action, we investigated the interaction of canagliflozin with SGLT1 and SGLT2. Inhibition kinetics and transporter-mediated uptake were examined in human SGLT1- or SGLT2-expressing cells. Whole-cell patch-clamp recording was conducted to examine the sidedness of drug action. Canagliflozin competitively inhibited SGLT1 and SGLT2, with high potency and selectivity for SGLT2. Inhibition constant (Ki) values for SGLT1 and SGLT2 were 770.5 and 4.0 nM, respectively. (14)C-canagliflozin was suggested to be transported by SGLT2; however, the transport rate was less than that of α-methyl-d-glucopyranoside. Canagliflozin inhibited α-methyl-d-glucopyranoside-induced SGLT1- and SGLT2-mediated inward currents preferentially from the extracellular side and not from the intracellular side. Based on the Ki value, canagliflozin is estimated to sufficiently inhibit SGLT2 from the urinary side in renal proximal tubules. The Ki value for SGLT1 suggests that canagliflozin suppresses SGLT1 in the small intestine from the luminal side, whereas it does not affect SGLT1 in the heart and skeletal muscle, considering the maximal concentration of plasma-unbound canagliflozin. Similarly, SGLT1 in the kidney would not be inhibited, thereby aiding in the prevention of hypoglycemia. After binding to SGLT2, canagliflozin may be reabsorbed by SGLT2, which leads to the low urinary excretion and prolonged drug action of canagliflozin. PMID:27189972

  6. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway

    PubMed Central

    Feng, Xiuyan; Zhang, Yiqian; Shao, Ningjun; Wang, Yanhui; Zhuang, Zhizhi; Wu, Ping; Lee, Matthew J.; Liu, Yingli; Wang, Xiaonan; Zhuang, Jieqiu; Delpire, Eric; Gu, Dingying

    2015-01-01

    Thiazide-sensitive sodium chloride cotransporter (NCC) plays an important role in maintaining blood pressure. Aldosterone is known to modulate NCC abundance. Previous studies reported that dietary salts modulated NCC abundance through either WNK4 [with no lysine (k) kinase 4]-SPAK (Ste20-related proline alanine-rich kinase) or WNK4-extracellular signal-regulated kinase-1 and -2 (ERK1/2) signaling pathways. To exclude the influence of SPAK signaling pathway on the role of the aldosterone-mediated ERK1/2 pathway in NCC regulation, we investigated the effects of dietary salt changes and aldosterone on NCC abundance in SPAK knockout (KO) mice. We found that in SPAK KO mice low-salt diet significantly increased total NCC abundance while reducing ERK1/2 phosphorylation, whereas high-salt diet decreased total NCC while increasing ERK1/2 phosphorylation. Importantly, exogenous aldosterone administration increased total NCC abundance in SPAK KO mice while increasing DUSP6 expression, an ERK1/2-specific phosphatase, and led to decreasing ERK1/2 phosphorylation without changing the ratio of phospho-T53-NCC/total NCC. In mouse distal convoluted tubule (mDCT) cells, aldosterone increased DUSP6 expression while reducing ERK1/2 phosphorylation. DUSP6 Knockdown increased ERK1/2 phosphorylation while reducing total NCC expression. Inhibition of DUSP6 by (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased ERK1/2 phosphorylation and reversed the aldosterone-mediated increments of NCC partly by increasing NCC ubiquitination. Therefore, these data suggest that aldosterone modulates NCC abundance via altering NCC ubiquitination through a DUSP6-dependent ERK1/2 signal pathway in SPAK KO mice and part of the effects of dietary salt changes may be mediated by aldosterone in the DCTs. PMID:25761881

  7. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters

    PubMed Central

    Kang, Seok Kyu; Markowitz, Geoffrey J.; Kim, Shin Tae; Johnston, Michael V.; Kadam, Shilpa D.

    2015-01-01

    Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy. PMID:26029047

  8. Regulation of the Cardiac Sodium/Bicarbonate Cotransporter by Angiotensin II: Potential Contribution to Structural, Ionic and Electrophysiological Myocardial Remodelling

    PubMed Central

    Aiello, Ernesto Alejandro; Giusti, Verónica Celeste De

    2013-01-01

    The sodium/ bicarbonate cotransporter (NBC) is, with the Na+/H+ exchanger (NHE), an important alkalinizing mechanism that maintains cellular intracellular pH (pHi). In the heart exists at least three isoforms of NBC, one that promotes the co-influx of 1 molecule of Na+ per 1molecule of HCO3-(electroneutral isoform; nNBC) and two others that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO3- (electrogenic isoforms; eNBC). In addition, the eNBC generates an anionic repolarizing current that modulate the cardiac action potential (CAP), adding to such isoforms the relevance to modulate the electrophysiological function of the heart. Angiotensin II (Ang II) is one of the main hormones that regulate cardiac physiology. The alkalinizing mechanisms (NHE and NBC) are stimulated by Ang II, increasing pHi and intracellular Na+ concentration, which indirectly, due to the stimulation of the Na+/Ca2+ exchanger (NCX) operating in the reverse form, leads to an increase in the intracellular Ca2+ concentration. Interestingly, it has been shown that Ang II exhibits an opposite effect on NBC isoforms: it activates the nNBC and inhibits the eNBC. This inhibition generates a CAP prolongation, which could directly increase the intracellular Ca2+ concentration. The regulation of the intracellular Na+ and Ca2+ concentrations is crucial for the cardiac cellular physiology, but these ions are also involved in the development of cardiac hypertrophy and the damage produced by ischemia-reperfusion, suggesting a potential role of NBC in cardiac diseases. PMID:23116057

  9. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands

    PubMed Central

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1. PMID:26375462

  10. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate.

    PubMed

    Sommerfeld, Annika; Mayer, Patrick G K; Cantore, Miriam; Häussinger, Dieter

    2015-10-01

    In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014-45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na(+)-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47(phox) knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease. PMID:26306036

  11. The Effect of WNK4 on the Na+–Cl− Cotransporter Is Modulated by Intracellular Chloride

    PubMed Central

    Bazúa-Valenti, Silvana; Chávez-Canales, María; Rojas-Vega, Lorena; González-Rodríguez, Xochiquetzal; Vázquez, Norma; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R.; Melo, Zesergio; Plata, Consuelo; Ellison, David H.; García-Valdés, Jesús; Hadchouel, Juliette

    2015-01-01

    It is widely recognized that the phenotype of familial hyperkalemic hypertension is mainly a consequence of increased activity of the renal Na+–Cl− cotransporter (NCC) because of altered regulation by with no–lysine–kinase 1 (WNK1) or WNK4. The effect of WNK4 on NCC, however, has been controversial because both inhibition and activation have been reported. It has been recently shown that the long isoform of WNK1 (L-WNK1) is a chloride-sensitive kinase activated by a low Cl- concentration. Therefore, we hypothesized that WNK4 effects on NCC could be modulated by intracellular chloride concentration ([Cl-]i), and we tested this hypothesis in oocytes injected with NCC cRNA with or without WNK4 cRNA. At baseline in oocytes, [Cl-]i was near 50 mM, autophosphorylation of WNK4 was undetectable, and NCC activity was either decreased or unaffected by WNK4. A reduction of [Cl-]i, either by low chloride hypotonic stress or coinjection of oocytes with the solute carrier family 26 (anion exchanger)-member 9 (SLC26A9) cRNA, promoted WNK4 autophosphorylation and increased NCC-dependent Na+ transport in a WNK4-dependent manner. Substitution of the leucine with phenylalanine at residue 322 of WNK4, homologous to the chloride-binding pocket in L-WNK1, converted WNK4 into a constitutively autophosphorylated kinase that activated NCC, even without chloride depletion. Elimination of the catalytic activity (D321A or D321K-K186D) or the autophosphorylation site (S335A) in mutant WNK4-L322F abrogated the positive effect on NCC. These observations suggest that WNK4 can exert differential effects on NCC, depending on the intracellular chloride concentration. PMID:25542968

  12. Polymorphisms in sodium taurocholate cotransporting polypeptide are not associated with hepatitis B virus clearance in Chinese Tibetans and Uygurs.

    PubMed

    Su, Zhenzhen; Li, Yi; Liao, Yun; Cai, Bei; Chen, Jie; Zhang, Junlong; Li, Lixin; Ying, Binwu; Tao, Chuanmin; Zhao, Min; Ba, Zhu; Zhang, Zhaoxia; Wang, Lanlan

    2016-07-01

    An association between polymorphisms in the sodium taurocholate cotransporting polypeptide (NTCP) and the natural course of hepatitis B virus (HBV) infection in the Chinese Han population has been noted. However, it is not known whether these polymorphisms are associated with the risk of developing chronic HBV infection in other racial or ethnic populations. Accordingly, we conducted a candidate single nucleotide polymorphism (SNP) association study in Tibetan and Uygur HBV-infected patients. A total of 1302 subjects including 871 Tibetans and 431 Uygurs were recruited. According to their serological and clinical characteristics, each ethnic group was divided into two groups comprising spontaneous clearance individuals and persistently infected patients. Three SNPs were genotyped by a high resolution melting curve methodology. Among the SNPs, rs2296651 exhibited a minor allele frequency of <0.01. The frequency of allele A at rs4646287 was much higher in Tibetans (9.4% for Tibetans and 4.6% for Uygurs, p<0.001) than in Uygurs, but the frequency of allele A at rs7154439 was the opposite (15.7% for Tibetans and 20.5% for Uygurs, p=0.002). Irrespective of race, no significant differences in the frequency distributions of the three SNP alleles or genotypes were observed between the case and clearance groups. Moreover, none of the NTCP haplotypes were statistically different between the two groups. Data from the Tibetan patients could be grouped by HBeAg status, viral load and HBV genotype; however, no significant differences were found in the SNP genotype distribution for each characteristic. In conclusion, the NTCP polymorphisms we identified tended to be ethnicity-dependent. For Tibetans and Uygurs, no association of the three SNPs (rs7154439, rs4646287 and rs2296651) and their haplotypes with HBV chronicity was observed. Examination of SNPs in NTCP for their specific associations with the course of HBV infection in other ethnic minority groups is now required. PMID

  13. Disrupting Na⁺, HCO₃⁻-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development.

    PubMed

    Lee, S; Axelsen, T V; Andersen, A P; Vahl, P; Pedersen, S F; Boedtkjer, E

    2016-04-21

    Increased metabolism and insufficient blood supply cause acidic waste product accumulation in solid cancers. During carcinogenesis, cellular acid extrusion is upregulated but the underlying molecular mechanisms and their consequences for cancer growth and progression have not been established. Genome-wide association studies have indicated a possible link between the Na⁺, HCO₃⁻-cotransporter NBCn1 (SLC4A7) and breast cancer. We tested the functional consequences of NBCn1 knockout (KO) for breast cancer development. NBCn1 protein expression increased 2.5-fold during breast carcinogenesis and was responsible for the increased net acid extrusion and alkaline intracellular pH of breast cancer compared with normal breast tissue. Genetic disruption of NBCn1 delayed breast cancer development: tumor latency was ~50% increased while tumor growth rate was ~65% reduced in NBCn1 KO compared with wild-type (WT) mice. Breast cancer histopathology in NBCn1 KO mice differed from that in WT mice and included less aggressive tumor types. The extracellular tumor microenvironment in NBCn1 KO mice contained higher concentrations of glucose and lower concentrations of lactate than that in WT mice. Independently of NBCn1 genotype, the cleaved fraction of poly(ADP-ribose) polymerase (PARP)-1 and expression of monocarboxylate transporter (MCT)1 increased while phosphorylation of Akt and ERK1 decreased as functions of tumor volume. Cell proliferation, evaluated from Ki-67 and phospho-histone H₃staining, was ~60% lower in breast cancer of NBCn1 KO than that of WT mice when corrected for variations in tumor size. We conclude that NBCn1 facilitates acid extrusion from breast cancer tissue, maintains the alkaline intracellular environment and promotes aggressive cancer development and growth. PMID:26212013

  14. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1. PMID:26375462

  15. Sodium-glucose cotransporter 2 inhibition: cardioprotection by treating diabetes-a translational viewpoint explaining its potential salutary effects.

    PubMed

    de Leeuw, Anne E; de Boer, Rudolf A

    2016-10-01

    Diabetes is a growing epidemic worldwide characterized by an elevated concentration of blood glucose, associated with a high incidence of cardiovascular disease and mortality. Although in general reduction of hyperglycaemia is considered a therapeutic goal, hypoglycaemic therapies do not necessarily reduce cardiovascular mortality and may even aggravate cardiovascular risk factors, such as body weight. A new class of antidiabetic drugs acts by inhibition of the sodium-glucose cotransporter 2 (SGLT2), which (partially) prevents reabsorption of glucose from the renal filtrate. The induction of glucose excretion via the urine (glycosuria) was turned into an effective strategy to reduce blood glucose. Ancillary advantages are the caloric and volumetric loss and thereby the reduction of body weight and blood pressure. Additionally, SGLT2 inhibition has been suggested to exert direct cardioprotective effects by the reduction of cardiac fibrosis, inflammation, and oxidative stress. This article summarizes the functional consequences of SGLT2 inhibition on the diabetic and hyperglycaemic organism. We especially focused on the effects on the kidney and the cardiovascular system as described in experimental studies. The interesting observations in experimental studies may extend to clinical medicine, as a recent trial reported a decrease in heart failure outcomes in patients at high cardiovascular risk. In conclusion, SGLT2 inhibition represents a novel treatment, which might be a promising target not only to (further) reduce blood glucose but also to target other cardiovascular risk factors. More research and long-term follow-ups will reveal the specific influence of SGLT2 inhibition on the circulatory system and cardiovascular outcomes. PMID:27533948

  16. Splice cassette II of Na+,HCO3(-) cotransporter NBCn1 (slc4a7) interacts with calcineurin A: implications for transporter activity and intracellular pH control during rat artery contractions.

    PubMed

    Danielsen, Andreas A; Parker, Mark D; Lee, Soojung; Boron, Walter F; Aalkjaer, Christian; Boedtkjer, Ebbe

    2013-03-22

    Activation of Na(+),HCO3(-) cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pH(i)) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na(+),HCO3(-) cotransporter NBCn1 (slc4a7) and the Ca(2+)/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aβ. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aβ co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na(+),HCO3(-) cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4(+) prepulse. During depolarization with 50 mM extracellular K(+) to raise intracellular [Ca(2+)], Na(+),HCO3(-) cotransport activity was inhibited 20-30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na(+),HCO3(-) cotransport activity in VSMCs when cytosolic [Ca(2+)] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aβ. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aβ and the Na(+)/H(+) exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aβ and cassette II of NBCn1. Intracellular Ca(2+) activates Na(+),HCO3(-) cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification. PMID:23382378

  17. [Regulatory mechanism of circulating inorganic phosphate].

    PubMed

    Michigami, Toshimi

    2016-02-01

    Circulating level of phosphate is altered by age and diet, and is also controlled by several hormones such as parathyroid hormone(PTH), 1,25-dihydroxyvitamin D[1,25(OH)2D]and fibroblast growth factor 23(FGF23). The main function of PTH and 1,25(OH)2D is maintaining calcium homeostasis, while FGF23 plays a central role in phosphate metabolism. PTH suppresses phosphate reabsorption in the proximal tubules to increase the renal phosphate wasting, while 1,25(OH)2D facilitates the intestinal phosphate absorption. FGF23 increases the renal phosphate wasting and reduces the production of 1,25(OH)2D. Of note, these hormones mutually regulate one another. The production of FGF23 is also regulated by various local factors. The mechanism for sensing the phosphate availability still remains unknown, and further investigation is required. PMID:26813498

  18. Phosphate uptake kinetics by Acinetobacter isolates.

    PubMed

    Pauli, A S; Kaitala, S

    1997-02-01

    Acinetobacter isolates from activated sludge treatment plants of forest industry were used as model organisms for polyphosphate accumulating bacteria to study excess phosphate uptake by the overplus phenomenon as well as luxury uptake of phosphate during growth. The initial, rapid phosphate uptake by the phosphorus-starved Acinetobacter isolates (the overplus phenomenon) followed the Michaelis-Menten model (maximum initial phosphate uptake rate 29 mg P g(-1) dry mass (DM) h(-1), half-saturation constant for excess phosphate uptake 17 mg P L(-1)). During the rapid uptake no growth was observed, but most cells contained polyphosphate granules. Also growth and luxury uptake of phosphate could be modeled with the Michaelis-Menten equation (maximum phosphate uptake rate 3.7-12 mg P g(-1) DM h(-1), half-saturation constant for growth 0.47-6.0 mg P L(-1), maximum specific growth rate 0.15-0.55 h(-1)). PMID:18633985

  19. Sodium-Dependent Phosphate Uptake in the Jejunum Is Post-Transcriptionally Regulated in Pigs Fed a Low-Phosphorus Diet and Is Independent of Dietary Calcium Concentration1

    PubMed Central

    Saddoris, Kari L.; Fleet, James C.; Radcliffe, John S.

