Science.gov

Sample records for phosphatidylinositol 3-kinase pi3k

  1. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  2. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration.

    PubMed

    Eller-Borges, Roberta; Batista, Wagner L; da Costa, Paulo E; Tokikawa, Rita; Curcio, Marli F; Strumillo, Scheilla T; Sartori, Adriano; Moraes, Miriam S; de Oliveira, Graciele A; Taha, Murched O; Fonseca, Fábio V; Stern, Arnold; Monteiro, Hugo P

    2015-05-01

    The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK. PMID:25819133

  3. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  4. Discovery of Bifunctional Oncogenic Target Inhibitors against Allosteric Mitogen-Activated Protein Kinase (MEK1) and Phosphatidylinositol 3-Kinase (PI3K).

    PubMed

    Van Dort, Marcian E; Hong, Hao; Wang, Hanxiao; Nino, Charles A; Lombardi, Rachel L; Blanks, Avery E; Galbán, Stefanie; Ross, Brian D

    2016-03-24

    The synthesis of a series of single entity, bifunctional MEK1/PI3K inhibitors achieved by covalent linking of structural analogs of the ATP-competitive PI3K inhibitor ZSTK474 and the ATP-noncompetitive MEK inhibitor PD0325901 is described. Inhibitors displayed potent in vitro inhibition of MEK1 (0.015 < IC50 (nM) < 56.7) and PI3K (54 < IC50 (nM) < 341) in enzymatic inhibition assays. Concurrent MEK1 and PI3K inhibition was demonstrated with inhibitors 9 and 14 in two tumor cell lines (A549, D54). Inhibitors produced dose-dependent decreased cell viability similar to the combined administration of equivalent doses of ZSTK474 and PD0325901. In vivo efficacy of 14 following oral administration was demonstrated in D54 glioma and A549 lung tumor bearing mice. Compound 14 showed a 95% and 67% inhibition of tumor ERK1/2 and Akt phosphorylation, respectively, at 2 h postadministration by Western blot analysis, confirming the bioavailability and efficacy of this bifunctional inhibitor strategy toward combined MEK1/PI3K inhibition. PMID:26943489

  5. Synergistic Therapeutic Effect of Cisplatin and Phosphatidylinositol 3-Kinase (PI3K) Inhibitors in Cancer Growth and Metastasis of Brca1 Mutant Tumors*

    PubMed Central

    Vassilopoulos, Athanassios; Xiao, Cuiying; Chisholm, Cristine; Chen, Weiping; Xu, Xiaoling; Lahusen, Tyler J.; Bewley, Carole; Deng, Chu-Xia

    2014-01-01

    Drug resistance and cancer metastasis are two major problems in cancer research. During a course of therapeutic treatment in Brca1-associated tumors, we found that breast cancer stem cells (CSCs) exhibit an intrinsic ability to metastasize and acquire drug resistance through distinct signaling pathways. Microarray analysis indicated that the cytoskeletal remodeling pathway was differentially regulated in CSCs, and this was further evidenced by the inhibitory role of reagents that impair this pathway in the motility of cancer cells. We showed that cisplatin treatment, although initially inhibiting cancer growth, preventing metastasis through blocking cytoskeletal remodeling, and retarding CSC motility, eventually led to drug resistance associated with a marked increase in the number of CSCs. This event was at least partially attributed to the activation of PI3K signaling, and it could be significantly inhibited by co-treatment with rapamycin. These results provide strong evidence that cytoskeletal rearrangement and PI3K/AKT signaling play distinct roles in mediating CSC mobility and viability, respectively, and blocking both pathways synergistically may inhibit primary and metastatic cancer growth. PMID:25006250

  6. A Phase Ib Study of BEZ235, a Dual Inhibitor of Phosphatidylinositol 3-Kinase (PI3K) and Mammalian Target of Rapamycin (mTOR), in Patients With Advanced Renal Cell Carcinoma

    PubMed Central

    Carlo, Maria I.; Molina, Ana M.; Lakhman, Yulia; Patil, Sujata; Woo, Kaitlin; DeLuca, John; Lee, Chung-Han; Hsieh, James J.; Feldman, Darren R.; Motzer, Robert J.

    2016-01-01

    Lessons Learned Our results highlight additional toxicities of dual PI3K/mTOR inhibition in the clinical setting that were unforeseen from preclinical models. Because of toxicity and lack of efficacy, BEZ235 should not be further developed in the current formulation for patients with renal cell carcinoma. Background. Allosteric inhibitors of the mammalian target of rapamycin complex 1 (mTORC1) are approved for advanced renal cell carcinoma (RCC). Preclinical models have suggested that dual inhibition of phosphatidylinositol 3-kinase (PI3K) and mTOR kinase may establish superior anticancer effect. We aimed to establish safety for BEZ235, a potent inhibitor of both PI3K and mTOR, in advanced RCC. Methods. Patients with advanced RCC who had previously failed standard therapy received escalating doses of BEZ235 in sachet formulation twice daily until progression or unacceptable toxicity. Primary endpoints were to identify the maximally tolerated dose (MTD) and to determine the recommended dose for the phase II study. Results. The study was terminated early because of high incidence of dose-limiting toxicities (DLTs) across all dose levels tested. Ten patients were treated with BEZ235—six with clear cell and four with non-clear cell subtypes. Five of these patients suffered DLTs: 2 of 2 patients in the original 400 mg b.i.d. cohort, 1 of 6 in the 200 mg b.i.d. cohort, and 2 of 2 in the 300 mg b.i.d. cohort. DLTs included fatigue, rash, nausea and vomiting, diarrhea, mucositis, anorexia, and dysgeusia. Five patients were evaluable for response: Two had stable disease as best response, and three had progressive disease. Conclusion. BEZ235 twice daily resulted in significant toxicity without objective responses; further development of this compound will not be pursued in this disease. PMID:27286790

  7. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  8. First-in-human Phase I study of Pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors

    PubMed Central

    Baird, Richard; Kristeleit, Rebecca; Shah, Krunal; Moreno, Victor; Clarke, Paul A.; Raynaud, Florence I.; Levy, Gallia; Ware, Joseph A; Mazina, Kathryn; Lin, Ray; Wu, Jenny; Fredrickson, Jill; Spoerke, Jill M; Lackner, Mark R; Yan, Yibing; Friedman, Lori S.; Kaye, Stan B.; Derynck, Mika K.; Workman, Paul; de Bono, Johann S.

    2014-01-01

    Purpose This first-in-human dose-escalation trial evaluated the safety, tolerability, maximal tolerated dose (MTD), dose limiting toxicities (DLTs), pharmacokinetics, pharmacodynamics and preliminary clinical activity of pictilisib (GDC-0941), an oral, potent and selective inhibitor of the Class I phosphatidylinositol-3-kinases (PI3K). Patients and Methods Sixty patients with solid tumors received pictilisib at 14 dose levels from 15 to 450mg once-daily, initially on days 1-21 every 28 days and later, utilizing continuous dosing for selected dose levels. Pharmacodynamic studies incorporated 18F-FDG-PET, and assessment of phosphorylated AKT and S6 ribosomal protein in platelet-rich plasma and tumor tissue. Results Pictilisib was well-tolerated. The most common toxicities were grade 1-2 nausea, rash and fatigue while the DLT was grade 3 maculopapular rash (450mg, 2 of 3 patients; 330mg, 1 of 7 patients). The pharmacokinetic profile was dose-proportional and supported once-daily dosing. Levels of phosphorylated serine-473 AKT were suppressed >90% in platelet rich plasma at 3 hours post-dose at the MTD and in tumor at pictilisib doses associated with AUC >20uM.hr. Significant increase in plasma insulin and glucose levels, and >25% decrease in 18F-FDG uptake by PET in 7 of 32 evaluable patients confirmed target modulation. A patient with V600E BRAF mutant melanoma and another with platinum-refractory epithelial ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated partial response by RECIST and GCIG-CA125 criteria, respectively. Conclusion Pictilisib was safely administered with a dose-proportional pharmacokinetic profile, on-target pharmacodynamic activity at dose levels ≥100mg and signs of antitumor activity. The recommended Phase II dose was continuous dosing at 330mg once-daily. PMID:25370471

  9. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer

    PubMed Central

    Liu, Pixu; Cheng, Hailing; Roberts, Thomas M.; Zhao, Jean J.

    2011-01-01

    The phosphoinositide 3-kinase (PI3K) pathway, a critical signal transduction system linking oncogenes and multiple receptor classes to many essential cellular functions, is perhaps the most commonly activated signaling pathway in human cancer. This pathway thus presents both an opportunity and a challenge for cancer therapy. Even as inhibitors that target PI3K isoforms and other major nodes in the pathway including AKT and mTOR reach clinical trials, major issues remain. Here we highlight recent progress made in our understanding of the PI3K pathway and discuss both the promises and challenges for the therapeutic development of agents targeting the PI3K pathway in cancer. PMID:19644473

  10. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  11. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer.

    PubMed

    Sutherlin, Daniel P; Bao, Linda; Berry, Megan; Castanedo, Georgette; Chuckowree, Irina; Dotson, Jenna; Folks, Adrian; Friedman, Lori; Goldsmith, Richard; Gunzner, Janet; Heffron, Timothy; Lesnick, John; Lewis, Cristina; Mathieu, Simon; Murray, Jeremy; Nonomiya, Jim; Pang, Jodie; Pegg, Niel; Prior, Wei Wei; Rouge, Lionel; Salphati, Laurent; Sampath, Deepak; Tian, Qingping; Tsui, Vickie; Wan, Nan Chi; Wang, Shumei; Wei, Binqing; Wiesmann, Christian; Wu, Ping; Zhu, Bing-Yan; Olivero, Alan

    2011-11-10

    The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer. PMID:21981714

  12. Single-Cell Analysis of Phosphoinositide 3-Kinase (PI3K) and Phosphatase and Tensin Homolog (PTEN) Activation

    PubMed Central

    Jiang, Dechen; Sims, Christopher Eldridge; Allbritton, Nancy Lynn

    2010-01-01

    Summary A single-cell assay was developed to measure the activation of phosphoinositide 3-kinase (PI3K) using microanalytical chemical separations and a fluorescently labeled lipid substrate. Phosphatidyl-inositol 4,5 bisphosphate labeled on its acyl chain with Bodipy fluorescein (Bodipy Fl PIP2) was utilized as a substrate for both in vitro and cell-based assays. Detection limits for the substrate and product of the PI3K reaction were 10 to 20 zeptomoles. In vitro assays with PI3K with and without pharmacologic inhibitors demonstrated that Bodipy Fl PIP2 was converted to phosphatidyl-inositol 3,4,5 trisphosphate (Bodipy Fl PIP3 ). Bodipy Fl PIP3 could be back converted to Bodipy Fl PIP2 by the phosphatase PTEN. When Bodipy Fl PIP2 was added to a cell lysate, 1.4 fmoles of the Bodipy Fl PIP3 were produced per ng of protein in the cytoplasmic extract in 10 min. Addition of Bodipy Fl PIP3 to a cell lysate yielded 3 fmoles of Bodipy Fl PIP2 per ng of protein in 8 min. Both Bodipy Fl PIP2 and Bodipy Fl PIP3 were measureable in single cells and the two species could be inter-converted. Under the appropriate conditions, a fluorescent diacylglycerol was also detected in single cells. When the FcεR1 receptor on the cells loaded with the fluorescent lipid was cross-linked, the amount of Bodipy Fl PIP3 generated per cell increased 4-fold over that of unstimulated cells. This production of Bodipy Fl PIP3 was blocked by wortmannin. Chemical cytometry utilizing the fluorescent lipids will be of value in understanding lipid metabolism at the single-cell level. PMID:21221426

  13. Clozapine Interaction with Phosphatidyl Inositol 3-Kinase (PI3K)/Insulin Signaling Pathway in Caenorhabditis elegans

    PubMed Central

    Karmacharya, Rakesh; Sliwoski, Gregory R.; Lundy, Miriam Y.; Suckow, Raymond F.; Cohen, Bruce M.; Buttner, Edgar A.

    2012-01-01

    Clozapine has superior and unique effects as an antipsychotic agent, but the mediators of these effects are not known. We studied behavioral and developmental effects of clozapine in Caenorhabditis elegans, as a model system to identify previously undiscovered mechanisms of drug action. Clozapine induced early larval arrest, a phenotype that was also seen with the clozapine metabolite N-desmethyl clozapine but not with any other typical or atypical antipsychotic drug tested. Mutations in the insulin receptor/daf-2 and the phosphatidyl inositol 3-kinase (PI3K)/age-1 suppressed clozapine-induced larval arrest, suggesting that clozapine may activate the insulin signaling pathway. Consistent with this notion, clozapine also increased expression of an age-1::GFP reporter. Activation of the insulin signaling pathway leads to cytoplasmic localization of the fork head transcription factor FOXO/daf-16. Clozapine produced cytoplasmic localization of DAF-16::GFP in arrested L1 larvae, in contrast to stressors such as starvation or high temperature which produce nuclear localization of DAF-16::GFP in arrested L1 larvae. Clozapine also inhibited pharyngeal pumping in C. elegans, an effect that may contribute to but did not explain clozapine-induced larval arrest. Our findings demonstrate a drug-specific interaction between clozapine and the PI3K/insulin signaling pathway in C. elegans. As this pathway is conserved across species, the results may have implications for understanding the unique effects of clozapine in humans. PMID:19322168

  14. Shiga toxin type-2 (Stx2) induces glutamate release via phosphoinositide 3-kinase (PI3K) pathway in murine neurons

    PubMed Central

    Obata, Fumiko; Hippler, Lauren M.; Saha, Progyaparamita; Jandhyala, Dakshina M.; Latinovic, Olga S.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) can cause central nervous system (CNS) damage resulting in paralysis, seizures, and coma. The key STEC virulence factors associated with systemic illness resulting in CNS impairment are Shiga toxins (Stx). While neurons express the Stx receptor globotriaosylceramide (Gb3) in vivo, direct toxicity to neurons by Stx has not been studied. We used murine neonatal neuron cultures to study the interaction of Shiga toxin type 2 (Stx2) with cell surface expressed Gb3. Single molecule imaging three dimensional STochastic Optical Reconstruction Microscopy—Total Internal Reflection Fluorescence (3D STORM-TIRF) allowed visualization and quantification of Stx2-Gb3 interactions. Furthermore, we demonstrate that Stx2 increases neuronal cytosolic Ca2+, and NMDA-receptor inhibition blocks Stx2-induced Ca2+ influx, suggesting that Stx2-mediates glutamate release. Phosphoinositide 3-kinase (PI3K)-specific inhibition by Wortmannin reduces Stx2-induced intracellular Ca2+ indicating that the PI3K signaling pathway may be involved in Stx2-associated glutamate release, and that these pathways may contribute to CNS impairment associated with STEC infection. PMID:26236186

  15. Phosphatidylinositol 3-kinase in myogenesis.

    PubMed

    Kaliman, P; Zorzano, A

    1997-08-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc. PMID:21235885

  16. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation

    PubMed Central

    2010-01-01

    Background The trophoblast lineage arises as the first differentiation event during embryogenesis. Trophoblast giant cells are one of several end-stage products of trophoblast cell differentiation in rodents. These cells are located at the maternal-fetal interface and are capable of invasive and endocrine functions, which are necessary for successful pregnancy. Rcho-1 trophoblast stem cells can be effectively used as a model for investigating trophoblast cell differentiation. In this report, we evaluated the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in the regulation of trophoblast cell differentiation. Transcript profiles from trophoblast stem cells, differentiated trophoblast cells, and differentiated trophoblast cells following disruption of PI3K signaling were generated and characterized. Results Prominent changes in gene expression accompanied the differentiation of trophoblast stem cells. PI3K modulated the expression of a subset of trophoblast cell differentiation-dependent genes. Among the PI3K-responsive genes were those encoding proteins contributing to the invasive and endocrine phenotypes of trophoblast giant cells. Conclusions Genes have been identified with differential expression patterns associated with trophoblast stem cells and trophoblast cell differentiation; a subset of these genes are regulated by PI3K signaling, including those impacting the differentiated trophoblast giant cell phenotype. PMID:20840781

  17. Clinical development of phosphatidylinositol 3-kinase inhibitors for non-Hodgkin lymphoma

    PubMed Central

    2013-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is extensively explored in cancers. It functions as an important regulator of cell growth, survival and metabolism. Activation of this pathway also predicts poor prognosis in numerous human malignancies. Drugs targeting this signaling pathway have been developed and have shown preliminary clinical activity. Accumulating evidence has highlighted the important role of PI3K in non-Hodgkin lymphoma (NHL), especially in the disease initiation and progression. Therapeutic functions of PI3K inhibitors in NHL have been demonstrated both in vivo and in vitro. This review will summarize recent advances in the activation of PI3K signaling in different types of NHL and the applications of PI3K inhibitors in NHL treatment. PMID:24252186

  18. A pivotal role of phosphatidylinositol 3-kinase in delaying of methyl jasmonate-induced leaf senescence.

    PubMed

    Liu, Jian; Zhou, Jun; Xing, Da

    2016-06-01

    Phosphatidylinositol 3-kinase (PI3K) and its product PI3P are involved in plant development and stress responses. Our recent report has suggested that down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). In vitro and in vivo experiment revealed that PI3K interact with VHA-B2. The inhibition of V-ATPase activity suppressed the vacuolar acidification and enhanced the stomatal opening, thereby accelerating MeJA-induced leaf senescence. It was shown that there is close relationship between PI3K and V-ATPase. However, the factor which initiates the PI3K-V-ATPase pathway needs further improvement, and the domain of VHA-B that binds to PI3K is still not clear enough. By using the Arabidopsis and MeJA as the research model, studies have been performed to investigate the upstream regulation of PI3K and downstream function of PI3K-V-ATPase pathway in the plant senescence. PMID:26906642

  19. Role of Extracellular Matrix Renal Tubulo-interstitial Nephritis Antigen (TINag) in Cell Survival Utilizing Integrin αvβ3/Focal Adhesion Kinase (FAK)/Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B-Serine/Threonine Kinase (AKT) Signaling Pathway*

    PubMed Central

    Xie, Ping; Kondeti, Vinay K.; Lin, Sun; Haruna, Yoshisuke; Raparia, Kirtee; Kanwar, Yashpal S.

    2011-01-01

    Tubulo-interstitial nephritis antigen (TINag) is an extracellular matrix protein expressed in tubular basement membranes. Combined mutations in TINag and nephrocystin-1 genes lead to nephronophthisis with reduced cell survival. Because certain extracellular matrix proteins are known to modulate cell survival, studies were initiated in Lewis rats lacking TINag to assess if they are more susceptible to cisplatin-induced injury. Cisplatin induced a higher degree of tubular cell damage and apoptosis in regions where TINag is expressed in a parental Wistar strain. This was accompanied by an accentuated increase in serum creatinine and Kim-1 RNA and renal expression of Bax, p53, and its nuclear accumulation, mtDNA fragmentation, and a decrease of Bcl-2. Cisplatin induced fulminant apoptosis of HK-2 cells with increased caspase3/7 activity, mtDNA fragmentation, and a reduced cell survival. These effects were partially reversed in cells maintained on TINag substratum. Far Western/solid phase assays established TINag binding with integrin αvβ3 comparable with vitronectin. Transfection of cells with αv-siRNA accentuated cisplatin-induced apoptosis, aberrant translocation of cytochrome c and Bax, and reduced cell survival. The αv-siRNA decreased expression of integrin-recruited focal adhesion kinase (FAK) and p-FAK, while increasing the expression of p53 and p-p53. Similarly, p-AKT was reduced although ILK was unaffected. Inhibition of PI3K had similar adverse cellular effects. These effects were ameliorated in cells on TINag substratum. In vivo, a higher degree of decrease in the expression of p-FAK and pAKT was observed in Lewis rats following cisplatin treatment. These in vivo and in vitro studies demonstrate an essential role of TINag in cellular survival to maintain proper tubular homeostasis utilizing integrin αvβ3 and downstream effectors. PMID:21795690

  20. Phosphatidylinositol 3-kinase-dependent, MEK-independent proliferation in response to CaR activation

    SciTech Connect

    Bilderback, Tim R.; Lee, Fred; Auersperg, Nelly; Rodland, Karin D.

    2002-07-02

    Although ovarian surface epithelial (OSE) cells are responsible for the majority of ovarian tumors, we know relatively little about the pathway(s) that are responsible for regulating their proliferation. We found that phosphatidylinositol 3-kinase (PI3K) is activated in OSE cells in response to elevated extracellular calcium, and the PI3K inhibitors wortmannin and LY29004 inhibited ERK activation by approximately 75%, similar to effects of the MEK2 inhibitor PD98059. However, in assays of proliferation we found that PD98059 inhibited proliferation by approximately 50%, while wortmannin inhibited greater than 90% of the proliferative response to elevated calcium. Expression of a dominant negative PI3K totally inhibited ERK activation in response to calcium. These results demonstrate that ERK activation cannot account for the full proliferative effect of elevated calcium in OSE cells, and suggest the presence of an ERK independent, PI3K dependant component in the proliferative response.

  1. Discovery of selective phosphatidylinositol 3-kinase inhibitors to treat hematological malignancies.

    PubMed

    Zhu, Jingyu; Hou, Tingjun; Mao, Xinliang

    2015-08-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with chemoresistance and poor prognosis of many cancers, including hematological malignancies (HM), such as leukemia, lymphomas, and multiple myeloma (MM). Targeting PI3K is emerging as a promising strategy in the treatment of these blood cancers. Recent approval of idelalisib, a specific inhibitor of PI3Kδ, for the treatment of several types of HM, is likely to attract more interest in search for novel PI3K inhibitors. Here, we discuss classic and cutting-edge techniques and strategies to identify PI3K inhibitors for the treatment of HM. Each technique has its own strengths and limitations, and their combined application will accelerate the drug discovery process with fewer associated costs. PMID:25857437

  2. Role of Phosphatidylinositol-3-Kinase Pathway in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Du, Li; Shen, Jingping; Weems, Andrew; Lu, Shi-Long

    2012-01-01

    Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field. PMID:22666248

  3. PI3K and AKT: Unfaithful Partners in Cancer.

    PubMed

    Faes, Seraina; Dormond, Olivier

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy. PMID:26404259

  4. PI3K and AKT: Unfaithful Partners in Cancer

    PubMed Central

    Faes, Seraina; Dormond, Olivier

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy. PMID:26404259

  5. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways

    PubMed Central

    Zwang, N. A.; Zhang, R.; Germana, S.; Fan, M. Y.; Hastings, W. D.; Cao, A.; Turka, L. A.

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4+ and CD8+ lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform–specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4+ and CD8+ counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4+ and CD8+ lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  6. RAS Interaction with PI3K

    PubMed Central

    Castellano, Esther; Downward, Julian

    2011-01-01

    RAS proteins are small GTPases known for their involvement in oncogenesis: around 25% of human tumors present mutations in a member of this family. RAS operates in a complex signaling network with multiple activators and effectors, which allows them to regulate many cellular functions such as cell proliferation, differentiation, apoptosis, and senescence. Phosphatidylinositol 3-kinase (PI3K) is one of the main effector pathways of RAS, regulating cell growth, cell cycle entry, cell survival, cytoskeleton reorganization, and metabolism. However, it is the involvement of this pathway in human tumors that has attracted most attention. PI3K has proven to be necessary for RAS-induced transformation in vitro, and more importantly, mice with mutations in the PI3K catalytic subunit p110α that block its ability to interact with RAS are highly resistant to endogenous oncogenic KRAS-induced lung tumorigenesis and HRAS-induced skin carcinogenesis. These animals also have a delayed development of the lymphatic vasculature. Many PI3K inhibitors have been developed that are now in clinical trials. However, it is a complex pathway with many feedback loops, and interactions with other pathways make the results of its inhibition hard to predict. Combined therapy with another RAS-regulated pathway such as RAF/MEK/ERK may be the most effective way to treat cancer, at least in animal models mimicking the human disease. In this review, we will summarize current knowledge about how RAS regulates one of its best-known effectors, PI3K. PMID:21779497

  7. Elevated PI3K signaling drives multiple Breast Cancer subtypes

    PubMed Central

    Adams, Jessica R.; Schachter, Nathan F.; Liu, Jeff C.; Zacksenhaus, Eldad; Egan, Sean E.

    2011-01-01

    Most human breast tumors have mutations that elevate signaling through a key metabolic pathway that is induced by insulin and a number of growth factors. This pathway serves to activate an enzyme known as phosphatidylinositol 3' kinase (PI3K) as well as to regulate proteins that signal in response to lipid products of PI3K. The specific mutations that activate this pathway in breast cancer can occur in genes coding for tyrosine kinase receptors, adaptor proteins linked to PI3K, catalytic and regulatory subunits of PI3K, serine/threonine kinases that function downstream of PI3K, and also phosphatidylinositol phosphatase tumor suppressors that function to antagonize this pathway. While each genetic change results in net elevation of PI3K pathway signaling, and all major breast cancer subtypes show pathway activation, the specific mutation(s) involved in any one tumor may play an important role in defining tumor subtype, prognosis and even sensitivity to therapy. Here, we describe mouse models of breast cancer with elevated PI3K signaling, and how they may be used to guide development of novel therapeutics. PMID:21646685

  8. PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis

    PubMed Central

    Jiang, Bing-Hua; Liu, Ling-Zhi

    2010-01-01

    Phosphatidylinositol 3-kinase (PI3K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway play an important role in multiple cellular functions such as cell metabolism, proliferation, cell-cycle progression, and survival. PI3K is activated by growth factors and angiogenesis inducers such as vascular endothelial growth factor (VEGF) and angiopoietins. The amplification and mutations of PI3K and the loss of the tumor suppressor PTEN are common in various kinds of human solid tumors. The genetic alterations of upstream and downstream of PI3K signaling molecules such as receptor tyrosine kinases and AKT, respectively, are also frequently altered in human cancer. PI3K signaling regulates tumor growth and angiogenesis by activating AKT and other targets, and by inducing HIF-1 and VEGF expression. Angiogenesis is required for tumor growth and metastasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and PTEN in regulating tumorigenesis and angiogenesis, and the roles of the downstream targets of PI3K for transmitting the signals. We also discuss the crosstalk of these signaling molecules and cellular events during tumor growth, metastasis, and tumor angiogenesis. Finally, we summarize the potential applications of PI3K, AKT, and mTOR inhibitors and their outcome in clinical trials for cancer treatment. PMID:19595306

  9. Progress in the Preclinical Discovery and Clinical Development of Class I and Dual Class I/IV Phosphoinositide 3-Kinase (PI3K) Inhibitors

    PubMed Central

    Shuttleworth, S.J; Silva, F.A; Cecil, A.R.L; Tomassi, C.D; Hill, T.J; Raynaud, F.I; Clarke, P.A; Workman, P

    2011-01-01

    The phosphoinositide 3-kinases (PI3Ks) constitute an important family of lipid kinase enzymes that control a range of cellular processes through their regulation of a network of signal transduction pathways, and have emerged as important therapeutic targets in the context of cancer, inflammation and cardiovascular diseases. Since the mid-late 1990s, considerable progress has been made in the discovery and development of small molecule ATP-competitive PI3K inhibitors, a number of which have entered early phase human trials over recent years from which key clinical results are now being disclosed. This review summarizes progress made to date, primarily on the discovery and characterization of class I and dual class I/IV subtype inhibitors, together with advances that have been made in translational and clinical research, notably in cancer. PMID:21649578

  10. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  11. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  12. A Genomewide Overexpression Screen Identifies Genes Involved in the Phosphatidylinositol 3-Kinase Pathway in the Human Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Koushik, Amrita B.; Welter, Brenda H.; Rock, Michelle L.

    2014-01-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen. PMID:24442890

  13. Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases

    PubMed Central

    2011-01-01

    Introduction Activation status of the phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer brain metastases (BCBMs) is largely unknown. We examined expression of phospho(p)-AKT, p-S6, and phosphatase and tensin homologue (PTEN) in BCBMs and their implications for overall survival (OS) and survival after BCBMs. Secondary analyses included PI3K pathway activation status and associations with time to distant recurrence (TTDR) and time to BCBMs. Similar analyses were also conducted among the subset of patients with triple-negative BCBMs. Methods p-AKT, p-S6, and PTEN expression was assessed with immunohistochemistry in 52 BCBMs and 12 matched primary BCs. Subtypes were defined as hormone receptor (HR)+/HER2-, HER2+, and triple-negative (TNBC). Survival analyses were performed by using a Cox model, and survival curves were estimated with the Kaplan-Meier method. Results Expression of p-AKT and p-S6 and lack of PTEN (PTEN-) was observed in 75%, 69%, and 25% of BCBMs. Concordance between primary BCs and matched BCBMs was 67% for p-AKT, 58% for p-S6, and 83% for PTEN. PTEN- was more common in TNBC compared with HR+/HER2- and HER2+. Expression of p-AKT, p-S6, and PTEN- was not associated with OS or survival after BCBMs (all, P > 0.06). Interestingly, among all patients, PTEN- correlated with shorter time to distant and brain recurrence. Among patients with TNBC, PTEN- in BCBMs was associated with poorer overall survival. Conclusions The PI3K pathway is active in most BCBMs regardless of subtype. Inhibition of this pathway represents a promising therapeutic strategy for patients with BCBMs, a group of patients with poor prognosis and limited systemic therapeutic options. Although expression of the PI3K pathway did not correlate with OS and survival after BCBM, PTEN- association with time to recurrence and OS (among patients with TNBC) is worthy of further study. PMID:22132754

  14. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    SciTech Connect

    Gottschalk, Alexander R. . E-mail: gottschalk@radonc17.ucsf.edu; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-11-15

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients.

  15. Activation of phosphatidylinositol 3-kinase by insulin.

    PubMed Central

    Ruderman, N B; Kapeller, R; White, M F; Cantley, L C

    1990-01-01

    Insulin action appears to require the protein-tyrosine kinase domain of the beta subunit of the insulin receptor. Despite this, the identities and biochemical functions of the cellular targets of this tyrosine kinase are unknown. A phosphatidylinositol 3-kinase (PI 3-kinase) that phosphorylates the D-3 position of the inositol ring associates with several protein-tyrosine kinases. Here we report that PI 3-kinase activity is immunoprecipitated from insulin-stimulated CHO cells by antiphosphotyrosine and anti-insulin receptor antibodies. Insulin as low as 0.3 nM increased immunoprecipitable PI 3-kinase activity within 1 min. Increases in activity were much greater in CHO cells expressing the human insulin receptor (100,000 receptors per cell) than in control CHO cells (2000 receptors per cell). During insulin stimulation, various lipid products of the PI 3-kinase either appeared or increased in quantity in intact cells, suggesting that the appearance of immunoprecipitable PI 3-kinase reflects an increase in its activity in vivo. These results indicate that insulin at physiological concentrations regulates the PI 3-kinase and suggest that this regulation involves a physical association between the insulin receptor and the PI 3-kinase and tyrosyl phosphorylation. Images PMID:2154747

  16. PI3K inhibitors for cancer therapy: what has been achieved so far?

    PubMed

    Wu, Peng; Liu, Tao; Hu, Yongzhou

    2009-01-01

    PI3K is a large duel lipid and protein kinase that catalyzes phosphorylation of the 3-hydroxyl position of phosphatidylinositides (PIs) and plays a crucial role in the cellular signaling network. Inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is a newly identified strategy for the discovery and development of certain therapeutic agents. Among the various subtypes of PI3K, class IA PI3Kalpha has gained increasing attention as a promising drug target for the treatment of cancer due to its frequent mutations and amplifications in various human cancers. Here, we discuss the insights gained so far relevant to the development of PI3K inhibitors for the treatment of human cancers. Emphasis is on the structure-activity relationship of PI3K inhibitors which bear the most significant PI3Kalpha inhibitory activities. We also highlight PI3K inhibitors that are currently under clinical trials for cancers. PMID:19275602

  17. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. PMID:26702053

  18. Role of phosphatidylinositol 3-kinase-gamma in mediating lung neutrophil sequestration and vascular injury induced by E. coli sepsis.

    PubMed

    Ong, Evan; Gao, Xiao-Pei; Predescu, Dan; Broman, Michael; Malik, Asrar B

    2005-12-01

    We addressed the in vivo role of phosphatidylinositol 3-kinase-gamma (PI3K-gamma) in signaling the sequestration of polymorphonuclear leukocytes (PMNs) in lungs and in the mechanism of inflammatory lung vascular injury. We studied mice with deletion of the p110 catalytic subunit of PI3K-gamma (PI3K-gamma(-/-) mice). We measured lung tissue PMN sequestration, microvascular permeability, and edema formation after bacteremia induced by intraperitoneal Escherichia coli challenge. PMN infiltration into the lung interstitium in PI3K-gamma(-/-) mice as assessed morphometrically was increased 100% over that in control mice within 1 h after bacterial challenge. PI3K-gamma(-/-) mice also developed a greater increase in lung microvascular permeability after E. coli challenge, resulting in edema formation. The augmented lung tissue PMN sequestration in PI3K-gamma(-/-) mice was associated with increased expression of the PMN adhesive proteins CD47 and beta(3)-integrins. We observed increased association of CD47 and beta(3)-integrins with the extracellular matrix protein vitronectin in lungs of PI3K-gamma(-/-) mice after E. coli challenge. PMNs from these mice also showed increased beta(3)-integrin expression and augmented beta(3)-integrin-dependent PMN adhesion to vitronectin. These results point to a key role of PMN PI3K-gamma in negatively regulating CD47 and beta(3)-integrin expression in gram-negative sepsis. PI3K-gamma activation in PMNs induced by E. coli may modulate the extent of lung tissue PMN sequestration secondary to CD47 and beta(3)-integrin expression. Therefore, the level of PI3K-gamma activation may be an important determinant of PMN-dependent lung vascular injury. PMID:16183669

  19. Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy

    PubMed Central

    Kim, Jeong-Ah; Im, Suhjean; Cantley, Lewis C.; Kim, Dae-Won

    2016-01-01

    Phosphatidylinositol-3-kinase (PI3K) is a key regulator of diverse biological processes including cell proliferation, migration, survival, and differentiation. While a role of PI3K in chondrocyte differentiation has been suggested, its precise mechanisms of action are poorly understood. Here we show that PI3K signaling can down-regulate Nkx3.2 at both mRNA and protein levels in various chondrocyte cultures in vitro. In addition, we have intriguingly found that p85β, not p85α, is specifically employed as a regulatory subunit for PI3K-mediated Nkx3.2 suppression. Furthermore, we found that regulation of Nkx3.2 by PI3K requires Rac1–PAK1, but not Akt, signaling downstream of PI3K. Finally, using embryonic limb bud cultures, ex vivo long bone cultures, and p85β knockout mice, we demonstrated that PI3K-mediated suppression of Nkx3.2 in chondrocytes plays a role in the control of cartilage hypertrophy during skeletal development in vertebrates. PMID:26363466

  20. Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy.

    PubMed

    Kim, Jeong-Ah; Im, Suhjean; Cantley, Lewis C; Kim, Dae-Won

    2015-12-01

    Phosphatidylinositol-3-kinase (PI3K) is a key regulator of diverse biological processes including cell proliferation, migration, survival, and differentiation. While a role of PI3K in chondrocyte differentiation has been suggested, its precise mechanisms of action are poorly understood. Here we show that PI3K signaling can down-regulate Nkx3.2 at both mRNA and protein levels in various chondrocyte cultures in vitro. In addition, we have intriguingly found that p85β, not p85α, is specifically employed as a regulatory subunit for PI3K-mediated Nkx3.2 suppression. Furthermore, we found that regulation of Nkx3.2 by PI3K requires Rac1-PAK1, but not Akt, signaling downstream of PI3K. Finally, using embryonic limb bud cultures, ex vivo long bone cultures, and p85β knockout mice, we demonstrated that PI3K-mediated suppression of Nkx3.2 in chondrocytes plays a role in the control of cartilage hypertrophy during skeletal development in vertebrates. PMID:26363466

  1. Phosphoinositide 3-kinase (PI3K) and the nutrient sensing mTOR (mammalian target of rapamycin) pathways control T cell migration

    PubMed Central

    Finlay, David; Cantrell, Doreen

    2012-01-01

    The established role for Phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3) signalling pathways is to regulate cell metabolism. More recently it has emerged that PI(3,4,5)P3 signalling via mTOR and Foxo transcription factors also controls lymphocyte trafficking by determining the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. In quiescent T cells, non-phosphorylated active Foxos maintain expression of KLF2, a transcription factor that regulates expression of the chemokine receptors CCR7 and S1P1and the adhesion receptor CD62L that together control T cell transmigration into secondary lymphoid tissues. PI(3,4,5)P3 mediated activation of Protein Kinase B phosphorylates and inactivates Foxos thereby terminating expression of KLF2 and its target genes. The correct localization of lymphocytes is essential for effective immune responses and the ability of PI3K and mTOR to regulate expression of chemokine receptor and adhesion molecules puts these signaling molecules at the core of the molecular mechanisms that control lymphocyte trafficking. PMID:20146713

  2. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    SciTech Connect

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H.

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  3. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    SciTech Connect

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2013-08-16

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed by the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.

  4. Supramolecular nanoparticles that target phosphatidylinositol-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy

    PubMed Central

    Kulkarni, Ashish A.; Roy, Bhaskar; Rao, Poornima S.; Wyant, Gregory A.; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M.; Sengupta, Shiladitya

    2013-01-01

    The centrality of phosphatidylinositol-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intra-tumoral concentration and an insulin resistance ‘class effect’. The current study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG. The supramolecular nanoparticles that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-RasLSL/+/Ptenfl/fl ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the supramolecular nanoparticles highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the supramolecular nanoparticles exerted a temporally-sustained inhibition of phosphorylation of Akt, mTOR, S6K and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of supramolecular nanoparticles abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer treatment

  5. Pharmacodynamic Biomarker Development for PI3K Pathway Therapeutics

    PubMed Central

    Josephs, Debra H.; Sarker, Debashis

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is integral to many essential cell processes, including cell growth, differentiation, proliferation, motility, and metabolism. Somatic mutations and genetic amplifications that result in activation of the pathway are frequently detected in cancer. This has led to the development of rationally designed therapeutics targeting key members of the pathway. Critical to the successful development of these drugs are pharmacodynamic biomarkers that aim to define the degree of target and pathway inhibition. In this review, we discuss the pharmacodynamic biomarkers that have been utilized in early-phase clinical trials of PI3K pathway inhibitors. We focus on the challenges related to development and interpretation of these assays, their optimal integration with pharmacokinetic and predictive biomarkers, and future strategies to ensure successful development of PI3K pathway inhibitors within a personalized medicine paradigm for cancer. PMID:26917948

  6. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein

    SciTech Connect

    Zhu, Zhenqi; He, Xin; Johnson, Carla; Stoops, John; Eaker, Amanda E.; Stoffer, David S.; Bell, Aaron; Zarnegar, Reza; DeFrances, Marie C. . E-mail: defrancesmc@upmc.edu

    2007-06-22

    Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cell based assays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.

  7. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    SciTech Connect

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori . E-mail: hirokato@pharm.kyoto-u.ac.jp

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.

  8. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism.

    PubMed

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85alpha and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1. PMID:17570359

  9. PI3K in cancer: divergent roles of isoforms, modes of activation, and therapeutic targeting

    PubMed Central

    Thorpe, Lauren M.; Yuzugullu, Haluk; Zhao, Jean J.

    2015-01-01

    Preface Phosphatidylinositol 3-Kinases (PI3Ks) are critical coordinators of intracellular signaling in response to extracellular stimuli. Hyperactivation of PI3K signaling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of distinct PI3K isoforms in normal and oncogenic signaling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic. PMID:25533673

  10. Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells.

    PubMed

    Truitt, K E; Hicks, C M; Imboden, J B

    1994-03-01

    The T cell surface molecule CD28 can provide costimulatory signals that permit the full activation of T cells. Here we demonstrate that stimulation of CD28, either by B7, its natural ligand, or by the anti-CD28 monoclonal antibody 9.3, induces an association between CD28 and phosphatidylinositol 3-kinase (PI3-K) in Jurkat T cells, raising the possibility that an interaction with PI3-K contributes to CD28-mediated signaling. To examine the mechanism of the association, we synthesized tyrosine-phosphorylated oligopeptides corresponding to each of the four tyrosines in the CD28 cytoplasmic domain. When added to lysates of B7-stimulated Jurkat cells, the oligopeptide corresponding to Tyr 173 inhibits the coimmunoprecipitation of PI3-K with CD28; the other oligopeptides have no effect. Tyr 173 is contained within the sequence YMNM, a motif that is also found in the platelet-derived growth factor receptor and that, when phosphorylated, forms a high affinity binding site for the p85 subunit of PI3-K. These observations suggest that phosphorylation of Tyr 173 may mediate the interaction between CD28 and PI3-K. However, because CD28 is not known to be phosphorylated, it remains possible that CD28 interacts with PI3-K through a mechanism independent of tyrosine phosphorylation. PMID:7509360

  11. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana.

    PubMed

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2014-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  12. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    PubMed Central

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2015-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  13. Illuminating the phosphatidylinositol 3-kinase/Akt pathway

    NASA Astrophysics Data System (ADS)

    Ni, Qiang; Fosbrink, Matthew; Zhang, Jin

    2008-02-01

    Genetically encodable fluorescent biosensors based on fluorescence resonance energy transfer (FRET) are being developed for analyzing spatiotemporal dynamics of various signaling events in living cells, as these events are often dynamically regulated and spatially compartmentalized within specific signaling context. In particular, to investigate the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the cellular context, we have developed a series of such biosensors that enable dynamic visualization of several key signaling events in this pathway, namely InPAkt for lipid second messenger dynamics, BAKR for Akt activity, and ReAktion for the action of Akt during its multi-step activation process. Discussed here are several studies that have been carried out with these novel biosensors. First, we examined nuclear phosphatidylinositol-3,4,5-triphosphate (PIP 3) in living cells using nucleus-targeted InPAkt. Second, we analyzed signal propagation from the plasma membrane to the nucleus by using plasma membrane-targeted InPAkt and nucleus-targeted BKAR to simultaneously monitor PIP 3 dynamics and Akt activity in the same cell. Of note, results from these co-imaging experiments suggest that active Akt can dissociate from the plasma membrane and translocate into the nucleus in the presence of high levels of PIP 3 at the plasma membrane. This finding has led to a further study of the action of Akt during its activation process, particularly focusing on how Akt dissociates from the membrane. In this regard, a live-cell molecular analysis using ReAktion reveals a conformational change in Akt that is critically dependent on the existence of a phosphorylatable T308 in the activation loop. Subsequently this has led to the discovery of new regulatory roles of this critical phosphorylation event of Akt for ensuring its proper activation and function.

  14. Phosphatidylinositol 3-Kinase Plays a Vital Role in Regulation of Rice Seed Vigor via Altering NADPH Oxidase Activity

    PubMed Central

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination. PMID:22448275

  15. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    SciTech Connect

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.

  16. Berberine Induced Apoptosis of Human Osteosarcoma Cells by Inhibiting Phosphoinositide 3 Kinase/Protein Kinase B (PI3K/Akt) Signal Pathway Activation

    PubMed Central

    2016-01-01

    Background: Osteosarcoma is a malignant tumor with high mortality but effective therapy has not yet been developed. Berberine, an isoquinoline alkaloid component in several Chinese herbs including Huanglian, has been shown to induce growth inhibition and the apoptosis of certain cancer cells. The aim of this study was to determine the role of berberine on human osteosarcoma cell lines U2OS and its potential mechanism. Methods: The proliferation effect of U20S was exanimed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and the percentage of apoptotic cells were determined by flow cytometric analysis. The expression of PI3K, p-Akt, Bax, Bcl-2, cleavage-PARP and Caspase3 were detected by Western blott. Results: Berberine treatment caused dose-dependent inhibiting proliferation and inducing apoptosis of U20S cell. Mechanistically, berberine inhibits PI3K/AKT activation that, in turn, results in up-regulating the expression of Bax, and PARP and down-regulating the expression of Bcl-2 and caspase3. In all, berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. Conclusion: Berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. PMID:27398330

  17. Phosphoinositide 3-Kinase (PI3K) Subunit p110δ Is Essential for Trophoblast Cell Differentiation and Placental Development in Mouse

    PubMed Central

    Hu, Xiwen; Li, Jiangchao; Zhang, Qianqian; Zheng, Lingyun; Wang, Guang; Zhang, Xiaohan; Zhang, Jingli; Gu, Quliang; Ye, Yuxiang; Guo, Sun-Wei; Yang, Xuesong; Wang, Lijing

    2016-01-01

    Maternal PI3K p110δ has been implicated in smaller litter sizes in mice, but its underlying mechanism remains unclear. The placenta is an indispensable chimeric organ that supports mammalian embryonic development. Using a mouse model of genetic inactivation of PI3K p110δ (p110δD910A/D910A), we show that fetuses carried by p110δD910A/D910A females were growth retarded and showed increased mortality in utero mainly during placentation. The placentas in p110δD910A/D910A females were anomalously anemic, exhibited thinner spongiotrophoblast layer and looser labyrinth zone, which indicate defective placental vasculogenesis. In addition, p110δ was detected in primary trophoblast giant cells (P-TGC) at early placentation. Maternal PI3K p110δ inactivation affected normal TGCs generation and expansion, impeded the branching of chorioallantoic placenta but enhanced the expression of matrix metalloproteinases (MMP-2, MMP-12). Poor vasculature support for the developing fetoplacental unit resulted in fetal death or gross growth retardation. These data, taken together, provide the first in vivo evidence that p110δ may play an important role in placental vascularization through manipulating trophoblast giant cell. PMID:27306493

  18. The PI3K/AKT pathway in the pathogenesis of prostate cancer.

    PubMed

    Chen, Huixing; Zhou, Lan; Wu, Xiaorong; Li, Rongbing; Wen, Jiling; Sha, Jianjun; Wen, Xiaofei

    2016-01-01

    Despite recent advances in our understanding of the biological behavior of prostate cancer (PCa), PCa is becoming the most common malignancy in men worldwide. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in prostate carcinogenesis. Inflammatory cytokines (CCR9, IL-6, and TLR3) regulate PI3K/AKT signaling during apoptosis of PCa cells, and PI3K/AKT signaling participates with androgen-, 1alpha,25(OH)2-vitamin D3-, and prostaglandin-associated mechanisms and is regulated by ErbB, EGFR, and the HER family during cell growth. During metastasis of PCa cells, the PI3K/AKT/NF-kappaB/BMP-2-Smad axis, PTEN/PI3K/AKT pathway, and PI3K/AKT/mTOR signaling regulates tumor cell metastasis and invasion. The present review focuses on the PI3K/AKT signal pathway and discusses the role of the PI3K/AKT signal pathway in PCa tumorigenesis. PMID:27100493

  19. Drugging PI3K in cancer: refining targets and therapeutic strategies.

    PubMed

    Yap, Timothy A; Bjerke, Lynn; Clarke, Paul A; Workman, Paul

    2015-08-01

    The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling routes in human cancers, making it a rational and important target for innovative anticancer drug development and precision medicine. The three main classes of PI3K inhibitors currently in clinical testing comprise dual pan-Class I PI3K/mTOR inhibitors, pan-Class I PI3K inhibitors lacking significant mTOR activity and isoform-selective PI3K inhibitors. A major step forward in recent years is the progression of over 30 small molecule PI3K inhibitors into clinical trials and the first regulatory approval of the PI3Kδ inhibitor idelalisib for multiple B-cell malignancies. This review article focuses on the progress made in the discovery and development of novel PI3K inhibitors, with an emphasis on antitumour activity and tolerability profiles for agents that have entered clinical trials. We also discuss the key issues of drug resistance, patient selection approaches and rational targeted combinations. Finally, we envision the future development and use of PI3K inhibitors for the treatment of patients with a range of malignancies. PMID:26117819

  20. Drugging PI3K in cancer: refining targets and therapeutic strategies

    PubMed Central

    Yap, Timothy A; Bjerke, Lynn; Clarke, Paul A; Workman, Paul

    2015-01-01

    The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling routes in human cancers, making it a rational and important target for innovative anticancer drug development and precision medicine. The three main classes of PI3K inhibitors currently in clinical testing comprise dual pan-Class I PI3K/mTOR inhibitors, pan-Class I PI3K inhibitors lacking significant mTOR activity and isoform-selective PI3K inhibitors. A major step forward in recent years is the progression of over 30 small molecule PI3K inhibitors into clinical trials and the first regulatory approval of the PI3Kδ inhibitor idelalisib for multiple B-cell malignancies. This review article focuses on the progress made in the discovery and development of novel PI3K inhibitors, with an emphasis on antitumour activity and tolerability profiles for agents that have entered clinical trials. We also discuss the key issues of drug resistance, patient selection approaches and rational targeted combinations. Finally, we envision the future development and use of PI3K inhibitors for the treatment of patients with a range of malignancies. PMID:26117819

  1. Phosphatidylinositol 3-kinase signaling determines kidney size

    PubMed Central

    Chen, Jian-Kang; Nagai, Kojiro; Chen, Jianchun; Plieth, David; Hino, Masayo; Xu, Jinxian; Sha, Feng; Ikizler, T. Alp; Quarles, C. Chad; Threadgill, David W.; Neilson, Eric G.; Harris, Raymond C.

