Sample records for phosphatidylserine targets single-walled

  1. Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer

    NASA Astrophysics Data System (ADS)

    Virani, Needa A.; Davis, Carole; McKernan, Patrick; Hauser, Paul; Hurst, Robert E.; Slaton, Joel; Silvy, Ricardo P.; Resasco, Daniel E.; Harrison, Roger G.

    2018-01-01

    Bladder cancer has a 60%-70% recurrence rate most likely due to any residual tumour left behind after a transurethral resection (TUR). Failure to completely resect the cancer can lead to recurrence and progression into higher grade tumours with metastatic potential. We present here a novel therapy to treat superficial tumours with the potential to decrease recurrence. The therapy is a heat-based approach in which bladder tumour specific single-walled carbon nanotubes (SWCNTs) are delivered intravesically at a very low dose (0.1 mg SWCNT per kg body weight) followed 24 h later by a short 30 s treatment with a 360° near-infrared light that heats only the bound nanotubes. The energy density of the treatment was 50 J cm-2, and the power density that this treatment corresponds to is 1.7 W cm-2, which is relatively low. Nanotubes are specifically targeted to the tumour via the interaction of annexin V (AV) and phosphatidylserine, which is normally internalised on healthy tissue but externalised on tumours and the tumour vasculature. SWCNTs are conjugated to AV, which binds specifically to bladder cancer cells as confirmed in vitro and in vivo. Due to this specific localisation, NIR light can be used to heat the tumour while conserving the healthy bladder wall. In a short-term efficacy study in mice with orthotopic MB49 murine bladder tumours treated with the SWCNT-AV conjugate and NIR light, no tumours were visible on the bladder wall 24 h after NIR light treatment, and there was no damage to the bladder. In a separate survival study in mice with the same type of orthotopic tumours, there was a 50% cure rate at 116 days when the study was ended. At 116 days, no treatment toxicity was observed, and no nanotubes were detected in the clearance organs or bladder.

  2. Diannexin Protects against Renal Ischemia Reperfusion Injury and Targets Phosphatidylserines in Ischemic Tissue

    PubMed Central

    Wever, Kimberley E.; Wagener, Frank A. D. T. G.; Frielink, Cathelijne; Boerman, Otto C.; Scheffer, Gert J.; Allison, Anthony; Masereeuw, Rosalinde; Rongen, Gerard A.

    2011-01-01

    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo. PMID:21918686

  3. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoyer, Friedrich Felix; Paul, Kathrin; Heiermann, Nadine; Becher, Marc Ulrich; Abu Hussein, Nebal; Kebschull, Moritz; Bedorf, Jörg; Franklin, Bernardo S; Latz, Eicke; Nickenig, Georg; Werner, Nikos

    2012-08-01

    Endothelial microparticles (EMP) are released from activated or apoptotic cells, but their effect on target cells and the exact way of incorporation are largely unknown. We sought to determine the uptake mechanism and the biological effect of EMP on endothelial and endothelial-regenerating cells. EMP were generated from starved endothelial cells and isolated by ultracentrifugation. Caspase 3 activity assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that EMP protect target endothelial cells against apoptosis in a dose-dependent manner. Proteomic analysis was performed to identify molecules contained in EMP, which might be involved in EMP uptake. Expression of annexin I in EMP was found and confirmed by Western blot, whereas the corresponding receptor phosphatidylserine receptor was present on endothelial target cells. Silencing either annexin I on EMP or phosphatidylserine receptor on target cells using small interfering RNA showed that the uptake of EMP by human coronary artery endothelial cells is annexin I/phosphatidylserine receptor dependent. Annexin I-downregulated EMP abrogated the EMP-mediated protection against apoptosis of endothelial target cells. p38 activation was found to mediate camptothecin-induced apoptosis. Finally, human coronary artery endothelial cells pretreated with EMP inhibited camptothecin-induced p38 activation. EMP are incorporated by endothelial cells in an annexin I/phosphatidylserine receptor-dependent manner and protect target cells against apoptosis. Inhibition of p38 activity is involved in EMP-mediated protection against apoptosis.

  4. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers.

    PubMed

    Gray, Michael J; Gong, Jian; Hatch, Michaela M S; Nguyen, Van; Hughes, Christopher C W; Hutchins, Jeff T; Freimark, Bruce D

    2016-05-11

    The purpose of this study was to investigate the potential of antibody-directed immunotherapy targeting the aminophospholipid phosphatidylserine, which promotes immunosuppression when exposed in the tumor microenvironment, alone and in combination with antibody treatment towards the T-cell checkpoint inhibitor PD-1 in breast carcinomas, including triple-negative breast cancers. Immune-competent mice bearing syngeneic EMT-6 or E0771 tumors were subjected to treatments comprising of a phosphatidylserine-targeting and an anti-PD-1 antibody either as single or combinational treatments. Anti-tumor effects were determined by tumor growth inhibition and changes in overall survival accompanying each treatment. The generation of a tumor-specific immune response in animals undergoing complete tumor regression was assessed by secondary tumor cell challenge and splenocyte-produced IFNγ in the presence or absence of irradiated tumor cells. Changes in the presence of tumor-infiltrating lymphocytes were assessed by flow cytometry, while mRNA-based immune profiling was determined using NanoString PanCancer Immune Profiling Panel analysis. Treatment by a phosphatidylserine-targeting antibody inhibits in-vivo growth and significantly enhances the anti-tumor activity of antibody-mediated PD-1 therapy, including providing a distinct survival advantage over treatment by either single agent. Animals in which complete tumor regression occurred with combination treatments were resistant to secondary tumor challenge and presented heightened expression levels of splenocyte-produced IFNγ. Combinational treatment by a phosphatidylserine-targeting antibody with anti-PD-1 therapy increased the number of tumor-infiltrating lymphocytes more than that observed with single-arm therapies. Finally, immunoprofiling analysis revealed that the combination of anti-phosphatidylserine targeting antibody and anti-PD-1 therapy enhanced tumor-infiltrating lymphocytes, and increased expression of pro

  5. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2015-12-01

    response. e. Correlate imaging findings with histological studies of vascular damage, tumor cell and endothelial cell apoptosis or necrosis and vascular ...phosphatidylserine (PS) is exposed exclusively on tumor vascular endothelium of brain metastases in mouse models. A novel PS-targeting antibody, PGN635... vascular endothelial cells in multi-focal brain metastases throughout the whole mouse brain. Vascular endothelium in normal brain tissues is negative

  6. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors.

    PubMed

    Blanco, Víctor M; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D; Sulaiman, Mahaboob K; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E; Franco, Robert S; Qi, Xiaoyang

    2014-08-30

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.

  7. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors

    PubMed Central

    Blanco, Víctor M.; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D.; Sulaiman, Mahaboob K.; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E.; Franco, Robert S.; Qi, Xiaoyang

    2014-01-01

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS nanovesicles have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors. PMID:25051370

  8. Effect of phosphatidylserine on the basal and GABA-activated Cl- permeation across single nerve membranes from rabbit Deiters' neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapallino, M.V.; Cupello, A.; Mainardi, P.

    1990-06-01

    The permeation of labeled Cl- ions across single plasma membranes from Deiters' neurons has been studied in the presence of various concentrations of phosphatidylserine (PS) on their extracellular side. PS reduces significantly basal Cl- permeation only at 10(-5) M on the membrane exterior. No effect was found at other concentrations. GABA activable 36Cl- permeation is heavily reduced and almost abolished at 10(-11) - 10(-5) M phosphatidylserine. This exogenous phosphatidylserine effect is difficult to interpret in relation to the function of the endogenous phospholipid. However, it may be involved in the epileptogenic effect in vivo of exogenous phosphatidylserine administration to rats.

  9. Phosphatidylserine in atherosclerosis.

    PubMed

    Darabi, Maryam; Kontush, Anatol

    2016-08-01

    It is now widely acknowledged that phosphatidylserine is a multifunctional bioactive lipid. In this review, we focus on the function of phosphatidylserine in modulating cholesterol metabolism, influencing inflammatory response and regulating coagulation system, and discuss promising phosphatidylserine-based therapeutic approaches and detection techniques in atherosclerosis. Phosphatidylserine has been suggested to play important roles in physiological processes, such as apoptosis, inflammation, and coagulation. Recent data demonstrate atheroprotective potential of phosphatidylserine, reflecting its capacity to inhibit inflammation, modulate coagulation, and enhance HDL functionality. Furthermore, modern lipidomic approaches have enabled the investigation of phosphatidylserine properties relevant to the lipid-based drug delivery and development of reconstituted HDL. Studies of phosphatidylserine in relation to atherosclerosis represent an area of opportunity. Additional research elucidating mechanisms underlying experimentally observed atheroprotective effects of phosphatidylserine is required to fully explore therapeutic potential of this naturally occurring phospholipid in cardiovascular disease.

  10. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential

    PubMed Central

    Wang, Lulu; Habib, Amyn A.; Mintz, Akiva; Li, King C.; Zhao, Dawen

    2017-01-01

    Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood–brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors. PMID:28654387

  11. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential.

    PubMed

    Wang, Lulu; Habib, Amyn A; Mintz, Akiva; Li, King C; Zhao, Dawen

    2017-01-01

    Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.

  12. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishijima, M.; Kuge, O.; Akamatsu, Y.

    1986-05-05

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and /sup 32/Pi, the incorporation of /sup 32/Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. /sup 32/Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of /sup 32/Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol wasmore » not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using (/sup 3/H)serine-labeled phospholipid. Pulse and pulse-chase experiments with L-(U-/sup 14/C) serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine.« less

  13. Role of phosphatidylserine receptors in enveloped virus infection.

    PubMed

    Morizono, Kouki; Chen, Irvin S Y

    2014-04-01

    We recently demonstrated that a soluble protein, Gas6, can facilitate viral entry by bridging viral envelope phosphatidylserine to Axl, a receptor tyrosine kinase expressed on target cells. The interaction between phosphatidylserine, Gas6, and Axl was originally shown to be a molecular mechanism through which phagocytes recognize phosphatidylserine exposed on dead cells. Since our initial report, several groups have confirmed that Axl/Gas6, as well as other phosphatidylserine receptors, facilitate entry of dengue, West Nile, and Ebola viruses. Virus binding by viral envelope phosphatidylserine is now a viral entry mechanism generalized to many families of viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most of the known human phosphatidylserine-recognizing molecules, including MFG-E8, TIM-1, -3, and -4, CD300a, BAI1, and stabilin-1 and -2, for their abilities to facilitate virus binding and infection. Using pseudotyped lentiviral vectors, we found that a soluble phosphatidylserine-binding protein, MFG-E8, enhances transduction. Cell surface receptors TIM-1 and -4 also enhance virus binding/transduction. The extent of enhancement by these molecules varies, depending on the type of pseudotyping envelope proteins. Mutated MFG-E8, which binds viral envelope phosphatidylserine without bridging virus to cells, but, surprisingly, not annexin V, which has been used to block phagocytosis of dead cells by concealing phosphatidylserine, efficiently blocks these phosphatidylserine-dependent viral entry mechanisms. These results provide insight into understanding the role of viral envelope phosphatidylserine in viral infection. Envelope phosphatidylserine has previously been shown to be important for replication of various envelope viruses, but details of this mechanism(s) were unclear

  14. The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells.

    PubMed

    Vuckovic, Slavica; Vandyke, Kate; Rickards, David A; McCauley Winter, Padraig; Brown, Simon H J; Mitchell, Todd W; Liu, Jun; Lu, Jun; Askenase, Philip W; Yuriev, Elizabeth; Capuano, Ben; Ramsland, Paul A; Hill, Geoffrey R; Zannettino, Andrew C W; Hutchinson, Andrew T

    2017-05-01

    We have discovered that a small cationic molecule, GW4869, is cytotoxic to a subset of myeloma cell lines and primary myeloma plasma cells. Biochemical analysis revealed that GW4869 binds to anionic phospholipids such as phosphatidylserine - a lipid normally confined to the intracellular side of the cell membrane. However, interestingly, phosphatidylserine was expressed on the surface of all myeloma cell lines tested (n = 12) and 9/15 primary myeloma samples. Notably, the level of phosphatidylserine expression correlated well with sensitivity to GW4869. Inhibition of cell surface phosphatidylserine exposure with brefeldin A resulted in resistance to GW4869. Finally, GW4869 was shown to delay the growth of phosphatidylserine-high myeloma cells in vivo. To the best of our knowledge, this is the first example of using a small molecule to target phosphatidylserine on malignant cells. This study may provide the rationale for the development of phosphatidylserine-targeting small molecules for the treatment of surface phosphatidylserine-expressing cancers. © 2017 John Wiley & Sons Ltd.

  15. Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.

    PubMed

    Zhang, Liang; Habib, Amyn A; Zhao, Dawen

    2016-06-21

    Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.

  16. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2015-12-01

    blockade of phosphatidylserine enhances the antitumor effect of sorafenib in hepatocellular carcinoma xenografts . Submitted. * equal contribution...Antiphosphatidylserine antibody combined with irradiation damages blood vessels and induces tumor immunity in a rat model of glioblastoma . Clin. Can. Res. 2009

  17. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity.

    PubMed

    Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio

    2011-10-02

    Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.

  18. Platelet Senescence and Phosphatidylserine Exposure

    PubMed Central

    Dasgupta, Swapan Kumar; Argaiz, Eduardo Rios; Chedid Mercado, Jose Emmanel; Elizondo Maul, Hector Omar; Garza, Jorge; Enriquez, Ana Bety; Abdel-Monem, Hanan; Prakasam, Anthony; Andreeff, Michael; Thiagarajan, Perumal

    2010-01-01

    Background The exposure of phosphatidylserine occurs during platelet activation and during in vitro storage. Phosphatidylserine exposure also occurs during apoptosis following the release of mitochondrial cytochrome c. We have examined the role of cytochrome c release, mitochondrial membrane potential (ΔΨm), and cyclophilin D (CypD) in phosphatidylserine exposure due to activation and storage. Study Design and Methods The exposure of phosphatidylserine and the loss ΔΨm were determined in a flow cytometer using FITC-lactadherin and JC-1, a lipophilic cationic reporter dye. The role of CypD was determined with cyclosporine A and CypD-deficient murine platelets. Cytochrome C induced caspase-3 and Rho associated kinase I (ROCK1) activation were determined by immunoblotting and using their inhibitors. Results Collagen and thrombin-induced exposure of phosphatidylserine was accompanied by a decrease in ΔΨm. Cyclosporin A inhibited the phosphatidylserine exposure and the loss of ΔΨm. CypD-/- mice had decreased loss of ΔΨm and impaired phosphatidylserine exposure. Collagen and thrombin did not induce the release of cytochrome c nor the activation of caspase-3 and ROCK1. In contrast, in platelets stored for more than 5 days, the phosphatidylserine exposure was associated with cytochrome c induced caspase-3 and ROCK1 activation. ABT737, a BH3 mimetic that induces mitochondrial pathway of apoptosis, induced cytochrome c release and activation of caspase-3 and ROCK1 and phosphatidylserine exposure independent of CypD. Conclusion These results show that in stored platelets cytochrome c release and the subsequent activation of caspase-3 and ROCK1 mediate phosphatidylserine exposure and it is distinct from activation-induced phosphatidylserine exposure. PMID:20456701

  19. Specific stabilization of CFTR by phosphatidylserine.

    PubMed

    Hildebrandt, Ellen; Khazanov, Netaly; Kappes, John C; Dai, Qun; Senderowitz, Hanoch; Urbatsch, Ina L

    2017-02-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR. Copyright © 2016. Published by Elsevier B.V.

  20. Sensing phosphatidylserine in cellular membranes.

    PubMed

    Kay, Jason G; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  1. Sensing Phosphatidylserine in Cellular Membranes

    PubMed Central

    Kay, Jason G.; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use. PMID:22319379

  2. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Dai, Bingbing; Roife, David; Kang, Ya'an; Gumin, Joy; Rios Perez, Mayrim V; Li, Xinqun; Pratt, Michael; Brekken, Rolf A; Fueyo-Margareto, Juan; Lang, Frederick F; Fleming, Jason B

    2017-04-01

    Delta-24-RGD (DNX-2401) is a conditional replication-competent oncolytic virus engineered to preferentially replicate in and lyse tumor cells with abnormality of p16/RB/E2F pathway. In a phase I clinical trial, Delta-24-RGD has shown favorable safety profile and promising clinical efficacy in brain tumor, which prompted us to evaluate its anticancer activity in pancreatic ductal adenocarcinoma (PDAC), which also has high frequency of homozygous deletion and promoter methylation of CDKN2A encoding the p16 protein. Our results demonstrate that Delta-24-RGD can induce dramatic cytotoxicity in a subset of PDAC cell lines with high cyclin D1 expression. Induction of autophagy and apoptosis by Delta-24-RGD in sensitive PDAC cells was confirmed with LC3B-GFP autophagy reporter and acridine orange staining as well as Western blotting analysis of LC3B-II expression. Notably, we found that Delta-24-RGD induced phosphatidylserine exposure in infected cells independent of cells' sensitivity to Delta-24-RGD, which renders a rationale for combination of Delta-24-RGD viral therapy and phosphatidylserine targeting antibody for PDAC. In a mouse PDAC model derived from a liver metastatic pancreatic cancer cell line, Delta-24-RGD significantly inhibited tumor growth compared with control ( P < 0.001), and combination of phosphatidylserine targeting antibody 1N11 further enhanced its anticancer activity ( P < 0.01) possibly through inducing synergistic anticancer immune responses. Given that these 2 agents are currently in clinical evaluation, our study warrants further clinical evaluation of this novel combination strategy in pancreatic cancer therapy. Mol Cancer Ther; 16(4); 662-70. ©2016 AACR . ©2017 American Association for Cancer Research.

  3. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    NASA Astrophysics Data System (ADS)

    Neves, Luis Filipe Ferreira

    To develop a therapeutic system with cancer cell selectivity, the present study evaluated a possible specific and localized tumor treatment. Phosphatidylserine (PS) exposure on the external face of the cell membrane is almost completely exclusive to cancer cells and endothelial cells in the tumor vasculature. The human protein annexin V is known to have strong calcium-dependent binding to anionic phospholipids such as PS. This protein was studied for targeting single-walled carbon nanotubes (SWNTs) to the vasculature of breast tumors. The synthesis of the protein annexin V, by a pET vector in Escherichia coli, constitutes the first phase of this study. Recombinant annexin V was purified from the cell lysate supernatant by immobilized metal affinity chromatography. The overall production of purified annexin V protein was 50 mg/L. The binding ability of the protein annexin V was evaluated by determining the dissociation constant when incubated with proliferating human endothelial cells in vitro. The dissociation constant, Kd, was measured to be 0.8 nM, indicating relatively strong binding. This value of Kd is within the range reported in the literature. Single-walled carbon nanotubes (SWNTs) were functionalized with annexin V using two intermediate linkers (containing FMOC and DSPE) resulting in stable suspensions. The SWNT and protein concentrations were 202 mg/L and 515 mg/L, respectively, using the linker with DSPE (average of nine preparations). The conjugation method that used the DSPE-PEG-maleimide linker allowed to successfully conjugate the SWNTs with final concentrations approximately five times higher than the linker containing FMOC. The conjugation method used has a non-covalent nature, and therefore the optical properties of the nanotubes were preserved. The conjugate was also visually observed using atomic force microscopy (AFM), allowing to verify the presence of the protein annexin V on the surface of the nanotubes, with an height ranging between 2

  4. Targeting Tumor Associated Phosphatidylserine with New Zinc Dipicolylamine-Based Drug Conjugates.

    PubMed

    Liu, Yu-Wei; Shia, Kak-Shan; Wu, Chien-Huang; Liu, Kuan-Liang; Yeh, Yu-Cheng; Lo, Chen-Fu; Chen, Chiung-Tong; Chen, Yun-Yu; Yeh, Teng-Kuang; Chen, Wei-Han; Jan, Jiing-Jyh; Huang, Yu-Chen; Huang, Chen-Lung; Fang, Ming-Yu; Gray, Brian D; Pak, Koon Y; Hsu, Tsu-An; Huang, Kuan-Hsun; Tsou, Lun K

    2017-07-19

    A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.

  5. Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis.

    PubMed

    Wu, Xiaoming; Yao, Zhipeng; Zhao, Lu; Zhang, Yan; Cao, Muhua; Li, Tao; Ding, Wenbo; Liu, Yan; Deng, Ruijuan; Dong, Zengxiang; Chen, He; Novakovic, Valerie A; Bi, Yayan; Kou, Junjie; Tian, Ye; Zhou, Jin; Shi, Jialan

    2016-12-01

    The mechanism of thrombogenicity in cirrhosis is largely unknown. Our objective was to study the relationship between phosphatidylserine on blood cells and endothelial cells and the hypercoagulable state in cirrhotic patients. Patients with cirrhosis and healthy controls were studied. Lactadherin was used to quantify phosphatidylserine exposure on blood cells and endothelial cells. Procoagulant activity of cells was evaluated using clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. Phosphatidylserine exposure, fibrin strands and FVa/Xa binding on cells were observed using confocal microscopy. Our study showed that phosphatidylserine exposure on erythrocytes, platelets and leucocytes in cirrhotic patients increased progressively with Child-Pugh categories. In addition, we found that endothelial cells treated with cirrhotic serum in vitro exposed more phosphatidylserine than those exposed to healthy serum. The exposed phosphatidylserine supported a shorter coagulation time and increased FXa, thrombin and fibrin formation. Notably, phosphatidylserine + erythrocytes also promoted shorter coagulation times and more fibrin generation in cirrhotic microparticle-depleted plasma, regardless of Child-Pugh categories. Confocal microscopy data showed that the FVa/FXa complex and fibrin fibrils colocalized with phosphatidylserine on endothelial cells. Lactadherin significantly inhibited FXa and thrombin generation and consequently decreased fibrin production in normal or cirrhotic plasma. These results lead us to believe that exposed phosphatidylserine on activated or injured erythrocytes, platelets, leucocytes and endothelial cells plays an important role in the hypercoagulable state in cirrhotic patients. Thus, blocking phosphatidylserine binding sites might be a new therapeutic target for preventing thrombosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Plasmonic welded single walled carbon nanotubes on monolayer graphene for sensing target protein

    NASA Astrophysics Data System (ADS)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-05-01

    We developed plasmonic welded single walled carbon nanotubes (SWCNTs) on monolayer graphene as a biosensor to detect target antigen molecules, fc fusion protein without any treatment to generate binder groups for linker and antibody. This plasmonic welding induces atomic networks between SWCNTs as junctions containing carboxylic groups and improves the electrical sensitivity of a SWCNTs and the graphene membrane to detect target protein. We investigated generation of the atomic networks between SWCNTs by field-emission scanning electron microscopy and atomic force microscopy after plasmonic welding process. We compared the intensity ratios of D to G peaks from the Raman spectra and electrical sheet resistance of welded SWCNTs with the results of normal SWCNTs, which decreased from 0.115 to 0.086 and from 10.5 to 4.12, respectively. Additionally, we measured the drain current via source/drain voltage after binding of the antigen to the antibody molecules. This electrical sensitivity of the welded SWCNTs was 1.55 times larger than normal SWCNTs.

  7. Physical consequences of the mitochondrial targeting of single-walled carbon nanotubes probed computationally

    NASA Astrophysics Data System (ADS)

    Chistyakov, V. A.; Zolotukhin, P. V.; Prazdnova, E. V.; Alperovich, I.; Soldatov, A. V.

    2015-06-01

    Experiments by F. Zhou and coworkers (2010) [16] showed that mitochondria are the main target of the cellular accumulation of single-walled carbon nanotubes (SWCNTs). Our in silico experiments, based on geometrical optimization of the system consisting of SWCNT+proton within Density Functional Theory, revealed that protons can bind to the outer side of SWCNT so generating a positive charge. Calculation results allow one to propose the following mechanism of SWCNTs mitochondrial targeting. SWCNTs enter the space between inner and outer membranes of mitochondria, where the excess of protons has been formed by diffusion. In this compartment SWCNTs are loaded with protons and acquire positive charges distributed over their surface. Protonation of hydrophobic SWCNTs can also be carried out within the mitochondrial membrane through interaction with the protonated ubiquinone. Such "charge loaded" particles can be transferred as "Sculachev ions" through the inner membrane of the mitochondria due to the potential difference generated by the inner membrane. Physiological consequences of the described mechanism are discussed.

  8. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  9. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with /sup 32/Pi and L-(U-/sup 14/C)serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% ofmore » that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.« less

  10. Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1.

    PubMed

    Desai, Tanvi J; Toombs, Jason E; Minna, John D; Brekken, Rolf A; Udugamasooriya, Damith Gomika

    2016-05-24

    Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents.

  11. Single-Side Two-Location Spotlight Imaging for Building Based on MIMO Through-Wall-Radar.

    PubMed

    Jia, Yong; Zhong, Xiaoling; Liu, Jiangang; Guo, Yong

    2016-09-07

    Through-wall-radar imaging is of interest for mapping the wall layout of buildings and for the detection of stationary targets within buildings. In this paper, we present an easy single-side two-location spotlight imaging method for both wall layout mapping and stationary target detection by utilizing multiple-input multiple-output (MIMO) through-wall-radar. Rather than imaging for building walls directly, the images of all building corners are generated to speculate wall layout indirectly by successively deploying the MIMO through-wall-radar at two appropriate locations on only one side of the building and then carrying out spotlight imaging with two different squint-views. In addition to the ease of implementation, the single-side two-location squint-view detection also has two other advantages for stationary target imaging. The first one is the fewer multi-path ghosts, and the second one is the smaller region of side-lobe interferences from the corner images in comparison to the wall images. Based on Computer Simulation Technology (CST) electromagnetic simulation software, we provide multiple sets of validation results where multiple binary panorama images with clear images of all corners and stationary targets are obtained by combining two single-location images with the use of incoherent additive fusion and two-dimensional cell-averaging constant-false-alarm-rate (2D CA-CFAR) detection.

  12. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    PubMed

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked Against US DOE 2017 Technical Targets

    PubMed Central

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E.; Haddon, Robert C.

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm2 - well below the value of 0.125 mgPt/cm2 set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure. PMID:23877112

  14. Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets.

    PubMed

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E; Haddon, Robert C

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.125 mg(Pt)/cm² set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 g(PGM)/kW) at cell potential 0.65 V: a value of 0.15 g(Pt)/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 g(Pt)/kW at 35 psig back pressure.

  15. Octa-ammonium POSS-conjugated single-walled carbon nanotubes as vehicles for targeted delivery of paclitaxel

    PubMed Central

    Naderi, Naghmeh; Madani, Seyed Y.; Mosahebi, Afshin; Seifalian, Alexander M.

    2015-01-01

    Background Carbon nanotubes (CNTs) have unique physical and chemical properties. Furthermore, novel properties can be developed by attachment or encapsulation of functional groups. These unique properties facilitate the use of CNTs in drug delivery. We developed a new nanomedicine consisting of a nanocarrier, cell-targeting molecule, and chemotherapeutic drug and assessed its efficacy in vitro. Methods The efficacy of a single-walled carbon nanotubes (SWCNTs)-based nanoconjugate system is assessed in the targeted delivery of paclitaxel (PTX) to cancer cells. SWCNTs were oxidized and reacted with octa-ammonium polyhedral oligomeric silsesquioxanes (octa-ammonium POSS) to render them biocompatible and water dispersable. The functionalized SWCNTs were loaded with PTX, a chemotherapeutic agent toxic to cancer cells, and Tn218 antibodies for cancer cell targeting. The nanohybrid composites were characterized with transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and ultraviolet–visible–near-infrared (UV–Vis–NIR). Additionally, their cytotoxic effects on Colon cancer cell (HT-29) and Breast cancer cell (MCF-7) lines were assessed in vitro. Results TEM, FTIR, and UV–Vis–NIR studies confirmed side-wall functionalization of SWCNT with COOH-groups, PTX, POSS, and antibodies. Increased cell death was observed with PTX–POSS–SWCNT, PTX–POSS–Ab–SWCNT, and free PTX compared to functionalized-SWCNT (f-SWCNT), POSS–SWCNT, and cell-only controls at 48 and 72 h time intervals in both cell lines. At all time intervals, there was no significant cell death in the POSS–SWCNT samples compared to cell-only controls. Conclusion The PTX-based nanocomposites were shown to be as cytotoxic as free PTX. This important finding indicates successful release of PTX from the nanocomposites and further reiterates the potential of SWCNTs to deliver drugs directly to targeted cells and tissues. PMID:26356347

  16. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    PubMed

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications.

    PubMed

    Dong, Qi; Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2017-10-18

    As-synthetized single walled carbon nanotubes (SWCNTs) contain both metallic and semiconducting nanotubes. For the electronics, it is desirable to separate semiconducting SWCNTs (s-SWCNTs) from the metallic ones as s-SWCNTs provide desirable electronic properties. Here we test whether ultrapure semi-conducting single-walled carbon nanotubes (s-SWCNTs) provide advantageous electrochemical properties over the as prepared SWCNTs which contain a mixture of semiconducting and metallic CNTs. We test them as a transducer platform which enhanced the detection of target analytes (ascorbic acid, dopamine, uric acid) when compared to a bare glassy carbon (GC) electrode. Despite that, the two materials exhibit significantly different electrochemical properties and performances. A mixture of m-SWCNTs and s-SWCNTs demonstrated superior performance over ultrapure s-SWCNTs with greater peak currents and pronounced shift in peak potentials to lower values in cyclic and differential pulse voltammetry for the detection of target analytes. The mixture of m- and s-SWCNTs displayed about a 4 times improved heterogeneous electron transfer rate as compared to bare GC and a 2 times greater heterogeneous electron transfer rate than s-SWCNTs, demonstrating that ultrapure SWCNTs do not provide any major enhancement over the as prepared SWCNTs.

  18. A novel cancer-targeting transporter with integrin αvβ3 monoclonal antibody functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ou, Zhongmin; Wu, Baoyan; Xing, Da

    2009-08-01

    The pursuit of efficient and highly targeting-selective transporters is an active topic in cancer-targeting therapy. In this study, a novel cancer-targeting transporter with integrin αvβ3 monoclonal antibody functionalized single-walled carbon nanotubes (SWCNTs) was developed to investigate cancer cell targeting in vitro. SWCNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). PL-PEG functionalized SWCNTs were then conjugated with fluorescein isothiocyanate (FITC) labeled integrin αvβ3 monoclonal antibody to construct SWCNT-integrin αvβ3 monoclonal antibody system (denoted as SWCNT-PEG-mAb). In vitro study revealed that the system had a high efficiency in cancer cell targeting in integrin αvβ3 positive U87MG cells. Moreover, the SWCNT-PEG-mAb is stable in physiological media, and can be readily transported into U87MG cells via integrin αvβ3-mediated endocytosis in cell. In summary, the integrin αvβ3 monoclonal antibody labeled SWCNT is a potential carrier-candidate for cancer-imaging and drug-delivering in cancer-targeting therapy.

  19. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery

    NASA Astrophysics Data System (ADS)

    Smith, Bryan Ronain; Ghosn, Eliver Eid Bou; Rallapalli, Harikrishna; Prescher, Jennifer A.; Larson, Timothy; Herzenberg, Leonore A.; Gambhir, Sanjiv Sam

    2014-06-01

    In cancer imaging, nanoparticle biodistribution is typically visualized in living subjects using `bulk' imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. Accordingly, nanoparticle influx is observed only macroscopically, and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation (leakage into tumour). Here, we show that, in addition to conventional nanoparticle-uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6Chi monocytes (almost 100% uptake in Ly-6Chi monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. We also demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (P < 0.001, day 7 post-injection). The remarkable selectivity of this tumour-targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration.

  20. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes

    PubMed Central

    Ghosh, Debadyuti; Bagley, Alexander F.; Na, Young Jeong; Birrer, Michael J.; Bhatia, Sangeeta N.; Belcher, Angela M.

    2014-01-01

    Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950–1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery. PMID:25214538

  1. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes.

    PubMed

    Ghosh, Debadyuti; Bagley, Alexander F; Na, Young Jeong; Birrer, Michael J; Bhatia, Sangeeta N; Belcher, Angela M

    2014-09-23

    Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950-1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery.

  2. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran.

    PubMed

    Duan, Zhang-Qun; Hu, Fei

    2013-01-10

    2-Methyltetrahydrofuran has recently been described as a promising and green solvent. Herein, it was successfully used as the reaction medium for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine with the aim of phosphatidylserine synthesis for the first time. Our results indicated that as high as 90% yield of phosphatidylserine could be achieved after 12 h combined with no byproduct (phosphatidic acid) forming. The present work accommodated a facilely and efficiently enzymatic strategy for preparing phosphatidylserine, which possessed obvious advantages over the reported processes in terms of high efficiency and environmental friendliness. This work is also a proof-of-concept opening the use of 2-methyltetrahydrofuran in biosynthesis as well. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes.

    PubMed

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-09-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

  4. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients.

    PubMed

    Yang, Chunfa; Ma, Ruishuang; Jiang, Tao; Cao, Muhua; Zhao, Liangliang; Bi, Yayan; Kou, Junjie; Shi, Jialan; Zou, Xiaoming

    2016-06-01

    Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.