    2010-01-01

    In rodents, severe dietary P restriction increases active phosphate absorption by the intestine. However, it remains unknown if moderate dietary P restriction has a similar effect. Weanling pigs (n = 32; body weight 7.4 ± 0.55 kg) were used in a 2 × 2 factorial design and fed dietary available P (aP) concentrations of 0.23 or 0.40% and Ca concentrations of 0.58 or 1.00% for 14 d. Diets were formulated on an aP basis instead of a total P basis, because pigs are unable to absorb phytate-P present in corn and soybean meal. Jejunal segments were mounted in modified Ussing chambers for determination of Na+-dependent nutrient transport. Intestinal mucosal scrapings were taken for RNA isolation and brush border membrane (BBM) vesicle isolation. Na+-dependent phosphate uptake and gene expression of Na-phosphate cotransporter IIb (NaPi-IIb), SGLT-1 (sodium/glucose cotransporter-1), and calbindin D(9k) and protein expression of NaPi-IIb were evaluated. Na+-dependent phosphate transport increased (P < 0.05) 46% as dietary aP concentration was decreased. However, increased Na+-dependent phosphate uptake was not accompanied by increased NaPi-IIb mRNA expression. Expression of NaPi-IIb protein in the BBM increased (P < 0.01) 84% in pigs fed low-P diets compared with pigs fed adequate-P diets. No dietary Ca effects or aP × Ca interactions were detected for Na-dependent P uptake, mRNA or protein expression of NaPi-IIb, or mRNA expression of calbindin D(9k). These data suggest that restricting dietary aP concentration by only 43% stimulates Na+-dependent phosphate uptake and expression of the NaPi-IIb protein in the BBM of the small intestine and through a post-transcriptional mechanism. PMID:20164365

  20. EUGLYCEMIC DIABETIC KETOACIDOSIS AND SEVERE ACUTE KIDNEY INJURY SECONDARY TO OFF LABEL USE OF SODIUM GLUCOSE COTRANSPORTER-2 INHIBITOR IN A TYPE-1 DIABETIC PATIENT.

    PubMed

    Tahir, Hassan; Wani, Adil; Daruwalla, Vistasp; Daboul, Nour; Sagi, Jahnavi

    2015-01-01

    Sodium glucose Cotransporter-2 (SGLT2) inhibitors are a new class of drug approved for the treatment of type-2 diabetes; however they are also increasingly used off label in type-1 diabetic patients. SGLT2 Inhibitors work by increasing glucose excretion in urine. Euglycemic diabetic ketoacidosis (DKA) is potentially life threatening side effect as patients have normal glucose and minimal symptoms thus delaying diagnosis and treatment. Our case report highlights the risk of using SGLT2 inhibitors in type-1 diabetes and also supports the need for long term studies to define clear efficacy and complications of SGLT 2 inhibitors in both type-1 and type 2 diabetes mellitis. PMID:27004352

  1. [Sodium-glucose co-transporter-2 inhibitors: from the bark of apple trees and familial renal glycosuria to the treatment of type 2 diabetes mellitus].

    PubMed

    Mauricio, Dídac

    2013-09-01

    The therapeutic armamentarium for the treatment of hyperglycemia in type 2 diabetes mellitus is still inadequate. We are currently witnessing the introduction of a new mode of hypoglycemic treatment through induction of glycosuria to decrease the availability of the metabolic substrate, i.e. glucose. Clinical trials have shown that sodium-glucose co-transporter-2 (SGLT2) inhibitors are as efficacious as other oral hypoglycemic drugs. This article discusses the basic features of this new treatment concept and the efficacy and safety of this new drug group. PMID:24444522

  2. Calcium phosphate in catheter encrustation.

    PubMed

    Cox, A J; Harries, J E; Hukins, D W; Kennedy, A P; Sutton, T M

    1987-02-01

    Encrusted catheters from nine female patients were the source of samples of deposits which were examined by X-ray diffraction, atomic absorption spectroscopy, infra-red spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. In eight samples the only crystalline phase which could be clearly distinguished by X-ray diffraction was ammonium magnesium orthophosphate hexahydrate, NH4MgPO4 X 6H2O, which occurs naturally as the mineral struvite. However, atomic absorption spectroscopy revealed an appreciable concentration of calcium in all samples. Calcium phosphates have previously been detected in catheter deposits. Infra-red and EXAFS spectra were consistent with the calcium phosphate being present as a poorly crystalline hydroxyapatite. Thus the deposits appear to consist of a mixture of crystalline struvite and a form of hydroxyapatite which is not fully crystalline. PMID:3030487

  3. About Calcium Phosphate Cements (CPC)

    NASA Astrophysics Data System (ADS)

    Piñera, Silvia; Piña, Cristina

    2006-09-01

    Calcium phosphate cements (CPC) are used in orthopaedic surgery as bone substitution and fixation of metallic implants, showing advantages with respect to other materials like polymeric cements or ceramic blocks also used for bone repair. For example, they are easy to shape and fill bone defects, react at low temperature and their setting product is hydroxyapatite, mineral from it's composed the inorganic part of the bone, resulting a bioabsorbable material that can be replaced by new bone. Nevertheless there are still some complications like their low absorption rate, inyectability, setting times and their low strength that limits their use to only non load bearing applications. In this work we present a brief resume of some investigations that has been proposed to solve some of these problems, like the addition of phosphates solutions or seeds to increase the reaction rate, or fibers and hard particles to produce a composite material.

  4. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. PMID:27040960

  5. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone. PMID:24984987

  6. Chloride- and alkali-containing calcium phosphates as basic materials to prepare calcium phosphate cements.

    PubMed

    Bermúdez, O; Boltong, M G; Driessens, F C; Ginebra, M P; Fernández, E; Planell, J A

    1994-10-01

    Combinations of an alkali-containing calcium phosphate-like rhenanite, sodium whitlockite or calcium potassium phosphate and a chloride-containing calcium phosphate-like spodiosite or chloroapatite with or without additions of other calcium phosphates like monocalcium phosphate monohydrate, dicalcium phosphate or dicalcium phosphate dihydrate were made and mixed with water into pastes. The setting time of these pastes was determined. After soaking for a day in Ringer's solution at 37 degrees C the compressive strength and the diametral tensile strength were determined. Two of the combinations tried in this study resulted in the formation of cements at room temperature. One cement was of the type dicalcium phosphate, whereas the other gave octocalcium phosphate as the solid reaction product. The byproducts formed were an aqueous solution of NaCl and one of K2HPO4, respectively. Applications for bone repair and augmentation are envisaged. PMID:7841290

  7. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula.

    PubMed

    Yang, Chengbo; Yang, Xiaojian; Lackeyram, Dale; Rideout, Todd C; Wang, Zirong; Stoll, Barbara; Yin, Yulong; Burrin, Douglas G; Fan, Ming Z

    2016-06-01

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis. PMID:26984322

  8. Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39

    PubMed Central

    Zheng, Jiaqi J.; Sinha, Dhriti; Wayne, Kyle J.; Winkler, Malcolm E.

    2016-01-01

    Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (μM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na+/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis. PMID:27379215

  9. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis

    PubMed Central

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-01-01

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO42−, NO3−, Cl−, and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis. PMID:26554016

  10. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis.

    PubMed

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-11-24

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO4(2-), NO3(-), Cl(-), and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis. PMID:26554016

  11. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis

    PubMed Central

    Adragna, Norma C.; Ravilla, Nagendra B.; Lauf, Peter K.; Begum, Gulnaz; Khanna, Arjun R.; Sun, Dandan; Kahle, Kristopher T.

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K+ and Cl− efflux via activation of K+ channels, volume-regulated anion channels (VRACs), and the K+-Cl− cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl− cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K+ content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD. PMID:26217182

  12. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy. PMID:27434305

  13. Phosphate-limited culture of Azotobacter vinelandii.

    PubMed Central

    Tsai, J C; Aladegbami, S L; Vela, G R

    1979-01-01

    Batch cultures of Azotobacter vinelandii grown in phosphate-deficient media were compared with control cultures grown in phosphate-sufficient media. Phosphate limitation was assessed by total cell yield and by growth kinetics. Although cell protein, nucleic acids, and early growth rate were unaffected by phosphate deficiency, cell wall structure, oxygen uptake, and cell viability were significantly affected. Also, phosphate-limited cells contained much larger amounts of poly-beta-hydroxybutyric acid but lower adenylate nucleotide energy charge than did control cells. The ratio of adenosine 5'-triphosphate to adenosine 5'-diphosphate was much lower in phosphate-deficient cells. The data indicate a substrate saving choice of three metabolic pathways available to this organism under different growth conditions. Images PMID:457614

  14. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  15. Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus.

    PubMed

    Melo, Igor S; Santos, Yngrid M O; Costa, Maísa A; Pacheco, Amanda L D; Silva, Nívea K G T; Cardoso-Sousa, L; Pereira, U P; Goulart, L R; Garcia-Cairasco, Norberto; Duzzioni, Marcelo; Gitaí, Daniel L G; Tilelli, Cristiane Q; Sabino-Silva, Robinson; Castro, Olagide W

    2016-08-01

    Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, starting from secondary functional disorders due to several insults, including self-sustaining continuous seizures identified as status epilepticus (SE). Although hypoglycemia has been associated with SE, the effect of inhibition of the Na(+)/glucose cotransporters (SGLTs) on hippocampus during SE is still unknown. Here we evaluated the functional role of SGLT in the pattern of limbic seizures and neurodegeneration process after pilocarpine (PILO)-induced SE. Vehicle (VEH, 1μL) or phlorizin, a specific SGLT inhibitor (PZN, 1μL, 50μg/μL), was administered in the hippocampus of rats 30min before PILO (VEH+PILO or PZN+PILO, respectively). The limbic seizures were classified using the Racine's scale, and the amount of wet dog shakes (WDS) was quantified before and during SE. Neurodegeneration process was evaluated by Fluoro-Jade C (FJ-C), and FJ-C-positive neurons (FJ-C+) were counted 24h and 15days after SE. The PZN-treated rats showed higher (p<0.05) number of WDS when compared with VEH+PILO. There was no difference in seizure severity between PZN+PILO and VEH+PILO groups. However, the pattern of limbic seizures significantly changed in PZN+PILO. Indeed, the class 5 seizures repeated themselves more times (p<0.05) than the other classes in the PZN group at 50min after SE induction. The PZN+PILO animals had a higher (p<0.05) number of FJ-C+ cells in the dentate gyrus (DG), hilus, and CA3 and CA1 of hippocampus, when compared with VEH+PILO. The PZN+PILO animals had a decreased number (p<0.05) of FJ-C+ cells in CA1 compared with VEH+PILO 15days after SE induction. Taken together, our data suggest that SGLT inhibition with PZN increased the severity of limbic seizures during SE and increased neurodegeneration in hippocampus 24h after SE, suggesting that SGLT1 and SGLT2 could participate in the modulation of earlier stages of epileptogenic processes. PMID:27429292

  16. Incretins and selective renal sodium-glucose co-transporter 2 inhibitors in hypertension and coronary heart disease

    PubMed Central

    Sanchez, Ramiro A; Sanabria, Hugo; de los Santos, Cecilia; Ramirez, Agustin J

    2015-01-01

    Hyperglycemia is associated with an increased risk of cardiovascular disease, and the consequences of intensive therapy may depend on the mechanism of the anti-diabetic agent(s) used to achieve a tight control. In animal models, stable analogues of glucagon-like peptide-1 (GLP-1) were able to reduce body weight and blood pressure and also had favorable effects on ischemia following coronary reperfusion. In a similar way, dipeptidyl peptidase IV (DPP-IV) showed to have favorable effects in animal models of ischemia/reperfusion. This could be due to the fact that DPP-IV inhibitors were able to prevent the breakdown of GLP-1 and glucose-dependent insulinotropic polypeptide, but they also decreased the degradation of several vasoactive peptides. Preclinical data for GLP-1, its derivatives and inhibitors of the DPP-IV enzyme degradation suggests that these agents may be able to, besides controlling glycaemia, induce cardio-protective and vasodilator effects. Notwithstanding the many favorable cardiovascular effects of GLP-1/incretins reported in different studies, many questions remain unanswered due the limited number of studies in human beings that aim to examine the effects of GLP-1 on cardiovascular endpoints. For this reason, long-term trials searching for positive cardiovascular effects are now in process, such as the CAROLINA and CARMELINA trials, which are supported by small pilot studies performed in humans (and many more animal studies) with incretin-based therapies. On the other hand, selective renal sodium-glucose co-transporter 2 inhibitors were also evaluated in the prevention of cardiovascular outcomes in type 2 diabetes. However, it is quite early to draw conclusions, since data on cardiovascular outcomes and cardiovascular death are limited and long-term studies are still ongoing. In this review, we will analyze the mechanisms underlying the cardiovascular effects of incretins and, at the same time, we will present a critical position about the real

  17. Incretins and selective renal sodium-glucose co-transporter 2 inhibitors in hypertension and coronary heart disease.

    PubMed

    Sanchez, Ramiro A; Sanabria, Hugo; de Los Santos, Cecilia; Ramirez, Agustin J

    2015-09-10

    Hyperglycemia is associated with an increased risk of cardiovascular disease, and the consequences of intensive therapy may depend on the mechanism of the anti-diabetic agent(s) used to achieve a tight control. In animal models, stable analogues of glucagon-like peptide-1 (GLP-1) were able to reduce body weight and blood pressure and also had favorable effects on ischemia following coronary reperfusion. In a similar way, dipeptidyl peptidase IV (DPP-IV) showed to have favorable effects in animal models of ischemia/reperfusion. This could be due to the fact that DPP-IV inhibitors were able to prevent the breakdown of GLP-1 and glucose-dependent insulinotropic polypeptide, but they also decreased the degradation of several vasoactive peptides. Preclinical data for GLP-1, its derivatives and inhibitors of the DPP-IV enzyme degradation suggests that these agents may be able to, besides controlling glycaemia, induce cardio-protective and vasodilator effects. Notwithstanding the many favorable cardiovascular effects of GLP-1/incretins reported in different studies, many questions remain unanswered due the limited number of studies in human beings that aim to examine the effects of GLP-1 on cardiovascular endpoints. For this reason, long-term trials searching for positive cardiovascular effects are now in process, such as the CAROLINA and CARMELINA trials, which are supported by small pilot studies performed in humans (and many more animal studies) with incretin-based therapies. On the other hand, selective renal sodium-glucose co-transporter 2 inhibitors were also evaluated in the prevention of cardiovascular outcomes in type 2 diabetes. However, it is quite early to draw conclusions, since data on cardiovascular outcomes and cardiovascular death are limited and long-term studies are still ongoing. In this review, we will analyze the mechanisms underlying the cardiovascular effects of incretins and, at the same time, we will present a critical position about the real

  18. Clinical Pharmacokinetic, Pharmacodynamic, and Drug-Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor.

    PubMed

    Devineni, Damayanthi; Polidori, David

    2015-10-01

    The sodium-glucose co-transporter 2 (SGLT2) inhibitors represent novel therapeutic approaches in the management of type 2 diabetes mellitus; they act on kidneys to decrease the renal threshold for glucose (RTG) and increase urinary glucose excretion (UGE). Canagliflozin is an orally active, reversible, selective SGLT2 inhibitor. Orally administered canagliflozin is rapidly absorbed achieving peak plasma concentrations in 1-2 h. Dose-proportional systemic exposure to canagliflozin has been observed over a wide dose range (50-1600 mg) with an oral bioavailability of 65 %. Canagliflozin is glucuronidated into two inactive metabolites, M7 and M5 by uridine diphosphate-glucuronosyltransferase (UGT) 1A9 and UGT2B4, respectively. Canagliflozin reaches steady state in 4 days, and there is minimal accumulation observed after multiple dosing. Approximately 60 % and 33 % of the administered dose is excreted in the feces and urine, respectively. The half-life of orally administered canagliflozin 100 or 300 mg in healthy participants is 10.6 and 13.1 h, respectively. No clinically relevant differences are observed in canagliflozin exposure with respect to age, race, sex, and body weight. The pharmacokinetics of canagliflozin remains unaffected by mild or moderate hepatic impairment. Systemic exposure to canagliflozin is increased in patients with renal impairment relative to those with normal renal function; however, the efficacy is reduced in patients with renal impairment owing to the reduced filtered glucose load. Canagliflozin did not show clinically relevant drug interactions with metformin, glyburide, simvastatin, warfarin, hydrochlorothiazide, oral contraceptives, probenecid, and cyclosporine, while co-administration with rifampin modestly reduced canagliflozin plasma concentrations and thus may necessitate an appropriate monitoring of glycemic control. Canagliflozin increases UGE and suppresses RTG in a dose-dependent manner, thereby lowering the plasma glucose

  19. The sodium glucose cotransporter 2 inhibitor empagliflozin does not prolong QT interval in a thorough QT (TQT) study

    PubMed Central

    2013-01-01

    Background Empagliflozin is a potent, selective sodium glucose cotransporter 2 (SGLT2) inhibitor in development as an oral antidiabetic treatment. This QT interval study assessed potential effects of empagliflozin on ventricular repolarisation and other electrocardiogram (ECG) parameters. Methods A randomised, placebo-controlled, single-dose, double-blind, five-period crossover study incorporating a novel double-placebo period design to reduce sample size, while maintaining full statistical power. Treatments: single empagliflozin doses of 25 mg (therapeutic) and 200 mg (supratherapeutic), matching placebo and open-label moxifloxacin 400 mg (positive control). Triplicate 12-lead ECGs of 10 second duration were recorded at baseline and during the first 24 hours after dosing. The primary endpoint was mean change from baseline (MCfB) in the population heart rate-corrected QT interval (QTcN) between 1–4 hours after dosing. Results Thirty volunteers (16 male, 14 female, mean [range] age: 34.5 [18–52] years) were randomised. The placebo-corrected MCfB in QTcN 1–4 hours after dosing was 0.6 (90% CI: -0.7, 1.9) ms and -0.2 (-1.4, 0.9) ms for empagliflozin 25 mg and 200 mg, respectively, below the ICH E14 defined threshold of regulatory concern 10 ms. Assay sensitivity was confirmed by a placebo-corrected MCfB in QTcN 2–4 hours post-dose of 12.4 (10.7, 14.1) ms with moxifloxacin 400 mg. Empagliflozin tolerability was good for all volunteers; 23.3% experienced adverse events (AEs) with empagliflozin and 27.6% with placebo. The most frequent AE was nasopharyngitis. Conclusions/interpretation Single doses of empagliflozin 25 mg and 200 mg were not associated with QTcN prolongation and were well tolerated in healthy volunteers. Trial registration ClinicalTrials.gov: NCT01195675 PMID:23617452