    2015-01-01

    Kidney size adaptively increases as mammals grow and in response to the loss of 1 kidney. It is not clear how kidneys size themselves or if the processes that adapt kidney mass to lean body mass also mediate renal hypertrophy following unilateral nephrectomy (UNX). Here, we demonstrated that mice harboring a proximal tubule–specific deletion of Pten (PtenptKO) have greatly enlarged kidneys as the result of persistent activation of the class I PI3K/mTORC2/AKT pathway and an increase of the antiproliferative signals p21Cip1/WAF and p27Kip1. Administration of rapamycin to PtenptKO mice diminished hypertrophy. Proximal tubule–specific deletion of Egfr in PtenptKO mice also attenuated class I PI3K/mTORC2/AKT signaling and reduced the size of enlarged kidneys. In PtenptKO mice, UNX further increased mTORC1 activation and hypertrophy in the remaining kidney; however, mTORC2-dependent AKT phosphorylation did not increase further in the remaining kidney of PtenptKO mice, nor was it induced in the remaining kidney of WT mice. After UNX, renal blood flow and amino acid delivery to the remaining kidney rose abruptly, followed by increased amino acid content and activation of a class III PI3K/mTORC1/S6K1 pathway. Thus, our findings demonstrate context-dependent roles for EGFR-modulated class I PI3K/mTORC2/AKT signaling in the normal adaptation of kidney size and PTEN-independent, nutrient-dependent class III PI3K/mTORC1/S6K1 signaling in the compensatory enlargement of the remaining kidney following UNX. PMID:25985273

  2. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function.

    PubMed

    Yoshioka, Kazuaki; Yoshida, Kotaro; Cui, Hong; Wakayama, Tomohiko; Takuwa, Noriko; Okamoto, Yasuo; Du, Wa; Qi, Xun; Asanuma, Ken; Sugihara, Kazushi; Aki, Sho; Miyazawa, Hidekazu; Biswas, Kuntal; Nagakura, Chisa; Ueno, Masaya; Iseki, Shoichi; Schwartz, Robert J; Okamoto, Hiroshi; Sasaki, Takehiko; Matsui, Osamu; Asano, Masahide; Adams, Ralf H; Takakura, Nobuyuki; Takuwa, Yoh

    2012-10-01

    The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is localized in endosomes, the trans-Golgi network and clathrin-coated vesicles; however, its functional role is not well understood. Global or endothelial-cell-specific deficiency of PI3K-C2α resulted in embryonic lethality caused by defects in sprouting angiogenesis and vascular maturation. PI3K-C2α knockdown in endothelial cells resulted in a decrease in the number of PI3-phosphate-enriched endosomes, impaired endosomal trafficking, defective delivery of VE-cadherin to endothelial cell junctions and defective junction assembly. PI3K-C2α knockdown also impaired endothelial cell signaling, including vascular endothelial growth factor receptor internalization and endosomal RhoA activation. Together, the effects of PI3K-C2α knockdown led to defective endothelial cell migration, proliferation, tube formation and barrier integrity. Endothelial PI3K-C2α deficiency in vivo suppressed postischemic and tumor angiogenesis and diminished vascular barrier function with a greatly augmented susceptibility to anaphylaxis and a higher incidence of dissecting aortic aneurysm formation in response to angiotensin II infusion. Thus, PI3K-C2α has a crucial role in vascular formation and barrier integrity and represents a new therapeutic target for vascular disease. PMID:22983395

  3. Clionosterol and ethyl cholestan-22-enol isolated from the rhizome of Polygala tenuifolia inhibit phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Le, Thi Kim Van; Jeong, Jin Ju; Kim, Dong-Hyun

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt inhibitors were isolated from the rhizome of Polygala tenuifolia WILLD (PT, Polygalaceae), which has been used in traditional Chinese medicine for inflammation, dementia, amnesia, neurasthenia and cancer, by activity-guided fractionation. For the assay of PI3K/Akt pathway, cytoprotective Tat-transduced CHME5 cells, which are the cytoprotective phenotype against lypopolysaccharide (LPS)/cycloheximide (CHX), were used. We isolated 4 anti-cytoprotective compounds, clionasterol (1), ethyl cholestan-22-enol (2), 3-O-β-D-glucosyl ethyl cholestan-22-enol (3), and 3-O-β-D-glucopyranosyl clionasterol (4) from EtOAc fraction of PT against Tat-transduced CHME5 cells. Of them, (1) and (2) most potently abolished cytoprotective effect of Tat-transduced CHME5 cells. These constituents (1) and (2) inhibited the activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and its downstream molecules, Akt/glycogen synthase kinase (GSK)3β, in PI3K/Akt cell survival signaling pathway, but did not suppress the activation of PI3K. Based on these finding, (1) and (2) may abolish the cytoprotective phenotype of Tat-transduced CHME5 cells by inhibiting PDK1 phosphorylation in PI3K/Akt pathway. PMID:22863942

  4. Therapeutic targeting of the phosphatidylinositol 3-kinase signaling pathway: novel targeted therapies and advances in the treatment of colorectal cancer

    PubMed Central

    Yu, Ming

    2012-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the USA, and more effective treatment of CRC is therefore needed. Advances in our understanding of the molecular pathogenesis of this malignancy have led to the development of novel molecule-targeted therapies. Among the most recent classes of targeted therapies being developed are inhibitors targeting the phosphatidylinositol 3-kinase (PI3K) signaling pathway. As one of the most frequently deregulated pathways in several human cancers, including CRC, aberrant PI3K signaling plays an important role in the growth, survival, motility and metabolism of cancer cells. Targeting this pathway therefore has considerable potential to lead to novel and more effective treatments for CRC. Preclinical and early clinical studies have revealed the potential efficacy of drugs that target PI3K signaling for the treatment of CRC. However, a major challenge that remains is to study these agents in phase III clinical trials to see whether these early successes translate into better patient outcomes. In this review we focus on providing an up-to-date assessment of our current understanding of PI3K signaling biology and its deregulation in the molecular pathogenesis of CRC. Advances in available agents and challenges in targeting the PI3K signaling pathway in CRC treatment will be discussed and placed in the context of the currently available therapies for CRC. PMID:22973417

  5. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells.

    PubMed

    Bekhite, Mohamed M; Müller, Veronika; Tröger, Sebastian H; Müller, Jörg P; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2016-04-01

    The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration. PMID:26553657

  6. Activation of phosphatidylinositol 3-kinase/Akt signaling mediates sorafenib-induced invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Wang, Haiyong; Xu, Litao; Zhu, Xiaoyan; Wang, Peng; Chi, Huiying; Meng, Zhiqiang

    2014-10-01

    Sorafenib, an antiangiogenic agent, can promote tumor invasion and metastasis. The phosphatidylinositol 3-kinase (PI3K)/Akt/Snail-dependent pathway plays an important role in tumor invasion and metastasis. Yet, little is known concerning the role of the PI3K/Akt/Snail-dependent pathway in sorafenib‑induced invasion and metastasis of hepatic carcinoma (HCC). A human HCC orthotopic xenograft model was established, and sorafenib (30 mg/kg/day) was administered orally. Tumor growth and intrahepatic metastasis were assessed, and immunohistochemistry was applied to analyze the activation of the PI3K/Akt/Snail-dependent pathway. HCC cell lines were treated with sorafenib (1, 5 and 10 µM), and proliferation, migration and invasion were assessed. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to examine the related gene expression of epithelial-mesenchymal transition (EMT) markers and the PI3K/Akt/Snail-dependent pathway. Sorafenib inhibited tumor growth and promoted intrahepatic invasion and metastasis of the orthotopic tumors grown from SMMC7721-GFP cells in vivo. Additionally, sorafenib promoted EMT and invasion and metastasis of HCC cells in vitro. Importantly, sorafenib enhanced PI3K and Akt activation and upregulation of the expression of transcription factor Snail, a critical EMT mediator. The upregulation of transcription factor Snail expression by sorafenib may be related to activation of the PI3K/AKT signaling pathway. The PI3K/Akt/Snail-dependent pathway may mediate the pro-invasive and pro-metastatic effects of sorafenib on HCC by inducing EMT. PMID:25070581

  7. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  8. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation.

    PubMed

    Toulany, Mahmoud; Rodemann, H Peter

    2015-12-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will

  9. Adaptive Mitochondrial Reprogramming and Resistance to PI3K Therapy

    PubMed Central

    Ghosh, Jagadish C.; Siegelin, Markus D.; Vaira, Valentina; Faversani, Alice; Tavecchio, Michele; Chae, Young Chan; Lisanti, Sofia; Rampini, Paolo; Giroda, Massimo; Caino, M. Cecilia; Seo, Jae Ho; Kossenkov, Andrew V.; Michalek, Ryan D.; Schultz, David C.; Bosari, Silvano; Languino, Lucia R.

    2015-01-01

    Background: Small molecule inhibitors of phosphatidylinositol-3 kinase (PI3K) have been developed as molecular therapy for cancer, but their efficacy in the clinic is modest, hampered by resistance mechanisms. Methods: We studied the effect of PI3K therapy in patient-derived tumor organotypic cultures (from five patient samples), three glioblastoma (GBM) tumor cell lines, and an intracranial model of glioblastoma in immunocompromised mice (n = 4–5 mice per group). Mechanisms of therapy-induced tumor reprogramming were investigated in a global metabolomics screening, analysis of mitochondrial bioenergetics and cell death, and modulation of protein phosphorylation. A high-throughput drug screening was used to identify novel preclinical combination therapies with PI3K inhibitors, and combination synergy experiments were performed. All statistical methods were two-sided. Results: PI3K therapy induces global metabolic reprogramming in tumors and promotes the recruitment of an active pool of the Ser/Thr kinase, Akt2 to mitochondria. In turn, mitochondrial Akt2 phosphorylates Ser31 in cyclophilin D (CypD), a regulator of organelle functions. Akt2-phosphorylated CypD supports mitochondrial bioenergetics and opposes tumor cell death, conferring resistance to PI3K therapy. The combination of a small-molecule antagonist of CypD protein folding currently in preclinical development, Gamitrinib, plus PI3K inhibitors (PI3Ki) reverses this adaptive response, produces synergistic anticancer activity by inducing mitochondrial apoptosis, and extends animal survival in a GBM model (vehicle: median survival = 28.5 days; Gamitrinib+PI3Ki: median survival = 40 days, P = .003), compared with single-agent treatment (PI3Ki: median survival = 32 days, P = .02; Gamitrinib: median survival = 35 days, P = .008 by two-sided unpaired t test). Conclusions: Small-molecule PI3K antagonists promote drug resistance by repurposing mitochondrial functions in bioenergetics and cell survival. Novel

  10. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling

    PubMed Central

    Nguyen, Cuong Thach; Luong, Truc Thanh; Kim, Gyu-Lee; Pyo, Suhkneung; Rhee, Dong-Kwon

    2014-01-01

    Background Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-β signaling. Methods Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-β, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-β, PI3K, and p-Akt expression. Conversely, ER-β inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-β expression. PMID:25535479

  11. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma.

    PubMed

    Speranza, Maria-Carmela; Nowicki, Michal O; Behera, Prajna; Cho, Choi-Fong; Chiocca, E Antonio; Lawler, Sean E

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  12. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway.

    PubMed

    Xie, Liji; Xie, Zhixun; Huang, Li; Fan, Qing; Luo, Sisi; Huang, Jiaoling; Deng, Xianwen; Xie, Zhiqin; Zeng, Tingting; Zhang, Yanfang; Wang, Sheng

    2016-08-01

    The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway. PMID:27233800

  13. Acetylcholinesterase inhibitors used in treatment of Alzheimer's disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade.

    PubMed

    Takada-Takatori, Yuki; Kume, Toshiaki; Sugimoto, Mitsuhiro; Katsuki, Hiroshi; Sugimoto, Hachiro; Akaike, Akinori

    2006-09-01

    We show here that donepezil, galanathamine and tacrine, therapeutic acetylcholinesterase inhibitors currently being used for treatment of Alzheimer's disease, protect neuronal cells in a time- and concentration-dependent manner from glutamate neurotoxicity that involves apoptosis. The neuroprotective effects were antagonized by mecamylamine, an inhibitor of nicotinic acetylcholine receptors (nAChRs). Dihydro-beta-erythroidine and methyllycaconitine, antagonists for alpha4-nAChR and alpha7-nAChR, respectively, antagonized the protective effect of donepezil and galanthamine, but not that of tacrine. Previous reports suggest the involvement of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway in the nicotine-induced neuroprotection. Inhibitors for a non-receptor type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. Furthermore, LY294002, a PI3K inhibitor, also suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galanthamine treatment, but not with tacrine treatment. These results suggest that donepezil and galanthamine prevent glutamate neurotoxicity through alpha4- and alpha7-nAChRs, followed by the PI3K-Akt pathway, and that tacrine protects neuronal cells through a different pathway. PMID:16762377

  14. Wnt5a promotes migration of human osteosarcoma cells by triggering a phosphatidylinositol-3 kinase/Akt signals

    PubMed Central

    2014-01-01

    Wnt5a is classified as a non-transforming Wnt family member and plays complicated roles in oncogenesis and cancer metastasis. However, Wnt5a signaling in osteosarcoma progression remains poorly defined. In this study, we found that Wnt5a stimulated the migration of human osteosarcoma cells (MG-63), with the maximal effect at 100 ng/ml, via enhancing phosphorylation of phosphatidylinositol-3 kinase (PI3K)/Akt. PI3K and Akt showed visible signs of basal phosphorylation and elevated phosphorylation at 15 min after stimulation with Wnt5a. Pharmaceutical inhibition of PI3K with LY294002 significantly blocked the Wnt5a-induced activation of Akt (p-Ser473) and decreased Wnt5a-induced cell migration. Akt siRNA remarkably inhibited Wnt5a-induced cell migration. Additionally, Wnt5a does not alter the total expression and phosphorylation of β-catenin in MG-63 cells. Taken together, we demonstrated for the first time that Wnt5a promoted osteosarcoma cell migration via the PI3K/Akt signaling pathway. These findings could provide a rationale for designing new therapy targeting osteosarcoma metastasis. PMID:24524196

  15. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma

    PubMed Central

    Speranza, Maria-Carmela; Nowicki, Michal O.; Behera, Prajna; Cho, Choi-Fong; Chiocca, E. Antonio; Lawler, Sean E.

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  16. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges

    PubMed Central

    Cheaib, Bianca; Auguste, Aurélie; Leary, Alexandra

    2015-01-01

    The phosphatidylinositol 3 kinase (PI3K) pathway is frequently altered in cancer, including ovarian cancer (OC). Unfortunately, despite a sound biological rationale and encouraging activity in preclinical models, trials of first-generation inhibitors of mammalian target of rapamycin (mTOR) in OC have demonstrated negative results. The lack of patient selection as well as resistance to selective mTOR complex-1 (mTORC1) inhibitors could explain the disappointing results thus far. Nonetheless, a number of novel agents are being investigated, including dual mTORC1/mTORC2, Akt, and PI3K inhibitors. Although it is likely that inhibition of the PI3K/Akt/mTOR pathway may have little effect in unselected OC patients, certain histological types, such as clear cell or endometrioid OC with frequent phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and/or phosphatase and tensin homolog (PTEN) alterations, may be particularly suited to this approach. Given the complexity and redundancy of the PI3K signaling network, PI3K pathway inhibition may be most useful in combination with either chemotherapy or other targeted therapies, such as MEK inhibitors, anti-angiogenic therapy, and hormonal therapy, in appropriately selected OC patients. Here, we discuss the relevance of the PI3K pathway in OC and provide an up-to-date review of clinical trials of novel PI3K inhibitors alone or in combination with cytotoxics and novel therapies in OC. In addition, the challenges of drug resistance and predictive biomarkers are addressed. PMID:25556614

  17. PI3K/Akt signalling pathway and cancer.

    PubMed

    Fresno Vara, Juan Angel; Casado, Enrique; de Castro, Javier; Cejas, Paloma; Belda-Iniesta, Cristóbal; González-Barón, Manuel

    2004-04-01

    Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P(3)). RPTK activation results in PI(3,4,5)P(3) and PI(3,4)P(2) production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and gamma-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents. PMID:15023437

  18. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase

    PubMed Central

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  19. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase.

    PubMed

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na(+)/H(+) exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  20. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression

    PubMed Central

    Nteeba, J.; Ross, J.W.; Perfield, J.W.; Keating, A.F.

    2013-01-01

    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: 1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); 2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); 3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and 4) microRNA’s 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. PMID:23954404

  1. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    PubMed

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J

    2016-03-01

    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3. PMID:26198194

  2. The Human Adenovirus E4-ORF1 Protein Subverts Discs Large 1 to Mediate Membrane Recruitment and Dysregulation of Phosphatidylinositol 3-Kinase

    PubMed Central

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2014-01-01

    Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K). While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1), a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells. PMID:24788832

  3. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP.

    PubMed Central

    Monfar, M; Lemon, K P; Grammer, T C; Cheatham, L; Chung, J; Vlahos, C J; Blenis, J

    1995-01-01

    Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain. PMID:7528328

  4. MicroRNA-21 promotes phosphatase gene and protein kinase B/phosphatidylinositol 3-kinase expression in colorectal cancer

    PubMed Central

    Sheng, Wei-Zhong; Chen, Yu-Sheng; Tu, Chuan-Tao; He, Juan; Zhang, Bo; Gao, Wei-Dong

    2016-01-01

    AIM: To explore the regulatory mechanism of the target gene of microRNA-21 (miR-21), phosphatase gene (PTEN), and its downstream proteins, protein kinase B (AKT) and phosphatidylinositol 3-kinase (PI3K), in colorectal cancer (CRC) cells. METHODS: Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression levels of miR-21 and PTEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of PTEN mRNA and its downstream proteins AKT and PI3K in HCT116 cells after downregulating miR-21 were investigated. RESULTS: Comparing the miR-21 expression in CRC cells, the expression levels of miR-21 were highest in HCT116 cells, and the expression levels of miR-21 were lowest in SW480 cells. In comparing miR-21 and PTEN expression in CRC cells, we found that the protein expression levels of miR-21 and PTEN were inversely correlated (P < 0.05); when miR-21 expression was reduced, mRNA expression levels of PTEN did not significantly change (P > 0.05), but the expression levels of its protein significantly increased (P < 0.05). In comparing the levels of PTEN protein and downstream AKT and PI3K in HCT116 cells after downregulation of miR-21 expression, the levels of AKT and PI3K protein expression significantly decreased (P < 0.05). CONCLUSION: PTEN is one of the direct target genes of miR-21. Thus, phosphatase gene and its downstream AKT and PI3K expression levels can be regulated by regulating the expression levels of miR-21, which in turn regulates the development of CRC. PMID:27350731

  5. An essential role of phosphatidylinositol 3-kinase in myogenic differentiation

    PubMed Central

    Jiang, Bing-Hua; Zheng, Jenny Z.; Vogt, Peter K.

    1998-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137), strongly enhances myogenic differentiation in cultures of chicken-embryo myoblasts. It increases the size of the myotubes and induces elevated levels of the muscle-specific proteins MyoD, myosin heavy chain, creatine kinase, and desmin. Inhibition of PI 3-kinase activity with LY294002 or with dominant-negative mutants of PI 3-kinase interferes with myogenic differentiation and with the induction of muscle-specific genes. PI 3-kinase is therefore an upstream mediator for the expression of the muscle-specific genes and is both necessary and rate-limiting for the process of myogenesis. PMID:9826674

  6. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies

    PubMed Central

    Wang, Xiang; Ding, Jian; Meng, Ling-hua

    2015-01-01

    The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents. PMID:26364801

  7. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies.

    PubMed

    Wang, Xiang; Ding, Jian; Meng, Ling-hua

    2015-10-01

    The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents. PMID:26364801

  8. The Role of PI3K/Akt in Human Herpesvirus Infection: from the Bench to the Bedside

    PubMed Central

    Liu, XueQiao; Cohen, Jeffrey I.

    2015-01-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  9. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside.

    PubMed

    Liu, XueQiao; Cohen, Jeffrey I

    2015-05-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  10. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities.

    PubMed

    Filbin, Mariella Gruber; Dabral, Sukriti K; Pazyra-Murphy, Maria F; Ramkissoon, Shakti; Kung, Andrew L; Pak, Ekaterina; Chung, Jarom; Theisen, Matthew A; Sun, Yanping; Franchetti, Yoko; Sun, Yu; Shulman, David S; Redjal, Navid; Tabak, Barbara; Beroukhim, Rameen; Wang, Qi; Zhao, Jean; Dorsch, Marion; Buonamici, Silvia; Ligon, Keith L; Kelleher, Joseph F; Segal, Rosalind A

    2013-11-01

    In glioblastoma, phosphatidylinositol 3-kinase (PI3K) signaling is frequently activated by loss of the tumor suppressor phosphatase and tensin homolog (PTEN). However, it is not known whether inhibiting PI3K represents a selective and effective approach for treatment. We interrogated large databases and found that sonic hedgehog (SHH) signaling is activated in PTEN-deficient glioblastoma. We demonstrate that the SHH and PI3K pathways synergize to promote tumor growth and viability in human PTEN-deficient glioblastomas. A combination of PI3K and SHH signaling inhibitors not only suppressed the activation of both pathways but also abrogated S6 kinase (S6K) signaling. Accordingly, targeting both pathways simultaneously resulted in mitotic catastrophe and tumor apoptosis and markedly reduced the growth of PTEN-deficient glioblastomas in vitro and in vivo. The drugs tested here appear to be safe in humans; therefore, this combination may provide a new targeted treatment for glioblastoma. PMID:24076665

  11. Pooled Analysis of Phosphatidylinositol 3-kinase Pathway Variants and Risk of Prostate Cancer

    PubMed Central

    Koutros, Stella; Schumacher, Fredrick R.; Hayes, Richard B.; Ma, Jing; Huang, Wen-Yi; Albanes, Demetrius; Canzian, Federico; Chanock, Stephen J.; Crawford, E. David; Diver, W. Ryan; Feigelson, Heather Spencer; Giovanucci, Edward; Haiman, Christopher A.; Henderson, Brian E.; Hunter, David J.; Kaaks, Rudolf; Kolonel, Laurence N.; Kraft, Peter; Le Marchand, Loïc; Riboli, Elio; Siddiq, Afshan; Stampfer, Mier J.; Stram, Daniel O.; Thomas, Gilles; Travis, Ruth C.; Thun, Michael J.; Yeager, Meredith; Berndt, Sonja I.

    2010-01-01

    The phosphatidylinositol 3-kinase (PI3K) pathway regulates various cellular processes, including cellular proliferation and intracellular trafficking and may impact prostate carcinogenesis. Thus, we explored the association between single nucleotide polymorphisms (SNPs) in PI3K genes and prostate cancer. Pooled data from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium were examined for associations between 89 SNPs in PI3K genes (PIK3C2B, PIK3AP1, PIK3C2A, PIK3CD, and PIK3R3) and prostate cancer risk in 8,309 cases and 9,286 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression. SNP rs7556371 in PIK3C2B was significantly associated with prostate cancer risk (ORper allele=1.08 (95% CI: 1.03, 1.14), p-trend = 0.0017) after adjustment for multiple testing (Padj=0.024). Simultaneous adjustment of rs7556371 for nearby SNPs strengthened the association (ORper allele=1.21 (95% CI: 1.09, 1.34); p-trend =0.0003). The adjusted association was stronger for men who were diagnosed before 65 years (ORper allele= 1.47 (95% CI: 1.20, 1.79), p-trend = 0.0001) or had a family history (ORper allele= 1.57 (95% CI: 1.11, 2.23), p-trend = 0.0114), and was strongest in those with both characteristics (ORper allele= 2.31 (95% CI: 1.07, 5.07), p-interaction = 0.005). Increased risks were observed among men in the top tertile of circulating insulin like growth factor-1 (IGF-1) levels (ORper allele= 1.46 (95% CI: 1.04, 2.06), p-trend=0.075). No differences were observed with disease aggressiveness (≥8/stage T3/T4/fatal). In conclusion, we observed a significant association between PIK3C2B and prostate cancer risk, especially for familial, early onset disease, which may be attributable to IGF-dependent PI3K signaling. PMID:20197460

  12. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells

    PubMed Central

    Rafiq, Rather A.; Quadri, Afnan; Nazir, Lone A.; Peerzada, Kaiser; Ganai, Bashir A.; Tasduq, Sheikh A.

    2015-01-01

    Ultraviolet (UV) radiation–induced skin damage contributes strongly to the formation of melanoma, a highly lethal form of skin cancer. Quercetin (Qu), the most widely consumed dietary bioflavonoid and well known inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, has been reported to be chemopreventive in several forms of non-melanoma skin cancers. Here, we report that the treatment of ultraviolet (UV)-B-irradiated B16F10 melanoma cells with quercetin resulted in a dose dependent reduction in cell viability and increased apoptosis. The present study has brought out that the pro-apoptotic effects of quercetin in UVB-irradiated B16F10 cells are mediated through the elevation of intracellular reactive oxygen species (ROS) formation, calcium homeostasis imbalance, modulation of anti-oxidant defence response and depolarization of mitochondrial membrane potential (ΔΨM). Promotion of UVB-induced cell death by quercetin was further revealed by cleavage of chromosomal DNA, caspase activation, poly (ADP) ribose polymerase (PARP) cleavage, and an increase in sub-G1 cells. Quercetin markedly attenuated MEK-ERK signalling, influenced PI3K/Akt pathway, and potentially enhanced the UVB-induced NF-κB nuclear translocation. Furthermore, combined UVB and quercetin treatment decreased the ratio of Bcl-2 to that of Bax, and upregulated the expression of Bim and apoptosis inducing factor (AIF). Overall, these results suggest the possibility of using quercetin in combination with UVB as a possible treatment option for melanoma in future. PMID:26148186

  13. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells.

    PubMed

    Rafiq, Rather A; Quadri, Afnan; Nazir, Lone A; Peerzada, Kaiser; Ganai, Bashir A; Tasduq, Sheikh A

    2015-01-01

    Ultraviolet (UV) radiation-induced skin damage contributes strongly to the formation of melanoma, a highly lethal form of skin cancer. Quercetin (Qu), the most widely consumed dietary bioflavonoid and well known inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, has been reported to be chemopreventive in several forms of non-melanoma skin cancers. Here, we report that the treatment of ultraviolet (UV)-B-irradiated B16F10 melanoma cells with quercetin resulted in a dose dependent reduction in cell viability and increased apoptosis. The present study has brought out that the pro-apoptotic effects of quercetin in UVB-irradiated B16F10 cells are mediated through the elevation of intracellular reactive oxygen species (ROS) formation, calcium homeostasis imbalance, modulation of anti-oxidant defence response and depolarization of mitochondrial membrane potential (ΔΨM). Promotion of UVB-induced cell death by quercetin was further revealed by cleavage of chromosomal DNA, caspase activation, poly (ADP) ribose polymerase (PARP) cleavage, and an increase in sub-G1 cells. Quercetin markedly attenuated MEK-ERK signalling, influenced PI3K/Akt pathway, and potentially enhanced the UVB-induced NF-κB nuclear translocation. Furthermore, combined UVB and quercetin treatment decreased the ratio of Bcl-2 to that of Bax, and upregulated the expression of Bim and apoptosis inducing factor (AIF). Overall, these results suggest the possibility of using quercetin in combination with UVB as a possible treatment option for melanoma in future. PMID:26148186

  14. Following the trail of lipids: Signals initiated by PI3K function at multiple cellular membranes.

    PubMed

    Naguib, Adam

    2016-01-01

    Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] is the signaling currency of the phosphoinositide 3-kinase (PI3K)/AKT pathway; transduction through this axis depends on this signaling lipid. Formation of PtdIns(3,4,5)P3 is dictated not only by PI3K activation but also by the localization and access of PI3K to its substrate PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). PI3K/AKT-mediated signaling is antagonized by PtdIns(3,4,5)P3 dephosphorylation. Although previously typically considered an event associated with the plasma membrane, it is now appreciated that the formation and metabolism of PtdIns(3,4,5)P3 occur on multiple membranes with distinct kinetics. Modulated activity of phosphatidylinositol lipid kinases and phosphatases contributes to intricately orchestrated lipid gradients that define the signaling status of the pathway at multiple sites within the cell. PMID:27188443

  15. Dehydroglyasperin D Inhibits the Proliferation of HT-29 Human Colorectal Cancer Cells Through Direct Interaction With Phosphatidylinositol 3-kinase

    PubMed Central

    Jung, Sung Keun; Jeong, Chul-Ho

    2016-01-01

    Background: Despite recent advances in therapy, colorectal cancer still has a grim prognosis. Although licorice has been used in East Asian traditional medicine, the molecular properties of its constituents including dehydroglyasperin D (DHGA-D) remain unknown. We sought to evaluate the inhibitory effect of DHGA-D on colorectal cancer cell proliferation and identify the primary signaling molecule targeted by DHGA-D. Methods: We evaluated anchorage-dependent and -independent cell growth in HT-29 human colorectal adenocarcinoma cells. The target protein of DHGA-D was identified by Western blot analysis with a specific antibody, and direct interaction between DHGA-D and the target protein was confirmed by kinase and pull-down assays. Cell cycle analysis by flow cytometry and further Western blot analysis was performed to identify the signaling pathway involved. Results: DHGA-D significantly suppressed anchorage-dependent and -independent HT-29 colorectal cancer cell proliferation. DHGA-D directly suppressed phosphatidylinositol 3-kinase (PI3K) activity and subsequent Akt phosphorylation and bound to the p110 subunit of PI3K. DHGA-D also significantly induced G1 cell cycle arrest, together with the suppression of glycogen synthase kinase 3β and retinoblastoma phosphorylation and cyclin D1 expression. Conclusions: DHGA-D has potent anticancer activity and targets PI3K in human colorectal adenocarcinoma HT-29 cells. To our knowledge, this is the first report to detail the molecular basis of DHGA-D in suppressing colorectal cancer cell growth. PMID:27051646

  16. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling

    PubMed Central

    Braccini, Laura; Ciraolo, Elisa; Campa, Carlo C.; Perino, Alessia; Longo, Dario L.; Tibolla, Gianpaolo; Pregnolato, Marco; Cao, Yanyan; Tassone, Beatrice; Damilano, Federico; Laffargue, Muriel; Calautti, Enzo; Falasca, Marco; Norata, Giuseppe D.; Backer, Jonathan M.; Hirsch, Emilio

    2015-01-01

    In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. PMID:26100075

  17. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling.

    PubMed

    Braccini, Laura; Ciraolo, Elisa; Campa, Carlo C; Perino, Alessia; Longo, Dario L; Tibolla, Gianpaolo; Pregnolato, Marco; Cao, Yanyan; Tassone, Beatrice; Damilano, Federico; Laffargue, Muriel; Calautti, Enzo; Falasca, Marco; Norata, Giuseppe D; Backer, Jonathan M; Hirsch, Emilio

    2015-01-01

    In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. PMID:26100075

  18. Rosiglitazone-induced myocardial protection against ischaemia-reperfusion injury is mediated via a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Zhang, Xue-Jiao; Xiong, Zi-Bo; Tang, An-Li; Ma, Hong; Ma, Yue-Dong; Wu, Jing-Guo; Dong, Yu-Gang

    2010-02-01

    1. Rosiglitazone is widely used in the treatment of Type 2 diabetes. However, in recent years it has become evident that the therapeutic effects of peroxisome proliferator-activated receptor gamma ligands reach far beyond their use as insulin sensitizers. Recently, the ability of rosiglitazone pretreatment to induce cardioprotection following ischaemia-reperfusion (I/R) has been well documented; however, the protective mechanisms have not been elucidated. In the present study, examined the role of the phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway in rosiglitazone cardioprotection following I/R injury. 2. Mice were pretreated with 3 mg/kg per day rosiglitazone for 14 days before hearts were subjected to ischaemia (30 min) and reperfusion (2 h). Wortmannin (1.4 mg/kg, i.p.), an inhibitor of PI3-K, was administered 10 min prior to myocardial I/R. Then, activation of the PI3-K/Akt/glycogen synthase kinase (GSK)-3alpha signalling pathway was examined. The effects of PI3-K inhibition on rosiglitazone-induced cardioprotection were also evaluated. 3. Compared with control rats, the ratio of infarct size to ischaemic area (area at risk) and the occurrence of sustained ventricular fibrillation in rosiglitazone-pretreated rats was significantly reduced (P < 0.05). Rosiglitazone pretreatment attenuated cardiac apoptosis, as assessed by ELISA to determine cardiomyocyte DNA fragmentation. Rosiglitazone pretreatment significantly increased levels of phosphorylated (p-) Akt and p-GSK-3alpha in the rat myocardium. Pharmacological inhibition of PI3-K by wortmannin markedly abolished the cardioprotection induced by rosiglitazone. 4. These results indicate that rosiglitazone-induced cardioprotection in I/R injury is mediated via a PI3-K/Akt/GSK-3alpha-dependent pathway. The data also suggest that modulation of PI3-K/Akt/GSK-3alpha-dependent signalling pathways may be a viable strategy to reduce myocardial I/R injury. PMID:19566839

  19. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    SciTech Connect

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  20. Essential Role of Class II Phosphatidylinositol-3-kinase-C2α in Sphingosine 1-Phosphate Receptor-1-mediated Signaling and Migration in Endothelial Cells*

    PubMed Central

    Biswas, Kuntal; Yoshioka, Kazuaki; Asanuma, Ken; Okamoto, Yasuo; Takuwa, Noriko; Sasaki, Takehiko; Takuwa, Yoh

    2013-01-01

    The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3′-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110β, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2β, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P1–3. We studied the roles of PI3K-C2α in S1P-induced endothelial cell (EC) migration and tube formation. S1P stimulated cell migration and activation of Akt, ERK, and Rac1, the latter of which acts as a signaling molecule essential for cell migration and tube formation, via S1P1 in ECs. Knockdown of either PI3K-C2α or class I p110β markedly inhibited S1P-induced migration, lamellipodium formation, and tube formation, whereas that of p110α or Vps34 did not. Only p110β was necessary for S1P-iduced Akt activation, but both PI3K-C2α and p110β were required for Rac1 activation. FRET imaging showed that S1P induced Rac1 activation in both the plasma membrane and PtdIns 3-phosphate (PtdIns(3)P)-enriched endosomes. Knockdown of PI3K-C2α but not p110β markedly reduced PtdIns(3)P-enriched endosomes and suppressed endosomal Rac1 activation. Also, knockdown of PI3K-C2α but not p110β suppressed S1P-induced S1P1 internalization into PtdIns(3)P-enriched endosomes. Finally, pharmacological inhibition of endocytosis suppressed S1P-induced S1P1 internalization, Rac1 activation, migration, and tube formation. These observations indicate that PI3K-C2α plays the crucial role in S1P1 internalization into the intracellular vesicular compartment, Rac1 activation on endosomes, and thereby migration through regulating vesicular trafficking in ECs. PMID:23192342

  1. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key signaling pathways induced by various receptor-tyrosine kinases. Accumulating evidence shows that this pathway is an important promoter of cell growth, metabolism, survival, metastasis, and resistance to chemotherapy. Genetic alterations in the PI3K/Akt/mTOR pathway in gastric carcinoma have often been demonstrated. Many kinds of molecular targeting therapies are currently undergoing clinical testing in patients with solid tumors. However, with the exception of the ErbB2-targeting antibody, targeting agents, including PI3K/Akt/mTOR inhibitors, have not been approved for treatment of patients with gastric carcinoma. This review summarizes the current knowledge on PI3K/Akt/mTOR signaling in the pathogenesis of gastric carcinoma and the possible therapeutic targets for gastric carcinoma. Improved knowledge of the PI3K/Akt/mTOR pathway in gastric carcinoma will be useful in understanding the mechanisms of tumor development and for identifying ideal targets of anticancer therapy for gastric carcinoma. PMID:25003395

  2. Eupatilin inhibits EGF-induced JB6 cell transformation by targeting PI3K.

    PubMed

    Li, Feng; Tao, Ya; Qiao, Yan; Li, Ke; Jiang, Yanan; Cao, Chang; Ren, Shuxin; Chang, Xiaobin; Wang, Xiaona; Wang, Yanhong; Xie, Yifei; Dong, Ziming; Zhao, Jimin; Liu, Kangdong

    2016-09-01

    Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that play fundamental roles in regulation of multiple signaling pathways, including cell proliferation, survival and cell cycle. Increasing evidence has shown that abnormal activation of PI3K pathway contributes to tumorigenesis and progression of various malignant tumors. Therefore, it is an attractive target of chemoprevention and chemotherapy. Eupatilin, a natural flavone compound extracted from Artemisia vulgaris, has antitumor and anti-inflammation efficacy. However, the direct target(s) of eupatilin in cancer chemoprevention are still elusive. In the present study, we reported eupatilin suppressed JB6 cell proliferation and its EGF-induced colony formation. Eupatilin attenuated phosphorylation of PI3K downstream signaling molecules. Downregulation of cyclin D1 expression and arresting in G1 phase were induced through eupatilin treatment. Furthermore, we found it could bind to the p110α, a catalytic subunit of PI3K, by computational docking methods. Pull down assay outcomes also verified the binding of eupatilin with PI3K. Taken together, our results suggest that epatilin is a potential chemopreventive agent in inhibition of skin cell transformation by targeting PI3K. PMID:27573489

  3. The PI3K pathway: clinical inhibition in chronic lymphocytic leukemia.

    PubMed

    Brown, Jennifer R

    2016-04-01

    Constitutive or mutational activation of the phosphatidylinositol 3 kinase, or PI3K, has been implicated in many cancers, including chronic lymphocytic leukemia (CLL). The δ isoform of the p110 catalytic subunit of PI3K has its primary physiologic function in B cells and appears to be the predominant mediator of most PI3K signals in CLL cells. Idelalisib is a first-in-class inhibitor of the PI3K delta isoform that shows near complete inhibition of AKT phosphorylation in CLL cells in vitro and in vivo. Idelalisib shows the classic pattern of response to BCR inhibition in CLL, with rapid nodal response and transient increase in lymphocytosis. The phase I study established the recommended dose as 150 mg twice per day. Subsequent registration trials have focused predominantly on antibody combinations, leading to the US Food and Drug Administration (FDA) approval of idelalisib with rituximab for relapsed CLL patients for whom rituximab is appropriate therapy in summer 2014. The median progression-free survival (PFS) of idelalisib-rituximab in this heavily pretreated CLL population with multiple comorbidities and frequent 17p deletion was an impressive 19.4 months. The success of idelalisib has paved the way for the development of other PI3K inhibitors in CLL, including duvelisib and TGR-1202, which are in or moving toward registration trials. PMID:27040704

  4. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium | Office of Cancer Genomics

    Cancer.gov

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN.

  5. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer

    PubMed Central

    Serra, V; Scaltriti, M; Prudkin, L; Eichhorn, P J A; Ibrahim, Y H; Chandarlapaty, S; Markman, B; Rodriguez, O; Guzman, M; Rodriguez, S; Gili, M; Russillo, M; Parra, J L; Singh, S; Arribas, J; Rosen, N; Baselga, J

    2011-01-01

    There is a strong rationale to therapeutically target the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in breast cancer since it is highly deregulated in this disease and it also mediates resistance to anti-HER2 therapies. However, initial studies with rapalogs, allosteric inhibitors of mTORC1, have resulted in limited clinical efficacy probably due to the release of a negative regulatory feedback loop that triggers AKT and ERK signaling. Since activation of AKT occurs via PI3K, we decided to explore whether PI3K inhibitors prevent the activation of these compensatory pathways. Using HER2-overexpressing breast cancer cells as a model, we observed that PI3K inhibitors abolished AKT activation. However, PI3K inhibition resulted in a compensatory activation of the ERK signaling pathway. This enhanced ERK signaling occurred as a result of activation of HER family receptors as evidenced by induction of HER receptors dimerization and phosphorylation, increased expression of HER3 and binding of adaptor molecules to HER2 and HER3. The activation of ERK was prevented with either MEK inhibitors or anti-HER2 monoclonal antibodies and tyrosine kinase inhibitors. Combined administration of PI3K inhibitors with either HER2 or MEK inhibitors resulted in decreased proliferation, enhanced cell death and superior anti-tumor activity compared with single agent PI3K inhibitors. Our findings indicate that PI3K inhibition in HER2-overexpressing breast cancer activates a new compensatory pathway that results in ERK dependency. Combined anti-MEK or anti-HER2 therapy with PI3K inhibitors may be required in order to achieve optimal efficacy in HER2-overexpressing breast cancer. This approach warrants clinical evaluation. PMID:21278786

  6. Phosphatidylinositol-3-kinase as a putative target for anticancer action of clotrimazole.

    PubMed

    Furtado, Cristiane M; Marcondes, Mariah C; Carvalho, Renato S; Sola-Penna, Mauro; Zancan, Patricia

    2015-05-01

    Clotrimazole (CTZ) has been proposed as an antitumoral agent because of its properties that inhibit glycolytic enzymes and detach them from the cytoskeleton. However, the broad effects of the drug, e.g., acting on different enzymes and pathways, indicate that CTZ might also affect several signaling pathways. In this study, we show that CTZ interferes with the human breast cancer cell line MCF-7 after a short incubation period (4 h), thereby diminishing cell viability, promoting apoptosis, depolarizing mitochondria, inhibiting key glycolytic regulatory enzymes, decreasing the intracellular ATP content, and permeating plasma membranes. CTZ treatment also interferes with autophagy. Moreover, when the incubation is performed under hypoxic conditions, certain effects of CTZ are enhanced, such as phosphatidylinositol-3-phosphate kinase (PI3K), which is inhibited upon CTZ treatment; this inhibition is potentiated under hypoxia. CTZ-induced PI3K inhibition is not caused by upstream effects of CTZ because the drug does not affect the interaction of the PI3K regulatory subunit and the insulin receptor substrate (IRS)-1. Additionally, CTZ directly inhibits human purified PI3K in a dose-dependent and reversible manner. Pharmacologic and in silico results suggest that CTZ may bind to the PI3K catalytic site. Therefore, we conclude that PI3K is a novel, putative target for the antitumoral effects of CTZ, interfering with autophagy, apoptosis, cell division and viability. PMID:25794423

  7. Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235

    PubMed Central

    YANG, XIAOYU; NIU, BINGXUAN; WANG, LIBO; CHEN, MEILING; KANG, XIAOCHUN; WANG, LUONAN; JI, YINGHUA; ZHONG, JIATENG

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CRC). Autophagy is a catabolic process that maintains cellular homeostasis and reduces diverse stresses through lysosomal recycling of the unnecessary and damaged cell components. This process is also observed to antagonize the antitumor efficacy of PI3K/mTOR inhibitor agents such as NVP-BEZ235, via apoptosis inhibition. In the present study, we investigated anti-proliferative and apoptosis-inducing ability of NVP-BEZ235 in SW480 cells and the crosstalk between autophagy and apoptosis in SW480 cells treated with NVP-BEZ235 in combination with an autophagy inhibitor. The results revealed that, NVP-BEZ235 effectively inhibit the growth of SW480 cells by targeting the PI3K/mTOR signaling pathway and induced apoptosis. The inhibition of autophagy with 3-methyladenine or chloroquine inhibitors in combination with NVP-BEZ235 in SW480 cells enhanced the apoptotic rate as componets to NVP-BEZ235 alone. In conclusion, the findings provide a rationale for chemotherapy targeting the PI3K/mTOR signaling pathway presenting a potential therapeutic strategy to enhance the efficacy of dual PI3K/mTOR inhibitor NVP-BEZ235 in combination with an autophagy inhibitor in CRC treatment and treatment of other tumors. PMID:27347108

  8. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    SciTech Connect

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng; Zhang, Xinzhou

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.

  9. Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia

    PubMed Central

    Kelly, Catherine J.; Hussien, Kamila; Fokas, Emmanouil; Kannan, Pavitra; Shipley, Rebecca J.; Ashton, Thomas M.; Stratford, Michael; Pearson, Natalie; Muschel, Ruth J.

    2014-01-01

    Background Inhibitors of the phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathway are currently in clinical trials. In addition to antiproliferative and proapoptotic effects, these agents also diminish tumor hypoxia. Since hypoxia is a major cause of resistance to radiotherapy, we sought to understand how it is regulated by PI3K/mTOR inhibition. Methods Whole cell, mitochondrial, coupled and uncoupled oxygen consumption were measured in cancer cells after inhibition of PI3K (Class I) and mTOR by pharmacological means or by RNAi. Mitochondrial composition was assessed by immunoblotting. Hypoxia was measured in spheroids, in tumor xenografts and predicted with mathematical modeling. Results Inhibition of PI3K and mTOR reduced oxygen consumption by cancer cell lines is predominantly due to reduction of mitochondrial respiration coupled to ATP production. Hypoxia in tumor spheroids was reduced, but returned after removal of the drug. Murine tumors had increased oxygenation even in the absence of average perfusion changes or tumor necrosis. Conclusions Targeting the PI3K/mTOR pathway substantially reduces mitochondrial oxygen consumption thereby reducing tumor hypoxia. These alterations in tumor hypoxia should be considered in the design of clinical trials using PI3K/mTOR inhibitors, particularly in conjunction with radiotherapy. PMID:24631147

  10. Phosphatidylinositol-3-kinase regulates mast cell ion channel activity.

    PubMed

    Lam, Rebecca S; Shumilina, Ekaterina; Matzner, Nicole; Zemtsova, Irina M; Sobiesiak, Malgorzata; Lang, Camelia; Felder, Edward; Dietl, Paul; Huber, Stephan M; Lang, Florian

    2008-01-01

    Stimulation of the mast cell IgE-receptor (FcepsilonRI) by antigen leads to stimulation of Ca(2+) entry with subsequent mast cell degranulation and release of inflammatory mediators. Ca(2+) further activates Ca(2+)-activated K(+) channels, which in turn provide the electrical driving force for Ca(2+) entry. Since phosphatidylinositol (PI)-3-kinase has previously been shown to be required for mast cell activation and degranulation, we explored, whether mast cell Ca(2+) and Ca(2+)-activated K(+) channels may be sensitive to PI3-kinase activity. Whole-cell patch clamp experiments and Fura-2 fluorescence measurements for determination of cytosolic Ca(2+) concentration were performed in mouse bone marrow-derived mast cells either treated or untreated with the PI3-kinase inhibitors LY-294002 (10 muM) and wortmannin (100 nM). Antigen-stimulated Ca(2+) entry but not Ca(2+) release from the intracellular stores was dramatically reduced upon PI3-kinase inhibition. Ca(2+) entry was further inhibited by TRPV blocker ruthenium red (10 muM). Ca(2+) entry following readdition after Ca(+)-store depletion with thapsigargin was again decreased by LY-294002, pointing to inhibition of store-operated channels (SOCs). Moreover, inhibition of PI3-kinase abrogated IgE-stimulated, but not ionomycin-induced stimulation of Ca(2+)-activated K(+) channels. These observations disclose PI3-kinase-dependent regulation of Ca(2+) entry and Ca(2+)-activated K(+)-channels, which in turn participate in triggering mast cell degranulation. PMID:18769043

  11. The Role of the PI3K Signaling Pathway in CD4+ T Cell Differentiation and Function

    PubMed Central

    Han, Jonathan M.; Patterson, Scott J.; Levings, Megan K.

    2012-01-01

    The relative activity of regulatory versus conventional CD4+ T cells ultimately maintains the delicate balance between immune tolerance and inflammation. At the molecular level, the activity of phosphatidylinositol 3-kinase (PI3K) and its downstream positive and negative regulators has a major role in controlling the balance between immune regulation and activation of different subsets of effector CD4+ T cells. In contrast to effector T cells which require activation of the PI3K to differentiate and mediate their effector function, regulatory T cells rely on minimal activation of this pathway to develop and maintain their characteristic phenotype, function, and metabolic state. In this review, we discuss the role of the PI3K signaling pathway in CD4+ T cell differentiation and function, and focus on how modulation of this pathway in T cells can alter the outcome of an immune response, ultimately tipping the balance between tolerance and inflammation. PMID:22905034

  12. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  13. Dual PI3K/mTOR inhibition is required to effectively impair microenvironment survival signals in mantle cell lymphoma

    PubMed Central

    Rosich, Laia; Montraveta, Arnau; Xargay-Torrent, Sílvia; López-Guerra, Mónica; Roldán, Jocabed; Aymerich, Marta; Salaverria, Itziar; Beà, Sílvia; Campo, Elías; Pérez-Galán, Patricia; Roué, Gaël; Colomer, Dolors

    2014-01-01

    Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL. PMID:25216518

  14. Deoxycholyltaurine rescues human colon cancer cells from apoptosis by activating EGFR-dependent PI3K/Akt signaling.

    PubMed

    Raufman, Jean-Pierre; Shant, Jasleen; Guo, Chang Yue; Roy, Sanjit; Cheng, Kunrong

    2008-05-01

    Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation. PMID:18064605

  15. Binding of receptor-recognized forms of alpha2-macroglobulin to the alpha2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase.