  5. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors

    PubMed Central

    HAM, MOON-HO; QI, JIFA; BARONE, PAUL W.; STRANO, MICHAEL S.; BELCHER, ANGELA M.

    2014-01-01

    Second near-infrared (NIR) window light (950-1,400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to four-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control non-targeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. PMID:22268625

  6. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  7. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  8. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  9. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  10. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  11. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  12. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  13. Inner Mitochondrial Membrane Disruption Links Apoptotic and Agonist-Initiated Phosphatidylserine Externalization in Platelets.

    PubMed

    Choo, Hyo-Jung; Kholmukhamedov, Andaleb; Zhou, ChengZing; Jobe, Shawn

    2017-08-01

    Phosphatidylserine exposure mediates platelet procoagulant function and regulates platelet life span. Apoptotic, necrotic, and integrin-mediated mechanisms have been implicated as intracellular determinants of platelet phosphatidylserine exposure. Here, we investigate (1) the role of mitochondrial events in platelet phosphatidylserine exposure initiated by these distinct stimuli and (2) the cellular interactions of the procoagulant platelet in vitro and in vivo. Key mitochondrial events were examined, including cytochrome c release and inner mitochondrial membrane (IMM) disruption. In both ABT-737 (apoptotic) and agonist (necrotic)-treated platelets, phosphatidylserine externalization was temporally correlated with IMM disruption. Agonist stimulation resulted in rapid cyclophilin D-dependent IMM disruption that coincided with phosphatidylserine exposure. ABT-737 treatment caused rapid cytochrome c release, eventually followed by caspase-dependent IMM disruption that again closely coincided with phosphatidylserine exposure. A nonmitochondrial and integrin-mediated mechanism has been implicated in the formation of a novel phosphatidylserine-externalizing platelet subpopulation. Using image cytometry, this subpopulation is demonstrated to be the result of the interaction of an aggregatory platelet and a procoagulant platelet rather than indicative of a novel intracellular mechanism regulating platelet phosphatidylserine externalization. Using electron microscopy, similar interactions between aggregatory and procoagulant platelets are demonstrated in vitro and in vivo within a mesenteric vein hemostatic thrombus. Platelet phosphatidylserine externalization is closely associated with the mitochondrial event of IMM disruption identifying a common pathway in phosphatidylserine-externalizing platelets. The limited interaction of procoagulant platelets and integrin-active aggregatory platelets identifies a potential mechanism for procoagulant platelet retention within the

  14. Improved synthesis of phosphatidylserine using bio-based solvents, limonene and p-cymene.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Du, Wen-Ying; Wang, Zhao-Yu

    2015-01-01

    The bio-based solvents limonene and p-cymene obtained from citrus waste were innovatively employed as the reaction media for enzymatic synthesis of phosphatidylserine. (R)-(+)-Limonene, which is available in large quantities from citrus waste, and its close derivative p-cymene, are promising green solvents. Herein, they were successfully employed as reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine for phosphatidylserine synthesis for the first time. A 95 % yield of phosphatidylserine was achieved after 12 h and the side-reactions (which are the undesirable hydrolysis of phosphatidylcholine and phosphatidylserine) did not happen. This work presents an alternative strategy for preparing phosphatidylserine that possesses obvious advantages over the traditional processes in terms of high efficiency combined with environmental friendliness.

  15. Phosphatidylserine recognition and induction of apoptotic cell clearance by Drosophila engulfment receptor Draper.

    PubMed

    Tung, Tran Thanh; Nagaosa, Kaz; Fujita, Yu; Kita, Asana; Mori, Hiroki; Okada, Ryo; Nonaka, Saori; Nakanishi, Yoshinobu

    2013-05-01

    The membrane phospholipid phosphatidylserine is exposed on the cell surface during apoptosis and acts as an eat-me signal in the phagocytosis of apoptotic cells in mammals and nematodes. However, whether this is also true in insects was unclear. When milk fat globule-epidermal growth factor 8, a phosphatidylserine-binding protein of mammals, was ectopically expressed in Drosophila, the level of phagocytosis was reduced, whereas this was not the case for the same protein lacking a domain responsible for the binding to phosphatidylserine. We found that the extracellular region of Draper, an engulfment receptor of Drosophila, binds to phosphatidylserine in an enzyme-linked immunosorbent assay-like solid-phase assay and in an assay for surface plasmon resonance. A portion of Draper containing domains EMI and NIM located close to the N-terminus was required for binding to phosphatidylserine, and a Draper protein lacking this region was not active in Drosophila. Finally, the level of tyrosine-phosphorylated Draper, indicative of the activation of Draper, in a hemocyte-derived cell line was increased after treatment with phosphatidylserine-containing liposome. These results indicated that phosphatidylserine serves as an eat-me signal in the phagocytic removal of apoptotic cells in Drosophila and that Draper is a phosphatidylserine-binding receptor for phagocytosis.

  16. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  17. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.

    PubMed

    Yi, Hyunjung; Ghosh, Debadyuti; Ham, Moon-Ho; Qi, Jifa; Barone, Paul W; Strano, Michael S; Belcher, Angela M

    2012-03-14

    Second near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to 4-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control nontargeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. © 2012 American Chemical Society

  18. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors.

    PubMed

    Walker, Britta; Towhid, Syeda T; Schmid, Evi; Hoffmann, Sascha M; Abed, Majed; Münzer, Patrick; Vogel, Sebastian; Neis, Felix; Brucker, Sara; Gawaz, Meinrad; Borst, Oliver; Lang, Florian

    2014-02-01

    Glucose depletion of erythrocytes triggers suicidal erythrocyte death or eryptosis, which leads to cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to endothelial cells by a mechanism involving phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 at the endothelial cell membrane. Nothing has hitherto been known about an interaction between eryptotic erythrocytes and platelets, the decisive cells in primary hemostasis and major players in thrombotic vascular occlusion. The present study thus explored whether and how glucose-depleted erythrocytes adhere to platelets. To this end, adhesion of phosphatidylserine-exposing erythrocytes to platelets under flow conditions was examined in a flow chamber model at arterial shear rates. Platelets were immobilized on collagen and further stimulated with adenosine diphosphate (ADP, 10 μM) or thrombin (0.1 U/ml). As a result, a 48-h glucose depletion triggered phosphatidylserine translocation to the erythrocyte surface and augmented the adhesion of erythrocytes to immobilized platelets, an effect significantly increased upon platelet stimulation. Adherence of erythrocytes to platelets was blunted by coating of erythrocytic phosphatidylserine with annexin V or by neutralization of platelet phosphatidylserine receptors CXCL16 and CD36 with respective antibodies. In conclusion, glucose-depleted erythrocytes adhere to platelets. The adhesive properties of platelets are augmented by platelet activation. Erythrocyte adhesion to immobilized platelets requires phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 expression on platelets. Thus platelet-mediated erythrocyte adhesion may foster thromboocclusive complications in diseases with stimulated phosphatidylserine exposure of erythrocytes.

  19. Role of calcium in phosphatidylserine externalisation in red blood cells from sickle cell patients.

    PubMed

    Weiss, Erwin; Rees, David Charles; Gibson, John Stanley

    2011-01-01

    Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates Ca(2+) entry, providing an obvious link with phosphatidylserine exposure. The role of Ca(2+) was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [Ca(2+)] was increased. This effect was inhibited by dipyridamole, intracellular Ca(2+) chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high K(+) saline. Ca(2+) levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with Ca(2+) entry through the deoxygenation-induced pathway (P(sickle)), activating the Gardos channel. [Ca(2+)] required for phosphatidylserine scrambling are in the range achievable in vivo.

  20. Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting

    NASA Astrophysics Data System (ADS)

    Ou, Zhongmin; Wu, Baoyan; Xing, Da; Zhou, Feifan; Wang, Huiying; Tang, Yonghong

    2009-03-01

    The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin αvβ3 monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin αvβ3 monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin αvβ3 monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin αvβ3-positive U87MG cells with low cellular toxicity, while for integrin αvβ3-negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.

  1. Single-molecule electrocatalysis by single-walled carbon nanotubes.

    PubMed

    Xu, Weilin; Shen, Hao; Kim, Yoon Ji; Zhou, Xiaochun; Liu, Guokun; Park, Jiwoong; Chen, Peng

    2009-12-01

    We report a single-molecule fluorescence study of electrocatalysis by single-walled carbon nanotubes (SWNTs) at single-reaction resolution. Applying super-resolution optical imaging, we find that the electrocatalysis occurs at discrete, nanometer-dimension sites on SWNTs. Single-molecule kinetic analysis leads to an electrocatalytic mechanism, allowing quantification of the reactivity and heterogeneity of individual reactive sites. Combined with conductivity measurements, this approach will be powerful to interrogate how the electronic structure of SWNTs affects the electrocatalytic interfacial charge transfer, a process fundamental to photoelectrochemical cells.

  2. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia.

    PubMed

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-02-10

    Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce, resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a "do-not-eat-me" signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late postmalarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.

    PubMed

    Kannan, Muthukumar; Riekhof, Wayne R; Voelker, Dennis R

    2015-02-01

    Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non-vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport-dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p-specific transport pathway is one in which the enzyme and its non-catalytic N-terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    NASA Astrophysics Data System (ADS)

    Neves, Luís F. F.; Krais, John J.; Van Rite, Brent D.; Ramesh, Rajagopal; Resasco, Daniel E.; Harrison, Roger G.

    2013-09-01

    This paper focuses on the targeting of single-walled carbon nanotubes (SWNTs) for the treatment of breast cancer with minimal side effects using photothermal therapy. The human protein annexin V (AV) binds specifically to anionic phospholipids expressed externally on the surface of tumour cells and endothelial cells that line the tumour vasculature. A 2 h incubation of the SWNT-AV conjugate with proliferating endothelial cells followed by washing and near-infrared (NIR) irradiation at a wavelength of 980 nm was enough to induce significant cell death; there was no significant cell death with irradiation or the conjugate alone. Administration of the same conjugate i.v. in BALB/c female mice with implanted 4T1 murine mammary at a dose of 0.8 mg SWNT kg-1 and followed one day later by NIR irradiation of the tumour at a wavelength of 980 nm led to complete disappearance of implanted 4T1 mouse mammary tumours for the majority of the animals by 11 days since the irradiation. The combination of the photothermal therapy with the immunoadjuvant cyclophosphamide resulted in increased survival. The in vivo results suggest the SWNT-AV/NIR treatment is a promising approach to treat breast cancer.

  5. Differential roles of tissue factor and phosphatidylserine in activation of coagulation.

    PubMed

    Spronk, Henri M H; ten Cate, Hugo; van der Meijden, Paola E J

    2014-05-01

    It has been suggested that the main physiological trigger of coagulation, tissue factor, possesses limited procoagulant activity and occurs in an inactive or so-called encrypted state. For the conversion of encrypted into decrypted tissue factor with sufficient procoagulant activity, four distinct models have been proposed: 1; dimer formation, 2; lipid rafts, 3; disulfide bonds, and 4; phosphatidylserine exposure. Pro and cons can be given for each of these mechanisms of tissue factor encryption/decryption, however, it seems most likely that two or more mechanisms act together in activating the procoagulant activity. The exposure of phosphatidylserine in the outer layer of cell membranes supports coagulation through enhanced formation of the tenase (factors IXa, VIIIa and X) and prothrombinase (factors Xa, Va and prothrombin) complexes. The proposed role for phosphatidylserine in decryption of tissue factor could contribute to the correct orientation of the tissue factor - factor VII complex. Overall, the contribution of both tissue factor and phosphatidylserine to coagulation seems distinct with tissue factor being the physiological activator and phosphatidylserine the driving force of propagation of coagulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.

    PubMed

    Takeda, Miyoko; Yamagami, Kanako; Tanaka, Kazuma

    2014-03-01

    Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.

  7. Inhibitors targeting on cell wall biosynthesis pathway of MRSA.

    PubMed

    Hao, Haihong; Cheng, Guyue; Dai, Menghong; Wu, Qinghua; Yuan, Zonghui

    2012-11-01

    Methicillin resistant Staphylococcus aureus (MRSA), widely known as a type of new superbug, has aroused world-wide concern. Cell wall biosynthesis pathway is an old but good target for the development of antibacterial agents. Peptidoglycan and wall teichoic acids (WTAs) biosynthesis are two main processes of the cell wall biosynthesis pathway (CWBP). Other than penicillin-binding proteins (PBPs), some key factors (Mur enzymes, lipid I or II precursor, etc.) in CWBP are becoming attractive molecule targets for the discovery of anti-MRSA compounds. A number of new compounds, with higher affinity for PBPs or with inhibitory activity on such molecule targets in CWBP of MRSA, have been in the pipeline recently. This review concludes recent research achievements and provides a complete picture of CWBP of MRSA, including the peptidoglycan and wall teichoic acids synthesis pathway. The potential inhibitors targeting on CWBP are subsequently presented to improve development of novel therapeutic strategies for MRSA.

  8. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality.

    PubMed

    Dinkla, Sip; Peppelman, Malou; Van Der Raadt, Jori; Atsma, Femke; Novotný, Vera M J; Van Kraaij, Marian G J; Joosten, Irma; Bosman, Giel J C G M

    2014-04-01

    Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage. Phosphatidylserine exposure may, therefore, constitute a link between donor variation and the quality of red blood cell concentrates. In order to examine the relationship between storage parameters and donor characteristics, the percentage of phosphatidylserine-exposing red blood cells was measured in red blood cell concentrates during storage and in fresh red blood cells from blood bank donors. The percentage of phosphatidylserine-exposing red blood cells was compared with red blood cell susceptibility to osmotic stress-induced phosphatidylserine exposure in vitro, with the regular red blood cell concentrate quality parameters, and with the donor characteristics age, body mass index, haemoglobin level, gender and blood group. Phosphatidylserine exposure varies between donors, both on red blood cells freshly isolated from the blood, and on red blood cells in red blood cell concentrates. Phosphatidylserine exposure increases with storage time, and is correlated with stress-induced phosphatidylserine exposure. Increased phosphatidylserine exposure during storage was found to be associated with haemolysis and vesicle concentration in red blood cell concentrates. The percentage of phosphatidylserine-exposing red blood cells showed a positive correlation with the plasma haemoglobin concentration of the donor. The fraction of phosphatidylserine-exposing red blood cells is a parameter of red blood cell integrity in red blood cell concentrates and may be an indicator of red blood cell survival after transfusion. Measurement of phosphatidylserine exposure may be useful in the selection of donors and

  9. Phosphatidylserine in the Brain: Metabolism and Function

    PubMed Central

    Kim, Hee-Yong; Huang, Bill X.; Spector, Arthur A.

    2014-01-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine in reactions are catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear. PMID:24992464

  10. Silicon carbide at nanoscale: Finite single-walled to "infinite" multi-walled tubes

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil

    A systematic ab initio study of silicon carbide (SiC) nanostructures, especially finite single-walled, infinite double- and multi-walled nanotubes and nanocones is presented. Electronic and structural properties of all these nanostructures have been calculated using hybrid density functionals (B3LYP and PBE0) as implemented in the GAUSSIAN 03/09 suite of software. The unusual dependence of band gap of silicon carbide nanotubes (SiCNT) has been explained as a direct consequence of curvature effect on the ionicity of the bonds. The study of fullerene hemisphere capped, finite SiC nanotubes indicates that the carbon-capped SiC nanotubes are energetically more preferred than silicon-capped finite or hydrogen terminated infinite nanotubes. Capping a nanotube by fullerene hemisphere reduces its band gap. SiC nanocones have also been investigated as possible cap structures of nanotubes. Electronic properties of the nanocones are found to be strongly dependent upon their tip and edge structures, with possible interesting applications in surface science. Three types of double-walled SiCNTs (n, n)@(m, m) (3 ≤ n ≤ 6 ; 7 ≤ m ≤ 12) have been studied using the finite cluster approximation. The stabilities of these nanotubes are of the same order as those of the single-walled SiC nanotubes and it should be experimentally possible to synthesize both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes and their types. A study of binding energies, Mulliken charges, density of states and HOMO-LUMO gaps has been performed for all nanotubes from (n, n)@(n+3,n+3) to (n, n)@(n+6, n+6) (n=3-6). Evolution of band gaps of the SiCNTs with increase in the number of walls has also been investigated. The nature of interaction between transition metal atoms and silicon carbide nanotubes with different

  11. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.

    PubMed

    Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl

    2017-02-08

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.

  12. In vitro uptake of apoptotic body mimicking phosphatidylserine-quantum dot micelles by monocytic cell line

    NASA Astrophysics Data System (ADS)

    Maiseyeu, Andrei; Bagalkot, Vaishali

    2014-04-01

    A new quantum dot (QD) PEGylated micelle laced with phosphatidylserine (PS) for specific scavenger receptor-mediated uptake by macrophages is reported. The size and surface chemistry of PS-QD micelles were characterized by standard methods and the effects of their physicochemical properties on specific targeting and uptake were comprehensively studied in a monocytic cell line (J774A.1).

  13. Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles.

    PubMed

    Nanbo, Asuka; Maruyama, Junki; Imai, Masaki; Ujie, Michiko; Fujioka, Yoichiro; Nishide, Shinya; Takada, Ayato; Ohba, Yusuke; Kawaoka, Yoshihiro

    2018-01-01

    Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner.

  14. Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles

    PubMed Central

    Imai, Masaki; Ujie, Michiko; Fujioka, Yoichiro; Nishide, Shinya; Takada, Ayato; Ohba, Yusuke; Kawaoka, Yoshihiro

    2018-01-01

    Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner. PMID:29338048

  15. Use of Autoantigen-Loaded Phosphatidylserine-Liposomes to Arrest Autoimmunity in Type 1 Diabetes

    PubMed Central

    Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M.; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta

    2015-01-01

    Introduction The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. Objective To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. Methods A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. Results We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. Conclusions We conclude that this innovative immunotherapy based on the use of liposomes

  16. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.

    PubMed

    Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta

    2015-01-01

    The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for autoimmune

  17. Targeted cancer therapy based on single-wall carbon nanohorns with doxorubicin in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Ma, Xiaona; Shu, Chang; Guo, Jing; Pang, Lili; Su, Lin; Fu, Degang; Zhong, Wenying

    2014-07-01

    A new targeted drug delivery system (DDS) based on oxidized single-wall carbon nanohorns (oxSWCNHs) was developed. Sodium alginate (SA) was used to modify oxSWCNHs to improve its dispersibility and biocompatibility, the first time such a modification to oxSWCNHs was reported. The humanized anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibody was bound to the SA as targeting group to selectively kill the tumor cells. Doxorubicin hydrochloride (DOX) was conjugated to oxSWCNHs in basic pH solution by π-π stacking, and its release was triggered by the lower pH as the micro-environment of the tumor. Quantitative analyses showed that the DOX@oxSWCNHs/SA complexes contained 1 g DOX per gram of oxSWCNHs. Cell experiment showed that the DOX@oxSWCNHs/SA-mAb effectively targeted the human breast adenocarcinoma (MCF-7) cells and rarely adhered to the human embryonic kidney 293 (HEK293) cells. And the anticancer effects of the complexes were higher than those of the free DOX. Pharmaceutical efficiency in vivo showed that the relative tumor volumes (RTV) of normal saline (NS) group, oxSWCNH/SA-mAb (2.5 mg/kg) group, DOX (2.5 mg/kg) group, and DOX@oxSWCNHs/SA-mAb (2.5 mg/kg) group were approximately 61, 56, 14, and 7.2, respectively. In addition, higher drug dose (5 mg/kg) of DOX@oxSWCNHs/SA-mAb resulted in a better antitumor activity. Histopathological studies in mice confirmed that the DOX@oxSWCNHs/SA-mAb complexes did not demonstrate any detectable hepatotoxicity, cardiotoxicity, and nephrotoxicity.

  18. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  19. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  20. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with (/sup 32/P)phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with (/sup 32/P)phosphatidylethanolamine, the mutant incorporated themore » label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.« less

  1. Single-walled carbon nanotube-loaded doxorubicin and Gd-DTPA for targeted drug delivery and magnetic resonance imaging.

    PubMed

    Yan, Chenyu; Chen, Chengqun; Hou, Lin; Zhang, Huijuan; Che, Yingyu; Qi, Yuedong; Zhang, Xiaojian; Cheng, Jingliang; Zhang, Zhenzhong

    2017-02-01

    An aspargine-glycine-arginine (NGR) peptide modified single-walled carbon nanotubes (SWCNTs) system, developed by a simple non-covalent approach, could be loaded with the anticancer drug doxorubicin (DOX) and magnetic resonance imaging (MRI) contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). This DOX- and Gd-DTPA-loaded NGR functionalized SWCNTs (DOX/NGR-SWCNTs/Gd-DPTA) retained both cytotoxicity of DOX and MRI contrast effect of Gd-DPTA. This drug delivery system showed excellent stability in physiological solutions. This DOX/NGR-SWCNTs/Gd-DPTA system could accumulate in tumors and enter into tumor cells, which facilitated combination chemotherapy with diagnosis of tumor in one system. An excellent in vitro anti-tumor effect was shown in MCF-7 cells treated by DOX/NGR-SWCNTs/Gd-DPTA, compared with DOX solution, DOX/SWCNTs and DOX/SWCNTs/Gd-DPTA. In vivo data of DOX/NGR-SWCNTs/Gd-DPTA group in tumor-bearing mice further confirmed that this system performed much higher tumor targeting capacity and anti-tumor efficacy than other control groups.

  2. Staurosporines decrease ORMDL proteins and enhance sphingomyelin synthesis resulting in depletion of plasmalemmal phosphatidylserine.

    PubMed

    Maekawa, Masashi; Lee, Minhyoung; Wei, Kuiru; Ridgway, Neale D; Fairn, Gregory D

    2016-11-02

    Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine. Finally, inhibition of ceramide synthesis, and thus sphingomyelin, prevented the displacement of phosphatidylserine and cholesterol from the inner leaflet of the plasma membrane. The results establish that an optimal level of sphingomyelin is required to maintain the distribution of phosphatidylserine and cholesterol in the plasma membrane and further demonstrate a complex relationship between the trafficking of phosphatidylserine and sphingomyelin.

  3. Selective nuclear localization of siRNA by metallic versus semiconducting single wall carbon nanotubes in keratinocytes

    PubMed Central

    Huzil, John Torin; Saliaj, Evi; Ivanova, Marina V; Gharagozloo, Marjan; Loureiro, Maria Jimena; Lamprecht, Constanze; Korinek, Andreas; Chen, Ding Wen; Foldvari, Marianna

    2015-01-01

    Background: The potential use of carbon nanotubes (CNTs) in gene therapy as delivery systems for nucleic acids has been recently recognized. Here, we describe that metallic versus semiconducting single-wall CNTs can produce significant differences in transfection rate and cellular distribution of siRNA in murine PAM212 keratinocytes. Results/Methodology: The results of cell interaction studies, coupled with supportive computational simulations and ultrastructural studies revealed that the use of metallic single wall CNTs resulted in siRNA delivery into both the cytoplasm and nucleus of keratinocytes, whereas semiconducting CNTs resulted in delivery only to the cytoplasm. Conclusion: Using enriched fractions of metallic or semiconducting CNTs for siRNA complex preparation may provide specific subcellular targeting advantages. PMID:28031892

  4. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, K.; Kuge, O.; Nishijima, M.

    1989-11-25

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in (14C)ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of (14C)ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-(14C)ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and themore » content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.« less

  5. Magnetic domain wall conduits for single cell applications.

    PubMed

    Donolato, M; Torti, A; Kostesha, N; Deryabina, M; Sogne, E; Vavassori, P; Hansen, M F; Bertacco, R

    2011-09-07

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation.

  6. The dissimilar effect of diacylglycerols on Ca(2+)-induced phosphatidylserine vesicle fusion.

    PubMed Central

    Sánchez-Migallón, M P; Aranda, F J; Gómez-Fernández, J C

    1995-01-01

    We have studied the effect of physiological concentrations of different diacylglycerols on Ca(2+)-induced fusion between phosphatidylserine vesicles. We monitored vesicle fusion as mixing of membrane lipids under conditions where the limiting factor was the aggregation and also in conditions where this aggregation was not the limiting factor. We found that diacylglycerols have a different modulating effect on the Ca(2+)-induced fusion: i) depending on their interfacial conformation, so that 1,2-isomers of diacylglycerols containing unsaturated or short saturated acyl chains stimulated fusion and their 1,3-isomers did not, and ii) depending on their specific type of bilayer interior perturbation, so that diacylglycerols containing unsaturated or short chain saturated acyl chains stimulated fusion but those containing long-chain saturated acyl chains did not. These requirements resembled those required for the diacylglycerol activation of protein kinase C, suggesting that diacylglycerol acts in both the specific activation of this enzyme and the induction of membrane fusion through the same perturbation of lipid structure. We found that polylysine affected the stimulatory role of 1,2-dioleoylglycerol differently, depending on whether aggregation was the limiting factor of fusion. When we studied the effect of very low concentrations of diacylglycerols on the bulk structural properties of phosphatidylserine, we found that they neither significantly perturbed the thermotropic transitions of phosphatidylserine nor affected the interaction of Ca2+ with the phosphate group of phosphatidylserine. The underlying mechanism of fusion between phosphatidylserine vesicles is discussed. PMID:7696508

  7. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin

    NASA Astrophysics Data System (ADS)

    Staicu, Angela; Smarandache, Adriana; Pascu, Alexandru; Pascu, Mihail Lucian

    2017-09-01

    Covalently functionalized single wall carbon nanotubes (SWCNT) with the photosensitizer verteporfin (VP) were synthesized and studied. Photophysical properties of the obtained compounds like optical absorption, laser-induced fluorescence and generated singlet oxygen were investigated. In order to highlight the features of the conjugated compound, its photophysical characteristics were compared with those of the mixtures of the initial components. The optical absorption data evidenced a compound that combines features of the primary SWCNTs and VP. This is the also the case of the laser induced fluorescence of the synthesized product. Moreover, fluorescence quantum yield (Φf) of the compound (Φf = 2.4%) is smaller than for the mixture of SWCNT and VP in (Φf = 3.2%). The behavior is expected, because linked VP (carrying the fluorescent moiety) transfers easier a part of its excitation energy to the SWCNT in the covalent structure. Relative to the quantum yield of singlet oxygen generation (ΦΔ) by Methylene Blue, it was found that the ΦΔ for the conjugated VP-SWCNT is 51% while for the mixture ΦΔ is 23%. The results indicate covalently functionalized single walled carbon nanotubes with verteporfin as potential compounds of interest in targeted drug delivery and photodynamic therapy.

  8. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  9. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  10. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    ERIC Educational Resources Information Center

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  11. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  12. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  13. Deciphering the plasma membrane hallmarks of apoptotic cells: Phosphatidylserine transverse redistribution and calcium entry

    PubMed Central

    Martínez, M Carmen; Freyssinet, Jean-Marie

    2001-01-01

    Background During apoptosis, Ca2+-dependent events participate in the regulation of intracellular and morphological changes including phosphatidylserine exposure in the exoplasmic leaflet of the cell plasma membrane. The occurrence of phosphatidylserine at the surface of specialized cells, such as platelets, is also essential for the assembly of the enzyme complexes of the blood coagulation cascade, as demonstrated by hemorrhages in Scott syndrome, an extremely rare genetic deficiency of phosphatidylserine externalization, without other apparent pathophysiologic consequences. We have recently reported a reduced capacitative Ca2+ entry in Scott cells which may be part of the Scott phenotype. Results Taking advantage of these mutant lymphoblastoid B cells, we have studied the relationship between this mode of Ca2+ entry and phosphatidylserine redistribution during apoptosis. Ca2+ ionophore induced apoptosis in Scott but not in control cells. However, inhibition of store-operated Ca2+ channels led to caspase-independent DNA fragmentation and decrease of mitochondrial membrane potential in both control and Scott cells. Inhibition of cytochrome P450 also reduced capacitative Ca2+ entry and induced apoptosis at comparable extents in control and Scott cells. During the apoptotic process, both control and more markedly Scott cells externalized phosphatidylserine, but in the latter, this membrane feature was however dissociated from several other intracellular changes. Conclusions The present results suggest that different mechanisms account for phosphatidylserine transmembrane migration in cells undergoing stimulation and programmed death. These observations testify to the plasticity of the plasma membrane remodeling process, allowing normal apoptosis even when less fundamental functions are defective. PMID:11701087

  14. Interaction of dipalmitoyl phosphatidylserine with ethanol: induction of an ordered gel phase at room temperature.

    PubMed

    Wachtel, E; Bach, D; Miller, I R; Borochov, N

    2007-05-01

    Using differential scanning calorimetry and small and wide-angle X-ray diffraction, we show that, unlike the saturated phosphatidylcholines, for which ethanol induces chain interdigitation in the gel state, and unlike natural phosphatidylserine in which the gel state is almost unaffected by the addition of ethanol, dipalmitoyl phosphatidylserine (DPPS) assumes an ordered structure after incubation at room temperature in the presence of as little as 5% (v/v) ethanol. In the liquid crystalline state, a progressive decrease in the interbilayer spacing is observed as a function of ethanol concentration, similar to what is found for natural phosphatidylserine (PS) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS). The 0.37 molar fraction of cholesterol in the DPPS dispersion in the presence of 10% (v/v) ethanol, does not prevent the formation of the ordered gel.

  15. Domain walls in single-chain magnets

    NASA Astrophysics Data System (ADS)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  16. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli

    PubMed Central

    Tyurin, Vladimir A.; Tyurina, Yulia Y.; Jung, Mi-Yeon; Tungekar, Muhammad A.; Wasserloos, Karla J.; Bayir, Hülya; Greenberger, Joel S.; Kochanek, Patrick M.; Shvedova, Anna A.; Pitt, Bruce; Kagan, Valerian E.

    2009-01-01

    Oxidation of two anionic phospholipids - cardiolipin (CL) in mitochondria and phosphatidylserine (PS) in extramitochondrial compartments - are important signaling events, particularly during the execution of programmed cell death and clearance of apoptotic cells. Quantitative analysis of CL and PS oxidation products is central to understanding their molecular mechanisms of action. We combined the identification of diverse phospholipid molecular species by ESI-MS with quantitative assessments of lipid hydroperoxides using a fluorescence HPLC-based protocol. We characterized CL and PS oxidation products formed in a model system (cyt c/H2O2), in apoptotic cells (neurons, pulmonary artery endothelial cells) and mouse lung under inflammatory/oxidative stress conditions (hyperoxia, inhalation of single walled carbon nanotubes). Our results demonstrate the usefulness of this approach for quantitative assessments, identification of individual molecular species and structural characterization of anionic phospholipids that are involved in oxidative modification in cells and tissues. PMID:19328050

  17. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  18. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  19. Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes

    PubMed Central

    Prudovsky, Igor; Vary, Calvin P.H.; Markaki, Yolanda; Olins, Ada L.; Olins, Donald E.

    2012-01-01

    Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope. PMID:22555604

  20. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Li, Xiang-Qian; Wang, Zhao-Yu; Zhao, Xi-Rong

    2015-02-11

    Biobased ionic liquids with cholinium as the cation and amino acids as the anions, which could be prepared from renewable biomaterials by simple neutralization reactions, have recently been described as promising and green solvents. Herein, they were successfully used as the reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with l-serine for phosphatidylserine synthesis for the first time. Our results indicated that the highest phosphatidylserine yield of 86.5% was achieved. Moreover, 75% original activity of the enzyme was maintained after being used for 10 batches. The present work could be considered an alternative enzymatic strategy for preparing phosphatidylserine. Additionally, the excellent results make the biobased ionic liquids more promising candidates for use as environmentally friendly solvents in biocatalysis fields.

  1. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.

    PubMed

    Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish

    2018-09-01

    In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.

  2. Phosphatidylserine and the human brain.

    PubMed

    Glade, Michael J; Smith, Kyl

    2015-06-01

    The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells.

    PubMed

    Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.

  4. Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakahashi-Oda, Chigusa; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer CD300a is a new phosphatidylserine receptor expressed on myeloid cells. Black-Right-Pointing-Pointer Phosphatidylserine delivers a signal for recruitment of SHP-1 by CD300a in mast cells. Black-Right-Pointing-Pointer The CD300a/phosphatidylserine interaction is blocked by MFG-E8 or anti-CD300a antibody. -- Abstract: CD300a is a member of CD300 family molecules consisting of seven genes on human chromosome 17 and nine genes in mouse chromosome 11. CD300a has a long cytoplasmic region containing the consensus immunoreceptor tyrosine-based inhibitory motif (ITIM) sequence. Upon crosslinking with antibodies against CD300a, CD300a mediates an inhibitory signal in myeloid cells. However, the ligand for CD300a has not been identifiedmore » and the physiological role of CD300a remained unclear. Here, we demonstrate that the chimeric fusion protein of CD300a extracellular domain with the Fc portion of human IgG specifically bound phosphatidylserine (PS), which is exposed on the outer leaflet of the plasma membrane of apoptotic cells. PS binding to CD300a induced SHP-1 recruitment by CD300a in mast cells in response to LPS. These results indicated that CD300a is a new PS receptor.« less

  5. Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors

    DTIC Science & Technology

    2006-07-01

    Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors Joshua A . Robinson, Eric S. Snow,* Ştefan C. Bǎdescu, Thomas L. Reinecke, and F...of chemical vapors. We find adsorption at defect sites produces a large electronic response that dominates the SWNT capacitance and conductance...introduction of oxidation defects can be used to enhance sensitivity of a SWNT network sensor to a variety of chemical vapors. The use of single-walled

  6. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  7. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  8. Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition

    PubMed Central

    Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin

    2013-01-01

    Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334

  9. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells.