  20. Functional diversity of electrogenic Na+–HCO3− cotransport in ventricular myocytes from rat, rabbit and guinea pig

    PubMed Central

    Yamamoto, Taku; Swietach, Pawel; Rossini, Alessandra; Loh, Shih-Hurng; Vaughan-Jones, Richard D; Spitzer, Kenneth W

    2005-01-01

    The Na+–HCO3− cotransporter (NBC) is an important sarcolemmal acid extruder in cardiac muscle. The characteristics of NBC expressed functionally in heart are controversial, with reports suggesting electroneutral (NBCn; 1HCO3− : 1Na+; coupling coefficient n = 1) or electrogenic forms of the transporter (NBCe; equivalent to 2HCO3− : 1Na+; n = 2). We have used voltage-clamp and epifluorescence techniques to compare NBC activity in isolated ventricular myocytes from rabbit, rat and guinea pig. Depolarization (by voltage clamp or hyperkalaemia) reversibly increased steady-state pHi while hyperpolarization decreased it, effects seen only in CO2/HCO3−-buffered solutions, and blocked by S0859 (cardiac NBC inhibitor). Species differences in amplitude of these pHi changes were rat > guinea pig ≈ rabbit. Tonic depolarization (−140 mV to −0 mV) accelerated NBC-mediated pHi recovery from an intracellular acid load. At 0 mV, NBC-mediated outward current at resting pHi was +0.52 ± 0.05 pA pF−1 (rat, n = 5), +0.26 ± 0.05 pA pF−1 (guinea pig, n = 5) and +0.10 ± 0.03 pA pF−1 (rabbit, n = 9), with reversal potentials near −100 mV, consistent with n = 2. The above results indicate a functionally active voltage-sensitive NBCe in these species. Voltage-clamp hyperpolarization negative to the reversal potential for NBCe failed, however, to terminate or reverse NBC-mediated pHi-recovery from an acid load although it was slowed significantly, suggesting electroneutral NBC may also be operational. NBC-mediated pHi recovery was associated with a rise of [Na+]i at a rate ∼25% of that mediated via NHE, and consistent with an apparent NBC stoichiometry between n = 1 and n = 2. In conclusion, NBCe in the ventricular myocyte displays considerable functional variation among the three species tested (greatest in rat, least in rabbit) and may coexist with some NBCn activity. PMID:15550467

  1. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. PMID:26608659

  2. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity

    PubMed Central

    Ma, Lei-lei; Wu, Zhi-tao; Wang, Le; Zhang, Xue-feng; Wang, Jing; Chen, Chen; Ni, Xuan; Lin, Yun-fei; Cao, Yi-yi; Luan, Yang; Pan, Guo-yu

    2016-01-01

    Aim: Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. Methods: The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg·kg−1·d−1, ig) for 4 weeks, their blood samples were analyzed. Results: A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 μmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 μmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg−1·d−1) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg−1·d−1, all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. Conclusion: Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major

  3. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications.

    PubMed

    Heerspink, Hiddo J L; Perkins, Bruce A; Fitchett, David H; Husain, Mansoor; Cherney, David Z I

    2016-09-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitors, including empagliflozin, dapagliflozin, and canagliflozin, are now widely approved antihyperglycemic therapies. Because of their unique glycosuric mechanism, SGLT2 inhibitors also reduce weight. Perhaps more important are the osmotic diuretic and natriuretic effects contributing to plasma volume contraction, and decreases in systolic and diastolic blood pressures by 4 to 6 and 1 to 2 mm Hg, respectively, which may underlie cardiovascular and kidney benefits. SGLT2 inhibition also is associated with an acute, dose-dependent reduction in estimated glomerular filtration rate by ≈5 mL·min(-1)·1.73 m(-2) and ≈30% to 40% reduction in albuminuria. These effects mirror preclinical observations suggesting that proximal tubular natriuresis activates renal tubuloglomerular feedback through increased macula densa sodium and chloride delivery, leading to afferent vasoconstriction. On the basis of reduced glomerular filtration, glycosuric and weight loss effects are attenuated in patients with chronic kidney disease (estimated glomerular filtration rate <60 mL·min(-1)·1.73 m(-2)). In contrast, blood pressure lowering, estimated glomerular filtration rate, and albuminuric effects are preserved, and perhaps exaggerated in chronic kidney disease. With regard to long-term clinical outcomes, the EMPA-REG OUTCOME trial (Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes) in patients with type 2 diabetes mellitus and established cardiovascular disease randomly assigned to empagliflozin versus placebo reported a 14% reduction in the primary composite outcome of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, and >30% reductions in cardiovascular mortality, overall mortality, and heart failure hospitalizations associated with empagliflozin, even though, by design, the hemoglobin A1c difference between the randomized groups was marginal. Aside from an increased risk of mycotic genital

  4. Mineral induced formation of sugar phosphates

    NASA Astrophysics Data System (ADS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-08-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2,4-diphosphates and aldohexose-2,4,6-triphosphates. The reaction proceeds mainly through racemic erythrose-2,4-phosphate, and terminates with a large fraction of racemic altrose-2,4,6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 µm; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2,4,-diphosphates also form, but only as a small fraction of the hexose-2,4,6-phosphates.

  5. Preparation of porous lanthanum phosphate with templates

    SciTech Connect

    Onoda, Hiroaki; Ishima, Yuya; Takenaka, Atsushi; Tanaka, Isao

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  6. Next generation calcium phosphate-based biomaterials

    PubMed Central

    LC, Chow

    2009-01-01

    It has been close to a century since calcium phosphate materials were first used as bone graft substitutes. Numerous studies conducted in the last two decades have produced a wealth of information on the chemistry, in vitro properties, and biological characteristics of granular calcium phosphates and calcium phosphate cement biomaterials. An in depth analysis of several key areas of calcium phosphate cement properties is presented with the aim of developing strategies that could lead to break-through improvements in the functional efficacies of these materials. PMID:19280963

  7. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  8. Zirconium Phosphate Supported MOF Nanoplatelets.

    PubMed

    Kan, Yuwei; Clearfield, Abraham

    2016-06-01

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene. PMID:27175935

  9. The SLC37 Family of Sugar-Phosphate/Phosphate Exchangers

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2014-01-01

    The SLC37 family members are endoplasmic reticulum (ER)-associated sugar-phosphate/phosphate (Pi) exchangers. Three of the four members, SLC37A1, SLC37A2, and SLC37A4, function as Pi-linked glucose-6-phosphate (G6P) antiporters catalyzing G6P:Pi and Pi:Pi exchanges. The activity of SLC37A3 is unknown. SLC37A4, better known as the G6P transporter (G6PT), has been extensively characterized, functionally and structurally, and is the best characterized family member. G6PT contains 10 transmembrane helices with both N and C termini facing the cytoplasm. The primary in vivo function of the G6PT protein is to translocate G6P from the cytoplasm into the ER lumen where it couples with either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α or G6PC) or the ubiquitously expressed G6Pase-β (or G6PC3) to hydrolyze G6P to glucose and Pi. The G6PT/G6Pase-α complex maintains interprandial glucose homeostasis, and the G6PT/G6Pase-β complex maintains neutro-phil energy homeostasis and functionality. G6PT is highly selective for G6P and is competitively inhibited by cholorogenic acid and its derivatives. Neither SLC37A1 nor SLC37A2 can couple functionally with G6Pase-α or G6Pase-β, and the antiporter activities of SLC37A1 or SLC37A2 are not inhibited by cholorogenic acid. Deficiencies in G6PT cause glycogen storage disease type Ib (GSD-Ib), a metabolic and immune disorder. To date, 91 separate SLC37A4 mutations, including 39 missense mutations, have been identified in GSD-Ib patients. Characterization of missense mutations has yielded valuable information on functionally important residues in the G6PT protein. The biological roles of the other SLC37 proteins remain to be determined and deficiencies have not yet been correlated to diseases. PMID:24745989

  10. Linking Gene Expression in the Intestine to Production of Gametes Through the Phosphate Transporter PITR-1 in Caenorhabditis elegans.

    PubMed

    Balklava, Zita; Rathnakumar, Navin D; Vashist, Shilpa; Schweinsberg, Peter J; Grant, Barth D

    2016-09-01

    Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane-bound transporters and coupled to Na(+) transport. Mammalian sodium-dependent Pi cotransporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than two decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the Caenorhabditis elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline. PMID:27449055

  11. Linking Gene Expression in the Intestine to Production of Gametes Through the Phosphate Transporter PITR-1 in Caenorhabditis elegans

    PubMed Central

    Balklava, Zita; Rathnakumar, Navin D.; Vashist, Shilpa; Schweinsberg, Peter J.; Grant, Barth D.

    2016-01-01

    Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane-bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi cotransporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than two decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the Caenorhabditis elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline. PMID:27449055

  12. Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex

    SciTech Connect

    Soleimani, M.; Bergman, J.A.; Hosford, M.A.; McKinney, T.D. )

    1990-10-01

    Most HCO3- reabsorption in proximal tubules occurs via electroneutral Na+/H+ exchange in brush border membranes (BBMS) and electrogenic Na+:CO3=:HCO3- cotransport in basolateral membranes (BLMS). Since potassium depletion (KD) increases HCO3- reabsorption in proximal tubules, we evaluated these transport systems using BBM and BLM vesicles, respectively, from control (C) and KD rats. Feeding rats a potassium deficient diet for 3-4 wk resulted in lower plasma (K+) (2.94 mEq/liter, KD vs. 4.47 C), and higher arterial pH (7.51 KD vs. 7.39 C). KD rats gained less weight than C but had higher renal cortical weight. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0, 10% CO2, 90% N2) into BLM vesicles was 44% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was DIDS sensitive, suggesting that Na+:CO3=:HCO3- cotransport accounted for the observed differences. Kinetic analysis of Na+ influx showed a Km of 8.2 mM in KD vs. 7.6 mM in C and Vmax of 278 nmol/min/mg protein in KD vs. 177 nmol/min/mg protein in C. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0) into BBM vesicles was 34% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was amiloride sensitive, suggesting that Na+/H+ exchange was responsible for the observed differences. Kinetic analysis of Na+ influx showed a Km of 6.2 mM in KD vs. 7.1 mM in C and Vmax of 209 nmol/min/mg protein in KD vs. 144 nmol/min/mg protein in C. Uptakes of Na(+)-dependent (3H)glucose into BBM and (14C)succinate into BLM vesicles were not different in KD and C groups, suggesting that the Na+/H+ exchanger and Na+:CO3=:HCO3- cotransporter activities were specifically altered in KD.

  13. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate....

  14. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate....

  15. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requirements of this section allowance is made for the added monocalcium phosphate. ... label declaration of ingredients, prescribed for flour by § 137.105, except that: (a) Monocalcium phosphate is added in a quantity not less than 0.25 percent and not more than 0.75 percent of the weight...

  16. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... requirements of this section allowance is made for the added monocalcium phosphate. ... label declaration of ingredients, prescribed for flour by § 137.105, except that: (a) Monocalcium phosphate is added in a quantity not less than 0.25 percent and not more than 0.75 percent of the weight...

  17. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... requirements of this section allowance is made for the added monocalcium phosphate. ... label declaration of ingredients, prescribed for flour by § 137.105, except that: (a) Monocalcium phosphate is added in a quantity not less than 0.25 percent and not more than 0.75 percent of the weight...

  18. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requirements of this section allowance is made for the added monocalcium phosphate. ... label declaration of ingredients, prescribed for flour by § 137.105, except that: (a) Monocalcium phosphate is added in a quantity not less than 0.25 percent and not more than 0.75 percent of the weight...

  19. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6290 Disodium phosphate. (a) Product. Disodium...

  20. Drug-pyridoxal phosphate interactions.

    PubMed

    Ebadi, M; Gessert, C F; Al-Sayegh, A

    1982-01-01

    phosphate. Some interesting relationships are pointed out between vitamin B6, picolinic acid, and zinc. It is postulated that the intestinal absorption of zinc is facilitated by picolinic acid, a metabolite of tryptophan. The derivation of picolinic acid from tryptophan depends on the action of the enzyme kynureninase, which is dependent on pyridoxal phosphate; therefore, the adequate absorption of zinc is indirectly dependent on an adequate supply of vitamin B6. The formation of pyridoxal phosphate, on the other hand, appears to be indirectly dependent on Zn2++ which activates pyridoxal kinase.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6087425

  1. Phosphate rock resources of the United States

    USGS Publications Warehouse

    Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.

    1984-01-01

    In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern

  2. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis

    SciTech Connect

    Thiel, T.

    1988-03-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells.Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of P/sub i/. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent K/sub i/ values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.

  3. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  4. Phosphate Biomineralization of Cambrian Microorganisms

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  5. Field-scale evaluation of the co-transport impacts of Bacillus subtilis endospores on other pathogen surrogates

    NASA Astrophysics Data System (ADS)

    Stimson, J. R.; Chik, A. H.; Mesquita, M. M.; McLellan, N. L.; Emelko, M.

    2009-12-01

    spores (TAS) occurred in the native groundwater at an average concentration of 1.4 x 10-1 ± 5.9 x 10-2 (n = 21) spore mL-1. When B. subtilis endospores were injected at a concentration of 6.7 x 104 spores mL-1, TAS recovery at the extraction well exceeded natural levels by ~1-log. The increase in TAS concentration is attributed to B. subtilis spore injection. The removal of 1.5 µm microspheres was increased from ~7-log in the absence of injected B. subtilis spores to ~8-log in the presence of the spores. The increased microsphere removal when spores were present was presumably due to spore-microsphere aggregation and/or the enhanced co-attachment of microspheres and spores to mineral surfaces. This observed surrogate interaction must be considered in studies where more than one tracer is employed to estimate removal efficiency of riverbank filtration systems. An additional field-scale co-transport study, examining Bacillus spore interaction with E. coli and bacteriophage PRD-1, will be conducted to assess the degree of interference observed with other biocolloids.

  6. Using Bacterial Surrogates to Assess Pathogen Transport in the Subsurface: Laboratory and Field Indications of Co-Transport Considerations

    NASA Astrophysics Data System (ADS)

    Emelko, M.; Stimson, J. R.; McLellan, N. L.; Mesquita, M.

    2009-12-01

    processes such as RBF. Here, duplicate column studies were conducted to evaluate the transport of nano- and micro-sized polystyrene micropsheres, aerobic spores of Bacillus subtilis, PR772 bacteriophage, and pathogenic Salmonella typhimurium bacteria in a well-sorted fine sand (d 50 = 0.6 mm). A field validation experiment investigating transport of 1.5 µm polystyrene micropsheres and aerobic spores in and RBF system comprised of unconsolidated silty sand, gravel, and boulders was conducted. The column studies demonstrated that the presence of the aerobic spores resulted in increased removal of 4.5 µm microspheres from< 2 log to ~4 log, and 1.5 µm microsphere removal from <0.5 log to ~1 log removal. Microscopic examination of the samples also revealed extensive clumping of microspheres and microorganisms during the experiments conducted with aerobic spores. A field trial during which microspheres and spores of B. subtilis were injected into the subsurface provided corroborating evidence of a co-transport effect of aerobic spores by demonstrating ~1.6 log increase in 1.5 µm microsphere removal in the presence of aerobic spores.

  7. Benefits/risks of sodium-glucose co-transporter 2 inhibitor canagliflozin in women for the treatment of Type 2 diabetes.

    PubMed

    Kushner, Pamela

    2016-06-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors, such as canagliflozin, are used in patients with Type 2 diabetes mellitus (T2DM). In clinical studies, canagliflozin significantly reduced A1C, bodyweight and blood pressure, and was generally well tolerated with no increased risk of hypoglycemia. Most common adverse effects observed were genital mycotic infections and urinary tract infections, and increased urination. Approximately 10% of women treated with canagliflozin experienced a genital mycotic infection compared with 3% treated with placebo; those with a prior history were at greater risk. Approximately 9% of women treated with canagliflozin reported a urinary tract infection compared with 7% treated with placebo. Most adverse events were considered mild to moderate in intensity and responded to standard therapy. Treatment with canagliflozin was effective and generally well tolerated in both women (and men) with T2DM. PMID:26928259

  8. Non-occlusive Mesenteric Ischemia with Diabetic Ketoacidosis and Lactic Acidosis Following the Administration of a Sodium Glucose Co-transporter 2 Inhibitor.

    PubMed

    Gocho, Naoki; Aoki, Ema; Okada, Chiho; Omura, Kazuki; Hirashima, Takeshi; Suzuki, Natsuko; Tanaka, Hideki; Omori, Yasue

    2016-01-01

    We herein describe a patient with non-occlusive mesenteric ischemia (NOMI) potentially associated with the administration of a sodium glucose co-transporter 2 (SGLT2) inhibitor. A 60-year-old man with type 1 diabetes was transferred to our hospital due to vomiting and respiratory distress. He was treated with insulin, metformin and a SGLT2 inhibitor, which had recently been added. He was diagnosed with intestinal ischemia complicated by diabetic ketoacidosis and lactic acidosis. Urgent exploratory surgery was performed, and the gangrenous bowel was resected. Histological findings confirmed the diagnosis of NOMI. The administration of SGLT2 inhibitors therefore requires certain exceptions for type 1 diabetes and cautious monitoring for the occurrence of these possible adverse effects. PMID:27374678

  9. Euglycemic Diabetic Ketoacidosis in a 27 year-old female patient with type-1-Diabetes treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor Canagliflozin.