    PubMed

    Misra, U K; Pizzo, S V

    1998-05-29

    Ligation of the alpha2-macroglobulin (alpha2M) signaling receptor by receptor-recognized forms of alpha2M (alpha2M*) initiates mitogenesis secondary to increased intracellular Ca2+. We report here that ligation of the alpha2M signaling receptor also causes a 1. 5-2.5-fold increase in wortmannin-sensitive phosphatidylinositol 3-kinase (PI3K) activity as measured by the quantitation of phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 formation was alpha2M* concentration-dependent with a maximal response at approximately 50 pM ligand concentration. The peak formation of PIP3 occurred at 10 min of incubation. The alpha2M receptor binding fragment mutant K1370R which binds to the alpha2M signaling receptor activating the signaling cascade, increased PIP3 formation by 2-fold. The mutant K1374A, which binds very poorly to the alpha2M signaling receptor, did not cause any increase in PIP3 formation. alpha2M*-induced DNA synthesis was inhibited by wortmannin. 1, 2Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethylester a chelator of intracellular Ca2+, drastically reduced alpha2M*-induced increases in PIP3 formation. We conclude that PI3K is involved in alpha2M*-induced mitogenesis in macrophages and intracellular Ca2+ plays a role in PI3K activation. PMID:9593670

  16. The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis

    PubMed Central

    Utermark, Tamara; Rao, Trisha; Cheng, Hailing; Wang, Qi; Lee, Sang Hyun; Wang, Zhigang C.; Iglehart, J. Dirk; Roberts, Thomas M.; Muller, William J.; Zhao, Jean J.

    2012-01-01

    Class Ia phosphatidylinositol 3 kinase (PI3K) is required for oncogenic receptor-mediated transformation; however, the individual roles of the two commonly expressed class Ia PI3K isoforms in oncogenic receptor signaling have not been elucidated in vivo. Here, we show that genetic ablation of p110α blocks tumor formation in both polyoma middle T antigen (MT) and HER2/Neu transgenic models of breast cancer. Surprisingly, p110β ablation results in both increased ductal branching and tumorigenesis. Biochemical analyses suggest a competition model in which the less active p110β competes with the more active p110α for receptor binding sites, thereby modulating the level of PI3K activity associated with activated receptors. Our findings demonstrate a novel p110β-based regulatory role in receptor-mediated PI3K activity and identify p110α as an important target for treatment of HER2-positive disease. PMID:22802530

  17. Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation.

    PubMed

    de la Cruz-Herrera, C F; Baz-Martínez, M; Lang, V; El Motiam, A; Barbazán, J; Couceiro, R; Abal, M; Vidal, A; Esteban, M; Muñoz-Fontela, C; Nieto, A; Rodríguez, M S; Collado, M; Rivas, C

    2016-06-01

    Class IA phosphatidylinositol 3-kinases (PI3Ks) are composed of p110 catalytic and p85 regulatory subunits. How regulatory subunits modulate PI3K activity remains only partially understood. Here we identified SUMO (small ubiquitin-related modifier) as a new player modulating this regulation. We demonstrate that both p85β and p85α are conjugated to SUMO1 and SUMO2. We identified two lysine residues located at the inter-SH2 domain on p85β, a critical region required for inhibition of p110, as being required for SUMO conjugation. A SUMOylation-defective mutant p85β shows higher activation of the PI3K pathway, and increased cell migration and transformation. Moreover, the cancer-related KS459del mutant in p85α was less efficiently SUMOylated compared with the wild-type protein. Finally, our results show that SUMO modulates p85 tyrosine phosphorylation, a modification correlating with PI3K pathway activation. Thus, SUMO reduces the levels of tyrosine-phosphorylated-p85 while loss of SUMOylation results in increased tyrosine phosphorylation of p85. In summary, we identify SUMO as a new important player in the regulation of the PI3K pathway through modulation of p85. PMID:26411363

  18. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma.

    PubMed

    Buonamici, Silvia; Williams, Juliet; Morrissey, Michael; Wang, Anlai; Guo, Ribo; Vattay, Anthony; Hsiao, Kathy; Yuan, Jing; Green, John; Ospina, Beatriz; Yu, Qunyan; Ostrom, Lance; Fordjour, Paul; Anderson, Dustin L; Monahan, John E; Kelleher, Joseph F; Peukert, Stefan; Pan, Shifeng; Wu, Xu; Maira, Sauveur-Michel; García-Echeverría, Carlos; Briggs, Kimberly J; Watkins, D Neil; Yao, Yung-mae; Lengauer, Christoph; Warmuth, Markus; Sellers, William R; Dorsch, Marion

    2010-09-29

    The malignant brain cancer medulloblastoma is characterized by mutations in Hedgehog (Hh) signaling pathway genes, which lead to constitutive activation of the G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor Smoothened (Smo). The Smo antagonist NVP-LDE225 inhibits Hh signaling and induces tumor regression in animal models of medulloblastoma. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed several resistance mechanisms. We noted chromosomal amplification of Gli2, a downstream effector of Hh signaling, and, more rarely, point mutations in Smo that led to reactivated Hh signaling and restored tumor growth. Analysis of pathway gene expression signatures also, unexpectedly, identified up-regulation of phosphatidylinositol 3-kinase (PI3K) signaling in resistant tumors as another potential mechanism of resistance. Probing the relevance of increased PI3K signaling, we demonstrated that addition of the PI3K inhibitor NVP-BKM120 or the dual PI3K-mTOR (mammalian target of rapamycin) inhibitor NVP-BEZ235 to the initial treatment with the Smo antagonist markedly delayed the development of resistance. Our findings may be useful in informing treatment strategies for medulloblastoma. PMID:20881279

  19. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium

    PubMed Central

    Cheung, Lydia WT; Walkiewicz, Katarzyna W; Besong, Tabot MD; Guo, Huifang; Hawke, David H; Arold, Stefan T; Mills, Gordon B

    2015-01-01

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomer–dimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development. DOI: http://dx.doi.org/10.7554/eLife.06866.001 PMID:26222500

  20. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models

    PubMed Central

    Carnero, Amancio; Paramio, Jesus M.

    2014-01-01

    When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified. PMID:25295225

  1. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter.

    PubMed

    Morishita, Yoshikazu; Miura, Daiki; Kida, Satoshi

    2016-06-01

    The circadian rhythm generated by circadian clock underlies a molecular mechanism of rhythmic transcriptional regulation by transcription factor BMAL1/CLOCK. Importantly, the circadian clock is coordinated by exogenous cues to accommodate to changes in the external environment. However, the molecular mechanisms by which intracellular-signaling pathways mediate the adjustments of the circadian transcriptional rhythms remain unclear. In this study, we found that pharmacological inhibition or shRNA-mediated knockdown of phosphatidylinositol 3-kinase (PI3K) blocked upregulation of Dbp mRNA induced by serum shock in NIH 3T3 cells. Moreover, the inhibition of PI3K significantly reduced the promoter activity of the Dbp gene, as well as decreased the recruitment of BMAL1/CLOCK to the E-box in the Dbp promoter. Interestingly, the inhibition of PI3K blocked heterodimerization of BMAL1 and CLOCK. Our findings suggest that PI3K signaling plays a modulatory role in the regulation of the transcriptional rhythm of the Dbp gene by targeting BMAL1 and CLOCK. PMID:27022680

  2. MEF2 Is a Converging Hub for Histone Deacetylase 4 and Phosphatidylinositol 3-Kinase/Akt-Induced Transformation

    PubMed Central

    Di Giorgio, Eros; Clocchiatti, Andrea; Piccinin, Sara; Sgorbissa, Andrea; Viviani, Giulia; Peruzzo, Paolo; Romeo, Salvatore; Rossi, Sabrina; Dei Tos, Angelo Paolo; Maestro, Roberta

    2013-01-01

    The MEF2-class IIa histone deacetylase (HDAC) axis operates in several differentiation pathways and in numerous adaptive responses. We show here that nuclear active HDAC4 and HDAC7 display transforming capability. HDAC4 oncogenic potential depends on the repression of a limited set of genes, most of which are MEF2 targets. Genes verified as targets of the MEF2-HDAC axis are also under the influence of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway that affects MEF2 protein stability. A signature of MEF2 target genes identified by this study is recurrently repressed in soft tissue sarcomas. Correlation studies depicted two distinct groups of soft tissue sarcomas: one in which MEF2 repression correlates with PTEN downregulation and a second group in which MEF2 repression correlates with HDAC4 levels. Finally, simultaneous pharmacological inhibition of the PI3K/Akt pathway and of MEF2-HDAC interaction shows additive effects on the transcription of MEF2 target genes and on sarcoma cells proliferation. Overall, our work pinpoints an important role of the MEF2-HDAC class IIa axis in tumorigenesis. PMID:24043307

  3. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  4. The PI3K/Akt Pathway in Tumors of Endocrine Tissues

    PubMed Central

    Robbins, Helen Louise; Hague, Angela

    2016-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key driver in carcinogenesis. Defects in this pathway in human cancer syndromes such as Cowden’s disease and Multiple Endocrine Neoplasia result in tumors of endocrine tissues, highlighting its importance in these cancer types. This review explores the growing evidence from multiple animal and in vitro models and from analysis of human tumors for the involvement of this pathway in the following: thyroid carcinoma subtypes, parathyroid carcinoma, pituitary tumors, adrenocortical carcinoma, phaeochromocytoma, neuroblastoma, and gastroenteropancreatic neuroendocrine tumors. While data are not always consistent, immunohistochemistry performed on human tumor tissue has been used alongside other techniques to demonstrate Akt overactivation. We review active Akt as a potential prognostic marker and the PI3K pathway as a therapeutic target in endocrine neoplasia. PMID:26793165

  5. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.

    PubMed

    Caino, M Cecilia; Ghosh, Jagadish C; Chae, Young Chan; Vaira, Valentina; Rivadeneira, Dayana B; Faversani, Alice; Rampini, Paolo; Kossenkov, Andrew V; Aird, Katherine M; Zhang, Rugang; Webster, Marie R; Weeraratna, Ashani T; Bosari, Silvano; Languino, Lucia R; Altieri, Dario C

    2015-07-14

    Molecular therapies are hallmarks of "personalized" medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, "spatiotemporal" mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target. PMID:26124089

  6. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism.

    PubMed

    Maya-Monteiro, Clarissa M; Almeida, Patricia E; D'Avila, Heloisa; Martins, Aline S; Rezende, Ana Paula; Castro-Faria-Neto, Hugo; Bozza, Patricia T

    2008-01-25

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Lipid bodies (lipid droplets) are emerging as dynamic organelles with roles in lipid metabolism and inflammation. Here we investigated the roles of leptin in signaling pathways involved in cytoplasmic lipid body biogenesis and leukotriene B(4) synthesis in macrophages. Our results demonstrated that leptin directly activated macrophages and induced the formation of adipose differentiation-related protein-enriched lipid bodies. Newly formed lipid bodies were sites of 5-lipoxygenase localization and correlated with an enhanced capacity of leukotriene B(4) production. We demonstrated that leptin-induced macrophage activation was dependent on phosphatidylinositol 3-kinase (PI3K) activity, since the lipid body formation was inhibited by LY294002 and was absent in the PI3K knock-out mice. Leptin induces phosphorylation of p70(S6K) and 4EBP1 key downstream signaling intermediates of the mammalian target of rapamycin (mTOR) pathway in a rapamycin-sensitive mechanism. The mTOR inhibitor, rapamycin, inhibited leptin-induced lipid body formation, both in vivo and in vitro. In addition, rapamycin inhibited leptin-induced adipose differentiation-related protein accumulation in macrophages and lipid body-dependent leukotriene synthesis, demonstrating a key role for mTOR in lipid body biogenesis and function. Our results establish PI3K/mTOR as an important signaling pathway for leptin-induced cytoplasmic lipid body biogenesis and adipose differentiation-related protein accumulation. Furthermore, we demonstrate a previously unrecognized link between intracellular (mTOR) and systemic (leptin) nutrient sensors in macrophage lipid metabolism. Leptin-induced increased formation of cytoplasmic lipid bodies and enhanced inflammatory mediator production in macrophages may have implications for obesity-related cardiovascular diseases. PMID:18039669

  7. Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis

    PubMed Central

    Westermann, Martin; Lambeck, Sandro; Lupp, Amelie; Rudiger, Alain; Dyson, Alex; Carré, Jane E.; Kortgen, Andreas; Krafft, Christoph; Popp, Jürgen; Sponholz, Christoph; Fuhrmann, Valentin; Hilger, Ingrid; Claus, Ralf A.; Riedemann, Niels C.; Wetzker, Reinhard; Singer, Mervyn; Trauner, Michael; Bauer, Michael

    2012-01-01

    Background Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is

  8. Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1;Su(H);Lag-1 activation.

    PubMed

    Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir

    2005-06-01

    We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944

  9. Complementation of Human Papillomavirus Type 16 E6 and E7 by Jagged1-Specific Notch1-Phosphatidylinositol 3-Kinase Signaling Involves Pleiotropic Oncogenic Functions Independent of CBF1;Su(H);Lag-1 Activation†

    PubMed Central

    Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K.; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir

    2005-01-01

    We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944

  10. Resveratrol Inhibits LPS-Induced MAPKs Activation via Activation of the Phosphatidylinositol 3-Kinase Pathway in Murine RAW 264.7 Macrophage Cells

    PubMed Central

    Liu, Bin; Deng, Yi-Shu; Zhan, Dong; Chen, Yuan-Li; He, Ying; Liu, Jing; Zhang, Zong-Ji; Sun, Jun; Lu, Di

    2012-01-01

    Background Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect RAW 264.7 cells from inflammatory insults and explored mechanisms underlying inhibitory effects of resveratrol on RAW 264.7 cells. Methodology/Principal Findings Murine RAW 264.7 cells were treated with resveratrol (1, 5, and 10 µM) and/or LPS (5 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by ELISA, RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of Akt, cyclic AMP-responsive element-binding protein (CREB), mitogen-activated protein kinases (MAPKs) cascades, AMP-activated protein kinase (AMPK) and expression of SIRT1(Silent information regulator T1) were measured by western blot. Wortmannin (1 µM), a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, was used to determine if PI3-K/Akt signaling pathway might be involved in resveratrol’s action on RAW 264.7 cells. Resveratrol significantly attenuated the LPS-induced expression of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells. Resveratrol increased Akt phosphorylation in a time-dependent manner. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, blocked the effects of resveratrol on LPS-induced RAW 264.7 cells activation. In addition, PI3-K inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of cyclic AMP-responsive element-binding protein (CREB) and mitogen-activated protein kinases (MAPKs) cascades. Meanwhile, PI3-K is essential for resveratrol-mediated phosphorylation of AMPK and expression of SIRT1. Conclusion and Implications This investigation

  11. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  12. The modulation of vascular ATP-sensitive K+ channel function via the phosphatidylinositol 3-kinase-Akt pathway activated by phenylephrine.

    PubMed

    Haba, Masanori; Hatakeyama, Noboru; Kinoshita, Hiroyuki; Teramae, Hiroki; Azma, Toshiharu; Hatano, Yoshio; Matsuda, Naoyuki

    2010-08-01

    The present study examined the modulator role of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway activated by the alpha-1 adrenoceptor agonist phenylephrine in ATP-sensitive K(+) channel function in intact vascular smooth muscle. We evaluated the ATP-sensitive K(+) channel function and the activity of the PI3K-Akt pathway in the rat thoracic aorta without endothelium. The PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) (10(-5) M) augmented relaxation in response to the ATP-sensitive K(+) channel opener levcromakalim (10(-8) to 3 x 10(-6) M) in aortic rings contracted with phenylephrine (3 x 10(-7) M) but not with 9,11-dideoxy-11alpha,9alpha-epoxy-methanoprostaglandin F(2alpha) (U46619; 3 x 10(-8) M), although those agents induced similar contraction. ATP-sensitive K(+) channel currents induced by levcromakalim (10(-6) M) in the presence of phenylephrine (3 x 10(-7) M) were enhanced by the nonselective alpha-adrenoceptor antagonist phentolamine (10(-7) M) and LY294002 (10(-5) M). Levels of the regulatory subunits of PI3K p85-alpha and p55-gamma increased in the membrane fraction from aortas without endothelium treated with phenylephrine (3 x 10(-7) M) but not with U46619 (3 x 10(-8) M). Phenylephrine simultaneously augmented Akt phosphorylation at Ser473 and Thr308. Therefore, activation of the PI3K-Akt pathway seems to play a role in the impairment of ATP-sensitive K(+) channel function in vascular smooth muscle exposed to alpha-1 adrenergic stimuli. PMID:20519555

  13. Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase.

    PubMed

    Iglesias, M; Segura, M F; Comella, J X; Olmos, G

    2003-03-01

    Opioid peptides and alkaloids exert their effects via G protein-coupled receptors (GPCRs). It has been shown that, in addition to trophic factors, some GPCRs are able to activate the phosphatidylinositol 3-kinase/Akt (PI 3-K/Akt) signal transduction pathway, thus leading to cell survival. The aim of this study was to test whether activation of mu-opioid receptors has protective effects on serum withdrawal-induced cell death and to study the possible implication of PI 3-K in this process. In SH-SY5Y neuroblastoma cells fully differentiated by exposure to retinoic acid for five days, the enkephalin derivative selective mu-agonist DAMGO (0.1-2 microM) and the alkaloid morphine (0.1-10 microM) promoted cell survival after serum deprivation (MTT and trypan blue exclusion assays), without inducing cell proliferation. These effects were fully reversed by naloxone, by the selective mu-antagonist beta-funaltrexamine (beta-FNA) and also by the specific PI 3-K inhibitor LY294002. The two agonists stimulated Akt phosphorylation and the effect was also abolished by beta-FNA and by LY294002. In mouse primary cortical neurons, DAMGO reduced the percentage of apoptosis after 6, 12, 24 and 48 h of serum withdrawal; as determined by Hoechst staining. This effect was blocked by beta-FNA, by pre-treatment with pertussis toxin and by LY294002. DAMGO also stimulated Akt phosphorylation via PI 3-K in this primary neuronal culture. Together, these results indicate that stimulation of the mu-opioid receptor promotes neuronal survival in a G(i/o)-linked, PI 3-K-dependent signaling cascade and suggest that Akt may be a key downstream kinase involved in this anti-apoptotic effect. PMID:12646285

  14. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    SciTech Connect

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-08-15

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  15. Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions.

    PubMed

    Ang, Daphne C; Warrick, Andrea L; Shilling, Amy; Beadling, Carol; Corless, Christopher L; Troxell, Megan L

    2014-05-01

    The phosphatidylinositol-3-kinase pathway is one of the most commonly altered molecular pathways in invasive breast carcinoma, with phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) mutations in 25% of invasive carcinomas. Ductal carcinoma in situ (DCIS), benign papillomas, and small numbers of columnar cell lesions harbor an analogous spectrum of PIK3CA and AKT1 mutations, yet there is little data on usual ductal hyperplasia and atypical ductal and lobular neoplasias. We screened 192 formalin-fixed paraffin-embedded breast lesions from 75 patients for point mutations using a multiplexed panel encompassing 643 point mutations across 53 genes, including 58 PIK3CA substitutions. PIK3CA point mutations were identified in 31/62 (50%) proliferative lesions (usual ductal hyperplasia and columnar cell change), 10/14 (71%) atypical hyperplasias (atypical ductal hyperplasia and flat epithelial atypia), 7/16 (44%) lobular neoplasias (atypical lobular hyperplasia and lobular carcinoma in situ), 10/21 (48%) DCIS, and 13/37 (35%) invasive carcinomas. In genotyping multiple lesions of different stage from the same patient/specimen, we found considerable heterogeneity; most notably, in 12 specimens the proliferative lesion was PIK3CA mutant but the concurrent carcinoma was wild type. In 11 additional specimens, proliferative epithelium and cancer contained different point mutations. The frequently discordant genotypes of usual ductal hyperplasia/columnar cell change and concurrent carcinoma support a role for PIK3CA-activating point mutations in breast epithelial proliferation, perhaps more so than transformation. Further, these data suggest that proliferative breast lesions are heterogeneous and may represent non-obligate precursors of invasive carcinoma. PMID:24186142

  16. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  17. PI3K and Cancer: Lessons, Challenges and Opportunities

    PubMed Central

    Fruman, David A.; Rommel, Christian

    2014-01-01

    Summary The central role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mTOR in cancer. However, emerging clinical data show limited single agent activity of PI3K/AKT/mTOR inhibitors at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here we review key challenges and opportunities for clinical development of PI3K/AKT/mTOR inhibitors. Through a greater focus on patient selection, increased understanding of immune modulation, and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anti-cancer agents. PMID:24481312

  18. Phosphatidylinositol 3-Kinase: A Link Between Inflammation and Pancreatic Cancer.

    PubMed

    Birtolo, Chiara; Go, Vay Liang W; Ptasznik, Andrzej; Eibl, Guido; Pandol, Stephen J

    2016-01-01

    Even though a strong association between inflammation and cancer has been widely accepted, the underlying precise molecular mechanisms are still largely unknown. A complex signaling network between tumor and stromal cells is responsible for the infiltration of inflammatory cells into the cancer microenvironment. Tumor stromal cells such as pancreatic stellate cells (PSCs) and immune cells create a microenvironment that protects cancer cells through a complex interaction, ultimately facilitating their local proliferation and their migration to different sites. Furthermore, PSCs have multiple functions related to local immunity, angiogenesis, inflammation, and fibrosis. Recently, many studies have shown that members of the phosphoinositol-3-phosphate kinase (PI3K) family are activated in tumor cells, PSCs, and tumor-infiltrating inflammatory cells to promote cancer growth. Proinflammatory cytokines and chemokines secreted by immune cells and fibroblasts within the tumor environment can activate the PI3K pathway both in cancer and inflammatory cells. In this review, we focus on the central role of the PI3K pathway in regulating the cross talk between immune/stromal cells and cancer cells. Understanding the role of the PI3K pathway in the development of chronic pancreatitis and cancer is crucial for the discovery of novel and efficacious treatment options. PMID:26658038

  19. Echinacea purpurea root extract inhibits TNF release in response to Pam3Csk4 in a phosphatidylinositol-3-kinase dependent manner.

    PubMed

    Fast, David J; Balles, John A; Scholten, Jeffrey D; Mulder, Timothy; Rana, Jatinder

    2015-10-01

    Polysaccharides derived from Echinacea have historically been shown to be immunostimulatory. We describe in this work however the anti-inflammatory effect of a water extract of Echinacea purpurea roots (EPRW) that inhibited Pam3Csk4 stimulated production of TNFα by human monocytic THP-1 cells. The polyphenols and alkylamides typically found in Echinacea extracts were absent in EPRW suggesting that the anti-inflammatory component(s) was a polysaccharide. This anti-inflammatory activity was shown to be mediated by the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway as chemical inhibition of PI3K abolished the EPRW anti-inflammatory effect. Demonstration of phosphorylation of Akt and ribosomal S6 proteins, downstream targets of PI3K confirmed EPRW-mediated activation of this pathway. In conclusion, this observation suggests that non-alkylamide/non-polyphenolic phytochemicals from Echinacea may contribute in part to some of the anti-inflammatory therapeutic effects such as reduced severity of symptoms that have been observed in vivo in the treatment of upper respiratory tract infections with Echinacea. PMID:26190752

  20. Macrophage migration inhibitory factor induces phosphorylation of Mdm2 mediated by phosphatidylinositol 3-kinase/Akt kinase: Role of this pathway in decidual cell survival.

    PubMed

    Costa, Adriana Fraga; Gomes, Sara Zago; Lorenzon-Ojea, Aline R; Martucci, Mariane; Faria, Miriam Rubio; Pinto, Décio Dos Santos; Oliveira, Sergio F; Ietta, Francesca; Paulesu, Luana; Bevilacqua, Estela

    2016-05-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway has an anti-apoptotic effect through several downstream targets, which includes activation of the transformed mouse 3T3 cell double-minute 2 (Mdm2) protein, its translocation to the nucleus and degradation of the tumor suppressor p53. We show that Mif, the Macrophage Migration Inhibitory Factor, an important cytokine at the maternal fetal interface in several species, triggers phosphorylation of Mdm2 protein in a PI3K/Akt-dependent manner, thereby preventing apoptosis in cultured mouse decidual cells. Inhibition of Akt and PI3K suppresses the pathway. Mif treatment also changes the nuclear translocation of p53 and interferes with the apoptotic fate of these cells when challenged with reactive oxygen species. In conclusion, an important mechanism has been found underlying decidual cell survival through Akt signaling pathway activated by Mif, suggesting a role for this cytokine in decidual homeostasis and in the integrity of the maternal-fetal barrier that is essential for successful gestation. PMID:27208405

  1. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways.

    PubMed

    Fitsialos, Giorgos; Chassot, Anne-Amandine; Turchi, Laurent; Dayem, Manal A; LeBrigand, Kevin; Moreilhon, Chimène; Meneguzzi, Guerrino; Buscà, Roser; Mari, Bernard; Barbry, Pascal; Ponzio, Gilles

    2007-05-18

    Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38(MAPK) and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38(MAPK) inhibition only delays "healing," probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38(MAPK) and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids. PMID:17363378

  2. ZSTK474, a specific class I phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and autophagy in human breast cancer MCF-7 cells

    PubMed Central

    Wang, Yaochen; Liu, Jing; Qiu, Yuling; Jin, Meihua; Chen, Xi; Fan, Guanwei; Wang, Ran; Kong, Dexin

    2016-01-01

    Multifaceted activities of class I phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 were investigated on human breast cancer cell MCF-7. ZSTK474 inhibited proliferation of MCF-7 cells potently. Flow cytometric analysis indicated that ZSTK474 induced cell cycle arrest at G1 phase, but no obvious apoptosis occurred. Western blot analysis suggested that blockade of PI3K/Akt/GSK-3β/cyclin D1/p-Rb pathway might contribute to the G1 arrest induced. Moreover, we demonstrated that ZSTK474 induced autophagy in MCF-7 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy protein markers of LC3B II, p62 and Atg 5. Inhibition of class I PI3K and the downstream mTOR might be involved in the autophagy-inducing effect. Combinational use of ZSTK474 and autophagy inhibitors enhanced cell viability, suggesting ZSTK474-induced autophagy might contribute to the antitumor activity. Our report supports the application of ZSTK474, which is being evaluated in clinical trials, for breast cancer therapy. PMID:26918351

  3. A Trypanosoma cruzi Phosphatidylinositol 3-Kinase (TcVps34) Is Involved in Osmoregulation and Receptor-mediated Endocytosis*S⃞

    PubMed Central

    Schoijet, Alejandra C.; Miranda, Kildare; Girard-Dias, Wendell; de Souza, Wanderley; Flawiá, Mirtha M.; Torres, Héctor N.; Docampo, Roberto; Alonso, Guillermo D.

    2008-01-01

    Trypanosoma cruzi, the etiological agent of Chagas disease, has the ability to respond to a variety of environmental changes during its life cycle both in the insect vector and in the vertebrate host. Because regulation of transcription initiation seems to be nonfunctional in this parasite, it is important to investigate other regulatory mechanisms of adaptation. Regulatory mechanisms at the level of signal transduction pathways involving phosphoinositides are good candidates for this purpose. Here we report the identification of the first phosphatidylinositol 3-kinase (PI3K) in T. cruzi, with similarity with its yeast counterpart, Vps34p. TcVps34 specifically phosphorylates phosphatidylinositol to produce phosphatidylinositol 3-phosphate, thus confirming that it belongs to class III PI3K family. Overexpression of TcVps34 resulted in morphological and functional alterations related to vesicular trafficking. Although inhibition of TcVps34 with specific PI3K inhibitors, such as wortmannin and LY294,000, resulted in reduced regulatory volume decrease after hyposmotic stress, cells overexpressing this enzyme were resistant to these inhibitors. Furthermore, these cells were able to recover their original volume faster than wild type cells when they were submitted to severe hyposmotic stress. In addition, in TcVps34-overexpressing cells, the activities of vacuolar-H+-ATPase and vacuolar H+-pyrophosphatase were altered, suggesting defects in the acidification of intracellular compartments. Furthermore, receptor-mediated endocytosis was partially blocked although fluid phase endocytosis was not affected, confirming a function for TcVps34 in membrane trafficking. Taken together, these results strongly support that TcVps34 plays a prominent role in vital processes for T. cruzi survival such as osmoregulation, acidification, and vesicular trafficking. PMID:18801733

  4. Adiponectin Induces Oncostatin M Expression in Osteoblasts through the PI3K/Akt Signaling Pathway

    PubMed Central

    Su, Chen-Ming; Lee, Wei-Lin; Hsu, Chin-Jung; Lu, Ting-Ting; Wang, Li-Hong; Xu, Guo-Hong; Tang, Chih-Hsin

    2015-01-01

    Rheumatoid arthritis (RA), a common autoimmune disorder, is associated with a chronic inflammatory response and unbalanced bone metabolism within the articular microenvironment. Adiponectin, an adipokine secreted by adipocytes, is involved in multiple functions, including lipid metabolism and pro-inflammatory activity. However, the mechanism of adiponectin performance within arthritic inflammation remains unclear. In this study, we observed the effect of adiponectin on the expression of oncostatin M (OSM), a pro-inflammatory cytokine, in human osteoblastic cells. Pretreatment of cells with inhibitors of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor (NF)-κB reduced the adiponectin-induced OSM expression in osteoblasts. Stimulation of the cells with adiponectin increased phosphorylation of PI3K, Akt, and p65. Adiponectin treatment of osteoblasts increased OSM-luciferase activity and p65 binding to NF-κB on the OSM promoter. Our results indicate that adiponectin increased OSM expression via the PI3K, Akt, and NF-κB signaling pathways in osteoblastic cells, suggesting that adiponectin is a novel target for arthritis treatment. PMID:26712749

  5. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    SciTech Connect

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui; Teng, Weiping; Chen, Jie

    2013-09-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  6. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance

    PubMed Central

    Ihle, NathanT.; Lemos, Robert; Wipf, Peter; Yacoub, Adly; Mitchell, Clint; Siwak, Doris; Mills, Gordon B.; Dent, Paul; Kirkpatrick, D Lynn.; Powis, Garth

    2008-01-01

    The novel phosphatidylinositol-3-kinase (PI-3-kinase) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI-3-kinase (PIK3CA) and loss of PTEN activity were sufficient but not necessary as predictors of sensitivity to the antitumor activity of the PI-3-K inhibitor PX-866 in the presence of wild type Ras, while mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI-3-kinase signaling measured by tumor phospho-Ser473-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse phase protein array (RPPA) revealed that the Ras dependent down stream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best defined downstream targets of Ras, namely Raf, RalGDS, and PI-3-kinase, showed that mutant Ras mediates resistance through its ability to utilize multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI-3-kinase inhibition may serve as an important guide for patient selection as inhibitors enter clinical trials, and for the development of rational combinations with other molecularly targeted agents. PMID:19117997

  7. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways.

    PubMed

    Penuel, E; Martin, G S

    1999-06-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  8. Transformation by v-Src: Ras-MAPK and PI3K-mTOR Mediate Parallel Pathways

    PubMed Central

    Penuel, Elicia; Martin, G. Steven

    1999-01-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  9. Acanthamoeba castellanii Induces Host Cell Death via a Phosphatidylinositol 3-Kinase-Dependent Mechanism

    PubMed Central

    Sissons, James; Kim, Kwang Sik; Stins, Monique; Jayasekera, Samantha; Alsam, Selwa; Khan, Naveed Ahmed

    2005-01-01

    Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase. PMID:15845472

  10. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.

    PubMed

    McMillin, Douglas W; Ooi, Melissa; Delmore, Jake; Negri, Joseph; Hayden, Patrick; Mitsiades, Nicolas; Jakubikova, Jana; Maira, Sauveur-Michel; Garcia-Echeverria, Carlos; Schlossman, Robert; Munshi, Nikhil C; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2009-07-15

    The phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway mediates proliferation, survival, and drug resistance in multiple myeloma (MM) cells. Here, we tested the anti-MM activity of NVP-BEZ235 (BEZ235), which inhibits PI3K/Akt/mTOR signaling at the levels of PI3K and mTOR. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric survival assays showed that MM cell lines exhibited dose- and time-dependent decreased viability after exposure to BEZ235 (IC(50), 25-800 nmol/L for 48 hours). MM cells highly sensitive (IC(50), <25 nmol/L) to BEZ235 (e.g., MM.1S, MM.1R, Dox40, and KMS-12-PE) included both lines sensitive and resistant to conventional (dexamethasone, cytotoxic chemotherapeutics) agents. Pharmacologically relevant BEZ235 concentrations (25-400 nmol/L) induced rapid commitment to and induction of MM.1S and OPM-2 cell death. Furthermore, normal donor peripheral blood mononuclear cells were less sensitive (IC(50), >800 nmol/L) than the majority of MM cell lines tested, suggesting a favorable therapeutic index. In addition, BEZ235 was able to target MM cells in the presence of exogenous interleukin-6, insulin-like growth factor-1, stromal cells, or osteoclasts, which are known to protect against various anti-MM agents. Molecular profiling revealed that BEZ235 treatment decreased the amplitude of transcriptional signatures previously associated with myc, ribosome, and proteasome function, as well as high-risk MM and undifferentiated human embryonic stem cells. In vivo xenograft studies revealed significant reduction in tumor burden (P = 0.011) and survival (P = 0.028) in BEZ235-treated human MM tumor-bearing mice. Combinations of BEZ235 with conventional (e.g., dexamethasone and doxorubicin) or novel (e.g., bortezomib) anti-MM agents showed lack of antagonism. These results indicate that BEZ235 merits clinical testing, alone and in combination with other agents, in MM. PMID:19584292

  11. Inhibitory actions of the phosphatidylinositol 3-kinase inhibitor LY294002 on the human Kv1.5 channel

    PubMed Central

    Wu, J; Ding, W-G; Matsuura, H; Tsuji, K; Zang, W-J; Horie, M

    2009-01-01

    Background and purpose: Kv1.5 channels conduct the ultra-rapid delayed rectifier potassium current (IKur), and in humans, Kv1.5 channels are highly expressed in cardiac atria but are scarce in ventricles. Pharmacological blockade of human Kv1.5 (hKv1.5) has been regarded as effective for prevention and treatment of re-entry-based atrial tachyarrhythmias. Here we examined blockade of hKv1.5 channels by LY294002, a well-known inhibitor of phosphatidylinositol 3-kinase (PI3K). Experimental approach: hKv1.5 channels were heterologously expressed in Chinese hamster ovary cells. Effects of LY294002 on wild-type and mutant (T462C, H463C, T480A, R487V, A501V, I502A, I508A, L510A and V516A) hKv1.5 channels were examined by using the whole-cell patch-clamp method. Key results: LY294002 rapidly and reversibly inhibited hKv1.5 current in a concentration-dependent manner (IC50 of 7.9 µmol·L−1). In contrast, wortmannin, a structurally distinct inhibitor of PI3K, had little inhibitory effect on hKv1.5 current. LY294002 block of hKv1.5 current developed with time during depolarizing voltage-clamp steps, and this blockade was also voltage-dependent with a steep increase over the voltage range for channel openings. The apparent binding (k+1) and unbinding (k−1) rate constants were calculated to be 1.6 µmol·L−1−1·s−1 and 5.7 s−1 respectively. Inhibition by LY294002 was significantly reduced in several hKv1.5 mutant channels: T480A, R487V, I502A, I508A, L510A and V516A. Conclusions and implications: LY294002 acts directly on hKv1.5 currents as an open channel blocker, independently of its effects on PI3K activity. Amino acid residues located in the pore region (Thr480, Arg487) and the S6 segment (Ile502, Ile508, Leu510, Val516) appear to constitute potential binding sites for LY294002. PMID:19154427

  12. Sur8/Shoc2 promotes cell motility and metastasis through activation of Ras-PI3K signaling

    PubMed Central

    Kaduwal, Saluja; Jeong, Woo-Jeong; Park, Jong-Chan; Lee, Kug Hwa; Lee, Young-Mi; Jeon, Soung-Hoo; Lim, Yong-Beom; Min, Do Sik; Choi, Kang-Yell

    2015-01-01

    Sur8 (also known as Shoc2) is a Ras-Raf scaffold protein that modulates signaling through extracellular signal-regulated kinase (ERK) pathway. Although Sur8 has been shown to be a scaffold protein of the Ras-ERK pathway, its interaction with other signaling pathways and its involvement in tumor malignancy has not been reported. We identified that Sur8 interacts with the p110α subunit of phosphatidylinositol 3-kinase (PI3K), as well as with Ras and Raf, and these interactions are increased in an epidermal growth factor (EGF)- and oncogenic Ras-dependent manner. Sur8 regulates cell migration and invasion via activation of Rac and matrix metalloproteinases (MMPs). Interestingly, using inhibitors of MEK and PI3K we found Sur8 mediates these cellular behaviors predominantly through PI3K pathway. We further found that human metastatic melanoma tissues had higher Sur8 content followed by activations of Akt, ERK, and Rac. Lentivirus-mediated Sur8-knockdown attenuated metastatic potential of highly invasive B16-F10 melanoma cells indicating the role of Sur8 in melanoma metastasis. This is the first report to identify the role of scaffold protein Sur8 in regulating cell motility, invasion, and metastasis through activation of both ERK and PI3K pathways. PMID:26384305

  13. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway.

    PubMed

    Dong, Menghua; Yang, Guiqing; Liu, Hanchen; Liu, Xiaoxu; Lin, Sixiang; Sun, Dongning; Wang, Yishan

    2014-03-01

    Accumulating evidence indicates that aged black garlic extract (ABGE) may prove beneficial in preventing or inhibiting oncogenesis; however, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the effects of ABGE on the proliferation and apoptosis of HT29 colon cancer cells. Our results demonstrated that ABGE inhibited HT29 cell growth via the induction of apoptosis and cell cycle arrest. We further investigated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signal transduction pathway and the molecular mechanisms underlying the ABGE-induced inhibition of HT29 cell proliferation. We observed that ABGE may regulate the function of the PI3K/Akt pathway through upregulating PTEN and downregulating Akt and p-Akt expression, as well as suppressing its downstream target, 70-kDa ribosomal protein S6 kinase 1, at the mRNA and protein levels. In conclusion, these findings suggest that the PI3K/Akt signal transduction pathway is crucial for the development of colon cancer. ABGE inhibited the growth and induced apoptosis in HT29 cells through the inhibition of the PI3K/Akt pathway, suggesting that ABGE may be effective in the prevention and treatment of colon cancer in humans. PMID:24649105

  14. Mesomesenchymal transition of pleural mesothelial cells is PI3K and NF-κB dependent.

    PubMed

    Owens, Shuzi; Jeffers, Ann; Boren, Jake; Tsukasaki, Yoshikazu; Koenig, Kathleen; Ikebe, Mitsuo; Idell, Steven; Tucker, Torry A

    2015-06-15

    Pleural organization follows acute injury and is characterized by pleural fibrosis, which may involve the visceral and parietal pleural surfaces. This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to pleural fibrosis and loculation. Pleural mesothelial cells (PMCs) undergo a process called mesothelial mesenchymal transition (MesoMT), by which PMCs acquire a profibrotic phenotype characterized by cellular enlargement and elongation, increased expression of α-smooth muscle actin (α-SMA), and matrix proteins including collagen-1. Although MesoMT contributes to pleural fibrosis and lung restriction in mice with carbon black/bleomycin-induced pleural injury and procoagulants and fibrinolytic proteases strongly induce MesoMT in vitro, the mechanism by which this transition occurs remains unclear. We found that thrombin and plasmin potently induce MesoMT in vitro as does TGF-β. Furthermore, these mediators of MesoMT activate phosphatidylinositol-3-kinase (PI3K)/Akt and NF-κB signaling pathways. Inhibition of PI3K/Akt signaling prevented TGF-β-, thrombin-, and plasmin-mediated induction of the MesoMT phenotype exhibited by primary human PMCs. Similar effects were demonstrated through blockade of the NF-κB signaling cascade using two distinctly different NF-κB inhibitors, SN50 and Bay-11 7085. Conversely, expression of constitutively active Akt-induced mesenchymal transition in human PMCs whereas the process was blocked by PX866 and AKT8. Furthermore, thrombin-mediated MesoMT is dependent on PAR-1 expression, which is linked to PI3K/Akt signaling downstream. These are the first studies to demonstrate that PI3K/Akt and/or NF-κB signaling is critical for induction of MesoMT. PMID:25888576

  15. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation.

    PubMed

    Borradaile, Nica M; de Dreu, Linda E; Huff, Murray W

    2003-10-01

    The flavonoid naringenin improves hyperlipidemia and hyperglycemia in streptozotocin-treated rats. In HepG2 human hepatoma cells, naringenin inhibits apolipoprotein B (apoB) secretion primarily by inhibiting microsomal triglyceride transfer protein and enhances LDL receptor (LDLr)-mediated apoB-containing lipoprotein uptake. Phosphatidylinositol 3-kinase (PI3K) activation by insulin increases sterol regulatory element-binding protein (SREBP)-1 and LDLr expression and inhibits apoB secretion in hepatocytes. Thus, we determined whether naringenin activates this pathway. Insulin and naringenin induced PI3K-dependent increases in cytosolic and nuclear SREBP-1 and LDLr expression. Similar PI3K-mediated increases in SREBP-1 were observed in McA-RH7777 rat hepatoma cells, which express predominantly SREBP-1c. Reductions in HepG2 cell media apoB with naringenin were partially attenuated by wortmannin, whereas the effect of insulin was completely blocked. Both treatments reduced apoB100 secretion in wild-type and LDLr(-/-) mouse hepatocytes to the same extent. Insulin and naringenin increased HepG2 cell PI3K activity and decreased insulin receptor substrate (IRS)-2 levels. In sharp contrast to insulin, naringenin did not induce tyrosine phosphorylation of IRS-1. We conclude that naringenin increases LDLr expression in HepG2 cells via PI3K-mediated upregulation of SREBP-1, independent of IRS-1 phosphorylation. Although this pathway may not regulate apoB secretion in primary hepatocytes, PI3K activation by this novel mechanism may explain the insulin-like effects of naringenin in vivo. PMID:14514640

  16. The catalytic subunit of phosphatidylinositol 3-kinase is a substrate for the activated platelet-derived growth factor receptor, but not for middle-T antigen-pp60c-src complexes.

    PubMed Central

    Roche, S; Dhand, R; Waterfield, M D; Courtneidge, S A

    1994-01-01

    The interaction of phosphatidylinositol 3-kinase (PI 3-K) with polyoma-virus middle-T antigen-pp60c-src (mT:cSrc) complexes and with the platelet-derived growth factor (PDGF) receptor has been investigated. Firstly, we undertook reconstitution studies, using proteins derived from a baculovirus expression system. The p110 catalytic subunit of the PI 3-K associated with tyrosine kinases only when complexed with the p85 alpha regulatory subunit. Both p85 alpha and p110 were substrates of the PDGF receptor. In contrast, only the p85 alpha subunit was detectably phosphorylated when PI 3-K was associated with mT:cSrc. Secondly, we studied PI 3-K in mammalian cells. In mT-antigen-transformed NIH-3T3 cells neither p85 alpha nor p110 was phosphorylated on tyrosine residues in vivo, even though p85 alpha was a substrate in kinase assays in vitro. In quiescent NIH-3T3 cells, PI 3-K showed detectable activity in vitro; PDGF stimulation resulted in a rapid and transient association of PI 3-K with the receptor, which was correlated with a transient increase in intrinsic P13-K activity (approx. 2-fold). The activated PDGF receptor phosphorylated p110 in vitro, at one major site. In vivo, PDGF stimulation induced tyrosine phosphorylation of p110 that persisted for at least 1 h after stimulation. Immunodepletion of the PDGF receptor from stimulated cell lysates showed that p110 was released from the receptor in a tyrosine-phosphorylated form. From these results we conclude that (i) the mT:cSrc complex and the PDGF receptor differ in their association with PI 3-K activity, (ii) PDGF receptor appears to activate PI 3-K in vivo both by relocation of the enzyme and by stimulation of its intrinsic activity, and (iii) tyrosine phosphorylation of the p110 subunit by the PDGF receptor may play a role in PI 3-K regulation in some circumstances. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7519847

  17. PI3K pathway alterations in cancer: variations on a theme

    PubMed Central

    Yuan, TL; Cantley, LC

    2012-01-01

    The high frequency of phosphoinositide 3-kinase (PI3K) pathway alterations in cancer has led to a surge in the development of PI3K inhibitors. Many of these targeted therapies are currently in clinical trials and show great promise for the treatment of PI3K-addicted tumors. These recent developments call for a re-evaluation of the oncogenic mechanisms behind PI3K pathway alterations. This pathway is unique in that every major node is frequently mutated or amplified in a wide variety of solid tumors. Receptor tyrosine kinases upstream of PI3K, the p110α catalytic subunit of PI3K, the downstream kinase, AKT, and the negative regulator, PTEN, are all frequently altered in cancer. In this review, we will examine the oncogenic properties of these genetic alterations to understand whether they are redundant or distinct and propose treatment strategies tailored for these genetic lesions. PMID:18794884

  18. Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway.

    PubMed

    Kong, Ning; Wu, Yongguang; Meng, Qiong; Wang, Zhongze; Zuo, Yewen; Pan, Xi; Tong, Wu; Zheng, Hao; Li, Guoxin; Yang, Shen; Yu, Hai; Zhou, En-Min; Shan, Tongling; Tong, Guangzhi

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) has recently caused high mortality in suckling piglets with subsequent large economic losses to the swine industry. Many intracellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, are activated by viral infection. The PI3K/Akt pathway is an important cellular pathway that has been shown to be required for virus replication. In the present study, we found that the PEDV JS-2013 strain activated Akt in Vero cells at early (5-15 min) and late stages (8-10 h) of infection. Inhibiting PI3K, an upstream activator of Akt, enhanced PEDV replication. Inhibiting GSK-3α/β, one of the downstream effectors of PI3K/Akt pathway and regulated by Akt during PEDV infected Vero cells, also enhanced PEDV replication. Collectively, our data suggest that PI3K/Akt/GSK-3α/β signaling pathway is activated by PEDV and functions in inhibiting PEDV replication. PMID:27560518

  19. Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway

    PubMed Central

    Kong, Ning; Wu, Yongguang; Meng, Qiong; Wang, Zhongze; Zuo, Yewen; Pan, Xi; Tong, Wu; Zheng, Hao; Li, Guoxin; Yang, Shen; Yu, Hai; Zhou, En-min; Shan, Tongling; Tong, Guangzhi

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) has recently caused high mortality in suckling piglets with subsequent large economic losses to the swine industry. Many intracellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, are activated by viral infection. The PI3K/Akt pathway is an important cellular pathway that has been shown to be required for virus replication. In the present study, we found that the PEDV JS-2013 strain activated Akt in Vero cells at early (5–15 min) and late stages (8–10 h) of infection. Inhibiting PI3K, an upstream activator of Akt, enhanced PEDV replication. Inhibiting GSK-3α/β, one of the downstream effectors of PI3K/Akt pathway and regulated by Akt during PEDV infected Vero cells, also enhanced PEDV replication. Collectively, our data suggest that PI3K/Akt/GSK-3α/β signaling pathway is activated by PEDV and functions in inhibiting PEDV replication. PMID:27560518

  20. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors

    PubMed Central

    Spartà, Antonino Maria; Chiarini, Francesca; Buontempo, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Orsini, Ester; McCubrey, James A.; Martelli, Alberto Maria

    2015-01-01

    Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases. PMID:25871383

  1. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells.

    PubMed

    Göckeritz, Elisa; Kerwien, Susan; Baumann, Michael; Wigger, Marion; Vondey, Verena; Neumann, Lars; Landwehr, Thomas; Wendtner, Clemens M; Klein, Christian; Liu, Ningshu; Hallek, Michael; Frenzel, Lukas P; Krause, Günter

    2015-11-01

    Pharmacological inhibition of phosphatiylinositide-3-kinase (PI3K)-mediated signaling holds great promise for treating chronic lymphocytic leukemia (CLL). Therefore we assessed three structurally related PI3K inhibitors targeting the PI3K-δ isoform for their ability to inhibit the survival of freshly isolated CLL cells. The purely PI3K-δ-selective inhibitor idelalisib was compared to copanlisib (BAY 80-6946) and duvelisib (IPI-145), with isoform target profiles that additionally include PI3K-α or PI3K-γ, respectively. The concentrations leading to half-maximal reduction of the survival of CLL cells were more than ten-fold lower for copanlisib than for idelalisib and duvelisib. At concentrations reflecting the biological availability of the different inhibitors, high levels of apoptotic response among CLL samples were attained more consistently with copanlisib than with idelalisib. Copanlisib selectively reduced the survival of CLL cells compared to T cells and to B cells from healthy donors. In addition copanlisib and duvelisib impaired the migration of CLL cells towards CXCL12 to a greater extent than equimolar idelalisib. Similarly copanlisib and duvelisib reduced the survival of CLL cells in co-cultures with the bone marrow stroma cell line HS-5 more strongly than idelalisib. Survival inhibition by copanlisib and idelalisib was enhanced by the monoclonal CD20 antibodies rituximab and obinutuzumab (GA101), while antibody-dependent cellular cytotoxicity mediated by alemtuzumab and peripheral blood mononuclear cells was not substantially impaired by both PI3K inhibitors for the CLL-derived JVM-3 cell line as target cells. Taken together, targeting the α- and δ- p110 isoforms with copanlisib may be a useful strategy for the treatment of CLL and warrants further clinical investigation. PMID:25912635

  2. Dual inhibition of phosphatidylinositol 3'-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach for mucinous adenocarcinoma of the ovary.