    PubMed

    Naserzadeh, Parvaneh; Ansari Esfeh, Fatemeh; Kaviani, Mahboubeh; Ashtari, Khadijeh; Kheirbakhsh, Raheleh; Salimi, Ahmad; Pourahmad, Jalal

    2018-06-01

    Nanomaterials (NM) exhibit novel anticancer properties. The toxicity of three nanoparticles that are currently being produced in high tonnage including single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT) and Fe 2 O 3 nanoparticles, were compared with normal and melanoma cells. All tested nanoparticles induced selective toxicity and caspase 3 activation through mitochondria pathway in melanoma cells and mitochondria cause the generating of reactive oxygen species (ROS), mitochondrial membrane potential decline (MMP collapse), mitochondria swelling, and cytochrome c release. The pretreatment of butylated hydroxytoluene (BHT), a cell-permeable antioxidant and cyclosporine A (Cs. A), a mitochondrial permeability transition (MPT), pore sealing agent decreased cytotoxicity, caspase 3 activation, ROS generation, and mitochondrial damages induced by SWCNT, MWCNT, and IONPs. Our promising results provide a potential approach for the future therapeutic use of SWCNT, MWCNT, and IONPs in melanoma through mitochondrial targeting.

  10. Molecular discriminators using single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ranjan Ray, Nihar; Sarkar, Sabyasachi

    2012-09-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular.

  11. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  12. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  13. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  14. [Phosphatidylserine externalization and functional-morphological impairment of sperm in men with long barren marriage].

    PubMed

    Ploskonos, M V

    2016-08-01

    To identify the relationship between phosphatidylserine externalization, as an early marker of apoptosis, and functional and morphological sperm impairment in infertile men to subsequently evaluate the effect of apoptosis on sperm fertility. Ejaculates of 18 fertile and 78 subfertile men were examined. Phosphatidylserine externalization was detected by staining the sperm with fluorochrome conjugated Annexin V (AnV-FITC) and propidium iodide using fluorescence microscopy. and conclusions: Ejaculates of fertile and subfertile men differed in the percentage of annexin-V-positive sperm. The correlation of (AnV+/PI+) - sperm of subfertile men with sperm concentration, motility and defects of sperm morphology shows the adverse effects of apoptosis on sperm quality and suggests that phosphatidylserine externalization is a factor for reducing sperm fertility.

  15. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif.

    PubMed

    Rosenbaum, Sabrina; Kreft, Sandra; Etich, Julia; Frie, Christian; Stermann, Jacek; Grskovic, Ivan; Frey, Benjamin; Mielenz, Dirk; Pöschl, Ernst; Gaipl, Udo; Paulsson, Mats; Brachvogel, Bent

    2011-02-18

    Identification and clearance of apoptotic cells prevents the release of harmful cell contents thereby suppressing inflammation and autoimmune reactions. Highly conserved annexins may modulate the phagocytic cell removal by acting as bridging molecules to phosphatidylserine, a characteristic phagocytosis signal of dying cells. In this study five members of the structurally and functionally related annexin family were characterized for their capacity to interact with phosphatidylserine and dying cells. The results showed that AnxA3, AnxA4, AnxA13, and the already described interaction partner AnxA5 can bind to phosphatidylserine and apoptotic cells, whereas AnxA8 lacks this ability. Sequence alignment experiments located the essential amino residues for the recognition of surface exposed phosphatidylserine within the calcium binding motifs common to all annexins. These amino acid residues were missing in the evolutionary young AnxA8 and when they were reintroduced by site directed mutagenesis AnxA8 gains the capability to interact with phosphatidylserine containing liposomes and apoptotic cells. By defining the evolutionary conserved amino acid residues mediating phosphatidylserine binding of annexins we show that the recognition of dying cells represent a common feature of most annexins. Hence, the individual annexin repertoire bound to the cell surface of dying cells may fulfil opsonin-like function in cell death recognition.

  16. Noise characteristics of single-walled carbon nanotube network transistors.

    PubMed

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-16

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.

  17. SIMULATION AND MOCKUP OF SNS JET-FLOW TARGET WITH WALL JET FOR CAVITATION DAMAGE MITIGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendel, Mark W; Geoghegan, Patrick J; Felde, David K

    2014-01-01

    Pressure waves created in liquid mercury pulsed spallation targets at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel ismore » characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.« less

  18. Method for separating single-wall carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Hauge, Robert H. (Inventor); Kittrell, W. Carter (Inventor); Sivarajan, Ramesh (Inventor); Bachilo, Sergei M. (Inventor); Weisman, R. Bruce (Inventor); Smalley, Richard E. (Inventor); Strano, Michael S. (Inventor)

    2006-01-01

    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types.

  19. Rho Associated Coiled-Coil Kinase-1 Regulates Collagen-Induced Phosphatidylserine Exposure in Platelets

    PubMed Central

    Dasgupta, Swapan K.; Le, Anhquyen; Haudek, Sandra B.; Entman, Mark L.; Rumbaut, Rolando E.; Thiagarajan, Perumal

    2013-01-01

    Background The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform. Methods and Results ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01). Conclusions These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes. PMID:24358370

  20. Improvements in Production of Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  1. Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare.

    PubMed

    Chik, Mazzura Wan; Hussain, Zahid; Zulkefeli, Mohd; Tripathy, Minaketan; Kumar, Sunil; Majeed, Abu Bakar Abdul; Byrappa, K

    2018-03-28

    Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.

  2. Controlling depinning and propagation of single domain-walls in magnetic microwires

    NASA Astrophysics Data System (ADS)

    Jiménez, Alejandro; del Real, Rafael P.; Vázquez, Manuel

    2013-03-01

    The magnetization reversal in magnetostrictive amorphous microwires takes place by depinning and propagation of a single domain wall. This is a consequence of the particular domain structure determined by the strong uniaxial anisotropy from the reinforcement of magnetoelastic and shape contributions. In the present study, after an overview on the current state-of-the art on the topic, we introduce the general behaviour of single walls in 30 to 40 cm long Fe-base microwires propagating under homogeneous field. Depending on the way the walls are generated, we distinguish among three different walls namely, standard wall, DWst, depinned and propagating from the wire's end under homogeneous field which motion is the first one to switch on; reverse wall, DWrev, propagating from the opposite end under non-homogeneous field, and defect wall, DWdef, nucleated around local defect. Both, DWrev and DWdef are observed only under large enough applied field. In the subsequent section, we study the propagation of a wall under applied field smaller than the switching field. There, we conclude that a minimum field, Hdep,0, is needed to depin the DWst, as well as that a minimum field, Hprop,0, is required for the wall to propagate long distances. In the last section, we analyse the shape of induced signals in the pickup coils upon the crossing of the walls and its correlation to the domain walls shape. We conclude that length and shape of the wall are significantly distorted by the fact that the wall is typically as long as the measuring coils. Contribution to the Topical Issue "New Trends in Magnetism and Magnetic Materials", edited by Francesca Casoli, Massimo Solzi and Paola Tiberto.

  3. Translocation of single-stranded DNA through single-walled carbon nanotubes.

    PubMed

    Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag; Joseph, Sony; Lindsay, Stuart; Nuckolls, Colin

    2010-01-01

    We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10(7) charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.

  4. Recognition of Live Phosphatidylserine-Labeled Tumor Cells by Dendritic Cells: A Novel Approach to Immunotherapy of Skin Cancer

    PubMed Central

    Shurin, Michael R.; Potapovich, Alla I.; Tyurina, Yulia Y.; Tourkova, Irina L.; Shurin, Galina V.; Kagan, Valerian E.

    2014-01-01

    Dendritic cells (DC) loaded with tumor antigens from apoptotic/necrotic tumor cells are commonly used as vaccines for cancer therapy. However, the use of dead tumor cells may cause both tolerance and immunity, making the effect of vaccination unpredictable. To deliver live tumor “cargoes” into DC, we developed a new approach based on the “labeling” of tumors with a phospholipid “eat-me” signal, phosphatidylserine. Expression of phosphatidylserine on live tumor cells mediated their recognition and endocytosis by DC resulting in the presentation of tumor antigens to antigen-specific T cells. In mice, topical application of phosphatidylserine-containing ointment over melanoma induced tumor-specific CTL, local and systemic antitumor immunity, and inhibited tumor growth. Thus, labeling of tumors with phosphatidylserine is a promising strategy for cancer immunotherapy. PMID:19276376

  5. Structural basis for autoantibody recognition of phosphatidylserine-β2 glycoprotein I and apoptotic cells

    PubMed Central

    Cocca, Brian A.; Seal, Samarendra N.; D'Agnillo, Paolo; Mueller, Yvonne M.; Katsikis, Peter D.; Rauch, Joyce; Weigert, Martin; Radic, Marko Z.

    2001-01-01

    Apoptotic cells contain nuclear autoantigens that may initiate a systemic autoimmune response. To explore the mechanism of antibody binding to apoptotic cells, 3H9, a murine autoantibody with dual specificity for phospholipids and DNA, was used. H chain mutants of 3H9 were constructed, expressed as single-chain Fv (scFv) in Escherichia coli, and assessed for binding to phosphatidylserine, an antigen expressed on apoptotic cells. Both 3H9 and its germline revertant bound to dioleoyl phosphatidylserine in ELISA, and binding was enhanced by β2 glycoprotein I (β2GPI), a plasma protein that selectively binds to apoptotic cells. Higher relative affinity for DOPS-β2GPI was achieved by the introduction of Arg residues into the 3H9 H chain variable region at positions previously shown to mediate DNA binding. Specificity of the two structurally most diverse scFv for apoptotic cells was shown by flow cytometry, and two populations of scFv-bound cells were identified by differences in propidium iodide staining. The results suggest that, in autoimmunity, B cells with Ig receptors for apoptotic cells and DNA are positively selected, and that the antibodies they produce have the potential to affect the clearance and processing of apoptotic cells. PMID:11717440

  6. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy.

    PubMed

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T; Tobias, Gerard; Bianco, Alberto

    2017-02-15

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH 2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl 3 @SWCNT-mAb (3)] or without [SmCl 3 @SWCNT-NH 2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.

  7. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto

    2017-02-01

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.

  8. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping

  9. Double wall versus single wall incubator for reducing heat loss in very low birth weight infants in incubators.

    PubMed

    Laroia, N; Phelps, D L; Roy, J

    2007-04-18

    Studies have shown improved survival of newborn infants maintained in the thermoneutral range. The concept of an incubator with additional insulation, a double plexiglass wall, is appealing for very low birth weight infants as it may help to provide a thermoneutral environment. To assess the effects of double walled incubator versus a single wall incubator on insensible water loss, rate of oxygen consumption, episodes of hypothermia, time to regain birth weight, duration of hospitalization and infant mortality in premature infants. The standard search strategy of the Cochrane Neonatal Review Group was used. This included searches of electronic databases: Oxford Database of Perinatal Trials, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2006), MEDLINE (1966 - 2006), EMBASE, previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants in all published languages, and CINAHL (1982 - 2006). Only studies using random or quasi-random methods of allocation were considered for this review. Eligible studies assessed at least one of the outcome variables identified as important to this topic. Independent data extraction and quality assessment of included trials was conducted by the review authors. Data were analyzed using generic inverse variance methodology and weighted mean difference (WMD). Results are presented with 95% confidence intervals. Meta-analysis was undertaken using a fixed effect model. Three studies met the criteria. Four other studies were excluded, as they did not compare double versus single wall incubators (details of the studies are given in the included and excluded studies section). Double wall incubators have the advantage of decreasing heat loss, decreasing heat production and decreasing radiant heat loss when compared to single wall incubators. There is also the advantage of reduced oxygen consumption. A minimal increase in conductive heat loss was noted when

  10. Simultaneous Determination of Parathion, Malathion, Diazinon, and Pirimiphos Methyl in Dried Medicinal Plants Using Solid-Phase Microextraction Fibre Coated with Single-Walled Carbon Nanotubes

    PubMed Central

    Ahmadkhaniha, Reza; Samadi, Nasrin; Salimi, Mona; Sarkhail, Parisa; Rastkari, Noushin

    2012-01-01

    A reliable and sensitive headspace solid-phase microextraction gas chromatography-mass spectrometry method for simultaneous determination of different organophosphorus pesticides in dried medicinal plant samples is described. The analytes were extracted by single-walled carbon nanotubes as a new solid-phase microextraction adsorbent. The developed method showed good performance. For diazinon and pirimiphos methyl calibration, curves were linear (r 2 ≥ 0.993) over the concentration ranges from 1.5 to 300 ng g−1, and the limit of detection at signal-to-noise ratio of 3 was 0.3 ng g−1. For parathion and malathion, the linear range and limit of detection were 2.5–300 (r 2 ≥ 0.991) and 0.5 ng g−1, respectively. In addition, a comparative study between the single-walled carbon nanotubes and a commercial polydimethylsiloxane fibre for the determination of target analytes was carried out. Single-walled carbon nanotubes fibre showed higher extraction capacity, better thermal stability (over 350°C), and longer lifespan (over 250 times) than the commercial polydimethylsiloxane fibre. The developed method was successfully applied to determine target organophosphorus pesticides in real samples. PMID:22645439

  11. Cryopreservation and xenografting of human ovarian fragments: medulla decreases the phosphatidylserine translocation rate.

    PubMed

    Isachenko, Vladimir; Todorov, Plamen; Isachenko, Evgenia; Rahimi, Gohar; Hanstein, Bettina; Salama, Mahmoud; Mallmann, Peter; Tchorbanov, Andrey; Hardiman, Paul; Getreu, Natalie; Merzenich, Markus

    2016-11-10

    Phosphatidylserine is the phospholipid component which plays a key role in cell cycle signaling, specifically in regards to necrosis and apoptosis. When a cell affected by some negative factors, phosphatidylserine is no longer restricted to the intracellular side of membrane and can be translocated to the extracellular surface of the cell. Cryopreservation can induce translocation of phosphatidylserine in response to hypoxia, increasing intracellular Ca 2+ , osmotic disruption of cellular membranes, generation of reactive oxygen species and lipid peroxidation. As such the aim of this study was to test the level of phosphatidylserine translocation in frozen human medulla-contained and medulla-free ovarian tissue fragments. Ovarian fragments from twelve patients were divided into small pieces of two types, medulla-free cortex (Group 1, n = 42, 1.5-3.0 × 1.5-3.0 × 0.5-0.8 mm) and cortex with medulla (Group 2, n = 42, 1.5-3.0 × 1.5-3.0 × 1.5-2.0 mm), pre-cooled after operative removal to 5 °C for 24 h and then conventionally frozen with 6 % dimethyl sulfoxide, 6 % ethylene glycol and 0.15 M sucrose in standard 5-ml cryo-vials. After thawing at +100 °C and step-wise removal of cryoprotectants in 0.5 M sucrose, ovarian pieces were xenografted to SCID mice for 45 days. The efficacy of tissues cryopreservation, taking into account the presence or absence of medulla, was evaluated by the development of follicles (histology with hematoxylin-eosin) and through the intensity of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). For Groups 1 and 2, the mean densities of follicles per 1 mm 3 were 9.8, and 9.0, respectively. In these groups, 90 and 90 % preantral follicles appeared morphologically normal. However, FACS analysis showed a significantly decreased intensity of translocation of phosphatidylserine (FITC-Annexin V positive) after cryopreservation of tissue with medulla (Group 2, 59.6 %), in

  12. Process for separating metallic from semiconducting single-walled carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  13. Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes.

    PubMed

    López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario

    2014-04-29

    The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.

  14. Single-wall nanohorn structure and distribution of incorporated materials

    NASA Astrophysics Data System (ADS)

    Maigne, Alan; Gloter, Alexandre; Ajima, Kumiko; Colliex, Christian; Iijima, Sumio

    2005-03-01

    Single-wall carbon nanohorns (SWNHs) are unique spherical-aggregates of single-wall carbon quasi-nanotubes. So far, the observable area has been limited to the aggregate surfaces. We studied core-region structure with TEM using thickness measurement method, EELS, and EDS, and found that carbon density was uniform over the whole aggregate. This result allows to modelize the core-region and to clarify previous models of SWNHs. We used same tools to investigate the incorporation of materials such as fullerenes or platinium compounds. We found that particles can even be incorporated in the core-region and that their distribution in the aggregate depends on their concentration. The information available with these models should be useful in the study of SWNH applications to, for example, drug delivery system.

  15. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  16. Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.

    PubMed

    Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji

    2014-12-12

    Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.

  17. A Computational Experiment on Single-Walled Carbon Nanotubes

    ERIC Educational Resources Information Center

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  18. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    DOEpatents

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  19. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    PubMed

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  20. Single-Walled Carbon Nanohorns for Energy Applications

    PubMed Central

    Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao

    2015-01-01

    With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092

  1. Imaging the distribution of individual platinum-based anticancer drug molecules attached to single-wall carbon nanotubes

    PubMed Central

    Bhirde, Ashwin A; Sousa, Alioscka A; Patel, Vyomesh; Azari, Afrouz A; Gutkind, J Silvio; Leapman, Richard D; Rusling, James F

    2009-01-01

    Aims To image the distribution of drug molecules attached to single-wall carbon nanotubes (SWNTs). Materials & methods Herein we report the use of scanning transmission electron microscopy (STEM) for atomic scale visualization and quantitation of single platinum-based drug molecules attached to SWNTs designed for targeted drug delivery. Fourier transform infrared spectroscopy and energy-dispersive x-ray spectroscopy were used for characterization of the SWNT drug conjugates. Results Z-contrast STEM imaging enabled visualization of the first-line anticancer drug cisplatin on the nanotubes at single molecule level. The identity and presence of cisplatin on the nanotubes was confirmed using energy-dispersive x-ray spectroscopy and Fourier transform infrared spectroscopy. STEM tomography was also used to provide additional insights concerning the nanotube conjugates. Finally, our observations provide a rationale for exploring the use of SWNT bioconjugates to selectively target and kill squamous cancer cells. Conclusion Z-contrast STEM imaging provides a means for direct visualization of heavy metal containing molecules (i.e., cisplatin) attached to surfaces of carbon SWNTs along with distribution and quantitation. PMID:19839812

  2. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  3. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  4. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells

    PubMed Central

    He, Mei; Kubo, Hiroshi; Morimoto, Konosuke; Fujino, Naoya; Suzuki, Takaya; Takahasi, Toru; Yamada, Mitsuhiro; Yamaya, Mutsuo; Maekawa, Tomoyuki; Yamamoto, Yasuhiko; Yamamoto, Hiroshi

    2011-01-01

    Clearance of apoptotic cells is necessary for tissue development, homeostasis and resolution of inflammation. The uptake of apoptotic cells is initiated by an ‘eat-me' signal, such as phosphatidylserine, on the cell surface and phagocytes recognize the signal by using specific receptors. In this study, we show that the soluble form of the receptor for advanced glycation end products (RAGE) binds to phosphatidylserine as well as to the apoptotic thymocytes. RAGE-deficient (Rage−/−) alveolar macrophages showed impaired phagocytosis of apoptotic thymocytes and defective clearance of apoptotic neutrophils in Rage−/− mice. Our results indicate that RAGE functions as a phosphatidylserine receptor and assists in the clearance of apoptotic cells. PMID:21399623

  5. Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature

    NASA Astrophysics Data System (ADS)

    Dixit, Saurabh; Shukla, A. K.

    2018-06-01

    In this article, single-walled carbon nanotubes (SWCNTs) are synthesized at room temperature using pulsed laser ablation of ferrocene mixed graphitic target. Radial breathing mode (RBM) reveals the presence of semiconducting SWCNTs of multiple diameters. Quantum confinement model is developed for Raman line-shape of G - feature. It is invoked here that G-feature is the manifestation of TO phonons in the semiconducting SWCNTs. Disorder in the SWCNTs is studied here as a function of the concentration of ferrocene in the graphitic target using X-ray diffraction analysis, oscillator strength of G - feature and D mode and Raman line-shape model of G - feature. Furthermore, phonon softening of G - feature of semiconducting SWCNTs is observed as a function of the diameter of nanotube.

  6. Molecular Dynamics Simulations of the Thermal Conductivity of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, M.; Srivastava, Deepak; Govindan,T. R. (Technical Monitor)

    2000-01-01

    Carbon nanotubes (CNT) have very attractive electronic, mechanical. and thermal properties. Recently, measurements of thermal conductivity in single wall CNT mats showed estimated thermal conductivity magnitudes ranging from 17.5 to 58 W/cm-K at room temperature. which are better than bulk graphite. The cylinderical symmetry of CNT leads to large thermal conductivity along the tube axis, additionally, unlike graphite. CNTs can be made into ropes that can be used as heat conducting pipes for nanoscale applications. The thermal conductivity of several single wall carbon nanotubes has been calculated over temperature range from l00 K to 600 K using non-equilibrium molecular dynamics using Tersoff-Brenner potential for C-C interactions. Thermal conductivity of single wall CNTs shows a peaking behavior as a function of temperature. Dependence of the peak position on the chirality and radius of the tube will be discussed and explained in this presentation.

  7. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    PubMed

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Electrical properties of 0.4 cm long single walled nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Zhen

    2005-03-01

    Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).

  9. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  10. Preparation and properties of single-walled nanotubes filled with inorganic compounds

    NASA Astrophysics Data System (ADS)

    Eliseev, Andrei A.; Kharlamova, M. V.; Chernysheva, M. V.; Lukashin, Alexey V.; Tretyakov, Yuri D.; Kumskov, A. S.; Kiselev, N. A.

    2009-09-01

    The state-of-the-art methods for filling single-walled carbon nanotubes (SWNTs) are analyzed systematically. In situ and ex situ approaches for filling SWNTs are addressed. They are based on both intercalation of inorganic substances from the gas phase, solution or melts inside SWNTs and the formation of nanocrystals inside the channels as a result of chemical reactions. A comparative evaluation of these methods is performed, and major requirements for successful formation of '1D-crystal@SWNT' nanocomposites are formulated. The functional properties of the intercalated single-walled nanotubes and their possible applications in modern nanotechnologies are discussed.

  11. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  12. Externalization of phosphatidylserine via multidrug resistance 1 (MDR1)/P-glycoprotein in oxalate-treated renal epithelial cells: implications for calcium oxalate urolithiasis.

    PubMed

    Li, Yu-Hang; Yu, Shi-Liang; Gan, Xiu-Guo; Pan, Shang-Ha; Teng, Yue-Qiu; An, Rui-Hua

    2016-02-01

    We investigated the possible involvement of multidrug resistance protein 1 P-glycoprotein (MDR1 P-gp) in the oxalate-induced redistribution of phosphatidylserine in renal epithelial cell membranes. Real-time PCR and western blotting were used to examine MDR1 expression in Madin-Darby canine kidney cells at the mRNA and protein levels, respectively, whereas surface-expressed phosphatidylserine was detected by the annexin V-binding assay. Oxalate treatment resulted in increased synthesis of MDR1, which resulted in phosphatidylserine (PS) externalization in the renal epithelial cell membrane. Treatment with the MDR1 inhibitor PSC833 significantly attenuated phosphatidylserine externalization. Transfection of the human MDR1 gene into renal epithelial cells significantly increased PS externalization. To our knowledge, this study is the first to show that oxalate increases the synthesis of MDR1 P-gp, which plays a key role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.

  13. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.

    PubMed

    Tufail, Yusuf; Cook, Daniela; Fourgeaud, Lawrence; Powers, Colin J; Merten, Katharina; Clark, Charles L; Hoffman, Elizabeth; Ngo, Alexander; Sekiguchi, Kohei J; O'Shea, Clodagh C; Lemke, Greg; Nimmerjahn, Axel

    2017-02-08

    Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. General synthesis of inorganic single-walled nanotubes

    PubMed Central

    Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun

    2015-01-01

    The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862

  15. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor

  16. The forced sound transmission of finite single leaf walls using a variational technique.

    PubMed

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  17. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  18. Production of single-walled carbon nanotube grids

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  19. Titanium dioxide, single-walled carbon nanotube composites

    DOEpatents

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  20. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  1. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa.

    PubMed

    Elamin, Ayssar A; Steinicke, Susanne; Oehlmann, Wulf; Braun, Yvonne; Wanas, Hanaa; Shuralev, Eduard A; Huck, Carmen; Maringer, Marko; Rohde, Manfred; Singh, Mahavir

    2017-01-01

    For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.

  2. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  3. The hemostatic activity of cryopreserved platelets is mediated by phosphatidylserine-expressing platelets and platelet microparticles.

    PubMed

    Johnson, Lacey; Coorey, Craig P; Marks, Denese C

    2014-08-01

    Cryopreservation of platelets (PLTs) at -80°C with dimethyl sulfoxide (DMSO) can extend the shelf life from 5 days to 2 years. Cryopreserved PLTs are reported to have a greater in vivo hemostatic effect than liquid-stored PLTs. As such, the aim of this study was to understand the mechanisms responsible for the hemostatic potential of cryopreserved PLTs and the contribution of the reconstitution solution to this activity. DMSO (5% final concentration) was added to buffy coat-derived PLTs, followed by prefreeze removal of DMSO and storage at -80°C. Cryopreserved PLTs (n=8 per group) were thawed at 37°C, reconstituted with either 1 unit of thawed frozen plasma or PLT additive solution (PAS-G). In vitro assays were performed before freezing and after thawing to assess the hemostatic activity of PLTs. Cryopreserved PLTs expressed high levels of phosphatidylserine and contained significantly more phosphatidylserine-positive PLT microparticles than liquid-stored PLTs. This was accompanied by a significant decrease in the time to clot formation and clot strength, as measured by thromboelastography. The supernatant from cryopreserved PLTs was sufficient to reduce the phosphatidylserine-dependent clotting time and increase the thrombin generation potential. Overall, plasma-reconstituted cryopreserved PLTs were more procoagulant than those reconstituted in PAS-G. PLT cryopreservation results in the generation of phosphatidylserine-expressing PLT microparticles which contribute to the hemostatic activity. Understanding the hemostatic activity of these components may assist in extending the use of these specialized components beyond military applications. © 2014 Australian Red Cross Blood Service. Transfusion © 2014 AABB.

  4. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes.

    PubMed

    Rai, Durgesh K; Qian, Shuo; Heller, William T

    2016-11-01

    Membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L=1/500, but membrane thinning results when P/L=1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. The results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  6. Targeting Phosphatidylserine with a 64Cu-Labeled Peptide for Molecular Imaging of Apoptosis.

    PubMed

    Perreault, Amanda; Richter, Susan; Bergman, Cody; Wuest, Melinda; Wuest, Frank

    2016-10-03

    Molecular imaging of programmed cell death (apoptosis) in vivo is an innovative strategy for early assessment of treatment response and treatment efficacy in cancer patients. Externalization of phosphatidylserine (PS) to the cell membrane surface of dying cells makes this phospholipid an attractive molecular target for the development of apoptosis imaging probes. In this study, we have radiolabeled PS-binding 14-mer peptide FNFRLKAGAKIRFG (PSBP-6) with positron-emitter copper-64 ( 64 Cu) for PET imaging of apoptosis. Peptide PSBP-6 was conjugated with radiometal chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) through an aminovaleric acid (Ava) linker for subsequent radiolabeling with 64 Cu to prepare radiotracer 64 Cu-NOTA-Ava-PSBP-6. PS-binding potencies of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-Ava-PSBP-6 were determined in a competitive radiometric PS-binding assay. Radiotracer 64 Cu-NOTA-Ava-PSBP-6 was studied in camptothecin-induced apoptotic EL4 mouse lymphoma cells and in a murine EL4 tumor model of apoptosis using dynamic PET imaging. Peptide PSBP-6 was also conjugated via an Ava linker with fluorescein isothiocyanate (FITC). FITC-Ava-PSBP-6 was evaluated in flow cytometry and fluorescence confocal microscopy experiments. Radiopeptide 64 Cu-NOTA-Ava-PSBP-6 was synthesized in high radiochemical yields of >95%. The IC 50 values for PS-binding potency of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-PSBP-6 were 600 μM, 30 μM, and 23 μM, respectively. A competitive radiometric cell binding assay confirmed binding of 64 Cu-NOTA-Ava-PSBP-6 to camptothecin-induced apoptotic EL4 cells in a Ca 2+ -independent manner. PET imaging studies demonstrated significantly higher uptake of 64 Cu-NOTA-Ava-PSBP-6 in apoptotic EL4 tumors (SUV 5min 0.95 ± 0.04) compared to control tumors (SUV 5min 0.74 ± 0.03). Flow cytometry studies showed significantly higher binding of FITC-Ava-PSBP-6 to EL4 cells treated with camptothecin compared to untreated cells

  7. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    DOE PAGES

    Upadhyayula, Venkata K. K.; Ghoshroy, Soumitra; Nair, Vinod S.; ...

    2008-01-01

    Tmore » he possibility of using single-walled carbon nanotubes (SWCNs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. he Freundlich adsorption equilibrium constant ( k ) for S.aureus and E.coli determined from batch adsorption study was found to be 9 × 10 8 and 2 × 10 8  ml/g, respectively. he visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. he results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. his is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.« less

  8. Detection and tracking of human targets in indoor and urban environments using through-the-wall radar sensors

    NASA Astrophysics Data System (ADS)

    Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua

    2017-05-01

    Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.

  9. Robust through-the-wall radar image classification using a target-model alignment procedure.

    PubMed

    Smith, Graeme E; Mobasseri, Bijan G

    2012-02-01

    A through-the-wall radar image (TWRI) bears little resemblance to the equivalent optical image, making it difficult to interpret. To maximize the intelligence that may be obtained, it is desirable to automate the classification of targets in the image to support human operators. This paper presents a technique for classifying stationary targets based on the high-range resolution profile (HRRP) extracted from 3-D TWRIs. The dependence of the image on the target location is discussed using a system point spread function (PSF) approach. It is shown that the position dependence will cause a classifier to fail, unless the image to be classified is aligned to a classifier-training location. A target image alignment technique based on deconvolution of the image with the system PSF is proposed. Comparison of the aligned target images with measured images shows the alignment process introducing normalized mean squared error (NMSE) ≤ 9%. The HRRP extracted from aligned target images are classified using a naive Bayesian classifier supported by principal component analysis. The classifier is tested using a real TWRI of canonical targets behind a concrete wall and shown to obtain correct classification rates ≥ 97%. © 2011 IEEE

  10. Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium.

    PubMed

    Kellogg, Stephanie L; Little, Jaime L; Hoff, Jessica S; Kristich, Christopher J

    2017-05-01

    Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis , exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. Copyright © 2017 American Society for Microbiology.

  11. Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium

    PubMed Central

    Kellogg, Stephanie L.; Little, Jaime L.; Hoff, Jessica S.

    2017-01-01

    ABSTRACT Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis. Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis. Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium. Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. PMID:28223383

  12. Ethanol increases affinity of protein kinase C for phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition ofmore » calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.« less

  13. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.

    PubMed

    Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki

    2017-08-01

    Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy.

    PubMed

    Nair, Lakshmi V; Nagaoka, Yutaka; Maekawa, Toru; Sakthikumar, D; Jayasree, Ramapurath S

    2014-07-23

    Hybrid nanomaterial based on quantum dots and SWCNTs is used for cellular imaging and photothermal therapy. Furthermore, the ligand conjugated hybrid system (FaQd@CNT) enables selective targeting in cancer cells. The imaging capability of quantum dots and the therapeutic potential of SWCNT are available in a single system with cancer targeting property. Heat generated by the system is found to be high enough to destroy cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    PubMed

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  16. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.

    PubMed Central

    Lewis, R N; McElhaney, R N

    2000-01-01

    The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase

  17. Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields

    NASA Astrophysics Data System (ADS)

    Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.

    2012-01-01

    A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.

  18. Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Lebron-COlon, Marisabel; Meador, Michael A.

    2006-01-01

    A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.

  19. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    PubMed

    Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2015-10-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.

  20. Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Have, Jonas; Pedersen, Thomas G.

    2018-03-01

    The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.

  1. Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants

    PubMed Central

    Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi

    2013-01-01

    Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090

  2. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  3. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  4. Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2018-04-01

    Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.

  5. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy.

    PubMed

    Li, Jie; He, Yujun; Han, Yimo; Liu, Kai; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2012-08-08

    Because of their excellent electrical and optical properties, carbon nanotubes have been regarded as extremely promising candidates for high-performance electronic and optoelectronic applications. However, effective and efficient distinction and separation of metallic and semiconducting single-walled carbon nanotubes are always challenges for their practical applications. Here we show that metallic and semiconducting single-walled carbon nanotubes on SiO(2) can have obviously different contrast in scanning electron microscopy due to their conductivity difference and thus can be effectively and efficiently identified. The correlation between conductivity and contrast difference has been confirmed by using voltage-contrast scanning electron microcopy, peak force tunneling atom force microscopy, and field effect transistor testing. This phenomenon can be understood via a proposed mechanism involving the e-beam-induced surface potential of insulators and the conductivity difference between metallic and semiconducting SWCNTs. This method demonstrates great promise to achieve rapid and large-scale distinguishing between metallic and semiconducting single-walled carbon nanotubes, adding a new function to conventional SEM.