    PubMed

    Bader, Nimrah; Mirza, Lubna

    2016-01-01

    We are reporting a timely case of atypical euglycemic diabetic ketoacidosis in a type 1 diabetic patient treated with sodium-glucose cotransporter-2 (SGLT-2) inhibitor canagliflozin. The clinical history, physical examination findings and laboratory values are described. Other causes of acidosis such as salicylate toxicity or alcohol intoxication were excluded. Ketoacidosis resolved after increasing dextrose and insulin doses supporting the hypothesis that SGLT-2 inhibitors may lead to hypoinsulinemia. Euglycemic ketoacidosis did not recur in our patient after discontinuing canagliflozin. We recommend reserving SGLT2 inhibitor therapy to type 2 diabetics, discontinuing medication and treating patients presenting with ketoacidosis due to SGLT-2 inhibitors with higher concentrations of dextrose with appropriate doses of insulin to help resolve acidosis. PMID:27375734

  10. Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet.

    PubMed

    Hayami, Tomohide; Kato, Yoshiro; Kamiya, Hideki; Kondo, Masaki; Naito, Ena; Sugiura, Yukako; Kojima, Chika; Sato, Sami; Yamada, Yuichiro; Kasagi, Rina; Ando, Toshihito; Noda, Saeko; Nakai, Hiromi; Takada, Eriko; Asano, Emi; Motegi, Mikio; Watarai, Atsuko; Kato, Koichi; Nakamura, Jiro

    2015-09-01

    We present a case of a 32-year-old diabetic woman with Prader-Willi syndrome who developed severe ketoacidosis caused by a sodium-glucose cotransporter 2 (SGLT2) inhibitor, a novel class of antihyperglycemic agents, during a strict low-carbohydrate diet. At admission, a serum glucose level of 191 mg/dL was relatively low, though laboratory evaluations showed severe ketoacidosis. This is the first report of ketoacidosis caused by a SGLT2 inhibitor. It is necessary to not only pay attention when using a SGLT2 inhibitor in patients following a low-carbohydrate diet, but also to start a low-carbohydrate diet in patients treated with a SGLT2 inhibitor because of a high risk for developing ketoacidosis. PMID:26417418

  11. Euglycemic Diabetic Ketoacidosis in a 27 year-old female patient with type-1-Diabetes treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor Canagliflozin

    PubMed Central

    Bader, Nimrah; Mirza, Lubna

    2016-01-01

    We are reporting a timely case of atypical euglycemic diabetic ketoacidosis in a type 1 diabetic patient treated with sodium-glucose cotransporter-2 (SGLT-2) inhibitor canagliflozin. The clinical history, physical examination findings and laboratory values are described. Other causes of acidosis such as salicylate toxicity or alcohol intoxication were excluded. Ketoacidosis resolved after increasing dextrose and insulin doses supporting the hypothesis that SGLT-2 inhibitors may lead to hypoinsulinemia. Euglycemic ketoacidosis did not recur in our patient after discontinuing canagliflozin. We recommend reserving SGLT2 inhibitor therapy to type 2 diabetics, discontinuing medication and treating patients presenting with ketoacidosis due to SGLT-2 inhibitors with higher concentrations of dextrose with appropriate doses of insulin to help resolve acidosis. PMID:27375734

  12. Expression and Purification of the Cytoplasmic N-Terminal Domain of the Na/HCO3 Cotransporter NBCe1-A: Structural Insights from the a Generalized Approach

    SciTech Connect

    Gill,H.; Boron, W.

    2006-01-01

    The cytoplasmic, N-terminal domain (Nt) of the electrogenic sodium/bicarbonate cotransporter -- NBCe1 -- over-expresses in Escherichia coli and yields a large amount of soluble protein. A novel purification strategy, which involves a streptomycin precipitation, overcomes obstacles of instability and copurifying proteins, and leads to the first seen Nt-NBCe1 crystals. The purification procedure generally lends itself to the purification of Nts from other classes of the SLC4 family. Size-exclusion chromatography suggests that the Nt of NBCe1 as well as the Nt of other SLC4 members form dimers. A comparison of Nt-NBCe1 to SLC4 member Nt-AE1, based on purification properties and predicted secondary-structure sequence alignments, suggests a similar mechanism for dimer stabilization.

  13. N-Indolylglycosides bearing modifications at the glucose C6-position as sodium-dependent glucose co-transporter 2 inhibitors.

    PubMed

    Chu, Kuang-Feng; Yao, Chun-Hsu; Song, Jen-Shin; Chen, Chiung-Tong; Yeh, Teng-Kuang; Hsieh, Tsung-Chih; Huang, Chung-Yu; Wang, Min-Hsien; Wu, Szu-Huei; Chang, Wei-En; Chao, Yu-Sheng; Lee, Jinq-Chyi

    2016-05-15

    Suppression of glucose reabsorption through the inhibition of sodium-dependent glucose co-transporter 2 (SGLT2) is a promising therapeutic approach for the treatment of type 2 diabetes. To investigate the effect of C6-substitution on inhibition of SGLT2 by N-indolylglucosides, a small library of 6-triazole, 6-amide, 6-urea, and 6-thiourea N-indolylglycosides were synthesized and tested. A detailed structure-activity relationship (SAR) study culminated in the identification of 6-amide derivatives 6a and 6o as potent SGLT2 inhibitors, which were further tested for inhibitory activity against SGLT1. The data obtained indicated that 6a and 6o are mildly to moderately selective for SGLT2 over SGLT1. Both compounds were also evaluated in a urinary glucose excretion test and pharmacokinetic study; 6a was found capable of inducing urinary glucose excretion in normal SD rats. PMID:27075813

  14. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Alshahrani, Saeed; Brooks, Marybeth; McCormack, Francis X.; Smith, Roger D.; Zahedi, Kamyar

    2016-01-01

    Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and

  15. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Alshahrani, Saeed; Brooks, Marybeth; McCormack, Francis X; Smith, Roger D; Zahedi, Kamyar

    2016-01-01

    Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and

  16. Primary Biliary Acids Inhibit Hepatitis D Virus (HDV) Entry into Human Hepatoma Cells Expressing the Sodium-Taurocholate Cotransporting Polypeptide (NTCP)

    PubMed Central

    Veloso Alves Pereira, Isabel; Buchmann, Bettina; Sandmann, Lisa; Sprinzl, Kathrin; Schlaphoff, Verena; Döhner, Katinka; Vondran, Florian; Sarrazin, Christoph; Manns, Michael P.; Pinto Marques Souza de Oliveira, Cláudia; Sodeik, Beate; Ciesek, Sandra; von Hahn, Thomas

    2015-01-01

    Background The sodium-taurocholate cotransporting polypeptide (NTCP) is both a key bile acid (BA) transporter mediating uptake of BA into hepatocytes and an essential receptor for hepatitis B virus (HBV) and hepatitis D virus (HDV). In this study we aimed to characterize to what extent and through what mechanism BA affect HDV cell entry. Methods HuH-7 cells stably expressing NTCP (HuH-7/NTCP) and primary human hepatocytes (PHH) were infected with in vitro generated HDV particles. Infectivity in the absence or presence of compounds was assessed using immunofluorescence staining for HDV antigen, standard 50% tissue culture infectious dose (TCID50) assays and quantitative PCR. Results Addition of primary conjugated and unconjugated BA resulted in a dose dependent reduction in the number of infected cells while secondary, tertiary and synthetic BA had a lesser effect. This effect was observed both in HuH-7/NTCP and in PHH. Other replication cycle steps such as replication and particle assembly and release were unaffected. Moreover, inhibitory BA competed with a fragment from the large HBV envelope protein for binding to NTCP-expressing cells. Conversely, the sodium/BA-cotransporter function of NTCP seemed not to be required for HDV infection since infection was similar in the presence or absence of a sodium gradient across the plasma membrane. When chenodeoxycolic acid (15 mg per kg body weight) was administered to three chronically HDV infected individuals over a period of up to 16 days there was no change in serum HDV RNA. Conclusions Primary BA inhibit NTCP-mediated HDV entry into hepatocytes suggesting that modulation of the BA pool may affect HDV infection of hepatocytes. PMID:25646622

  17. Grapevine and Arabidopsis Cation-Chloride Cotransporters Localize to the Golgi and Trans-Golgi Network and Indirectly Influence Long-Distance Ion Transport and Plant Salt Tolerance.

    PubMed

    Henderson, Sam W; Wege, Stefanie; Qiu, Jiaen; Blackmore, Deidre H; Walker, Amanda R; Tyerman, Stephen D; Walker, Rob R; Gilliham, Matthew

    2015-11-01

    Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na(+)) and chloride (Cl(-)) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive (36)Cl(-), (22)Na(+), and (86)Rb(+) uptake, suggesting that VviCCC (like AtCCC) belongs to the Na(+)-K(+)-2Cl(-) cotransporter class of CCCs. Expression of VviCCC in an Arabidopsis ccc knockout mutant abolished the mutant's stunted growth phenotypes and reduced shoot Cl(-) and Na(+) content to wild-type levels after growing plants in 50 mm NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl(-) treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance. PMID:26378102

  18. Early increasing-intensity treadmill exercise reduces neuropathic pain by preventing nociceptor collateral sprouting and disruption of chloride cotransporters homeostasis after peripheral nerve injury.

    PubMed

    López-Álvarez, Víctor M; Modol, Laura; Navarro, Xavier; Cobianchi, Stefano

    2015-09-01

    Activity treatments, such as treadmill exercise, are used to improve functional recovery after nerve injury, parallel to an increase in neurotrophin levels. However, despite their role in neuronal survival and regeneration, neurotrophins may cause neuronal hyperexcitability that triggers neuropathic pain. In this work, we demonstrate that an early increasing-intensity treadmill exercise (iTR), performed during the first week (iTR1) or during the first 2 weeks (iTR2) after section and suture repair of the rat sciatic nerve, significantly reduced the hyperalgesia developing rapidly in the saphenous nerve territory and later in the sciatic nerve territory after regeneration. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in sensory neurons and spinal cord was reduced in parallel. iTR prevented the extension of collateral sprouts of saphenous nociceptive calcitonin gene-related peptide fibers within the adjacent denervated skin and reduced NGF expression in the same skin and in the L3 dorsal root ganglia (DRG). Injury also induced Na⁺-K⁺-2Cl⁻ cotransporter 1 (NKCC1) upregulation in DRG, and K⁺-Cl⁻ cotransporter 2 (KCC2) downregulation in lumbar spinal cord dorsal horn. iTR normalized NKCC1 and boosted KCC2 expression, together with a significant reduction of microgliosis in L3-L5 dorsal horn, and a reduction of BDNF expression in microglia at 1 to 2 weeks postinjury. These data demonstrate that specific activity protocols, such as iTR, can modulate neurotrophins expression after peripheral nerve injury and prevent neuropathic pain by blocking early mechanisms of sensitization such as collateral sprouting and NKCC1/KCC2 disregulation. PMID:26090759

  19. Na+,HCO3- -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane.

    PubMed

    Lee, Soojung; Mele, Marco; Vahl, Pernille; Christiansen, Peer M; Jensen, Vibeke E D; Boedtkjer, Ebbe

    2015-02-01

    Metabolic and biochemical changes during breast carcinogenesis enhance cellular acid production. Extrusion of the acid load from the cancer cells raises intracellular pH, while it decreases extracellular pH creating an inverted pH gradient across the plasma membrane compared to normal cells and promoting cancer cell metabolism, proliferation, migration, and invasion. We investigated the effects of breast carcinogenesis on the mechanisms of cellular pH control using multicellular epithelial organoids freshly isolated from human primary breast carcinomas and matched normal breast tissue. Intracellular pH was measured by fluorescence microscopy, while protein expression was investigated by immunofluorescence imaging and immunoblotting. We found that cellular net acid extrusion increased during human breast carcinogenesis due to enhanced Na(+),HCO3 (-)-cotransport, which created an alkaline shift (~0.3 units of magnitude) in steady-state intracellular pH of human primary breast carcinomas compared to normal breast tissue. Na(+)/H(+)-exchange activity and steady-state intracellular pH in the absence of CO2/HCO3 (-) were practically unaffected by breast carcinogenesis. These effects were evident under both acidic (pH 6.8, representative of the tumor microenvironment) and physiological (pH 7.4) extracellular conditions. Protein expression of the Na(+),HCO3 (-)-cotransporter NBCn1 (SLC4A7), which has been linked to breast cancer susceptibility in multiple genome-wide association studies, was twofold higher in human breast carcinomas compared to matched normal breast tissue. Protein expression of the Na(+)/H(+)-exchanger NHE1 (SLC9A1) was markedly less affected. We propose that upregulated NBCn1 during human breast carcinogenesis contributes to the characteristic acid distribution within human breast carcinomas and thereby plays a pathophysiological role for breast cancer development and progression. PMID:24788003

  20. Levels of Phosphate Esters in Spirodela

    PubMed Central

    Bieleski, R. L.

    1968-01-01

    The duckweed Spirodela oligorrhiza was grown in sterile nutrient solutions that contained 1 mm phosphate-32P at various specific activities. In solutions with activities higher than 2 μc per μmole per ml, plant growth was inhibited after a time, and the physical appearance of the plants was affected. The critical level of radiation, at which growth was first affected, corresponded to 5 kilorads. Plants were grown for 9 days (5 generations) in a culture solution containing phosphate at 0.5 μc per μmole per ml (radiation load approx 0.5 kilorads) so that all phosphorus-containing materials in the tissue became uniformly labeled. The various radioactive compounds were extracted, chromatographed, identified, and their radioactivity was measured. From this radioactivity plus the specific activity of the supplied phosphate, the amount of each compound was calculated. The data constitute a complete balance-sheet for phosphorus in a plant tissue. The identity of 98% of the phosphorus in the tissue was determined. Inorganic phosphate (32,700 mμmoles/g fr wt) was the predominant phosphorus-containing compound; RNA (5100 mμmoles P/g fr wt) was the main organic phosphate; phosphatidyl choline (1600 mμmoles/g fr wt) was the main phospholipid, and glucose-6-phosphate (500 mμmoles/g fr wt) the main acid-soluble phosphate ester. Amounts of other phosphorus compounds are given. Images PMID:16656910

  1. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  2. Aquatic Toxicity Assessment of Phosphate Compounds

    PubMed Central

    Kim, Eunju; Yoo, Sunkyoung; Ro, Hee-Young; Han, Hye-Jin; Baek, Yong-Wook; Eom, Ig-Chun; Kim, Pilje; Choi, Kyunghee

    2013-01-01

    Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC50) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC50) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC50 was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C50 was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth. PMID:23440935

  3. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  4. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  5. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  6. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  7. Phosphate stimulates CFTR Cl- channels.

    PubMed Central

    Carson, M R; Travis, S M; Winter, M C; Sheppard, D N; Welsh, M J

    1994-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels appear to be regulated by hydrolysis of ATP and are inhibited by a product of hydrolysis, ADP. We assessed the effect of the other product of hydrolysis, inorganic phosphate (P(i)), on CFTR Cl- channel activity using the excised inside-out configuration of the patch-clamp technique. Millimolar concentrations of P(i) caused a dose-dependent stimulation of CFTR Cl- channel activity. Single-channel analysis demonstrated that the increase in macroscopic current was due to an increase in single-channel open-state probability (po) and not single-channel conductance. Kinetic modeling of the effect of P(i) using a linear three-state model indicated that the effect on po was predominantly the result of an increase in the rate at which the channel passed from the long closed state to the bursting state. P(i) also potentiated activity of channels studied in the presence of 10 mM ATP and stimulated Cl- currents in CFTR mutants lacking much of the R domain. Binding studies with a photoactivatable ATP analog indicated that Pi decreased the amount of bound nucleotide. These results suggest that P(i) increased CFTR Cl- channel activity by stimulating a rate-limiting step in channel opening that may occur by an interaction of P(i) at one or both nucleotide-binding domains. Images FIGURE 8 PMID:7532021

  8. Phosphate Oxygen Isotopes as a Tracer for Sources and Cycling of Phosphate in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    McLaughlin, K.; Paytan, A.; Kendall, C.; Silva, S.

    2004-12-01

    Phosphorous is an essential macro-nutrient for primary productivity, but tracing sources and cycling of P in marine systems has been difficult to assess because P has only one stable isotope and can not be used as an isotopic tracer. Recently a new technique (McLaughlin et al., 2004) has been developed to track sources and cycling of phosphate in aquatic systems. This approach takes advantage of the strong P-O bond in phosphate, which is resistant to inorganic hydrolysis. The exchange of oxygen isotopes therein only occurs due to intracellular biological cycling. Because the d18O of phosphate will largely be determined by the isotopic composition of the water in which it is being recycled and because the isotopic composition of rivers and oceans is significantly different, the d18O of phosphate may be used as a tracer for different sources of phosphate to an estuarine system which is not phosphate limited. Consequently, the d18O of phosphate may be useful for quantifying the mixing of different sources of phosphate in estuarine systems. We applied this method to enhance our understanding of P sources and cycling in the San Francisco Bay. To this end we conducted four sampling transects from Coyote Creek in the South Bay to the Sacramento and San Joaquin Rivers in the North between October 2002 and August 2004. Phosphate d18O ranged from 10.1 to 20.1 per mil, with highest values at the Golden Gate and lowest at the San Joaquin River. Most of the Bay samples showed strong positive correlations with salinity, water d18O, and the inverse of phosphate concentration, suggesting a simple two-component mixing of oceanic and riverine sources. These data suggest that phosphate d18O can be an effective tool for identifying P point sources and understanding phosphate dynamics in the ecosystem.