    PubMed

    Kudoh, Akiko; Oishi, Tetsuro; Itamochi, Hiroaki; Sato, Seiya; Naniwa, Jun; Sato, Shinya; Shimada, Muneaki; Kigawa, Junzo; Harada, Tasuku

    2014-03-01

    Ovarian mucinous adenocarcinoma (MAC) resists standard chemotherapy and is associated with poor prognosis. A more effective treatment is needed urgently. The present study assessed the possibility of molecular-targeted therapy with a novel dual inhibitor of phosphatidylinositol 3'-kinase (PI3K) and mammalian target of rapamycin (mTOR), NVP-BEZ235 (BEZ235) to treat of MAC. Seven human MAC cell lines were used in this study. The sensitivity of the cells to BEZ235, temsirolimus, and anticancer agents was determined with the WST-8 assay. Cell cycle distribution was assessed by flow cytometry, and the expression of proteins in apoptotic pathways and molecules of the PI3K/Akt/mTOR signaling pathways was determined by Western blot analysis. We also examined the effects of BEZ235 on tumor growth in nude mice xenograft models. The cell lines showed half-maximal inhibitory concentration values of BEZ235 from 13 to 328 nmol/L. Low half-maximal inhibitory concentration values to BEZ235 were observed in MCAS and OMC-1 cells; these 2 lines have an activating mutation in the PIK3CA gene. NVP-BEZ235 down-regulated the protein expression of phosphorylated (p-) Akt, p-p70S6K, and p-4E-BP1, suppressed cell cycle progression, up-regulated the expression of cleaved PARP and cleaved caspase 9, and increased apoptotic cells. Synergistic effects were observed on more than 5 cell lines when BEZ235 was combined with paclitaxel or cisplatin. The treatment of mice bearing OMC-1 or RMUG-S with BEZ235 significantly suppressed tumor growth in MAC xenograft models without severe weight loss. We conclude that the PI3K/Akt/mTOR pathway is a potential therapeutic target and that BEZ235 should be explored as a therapeutic agent for MAC. PMID:24552895

  3. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis. PMID:26979714

  4. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway.

    PubMed

    Wang, Dongdong; Saga, Yasushi; Sato, Naoto; Nakamura, Toshikazu; Takikawa, Osamu; Mizukami, Hiroaki; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-06-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  5. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; SATO, NAOTO; NAKAMURA, TOSHIKAZU; TAKIKAWA, OSAMU; MIZUKAMI, HIROAKI; MATSUBARA, SHIGEKI; FUJIWARA, HIROYUKI

    2016-01-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  6. Brain-derived Neurotrophic Factor Prevents Phencyclidine-induced Apoptosis in Developing Brain by Parallel Activation of both the ERK and PI-3K/Akt Pathways

    PubMed Central

    Xia, Yan; Wang, Cheng Z.; Liu, Jie; Anastasio, Noelle C.; Johnson, Kenneth M.

    2009-01-01

    Summary Phencyclidine is an N-methyl D-aspartate receptor (NMDAR) blocker that has been reported to induce neuronal apoptosis during development and schizophrenia-like behaviors in rats later in life. Brain derived neurotrophic factor (BDNF) has been shown to prevent neuronal death caused by NMDAR blockade, but the precise mechanism is unknown. This study examined the role of the phosphatidylinositol-3 kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in BDNF protection of PCP-induced apoptosis in corticostriatal organotypic cultures. It was observed that BDNF inhibited PCP-induced apoptosis in a concentration dependent fashion. BDNF effectively prevented PCP-induced inhibition of the ERK and PI-3K/Akt pathways and suppressed GSK-3β activation. Blockade of either PI-3K/Akt or ERK activation abolished BDNF protection. Western blot analysis revealed that the PI-3K inhibitor LY294002 prevented the stimulating effect of BDNF on the PI-3K/Akt pathway, but had no effect on the ERK pathway. Similarly, the ERK inhibitor PD98059 prevented the stimulating effect of BDNF on the ERK pathway, but not the PI-3K/Akt pathway. Co-application of LY294002 and PD98059 had no additional effect on BDNF-evoked activation of Akt or ERK. However, concurrent exposure to PD98059 and LY294002 caused much greater inhibition of BDNF-evoked phosphorylation of GSK-3β at serine 9 than did LY294002 alone. Finally, either BDNF or GSK-3β inhibition prevented PCP-induced suppression of cyclic-AMP response element binding protein (CREB) phosphorylation. These data demonstrate that the protective effect of BDNF against PCP-induced apoptosis is mediated by parallel activation of the PI-3K/Akt and ERK pathways, most likely involves inhibition of GSK-3β and activation of CREB. PMID:19887077

  7. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells

    PubMed Central

    Hu, Y; Guo, R; Wei, J; Zhou, Y; Ji, W; Liu, J; Zhi, X; Zhang, J

    2015-01-01

    The multidrug resistance (MDR) phenotype often accompanies activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which renders a survival signal to withstand cytotoxic anticancer drugs and enhances cancer stem cell (CSC) characteristics. As a result, PI3K/AKT-blocking approaches have been proposed as antineoplastic strategies, and inhibitors of PI3K/AKT are currently being trailed clinically in breast cancer patients. However, the effects of PI3K inhibitors on MDR breast cancers have not yet been elucidated. In the present study, the tumorigenic properties of three MDR breast cancer cell lines to a selective inhibitor of PI3K, NVP-BKM120 (BKM120), were assessed. We found that BKM120 showed a significant cytotoxic activity on MDR breast cancer cells both in vitro and in vivo. When doxorubicin (DOX) was combined with BKM120, strong synergistic antiproliferative effect was observed. BKM120 activity induced the blockage of PI3K/AKT signaling and NF-κB expression, which in turn led to activate caspase-3/7 and caspase-9 and changed the expression of several apoptosis-related gene expression. Furthermore, BKM120 effectively eliminated CSC subpopulation and reduced sphere formation of these drug-resistant cells. Our findings indicate that BKM120 partially overcomes the MDR phenotype in chemoresistant breast cancer through cell apoptosis induction and CSC abolishing, which appears to be mediated by the inhibition of the PI3K/AKT/NF-κB axis. This offers a strong rationale to explore the therapeutic strategy of using BKM120 alone or in combination for chemotherapy-nonresponsive breast cancer patients. PMID:26673665

  8. Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas.

    PubMed

    Shortt, Jake; Martin, Benjamin P; Newbold, Andrea; Hannan, Katherine M; Devlin, Jennifer R; Baker, Adele J; Ralli, Rachael; Cullinane, Carleen; Schmitt, Clemens A; Reimann, Maurice; Hall, Michael N; Wall, Meaghan; Hannan, Ross D; Pearson, Richard B; McArthur, Grant A; Johnstone, Ricky W

    2013-04-11

    Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR. PMID:23403624

  9. Will targeting PI3K/Akt/mTOR signaling work in hematopoietic malignancies?

    PubMed Central

    Gao, Yanan; Yuan, Chase Y.

    2016-01-01

    The constitutive activation of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has been demonstrated to be critical in clinical cancer patients as well as in laboratory cancer models including hematological malignancies. Great efforts have been made to develop inhibitors targeting this pathway in hematological malignancies but so far the efficacies of these inhibitors were not as good as expected. By analyzing existing literatures and datasets available, we found that mutations of genes in the pathway only constitute a very small subset of hematological malignancies. Deep understanding of the function of gene, the pathway and/or its regulators, and the cellular response to inhibitors, may help us design better drugs targeting the hematological malignancies. PMID:27583254

  10. Yes and PI3K bind CD95 to signal invasion of glioblastoma.

    PubMed

    Kleber, Susanne; Sancho-Martinez, Ignacio; Wiestler, Benedict; Beisel, Alexandra; Gieffers, Christian; Hill, Oliver; Thiemann, Meinolf; Mueller, Wolf; Sykora, Jaromir; Kuhn, Andreas; Schreglmann, Nina; Letellier, Elisabeth; Zuliani, Cecilia; Klussmann, Stefan; Teodorczyk, Marcin; Gröne, Hermann-Josef; Ganten, Tom M; Sültmann, Holger; Tüttenberg, Jochen; von Deimling, Andreas; Regnier-Vigouroux, Anne; Herold-Mende, Christel; Martin-Villalba, Ana

    2008-03-01

    Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo. PMID:18328427

  11. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH{sub 2}-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    SciTech Connect

    Miyata, Yoshiki; Sato, Takashi . E-mail: satotak@ps.toyaku.ac.jp; Ito, Akira

    2005-11-04

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH{sub 2}-terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation.

  12. Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization

    PubMed Central

    Biasiotto, Roberta; Eng, Kai; Neuvonen, Maarit; Götte, Benjamin; Rheinemann, Lara; Mutso, Margit; Utt, Age; Varghese, Finny; Balistreri, Giuseppe; Merits, Andres; Ahola, Tero; McInerney, Gerald M.

    2015-01-01

    ABSTRACT Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human

  13. Dissecting the PI3K Signaling Axis in Pediatric Solid Tumors: Novel Targets for Clinical Integration

    PubMed Central

    Loh, Amos H. P.; Brennan, Rachel C.; Lang, Walter H.; Hickey, Robert J.; Malkas, Linda H.; Sandoval, John A.

    2013-01-01

    Children with solid tumors represent a unique population. Recent improvements in pediatric solid tumor survival rates have been confined to low- and moderate-risk cancers, whereas minimal to no notable improvement in survival have been observed in high-risk and advanced-stage childhood tumors. Treatments for patients with advanced disease are rarely curative, and responses to therapy are often followed by relapse, which highlights the large unmet need for novel therapies. Recent advances in cancer treatment have focused on personalized therapy, whereby patients are treated with agents that best target the molecular drivers of their disease. Thus, a better understanding of the pathways that drive cancer or drug resistance is of critical importance. One such example is the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which is activated in many solid cancer patients and represents a target for therapy. PI3K/Akt/mTOR pathway activation has also been observed in tumors resistant to agents targeting upstream receptor tyrosine kinases (RTKs). Agents that target this pathway have the potential to shut down survival pathways, and are being explored both in the setting of pathway-activating mutations and for their ability to restore sensitivity to upstream signaling targeted agents. Here, we examine the role of the PI3K/Akt/mTOR pathway in pediatric solid tumors, review the novel agents being explored to target this pathway, and explore the potential role of the inhibition of this pathway in the clinical development of these agents in children. PMID:23638435

  14. PI3K: An Attractive Candidate for the Central Integration of Metabolism and Reproduction

    PubMed Central

    Acosta-Martínez, Maricedes

    2012-01-01

    In neurons, as in a variety of other cell types, the enzyme phosphatidylinositol-3-kinase (PI3K) is a key intermediate that is common to the signaling pathways of a number of peripheral metabolic cues, including insulin and leptin, which are well known to regulate both metabolic and reproductive functions. This review article will explore the possibility that PI3K is a key integrator of metabolic and neural signals regulating gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) release and explore the hypothesis that this enzyme is pivotal in many disorders where gonadotropin release is at risk. Although the mechanisms mediating the influence of metabolism and nutrition on fertility are currently unclear, the strong association between metabolic disorders and infertility is undeniable. For example, women suffering from anorectic disorders experience amenorrhea as a consequence of malnutrition-induced impairment of LH release, and at the other extreme, obesity is also commonly co-morbid with menstrual dysfunction and infertility. Impaired hypothalamic insulin and leptin receptor signaling is thought to be at the core of reproductive disorders associated with metabolic dysfunction. While low levels of leptin and insulin characterize states of negative energy balance, prolonged nutrient excess is associated with insulin and leptin resistance. Metabolic models known to alter GnRH/LH release such as diabetes, diet-induced obesity, and caloric restriction are also accompanied by impairment of PI3K signaling in insulin and leptin sensitive tissues including the hypothalamus. However, a clear link between this signaling pathway and the control of GnRH release by peripheral metabolic cues has not been established. Investigating the role of the signaling pathways shared by metabolic cues that are critical for a normal reproductive state can help identify possible targets in the treatment of metabolic and reproductive disorders such as polycystic ovarian syndrome

  15. Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse

    PubMed Central

    LI, BING-SHU; GUO, WEN-JUN; HONG, LI; LIU, YAO-DAN; LIU, CHENG; HONG, SHA-SHA; WU, DE-BIN; MIN, JIE

    2016-01-01

    Mechanical loading on pelvic supports contributes to pelvic organ prolapse (POP). However, the underlying mechanisms remain to be elucidated. Our previous study identified that mechanical strain induced oxidative stress (OS) and promoted apoptosis and senescence in pelvic support fibroblasts. The aim of the present study is to investigate the molecular signaling pathway linking mechanical force with POP. Using a four-point bending device, human uterosacral ligament fibroblasts (hUSLF) were exposed to mechanical tensile strain at a frequency of 0.3 Hz and intensity of 5333 µε, in the presence or absence of LY294002. The applied mechanical strain on hUSLF resulted in apoptosis and senescence, and decreased expression of procollagen type I α1. Mechanical strain activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling and resulted in downregulated expression of glutathione peroxidase 1 and Mn-superoxide dismutase, and accumulation of intracellular reactive oxygen species. These effects were blocked by administration of LY294002. Furthermore, it was demonstrated that PI3K/Akt was activated in the uterosacral ligaments of POP patients, and that OS was increased and collagen type I production reduced. The results from the present study suggest that mechanical strain promotes apoptosis and senescence, and reduces collagen type I production via activation of PI3K/Akt-mediated OS signaling pathway in hUSLF. This process may be involved in the pathogenesis of POP as it results in relaxation and dysfunction of pelvic supports. PMID:27176043

  16. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  17. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  18. IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation

    PubMed Central

    Kolliputi, Narasaiah; Waxman, Aaron B.

    2009-01-01

    IL-6 overexpression protects mice from hyperoxic acute lung injury in vivo, and treatment with IL-6 protects cells from oxidant-mediated death in vitro. The mechanisms of protection, however, are not clear. We characterized the expression, localization, and regulation of Bax, a proapoptotic member of the Bcl-2 family, in wild-type (WT) and IL-6 lung-specific transgenic (Tg+) mice exposed to 100% O2 and in human umbilical vein endothelial cells (HUVEC) treated with H2O2 and IL-6. In control HUVEC treated with H2O2 or in WT mice exposed to 100% O2, a marked induction of Bax translocation and dimerization was associated with increased JNK and p38 kinase activity. In contrast, specific JNK or p38 kinase inhibitors or treatment with IL-6 inhibited Bax mitochondrial translocation and apoptosis of HUVEC. IL-6 Tg+ mice exposed to 100% O2 exhibited enhanced phosphatidylinositol 3-kinase (PI3K)/Akt kinase and increased serine phosphorylation of Bax at Ser184 compared with WT mice. The PI3K-specific inhibitor LY-2940002 blocked this IL-6-induced Bax phosphorylation and promoted cell death. Furthermore, IL-6 potently blocked hyperoxia- or oxidant-induced Bax insertion into mitochondrial membranes. Thus IL-6 functions in a cytoprotective manner, in part, by suppressing Bax translocation and dimerization through PI3K/Akt-mediated Bax phosphorylation. PMID:19376889

  19. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?

    PubMed Central

    Singh, Shikha Satendra; Yap, Wei Ney; Arfuso, Frank; Kar, Shreya; Wang, Chao; Cai, Wanpei; Dharmarajan, Arunasalam M; Sethi, Gautam; Kumar, Alan Prem

    2015-01-01

    Frequent activation of phosphatidylinositol-3 kinases (PI3K)/Akt/mTOR signaling pathway in gastric cancer (GC) is gaining immense popularity with identification of mutations and/or amplifications of PIK3CA gene or loss of function of PTEN, a tumor suppressor protein, to name a few; both playing a crucial role in regulating this pathway. These aberrations result in dysregulation of this pathway eventually leading to gastric oncogenesis, hence, there is a need for targeted therapy for more effective anticancer treatment. Several inhibitors are currently in either preclinical or clinical stages for treatment of solid tumors like GC. With so many inhibitors under development, further studies on predictive biomarkers are needed to measure the specificity of any therapeutic intervention. Herein, we review the common dysregulation of PI3K/Akt/mTOR pathway in GC and the various types of single or dual pathway inhibitors under development that might have a superior role in GC treatment. We also summarize the recent developments in identification of predictive biomarkers and propose use of predictive biomarkers to facilitate more personalized cancer therapy with effective PI3K/Akt/mTOR pathway inhibition. PMID:26604635

  20. Involvement of PI3K and MAPK Signaling in bcl-2-induced Vascular Endothelial Growth Factor Expression in Melanoma Cells

    PubMed Central

    Trisciuoglio, Daniela; Iervolino, Angela; Zupi, Gabriella; Del Bufalo, Donatella

    2005-01-01

    We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1α expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways. PMID:15987743

  1. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway.

    PubMed

    Rodríguez-Seoane, Carmen; Ramos, Adriana; Korth, Carsten; Requena, Jesús R

    2015-11-01

    Disrupted in schizophrenia (DISC1) is a risk factor for chronic mental disease. In a previous proteomic study, we reported that knocking down DISC1 results in a sharp decrease in the levels of the neuropeptide precursor VGF (non-acronymic) and leads to reduced activation of cAMP response element-binding protein (CREB) and protein kinase B (AKT) in neurons. The main objective of this study is to complete the characterization of the route, or routes, involving AKT and CREB through which DISC1 modulates the expression of VGF. For that we explored known players upstream of AKT and the DISC1 binding partners glycogen synthase kinase-3 beta and Phosphodiesterase-4, which might in turn reach out to CREB in murine neuron primary culture. We found that DISC1 modulates the activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, pharmacological inhibition of PI3K resulted in decreased expression of VGF. All this suggests that the PI3K/AKT pathway plays a role in mediating the effects of DISC1 silencing on VGF expression. Given the important roles of VGF in mental disease, and its drugability, the DISC1-VGF connection might prove to be important for efforts to develop new therapies for these diseases. PMID:26212236

  2. Exogenous leptin administered intramuscularly induces sex hormone disorder and Ca loss via downregulation of Gnrh and PI3K expression.

    PubMed

    Wu, Lihong; Liu, Wen; Bayaer, Nashun; Gu, Weiwang; Song, Jieli

    2014-01-01

    Obesity is a public health problem that increases the risk of metabolic disease, infertility, and other chronic health problems. The present study aimed to develop a new rat model for sex hormone disorder with overweight and Ca loss by intramuscular injection of exogenous leptin (LEP). Thirty female Sprague-Dawley (SD) rats (40 days old) were injected thrice intramuscularly with LEP or keyhole limpet hemocyanin immunogen. The following analyses were performed to determine the development of appetite, overweight, reproductive related-hormones, and calcium (Ca)/phosphorus (Pi) in SD rats: measurement of Lee's index, body weight, food intake; serum Ca, Pi, and hormone tests by enzyme-linked immunosorbent analysis; histological analysis of abdominal fat; real-time polymerase chain reaction analysis of neuropeptide Y, pro-opiomelanocortin, gonadotropin-releasing hormone (Gnrh) mRNA, and gonadotropin-releasing hormone receptor (Gnrhr) mRNA expression; and western blotting analysis of enzyme phosphatidylinositol-3-kinase (PI3K). Rats injected with LEP immunogen displayed significantly increased body weight, food intake, Lee's index, serum LEP, serum cortisol, fat deposition in the abdomen, and decreased hormones including follicle stimulating hormone, luteinizing hormone, estradiol, cholecystokinin, and Ca. Exogenous LEP administered intramuscularly also downregulate Gnrh and PI3K. In conclusion, exogenous LEP administered intramuscularly is a novel animal model for sex hormones disorder with overweight and Ca loss in SD rats. The downregulation of PI3K and Gnrh may be involved in the development of this animal model. PMID:25048263

  3. Exogenous Leptin Administered Intramuscularly Induces Sex Hormone Disorder and Ca Loss via Downregulation of Gnrh and PI3K Expression

    PubMed Central

    Wu, Lihong; Liu, Wen; Bayaer, Nashun; Gu, Weiwang; Song, Jieli

    2014-01-01

    Obesity is a public health problem that increases the risk of metabolic disease, infertility, and other chronic health problems. The present study aimed to develop a new rat model for sex hormone disorder with overweight and Ca loss by intramuscular injection of exogenous leptin (LEP). Thirty female Sprague-Dawley (SD) rats (40 days old) were injected thrice intramuscularly with LEP or keyhole limpet hemocyanin immunogen. The following analyses were performed to determine the development of appetite, overweight, reproductive related-hormones, and calcium (Ca)/phosphorus (Pi) in SD rats: measurement of Lee’s index, body weight, food intake; serum Ca, Pi, and hormone tests by enzyme-linked immunosorbent analysis; histological analysis of abdominal fat; real-time polymerase chain reaction analysis of neuropeptide Y, pro-opiomelanocortin, gonadotropin-releasing hormone (Gnrh) mRNA, and gonadotropin-releasing hormone receptor (Gnrhr) mRNA expression; and western blotting analysis of enzyme phosphatidylinositol-3-kinase (PI3K). Rats injected with LEP immunogen displayed significantly increased body weight, food intake, Lee’s index, serum LEP, serum cortisol, fat deposition in the abdomen, and decreased hormones including follicle stimulating hormone, luteinizing hormone, estradiol, cholecystokinin, and Ca. Exogenous LEP administered intramuscularly also downregulate Gnrh and PI3K. In conclusion, exogenous LEP administered intramuscularly is a novel animal model for sex hormones disorder with overweight and Ca loss in SD rats. The downregulation of PI3K and Gnrh may be involved in the development of this animal model. PMID:25048263

  4. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

    PubMed Central

    2013-01-01

    Background The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. Methods We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. Results The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell

  5. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways.

    PubMed

    Shrivastava, Shweta; Jeengar, Manish Kumar; Reddy, V Sudhakar; Reddy, G Bhanuprakash; Naidu, V G M

    2015-06-01

    Signaling via the phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is crucial for divergent physiological processes including transcription, translation, cell-cycle progression and apoptosis. The aim of work was to elucidate the anti-cancer effect of celastrol and the signal transduction pathways involved. Cytotoxic effect of celastrol was assessed by MTT assay on human triple negative breast cancer cells (TNBCs) and compared with that of MCF-7. Apoptosis induction was determined by AO/EtBr staining, mitochondrial membrane potential by JC-1, Annexin binding assays and modulation of apoptotic proteins and its effect on PI3K/Akt/mTOR pathway by western blotting. Celastrol induced apoptosis in TNBC cells, were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, celastrol triggered reactive oxygen species production with collapse of mitochondrial membrane potential, down-regulation of Bcl-2 and up-regulation of Bax expression. Celastrol effectively decreased PI3K 110α/85α enzyme activity, phosphorylation of Akt(ser473) and p70S6K1 and 4E-BP1. Although insulin treatment increased the phosphorylation of Akt(ser473), p70S6K1, 4E-BP1, celastrol abolished the insulin mediated phosphorylation. It clearly indicates that celastrol acts through PI3k/Akt/mTOR axis. We also found that celastrol inhibited the Akt/GSK3β and Akt/NFkB survival pathway. PI3K/Akt/mTOR inhibitor, PF-04691502 and mTOR inhibitor rapamycin enhanced the apoptosis-inducing effect of celastrol. These data demonstrated that celastrol induces apoptosis in TNBC cells and indicated that apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway. PMID:25818165

  6. Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer

    PubMed Central

    Tao, Jessica J.; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S.; Carey, Lisa A.; Perou, Charles M.; Baselga, José; Scaltriti, Maurizio

    2014-01-01

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidyl-inositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting. PMID:24667376

  7. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors

    PubMed Central

    Payne, S N; Maher, M E; Tran, N H; Van De Hey, D R; Foley, T M; Yueh, A E; Leystra, A A; Pasch, C A; Jeffrey, J J; Clipson, L; Matkowskyj, K A; Deming, D A

    2015-01-01

    Aberrations in the phosphoinositide 3-kinase (PI3K) signaling pathway have a key role in the pathogenesis of numerous cancers by altering cell growth, metabolism, proliferation and apoptosis. Interest in targeting the PI3K signaling cascade continues, as new agents are being clinically evaluated. PIK3CA mutations result in a constitutively active PI3K and are present in a subset of pancreatic cancers. Here we examine mutant PIK3CA-mediated pancreatic tumorigenesis and the response of PIK3CA mutant pancreatic cancers to dual PI3K/mammalian target of rapamycin (mTOR) inhibition. Two murine models were generated expressing a constitutively active PI3K within the pancreas. An increase in acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasms (PanINs) was identified. In one model these lesions were detected as early as 10 days of age. Invasive pancreatic ductal adenocarcinoma developed in these mice as early as 20 days of age. These cancers were highly sensitive to treatment with dual PI3K/mTOR inhibition. In the second model, PanINs and invasive cancer develop with a greater latency owing to a lesser degree of PI3K pathway activation in this murine model. In addition to PI3K pathway activation, increased ERK1/2 signaling is common in human pancreatic cancers. Phosphorylation of ERK1/2 was also investigated in these models. Phosphorylation of ERK1/2 is demonstrated in the pre-neoplastic lesions and invasive cancers. This activation of ERK1/2 is diminished with dual PI3K/mTOR inhibition. In summary, PIK3CA mutations can initiate pancreatic tumorigenesis and these cancers are particularly sensitive to dual PI3K/mTOR inhibition. Future studies of PI3K pathway inhibitors for patients with PIK3CA mutant pancreatic cancers are warranted. PMID:26436951

  8. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.

    PubMed

    Yueh, Alexander E; Payne, Susan N; Leystra, Alyssa A; Van De Hey, Dana R; Foley, Tyler M; Pasch, Cheri A; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  9. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  10. Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes.

    PubMed

    Ward, Stephen G; Westwick, John; Harris, Stephanie

    2011-07-01

    Phosphoinositide 3-kinase (PI3K)-dependent signaling has been placed at the heart of conserved biochemical mechanisms that facilitate cell migration of leukocytes in response to a range of chemoattractant stimuli. This review assesses the evidence for and against PI3K-dependent mechanisms of T lymphocyte migration and whether pharmacological targeting of PI3K isoforms is likely to offer potential benefit for T cell mediated pathologies. PMID:21333676

  11. PI3K – From the Bench to the Clinic and Back

    PubMed Central

    Vanhaesebroeck, Bart; Vogt, Peter K.; Rommel, Christian

    2010-01-01

    From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here. PMID:20549473

  12. Analysis of PI3K pathway components in human cancers

    PubMed Central

    DARAGMEH, JAMILA; BARRIAH, WASEIM; SAAD, BASHAR; ZAID, HILAL

    2016-01-01

    Recent advances in genomics, proteomics, cell biology and biochemistry of tumors have revealed new pathways that are aberrantly activated in numerous cancer types. However, the enormous amount of data available in this field may mislead scientists in focused research. As cancer cell growth and progression is often dependent upon the phosphoinositide 3-kinase (PI3K)/AKT pathway, there has been extensive research into the proteins implicated in the PI3K pathway. Using data available in the Human Protein Atlas database, the current study investigated the expression of 25 key proteins that are known to be involved with PI3K pathway activation in a distinct group of 20 cancer types. These proteins are AKTIP, ARP1, BAD, GSK3A, GSK3B, MERTK-1, PIK3CA, PRR5, PSTPIP2, PTEN, FOX1, RHEB, RPS6KB1, TSC1, TP53, BCL2, CCND1, WFIKKN2, CREBBP, caspase-9, PTK2, EGFR, FAS, CDKN1A and XIAP. The analysis revealed pronounced expression of specific proteins in distinct cancer tissues, which may have the potential to serve as targets for treatments and provide insights into the molecular basis of cancer. PMID:27073576

  13. The Prolyl Peptidases PRCP/PREP Regulate IRS-1 Stability Critical for Rapamycin-induced Feedback Activation of PI3K and AKT*

    PubMed Central

    Duan, Lei; Ying, Guoguang; Danzer, Brian; Perez, Ricardo E.; Shariat-Madar, Zia; Levenson, Victor V.; Maki, Carl G.

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells. PMID:24936056

  14. Dual-Blocking of PI3K and mTOR Improves Chemotherapeutic Effects on SW620 Human Colorectal Cancer Stem Cells by Inducing Differentiation.

    PubMed

    Kim, Min-Jung; Koo, Jeong-Eun; Han, Gi-Yeon; Kim, Buyun; Lee, Yoo-Sun; Ahn, Chiyoung; Kim, Chan-Wha

    2016-03-01

    Cancer stem cells (CSCs) have tumor initiation, self-renewal, metastasis and chemo-resistance properties in various tumors including colorectal cancer. Targeting of CSCs may be essential to prevent relapse of tumors after chemotherapy. Phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) signals are central regulators of cell growth, proliferation, differentiation, and apoptosis. These pathways are related to colorectal tumorigenesis. This study focused on PI3K and mTOR pathways by inhibition which initiate differentiation of SW620 derived CSCs and investigated its effect on tumor progression. By using rapamycin, LY294002, and NVP-BEZ235, respectively, PI3K and mTOR signals were blocked independently or dually in colorectal CSCs. Colorectal CSCs gained their differentiation property and lost their stemness properties most significantly in dual-blocked CSCs. After treated with anti-cancer drug (paclitaxel) on the differentiated CSCs cell viability, self-renewal ability and differentiation status were analyzed. As a result dual-blocking group has most enhanced sensitivity for anti-cancer drug. Xenograft tumorigenesis assay by using immunodeficiency mice also shows that dual-inhibited group more effectively increased drug sensitivity and suppressed tumor growth compared to single-inhibited groups. Therefore it could have potent anti-cancer effects that dual-blocking of PI3K and mTOR induces differentiation and improves chemotherapeutic effects on SW620 human colorectal CSCs. PMID:26955235

  15. Dual-Blocking of PI3K and mTOR Improves Chemotherapeutic Effects on SW620 Human Colorectal Cancer Stem Cells by Inducing Differentiation

    PubMed Central

    Kim, Buyun

    2016-01-01

    Cancer stem cells (CSCs) have tumor initiation, self-renewal, metastasis and chemo-resistance properties in various tumors including colorectal cancer. Targeting of CSCs may be essential to prevent relapse of tumors after chemotherapy. Phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) signals are central regulators of cell growth, proliferation, differentiation, and apoptosis. These pathways are related to colorectal tumorigenesis. This study focused on PI3K and mTOR pathways by inhibition which initiate differentiation of SW620 derived CSCs and investigated its effect on tumor progression. By using rapamycin, LY294002, and NVP-BEZ235, respectively, PI3K and mTOR signals were blocked independently or dually in colorectal CSCs. Colorectal CSCs gained their differentiation property and lost their stemness properties most significantly in dual-blocked CSCs. After treated with anti-cancer drug (paclitaxel) on the differentiated CSCs cell viability, self-renewal ability and differentiation status were analyzed. As a result dual-blocking group has most enhanced sensitivity for anti-cancer drug. Xenograft tumorigenesis assay by using immunodeficiency mice also shows that dual-inhibited group more effectively increased drug sensitivity and suppressed tumor growth compared to single-inhibited groups. Therefore it could have potent anti-cancer effects that dual-blocking of PI3K and mTOR induces differentiation and improves chemotherapeutic effects on SW620 human colorectal CSCs. PMID:26955235

  16. PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

    PubMed Central

    Xiang, Jun; Zhang, Yong; Wang, Guo-Hua; Bao, Jie; Li, Wen-Wei; Zhang, Wen; Xu, Li-Li; Cai, Ding-Fang

    2013-01-01

    In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway. PMID:23781261

  17. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway

    PubMed Central

    ZHAO, ZHONG-QUAN; YU, ZHONG-YANG; LI, JIE; OUYANG, XUE-NONG

    2016-01-01

    Gefitinib is a selective inhibitor of the tyrosine kinase epidermal growth factor receptor, which inhibits tumor pathogenesis, metastasis and angiogenesis, as well as promoting apoptosis. Therefore, gefitinib presents an effective drug for the targeted therapy of lung cancer. However, the underlying mechanisms by which gefitinib induces lung cancer cell death remain unclear. To investigate the effects of gefitinib on lung cancer cells and the mechanism of such, the present study analyzed the effect of gefitinib on the autophagy, apoptosis and proliferation of the A549 and A549-gefitinib-resistant (GR) cell lines GR. The regulation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway was also investigated. Acridine orange staining revealed that gefitinib induced autophagy of A549 cells but not A549-GR cells. In addition, gefitinib promoted apoptosis and inhibited proliferation of A549 cells but not A549-GR cells. Furthermore, western blot analysis demonstrated that gefitinib treatment led to the downregulation of PI3K, AKT, pAKT, mTOR and phosphorylated-mTOR protein expression in A549 cells but not A549-GR cells. LY294002 blocked the PI3K/AKT/mTOR pathway and induced autophagy and apoptosis of A549 cells, however, no synergistic effect was observed following combined treatment with gefitinib and LY294002. In conclusion, the results of the present study indicate that gefitinib promotes autophagy and apoptosis of lung cancer cells via blockade of the PI3K/AKT/mTOR pathway, which leads to lung cancer cell death. PMID:27347100

  18. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway

    PubMed Central

    Yang, Jianyi; Gong, Xuejun; Ouyang, Lu; He, Wen; Xiao, Rou; Tan, Li

    2016-01-01

    Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger factor 2 (PREX2) is a novel regulator of the small guanosine triphosphatase Rac, and has been observed to be implicated in human cancer by inhibiting the activity of phosphatase and tensin homolog (PTEN), thus upregulating the activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. However, the exact role of PREX2 in pancreatic cancer has not been reported to date. In the present study, the expression levels of PREX2 were observed to be frequently increased in pancreatic cancer specimens compared with those in their matched adjacent normal tissues. In addition, PREX2 expression was also frequently upregulated in several pancreatic cancer cell lines, including AsPC-1, BxPC-3, PANC-1 and CFAPC-1, compared with that in the normal pancreatic epithelial cell line HPC-Y5. Overexpression of PREX2 significantly promoted the proliferation, invasion and migration of pancreatic cancer PANC-1 cells, while small interfering RNA-induced knockdown of PREX2 expression significantly inhibited the proliferation, invasion and migration of these cells. Investigation of the molecular mechanism revealed that the overexpression of PREX2 upregulated the phosphorylation levels of PTEN, indicating that the activity of PTEN was reduced, which further increased the phosphorylation levels of AKT, which indicated that the activity of the PI3K signaling pathway was upregulated. By contrast, knockdown of PREX2 upregulated the activity of PTEN and inhibited the activity of the PI3K signaling pathway. In conclusion, the present study demonstrated that PREX2 regulates the proliferation, invasion and migration of pancreatic cancer cells, probably at least via modulation of the activity of PTEN and the PI3K signaling pathway. PMID:27446408

  19. Progesterone is neuroprotective against ischemic brain injury through its effects on the PI3K/Akt signaling pathway

    PubMed Central

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G.

    2012-01-01

    We tested the hypothesis that the phosphatidylinositol-3 kinase (PI3K/Akt) pathway mediates some of the neuroprotective effects of progesterone (PROG) after ischemic stroke. We examined whether PROG acting through the PI3K/Akt pathway could affect the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Rats underwent permanent focal cerebral ischemia (pMCAO) by electro-coagulation and received intraperitoneal injections of PROG (8mg/kg) or vehicle at 1h post-occlusion and subcutaneous injections at 6, 24, and 48h. PAkt/Akt levels, apoptosis and apoptosis-related proteins (pBAD, BAD, caspase-3, and cleaved caspase-3) were analyzed by TUNEL assays, Western blotting and immunohistochemistry at 24h post-pMCAO. VEGF and BDNF were analyzed at 24, 72h and 14 days post-pMCAO with Western blots. Following pMCAO, PROG treatment significantly (p<0.05) reduced ischemic lesion size and edema. Treatment with PROG significantly (p<0.05) decreased VEGF at 24 and 72h but increased VEGF expression 14d after injury. The treatment also increased BDNF, and attenuated apoptosis by increasing Akt phosphorylation compared to vehicle-alone. The selective PI3K inhibitor Wortmannin compromised PROG-induced neuroprotective effects and reduced the elevation of pAkt levels in the ischemic penumbra. Our findings lead us to suggest that the PI3K/Akt pathway can play a role in mediating the neuroprotective effects of PROG after stroke by altering the expression of trophic factors in the brain. PMID:22450229

  20. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    SciTech Connect

    Wu, Juanjuan; Williams, Devin; Walter, Grant A.; Thompson, Winston E.; Sidell, Neil

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  1. Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway.

    PubMed

    Ziemba, Brian P; Burke, John E; Masson, Glenn; Williams, Roger L; Falke, Joseph J

    2016-04-26

    In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca(2+)-protein kinase C (Ca(2+)-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca(2+)-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca(2+)-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca(2+)-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces

  2. Daily Exposure to Di(2-ethylhexyl) Phthalate Alters Estrous Cyclicity and Accelerates Primordial Follicle Recruitment Potentially Via Dysregulation of the Phosphatidylinositol 3-Kinase Signaling Pathway in Adult Mice1

    PubMed Central

    Hannon, Patrick R.; Peretz, Jackye; Flaws, Jodi A.

    2014-01-01

    ABSTRACT Humans are exposed daily to di(2-ethylhexyl) phthalate (DEHP), a plasticizer found in many consumer, medical, and building products containing polyvinyl chloride. Large doses of DEHP disrupt normal ovarian function; however, the effects of DEHP at environmentally relevant levels, the effects of DEHP on folliculogenesis, and the mechanisms by which DEHP disrupts ovarian function are unclear. The present study tested the hypothesis that relatively low levels of DEHP disrupt estrous cyclicity as well as accelerate primordial follicle recruitment by dysregulating phosphatidylinositol 3-kinase (PI3K) signaling. Adult CD-1 mice were orally dosed with DEHP (20 μg/kg/day–750 mg/kg/day) daily for 10 and 30 days. Following dosing, the effects on estrous cyclicity were examined, and follicle numbers were histologically quantified. Further, the ovarian mRNA and protein levels of PI3K signaling factors that are associated with early folliculogenesis were quantified. The data indicate that 10- and 30-day exposure to DEHP prolonged the duration of estrus and accelerated primordial follicle recruitment. Specifically, DEHP exposure decreased the percentage of primordial follicles and increased the percentage of primary follicles counted following 10-day exposure and increased the percentage of primary follicles counted following 30-day exposure. DEHP exposure, at doses that accelerate folliculogenesis, increased the levels of 3-phosphoinositide-dependent protein kinase-1, mammalian target of rapamycin complex 1, and protein kinase B and decreased the levels of phosphatase and tensin homolog, potentially driving PI3K signaling. Collectively, relatively low levels of DEHP disrupt estrous cyclicity and accelerate primordial follicle recruitment potentially via a mechanism involving dysregulation of PI3K signaling. PMID:24804967

  3. Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells Through Modulation of the Phosphatidylinositol 3-Kinase Pathway

    PubMed Central

    Adams, Lynn S.; Phung, Sheryl; Yee, Natalie; Seeram, Navindra P.; Li, Liya; Chen, Shiuan

    2010-01-01

    Dietary phytochemicals are known to exhibit a variety of anti-carcinogenic properties. This study investigated the chemopreventive activity of blueberry extract in triple negative breast cancer cell lines in vitro and in vivo. Blueberry decreased cell proliferation in HCC38, HCC1937 and MDA-MB-231 cells with no effect on the non-tumorigenic MCF-10A cell line. Decreased metastatic potential of MDA-MB-231 cells by blueberry was shown through inhibition of cell motility using wound healing assays and migration through a PET membrane. Blueberry treatment decreased the activity of matrix metalloproteinase 9 and the secretion of urokinase-type plasminogen activator while increasing tissue inhibitor of metalloproteinase-1 and plasminogen activator inhibitor-1 secretion in MDA-MB-231 conditioned medium as shown by western blotting. Cell signaling pathways that control the expression/activation of these processes were investigated via western blotting and reporter gene assay. Treatment with blueberry decreased phosphatidylinositol 3-kinase (PI3K)/AKT and nuclear factor kappa-B (NFκB) activation in MDA-MB-231 cells where protein kinase C (PKC) and extracellular regulated kinase (ERK) were not affected. In vivo, the efficacy of blueberry to inhibit triple negative breast tumor growth was evaluated using the MDA-MB-231 xenograft model. Tumor weight and proliferation (Ki-67 expression) were decreased in blueberry treated mice, where apoptosis (caspase-3 expression) was increased compared to controls. Immunohistochemical analysis of tumors from blueberry-fed mice showed decreased activation of AKT and p65 NFκB signaling proteins with no effect on the phosphorylation of ERK. These data illustrate the inhibitory effect of blueberry phytochemicals on the growth and metastatic potential of MDA-MB-231 cells through modulation of the PI3K/AKT/NFκB pathway. PMID:20388778

  4. S9, a Novel Anticancer Agent, Exerts Its Anti-Proliferative Activity by Interfering with Both PI3K-Akt-mTOR Signaling and Microtubule Cytoskeleton

    PubMed Central

    Yang, Chun-hao; Ding, Hua-sheng; Luo, Cheng; Zhang, Yu; Wu, Mao-jiang; Zhang, Xiong-wen; Shen, Xu; Jiang, Hua-liang; Meng, Ling-hua; Ding, Jian

    2009-01-01

    Background Deregulation of the phosphatidylinositol 3-kinases (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway plays a central role in tumor formation and progression, providing validated targets for cancer therapy. S9, a hybrid of α-methylene-γ-lactone and 2-phenyl indole compound, possessed potent activity against this pathway. Methodology/Principal Findings Effects of S9 on PI3K-Akt-mTOR pathway were determined by Western blot, immunofluorescence staining and in vitro kinas assay. The interactions between tubulin and S9 were investigated by polymerization assay, CD, and SPR assay. The potential binding modes between S9 and PI3K, mTOR or tubulin were analyzed by molecular modeling. Anti-tumor activity of S9 was evaluated in tumor cells and in nude mice bearing human cancer xenografts. S9 abrogated EGF-activated PI3K-Akt-mTOR signaling cascade and Akt translocation to cellular membrane in human tumor cells. S9 possessed inhibitory activity against both PI3K and mTOR with little effect on other tested 30 kinases. S9 also completely impeded hyper-phosphorylation of Akt as a feedback of inhibition of mTOR by rapamycin. S9 unexpectedly arrested cells in M phase other than G1 phase, which was distinct from compounds targeting PI3K-Akt-mTOR pathway. Further study revealed that S9 inhibited tubulin polymerization via binding to colchicine-binding site of tubulin and resulted in microtubule disturbance. Molecular modeling indicated that S9 could potentially bind to the kinase domains of PI3K p110α subunit and mTOR, and shared similar hydrophobic interactions with colchicines in the complex with tubulin. Moreover, S9 induced rapid apoptosis in tumor cell, which might reflect a synergistic cooperation between blockade of both PI3-Akt-mTOR signaling and tubulin cytoskeleton. Finally, S9 displayed potent antiproliferative activity in a panel of tumor cells originated from different tissue types including drug-resistant cells and in nude mice bearing human tumor

  5. The Chinese herbal medicine FTZ attenuates insulin resistance via IRS1 and PI3K in vitro and in rats with metabolic syndrome

    PubMed Central

    2014-01-01

    Background Insulin resistance plays an important role in the development of metabolic syndrome (MS). Fu Fang Zhen Zhu Tiao Zhi formula (FTZ), a Chinese medicinal decoction, has been used to relieve hyperlipidemia, atherosclerosis and other symptoms associated with metabolic disorders in the clinic. Methods To evaluate the effect of FTZ on insulin resistance, HepG2 cells were induced with high insulin as a model of insulin resistance and treated with FTZ at one of three dosages. Next, the levels of glucose content, insulin receptor substrate1 (IRS1) protein expression and phosphatidylinositol 3-kinase (PI3K) subunit p85 mRNA expression were measured. Alternatively, MS was induced in rats via gavage feeding of a high-fat diet for four consecutive weeks followed by administration of FTZ for eight consecutive weeks. Body weight and the plasma levels of lipids, insulin and glucose were evaluated. Finally, the expression of PI3K p85 mRNA in adipose tissue of rats was measured. Results Our results revealed that FTZ attenuated glucose content and up-regulated the expression of PI3K p85 mRNA and IRS1 protein in insulin-resistant HepG2 cells in vitro. Moreover, FTZ reduced body weight and the plasma concentrations of triacylglycerol, cholesterol, fasting glucose and insulin in insulin resistant MS rats. FTZ also elevated the expression of PI3K p85 mRNA in the adipose tissues of MS rats. Conclusion FTZ attenuated MS symptoms by decreasing the plasma levels of glucose and lipids. The underlying mechanism was attenuation of the reduced expression of PI3K p85 mRNA and IRS1 protein in both insulin-resistant HepG2 cells and MS rats. PMID:24555840

  6. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-κB and PI3K/Akt signaling pathways

    PubMed Central

    Jin, Zhiliang; Yan, Wei; Jin, Hui; Ge, Changzheng; Xu, Yanhua

    2016-01-01

    Esophageal cancer is the most common gastrointestinal cancer. Psoralidin exhibits antioxidant, anti-apoptotic, anti-inflammatory and antitumor effects, which result in the inhibition of cancer formation. The present study aimed to investigate the effect of psoralidin on esophageal carcinoma proliferation and growth, and to elucidate its underlying mechanism of action. The effect of psoralidin on cell proliferation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and 4′,6-diamidino-2-phenylindole staining assay, the present study demonstrated that psoralidin significantly enhanced apoptosis of human esophageal carcinoma Eca9706 cells. In addition, caspase-3 activity was analyzed with a caspase-3 colorimetric assay kit, while nuclear factor (NF)-κB activity and protein phosphatidylinositol 3-kinase (PI3K)/Akt expression were measured with an NF-κB enzyme-linked immunosorbent assay kit and western blot analysis, respectively. Eca9706 cells were treated with a PI3K agonist in order to investigate the mechanism of action of psoralidin. It was observed that psoralidin was able to decrease the proliferation and promote the cellular apoptosis of Eca9706 cells in a dose-dependent manner. Furthermore, psoralidin was also able to inhibit the caspase-3 activity of Eca9706 cells in a dose-dependent manner. In addition, psoralidin inhibited NF-κB activity and reduced PI3K and Akt protein expression in Eca9706 cells. Notably, the PI3K agonist was able to reverse the effect of psoralidin on Eca9706 cells. The results of the present study demonstrated that psoralidin was able to inhibit proliferation and enhance apoptosis of human esophageal carcinoma cells via the NF-κB and PI3K/Akt signaling pathways. PMID:27446379

  7. Bacillus anthracis Spore Entry into Epithelial Cells Is an Actin-Dependent Process Requiring c-Src and PI3K

    PubMed Central

    Xue, Qiong; Jenkins, Sarah A.; Gu, Chunfang; Smeds, Emanuel; Liu, Qing; Vasan, Ranga; Russell, Brooke H.; Xu, Yi

    2010-01-01

    Dissemination of Bacillus anthracis from the respiratory mucosa is a critical step in the establishment of inhalational anthrax. Recent in vitro and in vivo studies indicated that this organism was able to penetrate the lung epithelium by directly entering into epithelial cells of the lung; however the molecular details of B. anthracis breaching the epithelium were lacking. Here, using a combination of pharmacological inhibitors, dominant negative mutants, and colocalization experiments, we demonstrated that internalization of spores by epithelial cells was actin-dependent and was mediated by the Rho-family GTPase Cdc42 but not RhoA or Rac1. Phosphatidylinositol 3-kinase (PI3K) activity was also required as indicated by the inhibitory effects of PI3K inhibitors, wortmannin and LY294002, and a PI3K dominant negative (DN) mutant Δp85α. In addition, spore entry into epithelial cells (but not into macrophages) required the activity of Src as indicated by the inhibitory effect of Src family kinase (SFK) inhibitors, PP2 and SU6656, and specific siRNA knockdown of Src. Enrichment of PI3K and F-actin around spore attachment sites was observed and was significantly reduced by treatment with SFK and PI3K inhibitors, respectively. Moreover, B. anthracis translocation through cultured lung epithelial cells was significantly impaired by SFK inhibitors, suggesting that this signaling pathway is important for bacterial dissemination. The effect of the inhibitor on dissemination in vivo was then evaluated. SU6656 treatment of mice significantly reduced B. anthracis dissemination from the lung to distal organs and prolonged the median survival time of mice compared to the untreated control group. Together these results described a signaling pathway specifically required for spore entry into epithelial cells and provided evidence suggesting that this pathway is important for dissemination and virulence in vivo. PMID:20652027

  8. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  9. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways

    PubMed Central

    Gong, Li-rong; Dong, Shu-an; Cao, Xin-shun; Wu, Li-li; Wu, Li-na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies. PMID:26524181

  10. Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring PIK3CA Gene Alterations.