  6. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine.

    PubMed

    Mao, Xiangzhao; Liu, Qianqian; Qiu, Yongqian; Fan, Xiaoqin; Han, Qingqing; Liu, Yanjun; Zhang, Lujia; Xue, Changhu

    2017-05-10

    Phosphatidylserine (PS) and docosahexaenoic acid-phosphatidylserine (DHA-PS) have significant nutritional and biological functions, which are extensively used in functional food industries. Phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) or DHA-PC with l-serine, is an effective method for PS and DHA-PS preparation. However, because of the hydrolysis activity of PLD, PC and DHA-PC would be converted to the undesirable byproduct, phosphatidic acid (PA) and DHA-PA. In this study, a novel phospholipase D (PLD a2 ) was firstly cloned from Acinetobacter radioresistens a2 with high transphosphatidylation activity and no hydrolysis activity. In the PLD-catalyzed synthesis process (12h), both the transphosphatidylation conversion rate and selectivity of PS and DHA-PS were about 100%, which is the only PLD enzyme reported with this superiority up till now. In comparison with the majority of other known PLDs, PLD a2 exerted the highest activity at neutral pH, and it was stable from pH 4.0 to pH 9.0. In addition, PLD a2 had excellent thermal stability, with an optimum reaction temperature of 40°C and keeping more than 80% activity from 20°C to 60°C. The high catalytic selectivity mechanism of PLD a2 was explained by utilizing homology modeling, two-step docking, and binding energy and conformation analysis. PLD a2 ensured a stable supply of the biocatalyst with its most preponderant transphosphatidylation activity and PS selectivity, and had great potential in phospholipids industrial production. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Targeted self-assembly of functionalized carbon nanotubes on tumors

    DOEpatents

    Scheinberg, David A.; McDevitt, Michael R.; Villa, Carlos H.; Mulvey, J. Justin

    2018-05-22

    Provided herein are methods for delivering a molecule in situ to a cell and for treating a cancer via the in situ delivery. The methods comprise contacting or administering to the cell, as two separate components, a morpholino oligonucleotide comprising a targeting moiety followed by a single wall nanotube construct comprising second morpholino oligonucleotides complementary to the first morpholino oligonucleotides and one or both of a therapeutic or diagnostic payload molecule linked to the single wall nanotube construct. Upon self-assembly of a single wall nanotube complex via hybridization of the first morpholino and second complementary morpholino oligonucleotides at the cell, the payload molecule is delivered. Also provided is the two component self-assembly single wall nanotube system and the single wall nanotube construct comprising the second component.

  8. Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2003-01-01

    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers

  9. Dissociation of single-strand DNA: single-walled carbon nanotube hybrids by Watson-Crick base-pairing.

    PubMed

    Jung, Seungwon; Cha, Misun; Park, Jiyong; Jeong, Namjo; Kim, Gunn; Park, Changwon; Ihm, Jisoon; Lee, Junghoon

    2010-08-18

    It has been known that single-strand DNA wraps around a single-walled carbon nanotube (SWNT) by pi-stacking. In this paper it is demonstrated that such DNA is dissociated from the SWNT by Watson-Crick base-pairing with a complementary sequence. Measurement of field effect transistor characteristics indicates a shift of the electrical properties as a result of this "unwrapping" event. We further confirm the suggested process through Raman spectroscopy and gel electrophoresis. Experimental results are verified in view of atomistic mechanisms with molecular dynamics simulations and binding energy analyses.

  10. Multitiered and Cooperative Surveillance of Mitochondrial Phosphatidylserine Decarboxylase 1.

    PubMed

    Ogunbona, Oluwaseun B; Onguka, Ouma; Calzada, Elizabeth; Claypool, Steven M

    2017-09-01

    Phosphatidylserine decarboxylase 1 (Psd1p), an ancient enzyme that converts phosphatidylserine to phosphatidylethanolamine in the inner mitochondrial membrane, must undergo an autocatalytic self-processing event to gain activity. Autocatalysis severs the protein into a large membrane-anchored β subunit that noncovalently associates with the small α subunit on the intermembrane space side of the inner membrane. Here, we determined that a temperature sensitive ( ts ) PSD1 allele is autocatalytically impaired and that its fidelity is closely monitored throughout its life cycle by multiple mitochondrial quality control proteases. Interestingly, the proteases involved in resolving misfolded Psd1 ts vary depending on its autocatalytic status. Specifically, the degradation of a Psd1 ts precursor unable to undergo autocatalysis requires the unprecedented cooperative and sequential actions of two inner membrane proteases, Oma1p and Yme1p. In contrast, upon heat exposure postautocatalysis, Psd1 ts β subunits accumulate in protein aggregates that are resolved by Yme1p acting alone, while the released α subunit is degraded in parallel by an unidentified protease. Importantly, the stability of endogenous Psd1p is also influenced by Yme1p. We conclude that Psd1p, the key enzyme required for the mitochondrial pathway of phosphatidylethanolamine production, is closely monitored at several levels and by multiple mitochondrial quality control mechanisms present in the intermembrane space. Copyright © 2017 American Society for Microbiology.

  11. Splenic gene delivery system using self-assembling nano-complex with phosphatidylserine analog.

    PubMed

    Kurosaki, Tomoaki; Nakasone, Chihiro; Kodama, Yukinobu; Egashira, Kanoko; Harasawa, Hitomi; Muro, Takahiro; Nakagawa, Hiroo; Kitahara, Takashi; Higuchi, Norihide; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    The recognition of phosphatidylserine on the erythrocyte membrane mediates erythrophagocytosis by resident spleen macrophages. The application of phosphatidylserine to a gene vector may be a novel approach for splenic drug delivery. Therefore, we chose 1,2-dioleoyl-sn-glycero-3-phospho-L-serin (DOPS) as an analogue of phosphatidylserine for splenic gene delivery of plasmid DNA (pDNA). In the present study, we successfully prepared a stable pDNA ternary complex using DOPS and polyethyleneimine (PEI) and evaluated its efficacy and safety. The pDNA/PEI complex had a positive charge and showed high transgene efficacy, although it caused cytotoxicity and agglutination. The addition of DOPS changed the ζ-potential of the pDNA/PEI complex to negative. It is known that anionic complexes are not taken up well by cells. Surprisingly, however, the pDNA/PEI/DOPS complex showed relatively high transgene efficacy in vitro. Fluorescence microscope observation revealed that the pDNA/PEI/DOPS complex internalized the cells while maintaining the complex formation. The injection of the pDNA/PEI complex killed most mice within 24 h at high doses, although all mice in the pDNA/PEI/DOPS complex group survived. The ternary complex with DOPS showed markedly better safety compared with the pDNA/PEI complex. The pDNA/PEI/DOPS complex showed high gene expression selectively in the spleen after intravenous injection into mice. Thus the ternary complex with DOPS can be used to deliver pDNA to the spleen, in which immune cells are abundant. It appears to have an excellent safety level, although further study to determine the mechanism of action is necessary.

  12. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos.

    PubMed

    Kataoka, Chisato; Nakahara, Kousuke; Shimizu, Kaori; Kowase, Shinsuke; Nagasaka, Seiji; Ifuku, Shinsuke; Kashiwada, Shosaku

    2017-04-01

    To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l -1  W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Multidisciplinary approach to chest wall resection and reconstruction for chest wall tumors, a single center experience

    PubMed Central

    Liparulo, Valeria; Pica, Alessandra; Guarro, Giuseppe; Alfano, Carmine; Puma, Francesco

    2017-01-01

    Background Chest wall resection and reconstruction (CWRR) is quite challenging in surgery, due to evolution in techniques. Neoplasms of the chest wall, primary or secondary, have been considered inoperable for a long time. Thanks to evolving surgical techniques, reconstruction after extensive chest wall resection is possible with good functional and aesthetic results. Methods In our single-center experience, seven cases of extensive CWRR for tumors were performed with a multidisciplinary approach by both thoracic and plastic surgeons. Patients have been retrospective analyzed. Results Acceptable clinical and aesthetical results have been recorded, with a smooth post-operative course and a low rate of post-surgical complications. Two early complications and one late complication (asymptomatic bone allograft fracture on the site of the bar implant) were recorded. Neither postoperative deaths nor local recurrences were registered after a median follow-up period of 13 months. Conclusions Surgical planning is most effective when it is tailored to the patient. Specifically, in the treatment of selected chest wall tumors, the multidisciplinary approach is considered mandatory when an extensive demolition is required. Indeed, here, the radical wide en-bloc resection can lead to good results provided that the extent of resection is not influenced by any anticipated problem in reconstruction. PMID:29312715

  14. Towards programming immune tolerance through geometric manipulation of phosphatidylserine.

    PubMed

    Roberts, Reid A; Eitas, Timothy K; Byrne, James D; Johnson, Brandon M; Short, Patrick J; McKinnon, Karen P; Reisdorf, Shannon; Luft, J Christopher; DeSimone, Joseph M; Ting, Jenny P

    2015-12-01

    The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research. Copyright © 2015. Published by Elsevier Ltd.

  15. Thermal-stress analysis of IFMIF target back-wall made of reduced-activation ferritic steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ida, Mizuho; Chida, Teruo; Furuya, Kazuyuki; Wakai, Eiichi; Nakamura, Hiroo; Sugimoto, Masayoshi

    2009-04-01

    For long time operation of a liquid lithium target of the International Fusion Materials Irradiation Facility, annual replacement of a back-wall, a part of the flow channel, is planned, since the target suffers neutron damage of more than 50 dpa/fpy. Considering irradiation/activation conditions, remote weld on stainless steel 316L between a back-wall and a target assembly was employed. Furthermore, dissimilar weld between the 316L and a reduced-activation ferritic/martensitic steel F82H in the back-wall was employed. The objective of this study is to clarify structures and materials of the back-wall with acceptable thermal-stress under nuclear heating. Thermal-stress analysis was done using a code ABAQUS and data of the nuclear heating. As a result, thermal-stress in the back-wall is acceptable level, if thickness of the stress-mitigation part is more than 5 mm. With results of the analysis, necessity of material data for F82H and 316L under conditions of irradiation tests and mechanical tests are clarified.

  16. Single wall penetration equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    1991-01-01

    Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.

  17. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    EPA Science Inventory

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  18. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  19. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection.

    PubMed

    Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier; Amara, Ali

    2016-01-01

    Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a-dependent DENV

  20. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick.

    PubMed

    Barber, Teresa A; Edris, Edward M; Levinsky, Paul J; Williams, Justin M; Brouwer, Ari R; Gessay, Shawn A

    2016-09-01

    In the one-trial taste-avoidance task in day-old chicks, acetylcholine receptor activation has been shown to be important for memory formation. Injection of scopolamine produces amnesia, which appears to be very similar in type to that of Alzheimer's disease, which is correlated with low levels of acetylcholine in the brain. Traditional pharmacological treatments of Alzheimer's disease, such as cholinesterase inhibitors and glutamate receptor blockers, improve memory and delay the onset of impairments in memory compared with placebo controls. These agents also ameliorate scopolamine-induced amnesia in the day-old chick trained on the one-trial taste-avoidance task. The present experiments examined the ability of two less traditional treatments for Alzheimer's disease, phosphatidylserine and curcumin, to ameliorate scopolamine-induced amnesia in day-old chicks. The results showed that 37.9 mmol/l phosphatidylserine and 2.7 mmol/l curcumin significantly improved retention in chicks administered scopolamine, whereas lower doses were not effective. Scopolamine did not produce state-dependent learning, indicating that this paradigm in day-old chicks might be a useful one to study the effects of possible Alzheimer's treatments. In addition, chicks administered curcumin or phosphatidylserine showed little avoidance of a bead associated with water reward, indicating that these drugs did not produce response inhibition. The current results extend the findings that some nontraditional memory enhancers can ameliorate memory impairment and support the hypothesis that these treatments might be of benefit in the treatment of Alzheimer's disease.

  1. Single Wall Nanotube Type-Specific Functionalization and Separation

    NASA Technical Reports Server (NTRS)

    Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.

  2. Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon nanotubes.

    PubMed

    Yang, Ming; Peng, Zhihui; Ning, Yi; Chen, Yongzhe; Zhou, Qin; Deng, Le

    2013-05-22

    In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was determined through a fluorescence assay that the selected aptamers had high binding ability and specificity to this pathogen. The dissociation constant of these aptamers were up to nanomolar range, and aptamer Apt22 with the lowest Kd (47 ± 3 nM) was used in cell imaging experiments. To detect this bacteria with high specificity and cost-efficiently, a novel useful detection method was also constructed based on the noncovalent self-assembly of single-walled carbon nanotubes (SWNTs) and DNAzyme-labeled aptamer detection probes. The amounts of target bacteria could be quantified by exploiting chemoluminescence intensity changes at 420 nm and the detection limit of the method was 103 cfu/mL. This study demonstrated the applicability of Salmonella specific aptamers and their potential for use in the detection of Salmonella in food, clinical and environmental samples.

  3. Synthesis of Large Quantities of Single-Walled Aluminogermanante Nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levard,C.; Rose, J.; Mision, A.

    2008-01-01

    A simple aqueous synthesis yielded about 100 times more structurally well-organized single-walled aluminogermanate nanotubes than previously reported 'standard' procedures. The structure analyses using XRD, IRTF, TEM, and XAS were greatly facilitated by the high concentrations available, and they ascertained the imogolite-like structure of the nanotubes. Simplicity and yield of the synthesis protocol are likely to favor commercial applications of theses materials as well as simplified syntheses of other nanophases.

  4. Compositions and methods for cancer treatment using targeted carbon nanotubes

    DOEpatents

    Harrison, Jr., Roger G; Resasco, Daniel E; Neves, Luis Filipe Ferreira

    2013-08-27

    The present invention is a method for detecting and destroying cancer tumors. The method is based on the concept of associating a linking protein or linking peptide such as, but not limited to, annexin V or other annexins to carbon nanotubes such as single-walled carbon nanotubes (SWNTs) to form a protein-CNT complex. Said linking protein or peptide can selectively bind to cancerous cells, especially tumor vasculature endothelial cells, rather than to healthy ones by binding to cancer-specific external receptors such as anionic phospholipids including phosphatidylserine expressed on the outer surfaces of cancer cells only. Irradiation of bound CNTs with one or more specific electromagnetic wavelengths is then used to detect and destroy those cells to which the CNTs are bound via the linking protein or peptide thereby destroying the tumor or cancer cells and preferably an immunostimulant is provided to the patient to enhance the immune response against antigens released from the tumor or cancer cells.

  5. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids

    DOE PAGES

    Jin, Haibao; Ding, Yan-Huai; Wang, Mingming; ...

    2018-01-18

    Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less

  6. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Haibao; Ding, Yan-Huai; Wang, Mingming

    Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less

  7. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  8. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    NASA Astrophysics Data System (ADS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  9. Long-Time Cooling before Cryopreservation Decreased Translocation of Phosphatidylserine (Ptd-L-Ser) in Human Ovarian Tissue

    PubMed Central

    2015-01-01

    Objectives To translocation (externalization) of phosphatidylserine lead at least the five negative effects observed during cells cryopreservation: hypoxia, increasing of intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species (ROS) and lipid peroxidation. The aim of this study was to test the intensiveness of the phosphatidylserine translocation immediately after thawing and after 45 d xenografting of human ovarian tissue, which was either frozen just after operative removal from patient or cooled before cryopreservation to 5°C for 24 h and then frozen. Materials and Methods Ovarian fragments from twelve patients were divided into small pieces in form of cortex with medulla, and randomly divided into the following four groups. Pieces of Group 1 (n=30) were frozen immediately after operation, thawed and just after thawing their quality was analyzed. Group 2 pieces (n=30) after operation were cooled to 5°C for 24 h, then frozen after 24 h pre-cooling to 5°C, thawed and just after thawing their quality was analyzed. Group 3 pieces (n=30) were frozen immediately after operation without pre-cooling, thawed, transplanted to SCID mice and then, after 45 d of culture their quality was analyzed. Group 4 pieces (n=30) were frozen after 24 h pre-cooling to 5°C, thawed, transplanted to SCID mice and then, after 45 d their quality was analyzed. The effectiveness of the pre-freezing cooling of tissuewas evaluated by the development of follicles (histology) and by intensiveness of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). Results For groups 1, 2, 3 and 4 the mean densities of follicles per 1 mm3 was 19.0, 20.2, 12.9, and 12.2, respectively (P1-2, 3-4 >0.1). For these groups, 99%, 98%, 88% and 90% preantral follicles, respectively were morphologically normal (P1-2, 3-4 >0.1). The FACS analysis showed significantly decreased intensiveness of translocation of phosphatidylserine after pre

  10. Long-Time Cooling before Cryopreservation Decreased Translocation of Phosphatidylserine (Ptd-L-Ser) in Human Ovarian Tissue.

    PubMed

    Isachenko, Vladimir; Todorov, Plamen; Isachenko, Evgenia; Rahimi, Gohar; Tchorbanov, Andrey; Mihaylova, Nikolina; Manoylov, Iliyan; Mallmann, Peter; Merzenich, Markus

    2015-01-01

    To translocation (externalization) of phosphatidylserine lead at least the five negative effects observed during cells cryopreservation: hypoxia, increasing of intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species (ROS) and lipid peroxidation. The aim of this study was to test the intensiveness of the phosphatidylserine translocation immediately after thawing and after 45 d xenografting of human ovarian tissue, which was either frozen just after operative removal from patient or cooled before cryopreservation to 5°C for 24 h and then frozen. Ovarian fragments from twelve patients were divided into small pieces in form of cortex with medulla, and randomly divided into the following four groups. Pieces of Group 1 (n=30) were frozen immediately after operation, thawed and just after thawing their quality was analyzed. Group 2 pieces (n=30) after operation were cooled to 5°C for 24 h, then frozen after 24 h pre-cooling to 5°C, thawed and just after thawing their quality was analyzed. Group 3 pieces (n=30) were frozen immediately after operation without pre-cooling, thawed, transplanted to SCID mice and then, after 45 d of culture their quality was analyzed. Group 4 pieces (n=30) were frozen after 24 h pre-cooling to 5°C, thawed, transplanted to SCID mice and then, after 45 d their quality was analyzed. The effectiveness of the pre-freezing cooling of tissuewas evaluated by the development of follicles (histology) and by intensiveness of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). For groups 1, 2, 3 and 4 the mean densities of follicles per 1 mm3 was 19.0, 20.2, 12.9, and 12.2, respectively (P1-2, 3-4 >0.1). For these groups, 99%, 98%, 88% and 90% preantral follicles, respectively were morphologically normal (P1-2, 3-4 >0.1). The FACS analysis showed significantly decreased intensiveness of translocation of phosphatidylserine after pre-cooling of frozen tissue (46.3% and 33.6% in

  11. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.

    2006-01-15

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg{sup 2+}-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg{sup 2+} in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca{sup 2+}-sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca{sup 2+} activity and/or activate a sphingomyelinase leading to formation ofmore » ceramide. Ceramide sensitizes the scramblase to Ca{sup 2+}. The present experiments explored the effect of Hg{sup 2+} ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg{sup 2+} (1 {mu}M) indeed significantly increased annexin binding from 2.3 {+-} 0.5% (control condition) to 23 {+-} 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K{sup +}-selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by {approx}66% (n = 7) after challenge with mercury (1 {mu}M). In conclusion, mercury ions activate a clotrimazole-sensitive K{sup +}-selective conductance leading to transient cell shrinkage. Moreover, Hg{sup 2+} increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg{sup 2+}.« less

  12. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  13. An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure.

    PubMed

    Segawa, Katsumori; Nagata, Shigekazu

    2015-11-01

    Apoptosis and the clearance of apoptotic cells are essential processes in animal development and homeostasis. For apoptotic cells to be cleared, they must display an 'eat me' signal, most likely phosphatidylserine (PtdSer) exposure, which prompts phagocytes to engulf the cells. PtdSer, which is recognized by several different systems, is normally confined to the cytoplasmic leaflet of the plasma membrane by a 'flippase'; apoptosis activates a 'scramblase' that quickly exposes PtdSer on the cell surface. The molecules that flip and scramble phospholipids at the plasma membrane have recently been identified. Here we discuss recent findings regarding the molecular mechanisms of apoptotic PtdSer exposure and the clearance of apoptotic cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khudyakov, D V; Borodkin, A A; Vartapetov, S K

    2015-09-30

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)

  15. Phonon Dispersion in Chiral Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Vamivakas, Anthony Nickolas; Fang, Yan; Wang, Bolin

    The method to obtain phonon dispersion of achiral single-wall carbon nanotubes (SWNTs) from 6×6 matrix proposed by Mahan and Jeon7 has been extended to chiral SWNTs. The number of calculated phonon modes of a chiral SWNT (10, 1) is much larger than that of a zigzag one (10, 0) because the number of atoms in the translational unit cell of chiral SWNT is larger than that of an achiral one even though they have relative similar radius. The possible application of our approach to other models with more phonon potential terms beyond Mahan and Jeon's model is discussed.

  16. Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi

    2016-11-01

    Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.

  17. Echocardiographic Ischemic Memory Imaging Through Complement-Mediated Vascular Adhesion of Phosphatidylserine-Containing Microbubbles.

    PubMed

    Mott, Brian; Packwood, William; Xie, Aris; Belcik, J Todd; Taylor, Ronald P; Zhao, Yan; Davidson, Brian P; Lindner, Jonathan R

    2016-08-01

    This study hypothesized that microvascular retention of phosphatidylserine-containing microbubbles (MB-PS) would allow detection of recent but resolved myocardial ischemia with myocardial contrast echocardiographic (MCE) molecular imaging. Techniques for ischemic memory imaging which can detect and spatially assess resolved myocardial ischemia are being developed for rapid evaluation of patients with chest pain. MCE molecular imaging with MB-PS was performed 1.5 h, 3.0 h, and 6.0 h after brief (10 min) myocardial ischemia in mice; data were compared to selectin-targeted microbubbles. MCE molecular imaging with Sonazoid (GE Healthcare, Amersham, United Kingdom), a commercially produced phosphatidylserine (PS) - containing agent, was performed in separate mice at 1.5 h and 3.0 h after ischemia-reperfusion; and in dogs undergoing 135 min of ischemia and 60 min of reflow as well as in closed-chest nonischemic control dogs. The mechanism for MB-PS attachment was assessed by intravital microscopy of post-ischemic muscle and by flow cytometry analysis of cell-MB interactions. In mice undergoing ischemia-reperfusion without infarction, signal enhancement in the risk area for MB-PS and p-selectin glycoprotein ligand-1-targeted microbubbles was similar at reflow times of 1.5 h (23.3 ± 7.3 IU vs. 30.7 ± 4.1 IU), 3.0 h (42.2 ± 6.2 IU vs. 33.9 ± 7.4 IU), and 6.0 h (24.1 ± 4.3 IU vs. 25.5 ± 4.7 IU). For both agents, signal in the risk area was significantly (p < 0.05) higher than remote region at all reflow times. Sonazoid also produced strong risk area enhancement at 1.5 h (34.7 ± 5.0 IU) and 3.0 h (52.5 ± 4.5 IU) which was approximately 3-fold greater than in the control region, and which correlated spatially with the microsphere-derived risk area. In dogs, Sonazoid signal in the risk area was >5-fold higher than in closed-chest control myocardium (42.2 ± 8.1 IU vs. 7.9 ± 3.3 IU; p < 0.001). Mechanistic studies indicated that MB-PS attached directly to venular

  18. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  19. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    PubMed Central

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  20. Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics

    PubMed Central

    Heller, Daniel A.; Pratt, George W.; Zhang, Jingqing; Nair, Nitish; Hansborough, Adam J.; Boghossian, Ardemis A.; Reuel, Nigel F.; Barone, Paul W.; Strano, Michael S.

    2011-01-01

    A class of peptides from the bombolitin family, not previously identified for nitroaromatic recognition, allows near-infrared fluorescent single-walled carbon nanotubes to transduce specific changes in their conformation. In response to the binding of specific nitroaromatic species, such peptide–nanotube complexes form a virtual “chaperone sensor,” which reports modulation of the peptide secondary structure via changes in single-walled carbon nanotubes, near-infrared photoluminescence. A split-channel microscope constructed to image quantized spectral wavelength shifts in real time, in response to nitroaromatic adsorption, results in the first single-nanotube imaging of solvatochromic events. The described indirect detection mechanism, as well as an additional exciton quenching-based optical nitroaromatic detection method, illustrate that functionalization of the carbon nanotube surface can result in completely unique sites for recognition, resolvable at the single-molecule level. PMID:21555544

  1. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles*

    PubMed Central

    Martin, Katherine R.; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M.; Witko-Sarsat, Véronique

    2016-01-01

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  3. Investigation into the role of phosphatidylserine in modifying the susceptibility of human lymphocytes to secretory phospholipase A(2) using cells deficient in the expression of scramblase.

    PubMed

    Nelson, Jennifer; Francom, Lyndee L; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M; Bell, John D

    2012-05-01

    Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A(2) but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt's lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A(2). Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A(2). These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A(2), it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Investigation into the Role of Phosphatidylserine in Modifying the Susceptibility of Human Lymphocytes to Secretory Phospholipase A2 using Cells Deficient in the Expression of Scramblase

    PubMed Central

    Nelson, Jennifer; Francom, Lyndee L.; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M.; Bell, John D.

    2012-01-01

    Summary Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A2 but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt’s lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A2. Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100 s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A2. These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A2, it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine. PMID:22266334

  5. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  6. Photoinduced Spontaneous Free-Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes

    DOE PAGES

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; ...

    2015-11-04

    The strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. We found that the conditions of the microwave conductivity measurement allow us tomore » avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. At low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.« less

  7. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    PubMed

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  8. Single-Walled Carbon Nanotubes in Solar Cells.

    PubMed

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  9. Highly multiplexed targeted DNA sequencing from single nuclei.

    PubMed

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  10. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letts, V.A.; Henry, S.A.

    1985-08-01

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesismore » of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed.« less

  11. Thymosin α1 Interacts with Exposed Phosphatidylserine in Membrane Models and in Cells and Uses Serum Albumin as a Carrier.

    PubMed

    Mandaliti, Walter; Nepravishta, Ridvan; Sinibaldi Vallebona, Paola; Pica, Francesca; Garaci, Enrico; Paci, Maurizio

    2016-03-15

    Thymosin α1 is a peptidic hormone with pleiotropic activity and is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of vesicles by assuming two tracts of helical conformation with a structural break between them. This study reports on Thymosin α1's interaction with mixed phospholipids phosphatidylcholine and phosphatidylserine, the negative component of the membranes, by ¹H and natural abundance ¹⁵N nuclear magnetic resonance (NMR). The results indicate that interaction occurs when the membrane is negatively charged by exposing phosphatidylserine. Moreover, the direct interaction of Thymosin α1 with K562 cells with an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was conducted. Thymosin α1's interaction with human serum albumin was also investigated by NMR spectroscopy. Steady-state saturation transfer, transfer nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy methodologies all reveal that the C-terminal region of Thymosin α1 is involved in the interaction with serum albumin. These results may shed more light on Thymosin α1's mechanism of action by its insertion in negative regions of membranes due to the exposure of phosphatidylserine. Once Thymosin α1's N-terminus has been inserted into the membrane, the rest may interact with nearby proteins and/or receptors acting as effectors and causing a biological signaling cascade, thus exerting thymosin α1's pleiotropy.

  12. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

    PubMed

    Fu, Qiang; Liu, Jie

    2005-07-21

    A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.

  13. Estimation of Effective Directional Strength of Single Walled Wavy CNT Reinforced Nanocomposite

    NASA Astrophysics Data System (ADS)

    Bhowmik, Krishnendu; Kumar, Pranav; Khutia, Niloy; Chowdhury, Amit Roy

    2018-03-01

    In this present work, single walled wavy carbon nanotube reinforced into composite has been studied to predict the effective directional strength of the nanocomposite. The effect of waviness on the overall Young’s modulus of the composite has been analysed using three dimensional finite element model. Waviness pattern of carbon nanotube is considered as periodic cosine function. Both long (continuous) and short (discontinuous) carbon nanotubes are being idealized as solid annular tube. Short carbon nanotube is modelled with hemispherical cap at its both ends. Representative Volume Element models have been developed with different waviness, height fractions, volume fractions and modulus ratios of carbon nanotubes. Consequently a micromechanics based analytical model has been formulated to derive the effective reinforcing modulus of wavy carbon nanotubes. In these models wavy single walled wavy carbon nanotubes are considered to be aligned along the longitudinal axis of the Representative Volume Element model. Results obtained from finite element analyses are compared with analytical model and they are found in good agreement.

  14. Optically active single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro

    2007-06-01

    The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral `gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.

  15. Dissimilarity of increased phosphatidylserine-positive microparticles and associated coagulation activation in acute coronary syndromes.

    PubMed

    Liu, Yan; He, Zhangxiu; Zhang, Yan; Dong, Zengxiang; Bi, Yayan; Kou, Junjie; Zhou, Jin; Shi, Jialan

    2016-08-01

    We evaluated cellular origin, numbers, and procoagulant activity of phosphatidylserine-positive microparticles (MPs) among subgroups in acute coronary syndromes (ACS). Parameters were measured on admission, days 1 (within 24 h of admission), 2, 3, and 7. All ST-elevated myocardial infarction (STEMI) patients presented more than 3 h from symptom onset and received fibrinolysis treatment; controls included unstable angina and non-STEMI patients as well as healthy controls. Phosphatidylserine-positive MPs were detected by flow cytometry, whereas procoagulant activity was assessed by coagulation time, purified coagulation complex assays, and fibrin formation. MP-induced fibrins were visualized by confocal microscopy. On admission, the total MP count was ∼2.5-fold higher in the ACS groups compared with the healthy controls (P<0.05), primarily originating from platelets and endothelial cells, and there were no significant differences among ACS subgroups. Specifically, leukocyte-derived and erythrocyte-derived MPs were higher in the STEMI group compared with unstable angina and non-STEMI groups (both P<0.05). Further, MPs from the ACS groups reduced coagulation time by 27.5% and induced intrinsic and extrinsic FXase, prothrombinase, and fibrin formation by 2.8-, 2.3-, 2.5-, and 1.7-fold, respectively (P<0.05 for all), whereas blocking phosphatidylserine with lactadherin inhibited ∼70% of procoagulant activity. MP number and concomitant coagulation decreased significantly by day 2 and continued to decrease gradually during the recovery period. This study shows that MP characteristics from circulating blood may be used as prognostic indicators to reflect the origin cell of activation and thrombophilic states found in ACS subgroups.

  16. Single Wall Carbon Nanotube Alignment Mechanisms for Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Hong, Seunghun

    2002-01-01

    As proposed in our original proposal, we developed a new innovative method to assemble millions of single wall carbon nanotube (SWCNT)-based circuit components as fast as conventional microfabrication processes. This method is based on surface template assembly strategy. The new method solves one of the major bottlenecks in carbon nanotube based electrical applications and, potentially, may allow us to mass produce a large number of SWCNT-based integrated devices of critical interests to NASA.

  17. Single Wall Carbon Nanotube-polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  18. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    NASA Astrophysics Data System (ADS)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  19. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com; Academy of Scientific and Innovative Research

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to itsmore » complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.« less

  20. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics

    NASA Astrophysics Data System (ADS)

    Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.

    2018-04-01

    Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.

  1. Self-assembly of single-wall carbon nanotubes during the cooling process of hot carbon gas.

    PubMed

    Wen, Yushi; Zheng, Ke; Long, Xinping; Li, Ming; Xue, Xianggui; Dai, Xiaogan; Deng, Chuan

    2018-04-25

    In this work, self-assembly mechanism of single-wall carbon nanotube (SWCNT) during the annealing process of hot gaseous carbon is presented using reactive force field (ReaxFF)-based reactive molecular simulations. A series of simulations were performed on the evolution of reactive carbon gas. The simulation results show that the reactive carbon gas can be assembled into regular SWCNT without a catalyst. Five distinct stages of SWCNT self-assembly are proposed. For some initial configurations, the CNT was found to spin at an ultra-high rate after the nucleation. Graphical abstract Self-assembly process of single-wall carbon nanotube from the annealing of hot gaseous carbon.

  2. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  3. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  4. Antibodies to Phosphatidylserine/Prothrombin Complex in Antiphospholipid Syndrome: Analytical and Clinical Perspectives.