  9. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Cade-Menun, Barbara J.; Paytan, Adina

    2006-11-01

    Elkhorn Slough, a small seasonal estuary in central California, has been subjected to increased nutrient loading from agricultural and other non-point sources. However, because nutrients do not behave conservatively, tracing nutrient sources and cycling in ecosystems like Elkhorn Slough has been difficult to assess. This is particularly true of phosphorus (P), which has only one stable isotope and cannot be used as an isotopic tracer. However, isotopic fractionation of oxygen in phosphate at surface water temperatures only occurs as a result of enzyme-mediated, biochemical reactions. Thus, if phosphate demand is low relative to input and is not heavily cycled within the ecosystem, the δ18O of phosphate will reflect the isotopic composition of phosphate sources to the system. We utilized the δ18O of dissolved inorganic phosphate (DIP) within the main channel of the slough and nearby Moss Landing Harbor and the δ18O of reactive phosphate from sediment and soil samples collected within the watershed to understand phosphate sources and cycling within Elkhorn Slough. Trends in the δ18O of DIP were seasonally consistent with high values near the mouth reflecting oceanic phosphate (19.1‰-20.3‰), dropping to a minimum value near Hummingbird Island in the central slough (point source, 14.1‰-14.4‰), and increasing again near the head of the slough, reflecting fertilizer input (18.9‰-19.3‰). Reactive phosphate δ18O values extracted from sediments and soils in the watershed range from 10.6‰ in a drainage ditch to 22.3‰ in creek sediments near agriculture fields. The wide range in phosphate δ18O values reflects the variations in land use and application of different fertilizers in this agriculturally dominated landscape. These data suggest that phosphate δ18O can be an effective tool for identifying P sources and understanding phosphate dynamics in estuarine ecosystems.

  10. Issues of natural radioactivity in phosphates

    SciTech Connect

    Schnug, E.; Haneklaus, S.; Schnier, C.; Scholten, L.C.

    1996-12-31

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizer caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs.

  11. Enzyme activity in dialkyl phosphate ionic liquids.

    PubMed

    Thomas, Marie F; Li, Luen-Luen; Handley-Pendleton, Jocelyn M; van der Lelie, Daniel; Dunn, John J; Wishart, James F

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v. PMID:22001053

  12. Do osteocytes contribute to phosphate homeostasis?

    PubMed

    Feng, Jian Q; Ye, Ling; Schiavi, Susan

    2009-07-01

    Osteocytes, the terminally differentiated cell of the osteoblast lineage, account for over 90% of all bone cells. Due to their relative inaccessibility within mineralized matrix, little is known regarding their specific functions in comparison to the well studied surface bone cells, osteoblasts and osteoclasts. Furthermore, bone is often viewed as a mineral reservoir that passively releases calcium and phosphate in response to hormones secreted from remote organs. Noncollagenous matrix proteins produced in osteocytes, such as dentin matrix protein 1 (DMP1), have also been viewed as inert scaffolds for calcium-phosphate deposition. Recent discoveries of new genetic mutations in human diseases and development of genetically engineered animal models challenge these classic paradigms, suggesting that the osteocyte plays an active role in both mineralization and total systemic phosphate regulation. In this review, we will focus on roles of osteocytes in mineralization and particularly in phosphate regulation via the DMP1- FGF23 pathway. PMID:19448536

  13. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  14. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1954-01-01

    Airborne radioactivity surveys totaling 5, 600 traverse miles were made in 10 areas in Florida, which were thought to be geologically favorable for deposits of uraniferous phosphate. Abnormal radioactivity was recorded in 8 of the 10 areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; the river-pebble samples contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphatic rock containing as much as 0. 016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported.

  15. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1953-01-01

    Airborne radioactivity surveys totalling 5,600 traverse miles were made in ten areas in Florida, which were thought to be geologically favorable for the occurrence of uraniferous phosphate deposits. Abnormal radioactivity was recorded in eight of the ten areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; samples of the river pebble contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphate rock containing as much as 0.016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported to occur.

  16. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  17. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  18. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... phosphoric acid. (b) Magnesium phosphate, dibasic, meets the specifications of the Food Chemicals Codex, 3d... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which is incorporated by reference. Copies...

  19. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  20. Product inhibition of potato tuber pyrophosphate:fructose-6-phosphate phosphotransferase by phosphate and pyrophosphate.

    PubMed

    Stitt, M

    1989-02-01

    The product inhibition of potato (Solanum tuberosum) tuber pyrophosphate:fructose-6-phosphate phosphotransferase by inorganic pyrophosphate and inorganic phosphate has been studied. The binding of substrates for the forward (glycolytic) and the reverse (gluconeogenic) reaction is random order, and occurs with only weak competition between the substrate pair fructose-6-phosphate and pyrophosphate, and between the substrate pair fructose-1,6-bisphosphate and phosphate. Pyrophosphate is a powerful inhibitor of the reverse reaction, acting competitively to fructose-1,6-biphosphate and noncompetitively to phosphate. At the concentrations needed for catalysis of the reverse reaction, phosphate inhibits the forward reaction in a largely noncompetitive mode with respect to both fructose-6-phosphate and pyrophosphate. At higher concentrations, phosphate inhibits both the forward and the reverse reaction by decreasing the affinity for fructose-2,6-bisphosphate and thus, for the other three substrates. These results allow a model to be proposed, which describes the interactions between the substrates at the catalytic site. They also suggest the enzyme may be regulated in vivo by changes of the relation between metabolites and phosphate and could act as a means of controlling the cytosolic pyrophosphate concentration. PMID:16666593

  1. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbance.

    PubMed

    Håglin, Lena

    2016-06-01

    Hypophosphatemia (HP) with or without intracellular depletion of inorganic phosphate (Pi) and adenosine triphosphate has been associated with central and peripheral nervous system complications and can be observed in various diseases and conditions related to respiratory alkalosis, alcoholism (alcohol withdrawal), diabetic ketoacidosis, malnutrition, obesity, and parenteral and enteral nutrition. In addition, HP may explain serious muscular, neurological, and haematological disorders and may cause peripheral neuropathy with paresthesias and metabolic encephalopathy, resulting in confusion and seizures. The neuropathy may be improved quickly after proper phosphate replacement. Phosphate depletion has been corrected using potassium-phosphate infusion, a treatment that can restore consciousness. In severe ataxia and tetra paresis, complete recovery can occur after adequate replacement of phosphate. Patients with multiple risk factors, often with a chronic disease and severe HP that contribute to phosphate depletion, are at risk for neurologic alterations. To predict both risk and optimal phosphate replenishment requires assessing the nutritional status and risk for re-feeding hypophosphatemia. The strategy for correcting HP depends on the severity of the underlying disease and the goal for re-establishing a phosphate balance to limit the consequences of phosphate depletion. PMID:25909152

  2. Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates.

    PubMed

    Wu, Yingben; He, Yuelin; Yin, Hongmei; Chen, Wei; Wang, Zhen; Xu, Lijuan; Zhang, Aiqun

    2012-12-01

    Microorganisms have been obtained to improve the agronomic value of rock phosphates (RPs), but the phosphorus solubilizing rate by these approaches is very slow. It is important to explore a high-efficient phosphate-solubilizing approach with a kind of microorganisms. This study aimed to isolate a high-efficient level of phosphate-solubilizing fungus from rhizosphere soil samples phosphate mines (Liuyang County, Hunan province, China) and apply it in solubilization of RPs. The experiments were carried out by the conventional methodology for morphological and biochemical fungus characterization and the analysis of 18s rRNA sequence. Then the effects of time, temperature, initial pH, phosphorus (P) sources, RPs concentration, shaking speed and silver ion on the content of soluble P released by this isolate were investigated. The results showed this isolate was identified as Galactomyces geotrichum P14 (P14) in GeneBank and the maximum amount of soluble P was 1252.13 mg L(-1) within 40 h in a modified phosphate growth agar's medium (without agar) where contained tricalcium phosphate (TCP) as sole phosphate source. At the same time, it could release phosphate and solubilize various rock phosphates. The isolated fungus can convert RPs from insoluble form into plant available form and therefore it hold great potential for biofertilizers to enhance soil fertility and promote plant growth. PMID:24261118

  3. Disorders of phosphate homeostasis and tissue mineralisation.

    PubMed

    Bergwitz, Clemens; Jüppner, Harald

    2009-01-01

    Phosphate is absorbed from the diet in the gut, stored as hydroxyapatite in the skeleton, and excreted with the urine. The balance between these compartments determines the circulating phosphate concentration. Fibroblast growth factor 23 (FGF23) has recently been discovered and is part of a previously unrecognised hormonal bone-kidney axis. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome, and dentin matrix protein 1 regulate the expression of FGF23 in osteocytes, which then is O-glycosylated by UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferase 3 and secreted into the circulation. FGF23 binds with high affinity to fibroblast growth factor receptor 1c in the presence of its co-receptor Klotho. It inhibits, either directly or indirectly, reabsorption of phosphate and the synthesis of 1,25-dihydroxy-vitamin-D by the renal proximal tubule and the secretion of parathyroid hormone by the parathyroid glands. Acquired or inborn errors affecting this newly discovered hormonal system can lead to abnormal phosphate homeostasis and/or tissue mineralisation. This chapter will provide an update on the current knowledge of the pathophysiology, the clinical presentation, diagnostic evaluation and therapy of the disorders of phosphate homeostasis and tissue mineralisation. PMID:19494665

  4. The evolution of the marine phosphate reservoir.

    PubMed

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life. PMID:20981096

  5. Characterization of phosphate films on aluminum surfaces

    SciTech Connect

    Cheng, B.; Ramamurthy, S.; McIntyre, N.S.

    1997-08-01

    A thin layer of phosphate conversion coating was formed on pure aluminum in a commercial zinc-manganese phosphating bath. A number of surface analytical techniques were used to characterize the phosphate thin films formed after immersion times ranging from 30 s to 10 min. The coating contained mainly a crystalline structure with dispersed micrometer-scale cavities. The major constituents of the phosphate film were zinc, phosphorus, and oxygen; a small amount of manganese was also detected. Based on these results, a three-stage mechanism was proposed for the formation and the growth of phosphate conversion coatings on aluminum. Electrochemical impedance spectroscopy was used to evaluate the corrosion performance of phosphated and uncoated aluminum samples in 0.50 M Na{sub 2}SO{sub 4} and 0.10 M H{sub 2}SO{sub 4} solutions. Both types of samples exhibited a passive state in the neutral solution and general corrosion behavior in the acid solution.

  6. Disorders of Phosphate Homeostasis and Tissue Mineralisation

    PubMed Central

    Bergwitz, Clemens; Jüppner, Harald

    2013-01-01

    Phosphate is absorbed from the diet in the gut, stored as hydroxyapatite in the skeleton, and excreted with the urine. The balance between these compartments determines the circulating phosphate concentration. Fibroblast growth factor 23 (FGF23) has recently been discovered and is part of a previously unrecognised hormonal bone-kidney axis. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome, and dentin matrix protein 1 regulate the expression of FGF23 in osteocytes, which then is O-glycosylated by UDP-N-acetyl-alpha-d-galactosamine: poly-peptide N-acetylgalactosaminyl-transferase 3 and secreted into the circulation. FGF23 binds with high affinity to fibroblast growth factor receptor 1c in the presence of its co-receptor Klotho. It inhibits, either directly or indirectly, reabsorption of phosphate and the synthesis of 1,25-dihydroxy-vita-min-D by the renal proximal tubule and the secretion of parathyroid hormone by the parathyroid glands. Acquired or inborn errors affecting this newly discovered hormonal system can lead to abnormal phosphate homeostasis and/or tissue mineralisation. This chapter will provide an update on the current knowledge of the pathophysiology, the clinical presentation, diagnostic evaluation and therapy of the disorders of phosphate homeostasis and tissue mineralisation. PMID:19494665

  7. Phosphate rock costs, prices and resources interaction.

    PubMed

    Mew, M C

    2016-01-15

    This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation. PMID:26412420

  8. Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor.

    PubMed

    Popova, Yulia; Thayumanavan, Palvannan; Lonati, Elena; Agrochão, Margarida; Thevelein, Johan M

    2010-02-16

    A novel concept in eukaryotic signal transduction is the use of nutrient transporters and closely related proteins as nutrient sensors. The action mechanism of these "transceptors" is unclear. The Pho84 phosphate transceptor in yeast transports phosphate and mediates rapid phosphate activation of the protein kinase A (PKA) pathway during growth induction. We have now identified several phosphate-containing compounds that act as nontransported signaling agonists of Pho84. This indicates that signaling does not require complete transport of the substrate. For the nontransported agonist glycerol-3-phosphate (Gly3P), we show that it is transported by two other carriers, Git1 and Pho91, without triggering signaling. Gly3P is a competitive inhibitor of transport through Pho84, indicating direct interaction with its phosphate-binding site. We also identified phosphonoacetic acid as a competitive inhibitor of transport without agonist function for signaling. This indicates that binding of a compound into the phosphate-binding site of Pho84 is not enough to trigger signaling. Apparently, signaling requires a specific conformational change that may be part of, but does not require, the complete transport cycle. Using Substituted Cysteine Accessibility Method (SCAM) we identified Phe(160) in TMD IV and Val(392) in TMD VIII as residues exposed with their side chain into the phosphate-binding site of Pho84. Inhibition of both transport and signaling by covalent modification of Pho84(F160C) or Pho84(V392C) showed that the same binding site is used for transport of phosphate and for signaling with both phosphate and Gly3P. Our results provide to the best of our knowledge the first insight into the molecular mechanism of a phosphate transceptor. PMID:20133652

  9. Phosphate separation and recovery from wastewater by novel electrodialysis.

    PubMed

    Zhang, Yang; Desmidt, Evelyn; Van Looveren, Arnaud; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-06-01

    Stimulated by the depletion of phosphate resources, phosphate recovery systems have been studied in recent years. The use of struvite reactors has proven to be an effective phosphate recovery process. However, the struvite reactor effluent still consists of an excessive amount of phosphate that cannot be recovered nor can be directly discharged. In this study, selectrodialysis (SED) was used to improve the efficiency of phosphate recovery from a struvite reactor: SED was implemented in such a way that phosphate from the effluent of an USAB (upflow anaerobic sludge blanket) reactor was transferred to the recycled effluent of a struvite reactor. Prior to the experiments, synthetic water with chloride and phosphate was used to characterize the efficiency of SED for phosphate separation. Results indicate that SED was successful in concentrating phosphate from the feed stream. The initial current efficiency reached 72%, with a satisfying (9 mmol L(-1)) phosphate concentration. In the experiments with the anaerobic effluent as the phosphate source for enrichment of the effluent of the struvite reactor, the phosphate flux was 16 mmol m(-2) h(-1). A cost evaluation shows that 1 kWh electricity can produce 60 g of phosphate by using a full scale stack, with a desalination rate of 95% on the feed wastewater. Finally, a struvite precipitation experiment shows that 93% of phosphate can be recovered. Thus, an integrated SED-struvite reactor process can be used to improve phosphate recovery from wastewater. PMID:23651001

  10. Effects of sex and chronic neonatal nicotine treatment on Na²⁺/K⁺/Cl⁻ co-transporter 1, K⁺/Cl⁻ co-transporter 2, brain-derived neurotrophic factor, NMDA receptor subunit 2A and NMDA receptor subunit 2B mRNA expression in the postnatal rat hippocampus.