    PubMed

    Bonelli, Mara A; Cavazzoni, Andrea; Saccani, Francesca; Alfieri, Roberta R; Quaini, Federico; La Monica, Silvia; Galetti, Maricla; Cretella, Daniele; Caffarra, Cristina; Madeddu, Denise; Frati, Caterina; Lagrasta, Costanza Annamaria; Falco, Angela; Rossetti, Pietro; Fumarola, Claudia; Tiseo, Marcello; Petronini, Pier Giorgio; Ardizzoni, Andrea

    2015-08-01

    A prominent role in the pathogenesis of squamous cell carcinoma of the lung (SQCLC) has been attributed to the aberrant activation of the PI3K signaling pathway, due to amplification or mutations of the p110α subunit of class I phosphatidylinositol 3-kinase (PIK3CA) gene. The aim of our study was to determine whether different genetic alterations of PIK3CA affect the biologic properties of SQCLC and to evaluate the response to specific targeting agents in vitro and in vivo. The effects of NVP-BEZ235, NVP-BKM120, and NVP-BYL719 on two-dimensional/three-dimensional (2D/3D) cellular growth, epithelial-to-mesenchymal transition, and invasiveness were evaluated in E545K or H1047R PIK3CA-mutated SQCLC cells and in newly generated clones carrying PIK3CA alterations, as well as in a xenograft model. PIK3CA mutated/amplified cells showed increased growth rate and enhanced migration and invasiveness, associated with an increased activity of RhoA family proteins and the acquisition of a mesenchymal phenotype. PI3K inhibitors reverted this aggressive phenotype by reducing metalloproteinase production, RhoA activity, and the expression of mesenchymal markers, with the specific PI3K inhibitors NVP-BKM120 and NVP-BYL719 being more effective than the dual PI3K/mTOR inhibitor NVP-BEZ235. A xenograft model of SQCLC confirmed that PIK3CA mutation promotes the acquisition of a mesenchymal phenotype in vivo and proved the efficacy of its specific targeting drug NVP-BYL719 in reducing the growth and the expression of mesenchymal markers in xenotransplanted tumors. These data indicate that PIK3CA mutation/amplification may represent a good predictive feature for the clinical application of specific PI3K inhibitors in SQCLC patients. PMID:26013318

  11. Upregulated WDR26 serves as a scaffold to coordinate PI3K/AKT pathway-driven breast cancer cell growth, migration, and invasion

    PubMed Central

    Ye, Yuanchao; Tang, Xiaoyun; Sun, Zhizeng; Chen, Songhai

    2016-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT pathway transmits signals downstream of receptor tyrosine kinases and G protein-coupled receptors (GPCRs), and is one of the most dysregulated pathways in breast cancer. PI3Ks and AKTs consist of multiple isoforms that play distinct and even opposite roles in breast cancer cell growth and metastasis. However, it remains unknown how the activities of various PI3K and AKT isoforms are coordinated during breast cancer progression. Previously, we showed WDR26 is a novel WD40 protein that binds Gβγ and promotes Gβγ signaling. Here, we demonstrate that WDR26 is overexpressed in highly malignant breast tumor cell lines and human breast cancer samples, and that WDR26 overexpression correlates with shortened survival of breast cancer patients. In highly malignant cell lines (MDA-MB231, DU4475 and BT549), downregulation of WDR26 expression selectively alleviated GPCR- but not EGF receptor-stimulated PI3K/AKT signaling and tumor cell growth, migration and invasion. In contrast, in a less malignant cell line (MCF7), WDR26 overexpression had the opposite effect. Additional studies indicate that downstream of GPCR stimulation, WDR26 serves as a scaffold that fosters assembly of a specific signaling complex consisting of Gβγ, PI3Kβ and AKT2. In an orthotopic xenograft mouse model of breast cancer, disrupting formation of this complex, by overexpressing WDR26 mutants in MDA-MB231 cells, abrogated PI3K/AKT activation and tumor cell growth and metastasis. Together, our results identify a novel mechanism regulating GPCR-dependent activation of the PI3K/AKT signaling axis in breast tumor cells, and pinpoint WDR26 as a potential therapeutic target for breast cancer. PMID:26895380

  12. Soluble epoxide hydrolase inhibition ameliorates proteinuria-induced epithelial-mesenchymal transition by regulating the PI3K-Akt-GSK-3β signaling pathway.

    PubMed

    Liang, Yaoxian; Jing, Ziyang; Deng, Hui; Li, Zhengqian; Zhuang, Zhen; Wang, Song; Wang, Yue

    Soluble epoxide hydrolase (sEH) plays an essential role in chronic kidney disease by hydrolyzing renoprotective epoxyeicosatrienoic acids to the corresponding inactive dihydroxyeicosatrienoic acids. However, there have been few mechanistic studies elucidating the role of sEH in epithelial-mesenchymal transition (EMT). The present study investigated, in vitro and in vivo, the role of sEH in proteinuria-induced renal tubular EMT and the underlying signaling pathway. We report that urinary protein (UP) induced EMT in cultured NRK-52E cells, as evidenced by decreased E-cadherin expression, increased alpha-smooth muscle actin (α-SMA) expression, and the morphological conversion to a myofibroblast-like phenotype. UP incubation also resulted in upregulated sEH, activated phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/Akt) signaling and increased phosphorylated glycogen synthase kinase-3β (GSK-3β). The PI3K inhibitor LY-294002 inhibited phosphorylation of Akt and GSK-3β as well as blocking EMT. Importantly, pharmacological inhibition of sEH with 12-(3-adamantan-1-yl- ureido)-dodecanoic acid (AUDA) markedly suppressed PI3K-Akt activation and GSK-3β phosphorylation. EMT associated E-cadherin suppression, α-SMA elevation and phenotypic transition were also attenuated by AUDA. Furthermore, in rats with chronic proteinuric renal disease, AUDA treatment inhibited PI3K-Akt activation and GSK-3β phosphorylation, while attenuating levels of EMT markers. Overall, our findings suggest that sEH inhibition ameliorates proteinuria-induced renal tubular EMT by regulating the PI3K-Akt-GSK-3β signaling pathway. Targeting sEH might be a potential strategy for the treatment of EMT and renal fibrosis. PMID:25986738

  13. Reactive oxygen species and PI3K/Akt signaling in cancer.

    PubMed

    Jin, Seo Yeon; Lee, Hye Sun; Kim, Eun Kyoung; Ha, Jung Min; Kim, Young Whan; Bae, SunSik

    2014-10-01

    Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen and associates with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In the present study, we showed that Insulin-like growth factor-1(IGF-1) modulates SKOV-3 ovarian cancer cell by regulation of generation of ROS. Akt mediates cellular signaling pathways in association with mammalian target of rapamycin complex (mTOR) and Rac small G protein. Insulin-like growth factor-1 (IGF-1)-induced generation of ROS was completely abolished by phosphatidylinositol 3-kinase (PI3K) (LY294002, 10?µM) or Akt inhibitors (SH-5, 50?µM), whereas inhibition of extracellular-regulated kinase by an ERK inhibitor (PD98059, 10?µM) or inhibition of mammalian target of rapamycin complex 1 (mTORC1) by an mTORC1 inhibitor (Rapamycin, 100?nM) did not affect IGF-1-induced generation of ROS. Inactivation of mTORC2 by silencing Rapamycin-insensitive companion of mTOR (Rictor), abolished IGF-1-induced SKOV-3 cell migration as well as activation of Akt. However, inactivation of mTORC1 by silencing of Raptor had no effect. Silencing of Akt1 but not Akt2 attenuated IGF-1-induced generation of ROS. Expression of PIP3-dependent Rac exchanger1 (P-Rex1), a Rac guanosine exchange factor and a component of the mTOR complex. Silencing of P-Rex1 abolished IGF-1-induced generation of ROS. Finally, inhibition of NADPH oxidase system completely blunted IGF-1-induced generation of ROS, whereas inhibition of xanthine oxiase,cyclooxygenase, and mitochondrial respiratory chain complex was not effective. Given these results, we suggest that IGF-1 induces ROS generation through the PI3K/Akt/ mTOR2/NADPH oxidase signaling axis. PMID:26461347

  14. Pik3ip1 modulates cardiac hypertrophy by inhibiting PI3K pathway.

    PubMed

    Song, Hong Ki; Kim, Jiyeon; Lee, Jong Sub; Nho, Kyoung Jin; Jeong, Hae Chang; Kim, Jihwa; Ahn, Youngkeun; Park, Woo Jin; Kim, Do Han

    2015-01-01

    Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway. PMID:25826393

  15. Ovarian expressed microsomal epoxide hydrolase: role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling.

    PubMed

    Bhattacharya, Poulomi; Sen, Nivedita; Hoyer, Patricia B; Keating, Aileen F

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P<0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P<0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P<0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. PMID:22061827

  16. Ovarian expressed microsomal epoxide hydrolase: role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    PubMed Central

    Bhattacharya, Poulomi; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2011-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. PMID:22061827

  17. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    fructose-fed rats. • OA attenuated fructose-induced increase in Adipo-IR index and NEFA concentrations. • OA modulated adipose IRS-1/phosphatidylinositol 3-kinase/Akt signaling. • OA ameliorates Adipo-IR via the IRS-1/PI3K/Akt signaling pathway in rats.

  18. NMR analysis of interactions of a phosphatidylinositol 3'-kinase SH2 domain with phosphotyrosine peptides reveals interdependence of major binding sites.

    PubMed

    Günther, U L; Liu, Y; Sanford, D; Bachovchin, W W; Schaffhausen, B

    1996-12-01

    The interactions of the N-terminal src homology (SH2) domain (N-SH2) of the 85 kDa subunit of phosphatidylinositol 3'-kinase (PI-3K) with phosphotyrosine (ptyr) and a series of ptyr-containing peptides have been examined by NMR spectroscopy. HSQC (heteronuclear single-quantum coherence) NMR spectra of 15N-labeled SH2 were used to evaluate its interactions with ptyr-containing ligands. The ability of ligands to cause chemical shift changes was compared to their potency as competitors in in vitro binding experiments using polyoma virus middle T antigen (MT). The results suggest the interdependence of SH2 binding elements. Chemical shifts of residues involved in the ptyr binding were altered by variations of the sequence of the bound peptide, suggesting that the ptyr fit can be adjusted by the peptide sequence. Perturbations of chemical shifts of residues coordinating the methionine three residues C-terminal to the ptyr (the +3 residue) were affected by substitution in the binding peptide at +1 and vice versa. Such results show synergistic interplay between regions of the SH2 binding residues C-terminal to the ptyr. PMID:8952511

  19. Structure of the iSH2 domain of Human phosphatidylinositol 3-kinase p85 beta Subunit Reveals Conformational Plasticity in the Interhelical Turn Region

    SciTech Connect

    C Schauder; L Ma; R Krug; G Montelione; R Guan

    2011-12-31

    Phosphatidylinositol 3-kinase (PI3K) proteins actively trigger signaling pathways leading to cell growth, proliferation and survival. These proteins have multiple isoforms and consist of a catalytic p110 subunit and a regulatory p85 subunit. The iSH2 domain of the p85 {beta} isoform has been implicated in the binding of nonstructural protein 1 (NS1) of influenza A viruses. Here, the crystal structure of human p85 {beta} iSH2 determined to 3.3 {angstrom} resolution is reported. The structure reveals that this domain mainly consists of a coiled-coil motif. Comparison with the published structure of the bovine p85 {beta} iSH2 domain bound to the influenza A virus nonstructural protein 1 indicates that little or no structural change occurs upon complex formation. By comparing this human p85 {beta} iSH2 structure with the bovine p85 {beta} iSH2 domain, which shares 99% sequence identity, and by comparing the multiple conformations observed within the asymmetric unit of the bovine iSH2 structure, it was found that this coiled-coil domain exhibits a certain degree of conformational variability or 'plasticity' in the interhelical turn region. It is speculated that this plasticity of p85 {beta} iSH2 may play a role in regulating its functional and molecular-recognition properties.

  20. Non-Smad transforming growth factor-β signaling regulated by focal adhesion kinase binding the p85 subunit of phosphatidylinositol 3-kinase.

    PubMed

    Hong, Min; Wilkes, Mark C; Penheiter, Sumedha G; Gupta, Shiv K; Edens, Maryanne; Leof, Edward B

    2011-05-20

    TGF-β modulates numerous diverse cellular phenotypes including growth arrest in epithelial cells and proliferation in fibroblasts. Although the Smad pathway is fundamental for the majority of these responses, recent evidence indicates that non-Smad pathways may also have a critical role. Here we report a novel mechanism whereby the nonreceptor tyrosine focal adhesion kinase (FAK) functions as an adaptor necessary for cell type-specific responses to TGF-β. We show that in contrast to Smad actions, non-Smad pathways, including c-Abl, PAK2, and Akt, display an obligate requirement for FAK. Interestingly, this occurs in Src null SYF cells and is independent of FAK tyrosine phosphorylation, kinase activity, and/or proline-rich sequences in the C-terminal FAT domain. FAK binds the phosphatidylinositol 3-kinase (PI3K) p85 regulatory subunit following TGF-β treatment in a subset of fibroblasts but not epithelial cells and has an obligate role in TGF-β-stimulated anchorage-independent growth and migration. Together, these results uncover a new scaffolding role for FAK as the most upstream component regulating the profibrogenic action of TGF-β and suggest that inhibiting this interaction may be useful in treating a number of fibrotic diseases. PMID:21454615

  1. Computational studies of Ras and PI3K

    NASA Technical Reports Server (NTRS)

    Ren, Lei; Cucinotta, Francis A.

    2004-01-01

    Until recently, experimental techniques in molecular cell biology have been the primary means to investigate biological risk upon space radiation. However, computational modeling provides an alternative theoretical approach, which utilizes various computational tools to simulate proteins, nucleotides, and their interactions. In this study, we are focused on using molecular mechanics (MM) and molecular dynamics (MD) to study the mechanism of protein-protein binding and to estimate the binding free energy between proteins. Ras is a key element in a variety of cell processes, and its activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. Different computational approaches for this particular study are presented to calculate the solvation energies and binding free energies of H-Ras and PI3K. The goal of this study is to establish computational methods to investigate the roles of different proteins played in the cellular responses to space radiation, including modification of protein function through gene mutation, and to support the studies in molecular cell biology and theoretical kinetics models for our risk assessment project.

  2. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation.

    PubMed

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  3. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    PubMed Central

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  4. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.

    PubMed

    Bai, Ting; Lian, Li-Hua; Wu, Yan-Ling; Wan, Ying; Nan, Ji-Xing

    2013-02-01

    Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis. PMID:23318601

  5. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma

    PubMed Central

    Perry, Jennifer A.; Kiezun, Adam; Tonzi, Peter; Van Allen, Eliezer M.; Carter, Scott L.; Baca, Sylvan C.; Cowley, Glenn S.; Bhatt, Ami S.; Rheinbay, Esther; Pedamallu, Chandra Sekhar; Helman, Elena; Taylor-Weiner, Amaro; McKenna, Aaron; DeLuca, David S.; Lawrence, Michael S.; Ambrogio, Lauren; Sougnez, Carrie; Sivachenko, Andrey; Walensky, Loren D.; Wagle, Nikhil; Mora, Jaume; de Torres, Carmen; Lavarino, Cinzia; Dos Santos Aguiar, Simone; Yunes, Jose Andres; Brandalise, Silvia Regina; Mercado-Celis, Gabriela Elisa; Melendez-Zajgla, Jorge; Cárdenas-Cardós, Rocío; Velasco-Hidalgo, Liliana; Roberts, Charles W. M.; Garraway, Levi A.; Rodriguez-Galindo, Carlos; Gabriel, Stacey B.; Lander, Eric S.; Golub, Todd R.; Orkin, Stuart H.; Getz, Gad; Janeway, Katherine A.

    2014-01-01

    Osteosarcoma is the most common primary bone tumor, yet there have been no substantial advances in treatment or survival in three decades. We examined 59 tumor/normal pairs by whole-exome, whole-genome, and RNA-sequencing. Only the TP53 gene was mutated at significant frequency across all samples. The mean nonsilent somatic mutation rate was 1.2 mutations per megabase, and there was a median of 230 somatic rearrangements per tumor. Complex chains of rearrangements and localized hypermutation were detected in almost all cases. Given the intertumor heterogeneity, the extent of genomic instability, and the difficulty in acquiring a large sample size in a rare tumor, we used several methods to identify genomic events contributing to osteosarcoma survival. Pathway analysis, a heuristic analytic algorithm, a comparative oncology approach, and an shRNA screen converged on the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway as a central vulnerability for therapeutic exploitation in osteosarcoma. Osteosarcoma cell lines are responsive to pharmacologic and genetic inhibition of the PI3K/mTOR pathway both in vitro and in vivo. PMID:25512523

  6. Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

    PubMed Central

    Yu, Wan-Guo; He, Hao; Yao, Jing-Yun; Zhu, Yi-Xiang; Lu, Yan-Hua

    2015-01-01

    Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key “late” proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-α, IL-1β, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKCα). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-α, IL-1β, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKCα signaling pathway. PMID:26535080

  7. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a.

    PubMed

    Yamaoka, Mami; Ando, Tomomi; Terabayashi, Takeshi; Okamoto, Mitsuhiro; Takei, Masahiro; Nishioka, Tomoki; Kaibuchi, Kozo; Matsunaga, Kohichi; Ishizaki, Ray; Izumi, Tetsuro; Niki, Ichiro; Ishizaki, Toshimasa; Kimura, Toshihide

    2016-02-01

    In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages. PMID:26683831

  8. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect.

    PubMed

    Lee, Hsieh-Hsing; Chang, Chia-Chi; Shieh, Ming-Jium; Wang, Jung-Pan; Chen, Yi-Te; Young, Tai-Horng; Hung, Shih-Chieh

    2013-01-01

    Hypoxia, a common environmental condition, influences cell signals and functions. Here, we compared the effects of hypoxia (1% oxygen) and normoxia (air) on chondrogenic differentiation of human mesenchymal stem cells (MSCs). For in vitro chondrogenic differentiation, MSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis and endochondral ossification. MSCs induced for differentiation under hypoxia increased in chondrogenesis, but decreased in endochondral ossification compared to those under normoxia. MSCs induced for differentiation were more resistant to apoptosis under hypoxia compared to those under normoxia. The hypoxia-dependent protection of MSCs from chondrogenesis-induced apoptosis correlated with an increase in the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO pathway. These results suggest that the PI3K/Akt/FoxO survival pathway activated by hypoxia in MSCs enhances chondrogenesis and plays an important role in preventing endochondral ossification. PMID:24042188

  9. Fragile Histidine Triad (FHIT) Suppresses Proliferation and Promotes Apoptosis in Cholangiocarcinoma Cells by Blocking PI3K-Akt Pathway

    PubMed Central

    Huang, Qiang; Liu, Zhen; Xie, Fang; Liu, Chenhai; Shao, Feng; Zhu, Cheng-lin; Hu, Sanyuan

    2014-01-01

    Fragile histidine triad (FHIT) is a tumor suppressor protein that regulates cancer cell proliferation and apoptosis. However, its exact mechanism of action is poorly understood. Phosphatidylinositol 3-OH kinase (PI3K)-Akt-survivin is an important signaling pathway that was regulated by FHIT in lung cancer cells. To determine whether FHIT can regulate this pathway in cholangiocarcinoma QBC939 cells, we constructed an FHIT expression plasmid and used it to transfect QBC939 cells. Protein and mRNA expression were measured by western blotting and qRT-PCR, respectively. The viability and apoptosis of QBC939 cells were then assessed using MTT assays and flow cytometry. Our results revealed that the expression of survivin and Bcl-2 was downregulated, and caspase 3 was upregulated, in cells overexpressing FHIT. In addition, FHIT suppressed the phosphorylation of Akt. The changes in cell proliferation and apoptosis were obvious in cells overexpressing FHIT which parallels that of treatment with LY294002, a potent inhibitor of phosphoinositide 3-kinases. Treatment with LY294002 further decreased the expression of survivin and Bcl-2 and increased caspase-3 levels. These results suggest that FHIT can block the PI3K-Akt-survivin pathway by suppressing the phosphorylation of Akt and the expression of survivin and Bcl-2 and upregulating caspase 3. PMID:24757411

  10. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities

    PubMed Central

    Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  11. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities.

    PubMed

    Hubbard, Paul A; Moody, Colleen L; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  12. Astaxanthin reduces isoflurane-induced neuroapoptosis via the PI3K/Akt pathway.

    PubMed

    Wang, Chun-Mei; Cai, Xiao-Lan; Wen, Qing-Ping

    2016-05-01

    Astaxanthin is an oxygen-containing derivative of carotenoids that effectively suppresses reactive oxygen and has nutritional and medicinal value. The mechanisms underlying the effects of astaxanthin on isoflurane‑induced neuroapoptosis remain to be fully understood. The present study was conducted to evaluate the protective effect of astaxanthin to reduce isoflurane‑induced neuroapoptosis and to investigate the underlying mechanisms. The results demonstrated that isoflurane induced brain damage, increased caspase‑3 activity and suppressed the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway in an in vivo model. However, treatment with astaxanthin significantly inhibited brain damage, suppressed caspase‑3 activity and upregulated the PI3K/Akt pathway in the isoflurane‑induced rats. Furthermore, isoflurane suppressed cell growth, induced cell apoptosis, enhanced caspase‑3 activity and downregulated the PI3K/Akt pathway in organotypic hippocampal slice culture. Administration of astaxanthin significantly promoted cell growth, reduced cell apoptosis and caspase‑3 activity, and upregulated the PI3K/Akt pathway and isoflurane‑induced neuroapoptosis. The present study demonstrated that downregulation of the PI3K/Akt pathway reduced the effect of astaxanthin to protect against isoflurane‑induced neuroapoptosis in the in vitro model. The results of the current study suggested that the protective effect of astaxanthin reduces the isoflurane-induced neuroapoptosis via activation of the PI3K/Akt signaling pathway. PMID:27035665

  13. Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway.

    PubMed

    Hsieh, Yi-Hsien; Hsieh, Shu-Ching; Lee, Chien-Hsing; Yang, Shun-Fa; Cheng, Chun-Wen; Tang, Meng-Ju; Lin, Chia-Liang; Lin, Chu-Liang; Chou, Ruey-Hwang

    2015-10-27

    Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC. PMID:26472188

  14. Garlic Oil Suppressed Nitrosodiethylamine-Induced Hepatocarcinoma in Rats by Inhibiting PI3K-AKT-NF-κB Pathway.

    PubMed

    Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

    2015-01-01

    To explore the underlying mechanisms for the protective effects of garlic oil (GO) against nitrosodiethylamine (NDEA)-induced hepatocarcinoma, 60 male Wistar rats were randomized into 4 groups (n=15): control group, NDEA group, and two GO plus NDEA groups. The rats in GO plus NDEA groups were pretreated with GO (20 or 40 mg/kg) for 7 days. Then, all rats except those in control group were gavaged with NDEA for 20 weeks, and the rats in GO plus NDEA groups were continuously administered with GO. The results showed that GO co-treatment significantly suppressed the NDEA-induced increases of alpha fetal protein (AFP) level in serum, nuclear atypia in H&E staining, sirius red-positive areas and proliferating cell nuclear antigen (PCNA) expression. The molecular mechanisms exploration revealed that the protein levels of phosphatidylinositol 3 kinase (PI3K)-p85, PI3K-p110, total AKT, p-AKT (Ser473) and p-AKT (Thr308) in the liver of NDEA group rats were higher than those in control group rats. In addition, NDEA treatment induced IκB degradation and NF-κB p65 phosphorylation, and up-regulated the protein levels of downstream pro-inflammatory mediators. GO co-treatment significantly reversed all the above adverse effects induced by NDEA. These results suggested that the protective effects of GO against NDEA-induced hepatocarcinoma might be associated with the suppression of PI3K- AKT-NF-κB pathway. PMID:25999787

  15. Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse.

    PubMed

    Li, Bing-Shu; Guo, Wen-Jun; Hong, Li; Liu, Yao-Dan; Liu, Cheng; Hong, Sha-Sha; Wu, De-Bin; Min, Jie

    2016-07-01

    Mechanical loading on pelvic supports contributes to pelvic organ prolapse (POP). However, the underlying mechanisms remain to be elucidated. Our previous study identified that mechanical strain induced oxidative stress (OS) and promoted apoptosis and senescence in pelvic support fibroblasts. The aim of the present study is to investigate the molecular signaling pathway linking mechanical force with POP. Using a four‑point bending device, human uterosacral ligament fibroblasts (hUSLF) were exposed to mechanical tensile strain at a frequency of 0.3 Hz and intensity of 5333 µε, in the presence or absence of LY294002. The applied mechanical strain on hUSLF resulted in apoptosis and senescence, and decreased expression of procollagen type I α1. Mechanical strain activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling and resulted in downregulated expression of glutathione peroxidase 1 and Mn‑superoxide dismutase, and accumulation of intracellular reactive oxygen species. These effects were blocked by administration of LY294002. Furthermore, it was demonstrated that PI3K/Akt was activated in the uterosacral ligaments of POP patients, and that OS was increased and collagen type I production reduced. The results from the present study suggest that mechanical strain promotes apoptosis and senescence, and reduces collagen type I production via activation of PI3K/Akt-mediated OS signaling pathway in hUSLF. This process may be involved in the pathogenesis of POP as it results in relaxation and dysfunction of pelvic supports. PMID:27176043

  16. Metformin improves hepatic IRS2/PI3K/Akt signaling in insulin-resistant rats of NASH and cirrhosis.

    PubMed

    Xu, Hong; Zhou, Yang; Liu, Yongxia; Ping, Jian; Shou, Qiyang; Chen, Fangming; Ruo, Ru

    2016-05-01

    Nonalcoholic fatty liver disease and cirrhosis are strongly associated with insulin resistance and glucose intolerance. To date, the influence of metformin on glycogen synthesis in the liver is controversial. Limited studies have evaluated the effect of metformin on hepatic insulin signaling pathway in vivo In this study, an insulin-resistant rat model of nonalcoholic steatohepatitis and cirrhosis was developed by high-fat and high-sucrose diet feeding in combination with subcutaneous injection of carbon tetrachloride. Liver tissues of the model rats were featured with severe steatosis and cirrhosis, accompanied by impaired liver function and antioxidant capacity. The glucose tolerance was impaired, and the index of insulin resistance was increased significantly compared with the control. The content of hepatic glycogen was dramatically decreased. The expression of insulin receptor β (IRβ); phosphorylations of IRβ, insulin receptor substrate 2 (IRS2), and Akt; and activities of phosphatidylinositol 3-kinase (PI3K) and glycogen synthase (GS) in the liver were significantly decreased, whereas the activities of glycogen synthase kinase 3α (GSK3α) and glycogen phosphorylase a (GPa) were increased. Metformin treatment remarkably improved liver function, alleviated lipid peroxidation and histological damages of the liver, and ameliorated glucose intolerance and insulin resistance. Metfromin also significantly upregulated the expression of IRβ; increased the phosphorylations of IRβ, IRS2, and Akt; increased the activities of PI3K and GS; and decreased GSK3α and GPa activities. In conclusion, our study suggests that metformin upregulates IRβ expression and the downstream IRS2/PI3K/Akt signaling transduction, therefore, to increase hepatic glycogen storage and improve insulin resistance. These actions may be attributed to the improved liver histological alterations by metformin. PMID:26941037

  17. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats.

    PubMed

    Xiao, Ting; Luo, Jian; Wu, Zhixiong; Li, Fang; Zeng, Ou; Yang, Jun

    2016-02-01

    Myocardial fibrosis is the predominant pathological characteristic of diabetic myocardial damage. Previous studies have indicated that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, there is little research investigating the effect of H2S on myocardial fibrosis in diabetes. The present study aimed to investigate the effects of H2S on the progression of myocardial fibrosis induced by diabetes. Diabetes was induced in rats by intraperitoneal injection of streptozotocin. Sodium hydrosulfide (NaHS) was used as an exogenous donor of H2S. After 8 weeks, expression levels of cystathionine-γ-lyase were determined by western blot analysis and morphological changes in the myocardium were assessed by hematoxylin and eosin staining and Masson staining. The hydroxyproline content and fibrosis markers were determined by a basic hydrolysis method and western blot analysis, respectively. Autophagosomes were observed under transmission electron microscopy. Expression levels of autophagy-associated proteins and their upstream signaling molecules were also evaluated by western blotting. The results of the current study indicated that diabetes induced marked myocardial fibrosis, enhanced myocardial autophagy and suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase/RAC-α serine/threonine-protein kinase (PI3K/AKT1) signaling pathway. By contrast, following treatment with NaHS, myocardial fibrosis was ameliorated, myocardial autophagy was decreased and the PI3K/AKT1 pathway suppression was reversed. The results of the present study demonstrated that the protective effect of H2S against diabetes-induced myocardial fibrosis may be associated with the attenuation of autophagy via the upregulation of the PI3K/AKT1 signaling pathway. PMID:26676365

  18. Activation of the PI3K/mTOR/AKT Pathway and Survival in Solid Tumors: Systematic Review and Meta-Analysis

    PubMed Central

    Ocana, Alberto; Vera-Badillo, Francisco; Al-Mubarak, Mustafa; Templeton, Arnoud J.; Corrales-Sanchez, Verónica; Diez-Gonzalez, Laura; Cuenca-Lopez, María D.; Seruga, Bostjan; Pandiella, Atanasio; Amir, Eitan

    2014-01-01

    Background Aberrations in the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/AKT pathway are common in solid tumors. Numerous drugs have been developed to target different components of this pathway. However the prognostic value of these aberrations is unclear. Methods PubMed was searched for studies evaluating the association between activation of the PI3K/mTOR/AKT pathway (defined as PI3K mutation [PIK3CA], lack of phosphatase and tensin homolog [PTEN] expression by immunohistochemistry or western-blot or increased expression/activation of downstream components of the pathway by immunohistochemistry) with overall survival (OS) in solid tumors. Published data were extracted and computed into odds ratios (OR) for death at 5 years. Data were pooled using the Mantel-Haenszel random-effect model. Results Analysis included 17 studies. Activation of the PI3K/mTOR/AKT pathway was associated with significantly worse 5-year survival (OR:2.12, 95% confidence intervals 1.42–3.16, p<0.001). Loss of PTEN expression and increased expression/activation of downstream components were associated with worse survival. No association between PIK3CA mutations and survival was observed. Differences between methods for assessing activation of the PI3K/mTOR/AKT pathway were statistically significant (p = 0.04). There was no difference in the effect of up-regulation of the pathway on survival between different cancer sites (p = 0.13). Conclusion Activation of the PI3K/AKT/mTOR pathway, especially if measured by loss of PTEN expression or increased expression/activation of downstream components is associated with poor survival. PIK3CA mutational status is not associated with adverse outcome, challenging its value as a biomarker of patient outcome or as a stratification factor for patients treated with agents acting on the PI3K/AKT/mTOR pathway. PMID:24777052

  19. Differential regulation of protrusion and polarity by PI(3)K during neutrophil motility in live zebrafish

    PubMed Central

    Yoo, Sa Kan; Deng, Qing; Cavnar, Peter J.; Wu, Yi I.; Hahn, Klaus M.; Huttenlocher, Anna

    2010-01-01

    Summary Cell polarity is crucial for directed migration. Here we show that phosphoinositide 3-kinase (PI(3)K) mediates neutrophil migration in vivo by differentially regulating cell protrusion and polarity. The dynamics of PI(3)K products PI(3,4,5)P3-PI(3,4)P2 during neutrophil migration were visualized in living zebrafish, revealing that PI(3)K activation at the leading edge is critical for neutrophil motility in intact tissues. A genetically encoded photoactivatable Rac was used to demonstrate that localized activation of Rac is sufficient to direct migration with precise temporal and spatial control in vivo. Similar stimulation of PI(3)K-inhibited cells did not direct migration. Localized Rac activation rescued membrane protrusion but not anteroposterior polarization of F-actin dynamics of PI(3)K-inhibited cells. Uncoupling Rac-mediated protrusion and polarization suggests a paradigm of two-tiered PI(3)K-mediated regulation of cell motility. This work provides new insight into how cell signaling at the front and back of the cell is coordinated during polarized cell migration in intact tissues within a multicellular organism. PMID:20159593

  20. Mice Expressing Activated PI3K Rapidly Develop Advanced Colon Cancer

    PubMed Central

    Leystra, Alyssa A.; Deming, Dustin A.; Zahm, Christopher D.; Farhoud, Mohammed; Paul Olson, Terrah J.; Hadac, Jamie N.; Nettekoven, Laura A.; Albrecht, Dawn M.; Clipson, Linda; Sullivan, Ruth; Washington, Mary Kay; Torrealba, Jose R.; Weichert, Jamey P.; Halberg, Richard B.

    2012-01-01

    Aberrations in the phosphatidylinositide-3-kinase (PI3K) signaling pathway play a key role in the pathogenesis of numerous cancers by altering cellular growth, metabolism, proliferation, and apoptosis (1). Mutations in the catalytic domain of PI3K that generate a dominantly active kinase are commonly found in human colorectal cancers and have been thought to drive tumor progression, but not initiation (2). However, the effects of constitutively activated PI3K upon the intestinal mucosa have not been previously studied in animal models. Here, we demonstrate that the expression of a dominantly active form of the PI3K protein in the mouse intestine results in hyperplasia and advanced neoplasia. Mice expressing constitutively active PI3K in the epithelial cells of the distal small bowel and colon rapidly developed invasive adenocarcinomas in the colon that spread into the mesentery and adjacent organs. The histological characteristics of these tumors were strikingly similar to invasive mucinous colon cancers in humans. Interestingly, these tumors formed without a benign polypoid intermediary, consistent with the lack of aberrant WNT signaling observed. Together, our findings indicate a non-canonical mechanism of colon tumor initiation that is mediated through activation of PI3K. This unique model has the potential to further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification. PMID:22525701

  1. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase

    PubMed Central

    Edgar, Kyle A.; O'Brien, Carol; Savage, Heidi; Wilson, Timothy R.; Neve, Richard M.; Friedman, Lori S.; Wallin, Jeffrey J.

    2016-01-01

    Letrozole is a commonly used treatment option for metastatic hormone receptor-positive (HR+) breast cancer, but many patients ultimately relapse. Due to the importance of phosphoinositide-3 kinase (PI3K) in breast cancer, PI3K inhibitors such as taselisib are attractive for combination with endocrine therapies such as letrozole. Taselisib was evaluated as a single agent and in combination with letrozole in a breast cancer cell line engineered to express aromatase. The combination of taselisib and letrozole decreased cellular viability and increased apoptosis relative to either single agent. Signaling cross-talk between the PI3K and ER pathways was associated with efficacy for the combination. In a secreted factor screen, multiple soluble factors, including members of the epidermal and fibroblast growth factor families, rendered breast cancer cells non-responsive to letrozole. It was discovered that many of these factors signal through the PI3K pathway and cells remained sensitive to taselisib in the presence of the soluble factors. We also found that letrozole resistant lines have elevated PI3K pathway signaling due to an increased level of p110α, but are still sensitive to taselisib. These data provide rationale for clinical evaluation of PI3K inhibitors to overcome resistance to endocrine therapies in ER+ breast cancer.

  2. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    SciTech Connect

    Bhattacharya, Poulomi; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.

  3. Tumor Phosphatidylinositol-3-Kinase Signaling and Development of Metastatic Disease in Locally Advanced Rectal Cancer

    PubMed Central

    Ree, Anne Hansen; Kristensen, Annette Torgunrud; Saelen, Marie Grøn; de Wijn, Rik; Edvardsen, Hege; Jovanovic, Jovana; Abrahamsen, Torveig Weum; Dueland, Svein; Flatmark, Kjersti

    2012-01-01

    Background Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease. Patients and Methods Point mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival. Results Unsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up. Conclusion High phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity. PMID:23226389

  4. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    SciTech Connect

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-11-14

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy.

  5. Rat white adipocytes activate p85/p110 PI3K and induce PM GLUT4 in response to adrenoceptor agonists or aluminum fluoride.

    PubMed

    Ohsaka, Y; Nomura, Y

    2016-03-01

    Adipocyte responses to adrenergic and ß-adrenoceptor(-AR) (adrenoceptor) regulation are not sufficiently understood, and information helpful for elucidating the adrenoceptor-responsive machinery is insufficient. Here we show by using immunoprecipitated kinase analysis with a phosphatidylinositol 3-kinase (PI3K) p85 antibody that PI3K activation was induced by treatment with 10 or 100 µM norepinephrine (NE) for 15 min or with 10 mM aluminum fluoride (AF, a guanosine triphosphate (GTP)-binding (G) protein activator) for 20 min in white adipocytes (rat epididymal adipocytes) and that treatment with pertussis toxin (PTX, a G-protein inactivator) inhibited PI3K activation induced by the 20-min treatment with AF in the cells. In addition, western blot analysis revealed that glucose transporter 4 (GLUT4) level in the adipocyte plasma membrane (PM) fraction was increased by treatment with 10 µM NE, 100 µM dobutamine (DOB, a ß1-AR agonist), or 0.1 µM CL316243 (CL, a ß3-AR agonist) for 30 min or with 10 mM AF for 20 min. NE or AF treatment triggered 2-deoxyglucose (2-DG) uptake into adipocytes under the above conditions. Our results advance the understanding of responses to adrenoceptor regulation in white adipocytes and provide possible clues for clarifying the machinery involved in adrenergic and ß-AR responses in the cells. PMID:27030626

  6. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation

    PubMed Central

    Yu, Jason S. L.; Ramasamy, Thamil Selvee; Murphy, Nick; Holt, Marie K.; Czapiewski, Rafal; Wei, Shi-Khai; Cui, Wei

    2015-01-01

    Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-β signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator. PMID:25998442

  7. Protective Effect of Aliskiren in Experimental Ischemic Stroke: Up-Regulated p-PI3K, p-AKT, Bcl-2 Expression, Attenuated Bax Expression.

    PubMed

    Miao, Jiangyong; Wang, Lina; Zhang, Xiangjian; Zhu, Chunhua; Cui, Lili; Ji, Hui; Liu, Ying; Wang, Xiaolu

    2016-09-01

    Aliskiren (ALK), a pharmacological renin inhibitor, is an effective antihypertensive drug and has potent anti-apoptotic activity, but it is currently unknown whether ALK is able to attenuate brain damage caused by acute cerebral ischemia independent of its blood pressure-lowering effects. This study aimed to investigate the role of ALK and its potential mechanism in cerebral ischemia. C57/BL6 mice were subjected to transient middle cerebral artery occlusion (tMCAO) and treated for 5 days with Vehicle or ALK (10 or 25 mg/kg per day via intragastric administration), whereas Sham-operated animals served as controls. Treatment with ALK significantly improved neurological deficits, infarct volume, brain water content and Nissl bodies after stroke (P < 0.05), which did not affect systemic blood pressure. Furthermore, the protection of ALK was also related to decreased levels of apoptosis in mice by enhanced activation of phosphatidylinositol 3-kinase (PI3K)/AKT pathway, increased level of Bcl-2 and reduced Bax expression (P < 0.05). In addition, ALK's effects were reversed by PI3K inhibitors LY294002 (P < 0.05). Our data indicated that ALK protected the brain from reperfusion injuries without affecting blood pressure, and this effect may be through PI3K/AKT signaling pathway. PMID:27180190

  8. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation.

    PubMed

    Yu, Jason S L; Ramasamy, Thamil Selvee; Murphy, Nick; Holt, Marie K; Czapiewski, Rafal; Wei, Shi-Khai; Cui, Wei

    2015-01-01

    Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-β signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator. PMID:25998442

  9. Salidroside Mitigates Sepsis-Induced Myocarditis in Rats by Regulating IGF-1/PI3K/Akt/GSK-3β Signaling.

    PubMed

    He, He; Chang, Xiayun; Gao, Jin; Zhu, Lingpeng; Miao, Mingxing; Yan, Tianhua

    2015-12-01

    Sepsis-induced myocardial injury (SIMI) is caused by various mechanisms. The aim of this study was to investigate the effects of salidroside (Sal) on SIMI and its mechanisms in rats. The sepsis model was established by intraperitoneal injection of lipopolysaccharide (LPS) (15 mg/kg in sterile saline). Sal decreased the serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), whereas the expressions of insulin-like growth factor-1 (IGF-1) signaling-related proteins, such as IGF-1 and its corresponding receptor (IGF-1R), phosphatidylinositol 3-kinase (PI3K), p-PI3K, Akt, p-Akt, and glycogen synthase kinase-3β (GSK-3β), in the heart were decreased with Sal pretreatment. Mitigated myocardial cell swelling, degeneration, loss of transverse striations, and inflammatory cell infiltration were also observed in the LPS + Sal groups. Thus, Sal is assumed to exert pronounced cardioprotective effects in rats subjected to LPS, probably through regulation of IGF-1/PI3K/Akt/GSK-3β signaling. PMID:26104971

  10. Apoptosis initiation of β-ionone in SGC-7901 gastric carcinoma cancer cells via a PI3K-AKT pathway.

    PubMed

    Liu, Qian; Dong, Hong-Wei; Sun, Wen-Guang; Liu, Ming; Ibla, Juan C; Liu, Lian-Xin; Parry, John W; Han, Xiao-Hui; Li, Ming-Song; Liu, Jia-Ren

    2013-03-01

    β-ionone has been shown to hold potent anti-proliferative and apoptosis induction properties in vitro and in vivo. To investigate the effects of β-ionone on apoptosis initiation and its possible mechanisms of action, we qualified cell apoptosis, proteins related to apoptosis and a phosphatidylinositol 3-kinase (PI3K)-AKT pathway in human gastric adenocarcinoma cancer SGC-7901 cells. The results demonstrated that β-ionone-induced apoptosis in a dose-dependent manner in SGC-7901 cells treated with β-ionone (25, 50, 100 and 200 μmol/L) for 24 h. β-ionone was also shown to induce the expression of cleaved-caspase-3 and inhibit bcl-2 expression in SGC-7901 cells in a dose-dependent manner. The significantly decreased levels of p-PI3K and p-AKT expression were observed in SGC-7901 cells after β-ionone treatments in a time- and dose-dependent manner (P < 0.01). Thus, the apoptosis induction in SGC-7901 cells by β-ionone may be regulated through a PI3K-AKT pathway. These results demonstrate a potential mechanism by which β-ionone to induce apoptosis initiation in SGC-7901 cells. PMID:23100158

  11. Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Ogiwara, Takayuki; Nara, Makoto; Sumino, Hiroyuki; Kimura, Takao

    2015-01-01

    Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration. PMID:26284425

  12. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence.

    PubMed

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-03-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence. PMID:26739232

  13. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  14. Genetics Home Reference: activated PI3K-delta syndrome

    MedlinePlus

    ... Health Conditions activated PI3K-delta syndrome activated PI3K-delta syndrome Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Activated PI3K-delta syndrome is a disorder that impairs the immune ...

  15. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana.

    PubMed

    Fujimoto, Masaru; Suda, Yasuyuki; Vernhettes, Samantha; Nakano, Akihiko; Ueda, Takashi

    2015-02-01

    The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3. PMID:25516570

  16. Propranolol Improves Impaired Hepatic Phosphatidylinositol 3-Kinase/Akt Signaling after Burn Injury

    PubMed Central

    Brooks, Natasha C; Song, Juquan; Boehning, Darren; Kraft, Robert; Finnerty, Celeste C; Herndon, David N; Jeschke, Marc G

    2012-01-01

    Severe burn injury is associated with induction of the hepatic endoplasmic reticulum (ER) stress response. ER stress leads to activation of c-Jun N-terminal kinase (JNK), suppression of insulin receptor signaling via phosphorylation of insulin receptor substrate 1 and subsequent insulin resistance. Marked and sustained increases in catecholamines are prominent after a burn. Here, we show that administration of propranolol, a nonselective β1/2 adrenergic receptor antagonist, attenuates ER stress and JNK activation. Attenuation of ER stress by propranolol results in increased insulin sensitivity, as determined by activation of hepatic phosphatidylinositol 3-kinase and Akt. We conclude that catecholamine release is responsible for the ER stress response and impaired insulin receptor signaling after burn injury. PMID:22396018

  17. Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma.

    PubMed

    Bishop, Michael W; Janeway, Katherine A

    2016-01-01

    Patients with metastatic and recurrent osteosarcoma fare poorly, and new therapeutic strategies are needed to improve survival. Several recent complementary genomic and pathway analyses of both murine and human osteosarcoma have revealed common aberrations of the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway in osteosarcoma. Preclinical data demonstrate that inhibition of PI3K and mTOR with either a combination of single agents or dual inhibiting compounds can decrease cell proliferation and induce cell cycle arrest and apoptosis. With a lack of available clinical agents active in osteosarcoma, PI3K/mTOR inhibition represents a potential vulnerability in osteosarcoma that warrants clinical investigation. PMID:27441088

  18. Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma

    PubMed Central

    Bishop, Michael W.; Janeway, Katherine A.

    2016-01-01

    Patients with metastatic and recurrent osteosarcoma fare poorly, and new therapeutic strategies are needed to improve survival. Several recent complementary genomic and pathway analyses of both murine and human osteosarcoma have revealed common aberrations of the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway in osteosarcoma. Preclinical data demonstrate that inhibition of PI3K and mTOR with either a combination of single agents or dual inhibiting compounds can decrease cell proliferation and induce cell cycle arrest and apoptosis. With a lack of available clinical agents active in osteosarcoma, PI3K/mTOR inhibition represents a potential vulnerability in osteosarcoma that warrants clinical investigation. PMID:27441088

  19. Concomitant activation of the PI3K/Akt and ERK1/2 signalling is involved in cyclic compressive force-induced IL-6 secretion in MLO-Y4 cells.

    PubMed

    Yin, Jian; Hao, Zhichao; Ma, Yuanyuan; Liao, Shuang; Li, Xianxian; Fu, Jing; Wu, Yeke; Shen, Jiefei; Zhang, Ping; Li, Xiaoyu; Wang, Hang

    2014-05-01

    IL-6 has a dual role in bone remodelling. The ERK1/2 pathway partially upregulated IL-6 secretion in osteocyte-like MLO-Y4 cells exposed to CCF. We have now investigated the possible role of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway in the CCF-induced IL-6 expression. MLO-Y4 cells were treated with CCF 2,000 µstrain, 2 Hz, or 10, 30 min, 1, 3 and 6 h. IL-6 expression, Akt and ERK1/2 and PI3K/Akt phosphorylation were determined by RT-PCR, ELISA and Western blotting. Inhibition of PI3K/Akt with LY294002 or ERK1/2 with PD98059 significantly attenuated IL-6 upregulation, and IL-6 expression was abolished by inhibiting both pathways. Inhibition of one pathway downregulated the other's phosphorylation level. In conclusion, concomitant activation of PI3K/Akt and ERK1/2 pathways mediated IL-6 expression in MLO-Y4 cells under CCF. PMID:24375569

  20. Lithium Protection of Phencyclidine-induced Neurotoxicity in Developing Brain: the Role of PI-3K/Akt and MEK/ERK Signaling Pathways

    PubMed Central

    Xia, Yan; Wang, Cheng Z; Liu, Jie; Anastasio, Noelle C.; Johnson, Kenneth M.

    2008-01-01

    Phencyclidine (PCP) and other N-methyl-D-aspartate (NMDA) receptor antagonists have been shown to be neurotoxic to developing brains and to result in schizophrenia-like behaviors later in development. Prevention of both effects by antischizophrenic drugs suggests the validity of PCP neurodevelopmental toxicity as a heuristic model of schizophrenia. Lithium is used for the treatment of bipolar and schizoaffective disorders and has recently been shown to have neuroprotective properties. The present study used organotypic corticostriatal slices taken from postnatal day 2 rat pups to investigate the protective effect of lithium and the role of the phosphatidylinositol-3 kinase (PI-3K)/Akt and mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK/ERK) pathways in PCP-induced cell death. Lithium pretreatment dose-dependently reduced PCP-induced caspase-3 activation and DNA fragmentation in layer II-IV of the cortex. PCP elicited time-dependent inhibition of the MEK/ERK and PI-3K/Akt pathways, as indicated by dephosphorylation of ERK1/2 and Akt. The pro-apoptotic factor glycogen synthase kinase-3β (GSK-3β) was also dephosphorylated at serine 9 and thus activated. Lithium prevented PCP-induced inhibition of the two pathways and activation of GSK-3β. Furthermore, blocking either PI-3K/Akt or MEK/ERK pathway abolished the protective effect of lithium, while inhibiting GSK-3β activity mimicked the protective effect of lithium. However, no crosstalk between the two pathways was found. Finally, specific GSK-3β inhibition did not prevent PCP-induced dephosphorylation of Akt and ERK. These data strongly suggest that the protective effect of lithium against PCP-induced neuroapoptosis is mediated through independent stimulation of the PI-3K/Akt and ERK pathways and suppression of GSK-3β activity. PMID:18544676

  1. Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat.