    PubMed

    Peterson, Lisa K; Willis, Rohan; Harris, E Nigel; Branch, Ware D; Tebo, Anne E

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy-related morbidity accompanied by persistently positive antiphospholipid antibodies (aPL). Current laboratory criteria for APS classification recommend testing for lupus anticoagulant as well as IgG and IgM anticardiolipin, and beta-2 glycoprotein I (anti-β2GPI) antibodies. However, there appears to be a subset of patients with classical APS manifestations who test negative for the recommended criteria aPL tests. While acknowledging that such patients may have clinical features that are not of an autoimmune etiology, experts also speculate that these "seronegative" patients may test negative for relevant autoantibodies as a result of a lack of harmonization and/or standardization. Alternatively, they may have aPL that target other antigens involved in the pathogenesis of APS. In the latter, autoantibodies that recognize a phosphatidylserine/prothrombin (PS/PT) complex have been reported to be associated with APS and may have diagnostic relevance. This review highlights analytical and clinical attributes associated with PS/PT antibodies, taking into consideration the performance characteristics of criteria aPL tests in APS with specific recommendations for harmonization and standardization efforts. © 2016 Elsevier Inc. All rights reserved.

  5. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, M.P.; Wang, H.H.

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchRmore » {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.« less

  6. Phosphatidylserine Stimulates Ceramide 1-Phosphate (C1P) Intermembrane Transfer by C1P Transfer Proteins.

    PubMed

    Zhai, Xiuhong; Gao, Yong-Guang; Mishra, Shrawan K; Simanshu, Dhirendra K; Boldyrev, Ivan A; Benson, Linda M; Bergen, H Robert; Malinina, Lucy; Mundy, John; Molotkovsky, Julian G; Patel, Dinshaw J; Brown, Rhoderick E

    2017-02-10

    Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant ( acd11 ). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, "soluble" phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    PubMed Central

    Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C. H.; Labavitch, John M.; Powell, Ann L. T.; Cantu, Dario

    2014-01-01

    Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue. PMID:25232357

  8. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography

    PubMed Central

    Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi

    2011-01-01

    Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063

  9. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.

  10. Protective Effect of Anti-Phosphatidylserine Antibody in a Guinea Pig Model of Advanced Hemorrhagic Arenavirus Infection.

    PubMed

    Thomas, John M; Thorpe, Philip E

    2017-01-01

    Host derived markers on virally infected cells or virions may provide targets for the generation of antiviral agents. Recently, we identified phosphatidylserine (PS) as a host marker of virions and virally-infected cells. Under normal physiological conditions, PS is maintained on the inner leaflet of the plasma membrane facing the cytosol. Following viral infection, activation or pre-apoptotic changes cause PS to become externalized. We have previously shown that bavituximab, a chimeric human-mouse antibody that binds PS complexed with β2-glycoprotein I (β2GP1), protected rodents against lethal Pichinde virus and cytomegalovirus infections. Here, we determined the antiviral activity of a fully human monoclonal antibody, PGN632, that directly binds to PS. Treatment with PGN632 protected 20% of guinea pigs with advanced infections of the hemorrhagic arenavirus, Pichinde, from death. Combining PGN632 with ribavirin improved the antiviral activity of both agents, such that the combination rescued 50% of animals from death. The major mechanisms of action of PGN632 appear to be opsonization of virus and antibody-dependent cellular cytotoxicity of virally-infected cells. PS-targeting agents may have utility in the treatment of viral diseases.

  11. Photoluminescence Brightening of Isolated Single-Walled Carbon Nanotubes

    DOE PAGES

    Hou, Zhentao; Krauss, Todd D.

    2017-09-22

    Addition of dithiothreitol (DTT) to a suspension consisting of either DNA or sodium dodecyl sulfate (SDS) wrapped single-walled carbon nanotubes (SWCNTs) caused significant photoluminescence (PL) brightening from the SWCNTs, while PL quenching to different extents was observed for other surfactant-SWCNT suspensions. PL lifetime studies with high temporal resolution show that addition of DTT mitigates non-radiative decay processes, but also surprisingly increases the radiative decay rate for DNA- and SDS-SWCNTs. There are completely opposite effects on the decay rates found for the other surfactant-SWCNTs and show PL quenching. Here, we propose that the PL brightening results from a surfactant reorganization uponmore » DTT addition. TOC« less

  12. Aggregation Kinetics and Transport of Single-Walled CarbonNanotubes at Low Surfactant Concentrations

    EPA Science Inventory

    Little is known about how low levels of surfactants can affect the colloidal stability of single-walled carbon nanotubes (SWNTs) and how surfactant-wrapping of SWNTs can impact ecological exposures in aqueous systems. In this study, SWNTs were suspended in water with sodium ...

  13. On the Likelihood of Single-Walled Carbon Nanotubes Causing Adverse Marine Ecological Effects

    EPA Science Inventory

    This brief article discusses the ecological effects of single-walled carbon nanotubes (SWNTs)in the marine environment. Based on new research and a review of the scientific literature, the paper concludes that SWNTs are unlikely to cause adverse ecological effects in the marine ...

  14. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2017-02-01

    In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  15. In Vitro Induction of Erythrocyte Phosphatidylserine Translocation by the Natural Naphthoquinone Shikonin

    PubMed Central

    Lupescu, Adrian; Bissinger, Rosi; Jilani, Kashif; Lang, Florian

    2014-01-01

    Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation. PMID:24828755

  16. Fluorescent single walled nanotube/silica composite materials

    DOEpatents

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  17. Evolution of dispersion coefficient in the single rough-walled fracture before and after circulated flow near the wall

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yeo, I.; Lee, K.

    2012-12-01

    Understanding detailed solute transport mechanism in a single fracture is required to expand it to the complex fractured medium. Dispersion in the variable-aperture fractures occurs by combined effects of molecular diffusion, macro dispersion and Taylor dispersion. It has been reported that Taylor dispersion which is proportional to the square of the velocity dominates for the high velocity, while macro dispersion is proportional to the velocity. Contributions of each scheme are different as the velocity changes. To investigate relationship between Reynolds number and dispersion coefficient, single acrylic rough-walled fracture which has 20 cm length and 1.03 mm average aperture was designed. In this experiment, dispersion coefficient was calculated at the middle of the fracture and at the edge of the fracture via moment analysis using breakthrough curve (BTC) of fluorescent solute under the Reynolds number 0.08, 0.28, 2.78, 8.2 and 16.4. In the results, distinct dispersion regime was observed at the highly rough-walled fracture, which is inconsistent with the model that was suggested by previous research. In the range of Re < 2.78, the dispersion coefficient was proportional to the power of n (1 2.78. The reason of this transition zone was related to the generation of circulated flow near the wall. It can flush the trapped contaminant out to the main flow channel, which makes tailing effect diminished. Also, these circulation zones were visualized using microscope, CCD camera and fluorescent particles.

  18. Recent progress on the structure separation of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Jiaming; Yang, Dehua; Zeng, Xiang; Zhou, Naigen; Liu, Huaping

    2017-11-01

    The mass production of single-structure, single-wall carbon nanotubes (SWCNTs) with identical properties is critical for their basic research and technical applications in the fields of electronics, optics and optoelectronics. Great efforts have been made to control the structures of SWCNTs since their discovery. Recently, the structure separation of SWCNTs has been making great progress. Various solution-sorting methods have been developed to achieve not only the separation of metallic and semiconducting species, but also the sorting of distinct (n, m) single-chirality species and even their enantiomers. This progress would dramatically accelerate the application of SWCNTs in the next-generation electronic devices. Here, we review the recent progress in the structure sorting of SWCNTs and outline the challenges and prospects of the structure separation of SWCNTs.

  19. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. © 2015. Published by The Company of Biologists Ltd.

  20. Tracking single membrane targets of human autoantibodies using single nanoparticle imaging.

    PubMed

    Jézéquel, Julie; Dupuis, Julien P; Maingret, François; Groc, Laurent

    2018-04-21

    Over the past decade, an increasing number of neurological and neuropsychiatric diseases have been associated with the expression of autoantibodies directed against neuronal targets, including neurotransmitter receptors. Although cell-based assays are routinely used in clinics to detect the presence of immunoglobulins, such tests often provide heterogeneous outcomes due to their limited sensitivity, especially at low titers. Thus, there is an urging need for new methods allowing the detection of autoantibodies in seropositive patients that cannot always be clinically distinguished from seronegative ones. Here we make a case for single nanoparticle imaging approaches as a highly sensitive antibody detection assay. Through high-affinity interactions between functionalized nanoparticles and autoantibodies that recognize extracellular domains of membrane neuronal targets, single nanoparticle imaging allows a live surface staining of transmembrane proteins and gives access to their surface dynamics. We show here that this method is well-suited to detect low titers of purified immunoglobulin G (IgG) from first-episode psychotic patients and demonstrate that these IgG target glutamatergic N-Methyl-d-Aspartate receptors (NMDAR) in live hippocampal neurons. The molecular behaviors of targeted membrane receptors were indistinguishable from those of endogenous GluN1 NMDAR subunit and were virtually independent of the IgG concentration present in the sample contrary to classical cell-based assays. Single nanoparticle imaging emerges as a real-time sensitive method to detect IgG directed against neuronal surface proteins, which could be used as an additional step to rule out ambiguous seropositivity diagnoses. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Purification of semiconducting single-walled carbon nanotubes by spiral counter-current chromatography.

    PubMed

    Knight, Martha; Lazo-Portugal, Rodrigo; Ahn, Saeyoung Nate; Stefansson, Steingrimur

    2017-02-03

    Over the last decade man-made carbon nanostructures have shown great promise in electronic applications, but they are produced as very heterogeneous mixtures with different properties so the achievement of a significant commercial application has been elusive. The dimensions of single-wall carbon nanotubes are generally a nanometer wide, up to hundreds of microns long and the carbon nanotubes have anisotropic structures. They are processed to have shorter lengths but they need to be sorted by diameter and chirality. Thus counter-current chromatography methods developed for large molecules are applied to separate these compounds. A modified mixer-settler spiral CCC rotor made with 3 D printed disks was used with a polyethylene glycol-dextran 2-phase solvent system and a surfactant gradient to purify the major species in a commercial preparation. We isolated the semi-conducting single walled carbon nanotube chiral species identified by UV spectral analysis. The further development of spiral counter-current chromatography instrumentation and methods will enable the scalable purification of carbon nanotubes useful for the next generation electronics. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparison of patient-derived high and low phosphatidylserine-exposing colorectal carcinoma cells in their interaction with anti-cancer peptides.

    PubMed

    Wilms, Dominik; Andrä, Jörg

    2017-01-01

    Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi-)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti-cancer therapeutics. Peptide NK-2, derived from porcine NK-lysin, was originally discovered due to its broad-spectrum antimicrobial activities. Today, also potent anti-cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non-abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK-2 and structurally improved anti-cancer variants thereof against two patient-derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle-based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface-exposed phosphatidylserine is of crucial importance for the activity of peptide NK-2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  3. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  4. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability

    PubMed Central

    2010-01-01

    Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation

  5. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M

    2018-01-01

    Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous

  6. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    PubMed Central

    2012-01-01

    The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP) onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs) increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K. PMID:23369489

  7. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    EPA Science Inventory

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  8. Multi-ligand nanoparticles for targeted drug delivery to the injured vascular wall

    NASA Astrophysics Data System (ADS)

    Kona, Soujanya

    Pathological conditions like coronary artery disease, acute myocardial infarction, stroke, and peripheral artery diseases as well as cardiovascular interventions used in the treatment of coronary artery diseases such as angioplasty and stenting damage/injure the blood vessel wall, leading to inflamed or activated endothelial cells that have been implicated in events leading to thrombosis, inflammation, and restenosis. Oral administration of anti-coagulant and anti-inflammatory drugs causes systemic toxicity, bleeding, patient incompliance, and inadequate amounts of drugs at the injured area. Though drug-eluting stents have shown therapeutic benefits, complications such as in-stent restenosis and late thrombosis still remain and are a cause for concern. Rapid growth in the field of nanotechnology and nanoscience in recent years has paved the way for new targeted and controlled drug delivery strategies. In this perspective, the development of biodegradable nanoparticles for targeted intracellular drug delivery to the inflamed endothelial cells may offer an improved avenue for treatment of cardiovascular diseases. The major objective of this research was to develop "novel multi-ligand nanoparticles," as drug carriers that can efficiently target and deliver therapeutic agents to the injured/inflamed vascular cells under dynamic flow conditions. Our approach mimics the natural binding ability of platelets to injured/activated endothelial cells through glycoprotein Ib (GPIb) bound to P-selectin expressed on inflamed endothelial cells and to the subendothelium through GPIb binding to von Willebrand factor (vWF) deposited onto the injured vascular wall. Our design also exploits the natural cell membrane translocation ability of the internalizing cell peptide - trans-activating transcriptor (TAT) to enhance the nanoparticle uptake by the targeted cells. Our hypothesis is that these multi-ligand nanoparticles would show an increased accumulation at the injury site since GPIb

  9. Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow.

    PubMed

    Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2013-09-03

    The blood vessel wall plays a prominent role in the development of many life-threatening diseases and as such is an attractive target for treatment. To target diseased tissue, particulate drug carriers often have their surfaces modified with antibodies or epitopes specific to vascular wall-expressed molecules, along with poly(ethylene glycol) (PEG) to improve carrier blood circulation time. However, little is known about the effect of poly(ethylene glycol) on carrier adhesion dynamics-specifically in blood flow. Here we examine the influence of different molecular weight PEG spacers on particle adhesion in blood flow. Anti-ICAM-1 or Sialyl Lewis(a) were grafted onto polystyrene 2 μm and 500 nm spheres via PEG spacers and perfused in blood over activated endothelial cells at physiological shear conditions. PEG spacers were shown to improve, reduce, or have no effect on the binding density of targeted-carriers depending on the PEG surface conformation, shear rate, and targeting moiety.

  10. Conducting polymer functionalized single-walled carbon nanotube based chemiresistive biosensor for the detection of human cardiac myoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Nidhi; Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025; Niazi, Asad

    2014-10-13

    We report the fabrication of a single-walled carbon nanotube (SWNT) based ultrasensitive label-free chemiresistive biosensor for the detection of human cardiac biomarker, myoglobin (Ag-cMb). Poly(pyrrole-co-pyrrolepropylic acid) with pendant carboxyl groups was electrochemically deposited on electrophoretically aligned SWNT channel, as a conducting linker, for biomolecular immobilization of highly specific cardiac myoglobin antibody. The device was characterized by scanning electron microscopy, source-drain current-voltage (I-V), and charge-transfer characteristic studies. The device exhibited a linear response with a change in conductance in SWNT channel towards the target, Ag-cMb, over the concentration range of 1.0 to 1000 ng ml{sup −1} with a sensitivity of ∼118% per decademore » with high specificity.« less

  11. The influence of wall resonances on the levitation of objects in a single-axis acoustic processing chamber

    NASA Technical Reports Server (NTRS)

    Ross, B. B.

    1980-01-01

    Instabilities were observed in high temperature, single axis acoustic processing chambers. At certain temperatures, strong wall resonances were generated within the processing chamber itself and these transverse resonances were thought sufficient to disrupt the levitation well. These wall resonances are apparently not strong enough to cause instabilities in the levitation well.

  12. New Method Developed To Purify Single Wall Carbon Nanotubes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Meador, Michael A.

    2003-01-01

    Single wall carbon nanotubes have attracted considerable attention because of their remarkable mechanical properties and electrical and thermal conductivities. Use of these materials as primary or secondary reinforcements in polymers or ceramics could lead to new materials with significantly enhanced mechanical strength and electrical and thermal conductivity. Use of carbon-nanotube-reinforced materials in aerospace components will enable substantial reductions in component weight and improvements in durability and safety. Potential applications for single wall carbon nanotubes include lightweight components for vehicle structures and propulsion systems, fuel cell components (bipolar plates and electrodes) and battery electrodes, and ultra-lightweight materials for use in solar sails. A major barrier to the successful use of carbon nanotubes in these components is the need for methods to economically produce pure carbon nanotubes in large enough quantities to not only evaluate their suitability for certain applications but also produce actual components. Most carbon nanotube synthesis methods, including the HiPCO (high pressure carbon monoxide) method developed by Smalley and others, employ metal catalysts that remain trapped in the final product. These catalyst impurities can affect nanotube properties and accelerate their decomposition. The development of techniques to remove most, if not all, of these impurities is essential to their successful use in practical applications. A new method has been developed at the NASA Glenn Research Center to purify gram-scale quantities of single wall carbon nanotubes. This method, a modification of a gas phase purification technique previously reported by Smalley and others, uses a combination of high-temperature oxidations and repeated extractions with nitric and hydrochloric acid. This improved procedure significantly reduces the amount of impurities (catalyst and nonnanotube forms of carbon) within the nanotubes, increasing

  13. Surface-enhanced Raman scattering on single-wall carbon nanotubes.

    PubMed

    Kneipp, Katrin; Kneipp, Harald; Dresselhaus, Mildred S; Lefrant, Serge

    2004-11-15

    Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure.

  14. Effect of Ion Binding in Palmitoyl-Oleoyl Phosphatidylserine Monolayers

    NASA Astrophysics Data System (ADS)

    Eckler, Matthew; Matysiak, Silvina

    2013-03-01

    Molecular dynamics simulations of palmitoyl-oleoyl phosphatidylserine (POPS) monolayers at the air-water interface were performed with different ionic strengths with the aim of determining the specific organization and dynamics of counterion binding events. Na + ions penetrated the monolayers into both the ester carbonyl and carboxylate regions of the phospholipids. The binding events increase with the addition of salt. Differences in lipid order parameter, headgroup orientation, and prevalence of inter- and intramolecular hydrogen bonding events between the amine group of the lipid and oxygen groups are observed depending on whether the Na + is binding near the carboxylate or ester region of the lipid. The observed changes are explained in terms of the salting-out effect.

  15. Stereochemistry- and concentration-dependent effects of phosphatidylserine enrichment on platelet function.

    PubMed

    Meyer, Audrey F; Gruba, Sarah M; Kim, Donghyuk; Meyer, Ben M; Koseoglu, Secil; Dalluge, Joseph J; Haynes, Christy L

    2017-08-01

    Platelets are small (1-2μm in diameter), circulating anuclear cell fragments with important roles in hemostasis and thrombosis that provide an excellent platform for studying the role of membrane components in cellular communication. Platelets use several forms of communication including exocytosis of three distinct granule populations, formation of bioactive lipid mediators, and shape change (allowing for adhesion). This work explores the role of stereochemistry and concentration of exogenous phosphatidylserine (PS) on platelet exocytosis and adhesion. PS, most commonly found in the phosphatidyl-l-serine (l-PS) form, is exposed on the outer leaflet of the cell membrane after the platelet is activated. Knowledge about the impact of exogenous phosphatidylserine on cell-to-cell communication is limited (particularly concentration and stereochemistry effects). This study found that platelets incubated in l-PS or phosphatidyl-d-serine (d-PS) are enriched to the same extent with their respective incubated PS. All levels of l-PS enrichment also showed an increase in platelet cholesterol, but only the 50μM d-PS incubation showed an increase in cholesterol. The uptake of d-PS induced the secretion of granules and manufactured platelet activating factor (PAF) in otherwise unstimulated platelets. The uptake of l-PS had a greater impact on platelet stimulation by decreasing both the amount of δ-granule secretion and the amount of PAF that was manufactured. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells.

    PubMed

    Jin, Hong; Heller, Daniel A; Strano, Michael S

    2008-06-01

    Over 10000 individual trajectories of nonphotobleaching single-walled carbon nanotubes (SWNT) were tracked as they are incorporated into and expelled from NIH-3T3 cells in real time on a perfusion microscope stage. An analysis of mean square displacement allows the complete construction of the mechanistic steps involved from single duration experiments. We observe the first conclusive evidence of SWNT exocytosis and show that the rate closely matches the endocytosis rate with negligible temporal offset. We identify and study the endocytosis and exocytosis pathway that leads to the previously observed aggregation and accumulation of SWNT within the cells.

  17. Extracellular entrapment and degradation of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farrera, Consol; Bhattacharya, Kunal; Lazzaretto, Beatrice; Andón, Fernando T.; Hultenby, Kjell; Kotchey, Gregg P.; Star, Alexander; Fadeel, Bengt

    2014-05-01

    Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials. Electronic supplementary information (ESI) available: Suppl. Fig. 1 - length distribution of SWCNTs; suppl. Fig. 2 - characterization of pristine vs. oxidized SWCNTs; suppl. Fig. 3 - endotoxin evaluation; suppl. Fig. 4 - NET characterization; suppl. Fig. 5 - UV-Vis/NIR analysis of biodegradation of oxidized SWCNTs; suppl. Fig. 6 - cytotoxicity of partially degraded SWCNTs. See DOI: 10.1039/c3nr06047k

  18. Organic/hybrid nanoparticles and single-walled carbon nanotubes: preparation methods and chiral applications.

    PubMed

    Alhassen, Haysem; Antony, Vijy; Ghanem, Ashraf; Yajadda, Mir Massoud Aghili; Han, Zhao Jun; Ostrikov, Kostya Ken

    2014-11-01

    Nanoparticles are molecular-sized solids with at least one dimension measuring between 1-100 nm or 10-1000 nm depending on the individual discipline's perspective. They are aggregates of anywhere from a few hundreds to tens of thousands of atoms which render them larger than molecules but smaller than bulk solids. Consequently, they frequently exhibit physical and chemical properties somewhere between. On the other hand, nanocrystals are a special class of nanoparticles which have started gaining attention recently owing to their unique crystalline structures which provide a larger surface area and promising applications including chiral separations. Hybrid nanoparticles are supported by the growing interest of chemists, physicists, and biologists, who are researching to fully exploit them. These materials can be defined as molecular or nano-composites with mixed (organic or bio) and inorganic components, where at least one of the component domain has a dimension ranging from a few Å to several nanometers. Similarly, and due to their extraordinary physical, chemical, and electrical properties, single-walled carbon nanotubes have been the subject of intense research. In this short review, the focus is mainly on the current well-established simple preparation techniques of chiral organic and hybrid nanoparticles as well as single-walled carbon nanotubes and their applications in separation science. Of particular interest, cinchonidine, chitosan, and β-CD-modified gold nanoparticles (GNPs) are discussed as model examples for organic and hybrid nanoparticles. Likewise, the chemical vapor deposition method, used in the preparation of single-walled carbon nanotubes, is discussed. The enantioseparation applications of these model nanomaterials is also presented. © 2014 Wiley Periodicals, Inc.

  19. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation.

    PubMed

    Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire

    2017-06-01

    Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.

  20. Fusion energy with lasers, direct drive targets, and dry wall chambers

    NASA Astrophysics Data System (ADS)

    Sethian, J. D.; Friedman, M.; Lehmberg, R. H.; Myers, M.; Obenschain, S. P.; Giuliani, J.; Kepple, P.; Schmitt, A. J.; Colombant, D.; Gardner, J.; Hegeler, F.; Wolford, M.; Swanekamp, S. B.; Weidenheimer, D.; Welch, D.; Rose, D.; Payne, S.; Bibeau, C.; Baraymian, A.; Beach, R.; Schaffers, K.; Freitas, B.; Skulina, K.; Meier, W.; Latkowski, J.; Perkins, L. J.; Goodin, D.; Petzoldt, R.; Stephens, E.; Najmabadi, F.; Tillack, M.; Raffray, R.; Dragojlovic, Z.; Haynes, D.; Peterson, R.; Kulcinski, G.; Hoffer, J.; Geller, D.; Schroen, D.; Streit, J.; Olson, C.; Tanaka, T.; Renk, T.; Rochau, G.; Snead, L.; Ghoneim, N.; Lucas, G.

    2003-12-01

    A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy. The key components are developed in concert with one another and the science and engineering issues are addressed concurrently. Recent advances include: target designs have been evaluated that show it could be possible to achieve the high gains (>100) needed for a practical fusion system.These designs feature a low-density CH foam that is wicked with solid DT and over-coated with a thin high-Z layer. These results have been verified with three independent one-dimensional codes, and are now being evaluated with two- and three-dimensional codes. Two types of lasers are under development: Krypton Fluoride (KrF) gas lasers and Diode Pumped Solid State Lasers (DPSSL). Both have recently achieved repetitive 'first light', and both have made progress in meeting the fusion energy requirements for durability, efficiency, and cost. This paper also presents the advances in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminium at grazing incidence has high reflectivity and exceeds the required laser damage threshold), target fabrication (demonstration of smooth DT ice layers grown over foams, batch production of foam shells, and appropriate high-Z overcoats), and target injection (new facility for target injection and tracking studies).

  1. Laser-induced forward transfer of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2014-10-01

    The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

  2. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.

    PubMed

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2016-09-01

    Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  4. Inkjet printing of aligned single-walled carbon-nanotube thin films

    NASA Astrophysics Data System (ADS)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  5. Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram

    2003-01-01

    We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.

  6. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    PubMed

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  7. Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Gorelik, Olga; Proft, William J.

    2000-01-01

    Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.

  8. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia

    PubMed Central

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth

    2016-01-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. PMID:27997532

  9. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia.

    PubMed

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth; Perlson, Eran; Ast, Gil

    2016-12-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.

  10. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE PAGES

    Márquez, Francisco; López, Vicente; Morant, Carmen; ...

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 ° C . The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  11. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  12. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  13. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-03-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  14. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  15. A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2012-01-24

    REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube

  16. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation

    PubMed Central

    Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.

    2012-01-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130

  17. Ignition of deuterium-trtium fuel targets

    DOEpatents

    Musinski, Donald L.; Mruzek, Michael T.

    1991-01-01

    A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.

  18. Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates.

    PubMed

    Yucelen, G Ipek; Choudhury, Rudra Prosad; Vyalikh, Anastasia; Scheler, Ulrich; Beckham, Haskell W; Nair, Sankar

    2011-04-13

    We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy ((27)Al liquid-state, (27)Al and (29)Si solid-state MAS), and dynamic light scattering. Together with structural optimization of key experimentally identified species by solvated density functional theory calculations, this study reveals the existence of intermediates with bonding environments, as well as intrinsic curvature, similar to the structure of the final nanotube product. We show that "proto-nanotube-like" intermediates with inherent curvature form in aqueous synthesis solutions immediately after initial hydrolysis of reactants, disappear from the solution upon heating to 95 °C due to condensation accompanied by an abrupt pH decrease, and finally form ordered single-walled aluminosilicate nanotubes. Detailed quantitative analysis of NMR and ESI-MS spectra from the relevant aluminosilicate, aluminate, and silicate solutions reveals the presence of a variety of monomeric and polymeric aluminate and aluminosilicate species (Al(1)Si(x)-Al(13)Si(x)), such as Keggin ions [AlO(4)Al(12)(OH)(24)(H(2)O)(12)](7+) and polynuclear species with a six-membered Al oxide ring unit. Our study also directly reveals the complexation of aluminate and aluminosilicate species with perchlorate species that most likely inhibit the formation of larger condensates or nontubular structures. Integration of all of our results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. © 2011 American

  19. Single-particle studies of band alignment effects on electron transfer dynamics from semiconductor hetero-nanostructures to single-walled carbon nanotubes.

    PubMed

    Yuan, Chi-Tsu; Wang, Yong-Gang; Huang, Kuo-Yen; Chen, Ting-Yu; Yu, Pyng; Tang, Jau; Sitt, Amit; Banin, Uri; Millo, Oded

    2012-01-24

    We utilize single-molecule spectroscopy combined with time-correlated single-photon counting to probe the electron transfer (ET) rates from various types of semiconductor hetero-nanocrystals, having either type-I or type-II band alignment, to single-walled carbon nanotubes. A significantly larger ET rate was observed for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum dots and to CdSe/CdS dot-in-rod structures. Furthermore, such rapid ET dynamics can compete with both Auger and radiative recombination processes, with significance for effective photovoltaic operation. © 2011 American Chemical Society

  20. Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles.

    PubMed

    Blanco, Víctor M; Chu, Zhengtao; LaSance, Kathleen; Gray, Brian D; Pak, Koon Yan; Rider, Therese; Greis, Kenneth D; Qi, Xiaoyang

    2016-05-31

    Multimodal tumor imaging with targeted nanoparticles potentially offers both enhanced specificity and sensitivity, leading to more precise cancer diagnosis and monitoring. We describe the synthesis and characterization of phenol-substituted, lipophilic orange and far-red fluorescent dyes and a simple radioiodination procedure to generate a dual (optical and nuclear) imaging probe. MALDI-ToF analyses revealed high iodination efficiency of the lipophilic reporters, achieved by electrophilic aromatic substitution using the chloramide 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril (Iodogen) as the oxidizing agent in an organic/aqueous co-solvent mixture. Upon conjugation of iodine-127 or iodine-124-labeled reporters to tumor-targeting SapC-DOPS nanovesicles, optical (fluorescent) and PET imaging was performed in mice bearing intracranial glioblastomas. In addition, tumor vs non-tumor (normal brain) uptake was compared using iodine-125. These data provide proof-of-principle for the potential value of SapC-DOPS for multimodal imaging of glioblastoma, the most aggressive primary brain tumor.

  1. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günay, E.

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values.more » In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.« less

  2. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Review of Electronics Based on Single-Walled Carbon Nanotubes.

    PubMed

    Cao, Yu; Cong, Sen; Cao, Xuan; Wu, Fanqi; Liu, Qingzhou; Amer, Moh R; Zhou, Chongwu

    2017-08-14

    Single-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements. At last, we will discuss future directions which could lead to the broad applications of SWNTs. We hope this review could inspire more research on SWNT-based electronics, and accelerate the applications of SWNTs.

  4. Single-stage evaluation of highly-loaded high-Mach-number compressor stages 5. Data and performance of baseline, corner-blow wall suction and combined corner blow wall suction stator

    NASA Technical Reports Server (NTRS)

    Nikkanen, J. P.; Brooky, J. P.

    1972-01-01

    A single-stage compressor with a rotor tip speed of 1600 ft/sec and a 0.5 hub tip ratio was used to investigate the effects of several stator endwall treatment methods on stage range and performance. These endwall treatment methods consisted of stator corner-blow, annular wall suction upstream of stator leading edge, and combined corner-blow and annular wall suction. The overall stage performance with corner blow was essentially the same as the baseline performance. The performance for the annular wall suction and the combined corner-blow and wall suction showed a reduction in peak efficiency of 2.5 percentage points compared to the baseline data.

  5. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.

    PubMed

    Bandura, Andrei V; Evarestov, Robert A

    2014-02-15

    Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.

  6. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-05-19

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis.

  7. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm.

    PubMed

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M; Mutter, George L; Ozkan, Mihrimah; Ozkan, Cengiz S; Demirci, Utkan

    2016-08-19

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  8. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  9. Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Al-Akhras, M.-Ali H.; Daradkeh, Samer

    2018-02-01

    Field emission microscopy measurements from Single-Walled Carbon Nanotubes (SWCNTs) and Carbon Nano-Fibers Pyrograf III PR-1 (CNF) were performed. Details of the materials employed in the experiments are as follows: (a) Carbon Nano-Fibers Pyrograf III PR-1 (CNF), having an average fiber diameter that is ranging between (100-200) nm with a length of (30-100) μm. (b) Single walled Carbon Nanotubes were produced by high-pressure CO over Fe particle (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with a length of (1-3) μm. The experiments were performed under vacuum pressure value of (10-7 mbar). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For both the SWCNT and the CNF a single spot pattern for the electron spatial; distributions were observed.

  10. Cat-eye effect target recognition with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Jian, Weijian; Li, Li; Zhang, Xiaoyue

    2015-12-01

    A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.

  11. Electroluminescence from single-wall carbon nanotube network transistors.

    PubMed

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  12. Targeted Single-Shot Methods for Diffusion-Weighted Imaging in the Kidneys

    PubMed Central

    Jin, Ning; Deng, Jie; Zhang, Longjiang; Zhang, Zhuoli; Lu, Guangming; Omary, Reed A.; Larson, Andrew C.

    2011-01-01

    Purpose To investigate the feasibility of combining the inner-volume-imaging (IVI) technique with single-shot diffusion-weighted (DW) spin-echo echo-planar imaging (SE-EPI) and DW-SPLICE (split acquisition of fast spin-echo) sequences for renal DW imaging. Materials and Methods Renal DW imaging was performed in 10 healthy volunteers using single-shot DW-SE-EPI, DW-SPLICE, targeted-DW-SE-EPI and targeted-DW-SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted-DW-SE-EPI and targeted DW-SPLICE methods with conventional full FOV DW-SE-EPI and DW-SPLICE measurements in phantoms and normal volunteers. Results Compared with full FOV DW-SE-EPI and DW-SPLICE methods, targeted-DW-SE-EPI and targeted-DW-SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion and reduced spatial blurring in both phantom and volunteer studies. The ADC values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intra-voxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single-shot DW-SE-EPI, targeted-DW-EPI and targeted-DW-SPLICE (p > 0.05). Conclusion Compared with full-FOV DW imaging methods, targeted-DW-SE-EPI and targeted-DW-SPLICE techniques reduced image distortion and artifacts observed in the single-shot DW-SE-EPI images, reduced blurring in DW-SPLICE images and produced comparable quantitative DW and IVIM measurements to those produced with conventional full-FOV approaches. PMID:21591023

  13. Phosphatidylserine-specific phospholipase A1 (PS-PLA1) expression in colorectal cancer correlates with tumor invasion and hematogenous metastasis.