    PubMed

    Damborsky, J C; Winzer-Serhan, U H

    2012-12-01

    Chronic exposure to nicotine during the first postnatal week in rats, a developmental period that corresponds to the third trimester of human gestation, results in sexually dimorphic long-term functional defects in the adult hippocampus. One potential cause could be the sex-specific differences in the maturation of GABA(A) receptor-mediated responses from excitatory to inhibitory, which depends on the expression of the Na(2+)/K(+)/Cl(-) co-transporter 1 (NKCC1) and the K(+)/Cl(-) co-transporter 2 (KCC2). In the rat hippocampus, this switch occurs during the first and second postnatal week in females and males, respectively, and is regulated by nicotinic receptor activation. Excitatory GABAergic signaling can increase brain-derived neurotrophic factor (BDNF) expression, which might exacerbate sex differences by impacting synaptogenesis. We hypothesized that chronic neonatal nicotine (CNN) exposure differentially regulates the expression of these co-transporters and BDNF in males and females. We use quantitative isotopic in situ hybridization to examine the expression of mRNAs for NKCC1, KCC2, BDNF, and NMDA receptor subunit 2A (NR2A) and NMDA receptor subunit 2B (NR2B) in the postnatal day (P) 5 and 8 rat hippocampi in both sexes that were either control-treated or with 6mg/kg/day nicotine in milk formula (CNN) via gastric intubation starting at P1. In line with prolonged GABAergic excitation, we found that at P5 males had significantly higher mRNA expression of NKCC1 and BDNF than females. CNN treatment resulted in a significant increase in KCC2 and BDNF mRNA expression in male but not female hippocampus (p<0.05). Males also had higher expression of NR2A and lower expression of NR2B at P5 compared to females (p<0.05). At P8, there were neither sex nor treatment effects on mRNA expression, indicating the end of a critical period for sensitivity to nicotine. These results suggest that differential maturation of GABA(A)R-mediated responses result in sex

  11. Ureolytic phosphate precipitation from anaerobic effluents.

    PubMed

    Desmidt, E; Verstraete, W; Dick, J; Meesschaert, B D; Carballa, M

    2009-01-01

    In this work, the elimination of phosphate from industrial anaerobic effluents was evaluated at lab-scale. For that purpose, the ureolytic method previously developed for the precipitation of Ca(2 + ) from wastewater as calcite was adapted for the precipitation of phosphate as struvite. In the first part of the study, computer simulations using MAPLE and PHREEQC were performed to model phosphate precipitation from wastewater as struvite. The results obtained showed that relative high concentrations of ammonium and magnesium are needed to precipitate phosphate as struvite. The total molar concentrations ratio of Mg(2 + ):PO(4) (3-)-P:NH(4) (+) required to decrease PO(4) (3-)-P concentrations from 20 to 6 mg PO(4) (3-)-P/l at pH 8.4-8.5 was estimated on 4.6:1:8. In the second part of the study, lab-scale experiments with either synthetic wastewater or the anaerobic effluent from a vegetable processing industry were carried out in batch and continuous mode. Overall, the continuous operation at a hydraulic retention time (HRT) of 2.4 h and an added molar concentration [Mg(2 + )]:[PO(4) (3-)-P]:[NH(4) (+)] ratio of 1.6:1:2.3 resulted in a constant pH value in the reactor (around 8.5) and an efficient phosphate removal (>90%) to residual levels of 1-2 mg PO(4) (3-)-P/l. Different operational conditions, such as the initial phosphate concentration, HRT and the use of CaCl(2) or MgO instead of MgCl(2), were analysed and the performance of the reactor was satisfactory under a broad range of them. Yet, overall, optimal results (higher phosphate removal) were obtained with MgCl(2). PMID:19474493

  12. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    PubMed

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  13. COMPARATIVE KINETIC STUDIES OF PHOSPHATE-LIMITED GROWTH AND PHOSPHATE UPTAKE IN PHYTOPLANKTON IN CONTINUOUS CULTURE

    EPA Science Inventory

    A comparative kinetic study of phosphate-limited growth and phosphate uptake was carried out in chemostat cultures of Anabaena flos-aquae Lyng. Breb., Ankistrodesmus falcatus (Corda) Ralfs, Asterionella formosa Hass., Fragilaria crotonensis Kitt., and Microcystis sp. Lemm. For ea...

  14. Mechanism of glyceraldehyde-3-phosphate transfer from aldolase to glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Kvassman, J; Pettersson, G; Ryde-Pettersson, U

    1988-03-01

    The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one. PMID:3350006

  15. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop.

    PubMed

    Sasseville, Louis J; Morin, Michael; Coady, Michael J; Blunck, Rikard; Lapointe, Jean-Yves

    2016-01-01

    Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR). Addition of dipicrylamine (DPA, a negatively-charged amphiphatic fluorescence "quencher") to the fluorescently-labelled oocytes is used to quench the fluorescence originating from hSGLT1 in a voltage-dependent manner. Using this arrangement with a cysteine residue introduced at position 624 in the loop between transmembrane segments 12 and 13, the voltage-dependent fluorescence signal clearly indicated that this portion of the 12-13 loop is located on the external side of the membrane. As the 12-13 loop begins on the intracellular side of the membrane, this suggests that the 12-13 loop is re-entrant. Using fluorescence resonance energy transfer (FRET), we observed that different hSGLT1 molecules are within molecular distances from each other suggesting a multimeric complex arrangement. In agreement with this conclusion, a western blot analysis showed that hSGLT1 migrates as either a monomer or a dimer in reducing and non-reducing conditions, respectively. A systematic mutational study of endogenous cysteine residues in hSGLT1 showed that a disulfide bridge is formed between the C355 residues of two neighbouring hSGLT1 molecules. It is concluded that, 1) hSGLT1 is expressed as a disulfide bridged homodimer via C355 and that 2) a portion of the intracellular 12-13 loop is re-entrant and readily accessible from the extracellular milieu. PMID:27137918

  16. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop

    PubMed Central

    Sasseville, Louis J.; Morin, Michael; Coady, Michael J.; Blunck, Rikard; Lapointe, Jean-Yves

    2016-01-01

    Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR). Addition of dipicrylamine (DPA, a negatively-charged amphiphatic fluorescence “quencher”) to the fluorescently-labelled oocytes is used to quench the fluorescence originating from hSGLT1 in a voltage-dependent manner. Using this arrangement with a cysteine residue introduced at position 624 in the loop between transmembrane segments 12 and 13, the voltage-dependent fluorescence signal clearly indicated that this portion of the 12–13 loop is located on the external side of the membrane. As the 12–13 loop begins on the intracellular side of the membrane, this suggests that the 12–13 loop is re-entrant. Using fluorescence resonance energy transfer (FRET), we observed that different hSGLT1 molecules are within molecular distances from each other suggesting a multimeric complex arrangement. In agreement with this conclusion, a western blot analysis showed that hSGLT1 migrates as either a monomer or a dimer in reducing and non-reducing conditions, respectively. A systematic mutational study of endogenous cysteine residues in hSGLT1 showed that a disulfide bridge is formed between the C355 residues of two neighbouring hSGLT1 molecules. It is concluded that, 1) hSGLT1 is expressed as a disulfide bridged homodimer via C355 and that 2) a portion of the intracellular 12–13 loop is re-entrant and readily accessible from the extracellular milieu. PMID:27137918

  17. A Novel Tricyclic Polyketide, Vanitaracin A, Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Kaneko, Manabu; Kamisuki, Shinji; Matsunaga, Hiroki; Iwamoto, Masashi; Kawai, Fumihiro; Ohashi, Hirofumi; Tsukuda, Senko; Shimura, Satomi; Suzuki, Ryosuke; Aizaki, Hideki; Sugiyama, Masaya; Park, Sam-Yong; Ito, Takayoshi; Ohtani, Naoko; Sugawara, Fumio; Tanaka, Yasuhito; Mizokami, Masashi; Sureau, Camille; Wakita, Takaji

    2015-01-01

    ABSTRACT Anti-hepatitis B virus (HBV) drugs are currently limited to nucleos(t)ide analogs (NAs) and interferons. A challenge of drug development is the identification of small molecules that suppress HBV infection from new chemical sources. Here, from a fungus-derived secondary metabolite library, we identify a structurally novel tricyclic polyketide, named vanitaracin A, which specifically inhibits HBV infection. Vanitaracin A inhibited the viral entry process with a submicromolar 50% inhibitory concentration (IC50) (IC50 = 0.61 ± 0.23 μM), without evident cytotoxicity (50% cytotoxic concentration of >256 μM; selectivity index value of >419) in primary human hepatocytes. Vanitaracin A did not affect the HBV replication process. This compound was found to directly interact with the HBV entry receptor sodium taurocholate cotransporting polypeptide (NTCP) and impaired its bile acid transport activity. Consistent with this NTCP targeting, antiviral activity of vanitaracin A was observed with hepatitis D virus (HDV) but not hepatitis C virus. Importantly, vanitaracin A inhibited infection by all HBV genotypes tested (genotypes A to D) and clinically relevant NA-resistant HBV isolate. Thus, we identified a fungal metabolite, vanitaracin A, which was a potent, well-tolerated, and broadly active inhibitor of HBV and HDV entry. This compound, or its related analogs, could be part of an antiviral strategy for preventing reinfection with HBV, including clinically relevant nucleos(t)ide analog-resistant virus. IMPORTANCE For achieving better treatment and prevention of hepatitis B virus (HBV) infection, anti-HBV agents targeting a new molecule are in great demand. Although sodium taurocholate cotransporting polypeptide (NTCP) has recently been reported to be an essential host factor for HBV entry, there is a limited number of reports that identify new compounds targeting NTCP and inhibiting HBV entry. Here, from an uncharacterized chemical library, we isolated a

  18. Modulation of the interaction between aldolase and glycerol-phosphate dehydrogenase by fructose phosphates.

    PubMed

    Vértessy, B G; Orosz, F; Ovádi, J

    1991-06-24

    Kinetics of fructose-1,6-disphosphate aldolase (EC 4.1.2.13) catalyzed conversion of fructose phosphates was analyzed by coupling the aldolase reactions to the metabolically sequential enzyme, glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), which interacts with aldolase. At low enzyme concentration poly(ethylene glycol) was added to promote complex formation of aldolase and glycerol-phosphate dehydrogenase resulting in a 3-fold increase in KM of fructose-1,6-bisphosphate and no change in Vmax. Kinetic parameters for fructose-1-phosphate conversion changed inversely upon complex formation: Vmax increased while KM remained unchanged. Gel penetration and ion-exchange chromatographic experiments showed positive modulation of the interaction of aldolase and dehydrogenase by fructose-1,6-bisphosphate. The dissociation constant of the heterologous enzyme complex decreased 10-fold in the presence of this substrate. Fructose-1-phosphate or dihydroxyacetone phosphate had no effect on the dissociation constant of the aldolase-dehydrogenase complex. In addition, titration of fluorescein-labelled glycerol-phosphate dehydrogenase with aldolase indicated that both fructose-1,6-bisphosphate and fructose-2,6-biphosphate enhanced the affinity of aldolase to glycerol-phosphate dehydrogenase. The results of the kinetic and binding experiments suggest that binding of the C-6 phosphate group of fructose-1,6-bisphosphate to aldolase complexed with dehydrogenase is sterically impeded while saturation of the C-6 phosphate group site increases the affinity of aldolase for dehydrogenase. The possible molecular mechanism of the fructose-1,6-bisphosphate modulated interaction is discussed. PMID:2065091

  19. Iron-based phosphate binders: do they offer advantages over currently available phosphate binders?

    PubMed Central

    Negri, Armando Luis; Ureña Torres, Pablo Antonio

    2015-01-01

    Increased cardiovascular morbidity and mortality has been associated with the hyperphosphatemia seen in patients with end-stage chronic kidney disease (CKD). Oral phosphate binders are prescribed in these patients to prevent intestinal absorption of dietary phosphate and reduce serum phosphate. In prospective observational cohorts they have shown to decrease all-cause and cardiovascular mortality risk. Different problems have been associated with currently available phosphate binders as positive calcium balance and impaired outcomes with calcium-based phosphate binders or increased costs with non-calcium-based phosphate binders. Iron-based phosphate binders represent a new class of phosphate binders. Several iron-based phosphate binders have undergone testing in clinical trials. Ferric citrate (JTT-751) and sucroferric oxyhydroxide (PA21) are the two iron-based binders that have passed to the clinical field after being found safe and effective in decreasing serum phosphate. Iron from ferric citrate is partially absorbed compared to sucroferric oxyhydroxide. Ferric citrate usage could result in an important reduction in erythropoiesis-stimulating agent (ESA) and IV iron usage, resulting in significant cost savings. Sucroferric oxyhydroxide was effective in lowering serum phosphorus in dialysis patients with similar efficacy to sevelamer carbonate, but with lower pill burden, and better adherence. Ferric citrate may be more suited for the treatment of chronic hyperphosphatemia in CKD patients requiring iron supplements but its use may have been hampered by potential aluminum overload, as citrate facilitates its absorption; sucroferric oxyhydroxide may be more suited for hyperphosphatemic CKD patients not requiring iron supplementation, with low pill burden. PMID:25815172

  20. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands. PMID:25345061

  1. How versatile are inositol phosphate kinases?

    PubMed Central

    Shears, Stephen B

    2004-01-01

    This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins. PMID:14567754

  2. Calcium phosphate cement scaffolds with PLGA fibers.

    PubMed

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. PMID:23827539

  3. Structural basis for phosphatidylinositol-phosphate biosynthesis

    PubMed Central

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  4. Phosphorylation of Kraft fibers with phosphate esters.

    PubMed

    Shi, Ying; Belosinschi, Dan; Brouillette, François; Belfkira, Ahmed; Chabot, Bruno

    2014-06-15

    Phosphate esters, derived from two different long-chain aliphatic alcohols, were used as phosphorylating reagents for Kraft pulp fibers. High phosphorus contents and almost non-degraded fibers were obtained by following this pathway. The phosphorylation efficiency was influenced by the alkyl chain length of PEs since the phosphorus content in modified fibers was higher for the shorter chain reagent. Due to the heterogeneous reaction environment, the amount of grafted phosphorus was found to be almost three times higher at the surface than in the bulk of the fibers. Analyses also indicated that the phosphorus was bonded to fibers as a phosphate-like structure. Furthermore, the situation seemed to be different for the fiber surface where significant amounts of phosphorus were present in more complex structures like pyrophosphate or even oligo-phosphate. PMID:24721058

  5. Structural basis for phosphatidylinositol-phosphate biosynthesis.

    PubMed

    Clarke, Oliver B; Tomasek, David; Jorge, Carla D; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Shapiro, Lawrence; Hendrickson, Wayne A; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  6. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  7. Monte Carlo simulations of phosphate polyhedron connectivity in glasses

    SciTech Connect

    ALAM,TODD M.

    2000-01-01

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  8. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    SciTech Connect

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  9. Conserved Glutamate Residues Glu-343 and Glu-519 Provide Mechanistic Insights into Cation/Nucleoside Cotransport by Human Concentrative Nucleoside Transporter hCNT3*

    PubMed Central

    Slugoski, Melissa D.; Smith, Kyla M.; Ng, Amy M. L.; Yao, Sylvia Y. M.; Karpinski, Edward; Cass, Carol E.; Baldwin, Stephen A.; Young, James D.

    2009-01-01

    Human concentrative nucleoside transporter 3 (hCNT3) utilizes electrochemical gradients of both Na+ and H+ to accumulate pyrimidine and purine nucleosides within cells. We have employed radioisotope flux and electrophysiological techniques in combination with site-directed mutagenesis and heterologous expression in Xenopus oocytes to identify two conserved pore-lining glutamate residues (Glu-343 and Glu-519) with essential roles in hCNT3 Na+/nucleoside and H+/nucleoside cotransport. Mutation of Glu-343 and Glu-519 to aspartate, glutamine, and cysteine severely compromised hCNT3 transport function, and changes included altered nucleoside and cation activation kinetics (all mutants), loss or impairment of H+ dependence (all mutants), shift in Na+:nucleoside stoichiometry from 2:1 to 1:1 (E519C), complete loss of catalytic activity (E519Q) and, similar to the corresponding mutant in Na+-specific hCNT1, uncoupled Na+ currents (E343Q). Consistent with close-proximity integration of cation/solute-binding sites within a common cation/permeant translocation pore, mutation of Glu-343 and Glu-519 also altered hCNT3 nucleoside transport selectivity. Both residues were accessible to the external medium and inhibited by p-chloromercuribenzene sulfonate when converted to cysteine. PMID:19380587

  10. Therapeutic Restoration of Spinal Inhibition via Druggable Enhancement of Potassium-Chloride Cotransporter KCC2–Mediated Chloride Extrusion in Peripheral Neuropathic Pain

    PubMed Central

    Kahle, Kristopher T.; Khanna, Arjun; Clapham, David E.; Woolf, Clifford J.

    2015-01-01

    Peripheral neuropathic pain, typified by the development of spontaneous pain or pain hypersensitivity following injury to the peripheral nervous system, is common, greatly impairs quality of life, and is inadequately treated with available drugs. Maladaptive changes in chloride homeostasis due to a decrease in the functional expression of the potassium-chloride cotransporter KCC2 in spinal cord dorsal horn neurons are a major contributor to the central disinhibition of γ-aminobutyric acid type A receptor– and glycine receptor–mediated signaling that characterizes neuropathic pain. A compelling novel analgesic strategy is to restore spinal ionotropic inhibition by enhancing KCC2-mediated chloride extrusion. We review the data on which this theory of alternative analgesia is based, discuss recent high-throughput screens that have searched for small-molecule activators of KCC2, and propose other strategies of KCC2 activation based on recent developments in the basic understanding of KCC2’s functional regulation. Exploiting the chloride-dependent functional plasticity of the γ-aminobutyric acid and glycinergic system by targeting KCC2 may be a tenable method of restoring ionotropic inhibition not only in neuropathic pain but also in other “hyperexcitable” diseases of the nervous system such as seizures and spasticity. PMID:24615367

  11. Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells.

    PubMed

    Shen, Meng-Ru; Lin, Ai-Chien; Hsu, Yueh-Mei; Chang, Tsui-Jung; Tang, Ming-Jer; Alper, Seth L; Ellory, J Clive; Chou, Cheng-Yang

    2004-09-17

    The mechanisms by which insulin-like growth factor 1 (IGF-1) cooperates with membrane ion transport system to modulate epithelial cell motility and proliferation remain poorly understood. Here, we investigated the role of electroneutral KCl cotransport (KCC), in IGF-1-dependent invasiveness and proliferation of cervical and ovarian cancer cells. IGF-1 increased KCC activity and mRNA expression in a dose- and time-dependent manner in parallel with the enhancement of regulatory volume decrease. IGF-1 treatment triggers phosphatidylinositol 3-kinase and mitogen-activated protein kinase cascades leading to the activation of Akt and extracellular signal-regulated kinase1/2 (Erk1/2), respectively. The activated Erk1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways are differentially required for IGF-1-stimulated biosyn-thesis of KCC polypeptides. Specific reduction of Erk1/2 protein levels with small interference RNA abolishes IGF-1-stimulated KCC activity. Pharmacological inhibition and genetic modification of KCC activity demonstrate that KCC is necessary for IGF-1-induced cancer cell invasiveness and proliferation. IGF-1 and KCC colocalize in the surgical specimens of cervical cancer (n = 28) and ovarian cancer (n = 35), suggesting autocrine or paracrine IGF-1 stimulation of KCC production. Taken together, our results indicate that KCC activation by IGF-1 plays an important role in IGF-1 signaling to promote growth and spread of gynecological cancers. PMID:15262997

  12. Effect of food on the pharmacokinetics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, and assessment of dose proportionality in healthy participants.