    PubMed

    Ren, Xiang Shan; Sato, Yasunori; Harada, Kenichi; Sasaki, Motoko; Furubo, Shinichi; Song, Jing Yu; Nakanuma, Yasuni

    2014-01-01

    The polycystic kidney (PCK) rat is an animal model of Caroli's disease as well as autosomal recessive polycystic kidney disease (ARPKD). The signaling pathways involving the mammalian target of rapamycin (mTOR) are aberrantly activated in ARPKD. This study investigated the effects of inhibitors for the cell signaling pathways including mTOR on cholangiocyte proliferation of the PCK rat. Cultured PCK cholangiocytes were treated with rapamycin and everolimus [inhibitors of mTOR complex 1 (mTOC1)], LY294002 [an inhibitor of phosphatidylinositol 3-kinase (PI3K)] and NVP-BEZ235 (an inhibitor of PI3K and mTORC1/2), and the cell proliferative activity was determined in relation to autophagy and apoptosis. The expression of phosphorylated (p)-mTOR, p-Akt, and PI3K was increased in PCK cholangiocytes compared to normal cholangiocytes. All inhibitors significantly inhibited the cell proliferative activity of PCK cholangiocytes, where NVP-BEZ235 had the most prominent effect. NVP-BEZ235, but not rapamycin and everolimus, further inhibited biliary cyst formation in the three-dimensional cell culture system. Rapamycin and everolimus induced apoptosis in PCK cholangiocytes, whereas NVP-BEZ235 inhibited cholangiocyte apoptosis. Notably, the autophagic response was significantly induced following the treatment with NVP-BEZ235, but not rapamycin and everolimus. Inhibition of autophagy using siRNA against protein-light chain3 and 3-methyladenine significantly increased the cell proliferative activity of PCK cholangiocytes treated with NVP-BEZ235. In vivo, treatment of the PCK rat with NVP-BEZ235 attenuated cystic dilatation of the intrahepatic bile ducts, whereas renal cyst development was unaffected. These results suggest that the aberrant activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat, and inhibition of the pathway can reduce cholangiocyte proliferation via the mechanism involving apoptosis and/or autophagy. PMID:24498161

  2. Dual inhibition of CDK4/Rb and PI3K/AKT/mTOR pathways by ON123300 induces synthetic lethality in mantle cell lymphomas.

    PubMed

    Divakar, S K A; Ramana Reddy, M V; Cosenza, S C; Baker, S J; Perumal, D; Antonelli, A C; Brody, J; Akula, B; Parekh, S; Reddy, E Premkumar

    2016-01-01

    This study describes the characterization of a novel kinase inhibitor, ON123300, which inhibits CDK4/6 (cyclin-dependent kinases 4 and 6) and phosphatidylinositol 3 kinase-δ (PI3K-δ) and exhibits potent activity against mantle cell lymphomas (MCLs) both in vitro and in vivo. We examined the effects of PD0332991 and ON123300 on cell cycle progression, modulation of the retinoblastoma (Rb) and PI3K/AKT pathways, and the induction of apoptosis in MCL cell lines and patient-derived samples. When Granta 519 and Z138C cells were incubated with PD0332991 and ON123300, both compounds were equally efficient in their ability to inhibit the phosphorylation of Rb family proteins. However, only ON123300 inhibited the phosphorylation of proteins associated with the PI3K/AKT pathway. Cells treated with PD0332991 rapidly accumulated in the G0/G1 phase of cell cycle as a function of increasing concentration. Although ON123300-treated cells arrested similarly at lower concentrations, higher concentrations resulted in the induction of apoptosis, which was not observed in PD0332991-treated samples. Mouse xenograft assays also showed a strong inhibition of MCL tumor growth in ON123300-treated animals. Finally, treatment of ibrutinib-sensitive and -resistant patient-derived MCLs with ON123300 also triggered apoptosis and inhibition of the Rb and PI3K/AKT pathways, suggesting that this compound might be an effective agent in MCL, including ibrutinib-resistant forms of the disease. PMID:26174628

  3. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    SciTech Connect

    Zhang, Yuqin; Zheng, Lin; Ding, Yi; Li, Qi; Wang, Rong; Liu, Tongxin; Sun, Quanquan; Yang, Hua; Peng, Shunli; Wang, Wei; Chen, Longhua

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  4. The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of angiotensin-(1-7) in the nucleus tractus solitarii of rats.

    PubMed

    Wu, Zhao-Tang; Ren, Chang-Zhen; Yang, Ya-Hong; Zhang, Ru-Wen; Sun, Jia-Cen; Wang, Yang-Kai; Su, Ding-Feng; Wang, Wei-Zhong

    2016-01-30

    Angiotensin-1-7 [Ang-(1-7)], acting via the Mas receptor in the central nervous system, is involved in the regulation of cardiovascular activity. Nitric oxide (NO) is implicated as an important modulator in the nucleus tractus solitarii (NTS), a key region involved in control of cardiovascular activity. The aim of the present study was to determine the role of phosphatidylinositol 3-kinase (PI3K) signaling in mediating the effect of Ang-(1-7) on NO generation in the NTS. In Sprague-Dawley rats, acute injection of Ang-(1-7) into the NTS significantly increased NO generation and neuronal/endothelial NO synthase (n/eNOS) activity, which were abolished by the selective Mas receptor antagonist d-Alanine-[Ang-(1-7)] (A-779), the PI3K inhibitor LY294002, or the Akt inhibitor triciribine (TCN). Western blotting analysis further demonstrated that Ang-(1-7) significantly increased levels of Akt/NOS phosphorylation in the NTS, and Ang-(1-7)-induced e/nNOS phosphorylation was antagonized by LY294002 or TCN. Furthermore, gene knockdown of PI3K by lentivirus containing small hairpin RNA in the NTS prevented the Ang-(1-7)-induced increases in NOS/Akt phosphorylation and NO production. The physiological (in vivo) experiments showed that pretreatment with the NOS inhibitor l-NAME, LY294002, or TCN abolished the decreases in blood pressure, heart rate, and renal sympathetic nerve activity induced by Ang-(1-7) injected into the NTS. Our findings suggest that nitric oxide release meditated by the Mas-PI3K-NOS signaling pathway is involved in the cardiovascular effects of Ang-(1-7) in the NTS. PMID:26686278

  5. PI3K p110α/Akt Signaling Negatively Regulates Secretion of the Intestinal Peptide Neurotensin Through Interference of Granule Transport

    PubMed Central

    Li, Jing; Song, Jun; Cassidy, Margaret G.; Rychahou, Piotr; Starr, Marlene E.; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L.; Townsend, Courtney M.; Gao, Tianyan

    2012-01-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  6. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport.

    PubMed

    Li, Jing; Song, Jun; Cassidy, Margaret G; Rychahou, Piotr; Starr, Marlene E; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L; Townsend, Courtney M; Gao, Tianyan; Evers, B Mark

    2012-08-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  7. JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A intervention.

    PubMed

    Chen, Qiuping; Xu, Tongda; Li, Dongye; Pan, Defeng; Wu, Pei; Luo, Yuanyuan; Ma, Yanfeng; Liu, Yang

    2016-01-01

    Recent studies have demonstrated that diabetes impairs the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway, while insulin resistance syndrome has been associated with alterations of this pathway in diabetic rats after ischemia/reperfusion (I/R), and activation of C-jun N-terminal kinase (JNK) is involved. The present study was designed to investigate whether inhibiting JNK activity would partially restore the PI3K/Akt signaling pathway and protect against myocardial I/R injury in diabetic rats, and to explore the effect of intervention with salvianolic acid A (Sal A). The inhibitor of JNK (SP600125) and Sal A were used in type 2 diabetic (T2D) rats, outcome measures included heart hemodynamic data, myocardial infarct size, the release of lactate dehydrogenase (LDH), SERCA2a activity, cardiomyocyte apotosis, expression levels of Bcl-2, Bax and cleaved caspase-3, and the phosphorylation status of Akt and JNK. The p-Akt levels were increased after myocardial I/R in non-diabetic rats, while there was no change in diabetic rats. Pretreatment with the SP600125 and Sal A decreased the p-JNK levels and increased the p-Akt levels in diabetic rats with I/R, and heart hemodynamic data improved, infarct size and LDH release decreased, SERCA2a activity increased, Bax and cleaved caspase-3 expression levels decreased, and the expression of Bcl-2 and the Bcl-2/Bax ratio increased. Our results suggest that the JNK/PI3K/Akt signaling pathway is involved in myocardial I/R injury in diabetic rats and Sal A exerts an anti-apoptotic effect and improves cardiac function following I/R injury through the JNK/PI3K/Akt signaling pathway in this model. PMID:27398138

  8. JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A intervention

    PubMed Central

    Chen, Qiuping; Xu, Tongda; Li, Dongye; Pan, Defeng; Wu, Pei; Luo, Yuanyuan; Ma, Yanfeng; Liu, Yang

    2016-01-01

    Recent studies have demonstrated that diabetes impairs the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway, while insulin resistance syndrome has been associated with alterations of this pathway in diabetic rats after ischemia/reperfusion (I/R), and activation of C-jun N-terminal kinase (JNK) is involved. The present study was designed to investigate whether inhibiting JNK activity would partially restore the PI3K/Akt signaling pathway and protect against myocardial I/R injury in diabetic rats, and to explore the effect of intervention with salvianolic acid A (Sal A). The inhibitor of JNK (SP600125) and Sal A were used in type 2 diabetic (T2D) rats, outcome measures included heart hemodynamic data, myocardial infarct size, the release of lactate dehydrogenase (LDH), SERCA2a activity, cardiomyocyte apotosis, expression levels of Bcl-2, Bax and cleaved caspase-3, and the phosphorylation status of Akt and JNK. The p-Akt levels were increased after myocardial I/R in non-diabetic rats, while there was no change in diabetic rats. Pretreatment with the SP600125 and Sal A decreased the p-JNK levels and increased the p-Akt levels in diabetic rats with I/R, and heart hemodynamic data improved, infarct size and LDH release decreased, SERCA2a activity increased, Bax and cleaved caspase-3 expression levels decreased, and the expression of Bcl-2 and the Bcl-2/Bax ratio increased. Our results suggest that the JNK/PI3K/Akt signaling pathway is involved in myocardial I/R injury in diabetic rats and Sal A exerts an anti-apoptotic effect and improves cardiac function following I/R injury through the JNK/PI3K/Akt signaling pathway in this model. PMID:27398138

  9. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer

    PubMed Central

    Chia, S.; Gandhi, S.; Joy, A.A.; Edwards, S.; Gorr, M.; Hopkins, S.; Kondejewski, J.; Ayoub, J.P.; Califaretti, N.; Rayson, D.; Dent, S.F.

    2015-01-01

    The pi3k/Akt/mtor (phosphatidylinositol 3 kinase/ Akt/mammalian target of rapamycin) signalling pathway is an established driver of oncogenic activity in human malignancies. Therapeutic targeting of this pathway holds significant promise as a treatment strategy. Everolimus, an mtor inhibitor, is the first of this class of agents approved for the treatment of hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer. Everolimus has been associated with significant improvements in progression-free survival; however, it is also associated with increased toxicity related to its specific mechanism of action. Methods A comprehensive review of the literature conducted using a focused medline search was combined with a search of current trials at http://ClinicalTrials.gov/. Summary tables of the toxicities of the various classes of pi3k/Akt/mtor inhibitors were created. A broad group of Canadian health care professionals was assembled to review the data and to produce expert opinion and summary recommendations for possible best practices in managing the adverse events associated with these pathway inhibitors. Results Differing toxicities are associated with the various classes of pi3k/Akt/mtor pathway inhibitors. The most common unique adverse events observed in everolimus clinical trials in breast cancer include stomatitis (all grades: approximately 60%), noninfectious pneumonitis (15%), rash (40%), hyperglycemia (15%), and immunosuppression (40%). To minimize grades 3 and 4 toxicities and to attempt to attain optimal outcomes, effective management of those adverse events is critical. Management should be interdisciplinary and should use approaches that include education, early recognition, active intervention, and potentially prophylactic strategies. Discussion Everolimus likely represents the first of many complex oral targeted therapies for the treatment of breast cancer. Using this agent as a template, it is essential to

  10. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis.

    PubMed

    Bender, A; Opel, D; Naumann, I; Kappler, R; Friedman, L; von Schweinitz, D; Debatin, K-M; Fulda, S

    2011-01-27

    We recently identified activation of phosphatidylinositol 3'-kinase (PI3K)/Akt as a novel predictor of poor outcome in neuroblastoma. Here, we investigated the effect of small-molecule PI3K inhibitors on chemosensitivity. We provide first evidence that PI3K inhibitors, for example PI103, synergize with various chemotherapeutics (Doxorubicin, Etoposide, Topotecan, Cisplatin, Vincristine and Taxol) to trigger apoptosis in neuroblastoma cells (combination index: high synergy). Mechanistic studies reveal that PI103 cooperates with Doxorubicin to reduce Mcl-1 expression and Bim(EL) phosphorylation and to upregulate Noxa and Bim(EL) levels. This shifted ratio of pro- and antiapoptotic Bcl-2 proteins results in increased Bax/Bak conformational change, loss of mitochondrial membrane potential, cytochrome c release, caspase activation and caspase-dependent apoptosis. Although Mcl-1 knockdown enhances Doxorubicin- and PI103-induced apoptosis, silencing of Noxa, Bax/Bak or p53 reduces apoptosis, underscoring the functional relevance of the Doxorubicin- and PI103-mediated modulation of these proteins for chemosensitization. Bcl-2 overexpression inhibits Bax activation, mitochondrial perturbations, cleavage of caspases and Bid, and apoptosis, confirming the central role of the mitochondrial pathway for chemosensitization. Interestingly, the broad-range caspase inhibitor zVAD.fmk does not interfere with Bax activation or mitochondrial outer membrane permeabilization, whereas it blocks caspase activation and apoptosis, thus placing mitochondrial events upstream of caspase activation. Importantly, PI103 and Doxorubicin cooperate to induce apoptosis and to suppress tumor growth in patients' derived primary neuroblastoma cells and in an in vivo neuroblastoma model, underlining the clinical relevance of the results. Thus, targeting PI3K presents a novel and promising strategy to sensitize neuroblastoma cells for chemotherapy-induced apoptosis, which has important implications for the

  11. Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition.

    PubMed

    Liu, Weihua; Liu, Bin; Liu, Shaojun; Zhang, Jingzhi; Lin, Shuangfeng

    2016-04-01

    Endothelial dysfunction is believed the early stage of development of diabetic cardiovascular complications. Sphingosine-1-phosphate (S1P) regulates various biological activities by binding to sphingosine-1-phosphate receptors (S1PRs) including S1PR1-S1PR5. In the present study, the role of S1P receptors in S1P-induced human coronary artery endothelial cells (HCAECs) dysfunction under high glucose condition was investigated and the underlying mechanism was explored. S1PR1-S1PR5 mRNA levels were detected by quantitative Real-time PCR. NO level and polymorphonuclear neutrophils (PMN)-endothelial cells adhesion were measured by nitrate reductase and myeloperoxidase colorimetric method, respectively. Protein levels of endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1(ICAM-1), phosphatidylinositol 3-kinase (PI3K) and Akt were measured by Western blot analysis. S1PR2 were found the predominant S1P receptor expressed in HCAECs exposed to high glucose. NO level and eNOS activity were remarkably decreased, while PMN adhesion, VCAM-1 and ICAM-1 protein levels were increased significantly by S1P treatment in HCAECs exposed to high glucose and normal glucose. Blockage of S1PR2 with specific antagonist JTE-013 and small interfering RNA (siRNA) resulted in enhanced NO level and eNOS activity as well as decreased PMN adhesion, reduced protein levels of VCAM-1 and ICAM-1 induced by S1P. Furthermore, Phosphor-PI3K and phosphor-Akt level were markedly increased by S1PR2 blockade in S1P-treated cells exposed to high glucose, which were suppressed by PI3K inhibitor wortmannin. In conclusion, S1P/S1PR2 mediated endothelial dysfunction partly by inhibiting PI3K/Akt signaling pathway under high glucose condition. S1PR2 blockage could ameliorate endothelial dysfunction which might provide a potential therapeutic strategy for diabetic vascular complications. PMID:26921757

  12. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion

    PubMed Central

    Zhou, Jing; Du, Ting; Li, Baoman; Rong, Yan; Verkhratsky, Alexei

    2015-01-01

    The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species

  13. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control.

    PubMed

    Georgescu, Maria-Magdalena

    2010-12-01

    The PI3K-Akt pathway is a major survival pathway activated in cancer. Efforts to develop targeted therapies have not been fully successful, mainly because of extensive internal intrapathway or external interpathway negative feedback loops or because of networking between pathway suppressors. The PTEN tumor suppressor is the major brake of the pathway and a common target for inactivation in somatic cancers. This review will highlight the networking of PTEN with other inhibitors of the pathway, relevant to cancer progression. PTEN constitutes the main node of the inhibitory network, and a series of convergences at different levels in the PI3K-Akt pathway, starting from those with growth factor receptors, will be described. As PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) phosphatase, thus opposing the activity of PI3K, the concerted actions to increase the availability of PIP(3) in cancer cells, relying either on other phosphoinositide enzymes or on the intrinsic regulation of PTEN activity by other molecules, will be discussed. In particular, the synergy between PTEN and the circle of its direct interacting proteins will be brought forth in an attempt to understand both the activation of the PI3K-Akt pathway and the connections with other parallel oncogenic pathways. The understanding of the interplay between the modulators of the PI3K-Akt pathway in cancer should eventually lead to the design of therapeutic approaches with increased efficacy in the clinic. PMID:21779440

  14. Genomic Determinants of PI3K Pathway Inhibitor Response in Cancer

    PubMed Central

    Weigelt, Britta; Downward, Julian

    2012-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is frequently activated in cancer as a result of genetic (e.g., amplifications, mutations, deletions) and epigenetic (e.g., methylation, regulation by non-coding RNAs) aberrations targeting its key components. Several lines of evidence demonstrate that tumors from different anatomical sites depend on the continued activation of this pathway for the maintenance of their malignant phenotype. The PI3K pathway therefore is an attractive candidate for therapeutic intervention, and inhibitors targeting different components of this pathway are in various stages of clinical development. Burgeoning data suggest that the genomic features of a given tumor determine its response to targeted small molecule inhibitors. Importantly, alterations of different components of the PI3K pathway may result in distinct types of dependencies and response to specific therapeutic agents. In this review, we will focus on the genomic determinants of response to PI3K, dual PI3K/mechanistic target of rapamycin (mTOR), mTOR, and AKT inhibitors in cancer identified in preclinical models and clinical trials to date, and the development of molecular tools for the stratification of cancer patients. PMID:22970424

  15. MiR-27a Regulates Apoptosis in Nucleus Pulposus Cells by Targeting PI3K

    PubMed Central

    Chen, Huajiang; Yuan, Wen; Wang, Jianxi; Tang, Xianye

    2013-01-01

    The precise role of apoptosis in the pathogenesis of intervertebral disc degeneration (IDD) remains to be elucidated. We analyzed degenerative nucleus pulposus (NP) cells and found that the expression of miR-27a was increased. The overexpression of miR-27a was further verified using real-time RT-PCR. Bioinformatics target prediction identified phosphoinositide-3 kinases (PI3K) as putative targets of miR-27a. Furthermore, miR-27a inhibited PI3K expression by directly targeting their 3’-UTRs, and this inhibition was abolished by mutation of the miR-27a binding sites. Various cellular processes including cell growth, proliferation, migration and adhesion are regulated by activation of the PI3K/AKT signaling pathway, and nucleus pulposus cells are known to strongly express the phosphorylated survival protein AKT. Our results identify PI3K as a novel target of miR-27a. Upregulation of miR-27a thus targets PI3K, initiating apoptosis of nucleus pulposus cells. This present study revealed that downregulated miR-27a might develop a novel intervention for IDD treatment through the prevention of apoptosis in Nucleus pulposus Cells. PMID:24086481

  16. MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K.

    PubMed

    Liu, Gang; Cao, Peng; Chen, Huajiang; Yuan, Wen; Wang, Jianxi; Tang, Xianye

    2013-01-01

    The precise role of apoptosis in the pathogenesis of intervertebral disc degeneration (IDD) remains to be elucidated. We analyzed degenerative nucleus pulposus (NP) cells and found that the expression of miR-27a was increased. The overexpression of miR-27a was further verified using real-time RT-PCR. Bioinformatics target prediction identified phosphoinositide-3 kinases (PI3K) as putative targets of miR-27a. Furthermore, miR-27a inhibited PI3K expression by directly targeting their 3'-UTRs, and this inhibition was abolished by mutation of the miR-27a binding sites. Various cellular processes including cell growth, proliferation, migration and adhesion are regulated by activation of the PI3K/AKT signaling pathway, and nucleus pulposus cells are known to strongly express the phosphorylated survival protein AKT. Our results identify PI3K as a novel target of miR-27a. Upregulation of miR-27a thus targets PI3K, initiating apoptosis of nucleus pulposus cells. This present study revealed that downregulated miR-27a might develop a novel intervention for IDD treatment through the prevention of apoptosis in Nucleus pulposus Cells. PMID:24086481

  17. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    PubMed

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  18. Enhancement of Morphological Plasticity in Hippocampal Neurons by a Physically Modified Saline via Phosphatidylinositol-3 Kinase

    PubMed Central

    Roy, Avik; Modi, Khushbu K.; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer’s disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  19. Differential Modulation of Brainstem Phosphatidylinositol 3-Kinase/Akt and Extracellular Signal-Regulated Kinase 1/2 Signaling Underlies WIN55,212-2 Centrally Mediated Pressor Response in Conscious Rats

    PubMed Central

    Ibrahim, Badr Mostafa

    2012-01-01

    Our recent study demonstrated that central cannabinoid receptor 1 (CB1R) activation caused dose-related pressor response in conscious rats, and reported studies implicated the brainstem phosphatidylinositol 3-kinase (PI3K)/Akt-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in blood pressure control. Therefore, in this study, we tested the hypothesis that the modulation of brainstem PI3K/Akt-ERK1/2 signaling plays a critical role in the central CB1R-mediated pressor response. In conscious freely moving rats, the pressor response elicited by intracisternal (i.c.) (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (WIN55,212-2) (15 μg) was associated with significant increases in ERK1/2 phosphorylation in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS). In contrast, Akt phosphorylation was significantly reduced in the same neuronal pools. Pretreatment with the selective CB1R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (30 μg i.c.) attenuated the neurochemical responses elicited by central CB1R activation. Furthermore, pretreatment with the ERK/mitogen-activated protein kinase kinase inhibitor 2′-amino-3′-methoxyflavone (PD98059) (5 μg i.c.) abrogated WIN55,212-2-evoked increases in blood pressure and neuronal ERK1/2 phosphorylation but not the reduction in Akt phosphorylation. On the other hand, prior PI3K inhibition with wortmannin (0.4 μg i.c.) exacerbated the WIN55,212-2 (7.5 and 15 μg i.c.) dose-related increases in blood pressure and ERK1/2 phosphorylation in the RVLM. The present neurochemical and integrative studies yield new insight into the critical role of two brainstem kinases, PI3K and ERK1/2, in the pressor response elicited by central CB1R activation in conscious rats. PMID:21946192

  20. Activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases the expression of prostaglandin E2 receptor subtype EP4. The roles of phosphatidylinositol 3-kinase and CCAAT/enhancer-binding protein beta.

    PubMed

    Han, ShouWei; Ritzenthaler, Jeffrey D; Wingerd, Byron; Roman, Jesse

    2005-09-30

    The prostaglandin E2 receptor subtype EP4 has been implicated in the growth and progression of human non-small cell lung carcinoma (NSCLC). However, the factors that control its expression have not been entirely elucidated. Our studies show that NSCLC cells express peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) protein and that treatment with a selective PPARbeta/delta agonist (GW501516) increases EP4 mRNA and protein levels. GW501516 induced NSCLC cell proliferation, and this effect was prevented by PPARbeta/delta antisense or EP4 short interfering RNA (siRNA). GW501516 increased the phosphorylation of Akt and decreased PTEN expression. The selective inhibitor of phosphatidylinositol 3-kinase (PI3-K), wortmannin, and PPARbeta/delta antisense, abrogated the effect of GW501516 on EP4 expression, whereas that of the inhibitor of Erk did not. GW501516 also increased EP4 promoter activity through effects on the region between -1555 and -992 bp in the EP4 promoter, and mutation of the CCAAT/enhancer-binding protein (C/EBP) site in this region abrogated the effect of GW501516. GW501516 increased not only the binding activity of C/EBP to the NF-IL6 site in the EP4 promoter, which was prevented by the inhibitor of PI3-K, but also increased C/EBPbeta protein in a dose- and PPARbeta/delta-dependent manner. The effect of GW501516 on EP4 protein was eliminated in the presence of C/EBPbeta siRNA. Finally, we showed that pretreatment of NSCLC with GW501516 further increased NSCLC cell proliferation in response to exogenous dimethyl-prostaglandin E2 (PGE2) that was diminished in the presence of PPARbeta/delta antisense and EP4 siRNA. Taken together, these findings suggest that activation of PPARbeta/delta induces PGE2 receptor subtype EP4 expression through PI3-K signals and increases human lung carcinoma cell proliferation in response to PGE2. The increase in transcription of the EP4 gene by PPARbeta/delta agonist was associated with increased C

  1. The Emerging Role of PI3K Inhibitors in the Treatment of Hematological Malignancies: Preclinical Data and Clinical Progress to Date.

    PubMed

    Seiler, Till; Hutter, Grit; Dreyling, Martin

    2016-04-01

    The phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway is implicated in the pathogenesis of lymphoma. Deeper understanding of the diversity and biological impact of this pathway has led to the development of specific inhibitors to this pathway. Preclinical data in cell lines, patient samples and disease models have broadened our understanding of PI3K inhibition. Several PI3K inhibitors are currently in advanced stages of clinical development. Idelalisib is the first agent of this new substance class to be approved in chronic lymphocytic leukemia and follicular lymphoma. Other agents specifically target different PI3K isoforms and show promising clinical efficacy. PMID:27052260

  2. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B

    PubMed Central

    Jiang, Bing-Hua; Aoki, Masahiro; Zheng, Jenny Z.; Li, Jian; Vogt, Peter K.

    1999-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation. PMID:10051597

  3. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  4. Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages.

    PubMed

    Papakonstanti, Evangelia A; Zwaenepoel, Olivier; Bilancio, Antonio; Burns, Emily; Nock, Gemma E; Houseman, Benjamin; Shokat, Kevan; Ridley, Anne J; Vanhaesebroeck, Bart

    2008-12-15

    The class IA isoforms of phosphoinositide 3-kinase (p110alpha, p110beta and p110delta) often have non-redundant functions in a given cell type. However, for reasons that are unclear, the role of a specific PI3K isoform can vary between cell types. Here, we compare the relative contributions of PI3K isoforms in primary and immortalised macrophages. In primary macrophages stimulated with the tyrosine kinase ligand colony-stimulating factor 1 (CSF1), all class IA PI3K isoforms participate in the regulation of Rac1, whereas p110delta selectively controls the activities of Akt, RhoA and PTEN, in addition to controlling proliferation and chemotaxis. The prominent role of p110delta in these cells correlates with it being the main PI3K isoform that is recruited to the activated CSF1 receptor (CSF1R). In immortalised BAC1.2F5 macrophages, however, the CSF1R also engages p110alpha, which takes up a more prominent role in CSF1R signalling, in processes including Akt phosphorylation and regulation of DNA synthesis. Cell migration, however, remains dependent mainly on p110delta. In other immortalised macrophage cell lines, such as IC-21 and J774.2, p110alpha also becomes more prominently involved in CSF1-induced Akt phosphorylation, at the expense of p110delta.These data show that PI3K isoforms can be differentially regulated in distinct cellular contexts, with the dominant role of the p110delta isoform in Akt phosphorylation and proliferation being lost upon cell immortalisation. These findings suggest that p110delta-selective PI3K inhibitors may be more effective in inflammation than in cancer. PMID:19033389

  5. Effects of PI3K inhibition and low docosahexaenoic acid on cognition and behavior.

    PubMed

    Bandaru, Sathyajit S; Lin, Kristen; Roming, Stephanie L; Vellipuram, Ramana; Harney, Jacob P

    2010-06-01

    Alterations in two components of the brain's insulin signaling pathway, docosahexaenoic acid (DHA) content and phosphoinositide 3-kinase (PI3K) activity, have been implicated in the insulin resistance that is central to type II diabetes mellitus (DM). A 2- to 3-fold increased risk of developing Alzheimer's disease (AD) in patients with type II DM suggests a potential link between cognition and insulin action. The current study was designed to examine the impact of DHA dietary content and PI3K activity on learning, memory, depression, and anxiety in rodents. Mice were divided into the following groups: (1) control diet and vehicle injection (control PI3K), (2) control diet and wortmannin injection (PI3K inhibition), (3) low DHA diet and vehicle, and (4) low DHA diet and wortmannin. Each group was assessed for effects on activity, cognition, depression, and anxiety. Concentrations of glucose and insulin in plasma were quantified to confirm insulin resistance. Results showed significant increases in depression, anxiety, plasma insulin and glucose, and significant decreases in activity in wortmannin-treated mice regardless of diet. The control diet/wortmannin-treated group showed a significant decrease in memory compared to all other groups. The low DHA diet/wortmannin-treated group had slightly improved memory and lower levels of depression compared to the control diet/wortmannin-treated group. Results of the present study suggest that inhibition of PI3K decreases activity and memory while increasing insulin resistance, depression, and anxiety. In addition, these results suggest a possible compensatory role of low DHA in decreasing the effects of dysfunctional PI3K in AD associated cognitive decline and depression. PMID:19914265

  6. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma

    PubMed Central

    Singh, Alok R.; Joshi, Shweta; Zulcic, Muamera; Alcaraz, Michael; Garlich, Joseph R.; Morales, Guillermo A.; Cho, Yoon J.; Bao, Lei; Levy, Michael L.; Newbury, Robert; Malicki, Denise; Messer, Karen; Crawford, John; Durden, Donald L.

    2016-01-01

    Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease. PMID:26938241

  7. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma.

    PubMed

    Singh, Alok R; Joshi, Shweta; Zulcic, Muamera; Alcaraz, Michael; Garlich, Joseph R; Morales, Guillermo A; Cho, Yoon J; Bao, Lei; Levy, Michael L; Newbury, Robert; Malicki, Denise; Messer, Karen; Crawford, John; Durden, Donald L

    2016-01-01

    Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease. PMID:26938241

  8. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway.

    PubMed

    Tiwari, Shashi Kant; Seth, Brashket; Agarwal, Swati; Yadav, Anuradha; Karmakar, Madhumita; Gupta, Shailendra Kumar; Choubey, Vinay; Sharma, Abhay; Chaturvedi, Rajnish Kumar

    2015-11-20

    Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling. PMID:26420483

  9. Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin

    SciTech Connect

    Knight, Steven D.; Adams, Nicholas D.; Burgess, Joelle L.; Chaudhari, Amita M.; Darcy, Michael G.; Donatelli, Carla A.; Luengo, Juan I.; Newlander, Ken A.; Parrish, Cynthia A.; Ridgers, Lance H.; Sarpong, Martha A.; Schmidt, Stanley J.; Aller, Glenn S.Van; Carson, Jeffrey D.; Diamond, Melody A.; Elkins, Patricia A.; Gardiner, Christine M.; Garver, Eric; Gilbert, Seth A.; Gontarek, Richard R.; Jackson, Jeffrey R.; Kershner, Kevin L.; Luo, Lusong; Raha, Kaushik; Sherk, Christian S.; Sung, Chiu-Mei; Sutton, David; Tummino, Peter J.; Wegrzyn, Ronald J.; Auger, Kurt R.; Dhanak, Dashyant

    2010-09-30

    Phosphoinositide 3-kinase {alpha} (PI3K{alpha}) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{l_brace}2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl{r_brace}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3K{alpha} and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.

  10. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    PubMed Central

    Saito, Kenji; He, Yanlin; Yang, Yongjie; Zhu, Liangru; Wang, Chunmei; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J.; Xu, Yong

    2016-01-01

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-α (ERα) stimulates neural firing of VMH neurons expressing ERα, and these effects are blocked with intracellular application of a pharmacological inhibitor of the phosphatidyl inositol 3-kinase (PI3K). Further, we demonstrated that mice with genetic inhibition of PI3K activity in VMH neurons showed a sexual dimorphic obese phenotype, with only female mutants being affected. In addition, inhibition of VMH PI3K activity blocked effects of 17β-estradiol to stimulate energy expenditure, but did not affect estrogen-induced anorexia. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in mediating estrogenic actions on energy expenditure in females. PMID:26988598

  11. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice.

    PubMed

    Saito, Kenji; He, Yanlin; Yang, Yongjie; Zhu, Liangru; Wang, Chunmei; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J; Xu, Yong

    2016-01-01

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-α (ERα) stimulates neural firing of VMH neurons expressing ERα, and these effects are blocked with intracellular application of a pharmacological inhibitor of the phosphatidyl inositol 3-kinase (PI3K). Further, we demonstrated that mice with genetic inhibition of PI3K activity in VMH neurons showed a sexual dimorphic obese phenotype, with only female mutants being affected. In addition, inhibition of VMH PI3K activity blocked effects of 17β-estradiol to stimulate energy expenditure, but did not affect estrogen-induced anorexia. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in mediating estrogenic actions on energy expenditure in females. PMID:26988598

  12. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity

    PubMed Central

    Araki, Yasuhiro; Ku, Wei-Chi; Akioka, Manami; May, Alexander I.; Hayashi, Yu; Arisaka, Fumio; Ishihama, Yasushi

    2013-01-01

    Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15–Vps34 and Atg14–Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate complex I formation. PMID:24165940

  13. Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria.

    PubMed

    Lacerda-Queiroz, Norinne; Brant, Fatima; Rodrigues, David Henrique; Vago, Juliana Priscila; Rachid, Milene Alvarenga; Sousa, Lirlândia Pires; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2015-01-01

    Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/-) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA) infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM. PMID:25775137

  14. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation.

    PubMed

    Bijur, Gautam N; Jope, Richard S

    2003-12-01

    We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria. PMID:14713298

  15. Ether-linked diglycerides inhibit vascular smooth muscle cell growth via decreased MAPK and PI3K/Akt signaling.

    PubMed

    Houck, Kristy L; Fox, Todd E; Sandirasegarane, Lakshman; Kester, Mark

    2008-10-01

    Diglycerides (DGs) are phospholipid-derived second messengers that regulate PKC-dependent signaling pathways. Distinct species of DGs are generated from inflammatory cytokines and growth factors. Growth factors increase diacyl- but not ether-linked DG species, whereas inflammatory cytokines predominately generate alkyl, acyl- and alkenyl, acyl-linked DG species in rat mesenchymal cells. These DG species have been shown to differentially regulate protein kinase C (PKC) isotypes. Ester-linked diacylglycerols activate PKC-epsilon and cellular proliferation in contrast to ether-linked DGs, which lead to growth arrest through the inactivation of PKC-epsilon. It is now hypothesized that ether-linked DGs inhibit mitogenesis through the inactivation of ERK and/or Akt signaling cascades. We demonstrate that cell-permeable ether-linked DGs reduce vascular smooth muscle cell growth by inhibiting platelet-derived growth factor-stimulated ERK in a PKC-epsilon-dependent manner. This inhibition is specific to the ERK pathway, since ether-linked DGs do not affect growth factor-induced activation of other family members of the MAPKs, including p38 MAPK and c-Jun NH(2)-terminal kinases. We also demonstrate that ether-linked DGs reduce prosurvival phosphatidylinositol 3-kinase (PI3K)/Akt signaling, independent of PKC-epsilon, by diminishing an interaction between the subunits of PI3K and not by affecting protein phosphatase 2A or lipid (phosphatase and tensin homologue deleted in chromosome 10) phosphatases. Taken together, our studies identify ether-linked DGs as potential adjuvant therapies to limit vascular smooth muscle migration and mitogenesis in atherosclerotic and restenotic models. PMID:18723771

  16. Screening for hotspot mutations in PI3K, JAK2, FLT3 and NPM1 in patients with myelodysplastic syndromes

    PubMed Central

    Machado-Neto, João Agostinho; Traina, Fabiola; Lazarini, Mariana; de Melo Campos, Paula; Pagnano, Katia Borgia Barbosa; Lorand-Metze, Irene; Costa, Fernando Ferreira; Olalla Saad, Sara T

    2011-01-01

    INTRODUCTION: Myelodysplastic syndromes encompass a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, refractory cytopenia and a tendency to progress toward acute myeloid leukemia. The accumulation of genetic alterations is closely associated with the progression of myelodysplastic syndromes toward acute myeloid leukemia. OBJECTIVE: To investigate the presence of mutations in the points most frequent for mutations (hotspot mutations) in phosphatidylinositol-3-kinase (PI3K), Janus kinase 2 (JAK2), FMS-like tyrosine kinase 3 (FLT3) and nucleophosmin (NPM1), which are involved in leukemia and other cancers, in a population of Brazilian MDS patients. METHODS: Fifty-one myelodysplastic syndromes patients were included in the study. According to French-American-British classification, the patients were distributed as follows: 31 with refractory anemia, 8 with refractory anemia with ringed sideroblasts, 7 with refractory anemia with excess blasts, 3 with refractory anemia with excess blasts in transformation and 2 with chronic myelomonocytic leukemia. Bone marrow samples were obtained and screened for the presence of hotspot mutations using analysis based on amplification with the polymerase chain reaction, sequencing, fragment size polymorphisms or restriction enzyme digestion. All patients were screened for mutations at the time of diagnosis, and 5 patients were also screened at the time of disease progression. RESULTS: In the genes studied, no mutations were detected in the patients at the time of diagnosis. One patient with chronic myelomonocytic leukemia was heterozygous for a Janus kinase 2 mutation after disease progression. CONCLUSIONS: These results show that hotspot mutations in the PI3K, JAK2, FLT3 and NPM1 genes are not common in MDS patients; nevertheless, JAK2 mutations may be present in myelodysplasia during disease progression. PMID:21789382

  17. Apelin-13 Protects PC12 Cells from Corticosterone-Induced Apoptosis Through PI3K and ERKs Activation.

    PubMed

    Zou, Yunjun; Wang, Bo; Fu, Wan; Zhou, Shouhong; Nie, Yaxiong; Tian, Shaowen

    2016-07-01

    It is widely accepted that environmental stress is a risk factor for mental disorders. Glucocorticoid hormones play a vital role in the regulation of physiological response to stress. High concentrations of corticosterone can induce cellular damage in PC12 cells, which possess typical neuronal features. Apelin and its receptor APJ are widely distributed in the central nervous system including limbic structures involved in stress responses. Previous studies have suggested that apelin has a neuroprotective function. However, the effect of apelin on corticosterone-induced neuronal damage remains to be elucidated. In the present study, we explored the potential protective activity of apelin-13 in PC12 cells treated with corticosterone and its underling mechanisms. The viability of the cells, the apoptosis of the cells, the level of phosphorylation of Akt (p-Akt) and extracellular signal-regulated kinases (p-ERKs) and cleaved caspase-3 expression were detected by MTT, Hoechst staining and flow cytometer assays and Western blotting. Results showed that corticosterone induced cells viability loss, cell apoptosis, down-regulation of p-Akt and p-ERKs and up-regulation of cleaved caspase-3. The effects induced by corticosterone were attenuated by apelin-13 pretreatment. Furthermore, apelin-13-mediated anti-viability loss, antiapoptosis and caspase-3 suppression activities were blocked by specific inhibitors of phosphatidylinositol 3-kinase (PI3K) (LY294002) and ERKs (PD98059). The data suggest that apelin-13 protects PC12 cells from corticosterone-induced apoptosis through activating PI3K/Akt and ERKs signaling pathways. PMID:26961889

  18. Caenorhabditis elegans PI3K mutants reveal novel genes underlying exceptional stress resistance and lifespan

    PubMed Central

    Ayyadevara, Srinivas; Tazearslan, Çagdaþ; Bharill, Puneet; Alla, Ramani; Siegel, Eric; Shmookler Reis, Robert J.

    2010-01-01

    Summary Two age-1 nonsense mutants, truncating the class-I phosphatidylinositol 3-kinase catalytic subunit (PI3KCS) before its kinase domain, confer extraordinary longevity and stress-resistance to Caenorhabditis elegans. These traits, unique to second-generation homozygotes, are blunted at the first generation and are largely reversed by additional mutations to DAF-16/FOXO, a transcription factor downstream of AGE-1 in insulin-like signaling. The strong age-1 alleles (mg44, m333) were compared with the weaker hx546 allele on expression microarrays, testing four independent cohorts of each allele. Among 276 genes with significantly differential expression, 92% showed fewer transcripts in adults carrying strong age-1 alleles rather than hx546. This proportion is significantly greater than the slight bias observed when contrasting age-1 alleles to wild-type worms. Thus, transcriptional changes peculiar to nonsense alleles primarily involve either gene silencing or failure of transcriptional activation. A subset of genes responding preferentially to age-1-nonsense alleles was reassessed by real-time polymerase chain reaction, in worms bearing strong or weak age-1 alleles; nearly all of these were significantly more responsive to the age-1(mg44) allele than to age-1(hx546). Additional mutation of daf-16 reverted the majority of altered mg44-F2 expression levels to approximately wild-type values, although a substantial number of genes remained significantly distinct from wild-type, implying that age-1(mg44) modulates transcription through both DAF-16/FOXO-dependent and –independent channels. When age-1-inhibited genes were targeted by RNA interference (RNAi) in wild-type or age-1(hx546) adults, most conferred significant oxidative-stress protection. RNAi constructs targeting two of those genes were shown previously to extend life, and RNAi’s targeting five novel genes were found here to increase lifespan. PI3K-null mutants may thus implicate novel mechanisms of life

  19. Constitutive Macropinocytosis in Oncogene-transformed Fibroblasts Depends on Sequential Permanent Activation of Phosphoinositide 3-Kinase and Phospholipase C

    PubMed Central

    Amyere, Mustapha; Payrastre, Bernard; Krause, Ulrike; Smissen, Patrick Van Der; Veithen, Alex; Courtoy, Pierre J.

    2000-01-01

    Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85α constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selective acceleration of fluid-phase endocytosis. These alterations closely correlated with activation of PI3K and phosphatidylinositol-specific phospholipase C (PI-PLC), as assayed by 3-phosphoinositide synthesis in situ and in vitro and inositol 1,4,5 trisphosphate steady-state levels, respectively; they were abolished by stable transfection of v-Src–transformed cells for dominant-negative truncated p85α expression and by pharmacological inhibitors of PI3K and PI-PLC, indicating a requirement for both enzymes. Whereas PI3K activation resisted PI-PLC inhibition, PI-PLC activation was abolished by a PI3K inhibitor and dominant-negative transfection, thus placing PI-PLC downstream of PI3K. Together, these data suggest that permanent sequential activation of both PI3K and PI-PLC is necessary for the dramatic reorganization of the actin cytoskeleton in oncogene-transformed fibroblasts, resulting in constitutive ruffling and macropinocytosis. PMID:11029048

  20. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    SciTech Connect

    Li Ping; Zhang Qing; Torossian, Artour; Li Zhaobin; Xu Wencai; Lu Bo; Fu Shen

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used to investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have

  1. PI3K at the crossroads of tumor angiogenesis signaling pathways

    PubMed Central

    Soler, Adriana; Angulo-Urarte, Ana; Graupera, Mariona

    2015-01-01

    Tumors need blood vessels for their growth, thus providing the rationale for antiangiogenic therapy in cancer treatment. However, intrinsic and acquired resistance and low response rates have turned out to be major limitations of antiangiogenic therapy. This emphasizes the need to further understand how the vasculature in cancer can be targeted. Although endothelial cells (ECs) rely on multiple growth factors and cytokines to grow, antiangiogenic therapies have mainly centered on targeting vascular endothelial growth factor (VEGF). Phosphoinositide 3-kinases (PI3Ks) form a family of 8 isoenzymes with non-redundant functions in normal biology and cancer. The subgroup of class I PI3Ks are situated at the crossroad of a plethora of proangiogenic signals and control cell growth, survival, motility, and metabolism. These isoenzymes have pleiotropic roles in the tumor microenvironment, including cell-autonomous functions in ECs, underscoring the complexity of targeting this pathway in cancer. Here, we describe how the PI3K axis influences angiogenesis in different cell compartments and summarize the diversity of vascular responses to PI3K inhibition. Targeting PI3K signaling by isoform-selective inhibitors, together with readjusting the current doses below the maximum tolerated dose, may improve clinical responses to class I PI3K anticancer agents. PMID:27308431

  2. BRD7, a tumor suppressor, interacts with p85alpha and regulates PI3K activity

    PubMed Central

    Chiu, Yu-Hsin; Lee, Jennifer Y.; Cantley, Lewis C.

    2014-01-01

    SUMMARY Phosphoinositide 3-kinase (PI3K) activity is important for regulating cell growth, survival and motility. We report here the identification of bromodomain-containing protein 7 (BRD7) as a p85α-interacting protein that negatively regulates PI3K signaling. BRD7 binds to the inter-SH2 (iSH2) domain of p85 through an evolutionarily conserved region located at the C-terminus of BRD7. Via this interaction, BRD7 facilitates nuclear translocation of p85α. The BRD7-dependent depletion of p85 from the cytosol impairs formation of p85/p110 complexes in the cytosol, leading to a decrease in p110 proteins and in PI3K pathway signaling. In contrast, silencing of endogenous BRD7 expression by RNAi increases the steady state level of p110 proteins and enhances Akt phosphorylation after stimulation. These data suggest that BRD7 and p110 compete for the interaction to p85. The unbound p110 protein is unstable, leading to the attenuation of PI3K activity. Therefore, BRD7 functions as a potential tumor suppressor to regulate cell growth. PMID:24657164

  3. Invention of a novel photodynamic therapy for tumors using a photosensitizing PI3K inhibitor.

    PubMed

    Hayashida, Yushi; Ikeda, Yuka; Sawada, Koichi; Kawai, Katsuhisa; Kato, Takuma; Kakehi, Yoshiyuki; Araki, Nobukazu

    2016-08-01

    XL147 (SAR245408, pilaralisib), an ATP-competitive pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, is a promising new anticancer drug. We examined the effect of the PI3K inhibitor on PC3 prostate cancer cells under a fluorescence microscope and found that XL147-treated cancer cells are rapidly injured by blue wavelength (430 nm) light irradiation. During the irradiation, the cancer cells treated with 0.2-2 μM XL147 showed cell surface blebbing and cytoplasmic vacuolation and died within 15 min. The extent of cell injury/death was dependent on the dose of XL147 and the light power of the irradiation. These findings suggest that XL147 might act as a photosensitizing reagent in photodynamic therapy (PDT) for cancer. Moreover, the cytotoxic effect of photosensitized XL147 was reduced by pretreatment with other ATP-competitive PI3K inhibitors such as LY294002, suggesting that the cytotoxic effect of photosensitized XL147 is facilitated by binding to PI3K in cells. In a single-cell illumination analysis using a fluorescent probe to identify reactive oxygen species (ROS), significantly increased ROS production was observed in the XL147-treated cells when the cell was illuminated with blue light. Taken together, it is conceivable that XL147, which is preferentially accumulated in cancer cells, could be photosensitized by blue light to produce ROS to kill cancer cells. This study will open up new possibilities for PDT using anticancer drugs. PMID:26989815

  4. Interfering with Resistance to Smoothened Antagonists by Inhibition of the PI3K Pathway in Medulloblastoma

    PubMed Central

    Buonamici, Silvia; Williams, Juliet; Morrissey, Michael; Wang, Anlai; Guo, Ribo; Vattay, Anthony; Hsiao, Kathy; Yuan, Jing; Green, John; Ospina, Beatrice; Yu, Qunyan; Ostrom, Lance; Fordjour, Paul; Anderson, Dustin L.; Monahan, John E.; Kelleher, Joseph F.; Peukert, Stefan; Pan, Shifeng; Wu, Xu; Maira, Sauveur-Michel; Garcia-Echeverria, Carlos; Briggs, Kimberly J.; Watkins, D. Neil; Yao, Yung-mae; Lengauer, Christoph; Warmuth, Markus; Sellers, William R.; Dorsch, Marion

    2012-01-01

    Mutations in Hedgehog (Hh) pathway genes, leading to constitutive activation of Smoothened (Smo), occur in medulloblastoma. Antagonists of Smo induce tumor regression in mouse models of medulloblastoma and hold great promise for treating this disease. However, acquired resistance has emerged as a challenge to targeted therapeutics and may limit their anti-cancer efficacy. Here, we describe novel mechanisms of acquired resistance to Smo antagonists in medulloblastoma. NVP-LDE225, a potent and selective Smo antagonist, inhibits Hh signaling and induces tumor regressions in allograft models of medulloblastoma that are driven by mutations of Patched (Ptch), a tumor suppressor in the Hh pathway. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed distinct resistance mechanisms. Chromosomal amplification of Gli2, a downstream effector of Hh signaling, or more rarely point mutations in Smo led to reactivated Hh signaling and restored tumor growth. Unexpectedly, analysis of pathway gene-expression signatures selectively deregulated in resistant tumors identified increased phosphoinositide 3-kinase (PI3K) signaling as another potential resistance mechanism. Probing the functional relevance of increased PI3K signaling, we demonstrated that the combination of NVP-LDE225 with the PI3K class I inhibitor NVP-BKM120 or the dual PI3K/mTOR inhibitor NVP-BEZ235 markedly delayed the development of resistance. Our findings have important clinical implications for future treatment strategies in medulloblastoma. PMID:20881279

  5. Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-gamma 2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase.