    PubMed

    Iida, Yuuki; Sunami, Eiji; Yamashita, Hiroharu; Hiyoshi, Masaya; Ishihara, Soichiro; Yamaguchi, Hironori; Inoue, Asuka; Makide, Kumiko; Tsuno, Nelson H; Aoki, Junken; Kitayama, Joji; Watanabe, Toshiaki

    2015-03-01

    The function of phosphatidylserine-specific phospholipase A1 (PS-PLA1), a phospholipase that acts specifically on phosphatidylserine and produces lysophosphatidylserine, a lysophospholipid mediator, has not been fully elucidated. We evaluated the role of PS-PLA1 in oncogenesis and metastasis of colorectal cancer (CRC). Specimens from 85 patients with CRC were immunostained with a monoclonal antibody against PS-PLA1. The correlation between PS-PLA1 expression and the clinicopathological variables was analyzed. Tumor depth and hematogenous metastasis independently positively correlated with PS-PLA1 expression. High PS-PLA1 expression was associated with shorter disease-free survival, although it was not an independent predictive factor. PS-PLA1 expression in CRC is associated with tumor invasion and metastasis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers.

    PubMed

    Wang, Youdan; Joshi, Pratixa P; Hobbs, Kevin L; Johnson, Matthew B; Schmidtke, David W

    2006-11-07

    In this study, we describe the construction of glucose biosensors based on an electrostatic layer-by-layer (LBL) technique. Gold electrodes were initially functionalized with negatively charged 11-mercaptoundecanoic acid followed by alternate immersion in solutions of a positively charged redox polymer, poly[(vinylpyridine)Os(bipyridyl)2Cl(2+/3+)], and a negatively charged enzyme, glucose oxidase (GOX), or a GOX solution containing single-walled carbon nanotubes (SWNTs). The LBL assembly of the multilayer films were characterized by UV-vis spectroscopy, ellipsometry, and cyclic voltammetry, while characterization of the single-walled nanotubes was performed with transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. When the GOX solution contained single-walled carbon nanotubes (GOX-SWNTs), the oxidation peak currents during cyclic voltammetry increased 1.4-4.0 times, as compared to films without SWNTs. Similarly the glucose electro-oxidation current also increased (6-17 times) when SWNTs were present. By varying the number of multilayers, the sensitivity of the sensors could be controlled.

  15. Elastomer Filled With Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Forest, Craig R.

    2004-01-01

    Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer.

  16. Advances in NO2 sensing with individual single-walled carbon nanotube transistors

    PubMed Central

    Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    Summary The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors. PMID:25551046

  17. Advances in NO2 sensing with individual single-walled carbon nanotube transistors.

    PubMed

    Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.

  18. Enantiomers of Single-Wall Carbon Nanotubes Show Distinct Coating Displacement Kinetics.

    PubMed

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2018-06-27

    It is known that specific oligomers of single-stranded DNA (ssDNA) can show remarkable selectivity when coating different structural species of single-wall carbon nanotubes (SWCNTs). We report that (ATT) 4 ssDNA coatings strongly distinguish between the two optical isomers of (7,5) SWCNTs. This causes resolvable shifts in their fluorescence spectra and differences of 2 orders of magnitude in the room temperature rates of coating displacement, as monitored through changes in nanotube fluorescence wavelength and intensity on exposure to sodium deoxycholate. During coating displacement, the enantiomer with high affinity for the ssDNA oligomer is deduced to form an intermediate hybrid that is not observed for the low affinity enantiomer. These results reveal that enantiomeric differences in SWCNTs complexed with ssDNA are more diverse and dramatic than previously recognized.

  19. Ignition of deuterium-tritium fuel targets

    DOEpatents

    Musinski, D.L.; Mruzek, M.T.

    1991-08-27

    Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

  20. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation.

    PubMed

    Huang, Houjin; Maruyama, Ryuichiro; Noda, Kazuhiro; Kajiura, Hisashi; Kadono, Koji

    2006-04-13

    Upon laser irradiation in air, metallic single-walled carbon nanotubes (SWNTs) in carbon nanotube thin film can be destroyed in preference to their semiconducting counterparts when the wavelength and power intensity of the irradiation are appropriate and the carbon nanotubes are not heavily bundled. Our method takes advantage of these two species' different rates of photolysis-assisted oxidation, creating the possibility of defining the semiconducting portions of carbon nanotube (CNT) networks using optical lithography, particularly when constructing all-CNT FETs (without metal electrodes) in the future.

  1. Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls

    NASA Astrophysics Data System (ADS)

    Shahzadi, Iqra; Nadeem, S.; Rabiei, Faranak

    The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine.

  2. Human Immunity and the Design of Multi-Component, Single Target Vaccines

    PubMed Central

    Saul, Allan; Fay, Michael P.

    2007-01-01

    Background Inclusion of multiple immunogens to target a single organism is a strategy being pursued for many experimental vaccines, especially where it is difficult to generate a strongly protective response from a single immunogen. Although there are many human vaccines that contain multiple defined immunogens, in almost every case each component targets a different pathogen. As a consequence, there is little practical experience for deciding where the increased complexity of vaccines with multiple defined immunogens vaccines targeting single pathogens will be justifiable. Methodology/Principal Findings A mathematical model, with immunogenicity parameters derived from a database of human responses to established vaccines, was used to predict the increase in the efficacy and the proportion of the population protected resulting from addition of further immunogens. The gains depended on the relative protection and the range of responses in the population to each immunogen and also to the correlation of the responses between immunogens. In most scenarios modeled, the gain in overall efficacy obtained by adding more immunogens was comparable to gains obtained from a single immunogen through the use of better formulations or adjuvants. Multi-component single target vaccines were more effective at decreasing the proportion of poor responders than increasing the overall efficacy of the vaccine in a population. Conclusions/Significance Inclusion of limited number of antigens in a vaccine aimed at targeting a single organism will increase efficacy, but the gains are relatively modest and for a practical vaccine there are constraints that are likely to limit multi-component single target vaccines to a small number of key antigens. The model predicts that this type of vaccine will be most useful where the critical issue is the reduction in proportion of poor responders. PMID:17786221

  3. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments

    EPA Science Inventory

    Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNT). Little research has investigated the potential of SWNT to adsorb and sequester HO...

  4. Physicochemical and biological characterization of single-walled and double-walled carbon nanotubes in biological media.

    PubMed

    Liu, Wen-Te; Bien, Mauo-Ying; Chuang, Kai-Jen; Chang, Ta-Yuan; Jones, Tim; BéruBé, Kelly; Lalev, Georgi; Tsai, Dai-Hua; Chuang, Hsiao-Chi; Cheng, Tsun-Jen

    2014-09-15

    To study the toxicity of nanoparticles under relevant conditions, it is important to reproducibly disperse nanoparticles in biological media in in vitro and in vivo studies. Here, single-walled nanotubes (SWNTs) and double-walled nanotubes (DWNTs) were physicochemically and biologically characterized when dispersed in phosphate-buffered saline (PBS) and bovine serum albumin (BSA). BSA-SWNT/DWNT interaction resulted in a reduction of aggregation and an increase in particle stabilization. Based on the protein sequence coverage and protein binding results, DWNTs exhibited higher protein binding than SWNTs. SWNT and DWNT suspensions in the presence of BSA increased interleukin-6 (IL-6) levels and reduced tumor necrosis factor-alpha (TNF-α) levels in A549 cells as compared to corresponding samples in the absence of BSA. We next determined the effects of SWNTs and DWNTs on pulmonary protein modification using bronchoalveolar lavage fluid (BALF) as a surrogate collected form BALB/c mice. The BALF proteins bound to SWNTs (13 proteins) and DWNTs (11 proteins), suggesting that these proteins were associated with blood coagulation pathways. Lastly, we demonstrated the importance of physicochemical and biological alterations of SWNTs and DWNTs when dispersed in biological media, since protein binding may result in the misinterpretation of in vitro results and the activation of protein-regulated biological responses. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  5. Magnetic compensation and critical properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice

    NASA Astrophysics Data System (ADS)

    Mi, Bin-Zhou; Feng, Cui-Ju; Luo, Jian-Guo; Hu, De-Zhi

    2018-01-01

    In recent years, some theoretical interests have been focused on the binary alloy nanotubes and nanowires with mixed spins. Compared with ferrimagnetic nanowires, few studies have been done on ferrimagnetic nanotubes. In this paper, the magnetic properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice are calculated by use of the double-time Green's function method within the random phase approximation and the Anderson and Callen's decoupling. Magnetic compensation and critical properties are obtained for a wide range of parameters in the Hamiltonian, and magnetic phase diagrams are plotted in the related planes. For Heisenberg single-walled nanotube superlattice model with Néel-type magnetic structure, anisotropy must be taken into account, and the easy-axis single-ion anisotropy is considered in this paper. The next nearest neighbor exchange interactions Jbb and/or single-ion anisotropy strength Db of the smaller spin sublattice were necessary in order to obtain a compensation point. The influence of the wall diameter number of the tubes, m, an important parameter of the system, on the compensation behavior is considered. Calculation shows that as Jbb and Db are fixed, only when m is beyond a certain minimum value, mmin, can compensation temperature Tcom appears, where the next nearest neighbor exchange interactions Jaa and single-ion anisotropy strength Da of the larger spin sublattice are absent. The compensation temperature and critical temperature increase with m rising, which indicates that the longitudinal correlation effect is enhanced and the fluctuation effect is weakened with the increase of m.

  6. Purification Procedures for Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  7. Tight binding simulation study on zigzag single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena; Gupta, Vishu

    2018-01-01

    Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.

  8. Defects Enable Dark Exciton Photoluminescence in Single-Walled Carbon Nanotubes

    DOE PAGES

    Amori, Amanda R.; Rossi, Jamie E.; Landi, Brian J.; ...

    2018-01-24

    Variable temperature photoluminescence excitation spectroscopy of three (n,m) species of single-walled carbon nanotubes revealed that at resonant S 22 excitation, in addition to allowed excitonic optical transitions, several sidebands that should be forbidden based on selection rules were observed and appeared to have a strong temperature dependence. In particular, we found that a sideband located approximately 130 meV away from the bright S 11 exciton peak relating to the K-momentum dark exciton state, called X 1, decreased in intensity five-fold as the samples were cooled. Direct optical excitation of this dark state is nominally forbidden, thus calling into question howmore » the state is populated, and why it is so prominent in the photoluminescence spectrum. Interestingly, the ratio of the integrated photoluminescence intensities of X 1 to S 11 scales with a Boltzmann factor unrelated to the phonon that is thought to be responsible for depopulating the K-momentum dark exciton state: an in-plane transverse optical phonon, A 1’. Furthermore, photoluminescence spectra from individual (7,5) nanotubes show that only a small fraction exhibit the X 1 feature, with varying oscillator strength, thus suggesting that intrinsic processes such as phonon scattering are not responsible for populating the dark state. Alternatively, we suggest that populating the K-momentum dark exciton state requires scattering from defects, which is consistent with the increased magnitude of the X 1 feature for samples with increased sample purification and processing. Thus, the presence of an X 1 peak in photoluminescence is an extremely sensitive spectroscopic indicator of defects on single-walled carbon nanotubes.« less

  9. Defects Enable Dark Exciton Photoluminescence in Single-Walled Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amori, Amanda R.; Rossi, Jamie E.; Landi, Brian J.

    Variable temperature photoluminescence excitation spectroscopy of three (n,m) species of single-walled carbon nanotubes revealed that at resonant S 22 excitation, in addition to allowed excitonic optical transitions, several sidebands that should be forbidden based on selection rules were observed and appeared to have a strong temperature dependence. In particular, we found that a sideband located approximately 130 meV away from the bright S 11 exciton peak relating to the K-momentum dark exciton state, called X 1, decreased in intensity five-fold as the samples were cooled. Direct optical excitation of this dark state is nominally forbidden, thus calling into question howmore » the state is populated, and why it is so prominent in the photoluminescence spectrum. Interestingly, the ratio of the integrated photoluminescence intensities of X 1 to S 11 scales with a Boltzmann factor unrelated to the phonon that is thought to be responsible for depopulating the K-momentum dark exciton state: an in-plane transverse optical phonon, A 1’. Furthermore, photoluminescence spectra from individual (7,5) nanotubes show that only a small fraction exhibit the X 1 feature, with varying oscillator strength, thus suggesting that intrinsic processes such as phonon scattering are not responsible for populating the dark state. Alternatively, we suggest that populating the K-momentum dark exciton state requires scattering from defects, which is consistent with the increased magnitude of the X 1 feature for samples with increased sample purification and processing. Thus, the presence of an X 1 peak in photoluminescence is an extremely sensitive spectroscopic indicator of defects on single-walled carbon nanotubes.« less

  10. Identifying Molecular Targets for PTSD Treatment Using Single Prolonged Stress

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0377 TITLE: Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0377 Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress 5b. GRANT...brain GR and β-AR expression alters glutamatergic and GABAergic function in neural circuits that mediate SPS-induced deficits in extinction retention

  11. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  12. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes.

    PubMed

    Yuan, Quanzi; Zhao, Ya-Pu

    2009-05-13

    A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-filled single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-filled SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.

  13. Structure of single-wall carbon nanotubes purified and cut using polymer

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yudasaka, M.; Koshio, A.; Jabs, C.; Ichihashi, T.; Iijima, S.

    2002-01-01

    Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate.

  14. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin; Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi

    2015-12-01

    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.

  15. Substrate-Wrapped, Single-Walled Carbon Nanotube Probes for Hydrolytic Enzyme Characterization.

    PubMed

    Kallmyer, Nathaniel E; Musielewicz, Joseph; Sutter, Joel; Reuel, Nigel F

    2018-04-17

    Hydrolytic enzymes are a topic of continual study and improvement due to their industrial impact and biological implications; however, the ability to measure the activity of these enzymes, especially in high-throughput assays, is limited to an established, few enzymes and often involves the measurement of secondary byproducts or the design of a complex degradation probe. Herein, a versatile single-walled carbon nanotube (SWNT)-based biosensor that is straightforward to produce and measure is described. The hydrolytic enzyme substrate is rendered as an amphiphilic polymer, which is then used to solubilize the hydrophobic nanotubes. When the target enzyme degrades the wrapping, the SWNT fluorescent signal is quenched due to increased solvent accessibility and aggregation, allowing quantitative measurement of hydrolytic enzyme activity. Using (6,5) chiral SWNT suspended with polypeptides and polysaccharides, turnover frequencies are estimated for cellulase, pectinase, and bacterial protease. Responses are recorded for concentrations as low as 5 fM using a well-characterized protease, Proteinase K. An established trypsin-based plate reader assay is used to compare this nanotube probe assay with standard techniques. Furthermore, the effect of freeze-thaw cycles and elevated temperature on enzyme activity is measured, suggesting freezing to have minimal impact even after 10 cycles and heating to be detrimental above 60 °C. Finally, rapid optimization of enzyme operating conditions is demonstrated by generating a response surface of cellulase activity with respect to temperature and pH to determine optimal conditions within 2 h of serial scans.

  16. Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging

    PubMed Central

    Avti, Pramod K; Sitharaman, Balaji

    2012-01-01

    Lanthanoid-based optical probes with excitation wavelengths in the ultra-violet (UV) range (300–325 nm) have been widely developed as imaging probes. Efficient cellular imaging requires that lanthanoid optical probes be excited at visible wavelengths, to avoid UV damage to cells. The efficacy of europium-catalyzed single-walled carbon nanotubes (Eu-SWCNTs), as visible nanoprobes for cellular imaging, is reported in this study. Confocal fluorescence microscopy images of breast cancer cells (SK-BR-3 and MCF-7) and normal cells (NIH 3T3), treated with Eu-SWCNT at 0.2 μg/mL concentration, showed bright red luminescence after excitation at 365 nm and 458 nm wavelengths. Cell viability analysis showed no cytotoxic effects after the incubation of cells with Eu-SWCNTs at this concentration. Eu-SWCNT uptake is via the endocytosis mechanism. Labeling efficiency, defined as the percentage of incubated cells that uptake Eu-SWCNT, was 95%–100% for all cell types. The average cellular uptake concentration was 6.68 ng Eu per cell. Intracellular localization was further corroborated by transmission electron microscopy and Raman microscopy. The results indicate that Eu-SWCNT shows potential as a novel cellular imaging probe, wherein SWCNT sensitizes Eu3+ ions to allow excitation at visible wavelengths, and stable time-resolved red emission. The ability to functionalize biomolecules on the exterior surface of Eu-SWCNT makes it an excellent candidate for targeted cellular imaging. PMID:22619533

  17. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.

    PubMed

    Seung, Sungmin; Choi, Hongseok; Jang, Jongseong; Kim, Young Soo; Park, Jong-Oh; Park, Sukho; Ko, Seong Young

    2017-01-01

    This article presents a haptic-guided teleoperation for a tumor removal surgical robotic system, so-called a SIROMAN system. The system was developed in our previous work to make it possible to access tumor tissue, even those that seat deeply inside the brain, and to remove the tissue with full maneuverability. For a safe and accurate operation to remove only tumor tissue completely while minimizing damage to the normal tissue, a virtual wall-based haptic guidance together with a medical image-guided control is proposed and developed. The virtual wall is extracted from preoperative medical images, and the robot is controlled to restrict its motion within the virtual wall using haptic feedback. Coordinate transformation between sub-systems, a collision detection algorithm, and a haptic-guided teleoperation using a virtual wall are described in the context of using SIROMAN. A series of experiments using a simplified virtual wall are performed to evaluate the performance of virtual wall-based haptic-guided teleoperation. With haptic guidance, the accuracy of the robotic manipulator's trajectory is improved by 57% compared to one without. The tissue removal performance is also improved by 21% ( p < 0.05). The experiments show that virtual wall-based haptic guidance provides safer and more accurate tissue removal for single-port brain surgery.

  18. The Effects of Single-Wall Carbon Nanotubes on the Shear Piezoelectricity of Biopolymers

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad; Fitz-Gerald, James M.; Harrison, Joycelyn S.; Park, Cheol

    2008-01-01

    Shear piezoelectricity was investigated in a series of composites consisting of increased loadings of single-wall carbon nanotubes (SWCNTs) in poly (gamma-benzyl-L-glutamate), or PBLG. The effects of the SWCNTs on this material property in PBLG will be discussed. Their influence on the morphology of the polymer (degree of orientation and crystallinity), and electrical and dielectric properties of the composite will be reported

  19. Nuclear magnetic resonance of molecular hydrogen trapped in single-walled carbon nanotube bundles.

    PubMed

    Shiraishi, Masashi; Ata, Masafumi

    2002-10-01

    Molecular dynamics of hydrogen trapped in single-walled carbon nanotube bundles was analyzed by nuclear magnetic resonance. The chemical shift of hydrogen was about 5.1 ppm at 293 K, which is similar to that of water. The relaxation time, T1, was about 0.1-0.2 s. Values in this work are comparable to those for hydrogen loaded in silica and a-Si.

  20. Encapsulation and Polymerization of White Phosphorus Inside Single-Wall Carbon Nanotubes.

    PubMed

    Hart, Martin; White, Edward R; Chen, Ji; McGilvery, Catriona M; Pickard, Chris J; Michaelides, Angelos; Sella, Andrea; Shaffer, Milo S P; Salzmann, Christoph G

    2017-07-03

    Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Flame Synthesis Of Single-Walled Carbon Nanotubes And Nanofibers

    NASA Technical Reports Server (NTRS)

    Wal, Randy L. Vander; Berger, Gordon M.; Ticich, Thomas M.

    2003-01-01

    Carbon nanotubes are widely sought for a variety of applications including gas storage, intercalation media, catalyst support and composite reinforcing material [1]. Each of these applications will require large scale quantities of CNTs. A second consideration is that some of these applications may require redispersal of the collected CNTs and attachment to a support structure. If the CNTs could be synthesized directly upon the support to be used in the end application, a tremendous savings in post-synthesis processing could be realized. Therein we have pursued both aerosol and supported catalyst synthesis of CNTs. Given space limitations, only the aerosol portion of the work is outlined here though results from both thrusts will be presented during the talk. Aerosol methods of SWNT, MWNT or nanofiber synthesis hold promise of large-scale production to supply the tonnage quantities these applications will require. Aerosol methods may potentially permit control of the catalyst particle size, offer continuous processing, provide highest product purity and most importantly, are scaleable. Only via economy of scale will the cost of CNTs be sufficient to realize the large-scale structural and power applications on both earth and in space. Present aerosol methods for SWNT synthesis include laser ablation of composite metalgraphite targets or thermal decomposition/pyrolysis of a sublimed or vaporized organometallic [2]. Both approaches, conducted within a high temperature furnace, have produced single-walled nanotubes (SWNTs). The former method requires sophisticated hardware and is inherently limited by the energy deposition that can be realized using pulsed laser light. The latter method, using expensive organometallics is difficult to control for SWNT synthesis given a range of gasparticle mixing conditions along variable temperature gradients; multi-walled nanotubes (MWNTs) are a far more likely end products. Both approaches require large energy expenditures and

  2. Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall

    NASA Astrophysics Data System (ADS)

    Sujith, Athiyanathil; Itoh, Tamitake; Abe, Hiroko; Anas, Abdul Aziz; Yoshida, Kenichi; Biju, Vasudevanpillai; Ishikawa, Mitsuru

    2008-03-01

    We labeled the living yeast cell surface (Saccharomyces cerevisiae strain W303-1A) by silver nanoparticles which can form nanoaggregates and found to show surface enhanced Raman scattering (SERS) activity. Blinking of SERS and its polarization dependence reveal that SERS signals are from amplified electromagnetic field at nanometric Ag nanoparticles gaps with single or a few molecules sensitivity. We tentatively assigned SERS spectra from a yeast cell wall to mannoproteins. Nanoaggregate-by-nanoaggregate variations and temporal fluctuations of SERS spectra are discussed in terms of inhomogeneous mannoprotein distribution on a cell wall and possible ways of Ag nanoaggregate adsorption, respectively.

  3. Evaluation of Phosphatidylserine-Binding Peptides Radiolabeled with Fluorine 18 for in vivo Imaging of Apoptosis

    NASA Astrophysics Data System (ADS)

    Kapty, Janice Sarah

    We currently do not have a clinical method to directly assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis since it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study we evaluated binding characteristics of PS-binding peptides for ability to bind to PS, radiolabeled PS-binding peptides with fluorine-18, and performed in vitro and in vivo analysis of 18F radiolabeled PS-binding peptides including biodistribution analysis and dynamic PET imaging in a murine tumor model of apoptosis. Four peptides were evaluated for PS binding characteristics using a plate based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. The results indicate that all four peptides bind to PS and are specific to apoptotic cells. The widely used 18 F prosthetic group N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and the recently developed N-[6-(4-[ 18F]fluorobenzylidene) aminooxyhexyl]maleimide ([18F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reaction conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [18F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [18F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [18F]FBAM. Results indicate that for the peptides in this study, [18F]FBAM is a more useful prosthetic group compared to [18F]SFB due to its excellent chemo-selectivity and high radiochemical

  4. Photoluminescence from oxygen-doped single-walled carbon nanotubes modified by dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Xuedan; Doorn, Stephen; Htoon, Han; Brener, Igal

    Oxygen dopants in single-walled carbon nanotubes (SWCNTs) have recently been discovered as a novel single photon source enabling single photon generation up to room temperature in the telecom wavelength range. While they are promising for quantum information processing, it is fundamentally important to be able to manipulate their photoluminescence (PL) properties. All-dielectric metasurfaces made from arrays of high index nanoparticles have emerged as an attractive alternative to plasmonic metasurfaces due to their support of both electric and magnetic modes. Their low intrinsic losses at optical frequencies compared to that of plasmonic nanostructures provide a novel setting for tailoring emission from quantum emitters. We couple PL from single oxygen dopants in SWCNTs to the magnetic mode of silicon metasurfaces. Aside from the observation of a PL enhancement due to the Purcell effect, more interestingly, we find that the presence of the silicon metasurfaces significantly modifies the PL polarization of the dopants, which we attribute to near-field polarization modification caused by the silicon metasurfaces. Our finding presents dielectric metasurfaces as potential building blocks of photonic circuits for controlling PL intensity and polarization of single photon sources.

  5. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Bradley D.; Lambert, Timothy N.; Lakshmi, C.

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  6. β-1,3-Glucan, Which Can Be Targeted by Drugs, Forms a Trabecular Scaffold in the Oocyst Walls of Toxoplasma and Eimeria

    PubMed Central

    Bushkin, G. Guy; Motari, Edwin; Magnelli, Paula; Gubbels, Marc-Jan; Dubey, Jitender P.; Miska, Katarzyna B.; Bullitt, Esther; Costello, Catherine E.; Robbins, Phillips W.; Samuelson, John

    2012-01-01

    ABSTRACT The walls of infectious pathogens, which are essential for transmission, pathogenesis, and diagnosis, contain sugar polymers that are defining structural features, e.g., β-1,3-glucan and chitin in fungi, chitin in Entamoeba cysts, β-1,3-GalNAc in Giardia cysts, and peptidoglycans in bacteria. The goal here was to determine in which of three walled forms of Toxoplasma gondii (oocyst, sporocyst, or tissue cyst) is β-1,3-glucan, the product of glucan synthases and glucan hydrolases predicted by whole-genome sequences of the parasite. The three most important discoveries were as follows. (i) β-1,3-glucan is present in oocyst walls of Toxoplasma and Eimeria (a chicken parasite that is a model for intestinal stages of Toxoplasma) but is absent from sporocyst and tissue cyst walls. (ii) Fibrils of β-1,3-glucan are part of a trabecular scaffold in the inner layer of the oocyst wall, which also includes a glucan hydrolase that has a novel glucan-binding domain. (iii) Echinocandins, which target the glucan synthase and kill fungi, arrest development of the Eimeria oocyst wall and prevent release of the parasites into the intestinal lumen. In summary, β-1,3-glucan, which can be targeted by drugs, is an important component of oocyst walls of Toxoplasma but is not a component of sporocyst and tissue cyst walls. PMID:23015739

  7. Targeted Changes of the Cell Wall Proteome Influence Candida albicans Ability to Form Single- and Multi-strain Biofilms

    PubMed Central

    Walker, Louise A.; Martin-Yken, Hélène; Dague, Etienne; Legrand, Mélanie; Lee, Keunsook; Chauvel, Murielle; Firon, Arnaud; Rossignol, Tristan; Richard, Mathias L.; Munro, Carol A.; Bachellier-Bassi, Sophie; d'Enfert, Christophe

    2014-01-01

    Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature

  8. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    NASA Astrophysics Data System (ADS)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  9. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

    PubMed

    Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E

    2016-08-10

    Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.

  10. Calcium transport in vesicles from carrot cells: Stimulation by calmodulin and phosphatidylserine. [Daucus carota cv. Danvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenling Hsieh; Sze, Heven

    1991-05-01

    The transport properties of Ca-pumping ATPases from carrot (Daucus carota cv. Danvers) tissue culture cells were studied. ATP dependent Ca transport in vesicles that comigrated with an ER marker, was stimulated 3-4 fold by calmodulin. Cyclopiazonic acid (a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca-ATPase) partially inhibited oxalate-stimulated Ca transport activity; however, it had little or not effect on calmodulin-stimulated Ca uptake. The results suggested the presence of two types of Ca ATPases, and ER- and a plasma membrane-type. Incubation of membranes with (gamma{sup 32}P)ATP resulted in the formation of a single acyl ({sup 32}P) phosphoprotein of 120 kDa. Formationmore » of this phosphoprotein was dependent on Ca, and enhanced by La {sup 3+}, characteristic of the plasma membrane CaATPase. Acidic phospholipids, like phosphatidylserine, stimulated Ca transport, similar to their effect on the erythrocyte plasma membrane CaATPase. These results would indicate that the calmodulin-stimulated Ca transport originated in large part from a plasma membrane-type Ca pump of 120 kDa.« less

  11. Can phosphatidylserine enhance atheroprotective activities of high-density lipoprotein?

    PubMed

    Darabi, Maryam; Kontush, Anatol

    2016-01-01

    Although high-density lipoprotein (HDL) is well known to be protective against atherosclerotic cardiovascular disease, therapeutic interventions to raise HDL-cholesterol levels do not translate into reduction in cardiovascular risk. Due to the compositional complexity of HDL particles, molecular determinants of their atheroprotective function still remain to be clarified. Recent structural and functional data identify phospholipid as a major bioactive component of HDL. Such a role has recently been specifically evidenced for phosphatidylserine (PS); indeed, HDL content of PS displayed positive correlations with all metrics of HDL functionality assessed. This review summarizes current knowledge about HDL-associated PS; possible mechanisms for its atheroprotective role are discussed and potential applications of PS to HDL-based therapies are highlighted. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Magnetoresistance devices based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hod, Oded; Rabani, Eran; Baer, Roi

    2005-08-01

    We demonstrate the physical principles for the construction of a nanometer-sized magnetoresistance device based on the Aharonov-Bohm effect [Phys. Rev. 115, 485 (1959)]. The proposed device is made of a short single-walled carbon nanotube (SWCNT) placed on a substrate and coupled to a tip/contacts. We consider conductance due to the motion of electrons along the circumference of the tube (as opposed to the motion parallel to its axis). We find that the circumference conductance is sensitive to magnetic fields threading the SWCNT due to the Aharonov-Bohm effect, and show that by retracting the tip/contacts, so that the coupling to the SWCNT is reduced, very high sensitivity to the threading magnetic field develops. This is due to the formation of a narrow resonance through which the tunneling current flows. Using a bias potential the resonance can be shifted to low magnetic fields, allowing the control of conductance with magnetic fields of the order of 1 T.

  13. Economic assessment of single-walled carbon nanotube processes

    NASA Astrophysics Data System (ADS)

    Isaacs, J. A.; Tanwani, A.; Healy, M. L.; Dahlben, L. J.

    2010-02-01

    The carbon nanotube market is steadily growing and projected to reach 1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  14. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  15. [Study on single-walled carbon nanotube thin film photoelectric device].

    PubMed

    Xie, Wen-bin; Zhu, Yong; Gong, Tian-cheng; Chen, Yu-lin; Zhang, Jie

    2015-01-01

    The single-walled carbon nanotube film photoelectric device was invented, and it can generate net photocurrent under bias voltage when it is illuminated by the laser. The influences of bias voltage, laser power and illuminating position on the net photocurrent were investigated. The experimental results showed that when the center of the film was illuminated, the photocurrent increased with the applied bias, but tended to saturate as the laser power increased. As the voltage and the laser power reached 0. 2 V and 22. 7 mW respectively, the photocurrent reached 0. 24 µA. When the voltage was removed, the photocurrent varied with the laser illuminating position on the film and its value was distributed symmetrically about the center of the device. The photocurrent reached maximum and almost zero respectively when the laser illuminated on two ends and the center of the film. Analysis proposes that the net photocurrent can be generated due to internal photoelectric effect when the device is under voltage and the laser illuminates on the center of the film. It can be also generated due to photo-thermoelectric effect when the device is under no voltage and the laser illuminates on the film, and the relation between the net photocurrent and the illuminating position was derived according to the nature of thermoelectric power of single-walled carbon nanotubes with the established temperature model, which coincides with experimental result. Two effects are the reasons for the generation and variety of the net photocurrent and they superimpose to form the result of the net photocurrent when the device is under general conditions of voltage and laser illuminating position. The device has potential applications in the areas of photovoltaic device and optical sensor for its characteristic.

  16. Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage.

    PubMed

    Petersen, Elijah J; Tu, Xiaomin; Dizdaroglu, Miral; Zheng, Ming; Nelson, Bryant C

    2013-01-28

    The overall level of ultrasonication-induced DNA damage is reduced in the presence of single-wall carbon nanotubes (SWCNTs), particularly for DNA lesions formed by one-electron reduction of intermediate radicals. The protective role of SWCNTs observed in this work suggests a contrary view to the general idea that carbon nanotubes have damaging effects on biomolecules. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, M.; Kobayashi, T.; Ito, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  18. Optimal random search for a single hidden target.

    PubMed

    Snider, Joseph

    2011-01-01

    A single target is hidden at a location chosen from a predetermined probability distribution. Then, a searcher must find a second probability distribution from which random search points are sampled such that the target is found in the minimum number of trials. Here it will be shown that if the searcher must get very close to the target to find it, then the best search distribution is proportional to the square root of the target distribution regardless of dimension. For a Gaussian target distribution, the optimum search distribution is approximately a Gaussian with a standard deviation that varies inversely with how close the searcher must be to the target to find it. For a network where the searcher randomly samples nodes and looks for the fixed target along edges, the optimum is either to sample a node with probability proportional to the square root of the out-degree plus 1 or not to do so at all.

  19. Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine.