    PubMed

    Devineni, Damayanthi; Manitpisitkul, Prasarn; Murphy, Joseph; Stieltjes, Hans; Ariyawansa, Jay; Di Prospero, Nicholas A; Rothenberg, Paul

    2015-07-01

    Canagliflozin, an orally active inhibitor of sodium glucose co-transporter 2, is approved for the treatment of type-2 diabetes mellitus. The effect of food on the pharmacokinetics of 300 mg canagliflozin, and dose proportionality of 50, 100, and 300 mg canagliflozin, were evaluated, in two studies, in healthy participants. Study 1 used a randomized, 2-way crossover design: canagliflozin 300 mg/day was administered under fasted (Period-1) and fed (Period-2) conditions or vice versa. Study 2 was a 3-way crossover: participants were randomized to receive three single-doses of canagliflozin (50, 100, and 300 mg), one in each period. In both studies, treatment periods were separated by washout intervals of 10-14 days, and pharmacokinetics assessed up to 72 hours postdose of each treatment period. No clinically relevant food effects on canagliflozin exposure parameters were observed: 90% confidence intervals (CIs) for the fed/fasted geometric mean ratios of AUC∞ (ratio: 100.51; 90% CI: 89.47-112.93) and Cmax (ratio: 108.09; 90% CI: 103.45-112.95) were entirely within bioequivalence limits (80-125%). Plasma canagliflozin exposures were dose-proportional as the 90% CI of the slope of the regression line for dose-normalized AUC∞ and Cmax fell entirely within the prespecified limits of -0.124 to 0.124. No clinically significant safety issues were noted, and canagliflozin was generally well-tolerated. PMID:27136908

  13. Effects of Nt-truncation and coexpression of isolated Nt domains on the membrane trafficking of electroneutral Na+/HCO3– cotransporters

    PubMed Central

    Wang, Deng-Ke; Liu, Ying; Myers, Evan J.; Guo, Yi-Min; Xie, Zhang-Dong; Jiang, De-Zhi; Li, Jia-Min; Yang, Jichun; Liu, Mugen; Parker, Mark D.; Chen, Li-Ming

    2015-01-01

    The SLC4 genes are all capable of producing multiple variants by alternative splicing or using alternative promoters. The physiological consequences of such diversity are of great interest to investigators. Here, we identified two novel variants of the electroneutral Na+/ cotransporter NBCn1, one full-length starting with “MIPL” and the other Nt-truncated starting with “MDEL”. Moreover, we identified a new promoter of Slc4a10 encoding NBCn2 and a novel type of Nt-truncated NBCn2 starting with “MHAN”. When heterologously expressed, the new NBCn1 variants were well localized to the plasma membrane and exhibited characteristic NBCn1 activity. However, MHAN-NBCn2 was poorly localized on the plasma membrane. By deletion mutations, we identified the Nt regions important for the surface localization of NBCn2. Interestingly, coexpressing the full-length NBCn2 greatly enhances the surface abundance of the Nt-truncated NBCn2. Co-immunoprecipitation and bimolecular fluorescence complementation studies showed that the full-length and Nt-truncated NBCn2 interact with each other to form heterodimers in neuro-2A cells. Finally, we showed that the isolated Nt domain interacts with and enhances the surface abundance of the Nt-truncated NBCn2. The present study expands our knowledge of the NBCn1 and NBCn2 transcriptome, and provides insights into how the Nt domain could affect transporter function by regulating its membrane trafficking. PMID:26192895

  14. Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro.

    PubMed

    Gackière, Florian; Vinay, Laurent

    2015-04-01

    In healthy mature motoneurons (MNs), KCC2 cotransporters maintain the intracellular chloride concentration at low levels, a prerequisite for postsynaptic inhibition mediated by GABA and glycine. KCC2 expression in lumbar MNs is reduced after spinal cord injury (SCI) resulting in a depolarizing shift of the chloride equilibrium potential. Despite modeling studies indicating that such a downregulation of KCC2 function would reduce the strength of postsynaptic inhibition, physiological evidence is still lacking. The present study aimed at investigating the functional impact of a modification of KCC2 function. We focused on a well characterized disynaptic inhibitory pathway responsible for reciprocal inhibition between antagonistic muscles. We performed in vitro extracellular recordings on spinal cords isolated from rodents at the end of the first postnatal week. Genetic reduction of KCC2 expression, pharmacological blockade of KCC2, as well as SCI-induced downregulation of KCC2 all resulted in a reduction of the strength of reciprocal inhibition. We then tried to restore endogenous inhibition after SCI by means of zinc ions that have been shown to boost KCC2 function in other models. Zinc chloride indeed hyperpolarized the chloride equilibrium potential in MNs and increased reciprocal inhibition after neonatal SCI. This study demonstrates that the level of KCC2 function sets the strength of postsynaptic inhibition and suggests that the downregulation of KCC2 after SCI likely contributes to the high occurrence of flexor-extensor cocontractions in SCI patients. PMID:25834055

  15. A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats.

    PubMed

    Takeshige, Yui; Fujisawa, Yoshihide; Rahman, Asadur; Kittikulsuth, Wararat; Nakano, Daisuke; Mori, Hirohito; Masaki, Tsutomu; Ohmori, Koji; Kohno, Masakazu; Ogata, Hiroaki; Nishiyama, Akira

    2016-06-01

    Studies were performed to examine the effects of the selective sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin on urinary sodium excretion and circadian blood pressure in salt-treated obese Otsuka Long Evans Tokushima Fatty (OLETF) rats. Fifteen-week-old obese OLETF rats were treated with 1% NaCl (in drinking water), and vehicle (0.5% carboxymethylcellulose, n=10) or empagliflozin (10 mg kg(-1)per day, p.o., n=11) for 5 weeks. Blood pressure was continuously measured by telemetry system. Glucose metabolism and urinary sodium excretion were evaluated by oral glucose tolerance test and high salt challenge test, respectively. Vehicle-treated OLETF rats developed non-dipper type blood pressure elevation with glucose intolerance and insulin resistance. Compared with vehicle-treated animals, empagliflozin-treated OLETF rats showed an approximately 1000-fold increase in urinary glucose excretion and improved glucose metabolism and insulin resistance. Furthermore, empagliflozin prevented the development of blood pressure elevation with normalization of its circadian rhythm to a dipper profile, which was associated with increased urinary sodium excretion. These data suggest that empagliflozin elicits beneficial effects on both glucose homeostasis and hypertension in salt-replete obese states. PMID:26818652

  16. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes.

    PubMed

    Ferrannini, Ele; Baldi, Simona; Frascerra, Silvia; Astiarraga, Brenno; Heise, Tim; Bizzotto, Roberto; Mari, Andrea; Pieber, Thomas R; Muscelli, Elza

    2016-05-01

    Pharmacologically induced glycosuria elicits adaptive responses in glucose homeostasis and hormone release. In type 2 diabetes (T2D), along with decrements in plasma glucose and insulin levels and increments in glucagon release, sodium-glucose cotransporter 2 (SGLT2) inhibitors induce stimulation of endogenous glucose production (EGP) and a suppression of tissue glucose disposal (TGD). We measured fasting and postmeal glucose fluxes in 25 subjects without diabetes using a double glucose tracer technique; in these subjects and in 66 previously reported patients with T2D, we also estimated lipolysis (from [(2)H5]glycerol turnover rate and circulating free fatty acids, glycerol, and triglycerides), lipid oxidation (LOx; by indirect calorimetry), and ketogenesis (from circulating β-hydroxybutyrate concentrations). In both groups, empagliflozin administration raised EGP, lowered TGD, and stimulated lipolysis, LOx, and ketogenesis. The pattern of glycosuria-induced changes was similar in subjects without diabetes and in those with T2D but quantitatively smaller in the former. With chronic (4 weeks) versus acute (first dose) drug administration, glucose flux responses were attenuated, whereas lipid responses were enhanced; in patients with T2D, fasting β-hydroxybutyrate levels rose from 246 ± 288 to 561 ± 596 µmol/L (P < 0.01). We conclude that by shunting substantial amounts of carbohydrate into urine, SGLT2-mediated glycosuria results in a progressive shift in fuel utilization toward fatty substrates. The associated hormonal milieu (lower insulin-to-glucagon ratio) favors glucose release and ketogenesis. PMID:26861783

  17. Sodium–glucose cotransporter-2 inhibitor combination therapy to optimize glycemic control and tolerability in patients with type 2 diabetes: focus on dapagliflozin–metformin

    PubMed Central

    Schwartz, Stanley S; Katz, Arie

    2016-01-01

    In type 2 diabetes (T2D), early combination therapy using agents that target a number of the underlying pathophysiologic defects contributing to hyperglycemia may improve patient outcomes. For many patients, the combination of metformin with a sodium–glucose cotransporter-2 (SGLT-2) inhibitor may be a good option because these agents have complementary mechanisms of action, neutral-to-positive effects on body weight, and a low risk of hypoglycemia. This review focuses on the combination of metformin with dapagliflozin, a member of the SGLT-2 inhibitor class of antidiabetes agents. In clinical trials, the combination of dapagliflozin with metformin produced significant and sustained reductions in glycated hemoglobin and body weight in a broad range of adult patients with T2D, including those initiating pharmacotherapy and those with more advanced disease. These reductions were accompanied by modest decreases in blood pressure. Dapagliflozin as add-on therapy to metformin was well tolerated and associated with low rates of hypoglycemia. Genital infections and, in some studies, urinary tract infections were more frequent with dapagliflozin than with placebo. Early combination therapy with dapagliflozin and metformin may be a safe and appropriate treatment option that enables patients with T2D to achieve individualized glycemic goals as either initial combination therapy in treatment-naïve patients or as dapagliflozin add-on in patients inadequately controlled with metformin therapy. PMID:27042132

  18. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease

    PubMed Central

    Zhang, Yanling; Thai, Kerri; Kepecs, David M.; Gilbert, Richard E.

    2016-01-01

    Pharmacological inhibition of the proximal tubular sodium-glucose linked cotransporter-2 (SGLT2) leads to glycosuria in both diabetic and non-diabetic settings. As a consequence of their ability to modulate tubuloglomerular feedback, SGLT2 inhibitors, like agents that block the renin-angiotensin system, reduce intraglomerular pressure and single nephron GFR, potentially affording renoprotection. To examine this further we administered the SGLT2 inhibitor, dapagliflozin, to 5/6 (subtotally) nephrectomised rats, a model of progressive chronic kidney disease (CKD) that like CKD in humans is characterised by single nephron hyperfiltration and intraglomerular hypertension and where angiotensin converting enzyme inhibitors and angiotensin receptor blockers are demonstrably beneficial. When compared with untreated rats, both sham surgery and 5/6 nephrectomised rats that had received dapagliflozin experienced substantial glycosuria. Nephrectomised rats developed hypertension, heavy proteinuria and declining GFR that was unaffected by the administration of dapagliflozin. Similarly, SGLT2 inhibition did not attenuate the extent of glomerulosclerosis, tubulointerstitial fibrosis or overexpression of the profibrotic cytokine, transforming growth factor-ß1 mRNA in the kidneys of 5/6 nephrectomised rats. While not precluding beneficial effects in the diabetic setting, these findings indicate that SGLT2 inhibition does not have renoprotective effects in this classical model of progressive non-diabetic CKD. PMID:26741142

  19. Effects of Nt-truncation and coexpression of isolated Nt domains on the membrane trafficking of electroneutral Na+/HCO3- cotransporters.

    PubMed

    Wang, Deng-Ke; Liu, Ying; Myers, Evan J; Guo, Yi-Min; Xie, Zhang-Dong; Jiang, De-Zhi; Li, Jia-Min; Yang, Jichun; Liu, Mugen; Parker, Mark D; Chen, Li-Ming

    2015-01-01

    The SLC4 genes are all capable of producing multiple variants by alternative splicing or using alternative promoters. The physiological consequences of such diversity are of great interest to investigators. Here, we identified two novel variants of the electroneutral Na(+)/HCO3- cotransporter NBCn1, one full-length starting with "MIPL" and the other Nt-truncated starting with "MDEL". Moreover, we identified a new promoter of Slc4a10 encoding NBCn2 and a novel type of Nt-truncated NBCn2 starting with "MHAN". When heterologously expressed, the new NBCn1 variants were well localized to the plasma membrane and exhibited characteristic NBCn1 activity. However, MHAN-NBCn2 was poorly localized on the plasma membrane. By deletion mutations, we identified the Nt regions important for the surface localization of NBCn2. Interestingly, coexpressing the full-length NBCn2 greatly enhances the surface abundance of the Nt-truncated NBCn2. Co-immunoprecipitation and bimolecular fluorescence complementation studies showed that the full-length and Nt-truncated NBCn2 interact with each other to form heterodimers in neuro-2A cells. Finally, we showed that the isolated Nt domain interacts with and enhances the surface abundance of the Nt-truncated NBCn2. The present study expands our knowledge of the NBCn1 and NBCn2 transcriptome, and provides insights into how the Nt domain could affect transporter function by regulating its membrane trafficking. PMID:26192895

  20. A Conserved Hydrophobic Tetrad near the C Terminus of the Secretory Na+-K+-2Cl- Cotransporter (NKCC1) Is Required for Its Correct Intracellular Processing*

    PubMed Central

    Nezu, Akihiro; Parvin, Most. Nahid; Turner, R. James

    2009-01-01

    Little is known about the intracellular folding and trafficking of integral membrane proteins. Here we identify a hydrophobic amino acid tetrad (ILLV) close to the C terminus of the secretory Na+-K+-2Cl- cotransporter (NKCC1) that is important for the proper intracellular processing of this protein. This tetrad appears in a C-terminal sequence pattern that is conserved across species in a number of members of the NKCC1 gene family (slc12) of electroneutral salt transporters. We studied the effects of various mutations of these amino acids on NKCC1 transiently transfected into HEK-293 cells. Our results show that mutation of two of these residues to alanine leads to a >50% reduction in expression and complex glycosylation levels and that multiple mutations to alanine have cumulative effects. By contrast, scrambling of these amino acids, or mutation of other nearby conserved C-terminal residues, has little effect on these parameters. Mutation of ILLV to AAAA reduces complex glycosylation of NKCC1 by ∼90% and results in a protein that does not form stable dimers and is retained in the endoplasmic reticulum in a highly aggregated state. Our results are consistent with the hypothesis that mutation of the hydrophobic tetrad ILLV to AAAA leads to the ab initio misfolding and concomitant aggregation of this NKCC1 mutant, resulting in its retention in the endoplasmic reticulum. PMID:19129177

  1. Sodium-glucose cotransporter-2 inhibitor combination therapy to optimize glycemic control and tolerability in patients with type 2 diabetes: focus on dapagliflozin-metformin.

    PubMed

    Schwartz, Stanley S; Katz, Arie

    2016-01-01

    In type 2 diabetes (T2D), early combination therapy using agents that target a number of the underlying pathophysiologic defects contributing to hyperglycemia may improve patient outcomes. For many patients, the combination of metformin with a sodium-glucose cotransporter-2 (SGLT-2) inhibitor may be a good option because these agents have complementary mechanisms of action, neutral-to-positive effects on body weight, and a low risk of hypoglycemia. This review focuses on the combination of metformin with dapagliflozin, a member of the SGLT-2 inhibitor class of antidiabetes agents. In clinical trials, the combination of dapagliflozin with metformin produced significant and sustained reductions in glycated hemoglobin and body weight in a broad range of adult patients with T2D, including those initiating pharmacotherapy and those with more advanced disease. These reductions were accompanied by modest decreases in blood pressure. Dapagliflozin as add-on therapy to metformin was well tolerated and associated with low rates of hypoglycemia. Genital infections and, in some studies, urinary tract infections were more frequent with dapagliflozin than with placebo. Early combination therapy with dapagliflozin and metformin may be a safe and appropriate treatment option that enables patients with T2D to achieve individualized glycemic goals as either initial combination therapy in treatment-naïve patients or as dapagliflozin add-on in patients inadequately controlled with metformin therapy. PMID:27042132

  2. Potential for combination of dipeptidyl peptidase-4 inhibitors and sodium-glucose co-transporter-2 inhibitors for the treatment of type 2 diabetes

    PubMed Central

    Sharma, M D

    2015-01-01

    In individuals with advanced type 2 diabetes (T2DM), combination therapy is often unavoidable to maintain glycaemic control. Currently metformin is considered the first line of defence, but many patients experience gastrointestinal adverse events, necessitating an alternative treatment approach. Established therapeutic classes, such as sulphonylureas and thiazolidinediones, have some properties undesirable in individuals with T2DM, such as hypoglycaemia risk, weight gain and fluid retention, highlighting the need for newer agents with more favourable safety profiles that can be combined and used at all stages of T2DM. New treatment strategies have focused on both dipeptidyl peptidase (DPP)-4 inhibitors, which improve hyperglycaemia by stimulating insulin secretion in a glucose-dependent fashion and suppressing glucagon secretion, and sodium-glucose co-transporter-2 (SGLT2) inhibitors, which reduce renal glucose reabsorption and induce urinary glucose excretion, thereby lowering plasma glucose. The potential complimentary mechanism of action and good tolerance profile of these two classes of agents make them attractive treatment options for combination therapy with any of the existing glucose-lowering agents, including insulin. Together, the DPP-4 and SGLT2 inhibitors fulfill a need for treatments with mechanisms of action that can be used in combination with a low risk of adverse events, such as hypoglycaemia or weight gain. PMID:25690671

  3. Hypotonicity Stimulates Potassium Flux through the WNK-SPAK/OSR1 Kinase Cascade and the Ncc69 Sodium-Potassium-2-Chloride Cotransporter in the Drosophila Renal Tubule*

    PubMed Central

    Wu, Yipin; Schellinger, Jeffrey N.; Huang, Chou-Long; Rodan, Aylin R.