    PubMed Central

    Pleiman, C M; Clark, M R; Gauen, L K; Winitz, S; Coggeshall, K M; Johnson, G L; Shaw, A S; Cambier, J C

    1993-01-01

    Engagement of the B-cell antigen receptor complex induces immediate activation of receptor-associated Src family tyrosine kinases including p55blk, p59fyn, p53/56lyn, and perhaps p56lck, and this response is accompanied by tyrosine phosphorylation of distinct cellular substrates. These kinases act directly or indirectly to phosphorylate and/or activate effector proteins including p42 (microtubule-associated protein kinase) (MAPK), phospholipases C-gamma 1 (PLC gamma 1) and C-gamma 2 (PLC gamma 2), phosphatidylinositol 3-kinase (PI 3-K), and p21ras-GTPase-activating protein (GAP). Although coimmunoprecipitation results indicate that the Src family protein tyrosine kinases interact physically with some of these effector molecules, the molecular basis of this interaction has not been established. Here, we show that three distinct sites mediate the interaction of these kinases with effectors. The amino-terminal 27 residues of the unique domain of p56lyn mediate association with PLC gamma 2, MAPK, and GAP. Binding to PI 3-K is mediated through the Src homology 3 (SH3) domains of the Src family kinases. Relatively small proportions of cellular PI 3-K, PLC gamma 2, MAPK, and GAP, presumably those which are tyrosine phosphorylated, bind to the SH2 domains of these kinases. Comparative analysis of binding activities of Blk, Lyn, and Fyn shows that these kinases differ in their abilities to associate with MAPK and PI 3-K, suggesting that they may preferentially bind and subsequently phosphorylate distinct sets of downstream effector molecules in vivo. Fast protein liquid chromatography Mono Q column-fractionated MAPK maintains the ability to bind bacterially expressed Lyn, suggesting that the two kinases may interact directly. Images PMID:8395016

  6. Relaxin Protects Rat Lungs from Ischemia-Reperfusion Injury via Inducible NO Synthase: Role of ERK-1/2, PI3K, and Forkhead Transcription Factor FKHRL1

    PubMed Central

    Alexiou, Konstantin; Wilbring, Manuel; Matschke, Klaus; Dschietzig, Thomas

    2013-01-01

    Introduction Early allograft dysfunction following lung transplantation is mainly an ischemia/reperfusion (IR) injury. We showed that relaxin-2 (relaxin) exerts a protective effect in lung IR, attributable to decreases in endothelin-1 (ET-1) production, leukocyte recruitment, and free radical generation. Here, we summarize our investigations into relaxin’s signalling. Materials and Methods Isolated rat lungs were perfused with vehicle or 5 nM relaxin (n = 6–10 each). Thereafter, experiments were conducted in the presence of relaxin plus vehicle, the protein kinase A inhibitors H-89 and KT-5720, the NO synthase (NOS) inhibitor L-NAME, the iNOS inhibitor 1400W, the nNOS inhibitor SMTC, the extracellular signal-regulated kinase-1/2 (ERK-1/2) inhibitor PD-98059, the phosphatidylinositol-3 kinase (PI3K) inhibitor wortmannin, the endothelin type-B (ETB) antagonist A-192621, or the glucocorticoid receptor (GR) antagonist RU-486. After 90 min ischemia and 90 min reperfusion we determined wet-to-dry (W/D) weight ratio, mean pulmonary arterial pressure (MPAP), vascular release of ET-1, neutrophil elastase (NE), myeloperoxidase (MPO), and malondialdehyde (MDA). Primary rat pulmonary vascular cells were similarly treated. Results IR lungs displayed significantly elevated W/D ratios, MPAP, as well as ET-1, NE, MDA, and MPO. In the presence of relaxin, all of these parameters were markedly improved. This protective effect was completely abolished by L-NAME, 1400W, PD-98059, and wortmannin whereas neither PKA and nNOS inhibition nor ETB and GR antagonism were effective. Analysis of NOS gene expression and activity revealed that the relaxin-induced early and moderate iNOS stimulation is ERK-1/2-dependent and counter-balanced by PI3K. Relaxin-PI3K-related phosphorylation of a forkhead transcription factor, FKHRL1, paralleled this regulation. In pulmonary endothelial and smooth muscle cells, FKHRL1 was essential to relaxin-PI3K signalling towards iNOS. Conclusion In this

  7. Glycyrrhiza polysaccharide induces apoptosis and inhibits proliferation of human hepatocellular carcinoma cells by blocking PI3K/AKT signal pathway.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Chen, Jie; Liu, Chibo

    2013-06-01

    To study the antitumor effect of glycyrrhiza polysaccharide (GPS) on human hepatocellular carcinoma cells and its mechanism, GPS was extracted and identified with phenol-sulfuric acid assay, Limulus amebocytes lysate assay, gel permeation chromatography, and infrared spectroscopy analysis. To study its antitumor function, 4-5-week-old imprinting control region mice were subcutaneously implanted with H22 cells and intragastrically subjected to 1 ml GPS (25, 50, and 75 mg/kg/day), 150 mg/kg cyclophosphamide in a dose of 150 mg/kg, or equal volume of phosphate buffered saline as control. Tumor weights were detected 10 days later. Apoptosis of intraperitoneally cultured and GPS-treated H22 cells was identified by flow cytometry and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide. In vitro, the function of GPS on cell proliferation was applied on BEL7402 cells and confirmed by 4,6-diamidino-z-phenylindole staining. Assessment of the effect of GPS on P53 gene was analyzed by real-time PCR and Western blot, and the effects of GPS on phosphatidylinositol-3 kinase (PI3K), AKT, p-PI3K, and p-AKT were analyzed by Western blot. We extracted the GPS, and it dose-dependently inhibited the tumorigenicity of hepatocellular carcinoma cells in nude mice. GPS treatment resulted in a significant (P<0.05) dose-dependent increase in the number of apoptotic cells in vivo and a significant (P<0.05) dose-dependent decrease in hepatocellular carcinoma cell proliferation in vitro. GPS modified multiple key enzymes (p-PI3K, p-AKT, and P53) in P53/PI3K/AKT signaling pathways on DNA or protein levels. Taken together, we extracted the GPS successfully and our findings suggest that GPS functions as a tumor suppressor through influencing the P53/PI3K/AKT pathway in the carcinogenesis of hepatocellular carcinoma and may have therapeutic implications for the clinical management of hepatocellular carcinoma patients. PMID:23580179

  8. 7,3',4'-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase.

    PubMed

    Lee, Dong Eun; Lee, Ki Won; Song, Nu Ry; Seo, Sang Kwon; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M; Lee, Hyong Joo; Dong, Zigang

    2010-07-01

    Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3',4'-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G(1) phase. As shown by Western blot, 7,3',4'-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G(1) phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3',4'-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3beta/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3',4'-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3',4'-THIF provide a molecular basis for the possible development of new chemoprotective agents. PMID:20444693

  9. Interleukin-3, but not granulocyte-macrophage colony-stimulating factor and interleukin-5, inhibits apoptosis of human basophils through phosphatidylinositol 3-kinase: requirement of NF-kappaB-dependent and -independent pathways.

    PubMed

    Zheng, Xueyan; Karsan, Aly; Duronio, Vincent; Chu, Fanny; Walker, David C; Bai, Tony R; Schellenberg, R Robert

    2002-11-01

    Basophils are key effector cells of allergic reactions. Although proinflammatory cytokines, such as interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5, inhibit eosinophil apoptosis in vitro, little is known about basophil apoptosis, and the signalling mechanisms required for basophil survival remain undefined. To address this issue, we used a novel negative-selection system to isolate human basophils to a purity of > 95%, and evaluated apoptosis by morphology using light and transmission electron microscopy, and by annexin-V binding and propidium iodide incorporation using flow cytometry. In this study, we demonstrated that the spontaneous rate of apoptotic basophils was higher than that of eosinophils as, at 24 hr, 57.6 +/- 4.7% of basophils underwent apoptosis compared with 39.5 +/- 3.8% of eosinophils. In addition, basophil cell death was significantly inhibited when cultured with IL-3 for 48 hr (84.6 +/- 4.9% vehicle-treated cells versus 40.9 +/- 3.9% IL-3-treated cells). IL-3 also up-regulated basophil CD69 surface expression. The effects of IL-3 on apoptosis and CD69 surface expression of human basophils were completely blocked by LY294002 (LY), a potent inhibitor of phosphatidylinositol 3-kinase (PI3-K), but only partially inhibited by lactacystin, a proteasome inhibitor that prevents degradation of IkappaB and NF-kappaB translocation. These observations reveal the novel finding that IL-3 prevents basophil apoptosis through the activation of PI3-K, which is only partially NF-kappaB dependent. As basophils are active participants in allergic reactions and IL-3 is one of the abundant proinflammatory cytokines in secretions from allergic tissue, we suggest that IL-3-mediated inhibition of basophil apoptosis may exacerbate the inflammation associated with allergic disorders. PMID:12423306

  10. ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation.

    PubMed

    Meng, Xiangchao; Hu, Baoshan; Hossain, Mohammad Monir; Chen, Guofu; Sun, Ying; Zhang, Xuepeng

    2016-08-01

    A disintegrin and metalloproteinase-17 (ADAM17) can cut and release a wide variety of epidermal growth factor receptor (EGFR) ligands to promote survival, invasion and proliferation of cancer cell, and therefore, is considered to be a potential therapeutic target for cancer. The main goal of the present study was to observe the effects of ADAM17 small interfering RNA (ADAM17-siRNA) on human MCF-7 breast cancer and investigate its activation pathway. In vitro, MCF-7 cells were divided into ADAM17-siRNA groups, nonsense siRNA groups, AG1478 (selective EGFR blocker) groups, LY294002 [phosphatidylinositol 3-kinase (PI3K) phosphorylation inhibitor] groups, PD0325901 [mitogen extracellular kinase (MEK) inhibitor] groups and control groups. In vivo, MCF-7 cells were implanted subcutaneously into nude mice and then these mice were randomly divided into ADAM17-siRNA groups, vector groups and control groups. Our data showed that compared with the control groups, ADAM17-siRNA, AG1478 and LY294002 could inhibit the migration and proliferation of MCF-7 cells, but PD0325901 and nonsense siRNA did not show this effect. Except that specific ADAM17-siRNA could inhibit the expression of ADAM17 mRNA, others did not change it. Western blot analysis further confirmed that EGFR-PI3K-AKT signaling pathway is involved in ADAM17-siRNA inhibiting migration and proliferation of MCF-7 cells. Similarly to the former, the growth of MCF-7 breast cancer in nude mice was significantly inhibited by ADAM17-siRNA. Compared with the control group and the vector group, the tumor volume was smaller in the ADAM17-siRNA group, the tissues developed large areas of necrosis, immunohistochemistry showed low expressions of ADAM17 and Ki-67 and western blot analysis proved that the expression of ADAM17 protein in the tissue was also reduced. The present study suggests that ADAM17-siRNA inhibits MCF-7 breast cancer and is activated through the EGFR-PI3K-AKT signaling pathway. PMID:27221510

  11. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors.

    PubMed

    Chakrabarty, Anindita; Bhola, Neil E; Sutton, Cammie; Ghosh, Ritwik; Kuba, María Gabriela; Dave, Bhuvanesh; Chang, Jenny C; Arteaga, Carlos L

    2013-02-01

    The antibody trastuzumab is approved for treatment of patients with HER2 (ERBB2)-overexpressing breast cancer. A significant fraction of these tumors are either intrinsically resistant or acquire resistance rendering the drug ineffective. The development of resistance has been attributed to failure of the antibody to inhibit phosphoinositide 3-kinase (PI3K), which is activated by the HER2 network. Herein, we examined the effects of PI3K blockade in trastuzumab-resistant breast cancer cell lines. Treatment with the pan-PI3K inhibitor XL147 and trastuzumab reduced proliferation and pAKT levels, triggering apoptosis of trastuzumab-resistant cells. Compared with XL147 alone, the combination exhibited a superior antitumor effect against trastuzumab-resistant tumor xenografts. Furthermore, treatment with XL147 and trastuzumab reduced the cancer stem-cell (CSC) fraction within trastuzumab-resistant cells both in vitro and in vivo. These effects were associated with FoxO-mediated inhibition of transcription of the antiapoptosis gene survivin (BIRC5) and the CSC-associated cytokine interleukin-8. RNA interference-mediated or pharmacologic inhibition of survivin restored sensitivity to trastuzumab in resistant cells. In a cohort of patients with HER2-overexpressing breast cancer treated with trastuzumab, higher pretreatment tumor levels of survivin RNA correlated with poor response to therapy. Together, our results suggest that survivin blockade is required for therapeutic responses to trastuzumab and that by combining trastuzumab and PI3K inhibitors, CSCs can be reduced within HER2(+) tumors, potentially preventing acquired resistance to anti-HER2 therapy. PMID:23204226

  12. Phosphatidylinositol 3-kinase CB association with preoperative radiotherapy response in rectal adenocarcinoma

    PubMed Central

    Yu, Wei-Dong; Peng, Yi-Fan; Pan, Hong-Da; Wang, Lin; Li, Kun; Gu, Jin

    2014-01-01

    AIM: To examine the correlation of phosphatidylinositol 3-kinase (PIK3) CB expression with preoperative radiotherapy response in patients with stage II/III rectal adenocarcinoma. METHODS: PIK3CB immunoexpression was retrospectively assessed in pretreatment biopsies from 208 patients with clinical stage II/III rectal adenocarcinoma, who underwent radical surgery after 30-Gy/10-fraction preoperative radiotherapy. The relation between PIK3CB expression and tumor regression grade, clinicopathological characteristics, and survival time was statistically analyzed. Western blotting and in vitro clonogenic formation assay were used to detect PIK3CB expression in four colorectal cancer cell lines (HCT116, HT29, LoVo, and LS174T) treated with 6-Gy ionizing radiation. Pharmacological assays were used to evaluate the therapeutic relevance of TGX-221 (a PIK3CB-specific inhibitor) in the four colorectal cancer cell lines. RESULTS: Immunohistochemical staining indicated that PIK3CB was more abundant in rectal adenocarcinoma tissues with poor response to preoperative radiotherapy. High expression of PIK3CB was closely correlated with tumor height (P < 0.05), ypT stage (P < 0.05), and high-degree tumor regression grade (P < 0.001). High expression of PIK3CB was a potential prognostic factor for local recurrence-free survival (P < 0.05) and metastasis-free survival (P < 0.05). High expression of PIK3CB was also associated with poor therapeutic response and adverse outcomes in rectal adenocarcinoma patients treated with 30-Gy/10-fraction preoperative radiotherapy. In vitro, PIK3CB expression was upregulated in all four colorectal cancer cell lines concurrently treated with 6-Gy ionizing radiation, and the PIK3CB-specific inhibitor TGX-221 effectively inhibited the clonogenic formation of these four colorectal cancer cell lines. CONCLUSION: PIK3CB is critically involved in response to preoperative radiotherapy and may serve as a novel target for therapeutic intervention. PMID:25473181

  13. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  14. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling.

    PubMed

    Cinnamon, Einat; Makki, Rami; Sawala, Annick; Wickenberg, Leah P; Blomquist, Gary J; Tittiger, Claus; Paroush, Ze'ev; Gould, Alex P

    2016-08-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  15. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways

    PubMed Central

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  16. The molecular mechanism of polygalasaponin F-mediated decreases in TNFα: emphasizing the role of the TLR4-PI3K/AKT-NF-κB pathway.

    PubMed

    Yan, Wen-Fen; Shao, Qian-Hang; Zhang, Dong-Ming; Yuan, Yu-He; Chen, Nai-Hong

    2015-01-01

    Polygalasaponin F (PS-F), an oleanane-type triterpenoid saponin extracted from Polygala japonica, decreases the release of the inflammatory cytokine tumor necrosis factor α (TNFα), but the precise molecular mechanisms by which this event occurs are not fully understood. To study the anti-neuroinflammatory mechanisms of PS-F, enzyme-linked immunosorbent assay was used to detect the secretion of TNFα from BV-2 microglial cells. Nuclear proteins extracted from BV-2 microglial cells stimulated by lipopolysaccharide (LPS) and pretreated with/without inhibitors were measured by Western blotting, and cell viability was evaluated by MTT analysis. The results indicated that inhibition of toll-like receptor (TLR) 4 (CLI-095 1 μg/ml), phosphatidylinositol 3-kinase (PI3K) (Ly294002 10 μM) or IκBα phosphorylation (Bay11-7082 10 μM) completely prevents the release of TNFα induced by LPS without affecting cell viability and attenuated the nuclear translocation of p65 stimulated by LPS. In addition, PS-F exhibited a similar trend regarding TNFα release, AKT phosphorylation and NF-κB translocation. These results suggest that PS-F reduces neuroinflammatory cytokine secretion through the regulation of the TLR4-PI3K/AKT-NF-κB signaling pathway. PMID:26235355

  17. Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway

    PubMed Central

    Zhang, Jingyu; Jiang, Hua; Xie, Li; Hu, Jing; Li, Li; Yang, Mi; Cheng, Lei; Liu, Baorui; Qian, Xiaoping

    2016-01-01

    Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-l-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma. PMID:27307747

  18. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways.

    PubMed

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  19. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways

    PubMed Central

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  20. Grb2-associated binder 2 silencing impairs growth and migration of H1975 cells via modulation of PI3K-Akt signaling

    PubMed Central

    Wang, Wen Jie; Mou, Kun; Wu, Xi Feng; Zhang, Jin Zhong; Ren, Gang; Qi, Jiu De; Xu, Yi-Fu; Yao, Xin

    2015-01-01

    Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death and often has a poor prognosis. Investigation of NSCLC cancer cell migration, invasion and development of strategies to block this process is essential to improve the disease prognosis. In this study, we tested our hypothesis that Grb2-associated binder 2 (Gab2) regulate NSCLC cancer cell H1975 malignant biological behaviors, and silencing Gab2 reduced H1975 cellular colony forming ability, migration and invasion. Moreover, silenced cells present defects in phosphatidylinositol 3-kinase (PI3K)-serine/threonine kinase (Akt) signaling, and reduced expression/activity of matrix metallopeptidase (MMP)-2/9. Furthermore, in Gab2 siRNA-transfected cells, we detected a decrease in signal transducer and activator of transcription 3 (STAT3) phosphorylation and nuclear translocation. In vivo, Gab2 siRNA cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and PI3K-Akt signaling inhibition. These results indicate that Gab2 is a key factor in H1975 tumor migration, invasion, suggesting that Gab2 can be a novel therapeutic target in NSCLC. PMID:26617767

  1. Hypoglycemic effect of D-chiro-inositol in type 2 diabetes mellitus rats through the PI3K/Akt signaling pathway.

    PubMed

    Gao, Yun-Feng; Zhang, Meng-Na; Wang, Tian-Xin; Wu, Tian-Chen; Ai, Ru-Dan; Zhang, Ze-Sheng

    2016-09-15

    In this investigation, a model of type 2 diabetes mellitus (T2DM) was used on Sprague-Dawley (SD) rats to clarify more details of the mechanism in the therapy of T2DM. D-chiro-inositol (DCI) was administrated to the diabetic rats as two doses [30, 60 mg/(kg·body weight·day)]. The biochemical indices revealed that DCI had a positive effect on hypoglycemic activity and promoted the glycogen synthesis. The rats in DCI high-dosage group had a blood glucose reduction rate of 21.5% after 5 weeks of treatment, and had insulin content in serum about 15.3 ± 2.37 mIU/L which was significantly decreased than diabetes control group. Real-time polymerase chain reaction (RT-PCR) results revealed that DCI gave a positive regulation on glycogen synthase (GS) and protein glucose transporter-4 (Glut4). Western blotting suggested that DCI could up-regulated the expression of the phosphatidylinositol-3-kinase (PI3K) p85, PI3Kp110, GS as well as the phosphorylation of protein kinase B (Akt) both in the liver and the skeletal muscle. The results also revealed that DCI enhanced the Glut4 expression on skeletal muscle. Above all, DCI played a positive role in regulating insulin-mediated glucose uptake through the PI3K/Akt signaling pathway in T2DM rats. PMID:27212205

  2. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways.

    PubMed

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  3. Fucoidan from sea cucumber Cucumaria frondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4.

    PubMed

    Wang, Yiming; Wang, Jingfeng; Zhao, Yanlei; Hu, Shiwei; Shi, Di; Xue, Changhu

    2016-01-01

    The present study investigated the anti-hyperglycemic properties and mechanisms of fucoidan, isolated from Cucumaria frondosa (Cf-FUC), in insulin resistant mice. Male C57BL/6J mice were fed regular diet or high-fat/high-sucrose diet for 19 weeks. Model animals were dietary administrated either rosiglitazone (RSG, 1 mg/kg·bw), fucoidan (Cf-FUC, 80 mg/kg·bw) or their combinations. Results showed that Cf-FUC significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance and insulin tolerance in insulin-resistant mice. Quantitative real-time PCR analysis showed that Cf-FUC increased the mRNA expressions of insulin receptors (IR), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3 kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4). Western blot assays demonstrated that Cf-FUC showed no effect on total protein expression but nevertheless enhanced the phosphorylation of proteins listed above and increased translocation of GLUT4 to the cell membrane. Furthermore, Cf-FUC enhanced the effects of RSG. These results indicated that Cf-FUC exhibited significant anti-hyperglycemic effects via activating PI3K/PKB pathway and GLUT4 in skeletal muscle and adipose tissue. PMID:26194305

  4. FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells.

    PubMed

    You, Dewen; Xin, Junping; Volk, Andrew; Wei, Wei; Schmidt, Rachel; Scurti, Gina; Nand, Sucha; Breuer, Eun-Kyoung; Kuo, Paul C; Breslin, Peter; Kini, Ameet R; Nishimura, Michael I; Zeleznik-Le, Nancy J; Zhang, Jiwang

    2015-03-31

    Mutations and inactivation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) are observed in 15%-25% of cases of human T cell acute lymphoblastic leukemia (T-ALL). Pten deletion induces myeloproliferative disorders (MPDs), acute myeloid leukemia (AML), and/or T-ALL in mice. Previous studies attributed Pten-loss-related hematopoietic defects and leukemogenesis to excessive activation of phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling. Although inhibition of this signal dramatically suppresses the growth of PTEN-null T-ALL cells in vitro, treatment with inhibitors of this pathway does not cause a complete remission in vivo. Here, we report that focal adhesion kinase (Fak), a protein substrate of Pten, also contributes to T-ALL development in Pten-null mice. Inactivation of the FAK signaling pathway by either genetic or pharmacologic methods significantly sensitizes both murine and human PTEN-null T-ALL cells to PI3K/AKT/mTOR inhibition when cultured in vitro on feeder layer cells or a matrix and in vivo. PMID:25801032

  5. The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation.

    PubMed

    Issman-Zecharya, Noa; Schuldiner, Oren

    2014-11-24

    Developmental axon pruning is essential for wiring the mature nervous system, but its regulation remains poorly understood. Here we show that the endosomal-lysosomal pathway regulates developmental pruning of Drosophila mushroom body γ neurons. We demonstrate that the UV radiation resistance-associated gene (UVRAG) functions together with all core components of the phosphatidylinositol 3-kinase class III (PI3K-cIII) complex to promote pruning via the endocytic pathway. By studying several PI(3)P binding proteins, we found that Hrs, a subunit of the ESCRT-0 complex, required for multivesicular body (MVB) maturation, is essential for normal pruning progression. Thus, we hypothesized the existence of an inhibitory signal that needs to be downregulated. Finally, our data suggest that the Hedgehog receptor, Patched, is the source of this inhibitory signal likely functioning in a Smo-independent manner. Taken together, our in vivo study demonstrates that the PI3K-cIII complex is essential for downregulating Patched via the endosomal-lysosomal pathway to execute axon pruning. PMID:25458013

  6. Apoptosis Induction of Human Prostate Carcinoma DU145 Cells by Diallyl Disulfide via Modulation of JNK and PI3K/AKT Signaling Pathways

    PubMed Central

    Shin, Dong Yeok; Kim, Gi-Young; Lee, Jun Hyuk; Choi, Byung Tae; Yoo, Young Hyun; Choi, Yung Hyun

    2012-01-01

    Diallyl disulfide (DADS), a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound’s anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP) family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm) and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4) and Fas ligand (FasL) proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular-signal regulating kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059) and p38 MAPK (SB203580) had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells. PMID:23203057

  7. Hypoxia-induced mitogenic factor promotes vascular adhesion molecule-1 expression via the PI-3K/Akt-NF-kappaB signaling pathway.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Lin, Li; Li, Bo; Wang, Danming; Li, Dechun

    2006-10-01

    Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone 1), is an important player in lung inflammation. However, the effects of HIMF on cell adhesion molecules involved in lung inflammation remain largely unknown. In the present work, we tested whether HIMF modulates vascular adhesion molecule (VCAM)-1 expression, and dissected the possible signaling pathways that link HIMF to VCAM-1 upregulation. Recombinant HIMF protein, instilled intratracheally into adult mouse lungs, results in a significant increase of VCAM-1 production in vascular endothelial, alveolar type II, and airway epithelial cells. In cultured mouse endothelial SVEC 4-10 and lung epithelial MLE-12 cells, we demonstrated that HIMF induces VCAM-1 expression via the phosphatidylinositol-3 kinase (PI-3K)/Akt-nuclear factor (NF)-kappaB signaling pathway. Knockdown of HIMF expression by small interference RNA attenuated LPS-induced VCAM-1 expression in vitro. We showed that HIMF induced phosphorylation of the IkappaB kinase signalsome and, subsequently, IkappaBalpha, leading to activation of NF-kappaB. Meanwhile, VCAM-1 production was correspondingly upregulated. Blocking NF-kappaB signaling pathway by expression of dominant-negative mutants of IkappaB kinase and IkappaBalpha suppressed HIMF-induced VCAM-1 upregulation. HIMF also strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Deltap85, as well as PI-3K inhibitor, LY294002, also blocked HIMF-induced NF-kappaB activation and attenuated VCAM-1 production. Furthermore, LY294002 pretreatment abolished HIMF-enhanced mononuclear cells adhesion to endothelial and epithelial cells. Our findings connect HIMF to signaling pathways that regulate inflammation, and thus reveal the critical roles that HIMF plays in lung inflammation. PMID:16709959

  8. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis

    PubMed Central

    Takáč, Tomáš; Pechan, Tibor; Šamajová, Olga; Šamaj, Jozef

    2013-01-01

    LY294002 is a synthetic quercetin-like compound which, unlike wortmannin, is an inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabelling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K–mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K which are reflected at the proteome level. Compared to wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins as suggested by gene ontology functional annotation. PMID:23931732

  9. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β

    PubMed Central

    Jiang, Jun; Wang, Zhi-Hao; Qu, Min; Gao, Di; Liu, Xiu-Ping; Zhu, Ling-Qiang; Wang, Jian-Zhi

    2015-01-01

    Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer’s disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand stimulation induces a remarkable tau dephosphorylation at multiple AD-associated sites in SK-N-SH cells and human embryonic kidney cells that stably express human tau (HEK293-tau). In cultured hippocampal neurons and the hippocampus of human tau transgenic mice, dephosphorylation of tau proteins was also detected by stimulation of EphB2 receptor. EphB2 activation inhibits glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase, and activates phosphatidylinositol-3-kinase (PI3K)/Akt both in vitro and in vivo, whereas simultaneous inhibition of PI3K or upregulation of GSK-3β abolishes the EphB2 stimulation-induced tau dephosphorylation. Finally, we confirm that ephrinB1/Fc treatment induces tyrosine phosphorylation (activation) of EphB2, while deletion of the tyrosine kinase domain (VM) of EphB2 eliminates the receptor stimulation-induced GSK-3β inhibition and tau dephosphorylation. We conclude that activation of EphB2 receptor kinase arrests tau hyperphosphorylation through PI3K-/Akt-mediated GSK-3β inhibition. Our data provide a novel membranous target to antagonize AD-like tau pathology. PMID:26119563

  10. Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway.

    PubMed

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Zheng, Xiaowei; Hu, Sasa; Pang, Chengsen; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-10-15

    Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer. PMID:25442283

  11. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

    SciTech Connect

    Ou, Hsiu-Chung; Lee, Wen-Jane; Lee, Shin-Da; Huang, Chih-Yang; Chiu, Tsan-Hung; Tsai, Kun-Ling; Hsu, Wen-Cheng; Sheu, Wayne Huey-Herng

    2010-10-15

    Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized low-density lipoprotein (oxLDL) promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. Previous studies have shown that the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase/nitric oxide (PI3K/Akt/eNOS/NO) pathway is involved in oxLDL-induced endothelial apoptosis. Ellagic acid, a natural polyphenol found in berries and nuts, has in recent years been the subject of intense research within the fields of cancer and inflammation. However, its protective effects against oxLDL-induced injury in vascular endothelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effect of ellagic acid in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. Our results showed that pretreatment with ellagic acid (5-20 {mu}M) significantly attenuated oxLDL-induced cytotoxicity, apoptotic features, and generation of reactive oxygen species (ROS). In addition, the anti-apoptotic effect of ellagic acid was partially inhibited by a PI3K inhibitor (wortmannin) and a specific eNOS inhibitor (cavtratin) but not by an ERK inhibitor (PD98059). In exploring the underlying mechanisms of ellagic acid action, we found that oxLDL decreased Akt and eNOS phosphorylation, which in turn activated NF-{kappa}B and downstream pro-apoptotic signaling events including calcium accumulation, destabilization of mitochondrial permeability, and disruption of the balance between pro- and anti-apoptotic Bcl-2 proteins. Those alterations induced by oxLDL, however, were attenuated by pretreatment with ellagic acid. The inhibition of oxLDL-induced endothelial apoptosis by ellagic acid is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  12. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  13. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity.

    PubMed

    Lin, Chia-Yuan; Chen, Jing-Hsien; Fu, Ru-Huei; Tsai, Chia-Wen

    2014-11-17

    Carnosic acid (CA), a diterpene found in the rosemary (Rosmarinus officinalis), has been reported to have a neuroprotective effect. Glutathione S-transferase (GST) P (GSTP) is a phase II detoxifying enzyme that provides a neuroprotective effect. The aim of this study was to explore whether the neuroprotective effect of CA is via an upregulation of GSTP expression and the possible signaling pathways involved. SH-SY5Y cells were pretreated with 1 μM CA followed by treatment with 100 μM 6-hydroxydopamine (6-OHDA). Both immunoblotting and enzyme activity results show that CA also induced protein expression and enzyme activity of GSTP. Moreover, CA significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, the nuclear translocation of p65, but not mitogen-activated protein kinases (p < 0.05). Pretreatment with LY294002 (a PI3K/Akt inhibitor) suppressed the CA-induced phosphorylation of IκB kinase (IKK) and IκBα, p65 nuclear translocation, and nuclear factor-kappa B (NF-κB)-DNA binding activity as well as GSTP protein expression. Furthermore, CA attenuated 6-OHDA-induced caspase 3 activation, and cell death was reversed by GSTP siRNA or LY294002 treatment. Additionally, male Wistar rats with lesions induced by 6-OHDA treatment in the right striatum responded to treatment with CA, which significantly reversed the reduction in GSTP protein expression that resulted from lesioning. We suggest that CA prevents 6-OHDA-induced apoptosis through an increase in GSTP expression via activation of the PI3K/Akt/NF-κB pathway. Therefore, CA may be a promising candidate for use in the prevention of Parkinson's disease. PMID:25271104

  14. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  15. Hypoxia enhances glucocorticoid-induced apoptosis and cell cycle arrest via the PI3K/Akt signaling pathway in osteoblastic cells.

    PubMed

    Zou, Wanjing; Yang, Shu; Zhang, Tie; Sun, Haimei; Wang, Yuying; Xue, Hong; Zhou, Deshan

    2015-11-01

    Although osteonecrosis of the femoral head is a known primary limitation of long-term or high-dose clinical administration of glucocorticoids, the mechanisms underlying this side effect remain unclear. Hypoxia is an important biological state under numerous pathological conditions. In this study, we investigated glucocorticoid-induced osteonecrosis under hypoxic conditions in the MC3T3-E1 osteoblast cell line using a cell cytotoxicity assay, flow cytometry, and western blotting. 6α-Methylprednisolone sodium succinate (MPSL) more effectively induced apoptosis and G0/G1 arrest of MC3T3-E1 osteoblasts under hypoxic conditions than under normoxic conditions. Correspondingly, MPSL more effectively upregulated cellular levels of cleaved caspase 3, p53, and its target p21, and downregulated cyclin D1 levels in hypoxia. Moreover, overexpression of Akt abrogated the MPSL activation of p53, p21, and cleaved caspase 3 and the attenuation of cyclin D1 expression and rescued osteoblasts from MPSL-induced cell cycle arrest and apoptosis, indicating that phosphatidylinositol 3-kinase (PI3K)/Akt signaling might play an essential role in MPSL-induced inhibition of osteoblasts. Furthermore, the suppression of PI3K/Akt signaling and upregualtion of cellular p85α monomer levels by MPSL were more pronounced under hypoxic conditions than under normoxic conditions. Finally, we found that the enhancement of the effects of MPSL under hypoxic conditions was attributed to hypoxia-upregulated glucocorticoid receptor activity. In conclusion, our results demonstrate that MPSL, a synthetic glucocorticoid receptor agonist, promotes the level of p85α and inhibits PI3K/Akt signaling to induce apoptosis and cell cycle arrest in osteoblasts, and that this effect is enhanced under hypoxic conditions. PMID:25230819

  16. Astragalus polysaccharide protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury: The role of PI3K/AKT, Bax/Bcl-2 and caspase-3.

    PubMed

    Xie, Liandi; Wu, Yang; Fan, Zongjing; Liu, Yang; Zeng, Jixiang

    2016-07-01

    In the present study, the mechanisms associated with the Astragalus polysaccharide (APS)-mediated protection of human cardiac microvascular endothelial cells (HCMEC) against hypoxia/reoxygenation (HR) injury were investigated. Pretreatment of HCMECs with APS at various concentrations was performed prior to Na2S2O4-induced HR injury. Subsequently, cell viability and apoptosis were measured by MTT and Hoechst assays, respectively. The viability of HCMECs was reduced by Na2S2O4 and apoptosis was enhanced; however, cell viability was observed to be increased by APS via inhibition of apoptosis. Additionally, intracellular reactive oxygen species (ROS), Ca2+, nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), B‑cell lymphoma‑2 (Bcl‑2), Bcl‑2 associated X protein (Bax) and caspase‑3 were measured using detection kits or western blot analysis. In HCMECs with HR injury, the levels of ROS and Ca2+, MDA and Bax expression levels, and the activity of caspase‑3 were elevated. By contrast, the level of NO, the protein expression levels of SOD, Bcl‑2 and PI3K, and the phosphorylation of AKT were decreased. However, compared with the HR group, the effects of HR injury were significantly reduced by APS, with APS providing a protective effect on HCMECs, particularly at higher doses. The current study concluded that APS protects HCMECs from Na2S2O4‑induced HR injury by reducing the levels of ROS, Ca2+, MDA and Bax, inhibiting the activity of caspase‑3, and enhancing the levels of NO, SOD, Bcl‑2, PI3K and phosphorylated AKT. These results may provide an insight into the clinical application of APS and novel therapeutic strategies for HR injury. PMID:27220872

  17. Nerve Regeneration Potential of Protocatechuic Acid in RSC96 Schwann Cells by Induction of Cellular Proliferation and Migration through IGF-IR-PI3K-Akt Signaling.

    PubMed

    Ju, Da-Tong; Liao, Hung-En; Shibu, Marthandam Asokan; Ho, Tsung-Jung; Padma, Viswanadha Vijaya; Tsai, Fuu-Jen; Chung, Li-Chin; Day, Cecilia Hsuan; Lin, Chien-Chung; Huang, Chih-Yang

    2015-12-31

    Peripheral nerve injuries, caused by accidental trauma, acute compression or surgery, often result in temporary or life-long neuronal dysfunctions and inflict great economic or social burdens on the patients. Nerve cell proliferation is an essential process to restore injured nerves of adults. Schwann cells play a crucial role in endogenous repair of peripheral nerves due to their ability to proliferate, migrate and provide trophic support to axons via expression of various neurotrophic factors, such as the nerve growth factor (NGF), especially after nerve injury. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid, isolated from the kernels of Alpinia oxyphylla Miq (AOF), a traditional Chinese herbal medicine the fruits of which are widely used as a tonic, aphrodisiac, anti-salivation and anti-diarrheatic. This study investigated the molecular mechanisms by which PCA induces Schwann cell proliferation by activating IGF-IR-PI3K-Akt pathway. Treatment with PCA induces phosphorylation of the insulin-like growth factor-I (IGF-I)-mediated phosphatidylinositol 3 kinase/serine - threonine kinase (PI3K/Akt) pathway, and activates expression of cell nuclear antigen (PCNA) in a dose-dependent manner. Cell cycle analysis after 18 h of treatment showed that proliferation of the RSC96 cells was enhanced by PCA treatment. The PCA induced proliferation was accompanied by modulation in the expressions of cell cycle proteins cyclin D1, cyclin E and cyclin A. Knockdown of PI3K using small interfering RNA (siRNA) and inhibition of IGF-IR receptor resulted in the reduction in cell survival proteins. The results collectively showed that PCA treatment promoted cell proliferation and cell survival via IGF-I signaling. PMID:26717920

  18. Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt

    PubMed Central

    Bai, Dong; Ueno, Lynn; Vogt, Peter K.

    2009-01-01

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-κB (NFκB) by inducing phosphorylation and subsequent degradation of inhibitor of κB (IκB). We show here that NFκB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFκB-dependent transcription. The degradation of the IκB protein is strongly enhanced in Akt-transformed cells, and the loss of NFκB activity by introduction of a super-repressor of NFκB, IκBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFκB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFκB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IκB kinase) α and β. Akt phosphorylates IKKα on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKα and β. Our results demonstrate two separate functions of the IKK complex in NFκB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IκB and the phosphorylation of p65. The data further support the conclusion that NFκB activity is essential for PI3K- and Akt-induced oncogenic transformation. PMID:19609947

  19. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  20. Inactivation of the Class II PI3K-C2β Potentiates Insulin Signaling and Sensitivity

    PubMed Central

    Alliouachene, Samira; Bilanges, Benoit; Chicanne, Gaëtan; Anderson, Karen E.; Pearce, Wayne; Ali, Khaled; Valet, Colin; Posor, York; Low, Pei Ching; Chaussade, Claire; Scudamore, Cheryl L.; Salamon, Rachel S.; Backer, Jonathan M.; Stephens, Len; Hawkins, Phill T.; Payrastre, Bernard; Vanhaesebroeck, Bart

    2015-01-01

    Summary In contrast to the class I phosphoinositide 3-kinases (PI3Ks), the organismal roles of the kinase activity of the class II PI3Ks are less clear. Here, we report that class II PI3K-C2β kinase-dead mice are viable and healthy but display an unanticipated enhanced insulin sensitivity and glucose tolerance, as well as protection against high-fat-diet-induced liver steatosis. Despite having a broad tissue distribution, systemic PI3K-C2β inhibition selectively enhances insulin signaling only in metabolic tissues. In a primary hepatocyte model, basal PI3P lipid levels are reduced by 60% upon PI3K-C2β inhibition. This results in an expansion of the very early APPL1-positive endosomal compartment and altered insulin receptor trafficking, correlating with an amplification of insulin-induced, class I PI3K-dependent Akt signaling, without impacting MAPK activity. These data reveal PI3K-C2β as a critical regulator of endosomal trafficking, specifically in insulin signaling, and identify PI3K-C2β as a potential drug target for insulin sensitization. PMID:26655903

  1. Class I PI3K in oncogenic cellular transformation

    PubMed Central

    Zhao, Li; Vogt, Peter K.

    2009-01-01

    Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110α, p110β, p110γ and p110δ. These combine with several regulatory subunits; for p110α, β and δ the standard regulatory subunit is p85, for p110γ it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110α, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of three amino acid substitutions in the helical or kinase domains of the enzyme. The mutant p110α shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain-of-function in p110α. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-alpha isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110α, wild-type non-alpha isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development. PMID:18794883

  2. Urotensin-II Receptor Stimulation of Cardiac L-type Ca2+ Channels Requires the βγ Subunits of Gi/o-protein and Phosphatidylinositol 3-Kinase-dependent Protein Kinase C β1 Isoform*

    PubMed Central

    Zhang, Yuan; Ying, Jiaoqian; Jiang, Dongsheng; Chang, Zhigang; Li, Hua; Zhang, Guoqiang; Gong, Shan; Jiang, Xinghong; Tao, Jin

    2015-01-01

    Recent studies have demonstrated that urotensin-II (U-II) plays important roles in cardiovascular actions including cardiac positive inotropic effects and increasing cardiac output. However, the mechanisms underlying these effects of U-II in cardiomyocytes still remain unknown. We show by electrophysiological studies that U-II dose-dependently potentiates L-type Ca2+ currents (ICa,L) in adult rat ventricular myocytes. This effect was U-II receptor (U-IIR)-dependent and was associated with a depolarizing shift in the voltage dependence of inactivation. Intracellular application of guanosine-5′-O-(2-thiodiphosphate) and pertussis toxin pretreatment both abolished the stimulatory effects of U-II. Dialysis of cells with the QEHA peptide, but not scrambled peptide SKEE, blocked the U-II-induced response. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin as well as the class I PI3K antagonist CH132799 blocked the U-II-induced ICa,L response. Protein kinase C antagonists calphostin C and chelerythrine chloride as well as dialysis of cells with 1,2bis(2aminophenoxy)ethaneN,N,N′,N′-tetraacetic acid abolished the U-II-induced responses, whereas PKCα inhibition or PKA blockade had no effect. Exposure of ventricular myocytes to U-II markedly increased membrane PKCβ1 expression, whereas inhibition of PKCβ1 pharmacologically or by shRNA targeting abolished the U-II-induced ICa,L response. Functionally, we observed a significant increase in the amplitude of sarcomere shortening induced by U-II; blockade of U-IIR as well as PKCβ inhibition abolished this effect, whereas Bay K8644 mimicked the U-II response. Taken together, our results indicate that U-II potentiates ICa,L through the βγ subunits of Gi/o-protein and downstream activation of the class I PI3K-dependent PKCβ1 isoform. This occurred via the activation of U-IIR and contributes to the positive inotropic effect on cardiomyocytes. PMID:25678708

  3. Targeting the PI3K signaling pathway in cancer

    PubMed Central

    Wong, Kwok-Kin; Engelman, Jeffrey A; Cantley, Lewis C

    2009-01-01

    The PI3K pathway is activated in a variety of different human cancers, and inhibitors of this pathway are under active development as anti-cancer therapeutics. In this review, we discuss the data supporting the use of PI3K pathway inhibitors in genetically and clinically defined cancers. This review focuses on their efficacy as single-agents and in combination with other targeted therapies, specifically those targeting the MEK-ERK signaling pathway. PMID:20006486

  4. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model

    PubMed Central

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH. PMID:26539501

  5. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model.

    PubMed

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH. PMID:26539501

  6. Panax Quinquefolius Saponin of Stem and Leaf Attenuates Intermittent High Glucose-Induced Oxidative Stress Injury in Cultured Human Umbilical Vein Endothelial Cells via PI3K/Akt/GSK-3β Pathway

    PubMed Central

    Wang, Jingshang; Yin, Huijun; Guo, Chunyu; Xia, Chengdong; Liu, Qian; Zhang, Lu

    2013-01-01

    Panax quinquefolius saponin of stem and leaf (PQS), the effective parts of American ginseng, is widely used in China as a folk medicine for diabetes and cardiovascular diseases treatment. In our previous studies, we have demonstrated that PQS could improve the endothelial function of type II diabetes mellitus (T2DM) rats with high glucose fluctuation. In the present study, we investigated the protective effects of PQS against intermittent high glucose-induced oxidative damage on human umbilical vein endothelial cells (HUVECs) and the role of phosphatidylinositol 3-kinase kinase (PI3K)/Akt/GSK-3β pathway involved. Our results suggested that exposure of HUVECs to a high glucose concentration for 8 days showed a great decrease in cell viability accompanied by marked MDA content increase and SOD activity decrease. Moreover, high glucose significantly reduced the phosphorylation of Akt and GSK-3β. More importantly, these effects were even more evident in intermittent high glucose condition. PQS treatment significantly attenuated intermittent high glucose-induced oxidative damage on HUVECs and meanwhile increased cell viability and phosphorylation of Akt and GSK-3β of HUVECs. Interestingly, all these reverse effects of PQS on intermittent high glucose-cultured HUVECs were inhibited by PI3K inhibitor LY294002. These findings suggest that PQS attenuates intermittent-high-glucose-induced oxidative stress injury in HUVECs by PI3K/Akt/GSK-3β pathway. PMID:23956765

  7. Panax Quinquefolius Saponin of Stem and Leaf Attenuates Intermittent High Glucose-Induced Oxidative Stress Injury in Cultured Human Umbilical Vein Endothelial Cells via PI3K/Akt/GSK-3 β Pathway.

    PubMed

    Wang, Jingshang; Yin, Huijun; Huang, Ye; Guo, Chunyu; Xia, Chengdong; Liu, Qian; Zhang, Lu

    2013-01-01

    Panax quinquefolius saponin of stem and leaf (PQS), the effective parts of American ginseng, is widely used in China as a folk medicine for diabetes and cardiovascular diseases treatment. In our previous studies, we have demonstrated that PQS could improve the endothelial function of type II diabetes mellitus (T2DM) rats with high glucose fluctuation. In the present study, we investigated the protective effects of PQS against intermittent high glucose-induced oxidative damage on human umbilical vein endothelial cells (HUVECs) and the role of phosphatidylinositol 3-kinase kinase (PI3K)/Akt/GSK-3 β pathway involved. Our results suggested that exposure of HUVECs to a high glucose concentration for 8 days showed a great decrease in cell viability accompanied by marked MDA content increase and SOD activity decrease. Moreover, high glucose significantly reduced the phosphorylation of Akt and GSK-3 β . More importantly, these effects were even more evident in intermittent high glucose condition. PQS treatment significantly attenuated intermittent high glucose-induced oxidative damage on HUVECs and meanwhile increased cell viability and phosphorylation of Akt and GSK-3 β of HUVECs. Interestingly, all these reverse effects of PQS on intermittent high glucose-cultured HUVECs were inhibited by PI3K inhibitor LY294002. These findings suggest that PQS attenuates intermittent-high-glucose-induced oxidative stress injury in HUVECs by PI3K/Akt/GSK-3 β pathway. PMID:23956765

  8. A frequent kinase domain mutation that changes the interaction between PI3K[alpha] and the membrane

    SciTech Connect

    Mandelker, Diana; Gabelli, Sandra B.; Schmidt-Kittler, Oleg; Zhu, Jiuxiang; Cheong, Ian; Huang, Chuan-Hsiang; Kinzler, Kenneth W.; Vogelstein, Bert; Amzel, L. Mario

    2009-12-01

    Mutations in oncogenes often promote tumorigenesis by changing the conformation of the encoded proteins, thereby altering enzymatic activity. The PIK3CA oncogene, which encodes p110{alpha}, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3K{alpha}), is one of the two most frequently mutated oncogenes in human cancers. We report the structure of the most common mutant of p110{alpha} in complex with two interacting domains of its regulatory partner (p85{alpha}), both free and bound to an inhibitor (wortmannin). The N-terminal SH2 (nSH2) domain of p85{alpha} is shown to form a scaffold for the entire enzyme complex, strategically positioned to communicate extrinsic signals from phosphopeptides to three distinct regions of p110{alpha}. Moreover, we found that Arg-1047 points toward the cell membrane, perpendicular to the orientation of His-1047 in the WT enzyme. Surprisingly, two loops of the kinase domain that contact the cell membrane shift conformation in the oncogenic mutant. Biochemical assays revealed that the enzymatic activity of the p110{alpha} His1047Arg mutant is differentially regulated by lipid membrane composition. These structural and biochemical data suggest a previously undescribed mechanism for mutational activation of a kinase that involves perturbation of its interaction with the cellular membrane.

  9. Suppression of the PI3K subunit p85α delays embryoid body development and inhibits cell adhesion.

    PubMed

    Gurney, Susan M R; Forster, Peter; Just, Ursula; Schwanbeck, Ralf

    2011-12-01

    Phosphatidylinositol-3-kinases (PI3Ks) exert a variety of signaling functions in eukaryotes. We suppressed the PI3K regulatory subunit p85α using a small interfering RNA (Pik3r1 siRNA) and examined the effects on embryoid body (EB) development in hanging drop culture. We observed a 150% increase in the volume of the treated EBs within 24 h, compared to the negative controls. Fluorescence Activated Cell Sorting (FACS) assays showed that this increase in volume is not due to increased cellular proliferation. Instead, the increase in volume appears to be due to reduced cellular aggregation and adherence. This is further shown by our observation that 40% of treated EBs form twin instead of single EBs, and that they have a significantly reduced ability to adhere to culture dishes when plated. A time course over the first 96 h reveals that the impaired adherence is transient and explained by an initial 12-hour delay in EB development. Quantitative PCR expression analysis suggests that the adhesion molecule integrin-β1 (ITGB1) is transiently downregulated by the p85α suppression. In conclusion we found that suppressing p85α leads to a delay in forming compact EBs, accompanied by a transient inability of the EBs to undergo normal cell-cell and cell-substrate adhesion. PMID:21780162

  10. Madecassoside suppresses migration of fibroblasts from keloids: involvement of p38 kinase and PI3K signaling pathways.