    PubMed

    Blois, Anna; Holmsen, Holm; Martino, Guglielmo; Corti, Angelo; Metz-Boutigue, Marie-Hélène; Helle, Karen B

    2006-03-15

    Vasostatin-I (CgA1-76) is a naturally occurring and biologically active N-terminal peptide derived from chromogranin A (CgA), produced and secreted at high concentrations by neuroendocrine tissues and also from a range of neuroendocrine tumors. This study aims to examine the hypothesis that in the absence of classical protein receptors CgA1-76 may, like its two derived peptides CgA1-40 and CgA47-66, perturb the lipid microenvironment of other membrane receptors, as a basis for the largely inhibitory activities of these CgA peptides. The nature of the interactions between phospholipids and vasostatin-derived fragments was studied in the Langmuir film balance apparatus at 37 degrees C. The synthetic peptides CgA1-40 and CgA47-66 and a recombinant fragment (VS-I) containing vasostatin-I (Ser-Thr-Ala-CgA1-78) were compared for their effects on monolayers of phosphatidylcholine and phosphatidylethanolamine from pig brain and defined species of phosphatidylserine. Marked differences in surface pressure-area isotherms and phase-transition plateaus were apparent with the three classes of phospholipids on VS-I, CgA1-40 and CgA47-66 in physiological buffer or pure water. The results indicate that VS-I and CgA47-66 at 5-10 nM concentrations may engage in electrostatic as well as hydrophobic interactions with membrane-relevant phospholipids at physiological conditions, VS-I in particular enhancing the fluidity of saturated species of phosphatidylserine.

  20. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. © 2012 Blackwell Publishing Ltd.

  1. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaksmore » in quantitative agreement with the π and σ + π plasmon energies.« less

  2. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

  3. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  4. Suppression of single-wall carbon nanotube redox reaction by adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomohito; Tanaka, Takeshi; Shiraki, Kentaro; Hase, Muneaki; Hirano, Atsushi

    2018-07-01

    Single-wall carbon nanotubes (SWCNTs) are widely used in biological applications. In biological systems, proteins readily adsorb to SWCNTs. However, little is known about the effects of proteins on the physicochemical properties of SWCNTs, such as their redox reaction. In this study, we measured the absorption and Raman spectra of SWCNTs dispersed in the presence of proteins such as bovine serum albumin to observe the redox reaction of the protein-adsorbed SWCNTs. The adsorbed proteins suppressed the redox reaction by forming thick and dense layers around the SWCNTs. Our findings are useful for understanding the behaviors of SWCNTs in biological systems.

  5. HIV-1 Promotes Intake of Leishmania Parasites by Enhancing Phosphatidylserine-Mediated, CD91/LRP-1-Dependent Phagocytosis in Human Macrophages

    PubMed Central

    Lodge, Robert; Ouellet, Michel; Barat, Corinne; Andreani, Guadalupe; Kumar, Pranav; Tremblay, Michel J.

    2012-01-01

    Over the past decade, the number of reported human immunodeficiency virus type-1 (HIV-1)/Leishmania co-infections has risen dramatically, particularly in regions where both diseases are endemic. Although it is known that HIV-1 infection leads to an increase in susceptibility to Leishmania infection and leishmaniasis relapse, little remains known on how HIV-1 contributes to Leishmania parasitaemia. Both pathogens infect human macrophages, and the intracellular growth of Leishmania is increased by HIV-1 in co-infected cultures. We now report that uninfected bystander cells, not macrophages productively infected with HIV-1, account for enhanced phagocytosis and higher multiplication of Leishmania parasites. This effect can be driven by HIV-1 Tat protein and transforming growth factor-beta (TGF-β). Furthermore, we show for the first time that HIV-1 infection increases surface expression of phosphatidylserine receptor CD91/LRP-1 on human macrophages, thereby leading to a Leishmania uptake by uninfected bystander cells in HIV-1-infected macrophage populations. The more important internalization of parasites is due to interactions between the scavenger receptor CD91/LRP-1 and phosphatidylserine residues exposed at the surface of Leishmania. We determined also that enhanced CD91/LRP-1 surface expression occurs rapidly following HIV-1 infection, and is triggered by the activation of extracellular TGF-β. Thus, these results establish an intricate link between HIV-1 infection, Tat, surface CD91/LRP-1, TGF-β, and enhanced Leishmania phosphatidylserine-mediated phagocytosis. PMID:22412921

  6. The Ebola virus matrix protein VP40 selectively induces vesiculation from phosphatidylserine-enriched membranes.

    PubMed

    Soni, Smita P; Stahelin, Robert V

    2014-11-28

    Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of themore » simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.« less

  8. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    PubMed

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  9. Polarized excitons and optical activity in single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  10. Field Electron Emission Characteristics of Single-Walled Carbon Nanotube on Tungsten Blunt Tip

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Daradkeh, Samer

    2018-02-01

    Recent investigations that are presented here illustrate the initial results that were obtained from a modified technique for holding the CNT on a W clean blunt tip. Field Electron Emission (FEE) has been investigated for single walled carbon nanotube (SWCNT) mounted on tungsten tip under (~10-8 mbar) vacuum conditions. The measurements recorded presented results showed that the CNT mounted on the W tip could emit electron current of at (0.7 V/μm) and reach up to (24 μA) of emission current at normal emission conditions. Such electron field emission tip was fabricated by electrolytically etching the high purity tungsten wire of (0.1 mm) in diameter in NaOH of (0.1) Molar solution, then mounting the single-walled carbon nanotube on the tip to be nearest to the tin oxide-coated and phosphorus glass anode. Such process was possible to be carried out under the microscope. A field electron microscope with a tip-screen separation at (~10mm) was used to characterize the electron emitter. The system was evacuated to an ultra-high vacuum level obtained after initial backing the system at up to (~180 °C) overnight. The emission characteristic has been investigated employing the I-V characteristics with Fowler-Nordheim plots and recording the emission images

  11. Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes.

    PubMed

    Tromp, R M; Afzali, A; Freitag, M; Mitzi, D B; Chen, Zh

    2008-02-01

    The problem of separating single-wall carbon nanotubes (CNTs) by diameter and/or chirality is one of the greatest impediments toward the widespread application of these promising materials in nanoelectronics. In this paper, we describe a novel physical-chemical method for diameter-selective CNT separation that is both simple and effective and that allows up-scaling to large volumes at modest cost. Separation is based on size-selective noncovalent matching of an appropriate anchor molecule to the wall of the CNT, enabling suspension of the CNTs in solvents in which they would otherwise not be soluble. We demonstrate size-selective separation in the 1-2 nm diameter range using easily synthesized oligo-acene adducts as a diameter-selective molecular anchor. CNT field effect transistors fabricated from diameter-selected CNTs show markedly improved electrical properties as compared to nonselected CNTs.

  12. Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes

    NASA Astrophysics Data System (ADS)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-05-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and nonequilibrium Green’s function techniques. We consider weak and strong cluster-contact bonds. Depending on the bonding we find from 73% (strong bonds) up to 99% (weak bonds) spin polarization of the electron transmission, and enhanced polarization with increased cluster length.

  13. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis.

    PubMed

    Ma, Ruishuang; Xie, Rui; Yu, Chengyuan; Si, Yu; Wu, Xiaoming; Zhao, Lu; Yao, Zhipeng; Fang, Shaohong; Chen, He; Novakovic, Valerie; Gao, Chunyan; Kou, Junjie; Bi, Yayan; Thatte, Hemant S; Yu, Bo; Yang, Shufen; Zhou, Jin; Shi, Jialan

    2017-07-10

    The mechanisms that eliminate activated platelets in inflammation-induced disseminated intravascular coagulation (DIC) in micro-capillary circulation are poorly understood. This study explored an alternate pathway for platelet disposal mediated by endothelial cells (ECs) through phosphatidylserine (PS) and examined the effect of platelet clearance on procoagulant activity (PCA) in sepsis. Platelets in septic patients demonstrated increased levels of surface activation markers and apoptotic vesicle formation, and also formed aggregates with leukocytes. Activated platelets adhered were and ultimately digested by ECs in vivo and in vitro. Blocking PS on platelets or αvβ3 integrin on ECs attenuated platelet clearance resulting in increased platelet count in a mouse model of sepsis. Furthermore, platelet removal by ECs resulted in a corresponding decrease in platelet-leukocyte complex formation and markedly reduced generation of factor Xa and thrombin on platelets. Pretreatment with lactadherin significantly increased phagocytosis of platelets by approximately 2-fold, diminished PCA by 70%, prolonged coagulation time, and attenuated fibrin formation by 50%. Our results suggest that PS-mediated clearance of activated platelets by the endothelium results in an anti-inflammatory, anticoagulant, and antithrombotic effect that contribute to maintaining platelet homeostasis during acute inflammation. These results suggest a new therapeutic target for impeding the development of DIC.

  14. Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities

    PubMed Central

    2018-01-01

    We demonstrate the formation and tuning of charged trion-polaritons in polymer-sorted (6,5) single-walled carbon nanotubes in a planar metal-clad microcavity at room temperature. The positively charged trion-polaritons were induced by electrochemical doping and characterized by angle-resolved reflectance and photoluminescence spectroscopy. The doping level of the nanotubes within the microcavity was controlled by the applied bias and thus enabled tuning from mainly excitonic to a mixture of exciton and trion transitions. Mode splitting of more than 70 meV around the trion energy and emission from the new lower polariton branch corroborate a transition from exciton-polaritons (neutral) to trion-polaritons (charged). The estimated charge-to-mass ratio of these trion-polaritons is 200 times higher than that of electrons or holes in carbon nanotubes, which has exciting implications for the realization of polaritonic charge transport.

  15. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    PubMed

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  16. Characterization of single-walled carbon nanotubes for environmental implications

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Adsorption capacities of N2 and various organic vapors (methyl-ethyl ketone (MEK), toluene, and cyclohexane) on select electric-arc and HiPco produced single walled carbon nanotubes (SWNT) were measured at 77 and 298 K, respectively. The amount of N2 adsorbed on a SWNT sample depended on the sample purity, methodology, and on the sample age. Adsorption capacities of organic vapors (100-1000 ppm vol) on SWNT in humid conditions were much higher than those for microporous activated carbons. These results established a foundation for additional studies related to potential environmental applications of SWNT. The MEK adsorption capacities of samples EA95 and CVD80 and mesoporous tire-derived activated carbon in humid conditions were lower than in dry conditions. This is an abstract of a paper presented at the AIChE Annual Meeting (Austin, TX 11/7-12/2004).

  17. Single Wall Carbon Nanotube-Based Structural Health Sensing Materials

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.

    2004-01-01

    Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.

  18. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  19. Single-Molecule Analysis for RISC Assembly and Target Cleavage.

    PubMed

    Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide

    2018-01-01

    RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.

  20. Microbubble-Assisted Ultrasound-Induced Transient Phosphatidylserine Translocation.

    PubMed

    Escoffre, Jean-Michel; Derieppe, Marc; Lammertink, Bart; Bos, Clemens; Moonen, Chrit

    2017-04-01

    Microbubble-assisted ultrasound (sonopermeabilization) results in reversible permeabilization of the plasma membrane of cells. This method is increasingly used in vivo because of its potential to deliver therapeutic molecules with limited cell damage. Nevertheless, the effects of sonopermeabilization on the plasma membrane remain not fully understood. We investigated the influence of sonopermeabilization on the transverse mobility of phospholipids, especially on phosphatidylserine (PS) externalization. We performed studies using optical imaging with Annexin V and FM1-43 probes to monitor PS externalization of rat glioma C6 cells. Sonopermeabilization induced transient membrane permeabilization, which is positively correlated with reversible PS externalization. This membrane disorganization was temporary and not associated with loss of cell viability. Sonopermeabilization did not induce PS externalization via activation of the scramblase. We hypothesize that acoustically induced membrane pores may provide a new pathway for PS migration between both membrane leaflets. During the membrane-resealing phase, PS asymmetry may be re-established by amino-phospholipid flippase activity and/or endocytosis, along with exocytosis processes. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Analysis of discriminants for experimental 3D SAR imagery of human targets

    NASA Astrophysics Data System (ADS)

    Chan, Brigitte; Sévigny, Pascale; DiFilippo, David D. J.

    2014-10-01

    Development of a prototype 3-D through-wall synthetic aperture radar (SAR) system is currently underway at Defence Research and Development Canada. The intent is to map out building wall layouts and to detect targets of interest and their location behind walls such as humans, arms caches, and furniture. This situational awareness capability can be invaluable to the military working in an urban environment. Tools and algorithms are being developed to exploit the resulting 3-D imagery. Current work involves analyzing signatures of targets behind a wall and understanding the clutter and multipath signals in a room of interest. In this paper, a comprehensive study of 3-D human target signature metrics in free space is presented. The aim is to identify features for discrimination of the human target from other targets. Targets used in this investigation include a human standing, a human standing with arms stretched out, a chair, a table, and a metallic plate. Several features were investigated as potential discriminants and five which were identified as good candidates are presented in this paper. Based on this study, no single feature could be used to fully discriminate the human targets from all others. A combination of at least two different features is required to achieve this.

  2. A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax.

    PubMed

    Chabi, Malika; Goulas, Estelle; Leclercq, Celine C; de Waele, Isabelle; Rihouey, Christophe; Cenci, Ugo; Day, Arnaud; Blervacq, Anne-Sophie; Neutelings, Godfrey; Duponchel, Ludovic; Lerouge, Patrice; Hausman, Jean-François; Renaut, Jenny; Hawkins, Simon

    2017-09-01

    Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Phosphatidylserine Is the Signal for TAM Receptors and Their Ligands.

    PubMed

    Lemke, Greg

    2017-09-01

    Nature repeatedly repurposes, in that molecules that serve as metabolites, energy depots, or polymer subunits are at the same time used to deliver signals within and between cells. The preeminent example of this repurposing is ATP, which functions as a building block for nucleic acids, an energy source for enzymatic reactions, a phosphate donor to regulate intracellular signaling, and a neurotransmitter to control the activity of neurons. A series of recent studies now consolidates the view that phosphatidylserine (PtdSer), a common phospholipid constituent of membrane bilayers, is similarly repurposed for use as a signal between cells and that the ligands and receptors of the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases (RTKs) are prominent transducers of this signal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The role of phosphatidylserine in recognition and removal of erythrocytes.

    PubMed

    Kuypers, F A; de Jong, K

    2004-03-01

    During the time that erythrocytes (RBC) spend in the circulation, a series of progressive events take place that lead to their removal and determine their apparent aging and limited survival. In addition, a fraction of RBC precursors will be removed during erythropoiesis by apoptotic processes, often described as "ineffective erythropoiesis". Both will determine the survival of erythroid cells and play an important role in red cell pathology, including hemoglobinopathies and red cell membrane disorders. The loss of phospholipid asymmetry, and the exposure of phosphatidylserine (PS) on the surface of plasma membranes may be a general trigger by which cells, including aging RBC and apoptotic cells, are removed. Oxidant stress and inactivation of the system that maintains phospholipid asymmetry play a central role in the events that will lead to PS exposure, death and removal.

  5. Involvement of a putative substrate binding site in the biogenesis and assembly of phosphatidylserine decarboxylase 1 from Saccharomyces cerevisiae.

    PubMed

    Di Bartolomeo, Francesca; Doan, Kim Nguyen; Athenstaedt, Karin; Becker, Thomas; Daum, Günther

    2017-07-01

    In the yeast Saccharomyces cerevisiae, the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) produces the largest amount of cellular phosphatidylethanolamine (PE). Psd1p is synthesized as a larger precursor on cytosolic ribosomes and then imported into mitochondria in a three-step processing event leading to the formation of an α-subunit and a β-subunit. The α-subunit harbors a highly conserved motif, which was proposed to be involved in phosphatidylserine (PS) binding. Here, we present a molecular analysis of this consensus motif for the function of Psd1p by using Psd1p variants bearing either deletions or point mutations in this region. Our data show that mutations in this motif affect processing and stability of Psd1p, and consequently the enzyme's activity. Thus, we conclude that this consensus motif is essential for structural integrity and processing of Psd1p. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.

    PubMed

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho

    2011-06-07

    This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.

  7. Statistical Modeling of Single Target Cell Encapsulation

    PubMed Central

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548

  8. Migration of a carbon adatom on a charged single-walled carbon nanotube

    DOE PAGES

    Han, Longtao; Krstic, Predrag; Kaganovich, Igor; ...

    2017-02-02

    Here we find that negative charges on an armchair single-walled carbon nanotube (SWCNT) can significantly enhance the migration of a carbon adatom on the external surfaces of SWCNTs, along the direction of the tube axis. Nanotube charging results in stronger binding of adatoms to SWCNTs and consequent longer lifetimes of adatoms before desorption, which in turn increases their migration distance several orders of magnitude. These results support the hypothesis of diffusion enhanced SWCNT growth in the volume of arc plasma. This process could enhance effective carbon flux to the metal catalyst.

  9. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hata, Kenji; Futaba, Don N.; Mizuno, Kohei; Namai, Tatsunori; Yumura, Motoo; Iijima, Sumio

    2004-11-01

    We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned, highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis.

  10. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  11. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    NASA Astrophysics Data System (ADS)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  12. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer

    PubMed Central

    Birge, R B; Boeltz, S; Kumar, S; Carlson, J; Wanderley, J; Calianese, D; Barcinski, M; Brekken, R A; Huang, X; Hutchins, J T; Freimark, B; Empig, C; Mercer, J; Schroit, A J; Schett, G; Herrmann, M

    2016-01-01

    Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics. PMID:26915293

  13. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer.

    PubMed

    Birge, R B; Boeltz, S; Kumar, S; Carlson, J; Wanderley, J; Calianese, D; Barcinski, M; Brekken, R A; Huang, X; Hutchins, J T; Freimark, B; Empig, C; Mercer, J; Schroit, A J; Schett, G; Herrmann, M

    2016-06-01

    Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics.

  14. Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release and coagulation.

    PubMed

    Pang, Aiming; Cui, Yujie; Chen, Yunfeng; Cheng, Ni; Delaney, M Keegan; Gu, Minyi; Stojanovic-Terpo, Aleksandra; Zhu, Cheng; Du, Xiaoping

    2018-05-31

    It is currently unclear why agonist-stimulated platelets require shear force to efficiently externalize the procoagulant phospholipid phosphatidylserine (PS) and release PS-exposed microvesicles (MVs). We reveal that integrin outside-in signaling is an important mechanism for this requirement. PS exposure and MV release were inhibited in β 3 -/- platelets or by integrin antagonists. The impaired MV release and PS exposure in β 3 -/- platelets were rescued by expressing wild type β 3 but not a Gα 13 binding-deficient β 3 mutant (E 733 EE to AAA), which blocks outside-in signaling but not ligand binding. Inhibition of Gα 13 or Src also diminished agonist/shear-dependent PS exposure and MV release, further indicating a role for integrin outside-in signaling. PS exposure in activated platelets was induced by application of pulling force via an integrin ligand, which was abolished by inhibiting Gα 13 -integrin interaction, suggesting that GGα 13 -dependent transmission of mechanical signals by integrins induces PS exposure. Inhibition of Gα 13 delayed coagulation in vitro. Furthermore, inhibition or platelet-specific knockout of Gα 13 diminished laser-induced intravascular fibrin formation in arterioles in vivo. Thus, β 3 integrins serve as a shear sensor activating the Gα 13 -dependent outside-in signaling pathway to facilitate platelet procoagulant function. Pharmacological targeting of Gα 13 -integrin interaction prevents occlusive thrombosis in vivo by inhibiting both coagulation and platelet thrombus formation. Copyright © 2018 American Society of Hematology.

  15. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-01

    The structural, electronic, and magnetic properties of single-walled Mo2C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo2C nanotubes can be rolled up from a graphene-like Mo2C monolayer with H- or T-type phase, i.e. H-Mo2C and T-Mo2C nanotubes. The armchair-type T-Mo2C nanotubes are more energetically stable than H-Mo2C nanotubes with the same diameter, while zigzag-type H-Mo2C nanotubes are more energetically stable than T-Mo2C nanotubes. In particular, (8, 0) H-Mo2C nanotube are more stable than Mo2C monolayer due to structural deformation. All Mo2C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo2C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  16. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study.

    PubMed

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-18

    The structural, electronic, and magnetic properties of single-walled Mo 2 C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo 2 C nanotubes can be rolled up from a graphene-like Mo 2 C monolayer with H- or T-type phase, i.e. H-Mo 2 C and T-Mo 2 C nanotubes. The armchair-type T-Mo 2 C nanotubes are more energetically stable than H-Mo 2 C nanotubes with the same diameter, while zigzag-type H-Mo 2 C nanotubes are more energetically stable than T-Mo 2 C nanotubes. In particular, (8, 0) H-Mo 2 C nanotube are more stable than Mo 2 C monolayer due to structural deformation. All Mo 2 C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo 2 C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  17. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B 2O 3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection andmore » transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.« less

  18. Air-tolerant Fabrication and Enhanced Thermoelectric Performance of n-Type Single-walled Carbon Nanotubes Encapsulating 1,1'-Bis(diphenylphosphino)ferrocene.

    PubMed

    Nonoguchi, Yoshiyuki; Iihara, Yu; Ohashi, Kenji; Murayama, Tomoko; Kawai, Tsuyoshi

    2016-09-06

    The thermally-triggered n-type doping of single-walled carbon nanotubes is demonstrated using 1,1'-bis(diphenylphosphino)ferrocene, a novel n-type dopant. Through a simple thermal vacuum process, the phosphine compounds are moderately encapsulated inside single-walled carbon nanotubes. The encapsulation into SWNTs is carefully characterized using Raman/X-ray spectroscopy and transmission electron microscopy. This easy-to-handle doping with air-stable precursors for n-type SWNTs enables the large-scale fabrication of thermoelectric materials showing an excellent power factor exceeding approximately 240 μW mK(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Distribution of Single-Wall Carbon Nanotubes in the Xenopus laevis Embryo after Microinjection

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2016-01-01

    Single-wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and largescale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts, and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 μg mL-1 SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and sub-cellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labelled sub-cellular compartments demonstrated that even at the regions of highest SWCNT concentration, there were no gross alterations to sub-cellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate or localize to the perinuclear sub-cellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications. PMID:26510384

  20. Analysis of Multiplexed Nanosensor Arrays Based on Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.

    PubMed

    Dong, Juyao; Salem, Daniel P; Sun, Jessica H; Strano, Michael S

    2018-04-24

    The high-throughput, label-free detection of biomolecules remains an important challenge in analytical chemistry with the potential of nanosensors to significantly increase the ability to multiplex such assays. In this work, we develop an optical sensor array, printable from a single-walled carbon nanotube/chitosan ink and functionalized to enable a divalent ion-based proximity quenching mechanism for transducing binding between a capture protein or an antibody with the target analyte. Arrays of 5 × 6, 200 μm near-infrared (nIR) spots at a density of ≈300 spots/cm 2 are conjugated with immunoglobulin-binding proteins (proteins A, G, and L) for the detection of human IgG, mouse IgM, rat IgG2a, and human IgD. Binding kinetics are measured in a parallel, multiplexed fashion from each sensor spot using a custom laser scanning imaging configuration with an nIR photomultiplier tube detector. These arrays are used to examine cross-reactivity, competitive and nonspecific binding of analyte mixtures. We find that protein G and protein L functionalized sensors report selective responses to mouse IgM on the latter, as anticipated. Optically addressable platforms such as the one examined in this work have potential to significantly advance the real-time, multiplexed biomolecular detection of complex mixtures.

  1. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture.

    PubMed

    Niu, Zhiqiang; Dong, Haibo; Zhu, Bowen; Li, Jinzhu; Hng, Huey Hoon; Zhou, Weiya; Chen, Xiaodong; Xie, Sishen

    2013-02-20

    Highly stretchable, integrated, single-walled carbon nanotube (SWCNT) film supercapacitors are prepared by combining directly grown SWCNT films with continuous reticulate architecture with polydimethylsiloxane with enhanced prestrain. The performance of the prepared stretchable supercapacitors remains nearly unchanged even during the stretching process under 120% strain. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    PubMed

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  3. Metallic single-walled carbon nanotube for ionized radiation detection

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    In this paper, we have explored the feasibility of a metallic single-walled carbon nanotube (SWCNT) as a radiation detector. The effect of SWCNTs' exposure to different ion irradiations is considered with the displacement damage dose (DDD) methodology. The analytical model of the irradiated resistance of metallic SWCNT has been developed and verified by the experimental data for increasing DDD from 1012 MeV/g to 1017 MeV/g. It has been found that the resistance variation of SWCNT by increasing DDD can be significant depending on the length and diameter of SWCNT, such that the DDD as low as 1012 (MeV/g) can be detected using the SWCNT with 1cm length and 5nm diameter. Increasing the length and diameter of SWCNT can result in both the higher radiation sensitivity of resistance and the extension of detection range to lower DDD.

  4. Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo-Ortega, J.F., E-mail: jfcdrr@yahoo.es; Pozo, M.; Moragues, S.

    To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom onmore » the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application ( (www.radiochromic.com)) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm{sup 2} region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed.« less

  5. Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions.

    PubMed

    Calvo-Ortega, J F; Pozo, M; Moragues, S; Casals, J

    2017-01-01

    To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom on the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application (www.radiochromic.com) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm 2 region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. Microangiopathic antiphospholipid antibody syndrome due to anti-phosphatidylserine/prothrombin complex IgM antibody.

    PubMed

    Senda, Yumi; Ohta, Kazuhide; Yokoyama, Tadafumi; Shimizu, Masaki; Furuichi, Kengo; Wada, Takashi; Yachie, Akihiro

    2017-03-01

    Herein we describe a case of microangiopathic antiphospholipid syndrome (MAPS) due to anti-phosphatidylserine/prothrombin complex (aPS/PT) IgM antibody successfully treated with rituximab. A significant correlation was observed between the clinical course and the aPS/PT IgM antibody titer, which can rise earlier before the appearance of clinical symptoms. Rituximab can be safely and effectively used for MAPS. Although detection of only aPS/PT IgM antibody is rare, aPS/PT IgM antibody might be associated with the pathogenesis of MAPS and might be a useful marker of disease activity. © 2017 Japan Pediatric Society.

  7. Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion.

    PubMed

    Sartorel, Elodie; Ünlü, Caner; Jose, Mini; Massoni-Laporte, Aurélie; Meca, Julien; Sibarita, Jean-Baptiste; McCusker, Derek

    2018-04-18

    The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatio-temporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity. Movie S1 Movie S1 sptPALM imaging of live yeast expressing Pil1-mEOS expressed at the genomic locus. Pil1-mEOS was simultaneously photo-converted with a 405 nm laser and imaged with a 561 nm laser using HiLo illumination. Images were acquired at 20 ms intervals, of which 300 frames are shown at 7 frames per second.

  8. Innate immunity: Bacterial cell-wall muramyl peptide targets the conserved transcription factor YB-1.

    PubMed

    Laman, A G; Lathe, R; Savinov, G V; Shepelyakovskaya, A O; Boziev, Kh M; Baidakova, L K; Chulin, A N; Brovko, F A; Svirshchevskaya, E V; Kotelevtsev, Y; Eliseeva, I A; Guryanov, S G; Lyabin, D N; Ovchinnikov, L P; Ivanov, V T

    2015-07-08

    The bacterial cell wall muramyl dipeptides MDP and glucosaminyl-MDP (GMDP) are powerful immunostimulators but their binding target remains controversial. We previously reported expression cloning of GMDP-binding polypeptides and identification of Y-box protein 1 (YB-1) as their sole target. Here we show specific binding of GMDP to recombinant YB-1 protein and subcellular colocalization of YB-1 and GMDP. GMDP binding to YB-1 upregulated gene expression levels of NF-κB2, a mediator of innate immunity. Furthermore, YB-1 knockdown abolished GMDP-induced Nfkb2 expression. GMDP/YB-1 stimulation led to NF-κB2 cleavage, transport of activated NF-κB2 p52 to the nucleus, and upregulation of NF-κB2-dependent chemokine Cxcr4 gene expression. Therefore, our findings identify YB-1 as new target for muramyl peptide signaling. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization.

    PubMed

    Cao, Jianglin; Wang, Ying; Chen, Chunyang; Yu, Fei; Ma, Jie

    2018-05-15

    Capacitive deionization (CDI) is a technology used to remove salt from brackish water, and it is an energy-saving, low-cost method compared with other methods, such as reverse osmosis, multi-stage ash distillation and electrodialysis. In this paper, three-dimensional (3D) graphene hydrogels modified with single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) were synthesized by a one-step water bath method to increase the conductivity of materials and reduce the aggregation of the graphene sheets. The CDI performance differences between the two materials were compared and discussed. The results suggested that SWCNTs/rGO had a higher electrosorption capacity (48.73 mg/g) than MWCNTs/rGO, and this was attributed to its high specific surface area (308.37 m 2 /g), specific capacity (36.35 F/g), and smaller charge transfer resistance compared with those of the MWCNTs/rGO electrode. The results indicate SWCNTs/rGO is a promising and suitable material for CDI technology and we provide basic guidance for further CNTs/graphene composite research. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin

    2016-07-01

    In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.

  11. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  12. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    PubMed

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Single-walled carbon nanotube film-silicon heterojunction radioisotope betavoltaic microbatteries

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Chang, Yiyang; Zhang, Jinwen

    2014-05-01

    Ever since the appearance of nanomaterials and nanotechnologies, they have been used in almost every type of microbattery except for nuclear ones. Here we present a radioisotope betavoltaic (BV) microbattery based on a single-walled carbon nanotube (SWCNT) film that acts as a carrier separator. SWCNT film also provides a shortcut for carrier transportation. The energy conversion efficiency of a BV microbattery can reach up to 0.15% after the subtraction of the energy loss of beta particles in air and SWCNT film, proving that the SWCNT film-silicon heterojunction presents a promising configuration suitable for use in radioisotope BV microbatteries. Tracing the particle route, we achieved a charge collection rate of 59.9%, indicating that our device could potentially achieve higher performance. Primary strategies to improve the performance of the BV microbattery are discussed.

  14. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  15. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2017-05-01

    Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.

  16. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    NASA Astrophysics Data System (ADS)

    Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  17. Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes.

    PubMed

    Bobone, Sara; Hilsch, Malte; Storm, Julian; Dunsing, Valentin; Herrmann, Andreas; Chiantia, Salvatore

    2017-06-15

    Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still

  18. Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes

    PubMed Central

    Bobone, Sara; Hilsch, Malte; Storm, Julian; Dunsing, Valentin; Herrmann, Andreas

    2017-01-01

    ABSTRACT Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction

  19. Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.

    2018-05-01

    The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.

  20. Effcet of acid stimulation on the photoresponse of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dhall, Shivani; Mehta, B. R.

    2018-04-01

    In this work, we have investigated the effect of acid treatment on the photoresponse of single walled carbon nanotubes (SWCNTs) and silicon (Si) interface. It was found that acid infiltration of SWCNTs proved helpful for the removal of impurities such as amhoporous carbon and improved the photoresponse at room temperature from 20 % to 42%. Raman analysis confirms that, the calculated crystallite size of the acids treated nanotubes is found to increase to 14.11 nm as compared to 13.7 nm for the pristine tubes. Furthermore, acid functionalized SWCNTs/Si interface shows better rectifying behavior as compared to pristine SWCNTs/ Si interface.

  1. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-01

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  2. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  3. Effects of single-walled carbon nanotubes on lysozyme gelation.

    PubMed

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Terahertz-infrared electrodynamics of single-wall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Zhukova, E. S.; Grebenko, A. K.; Bubis, A. V.; Prokhorov, A. S.; Belyanchikov, M. A.; Tsapenko, A. P.; Gilshteyn, E. P.; Kopylova, D. S.; Gladush, Yu G.; Anisimov, A. S.; Anzin, V. B.; Nasibulin, A. G.; Gorshunov, B. P.

    2017-11-01

    Broad-band (4-20 000 cm-1) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl3-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution. Partial localization of these carriers leads to a weak plasmon resonance around 100 cm-1. At the lowest frequencies, below 10 cm-1, a gap-like feature is detected whose origin is associated with the energy barrier experienced by the carriers at the intersections between SWCNTs. It is assumed that these three mechanisms are universal and determine the low-frequency terahertz-infrared electrodynamics of SWCNT wafer-scale films.

  5. Correction-free pyrometry in radiant wall furnaces

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W. (Inventor)

    1994-01-01

    A specular, spherical, or near-spherical target is located within a furnace having inner walls and a viewing window. A pyrometer located outside the furnace 'views' the target through pyrometer optics and the window, and it is positioned so that its detector sees only the image of the viewing window on the target. Since this image is free of any image of the furnace walls, it is free from wall radiance, and correction-free target radiance is obtained. The pyrometer location is determined through a nonparaxial optical analysis employing differential optical ray tracing methods to derive a series of exact relations for the image location.

  6. Targeting specific azimuthal modes using wall changes in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander

    2017-11-01

    We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.

  7. Inside-the-wall detection of objects with low metal content using the GPR sensor: effects of different wall structures on the detection performance

    NASA Astrophysics Data System (ADS)

    Dogan, Mesut; Yesilyurt, Omer; Turhan-Sayan, Gonul

    2018-04-01

    Ground penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used not only for subsurface sensing but also for the detection of objects which may be hidden behind a wall or inserted within the wall. Such applications of the GPR technology are used in both military and civilian operations such as mine or IED (improvised explosive device) detection, rescue missions after earthquakes and investigation of archeological sites. Detection of concealed objects with low metal content is known to be a challenging problem in general. Use of A-scan, B-scan and C-scan GPR data in combination provides valuable information for target recognition in such applications. In this paper, we study the problem of target detection for potentially explosive objects embedded inside a wall. GPR data is numerically simulated by using an FDTD-based numerical computation tool when dielectric targets and targets with low metal content are inserted into different types of walls. A small size plastic bottle filled with trinitrotoluene (TNT) is used as the target with and without a metal fuse in it. The targets are buried into two different types of wall; a homogeneous brick wall and an inhomogeneous wall constructed by bricks having periodically located air holes in it. Effects of using an inhomogeneous wall structure with internal boundaries are investigated as a challenging scenario, paying special attention to preprocessing.