    2014-01-01

    The ability to osmoregulate is fundamental to life. Adult Drosophila melanogaster maintain hemolymph osmolarity within a narrow range. Osmolarity modulates transepithelial ion and water flux in the Malpighian (renal) tubules of the fly, which are in direct contact with hemolymph in vivo, but the mechanisms causing increased transepithelial flux in response to hypotonicity are unknown. Fly renal tubules secrete a KCl-rich fluid. We have previously demonstrated a requirement for Ncc69, the fly sodium-potassium-2-chloride cotransporter (NKCC), in tubule K+ secretion. Mammalian NKCCs are regulated by a kinase cascade consisting of the with-no-lysine (WNK) and Ste20-related proline/alanine-rich (SPAK)/oxidative stress response (OSR1) kinases. Here, we show that decreasing Drosophila WNK activity causes a reduction in K+ flux. Similarly, knocking down the SPAK/OSR1 homolog fray also decreases K+ flux. We demonstrate that a hierarchical WNK-Fray signaling cascade regulates K+ flux through Ncc69, because (i) a constitutively active Fray mutant rescues the wnk knockdown phenotype, (ii) Fray directly phosphorylates Ncc69 in vitro, and (iii) the effect of wnk and fray knockdown is abolished in Ncc69 mutants. The stimulatory effect of hypotonicity on K+ flux is absent in wnk, fray, or Ncc69 mutant tubules, suggesting that the Drosophila WNK-SPAK/OSR1-NKCC cascade is an essential molecular pathway for osmoregulation, through its effect on transepithelial ion flux and fluid generation by the renal tubule. PMID:25086033

  4. An Essential Role of cAMP Response Element Binding Protein in Ginsenoside Rg1-Mediated Inhibition of Na+/Glucose Cotransporter 1 Gene Expression.

    PubMed

    Wang, Chun-Wen; Su, Shih-Chieh; Huang, Shu-Fen; Huang, Yu-Chuan; Chan, Fang-Na; Kuo, Yu-Han; Hung, Mei-Whey; Lin, Hang-Chin; Chang, Wen-Liang; Chang, Tsu-Chung

    2015-12-01

    The Na(+)/glucose cotransporter 1 (SGLT1) is responsible for glucose uptake in intestinal epithelial cells. It has been shown that the intestinal SGLT1 level is significantly increased in diabetic individuals and positively correlated with the pathogenesis of diabetes. The development of targeted therapeutics that can reduce the intestinal SGLT1 expression level is, therefore, important. In this study, we showed that ginsenoside Rg1 effectively decreased intestinal glucose uptake through inhibition of SGLT1 gene expression in vivo and in vitro. Transient transfection analysis of the SGLT1 promoter revealed an essential cAMP response element (CRE) that confers the Rg1-mediated inhibition of SGLT1 gene expression. Chromatin immunoprecipitation assay and targeted CRE-binding protein (CREB) silencing demonstrated that Rg1 reduced the promoter binding of CREB and CREB binding protein associated with an inactivated chromatin status. In addition, further studies showed that the epidermal growth factor receptor (EGFR) signaling pathway also plays an essential role in the inhibitory effect of Rg1; taken together, our study demonstrates the involvement of the EGFR-CREB signaling pathway in the Rg1-mediated downregulation of SGLT1 expression, which offers a potential strategy in the development of antihyperglycemic and antidiabetic treatments. PMID:26429938

  5. The structural organization of the human Na{sup +}/Myo-inositol cotransporter (SLC5A3) gene and characterization of the promoter

    SciTech Connect

    Mallee, J.J.; Lucente, A.D.; Wang, Yi ||

    1997-12-15

    The genomic structure, transcription start site, polyadenylation signals, and promoter of the human Na{sup +}/myo-inositol cotransporter (SLC5A3) gene have been elucidated through cloning, sequencing, mRNA analyses, and reporter gene assays. The gene consists of one promoter and two exons spanning approximately 26 kb. Exon 1 contains 175 bp of 5{prime} untranslated sequence and is 15 kb upstream of exon 2. The 9.5-kb exon 2 contains the entire 2157-bp open reading frame and a large 3{prime} untranslated sequence with seven putative polyadenylation signals. Multiple messages with different-sized 3{prime} untranslated regions can be detected on Northern blots. Hypertonic stress caused mRNA levels, and primarily that of the full-length 9.5-kb transcript, to increase in cultured melanoma cells; ribonuclease protection analysis demonstrated that the transcription start site was the same in stressed as in control cells. The SLC5A3 gene functions in cellular osmoregulation and is expressed in many human tissues including the brain, kidney, and placenta. It is localized to chromosome 21q22.1. An overexpression of the SLC5A3 gene deserves consideration as a factor in the pathophysiology of Down syndrome. 36 refs., 4 figs., 1 tab.

  6. The human osmoregulatory Na{sup +}/myo-inositol cotransporter gene (SLC5A3): Molecular cloning and localization to chromosome 21

    SciTech Connect

    Berry, G.T.; Mallee, J.J.; Muenke, M.

    1995-01-20

    A human Na{sup +}/myo-inositol cotransporter (SLC5A3) gene was cloned; sequencing revealed a single intron-free open reading frame of 2157 nucleotides. Containing 718 amino acid residues, the predicted protein is highly homologous to the product of the canine osmoregulatory SLC5A3 gene. The SLC5A3 protein is number 3 of the solute carrier family 5 and was previously designated SMIT. Using fluorescence in situ hybridization, the human SLC5A3 gene was localized to band q22 on chromosome 21. Many tissues including brain demonstrate gene expression. The inability of a trisomic 21 cell to downregulate expression of three copies of this osmoregulatory gene could result in increased flux of both myo-inositol and Na{sup +} across the plasma membrane. The potential consequences include perturbations in the cell membrane potential and tissue osmolyte levels. The SLC5A3 gene may play a role in the pathogenesis of Down syndrome. 54 refs., 4 figs.

  7. Forces and Dynamics of Glucose and Inhibitor Binding to Sodium Glucose Co-transporter SGLT1 Studied by Single Molecule Force Spectroscopy*

    PubMed Central

    Neundlinger, Isabel; Puntheeranurak, Theeraporn; Wildling, Linda; Rankl, Christian; Wang, Lai-Xi; Gruber, Hermann J.; Kinne, Rolf K. H.; Hinterdorfer, Peter

    2014-01-01

    Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2′-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations. PMID:24962566

  8. Taurine Inhibits K+-Cl− Cotransporter KCC2 to Regulate Embryonic Cl− Homeostasis via With-no-lysine (WNK) Protein Kinase Signaling Pathway*

    PubMed Central

    Inoue, Koichi; Furukawa, Tomonori; Kumada, Tatsuro; Yamada, Junko; Wang, Tianying; Inoue, Rieko; Fukuda, Atsuo

    2012-01-01

    GABA inhibits mature neurons and conversely excites immature neurons due to lower K+-Cl− cotransporter 2 (KCC2) expression. We observed that ectopically expressed KCC2 in embryonic cerebral cortices was not active; however, KCC2 functioned in newborns. In vitro studies revealed that taurine increased KCC2 inactivation in a phosphorylation-dependent manner. When Thr-906 and Thr-1007 residues in KCC2 were substituted with Ala (KCC2T906A/T1007A), KCC2 activity was facilitated, and the inhibitory effect of taurine was not observed. Exogenous taurine activated the with-no-lysine protein kinase 1 (WNK1) and downstream STE20/SPS1-related proline/alanine-rich kinase (SPAK)/oxidative stress response 1 (OSR1), and overexpression of active WNK1 resulted in KCC2 inhibition in the absence of taurine. Phosphorylation of SPAK was consistently higher in embryonic brains compared with that of neonatal brains and down-regulated by a taurine transporter inhibitor in vivo. Furthermore, cerebral radial migration was perturbed by a taurine-insensitive form of KCC2, KCC2T906A/T1007A, which may be regulated by WNK-SPAK/OSR1 signaling. Thus, taurine and WNK-SPAK/OSR1 signaling may contribute to embryonic neuronal Cl− homeostasis, which is required for normal brain development. PMID:22544747

  9. Plantar injection of formalin in rats reduces the expression of a potassium chroride cotransporter KCC2 in the spinal cord and a kinase inhibitor suppresses this reduction.

    PubMed

    Tsuruga, Kenkichi; Hashimoto, Toshikazu; Kato, Ryoko; Kato, Rui; Uchida, Yousuke; Hase, Tetsutaro; Morimoto, Yuji

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is released from activated microglia during neuropathic pain and is hypothesized to downregulate the expression of the potassium chloride cotransporter 2 (KCC2) via the TrkB receptor. Previous studies reported that KCC2 is downregulated 5 min after the plantar injection of formalin in rats; however, the mechanism behind this decrease in KCC2 expression during acute inflammatory pain remains unknown. In this study, we determined whether the TrkB receptor contributes to the expression of KCC2 during the acute pain. Five minutes after the plantar injection of formalin in rats, the ratio of KCC2-immunoreactive area in layer II of the spinal cord significantly decreased on the stimulated side compared to the unaffected side. On the other hand, this response was inhibited by the injection of a kinase inhibitor, K252a, in the subarachnoid space 15 min before the formalin injection. These findings suggest that in acute pain, the TrkB receptor may contribute to the decrease in the expression of KCC2. PMID:27545000

  10. The inhibition of mitochondrial dicarboxylate transport by inorganic phosphate, some phosphate esters and some phosphonate compounds.

    PubMed

    Johnson, R N; Chappell, J B

    1974-02-01

    1. P(i) competitively inhibited succinate oxidation by intact uncoupled mitochondria in the presence of sufficient N-ethylmaleimide to block the phosphate carrier, with a K(i) of 2.5mm. 2. Of a large number of phosphate esters and phosphonate compounds, phenyl phosphate and phenylphosphonate were found to inhibit competitively uncoupled succinate oxidation by intact but not broken mitochondria. By comparison, benzoate was a relatively weak competitive inhibitor of succinate oxidation by intact mitochondria but a relatively potent inhibitor of succinate dehydrogenase. 3. Phenyl phosphate and phenylphosphonate were non-penetrant, and inhibited P(i)-dependent swelling of mitochondria suspended in isosmolar ammonium malate in a manner non-competitive with P(i). The inhibitors did not affect mitochondrial swelling when tested with P(i) alone. 4. It is concluded that: (i) phenyl phosphate and phenylphosphonate behaved as non-penetrant analogues of P(i), since their inhibitory properties were in strict contrast with those of benzoate; (ii) phenyl phosphate and phenylphosphonate interacted with the dicarboxylate carrier but not with the phosphate carrier; (iii) P(i) was effective as a competitive inhibitor of succinate oxidation because of its being either an alternative substrate for the dicarboxylate carrier or competitive with succinate for the intramitochondrial cations as proposed by Harris & Manger (1968). PMID:4822730

  11. Xenobiotic conjugation with phosphate - a metabolic rarity.

    PubMed

    Mitchell, Stephen C

    2016-08-01

    1. Although not unknown, the conjugation of a xenobiotic with phosphate appears a rarity amongst the routes available for foreign compound metabolism. This is especially true in mammals and may be somewhat surprising as conjugation with sulphate, a seemingly similar moiety, is commonplace. 2. Information from the literature, where xenobiotic phosphate conjugates have been described or suggested, has been collated and presented in this article. By bringing together this diverse material, hopefully interest will be generated in this unusual xenobiotic reaction, and perhaps further research undertaken to better understand and delineate the reasons for its relative absence from the xenobiotic scene. PMID:26611118

  12. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  13. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  14. Potentially Prebiotic Syntheses of Condensed Phosphates

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  15. Evaluation of Intestinal Phosphate Binding to Improve the Safety Profile of Oral Sodium Phosphate Bowel Cleansing

    PubMed Central

    Robijn, Stef; Vervaet, Benjamin A.; D’Haese, Patrick C.; Verhulst, Anja

    2015-01-01

    Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP) is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI) referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis) are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage) with a 12h time interval induced bowel cleansing (severe diarrhea) and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline). Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline) and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections). Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide) was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders. PMID:25790436

  16. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.

    PubMed

    Chrysochoou, Maria; Dermatas, Dimitris; Grubb, Dennis G

    2007-06-01

    Phosphate treatment has emerged as a widely accepted approach to immobilize Pb in contaminated soils and waste media, relying on the formation of the highly insoluble mineral pyromorphite as solubility-controlling phase for Pb. As such, phosphate treatment has been proposed as a Best Management Practice (BMP) for firing ranges where Pb occurs in its metallic forms and several other phases (carbonates, oxides). While pyromorphite thermodynamically has the potential to control Pb solubility at low levels, its formation is kinetically controlled by pH, the solubility of the phosphate source, and the solubility of Pb species. Treatability studies have shown that excess quantities of soluble and acidic phosphate sources, such as phosphoric acid, are necessary for successful in situ treatment. Even under these conditions, Extended X-ray Absorption Fine Structure (EXAFS), the only reliable method to identify and quantify Pb speciation, showed that Pb conversion to pyromorphite in in situ treated soils was less than 45% after 32 months. Furthermore, the use of lime (CaO) to restore soil pH in acidified soil treatments inhibited further conversion. Additionally, phosphate treatment is known to reduce bioavailability through pyromorphite formation in the intestinal tract, and the phytoaccumulation of Pb; both desirable effects for Pb-impacted areas. Given the costs of phosphate treatment, the use of biogenic phosphate sources, such as bone meal, may be a more environmentally sustainable approach toward this end. In the many studies focusing on phosphate treatment, the attendant P leaching and eutrophication have been largely overlooked, along with other issues such as the enhanced leaching of oxyanionic contaminants, such as Se, As and W. The success and sustainability of applying phosphate as a BMP in firing range soils therefore remain questionable. PMID:17360110

  17. Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis1

    PubMed Central

    Ticconi, Carla A.; Delatorre, Carla A.; Abel, Steffen

    2001-01-01

    When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mm phosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus. PMID:11706178

  18. Enteral administration of monosodium phosphate, monopotassium phosphate and monocalcium phosphate for the treatment of hypophosphataemia in lactating dairy cattle.

    PubMed

    Idink, M J; Grünberg, W

    2015-05-01

    Hypohosphataemia is a frequent finding in early lactating and anorectic dairy cows. Sodium phosphate is commonly used for oral phosphorus (P) supplementation, although other phosphate salts may present useful treatment alternatives. Objectives of this study were to compare the efficacy of monopotassium phosphate (KH2PO4) and monocalcium phosphate (Ca(H2PO4)2) to monosodium phosphate (NaH2PO4) in P-depleted cows. Furthermore, the effect of concentrated NaH2PO4 on the reticular groove reflex was studied. Six healthy but P-depleted dairy cows underwent four treatments in randomised order. Treatments consisted of intraruminal administration of NaH2PO4, KH2PO4 and Ca(H2PO4)2 providing the equivalent of 60 g P. A fourth treatment consisting of concentrated NaH2PO4 combined with acetaminophen as a marker substance was administered orally to determine whether the reticular groove reflex could be induced. Intraruminal administration of NaH2PO4 and KH2PO4 resulted in similar increases in plasma Pi concentrations ([Pi]) while intraruminal Ca(H2PO4)2 resulted in lower increases in plasma [Pi]. Oral and intraruminal administration of NaH2PO4 resulted in similar times to peak plasma [Pi] and acetaminophen concentration, indicating that concentrated NaH2PO4 administered orally did not trigger the reticular groove reflex. These results suggest that oral administration of KH2PO4 is equally effective as NaH2PO4. Oral administration of Ca(H2PO4)2 in contrast has a less pronounced effect on the plasma [Pi]. PMID:25721509

  19. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    MedlinePlus

    ... Clayton PT, Baumgartner MR, Steinmann B, Bast T, Wolf NI, Zschocke J. Pyridoxal 5'-phosphate may be ... Clayton PT, Baumgartner MR, Steinmann B, Bast T, Wolf NI, Zschocke J. Pyridoxal 5'-phosphate may be ...

  20. Regulation of hormone-sensitive renal phosphate transport.

    PubMed

    Gattineni, Jyothsna; Friedman, Peter A

    2015-01-01

    Phosphate is essential for growth and maintenance of the skeleton and for generating high-energy phosphate compounds. Evolutionary adaptation to high dietary phosphorous in humans and other terrestrial vertebrates involves regulated mechanisms assuring the efficient renal elimination of excess phosphate. These mechanisms prominently include PTH, FGF23, and Vitamin D, which directly and indirectly regulate phosphate transport. Disordered phosphate homeostasis is associated with pathologies ranging from kidney stones to kidney failure. Chronic kidney disease results in hyperphosphatemia, an elevated calcium×phosphate product with considerable morbidity and mortality, mostly associated with adverse cardiovascular events. This chapter highlights recent findings and insights regarding the hormonal regulation of renal phosphate transport along with imbalances of phosphate balance due to acquired or inherited diseases states. PMID:25817872