    PubMed

    Song, Jie; Xu, Huan; Lu, Qian; Xu, Zhao; Bian, Difei; Xia, Yufeng; Wei, Zhifeng; Gong, Zhunan; Dai, Yue

    2012-08-01

    Keloid is a specific skin scar that expands beyond the boundaries of the original injury as it heals. The invasive nature of keloid and notable migratory activity of fibroblasts are a hallmark, which distinguishes keloids from other common scars. Madecassoside, a triterpenoid saponin occurring in Centella asiatica herbs, possesses unique pharmacological properties to enhance wound-healing and diminish keloid formation. However, the effects of madecassoside on the formation of keloid scars have been poorly understood. Here, we focused on the potential of madecassoside on the migration of keloid-derived fibroblasts (KFs) and its mechanism. Primary KF, originating from human earlobe keloids, were purified and cultured, and then treated with madecassoside (10, 30, and 100μM). In both transwell migration assays and scratch-wound-closure assays, KF migration was considerably suppressed by madecassoside pretreatment. Furthermore, KFs treated with madecassoside showed decreased F-actin filaments, as revealed by fluorescein isothiocyanate (FITC)-phalloidin staining and confocal microscopy. By Western blot analysis, madecassoside was shown to remarkably attenuate the phosphorylation of cofilin, p38 MAPK and phosphatidylinositol-3-kinase (PI3K)/AKT signaling, but only exhibited a minor effect on MMP-13 and little effect on ERK1/2 phosphorylation. It was concluded that madecassoside could be of great use in the treatment and/or prevention of hypertrophic scars and keloids. PMID:22360962

  11. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  12. TDRG1 functions in testicular seminoma are dependent on the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Wang, Yong; Gan, Yu; Tan, Zhengyu; Zhou, Jun; Kitazawa, Riko; Jiang, Xianzhen; Tang, Yuxin; Yang, Jianfu

    2016-01-01

    Human testis development-related gene 1 (TDRG1) is a recently identified gene that is expressed exclusively in the testes and promotes the development of testicular germ cell tumors. In this study, the role of TDRG1 in the development of testicular seminoma, which is the most common testicular germ cell tumor, was further investigated. Based on polymerase chain reaction, Western blotting, and immunohistochemistry tests, both gene and protein expression levels of TDRG1 were significantly upregulated in testicular seminoma tissues compared with normal testicular tissues. Additionally, the levels of phosphoinositide-3 kinase (PI3K)/p110 and Akt phosphorylation were dramatically upregulated in testicular seminoma tissues. Accordingly, in our cell experiment, seminoma TCam-2 cells were subjected to different treatments: the TDRG1 knockout, TDRG1 overexpression, PI3K inhibition (LY294002 administration), or PI3K activation (insulin-like growth factor-1 administration). Cell proliferation, the proliferation index, apoptosis rate, cell adhesive capacity, and cell invasion capability were assessed. Cells with both TDRG1 knockout and PI3K inhibition exhibited decreased cell proliferation, proliferation indexes, cell adhesion capacity, and cell invasion capability and increased apoptosis rates. Most of these effects were reversed by TDRG1 overexpression or PI3K activation, indicating that both TDRG1- and PI3K-mediated signaling promote proliferation and invasion of testicular seminoma cells. The knockout of TDRG1 significantly decreased the phosphorylation levels of PI3K/p85, PI3K/p110, Akt, and mammalian target of rapamycin (mTOR; Ser(2448)). Except for PI3K/p110, TDRG1 overexpression had the opposite effects on phosphorylation levels. Phosphorylated mTOR at Ser(2481) and Thr(2446) was not affected by TDRG1 or PI3K in our tests. Thus, these results indicate that TDRG1 promotes the development and migration of seminoma cells via the regulation of the PI3K/Akt/mTOR signaling

  13. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells.

    PubMed

    Tian, Feng; Ding, Ding; Li, Dandan

    2015-01-01

    Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline plays a role in different human gastric cancer cells lines. We found that fangchinoline effectively suppressed proliferation and invasion of SGC7901 cell lines, but not MKN45 cell lines by inhibiting the expression of PI3K and its downstream pathway. All of the Akt/MMP2/MMP9 pathway, Akt/Bad pathway, and Akt/Gsk3β/CDK2 pathway could be inhibited by fangchinoline through inhibition of PI3K. Taken together, these results suggest that fangchinoline targets PI3K in tumor cells that express PI3K abundantly and inhibits the growth and invasive ability of the tumor cells. PMID:25872479

  14. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells

    PubMed Central

    TIAN, FENG; DING, DING; LI, DANDAN

    2015-01-01

    Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline plays a role in different human gastric cancer cells lines. We found that fangchinoline effectively suppressed proliferation and invasion of SGC7901 cell lines, but not MKN45 cell lines by inhibiting the expression of PI3K and its downstream pathway. All of the Akt/MMP2/MMP9 pathway, Akt/Bad pathway, and Akt/Gsk3β/CDK2 pathway could be inhibited by fangchinoline through inhibition of PI3K. Taken together, these results suggest that fangchinoline targets PI3K in tumor cells that express PI3K abundantly and inhibits the growth and invasive ability of the tumor cells. PMID:25872479

  15. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Komatsu, Miki; Mikuni, Shintaro; Hatakeyama, Shigetsugu; Shimizu, Tomohiro; Angata, Takashi; Kinjo, Masataka; Minami, Akio; Iwasaki, Norimasa

    2013-12-01

    Siglecs are a family of sialic acid-binding immunoglobulin-like lectins that regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. Here we show that Siglec-15 regulates osteoclast development and bone resorption by modulating receptor activator of nuclear factor κB ligand (RANKL) signaling in association with DNAX-activating protein 12 kDa (DAP12), an adaptor protein bearing an immunoreceptor tyrosine-based activation motif (ITAM). Among the known Siglecs expressed in myeloid lineage cells, only Siglec-15 was upregulated by RANKL in mouse primary bone marrow macrophages. Siglec-15-deficient mice exhibit mild osteopetrosis resulting from impaired osteoclast development. Consistently, cells lacking Siglec-15 exhibit defective osteoclast development and resorptive activity in vitro. RANKL-induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt and Erk pathways were impaired in Siglec-15-deficient cells. Retroviral transduction of Siglec-15-null osteoclast precursors with wild-type Siglec-15 or mutant Siglec-15 revealed that the association of Siglec-15 with DAP12 is involved in the downstream signal transduction of RANK. Furthermore, we found that the ability of osteoclast formation is preserved in the region adjacent to the growth plate in Siglec-15-deficient mice, indicating that there is a compensatory mechanism for Siglec-15-mediated osteoclastogenesis in the primary spongiosa. To clarify the mechanism of this compensation, we examined whether osteoclast-associated receptor (OSCAR)/Fc receptor common γ (FcRγ) signaling, an alternative ITAM-mediated signaling pathway to DAP12, rescues impaired osteoclastogenesis in Siglec-15-deficient cells. The ligands in type II collagen activate OSCAR and rescue impaired osteoclastogenesis in Siglec-15-deficient cells when cultured on bone slices, indicating that Siglec-15-mediated signaling can be compensated for by signaling activated by type II collagen and other bone

  16. Inhibition of Autophagy as a Strategy to Augment Radiosensitization by the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235S⃞

    PubMed Central

    Cerniglia, George J.; Karar, Jayashree; Tyagi, Sonia; Christofidou-Solomidou, Melpo; Rengan, Ramesh; Koumenis, Constantinos

    2012-01-01

    We investigated the effect of 2-methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl} propanenitrile (NVP-BEZ235) (Novartis, Basel Switzerland), a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor currently being tested in phase I clinical trials, in radiosensitization. NVP-BEZ235 radiosensitized a variety of cancer cell lines, including SQ20B head and neck carcinoma cells and U251 glioblastoma cells. NVP-BEZ235 also increased in vivo radiation response in SQ20B xenografts. Knockdown of Akt1, p110α, or mTOR resulted in radiosensitization, but not to the same degree as with NVP-BEZ235. NVP-BEZ235 interfered with DNA damage repair after radiation as measured by the CometAssay and resolution of phosphorylated H2A histone family member X foci. NVP-BEZ235 abrogated the radiation-induced phosphorylation of both DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated. Knockdown of either p110α or mTOR failed to decrease the phosphorylation of DNA-PKcs, suggesting that the effect of the drug was direct rather than mediated via p110α or mTOR. The treatment of cells with NVP-BEZ235 also promoted autophagy. To assess the importance of this process in radiosensitization, we used the autophagy inhibitors 3-methyladenine and chloroquine and found that either drug increased cell killing after NVP-BEZ235 treatment and radiation. Knocking down the essential autophagy proteins autophagy related 5 (ATG5) and beclin1 increased NVP-BEZ235-mediated radiosensitization. Furthermore, NVP-BEZ235 radiosensitized autophagy-deficient ATG5(−/−) fibroblasts to a greater extent than ATG5(+/+) cells. We conclude that NVP-BEZ235 radiosensitizes cells and induces autophagy by apparently distinct mechanisms. Inhibiting autophagy via pharmacologic or genetic means increases radiation killing after NVP-BEZ235 treatment; hence, autophagy seems to be cytoprotective in this

  17. BMX acts downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition sensitizes to the BH3 mimetic ABT-737.

    PubMed

    Potter, Danielle S; Kelly, Paul; Denneny, Olive; Juvin, Veronique; Stephens, Len R; Dive, Caroline; Morrow, Christopher J

    2014-02-01

    Evasion of apoptosis is a hallmark of cancer, and reversing this process by inhibition of survival signaling pathways is a potential therapeutic strategy. Phosphoinositide 3-kinase (PI3K) signaling can promote cell survival and is upregulated in solid tumor types, including colorectal cancer (CRC), although these effects are context dependent. The role of PI3K in tumorigenesis combined with their amenability to specific inhibition makes them attractive drug targets. However, we observed that inhibition of PI3K in HCT116, DLD-1, and SW620 CRC cells did not induce apoptotic cell death. Moreover, these cells were relatively resistant to the Bcl-2 homology domain 3 (BH3) mimetic ABT-737, which directly targets the Bcl-2 family of apoptosis regulators. To test the hypothesis that PI3K inhibition lowers the apoptotic threshold without causing apoptosis per se, PI3K inhibitors were combined with ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis by 2.3- to 4.5-fold and reduced expression levels of MCL-1, the resistance biomarker for ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis a further 1.4- to 2.4-fold in CRC cells with small interfering RNA-depleted MCL-1, indicative of additional sensitizing mechanisms. The observation that ABT-737-induced apoptosis was unaffected by inhibition of PI3K downstream effectors AKT and mTOR, implicated a novel PI3K-dependant pathway. To elucidate this, an RNA interference (RNAi) screen of potential downstream effectors of PI3K signaling was conducted, which demonstrated that knockdown of the TEC kinase BMX sensitized to ABT-737. This suggests that BMX is an antiapoptotic downstream effector of PI3K, independent of AKT. PMID:24709422

  18. Nuclear PI3K signaling in cell growth and tumorigenesis

    PubMed Central

    Davis, William J.; Lehmann, Peter Z.; Li, Weimin

    2015-01-01

    The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis. PMID:25918701

  19. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  20. OX40 Complexes with PI3K and PKB to Augment TCR-Dependent PKB Signaling

    PubMed Central

    So, Takanori; Choi, Heonsik; Croft, Michael

    2011-01-01

    T lymphocyte activation requires signal 1 from the T cell receptor (TCR) and signal 2 from co-stimulatory receptors. For long-lasting immunity, growth and survival signals imparted through the Akt/PKB pathway in activated or effector T cells are important, and these can be strongly influenced by signaling from OX40 (CD134), a member of the TNFR superfamily. In the absence of OX40, T cells do not expand efficiently to antigen and memory formation is impaired. How most costimulatory receptors integrate their signals with those from antigen through the TCR is not clear, including whether OX40 directly recruits PKB or molecules that regulate PKB. We show that OX40 after ligation by OX40L assembled a signaling complex that contained the adaptor TRAF2 as well as PKB and its upstream activator PI-3-Kinase. Recruitment of PKB and PI3K were dependent on TRAF2 and on translocation of OX40 into detergent insoluble membrane lipid microdomains, but independent of TCR engagement. However, OX40 only resulted in strong phosphorylation and functional activation of the PI3K/PKB pathway when antigen was recognized. Therefore OX40 primarily functions to augment PKB signaling in T cells by enhancing the amount of PI3K and PKB available to the TCR. This highlights a quantitative role of this TNFR family second signal to supplement signal 1. PMID:21289304

  1. mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers.

    PubMed

    Deming, Dustin A; Leystra, Alyssa A; Farhoud, Mohammed; Nettekoven, Laura; Clipson, Linda; Albrecht, Dawn; Washington, Mary Kay; Sullivan, Ruth; Weichert, Jamey P; Halberg, Richard B

    2013-01-01

    The phosphatidylinositide-3-kinase (PI3K) signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca). The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6), indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification. PMID:23593290

  2. Targeting the RTK-PI3K-mTOR Axis in Malignant Glioma: Overcoming Resistance

    PubMed Central

    Fan, Qi-Wen

    2010-01-01

    Gliomas represent the most common primary brain tumor and among the most aggressive of cancers. Patients with glioma typically relapse within a year of initial diagnosis. Recurrent glioma is associated with acquired therapeutic resistance. Although neurosurgical resection, radiation and chemotherapy provide clear benefit, survival remains disappointing. It is, therefore, critical that we identify effective medical therapies and appropriate tumor biomarkers in patients at initial presentation, to promote durable responses in glioma. Pathways linking receptor tyrosine kinases, PI3 kinase, Akt, and mTOR feature prominently in this disease and represent therapeutic targets. Small molecules that inhibit one or more of these kinases are now being introduced into the clinic and may have some activity. Disappointingly, however, preclinical studies demonstrate these agents to be primarily cytostatic rather than cytotoxic to glioma cells. Here, we detail activation of the EGFR-PI3K-Akt-mTOR signaling network in glioma, review class I PI3K inhibitors, discuss roles for Akt, PKC and mTOR, and the importance of biomarkers. We further delineate attempts to target both single and multiple components within the EGFR-PI3K-Akt-mTOR axes. Lastly, we discuss the need to combine targeted therapies with cytotoxic chemotherapy, radiation and with inhibitors of survival signaling to improve outcomes in glioma. PMID:20535652

  3. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  4. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK.

    PubMed

    Fouda, Mohamed A; El-Gowelli, Hanan M; El-Gowilly, Sahar M; El-Mas, Mahmoud M

    2015-12-15

    We have previously reported that estrogen (E2) exacerbates the depressant effect of chronic nicotine on arterial baroreceptor activity in female rats. Here, we tested the hypothesis that this nicotine effect is modulated by nitric oxide synthase (NOS) and/or heme oxygenase (HO) and their downstream soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling. We investigated the effects of (i) inhibition or facilitation of NOS or HO on the interaction of nicotine (2mg/kg/day i.p., 2 weeks) with reflex bradycardic responses to phenylephrine in ovariectomized (OVX) rats treated with E2 or vehicle, and (ii) central pharmacologic inhibition of sGC, PI3K, or MAPKs on the interaction. The data showed that the attenuation by nicotine of reflex bradycardia in OVXE2 rats was abolished after treatment with hemin (HO inducer) or l-arginine (NOS substrate). The hemin or l-arginine effect disappeared after inhibition of NOS (Nω-Nitro-l-arginine methyl ester hydrochloride, L-NAME) and HO (zinc protoporphyrin IX, ZnPP), respectively, denoting the interaction between the two enzymatic pathways. E2-receptor blockade (ICI 182,780) reduced baroreflexes in OVXE2 rats but had no effect on baroreflex improvement induced by hemin or l-arginine. Moreover, baroreflex enhancement by hemin was eliminated following intracisternal (i.c.) administration of wortmannin, ODQ, or PD98059 (inhibitors of PI3K, sGC, and extracellular signal-regulated kinases, MAPKERK, respectively). In contrast, the hemin effect was preserved after inhibition of MAPKp38 (SB203580) or MAPKJNK (SP600125). Overall, NOS/HO interruption underlies baroreflex dysfunction caused by nicotine in female rats and the facilitation of NOS/HO-coupled sGC/PI3K/MAPKERK signaling might rectify the nicotine effect. PMID:26597895

  5. Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K

    PubMed Central

    Wang, Hua; Lin, Hao; Pan, Jincheng; Mo, Chengqiang; Zhang, Faming; Huang, Bin; Wang, Zongren; Chen, Xu; Zhuang, Jintao; Wang, Daohu; Qiu, Shaopeng

    2016-01-01

    BACKGROUND. Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. METHODS. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. RESULTS. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the

  6. 17β-Estradiol modulates the prolactin secretion induced by TRH through membrane estrogen receptors via PI3K/Akt in female rat anterior pituitary cell culture.

    PubMed

    Sosa, Liliana d V; Gutiérrez, Silvina; Petiti, Juan P; Palmeri, Claudia M; Mascanfroni, Iván D; Soaje, Marta; De Paul, Ana L; Torres, Alicia I

    2012-05-01

    Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new

  7. Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury

    PubMed Central

    CHENG, XIANG YANG; GU, XIAO YU; GAO, QIN; ZONG, QIAO FENG; LI, XIAO HONG; ZHANG, YE

    2016-01-01

    The present study aimed to determine whether post-ischemic treatment with dexmedetomidine (DEX) protected the heart against acute myocardial ischemia/reperfusion (I/R)-induced injury in rats. The phosphatidylinositol-3 kinase/protein kinase B(PI3K/Akt)-dependent signaling pathway was also investigated. Male Sprague Dawley rats (n=64) were subjected to ligation of the left anterior descending artery (LAD), which produced ischemia for 25 min, followed by reperfusion. Following LAD ligation, rats were treated with DEX (5, 10 and 20 µg/kg) or underwent post-ischemic conditioning, which included three cycles of ischemic insult. In order to determine the role of the PI3K/Akt signaling pathway, wortmannin (Wort), a PI3K inhibitor, was used to treat a group of rats that had also been treated with DEX (20 µg/kg). Post-reperfusion, lactate dehydrogenase (LDH), cardiac troponin I (cTnI), creatine kinase isoenzymes (CK-MB), superoxide dismutase (SOD) and malondialdehyde (MDA) serum levels were measured using an ultraviolet spectrophotometer. The protein expression levels of phosphorylated (p)-Akt, Ser9-p-glycogen synthase kinase-3β (p-GSK-3β) and cleaved caspase-3 were detected in heart tissue by western blotting. The mRNA expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected using reverse transcription-polymerase chain reaction. At the end of the experiment, the hearts were removed and perfused in an isolated perfusion heart apparatus with Evans blue (1%) in order to determine the non-ischemic areas. The risk and infarct areas of the heart were not dyed. As expected, I/R induced myocardial infarction, as determined by the increased serum levels of cTnI, CK-MB and MDA, and the decreased levels of SOD. Post-ischemic treatment with DEX increased the expression levels of p-Akt and p-GSK-3β, whereas caspase-3 expression was reduced following DEX treatment compared with in the I/R group. Compared with the I/R group, the ratio of Bcl

  8. Regulatory role of PI3K-protein kinase B on the release of interleukin-1β in peritoneal macrophages from the ascites of cirrhotic patients

    PubMed Central

    Tapia-Abellán, A; Ruiz-Alcaraz, A J; Antón, G; Miras-López, M; Francés, R; Such, J; Martínez-Esparza, M; García-Peñarrubia, P

    2014-01-01

    Great effort has been paid to identify novel targets for pharmaceutical intervention to control inflammation associated with different diseases. We have studied the effect of signalling inhibitors in the secretion of the proinflammatory and profibrogenic cytokine interleukin (IL)-1β in monocyte-derived macrophages (M-DM) obtained from the ascites of cirrhotic patients and compared with those obtained from the blood of healthy donors. Peritoneal M-DM were isolated from non-infected ascites of cirrhotic patients and stimulated in vitro with lipopolysaccharide (LPS) and heat-killed Candida albicans in the presence or absence of inhibitors for c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 1 (MEK1), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). The IL1B and CASP1 gene expression were evaluated by quantitative reverse transcription–polymerase chain reaction (qRT–PCR). The expression of IL-1β and caspase-1 were determined by Western blot. IL-1β was also assayed by enzyme-linked immunosorbent assay (ELISA) in cell culture supernatants. Results revealed that MEK1 and JNK inhibition significantly reduced the basal and stimulated IL-1β secretion, while the p38 MAPK inhibitor had no effect on IL-1β levels. On the contrary, inhibition of PI3K increased the secretion of IL-1β from stimulated M-DM. The activating effect of PI3K inhibitor on IL-1β release was mediated mainly by the enhancement of the intracellular IL-1β and caspase-1 content release to the extracellular medium and not by increasing the corresponding mRNA and protein expression levels. These data point towards the role of MEK1 and JNK inhibitors, in contrast to the PI3K-protein kinase B inhibitors, as potential therapeutic tools for pharmaceutical intervention to diminish hepatic damage by reducing the inflammatory response mediated by IL-1β associated with liver failure. PMID:25080058

  9. Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading.

    PubMed

    Lakkakorpi, P T; Wesolowski, G; Zimolo, Z; Rodan, G A; Rodan, S B

    1997-12-15

    Osteoclast activation involves attachment to the mineralized bone matrix and reorganization of the cytoskeleton, leading to polarization of the cell. Signaling molecules, PI3-kinase, rho A, and pp60c-src, were shown to be essential for osteoclastic bone resorption. In this study we have focused on the involvement of these signaling molecules in the early event of osteoclast activation: attachment, spreading, and organization of the cytoskeleton. Highly purified osteoclasts were fractionated into Triton X-100-soluble or cytosolic and Triton X-100-insoluble or cytoskeletal fractions, and the distribution of above-mentioned signaling molecules between the two fractions was examined. PI3-kinase, rho A, and pp60c-src all showed translocation to the cytoskeletal fraction upon osteoclast attachment to plastic. However, PI3-kinase and rho A, but not pp60c-src, showed further translocation of 2.4- and 3.2-fold, respectively, upon attachment of osteoclasts to bone. PI3-kinase translocation to the cytoskeleton was inhibited by either cytochalasin B or colchicine. Furthermore, treatment of osteoclasts with the PI3-kinase inhibitor wortmannin decreased its translocation, suggesting that PI3-kinase activity was needed for its translocation. Moreover, wortmannin inhibited osteoclast attachment to both bone and plastic and caused drastic changes in osteoclast morphology resulting in rounding of the cells, disappearance of F-actin structures or podosomes, and appearance of punctate or vesicular structures inside the cells. Osteoblastic MB1.8 cells and IC-21 macrophages did not show additional translocation of PI3-kinase or rho A upon attachment to bone or changes in attachment or morphology in response to wortmannin. Finally, PI3-kinase coimmunoprecipitated with alpha v beta 3 integrin from osteoclasts. PMID:9434625

  10. Targeting the PI3K/AKT/mTOR Signaling Axis in Children with Hematologic Malignancies

    PubMed Central

    Barrett, David; Brown, Valerie I.; Grupp, Stephan A.; Teachey, David T.

    2014-01-01

    The phosphatidylinositiol 3-kinase (PI3K), AKT, mammalian target of rapamycin (mTOR) signaling pathway (PI3K/AKT/mTOR) is frequently dysregulated in disorders of cell growth and survival, including a number of pediatric hematologic malignancies. The pathway can be abnormally activated in childhood acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), and chronic myelogenous leukemia (CML), as well as in some pediatric lymphomas and lymphoproliferative disorders. Most commonly, this abnormal activation occurs as a consequence of constitutive activation of AKT, providing a compelling rationale to target this pathway in many of these conditions. A variety of agents, beginning with the rapamycin analogue (rapalog) sirolimus, have been used successfully to target this pathway in a number of pediatric hematologic malignancies. Rapalogs demonstrate significant preclinical activity against ALL, which has led to a number of clinical trials. Moreover, rapalogs can synergize with a number of conventional cytotoxic agents and overcome pathways of chemotherapeutic resistance for drugs commonly used in ALL treatment, including methotrexate and corticosteroids. Based on preclinical data, rapalogs are also being studied in AML, CML, and non-Hodgkin’s lymphoma. Recently, significant progress has been made using rapalogs to treat pre-malignant lymphoproliferative disorders, including the autoimmune lymphoproliferative syndrome (ALPS); complete remissions in children with otherwise therapy-resistant disease have been seen. Rapalogs only block one component of the pathway (mTORC1), and newer agents are under preclinical and clinical development that can target different and often multiple protein kinases in the PI3K/AKT/mTOR pathway. Most of these agents have been tolerated in early-phase clinical trials. A number of PI3K inhibitors are under investigation. Of note, most of these also target other protein kinases. Newer agents are under development that target both m

  11. ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism

    PubMed Central

    Yang, Yanan; Ahn, Young-Ho; Chen, Yulong; Tan, Xiaochao; Guo, Lixia; Gibbons, Don L.; Ungewiss, Christin; Peng, David H.; Liu, Xin; Lin, Steven H.; Thilaganathan, Nishan; Wistuba, Ignacio I.; Rodriguez-Canales, Jaime; McLendon, Georgia; Creighton, Chad J.; Kurie, Jonathan M.

    2014-01-01

    Epithelial tumor cells that have undergone epithelial-to-mesenchymal transition (EMT) are typically prone to metastasis and drug resistance and contribute to a poor clinical outcome. The transcription factor ZEB1 is a known driver of EMT, and mediators of ZEB1 represent potential therapeutic targets for metastasis suppression. Here, we have shown that phosphatidylinositol 3-kinase–targeted (PI3K-targeted) therapy suppresses metastasis in a mouse model of Kras/Tp53-mutant lung adenocarcinoma that develops metastatic disease due to high expression of ZEB1. In lung adenocarcinoma cells from Kras/Tp53-mutant animals and human lung cancer cell lines, ZEB1 activated PI3K by derepressing miR-200 targets, including amphiregulin (AREG), betacellulin (BTC), and the transcription factor GATA6, which stimulated an EGFR/ERBB2 autocrine loop. Additionally, ZEB1-dependent derepression of the miR-200 and miR-183 target friend of GATA 2 (FOG2) enhanced GATA3-induced expression of the p110α catalytic subunit of PI3K. Knockdown of FOG2, p110α, and RHEB ameliorated invasive and metastatic propensities of tumor cells. Surprisingly, FOG2 was not required for mesenchymal differentiation, suggesting that mesenchymal differentiation and invasion are distinct and separable processes. Together, these results indicate that ZEB1 sensitizes lung adenocarcinoma cells to metastasis suppression by PI3K-targeted therapy and suggest that treatments to selectively modify the metastatic behavior of mesenchymal tumor cells are feasible and may be of clinical value. PMID:24762440

  12. Targeting PI3K/mTOR signaling in cancer.

    PubMed

    Emerling, Brooke M; Akcakanat, Argun

    2011-12-15

    The American Association for Cancer Research (AACR) Special Conference on Targeting PI3K/mTOR Signaling in Cancer was held in San Francisco, California from February 24 to 27, 2011. The meeting was cochaired by Drs. Lewis C. Cantley, David M. Sabatini, and Funda Meric-Bernstam. The main focus of this event was the therapeutic potential of drugs targeting the PI3K/mTOR signaling pathway for the treatment of cancer. This article summarizes the recent discoveries in the field, with particular emphasis on the major themes of the conference. PMID:21987725

  13. Pelota Regulates Epidermal Differentiation by Modulating BMP and PI3K/AKT Signaling Pathways.

    PubMed

    Elkenani, Manar; Nyamsuren, Gunsmaa; Raju, Priyadharsini; Liakath-Ali, Kifayathullah; Hamdaoui, Aicha; Kata, Aleksandra; Dressel, Ralf; Klonisch, Thomas; Watt, Fiona M; Engel, Wolfgang; Thliveris, James A; Krishna Pantakani, D V; Adham, Ibrahim M

    2016-08-01

    The depletion of evolutionarily conserved pelota protein causes impaired differentiation of embryonic and spermatogonial stem cells. In this study, we show that temporal deletion of pelota protein before epidermal barrier acquisition leads to neonatal lethality due to perturbations in permeability barrier formation. Further analysis indicated that this phenotype is a result of failed processing of profilaggrin into filaggrin monomers, which promotes the formation of a protective epidermal layer. Molecular analyses showed that pelota protein negatively regulates the activities of bone morphogenetic protein and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in the epidermis. To address whether elevated activities of bone morphogenetic protein and PI3K/AKT signaling pathways were the cause for the perturbed epidermal barrier in Pelo-deficient mice, we made use of organotypic cultures of skin explants from control and mutant embryos at embryonic day 15.5. Inhibition of PI3K/AKT signaling did not significantly affect the bone morphogenetic protein activity. However, inhibition of bone morphogenetic protein signaling caused a significant attenuation of PI3K/AKT activity in mutant skin and, more interestingly, the restoration of profilaggrin processing and normal epidermal barrier function. Therefore, increased activity of the PI3K/AKT signaling pathway in Pelo-deficient skin might conflict with the dephosphorylation of profilaggrin and thereby affect its proper processing into filaggrin monomers and ultimately the epidermal differentiation. PMID:27164299

  14. Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications.

    PubMed

    Chen, Jiezhong

    2012-12-12

    Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus (EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins (LMP) 1 and LMP2A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers. PMID:24175221

  15. Shikonin promotes autophagy in BXPC-3 human pancreatic cancer cells through the PI3K/Akt signaling pathway

    PubMed Central

    SHI, SHUQING; CAO, HAIMEI

    2014-01-01

    The present study aimed to investigate the effect of shikonin on autophagy in BXPC-3 human pancreatic cancer cells and its underlying mechanism. Cell viability was assessed using the Cell Counting Kit-8 assay and the expression of light chain (LC) 3, p62, phosphoinositide 3-kinase (PI3K), Akt, phosphorylated (p)-PI3K and p-Akt was analyzed using western blot analysis. Following treatment with 1 μmol/l shikonin for 48 h and 2.5 and 5 μmol/l shikonin for 24 and 48 h, the viability of the BXPC-3 cells was found to be significantly reduced and the protein expression of LC3-II/LC3-I was observed to be increased, while the protein expression of p62, PI3K, Akt, p-PI3K and p-Akt was decreased. These findings suggest that shikonin promotes autophagy in BXPC-3 cells and that the underlying mechanism may be associated with the PI3K/Akt signaling pathway. PMID:25120662

  16. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    SciTech Connect

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  17. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways. PMID:27412469

  18. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    PubMed Central

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  19. A new class of mutations reveals a novel function for the original phosphatidylinositol 3-kinase binding site

    PubMed Central

    Hong, Y. Kate; Mikami, Aki; Schaffhausen, Brian; Jun, Toni; Roberts, Thomas M.

    2003-01-01

    Previous studies have demonstrated that the specificity of Src homology 2 (SH2) and phosphotyrosine-binding domain interactions are mediated by phosphorylated tyrosines and their neighboring amino acids. Two of the first phosphotyrosine-based binding sites were found on middle T antigen of polyoma virus. Tyr-250 acts as a binding site for ShcA, whereas Tyr-315 forms a binding site for the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase. However, genetic analysis of a given phosphotyrosine's role in signaling can be complicated when it serves as a binding site for multiple proteins. The situation is particularly difficult when the phosphotyrosine serves as a secondary binding site for a protein with primary binding determinates elsewhere. Mutation of a tyrosine residue to phenylalanine blocks association of all bound proteins. Here we show that the mutation of the amino acids following the phosphorylated tyrosine to alanine can reveal phosphotyrosine function as a secondary binding site, while abrogating the phosphotyrosine motif's role as a primary binding site for SH2 domains. We tested this methodology by using middle T antigen. Our results suggest that Tyr-250 is a secondary binding site for phosphatidylinositol 3-kinase, whereas Tyr-315 is a secondary binding site for a yet-to-be-identified protein, which is critical for transformation. PMID:12881485

  20. Interleukin 2- and polyomavirus middle T antigen-induced modification of phosphatidylinositol 3-kinase activity in activated T lymphocytes.

    PubMed Central

    Augustine, J A; Sutor, S L; Abraham, R T

    1991-01-01

    Stimulation of activated T lymphocytes with interleukin 2 (IL-2) results in rapid increases in intracellular protein tyrosine phosphorylation. Both the identity of the protein tyrosine kinase (PTK) activated by IL-2 receptor ligation and the identities of the critical target proteins for this PTK remain largely undefined. In this article, we demonstrate that stimulation of activated murine or human T cells with IL-2 for 10 to 30 min induces two- to threefold increases in the level of phosphatidylinositol (PtdIns) 3-kinase activity present in antiphosphotyrosine (p-Tyr) antibody immunoprecipitates from these cells. Furthermore, substantial levels of PtdIns 3-kinase activity were coprecipitated from IL-2-deprived T cells by antibodies to the src-related PTK p59fyn. Cellular stimulation with IL-2 induced a two- to threefold increase in the level of p59fyn-associated PtdIns 3-kinase activity. To examine the effect of a constitutive increase in PtdIns 3-kinase activity on the growth factor responsiveness of activated T cells, murine CTLL-2 cells were transfected with a polyomavirus middle T antigen (MTAg) expression vector. Anti-p-Tyr and anti-p59fyn immunoprecipitates from MTAg-transfected CTLL-2 cells contained three- to sixfold higher levels of PtdIns 3-kinase activity than wild-type cells. Immune complex kinase assays revealed that MTAg expression concomitantly induced a constitutive threefold increase in the PTK activity of p59fyn in these cells. However, stable MTAg expression did not abrogate the dependence of CTLL-2 cells on exogenous IL-2 for continued growth and proliferation. Images PMID:1652056

  1. Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling.

    PubMed

    Lim, Ju Hee; Park, Hae-Suk; Choi, Jung-Kap; Lee, Ik-Soo; Choi, Hyun Jin

    2007-12-01

    Because oxidative stress is involved in the pathogenesis of various chronic diseases and the aging process, antioxidants that can increase the intrinsic antioxidant potency are proposed as desirable therapeutic agents to counteract oxidative stress-related diseases. NF-E2-related factor-2 (Nrf2) is a transcription factor that regulates important antioxidant and phase II detoxification genes, and therefore, the molecule that regulates nuclear translocation of Nrf2 and the induction of antioxidative proteins is thought to be a promising candidate as a cytoprotective agent for oxidative stress. In the present study, we show that isoorientin (luteolin 6-C-beta-D-glucoside) obtained from the leaves of Sasa borealis upregulates and activates Nrf2, and has protective ability against oxidative damage caused by reactive oxygen intermediates in HepG2 cells. Isoorientin induces increase in the level of antioxidant enzyme proteins, especially NQO1, and the cytoprotective and antioxidative effects of isoorientin are PI3K/Akt pathway-dependent. Together with direct radical scavenging activity, the novel effect of isoorientin on the regulation of antioxidative gene expression provides attractive strategy to prevent diseases associated with oxidative stress and attenuate the progress of the diseases. PMID:18254247

  2. Insulin Receptor Substrate 2-mediated Phosphatidylinositol 3-kinase Signaling Selectively Inhibits Glycogen Synthase Kinase 3β to Regulate Aerobic Glycolysis*

    PubMed Central

    Landis, Justine; Shaw, Leslie M.

    2014-01-01

    Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression. PMID:24811175

  3. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations

    PubMed Central

    PARK, EUNJU; PARK, JINAH; HAN, SAE-WON; IM, SEOCK-AH; KIM, TAE-YOU; OH, DO-YOUN; BANG, YUNG-JUE

    2012-01-01

    Aberrations of Phosphoinositide 3-kinase (PI3K)/AKT signaling are frequently observed in many types of cancer, promoting its emergence as a promising target for cancer treatment. PI3K can become activated by various pathways, one of which includes RAS. RAS can not only directly activate the PI3K/AKT pathway via binding to p110 of PI3K, but also regulates mTOR via ERK or RSK independently of the PI3K/AKT pathway. Thus, actively mutated RAS can constitutively activate PI3K signaling. Additionally, in RAS tumorigenic transformation, signal transducer and activator of transcription 3 (STAT3) has been known also to be required. In this study, we examined the efficacy of NVP-BKM120, a pan-class I PI3K inhibitor in human gastric cancer cells and hypothesized that the combined inhibition of PI3K and STAT3 would be synergistic in KRAS mutant gastric cancer cells. NVP-BKM120 demonstrated anti-proliferative activity in 11 human gastric cancer cell lines by decreasing mTOR downstream signaling. But NVP-BKM120 treatment increased p-AKT by subsequent abrogation of feedback inhibition by stabilizing insulin receptor substrate-1. In KRAS mutant gastric cancer cells, either p-ERK or p-STAT3 was also increased upon treatment of NVP-BKM120. The synergistic efficacy study demonstrated that dual PI3K and STAT3 blockade showed a synergism in cells harboring mutated KRAS by inducing apoptosis. The synergistic effect was not seen in KRAS wild-type cells. Together, these findings suggest for the first time that the dual inhibition of PI3K and STAT3 signaling may be an effective therapeutic strategy for KRAS mutant gastric cancer patients. PMID:22159814

  4. Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation.

    PubMed

    Watson, Lewis J; Alexander, Kevin M; Mohan, Maradumane L; Bowman, Amber L; Mangmool, Supachoke; Xiao, Kunhong; Naga Prasad, Sathyamangla V; Rockman, Howard A

    2016-10-01

    β2-Adrenergic receptors (β2AR) transactivate epidermal growth factor receptors (EGFR) through formation of a β2AR-EGFR complex that requires activation of Src to mediate signaling. Here, we show that both lipid and protein kinase activities of the bifunctional phosphoinositide 3-kinase (PI3K) enzyme are required for β2AR-stimulated EGFR transactivation. Mechanistically, the generation of phosphatidylinositol (3,4,5)-tris-phosphate (PIP3) by the lipid kinase function stabilizes β2AR-EGFR complexes while the protein kinase activity of PI3K regulates Src activation by direct phosphorylation. The protein kinase activity of PI3K phosphorylates serine residue 70 on Src to enhance its activity and induce EGFR transactivation following βAR stimulation. This newly identified function for PI3K, whereby Src is a substrate for the protein kinase activity of PI3K, is of importance since Src plays a key role in pathological and physiological signaling. PMID:27169346

  5. PI3-kinase mutation linked to insulin and growth factor resistance in vivo.

    PubMed

    Winnay, Jonathon N; Solheim, Marie H; Dirice, Ercument; Sakaguchi, Masaji; Noh, Hye-Lim; Kang, Hee Joon; Takahashi, Hirokazu; Chudasama, Kishan K; Kim, Jason K; Molven, Anders; Kahn, C Ronald; Njølstad, Pål R

    2016-04-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85α regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome - a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome-associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1Arg649Trp mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism. PMID:26974159

  6. Heat Stress Alters Ovarian Insulin-Mediated Phosphatidylinositol-3 Kinase and Steroidogenic Signaling in Gilt Ovaries.

    PubMed

    Nteeba, Jackson; Sanz-Fernandez, M Victoria; Rhoads, Robert P; Baumgard, Lance H; Ross, Jason W; Keating, Aileen F

    2015-06-01

    Heat stress (HS) compromises a variety of reproductive functions in several mammalian species. Inexplicably, HS animals are frequently hyperinsulinemic despite marked hyperthermia-induced hypophagia. Our objectives were to determine the effects of HS on insulin signaling and components essential to steroid biosynthesis in the pig ovary. Female pigs (35 ± 4 kg) were exposed to constant thermoneutral (20°C; 35%-50% humidity; n = 6) or HS conditions (35°C; 20%-35% humidity; n = 6) for either 7 (n = 10) or 35 days (n = 12). After 7 days, HS increased (P < 0.05) ovarian mRNA abundance of the insulin receptor (INSR), insulin receptor substrate 1 (IRS1), protein kinase B subunit 1 (AKT1), low-density lipoprotein receptor (LDLR), luteinizing hormone receptor (LHCGR), and aromatase (CYP19a). After 35 days, HS increased INSR, IRS1, AKT1, LDLR, LHCGR, CYP19a, and steroidogenic acute regulatory protein (STAR) ovarian mRNA abundance. In addition, after 35 days, HS increased ovarian phosphorylated IRS1 (pIRS1), phosphorylated AKT (pAKT), STAR, and CYP19a protein abundance. Immunostaining analysis revealed similar localization of INSR and pAKT1 in the cytoplasmic membrane and oocyte cytoplasm, respectively, of all stage follicles, and in theca and granulosa cells. Collectively, these results demonstrate that HS alters ovarian insulin-mediated PI3K signaling pathway members, which likely impacts follicle activation and viability. In summary, environmentally induced HS is an endocrine-disrupting exposure that modifies ovarian physiology and potentially compromises production of ovarian hormones essential for fertility and pregnancy maintenance. PMID:25926439

  7. EGF or PDGF receptors activate atypical PKClambda through phosphatidylinositol 3-kinase.

    PubMed Central

    Akimoto, K; Takahashi, R; Moriya, S; Nishioka, N; Takayanagi, J; Kimura, K; Fukui, Y; Osada, S i; Mizuno, K; Hirai, S i; Kazlauskas, A; Ohno, S

    1996-01-01

    Overexpression of a TPA-insensitive PKC member, an atypical protein kinase C (aPKClambda), results in an enhancement of the transcriptional activation of TPA response element (TRE) in cells stimulated with epidermal growth factor (EGF) or platelet-derived growth factor (PDGF). EGF or PDGF also caused a transient increase in the in vivo phosphorylation level and a change in the intracellular localization of aPKClambda from the nucleus to the cytosol, indicating the activation of aPKClambda in response to this growth factor stimulation. These immediate signal-dependent changes in aKPClambda were observed for a PDGF receptor add-back mutant (Y40/51) that possesses only two of the five major autophosphorylation sites and binds PI3-kinase, and were inhibited by wortmannin, an inhibitor of PI3-kinase. Furthermore, an N-terminal fragment of the catalytic subunit of PI3-kinase, p110alpha, inhibited aPKClambda-dependent activation of TRE in Y40/51 cells stimulated with PDGF. Overexpression of p110alpha resulted in an enhancement of TRE expression in response to PDGF and the regulatory domain of aPKClambda inhibited this TRE activation in Y40/51 cells. These results provide the first in vivo evidence supporting the presence of a novel signalling pathway from receptor tyrosine kinases to aPKClambda through PI3-kinase. Images PMID:8631300

  8. Chronic alcohol exposure exacerbates inflammation and triggers pancreatic acinar-to-ductal metaplasia through PI3K/Akt/IKK

    PubMed Central

    HUANG, XIN; LI, XUQI; MA, QINGYONG; XU, QINHONG; DUAN, WANXING; LEI, JIANJUN; ZHANG, LUN; WU, ZHENG

    2015-01-01

    Pancreatic acinar-to-ductal metaplasia (ADM) has been identified as an initiating event that can progress to pancreatic intraepithelial neoplasia (PanIN) or pancreatic ductal adenocarcinoma (PDAC). Acini transdifferentiation can be induced by persistent inflammation. Notably, compelling evidence has emerged that chronic alcohol exposure may trigger an inflammatory response of macrophages/monocytes stimulated by endotoxins. In the present study, we aimed to evaluate the role of inflammation induced by chronic alcohol and lipopolysaccharide (LPS) exposure in the progression of pancreatic ADM, as well as to elucidate the possible mechanisms involved. For this purpose, cultured macrophages were exposed to varying doses of alcohol for 1 week prior to stimulation with LPS. Tumor necrosis factor-α (TNF-α) and regulated upon activation, normal T cell expression and secreted (RANTES) expression were upregulated in the intoxicated macrophages with activated nuclear factor-κB (NF-κB). Following treatment with the supernatant of intoxicated macrophages, ADM of primary acinar cells was induced. Furthermore, the expression of TNF-α and RANTES, as well as the phosphatidylinositol-3-kinase (PI3K)/protein kinase B(Akt)/inhibitory κB kinase (IKK) signaling pathway have been proven to be involved in the ADM of acinar cells. Moreover, Sprague-Dawley (SD) rats were employed to further explore the induction of pancreatic ADM by chronic alcohol and LPS exposure in vivo. At the end of the treatment period, a number of physiological parameters, such as body weight, liver weight and pancreatic weight were reduced in the exposed rats. Plasma alcohol concentrations and oxidative stress levels in the serum, as well as TNF-α and RANTES expression in monocytes were also induced following chronic alcohol and LPS exposure. In addition, pancreatic ADM was induced through the PI3K/Akt/IKK signaling pathway by the augmented TNF-α and RANTES expression levels in the exposed rats. Overall, we

  9. MiR-126 regulates proliferation and invasion in the bladder cancer BLS cell line by targeting the PIK3R2-mediated PI3K/Akt signaling pathway

    PubMed Central

    Xiao, Jun; Lin, Huan-Yi; Zhu, Yuan-Yuan; Zhu, Yu-Ping; Chen, Ling-Wu

    2016-01-01

    Objective To assess whether microRNA-126 (miR-126) targets phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2) and to determine the potential roles of miR-126 in regulating proliferation and invasion via the PIK3R2-mediated phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) signaling pathway in the human bladder BLS cell line. Materials and methods A recombinant lentivirus (Lv) vector expressing miR-216 (Lv-miR-126) was successfully constructed, and Lv-miR-126 and Lv vector were transfected into the BLS cell line. A direct regulatory relationship between miR-126 and the PIK3R2 gene was demonstrated by luciferase reporter assays. To determine whether PIK3R2 directly participates in the miR-126-induced effects in BLS cells, anti-miR-126 and a PIK3R2 small interfering RNA (siRNA) were transfected into the BLS cells. Quantitative real-time polymerase chain reaction was used to measure miR-126 and PIK3R2 expressions. 5-Ethynyl-2′-deoxyuridine and colony formation assays to assess cell proliferation, flow cytometry for cell apoptosis and cell cycle analysis, Transwell assays for cell migration and invasion, and Western blots for PIK3R2, PI3K, phosphorylated PI3K (p-PI3K), Akt, and phosphorylated Akt (p-Akt) protein expressions were performed. Results Lv-miR-126 significantly enhanced the relative expression of miR-126 in the BLS cells after infection (P<0.0001). MiR-126 overexpression inhibited the proliferation, cloning, migration, and invasion of BLS cells, promoted cell apoptosis, and induced S phase arrest (all P<0.05). PIK3R2, p-PI3K, and p-Akt protein expressions were significantly decreased in the BLS cells infected with Lv-miR-126. Luciferase assays showed that miR-126 significantly inhibited the PIK3R2 3′ untranslated region (3′UTR) luciferase reporter activity (P<0.05). The anti-miR-126 + PIK3R2 siRNA group had significantly decreased PIK3R2, p-PI3K, and p-Akt expressions compared with those of anti-miR-126 alone, as well as

  10. Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation.

    PubMed

    Cohen, Shenhav; Lee, Donghoon; Zhai, Bo; Gygi, Steven P; Goldberg, Alfred L

    2014-03-01

    Activation of the PI3K-Akt-FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K-Akt-FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K-Akt-FoxO signaling. During atrophy, however, its interaction with PI3K-p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K-p85 and promoted PI3K-Akt-FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K-Akt-FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K-Akt-FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K-Akt-FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin-PI3K dissociation, Trim32 reduces PI3K-Akt-FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations. PMID:24567360

  11. Role of the PTEN/PI3K/VEGF pathway in the development of Kawasaki disease

    PubMed Central

    AN, XINJIANG; LV, HAITAO; TIAN, JING; HE, XIUHUA; LING, NAN

    2016-01-01

    Kawasaki disease (KD) is a disease of unknown etiology and the leading cause of childhood acquired heart disease. In this study, the significance of the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/vascular endothelial growth factor (VEGF) pathway in the development of KD was investigated in a rabbit model. Rabbits were divided into the control group, which received saline injection, and the experimental group, which was treated with bovine serum albumin to induce arthritis and KD. After 1, 7 and 30 days the animals were sacrificed, and the white blood cell count, serum VEGF, and serum creatine kinase (CK) levels were measured. The coronary artery was examined histologically as well as immunohistochemically for PTEN and PI3K. After the induction of arthritis, coronary artery of the rabbits showed endothelial cell swelling, osteoporosis, necrosis and inflammatory cell infiltration. PTEN expression in these rabbits increased with the increasing number of modeling days. The expression of PI3K showed a decreasing trend. The number of white blood cells in rabbits after KD modeling were significantly higher than those in the controls. One day and 7 days after modeling the serum VEGF level in KD rabbits was significantly higher than that in the control group after 1 and 7 days followed by a decrease by 30 days. There was no significant change in serum CK on the day after the modeling, and the serum CK level was significantly higher after 7 and 30 days. In conclusion, the expression of PTEN/PI3K was altered at different stages of KD. PTEN expression gradually increased with the disease progression, while the expression of PI3K gradually decreased. Serum markers indicated that the PTEN/PI3K/VEGF signaling pathway is important in the vascular injury in KD. PMID:27073442

  12. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    PubMed

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1