  8. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression.

    PubMed

    Kasikara, Canan; Kumar, Sushil; Kimani, Stanley; Tsou, Wen-I; Geng, Ke; Davra, Viralkumar; Sriram, Ganapathy; Devoe, Connor; Nguyen, Khanh-Quynh N; Antes, Anita; Krantz, Allen; Rymarczyk, Grzegorz; Wilczynski, Andrzej; Empig, Cyril; Freimark, Bruce; Gray, Michael; Schlunegger, Kyle; Hutchins, Jeff; Kotenko, Sergei V; Birge, Raymond B

    2017-06-01

    Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors. Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR

  9. Phosphatidylserine and caffeine attenuate postexercise mood disturbance and perception of fatigue in humans.

    PubMed

    Wells, Adam J; Hoffman, Jay R; Gonzalez, Adam M; Stout, Jeffrey R; Fragala, Maren S; Mangine, Gerald T; McCormack, William P; Jajtner, Adam R; Townsend, Jeremy R; Robinson, Edward H

    2013-06-01

    Phosphatidylserine (PS) may attenuate the adverse effects of physical fatigue. Therefore, we investigated the effects of a multi-ingredient supplement containing 400 mg/d PS and 100 mg/d caffeine (supplement [SUP]) for 2 weeks on measures of cognitive function (CF), reaction time (RT), and mood (MD) following an acute exercise stress. It is hypothesized that PS will maintain preexercise CF and RT scores, while attenuating postexercise fatigue. Participants completed 2 acute bouts of resistance exercise (T1 and T2) separated by 2-week ingestion of SUP or control (CON). Outcome measures were assessed pre- and postexercise. When collapsed across groups, a significant decrease in RT performance was seen in the 60-second reaction drill from pre- to postexercise at T1. All other RT tests were similar from pre- to postexercise at T1. Reaction time was not significantly changed by PS. When collapsed across groups, a significant increase in performance of the serial subtraction test was seen. A significant increase (8.9% and 7.1%) in the number of correct answers and a significant decrease (8.0% and 7.5%) in time to answer were seen from pre- to postworkout at T1 and T2, respectively. A significant increase in total MD score from pre- to postworkout was observed for CON but not for PS at T2. Phosphatidylserine significantly attenuated pre- to postexercise perception of fatigue compared to CON. Ingestion of SUP for 14 days appears to attenuate postexercise MD scores and perception of fatigue, but does not affect CF or RT, in recreationally trained individuals. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Adhesion of single- and multi-walled carbon nanotubes to silicon substrate: atomistic simulations and continuum analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xuebo; Wang, Youshan

    2017-10-01

    The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.

  11. A terahertz performance of hybrid single walled CNT based amplifier with analytical approach

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Song, Hanjung

    2018-01-01

    This work is focuses on terahertz performance of hybrid single walled carbon nanotube (CNT) based amplifier and proposed for measurement of soil parameters application. The proposed circuit topology provides hybrid structure which achieves wide impedance bandwidth of 0.33 THz within range of 1.07-THz to 1.42-THz with fractional amount of 28%. The single walled RF CNT network executes proposed ambition and proves its ability to resonant at 1.25-THz with analytical approach. Moreover, a RF based microstrip transmission line radiator used as compensator in the circuit topology which achieves more than 30 dB of gain. A proper methodology is chosen for achieves stability at circuit level in order to obtain desired optimal conditions. The fundamental approach optimizes matched impedance condition at (50+j0) Ω and noise variation with impact of series resistances for the proposed hybrid circuit topology and demonstrates the accuracy of performance parameters at the circuit level. The chip fabrication of the proposed circuit by using RF based commercial CMOS process of 45 nm which reveals promising results with simulation one. Additionally, power measurement analysis achieves highest output power of 26 dBm with power added efficiency of 78%. The succeed minimum noise figure from 0.6 dB to 0.4 dB is outstanding achievement for circuit topology at terahertz range. The chip area of hybrid circuit is 0.65 mm2 and power consumption of 9.6 mW.

  12. Optoelectronic properties of single-wall carbon nanotubes.

    PubMed

    Nanot, Sébastien; Hároz, Erik H; Kim, Ji-Hee; Hauge, Robert H; Kono, Junichiro

    2012-09-18

    Single-wall carbon nanotubes (SWCNTs), with their uniquely simple crystal structures and chirality-dependent electronic and vibrational states, provide an ideal laboratory for the exploration of novel 1D physics, as well as quantum engineered architectures for applications in optoelectronics. This article provides an overview of recent progress in optical studies of SWCNTs. In particular, recent progress in post-growth separation methods allows different species of SWCNTs to be sorted out in bulk quantities according to their diameters, chiralities, and electronic types, enabling studies of (n,m)-dependent properties using standard macroscopic characterization measurements. Here, a review is presented of recent optical studies of samples enriched in 'armchair' (n = m) species, which are truly metallic nanotubes but show excitonic interband absorption. Furthermore, it is shown that intense ultrashort optical pulses can induce ultrafast bandgap oscillations in SWCNTs, via the generation of coherent phonons, which in turn modulate the transmission of a delayed probe pulse. Combined with pulse-shaping techniques, coherent phonon spectroscopy provides a powerful method for studying exciton-phonon coupling in SWCNTs in a chirality-selective manner. Finally, some of the basic properties of highly aligned SWCNT films are highlighted, which are particularly well-suited for optoelectronic applications including terahertz polarizers with nearly perfect extinction ratios and broadband photodetectors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phosphatidylserine-exposing cells contribute to the hypercoagulable state in patients with multiple myeloma.

    PubMed

    Guo, Li; Tong, Dongxia; Yu, Muxin; Zhang, Yan; Li, Tao; Wang, Chunxu; Zhou, Peng; Jin, Jiaqi; Li, Baorong; Liu, Yingmiao; Liu, Ruipeng; Novakovic, Valerie A; Dong, Zengxiang; Tian, Ye; Kou, Junjie; Bi, Yayan; Zhou, Jin; Shi, Jialan

    2018-06-01

    Multiple myeloma (MM) is characterized by an increased incidence of thromboembolic events, particularly when treated with immunomodulatory drugs (IMiDs) in combination with dexamethasone. The optimal prophylactic strategy to prevent the hypercoagulable state of patients with MM is still debated. The aim of the current study was to investigate the definitive role of phosphatidylserine (PS) in supporting procoagulant activity (PCA) in patients with MM. Patients with MM (n=20) and healthy subjects (n=15) were recruited for the present study. PS analyses were performed by flow cytometry and confocal microscopy. The PCA was evaluated by clotting time, purified coagulation complex assays and fibrin production assays. The percentage of PS+ blood cells was significantly higher in patients with MM than in healthy subjects. Additionally, the patient serum induced more PS exposure on endothelial cells (ECs) in vitro than serum from healthy subjects. Isolated blood cells from patients with MM and ECs cultured with patient serum in vitro demonstrated significantly shortened coagulation time, greatly intrinsic/extrinsic factor Xa generation and increased thrombin formation. In addition, the levels of PS+ erythrocytes, platelets, leukocytes, and ECs incubated with IMiDs and dexamethasone were higher than with IMiDs alone. The findings support the hypothesis that increased PS exposure on blood cells and ECs participates in the hypercoagulable state in patients with MM. Thus, blocking PS may be a novel therapeutic target for the prevention of thrombosis in these patients.

  14. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes.

    PubMed

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-07

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  15. Structural and electronic properties of chiral single-wall copper nanotubes

    NASA Astrophysics Data System (ADS)

    Duan, YingNi; Zhang, JianMin; Xu, KeWei

    2014-04-01

    The structural, energetic and electronic properties of chiral ( n, m) (3⩽ n⩽6, n/2⩽ m⩽ n) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.

  16. Oligodeoxyribonucleotide association with single-walled carbon nanotubes studied by SPM.

    PubMed

    Lahiji, Roya R; Dolash, Bridget D; Bergstrom, Donald E; Reifenberger, Ronald

    2007-11-01

    Studies have been performed on both as-received and chemically oxidized single-walled carbon nanotubes (SWCNTs) grown by two different growth methods to better understand the preferential association of the oligodeoxyribonucleotide T30 (ODN) with SWCNTs. Samples of T30 ODN:SWCNT were examined under ambient conditions using non-contact scanning probe microscope (SPM) techniques. The resulting images show different morphologies ranging from tangled networks of SWCNTs to individual, well-dispersed isolated SWCNTs as the sonication time is increased. SPM images of well-dispersed, as-received SWCNTs reveal isolated features that are 1.4 to 2.8 nm higher than the bare SWCNT itself. X-ray photoemission spectroscopy (XPS) confirmed these features to be T30 ODN in nature. Chemically oxidizing the SWCNTs before sonication is found to be an effective way to increase the number of T30 ODN features.

  17. Selective positioning and integration of individual single-walled carbon nanotubes.

    PubMed

    Jiao, Liying; Xian, Xiaojun; Wu, Zhongyun; Zhang, Jin; Liu, Zhongfan

    2009-01-01

    We present a general selective positioning and integration technique for fabricating single-walled carbon nanotube (SWNT) circuits with preselected individual SWNTs as building blocks by utilizing poly(methyl methacrylate) (PMMA) thin film as a macroscopically handlable mediator. The transparency and marker-replicating capability of PMMA mediator allow the selective placement of chirality-specific nanotubes onto predesigned patterned surfaces with a resolution of ca. 1 mum. This technique is compatible with multiple operations and p-n conversion by chemical doping, which enables the construction of complex and logic circuits. As demonstrations of building SWNTs circuits, we fabricated a field effect inverter, a 2 x 2 all-SWNT crossbar field effect transistor (FET), and flexible FETs on plastic with this technique. This selective positioning approach can also be extended to construct purpose-directed architecture with various nanoscale building blocks.

  18. Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wong, Jia Haur; Wu, Kan; Liu, Huan Huan; Ouyang, Chunmei; Wang, Honghai; Aditya, Sheel; Shum, Ping; Fu, Songnian; Kelleher, E. J. R.; Chernov, A.; Obraztsova, E. D.

    2011-04-01

    Polarization Rotation Locked Vector Solitons (PRLVSs) are experimentally observed for the first time in a fiber ring laser passively mode-locked by a single-wall carbon nanotube (SWCNT) saturable absorber. Period-doubling of these solitons at certain birefringence values has also been observed. We show that fine adjustment to the intracavity birefringence can swing the PRLVSs from period-doubled to period-one state without simultaneous reduction in the pump strength. The timing jitter for both states has also been measured experimentally and discussed analytically using the theoretical framework provided by the Haus model.

  19. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g-1 or 552 μF cm-2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  20. Processing of fullerene-single wall carbon nanotube complex for bulk heterojunction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Mitra, Somenath

    2007-12-01

    A fullerene-single wall carbon nanotube (C60-SWCNT) complex is used as a component of the photoactive layer in bulk heterojunction photovoltaic cells. This complex synthesized by microwave-assisted reaction takes advantage of the electron accepting feature of C60 and the high electron transport capability of SWCNTs. In this paper, quantum efficiency enhancement by increasing light absorption and by bringing about appropriate morphological rearrangements via solvent vapor treatment and thermal annealing is presented. The optimum combination of these steps led to an increase in efficiency by as much as 87.5%.

  1. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine Dependent Arrest in the T Cell Signaling Cascade

    PubMed Central

    Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.

    2015-01-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921

  2. Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alvarez, Laurent; Almadori, Yann; Belhboub, Anouar; Le Parc, Rozenn; Aznar, Raymond; Dieudonné-George, Philippe; Rahmani, Abdelali; Hermet, Patrick; Fossard, Frédéric; Loiseau, Annick; Jousselme, Bruno; Campidelli, Stéphane; Saito, Takeshi; Wang, Guillaume; Bantignies, Jean-Louis

    2016-03-01

    Photoactive pi-conjugated molecules (quaterthiophene and phthalocyanine) are either encapsulated into the hollow core of single-walled carbon nanotubes or noncovalently stacked at their outer surface in order to elaborate hybrid nanosystems with new physical properties, providing practical routes to fit different requirements for potential applications. We are interested in the relationship between the structure and the optoelectronic properties. The structural properties are investigated mainly by x-ray diffraction and/or transmission electron microscopy and Raman spectroscopy. We show that the supramolecular organizations of confined quaterthiophenes depend on the nanocontainer size, whereas phthalocyanine encapsulation leads to the formation of a one-dimensional phase for which the angle between the molecule ring and the nanotube axis is close to 32 deg. Confined phthalocyanine molecules display Raman spectra hardly altered with respect to the bulk phase, suggesting a rather weak interaction with the tubes. In contrast, the vibrational properties of the molecules stacked at the outer surface of tubes display important modifications. We assume a significant curvature of the phthalocyanine induced by the interaction with the tube walls and a change of the central atom position within the molecular ring, in good agreement with our density functional theory calculations.

  3. Targeting, universalism, and single-mother poverty: a multilevel analysis across 18 affluent democracies.

    PubMed

    Brady, David; Burroway, Rebekah

    2012-05-01

    We examine the influence of individual characteristics and targeted and universal social policy on single-mother poverty with a multilevel analysis across 18 affluent Western democracies. Although single mothers are disproportionately poor in all countries, there is even more cross-national variation in single-mother poverty than in poverty among the overall population. By far, the United States has the highest rate of poverty among single mothers among affluent democracies. The analyses show that single-mother poverty is a function of the household's employment, education, and age composition, and the presence of other adults in the household. Beyond individual characteristics, social policy exerts substantial influence on single-mother poverty. We find that two measures of universal social policy significantly reduce single-mother poverty. However, one measure of targeted social policy does not have significant effects, and another measure is significantly negative only when controlling for universal social policy. Moreover, the effects of universal social policy are larger. Additional analyses show that universal social policy does not have counterproductive consequences in terms of family structure or employment, while the results are less clear for targeted social policy. Although debates often focus on altering the behavior or characteristics of single mothers, welfare universalism could be an even more effective anti-poverty strategy.

  4. Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis

    PubMed Central

    2017-01-01

    Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on dielectric properties and geometry. Here, we present a study of surfactant and single-stranded DNA-wrapped SWNTs suspended in aqueous solutions manipulated by insulator-based dielectrophoresis (iDEP). This method allows us to manipulate SWNTs with the help of arrays of insulating posts in a microfluidic device around which electric field gradients are created by the application of an electric potential to the extremities of the device. Semiconducting SWNTs were imaged during dielectrophoretic manipulation with fluorescence microscopy making use of their fluorescence emission in the near IR. We demonstrate SWNT trapping at low-frequency alternating current (AC) electric fields with applied potentials not exceeding 1000 V. Interestingly, suspended SWNTs showed both positive and negative dielectrophoresis, which we attribute to their ζ potential and the suspension properties. Such behavior agrees with common theoretical models for nanoparticle dielectrophoresis. We further show that the measured ζ potentials and suspension properties are in excellent agreement with a numerical model predicting the trapping locations in the iDEP device. This study is fundamental for the future application of low-frequency AC iDEP for technological applications of SWNTs. PMID:29131586

  5. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  6. Adhesion energy of single wall carbon nanotube loops on various substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianjun; Department of Physics, Shaoxing University, 508 Huancheng West Rd., Shaoxing 312000; Ayari, Anthony

    2015-04-28

    The physics of adhesion of one-dimensional nano structures such as nanotubes, nano wires, and biopolymers on different substrates is of great interest for the study of biological adhesion and the development of nano electronics and nano mechanics. In this paper, we present force spectroscopy experiments of individual single wall carbon nanotube loops using a home-made interferometric atomic force microscope. Characteristic force plateaus during the peeling process allow the quantitative measurement of the adhesion energy per unit length on various substrates: graphite, mica, platinum, gold, and silicon. Moreover, using a time-frequency analysis of the deflection of the cantilever, we estimate themore » dynamic stiffness of the contact, providing more information on the nanotube configurations and its intrinsic mechanical properties.« less

  7. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.

    PubMed

    Huang, Houjin; Kajiura, Hisashi; Maruyama, Ryuichiro; Kadono, Koji; Noda, Kazuhiro

    2006-03-16

    While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.

  8. Quantum chemistry study on the open end of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hou, Shimin; Shen, Ziyong; Zhao, Xingyu; Xue, Zengquan

    2003-05-01

    Geometrical and electronic structures of open-ended single-walled carbon nanotubes (SWCNTs) are calculated using density functional theory (DFT) with hybrid functional (B3LYP) approximation. Due to different distances between carbon atoms along the edge, reconstruction occurs at the open end of the (4,4) armchair SWCNT, i.e., triple bonds are formed in the carbon atom pairs at the mouth; however, for the (6,0) zigzag SWCNT, electrons in dangling bonds still remain at 'no-bonding' states. The ionization potential (IP) of both (4,4) and (6,0) SWCNTs is increased by their negative intrinsic dipole moments, and localized electronic states existed at both of their open ends.

  9. Pore structure of raw and purified HiPco single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cinke, Martin; Li, Jing; Chen, Bin; Cassell, Alan; Delzeit, Lance; Han, Jie; Meyyappan, M.

    2002-10-01

    Very high purity single-walled carbon nanotubes (SWNTs) were obtained from HiPco SWNT samples containing Fe particles by a two-step purification process. The raw and purified samples were characterized using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and thermogravimetric analysis (TGA). The purified sample consists of ˜0.4% Fe and the process does not seem to introduce any additional defects. The N 2 adsorption isotherm studies at 77 K reveal that the total surface area of the purified sample increases to 1587 m 2/g from 567 m 2/g for the raw material, which is the highest value reported for SWNTs.

  10. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  11. Surface-enhanced resonant Raman spectroscopy (SERRS) of single-walled carbon nanotubes absorbed on the Ag-coated anodic aluminum oxide (AAO) surface

    NASA Astrophysics Data System (ADS)

    Dou, X. Y.; Zhou, Z. P.; Tan, P. H.; Song, L.; Liu, L. F.; Zhao, X. W.; Luo, S. D.; Yan, X. Q.; Liu, D. F.; Wang, J. X.; Gao, Y.; Zhang, Z. X.; Yuan, H. J.; Zhou, W. Y.; Xie, S. S.

    2005-05-01

    In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO 3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the “electromagnetic” and “chemical” mechanism, were mainly responsible for the experiment results.

  12. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  13. Synthesis and Electronic Transport in Single-Walled Carbon Nanotubes of Known Chirality

    NASA Astrophysics Data System (ADS)

    Caldwell, Robert Victor

    Since their discovery in 1991, carbon nanotubes have proven to be a very interesting material for its physical strength, originating from the pure carbon lattice and strong covalent sp2 orbital bonds, and electronic properties which are derived from the lattice structure lending itself to either a metallic or semiconducting nature among its other properties. Carbon nanotubes have been researched with an eye towards industry applications ranging from use as an alloy in metals and plastics to improve physical strength of the resulting materials to uses in the semiconductor industry as either an interconnect or device layer for computer chips to chemical or biological sensors. This thesis focuses on both the synthesis of individual single-walled carbon nanotubes as well as the electrical properties of those tubes. What makes the work herein different from that of other thesis is that the research has been performed on carbon nanotubes of known chirality. Having first grown carbon nanotubes with a chemical vapor deposition growth in a quartz tube using ethanol vapor as a feedstock to grow long individual single-walled carbon nanotubes on a silicon chip that is also compatible with Rayleigh scattering spectroscopy to identify the chiral indices of the carbon nanotubes in question, those tubes were then transferred with a mechanical transfer process specially designed in our research lab onto a substrate of our choosing before an electrical device was made out of those tubes using standard electron beam lithography. The focus in this thesis is on the work that went into designing and testing this process as well as the initial results of the electronic properties of those carbon nanotubes of known chirality, such as the first known electrical measurements on single individual armchair carbon nanotubes as well as the first known electrical measurements of a single semiconducting carbon nanotube on thin hexagonal boron nitride to study the effects of the surface optical

  14. Elevated levels of antibodies against phosphatidylserine/prothrombin complex and/or cardiolipin associated with infection and recurrent purpura in a child: a forme fruste of antiphospholipid syndrome?

    PubMed

    Kinoshita, Yuri; Mayumi, Nobuko; Inaba, Motoyuki; Igarashi, Touru; Katagiri, Ichigen; Kawana, Seiji

    2015-07-15

    Antiphospholipid syndrome is an autoimmune disorder characterized by the occurrence of venous and arterial thrombosis, as well as morbidity in pregnancy, in the presence of anti-phospholipid antibodies. The diagnosis of antiphospholipid syndrome is usually established based on clinical and laboratory findings by strictly following the 2006 Sapporo classification. However, the diagnosis remains challenging owing to the ongoing debates on the serological criteria. We report a case we describe as forme fruste antiphospholipid syndrome in which these criteria were not fulfilled. Purpura appeared repeatedly in a female infant starting from the age of 6 months and following episodes of upper respiratory infections and vaccinations. The levels of anti-cardiolipin IgG antibodies and anti-phosphatidylserine/prothrombin complex antibodies were elevated in accordance with these events. Histopathological evaluation revealed multiple small vessel thrombi in the dermis and adipose tissue. After 2 weeks of treatment with aspirin and heparin, the cutaneous symptoms subsided. Infection has long been associated with antiphospholipid syndrome, and anti-phosphatidylserine/prothrombin antibodies are considered a new marker for the diagnosis of antiphospholipid syndrome. Forme fruste antiphospholipid syndrome should be considered even if the antiphospholipid syndrome diagnostic criteria are not completely fulfilled, especially in the presence of elevated levels of anti-phosphatidylserine/prothrombin antibodies and known preceding infections.

  15. Constitutive exposure of phosphatidylserine on viable cells

    PubMed Central

    Segawa, Katsumori; Suzuki, Jun; Nagata, Shigekazu

    2011-01-01

    Apoptotic cells are quickly recognized and engulfed by phagocytes to prevent the release of noxious materials from dying cells. Phosphatidylserine (PS) exposed on the surface of apoptotic cells is a proposed “eat-me” signal for the phagocytes. Transmembrane protein 16F (TMEM16F), a membrane protein with eight transmembrane segments, has the Ca-dependent phospholipid scramblase activity. Here we show that when lymphoma cells were transformed with a constitutively active form of TMEM16F, they exposed a high level of PS that was comparable to that observed on apoptotic cells. The PS-exposing cells were morphologically normal and grew normally. They efficiently responded to interleukin 3 and underwent apoptosis upon treatment with Fas ligand. The viable PS-exposing cells bound to peritoneal macrophages at 4 °C, but not at 25 °C. Accordingly, these cells were not engulfed by macrophages. When apoptotic cells were injected i.v. into mice, they were phagocytosed by CD11c+CD8+ dendritic cells (DCs) in the spleen, but the PS-exposing living cells were not phagocytosed by these DCs. Furthermore, when PS-exposing lymphoma cells were transplanted s.c. into nude mice, they generated tumors as efficiently as parental lymphoma cells that did not expose PS. These results indicated that PS exposure alone is not sufficient to be recognized by macrophages as an eat-me signal. PMID:22084121

  16. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    NASA Astrophysics Data System (ADS)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  17. High rate capacitive performance of single-walled carbon nanotube aerogels

    DOE PAGES

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; ...

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks andmore » enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.« less

  18. Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Wei; Bachilo, Sergei M.; Vu, Michael; Beckingham, Kathleen M.; Bruce Weisman, R.

    2016-05-01

    Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and

  19. Saposin C Coupled Lipid Nanovesicles Specifically Target Arthritic Mouse Joints for Optical Imaging of Disease Severity

    PubMed Central

    Qi, Xiaoyang; Flick, Matthew J.; Frederick, Malinda; Chu, Zhengtao; Mason, Rachel; DeLay, Monica; Thornton, Sherry

    2012-01-01

    Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is “flipped” to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7–8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early

  20. The interactions of single-wall carbon nanohorns with polar epithelium.

    PubMed

    Shi, Yujie; Shi, Zujin; Li, Suxin; Zhang, Yuan; He, Bing; Peng, Dong; Tian, Jie; Zhao, Ming; Wang, Xueqing; Zhang, Qiang

    2017-01-01

    Single-wall carbon nanohorns (SWCNHs), which have multitudes of horn interstices, an extensive surface area, and a spherical aggregate structure, offer many advantages over other carbon nanomaterials being used as a drug nanovector. The previous studies on the interaction between SWCNHs and cells have mostly emphasized on cellular uptake and intracellular trafficking, but seldom on epithelial cells. Polar epithelium as a typical biological barrier constitutes the prime obstacle for the transport of therapeutic agents to target site. This work tried to explore the permeability of SWCNHs through polar epithelium and their abilities to modulate transcellular transport, and evaluate the potential of SWCNHs in drug delivery. Madin-Darby canine kidney (MDCK) cell monolayer was used as a polar epithelial cell model, and as-grown SWCNHs, together with oxidized and fluorescein isothiocyanate-conjugated bovine serum albumin-labeled forms, were constructed and comprehensively investigated in vitro and in vivo. Various methods such as transmission electron microscopy and confocal imaging were used to visualize their intracellular uptake and localization, as well as to investigate the potential transcytotic process. The related mechanism was explored by specific inhibitors. Additionally, fast multispectral optoacoustic tomography imaging was used for monitoring the distribution and transport process of SWCNHs in vivo after oral administration in nude mice, as an evidence for their interaction with the intestinal epithelium. The results showed that SWCNHs had a strong bioadhesion property, and parts of them could be uptaken and transcytosed across the MDCK monolayer. Multiple mechanisms were involved in the uptake and transcytosis of SWCNHs with varying degrees. After oral administration, oxidized SWCNHs were distributed in the gastrointestinal tract and retained in the intestine for up to 36 h probably due to their surface adhesion and endocytosis into the intestinal epithelium

  1. Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, Jeffrey L.

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) represent a tunable model one-dimensional system with exceptional optical and electronic properties. High-throughput separation and purification strategies have enabled the integration of s-SWCNTs into a number of optoelectronic applications, including photovoltaics (PVs). In this Perspective, we discuss the fundamental underpinnings of two model PV interfaces involving s-SWCNTs. We first discuss s-SWCNT-fullerene heterojunctions where exciton dissociation at the donor-acceptor interface drives solar energy conversion. Next, we discuss charge extraction at the interface between s-SWCNTs and a photoexcited perovskite active layer. In each case, the use of highly enriched semiconducting SWCNT samples enables fundamental insights into themore » thermodynamic and kinetic mechanisms that drive the efficient conversion of solar photons into long-lived separated charges. As a result, these model systems help to establish design rules for next-generation PV devices containing well-defined organic semiconductor layers and help to frame a number of important outstanding questions that can guide future studies.« less

  2. Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting

    DOE PAGES

    Blackburn, Jeffrey L.

    2017-06-14

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) represent a tunable model one-dimensional system with exceptional optical and electronic properties. High-throughput separation and purification strategies have enabled the integration of s-SWCNTs into a number of optoelectronic applications, including photovoltaics (PVs). In this Perspective, we discuss the fundamental underpinnings of two model PV interfaces involving s-SWCNTs. We first discuss s-SWCNT-fullerene heterojunctions where exciton dissociation at the donor-acceptor interface drives solar energy conversion. Next, we discuss charge extraction at the interface between s-SWCNTs and a photoexcited perovskite active layer. In each case, the use of highly enriched semiconducting SWCNT samples enables fundamental insights into themore » thermodynamic and kinetic mechanisms that drive the efficient conversion of solar photons into long-lived separated charges. As a result, these model systems help to establish design rules for next-generation PV devices containing well-defined organic semiconductor layers and help to frame a number of important outstanding questions that can guide future studies.« less

  3. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  4. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  5. Killing of melanoma cells and their metastases by human lactoferricin derivatives requires interaction with the cancer marker phosphatidylserine.

    PubMed

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2014-10-01

    Despite favorable advancements in therapy cancer is still not curative in many cases, which is often due to inadequate specificity for tumor cells. In this study derivatives of a short cationic peptide derived from the human host defense peptide lactoferricin were optimized in their selective toxicity towards cancer cells. We proved that the target of these peptides is the negatively charged membrane lipid phosphatidylserine (PS), specifically exposed on the surface of cancer cells. We have studied the membrane interaction of three peptides namely LF11-322, its N-acyl derivative 6-methyloctanoyl-LF11-322 and its retro repeat derivative R(etro)-DIM-P-LF11-322 with liposomes mimicking cancerous and non-cancerous cell membranes composed of PS and phosphatidylcholine (PC), respectively. Calorimetric and permeability studies showed that N-acylation and even more the repeat derivative of LF11-322 leads to strongly improved interaction with the cancer mimic PS, whereas only the N-acyl derivative also slightly affects PC. Tryptophan fluorescence of selective peptide R-DIM-P-LF11-322 revealed specific peptide penetration into the PS membrane interface and circular dichroism showed change of its secondary structure by increase of proportion of β-sheets just in the presence of the cancer mimic. Data correlated with in vitro studies with cell lines of human melanomas, their metastases and melanocytes, revealing R-DIM-P-LF11-322 to exhibit strongly increased specificity for cancer cells. This indicates the need of high affinity to the target PS, a minimum length and net positive charge, an adequate but moderate hydrophobicity, and capability of adoption of a defined structure exclusively in presence of the target membrane for high antitumor activity.

  6. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    PubMed

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of < or =1-2 nm. These results expand our understanding of the interactions between ssDNA and SWCNTs and provide an efficient approach for positioning Pt and other metal particles, with uniform sizes and without aggregations, along the nanotube surfaces for applications in direct ethanol/methanol fuel cells and nanoscale electronics.

  7. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes.

    PubMed Central

    McMullen, T P; Lewis, R N; McElhaney, R N

    2000-01-01

    We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited

  8. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates.

    PubMed

    Wang, Xueshen; Li, Qunqing; Xie, Jing; Jin, Zhong; Wang, Jinyong; Li, Yan; Jiang, Kaili; Fan, Shoushan

    2009-09-01

    We report the controlled growth of ultralong single-wall carbon nanotube (SWNT) arrays using an improved chemical vapor deposition strategy. Using ethanol or methane as the feed gas, monodispersed Fe-Mo as the catalyst, and a superaligned carbon nanotube (CNT) film as the catalyst supporting frame, ultralong CNTs over 18.5 cm long were grown on Si substrates. The growth rate of the CNTs was more than 40 mum/s. No catalyst-related residual material was found on the substrates due to the use of a CNT film as the catalyst supporting frame, facilitating any subsequent fabrication of SWNT-based devices. Electrical transport measurements indicated that the electrical characteristics along a single ultralong SWNT were uniform. We also found that maintaining a spatially homogeneous temperature during the growth process was a critical factor for obtaining constant electrical characteristics along the length of the ultralong SWNTs.

  9. Scanning gate microscopy of electronic inhomogeneities in single-walled carbon nanotube (SWCNT) devices

    NASA Astrophysics Data System (ADS)

    Hunt, Steven R.; Collins, Phillip G.

    2010-03-01

    The electronic properties of graphitic carbon devices are primarily determined by the contact metal and the carbon band structure. However, inhomogeneities such as substrate imperfections, surface defects, and mobile contaminants also contribute and can lead to transistor-like behaviors. We experimentally investigate this phenomena in the 1-D limit using metallic single-walled carbon nanotubes (SWCNTs) before and after the electrochemical creation of sidewall defects. While scanning gate microscopy readily identifies the defect sites, the energy-dependence of the technique allows quantitative analysis of the defects and discrimination of different defect types. This research is partly supported by the NSF (DMR 08-xxxx).

  10. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.

    PubMed

    Che, Yuchi; Wang, Chuan; Liu, Jia; Liu, Bilu; Lin, Xue; Parker, Jason; Beasley, Cara; Wong, H-S Philip; Zhou, Chongwu

    2012-08-28

    The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.

  11. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  12. Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.

    2009-01-01

    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.

  13. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.

    PubMed

    Riddell, Meghan R; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T; Guilbert, Larry J

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly

  14. Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    PubMed Central

    Arefin, Md Shamsul

    2012-01-01

    This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319

  15. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.

    PubMed

    Alvares, Dayane S; Ruggiero Neto, João; Ambroggio, Ernesto E

    2017-06-01

    Polybia-MP1 (IDWKKLLDAAKQIL-NH 2 ) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mechanical characteriztion of single-stranded DNA and single-walled carbon nanotube hybrid structures

    NASA Astrophysics Data System (ADS)

    Rokadia, Husein Juzer

    Hybrid nanostructures of single-stranded DNA (ssDNA) and single-walled carbon nanotubes are being proposed as the basis for the next generation of biosensors. For such biosensors, mechanical properties such as the Young's modulus of the hybrid structures play a critical role, which to the best of the author's knowledge is still unknown. Thus, the determination of the Young's modulus of the ssDNA/swCNT hybrid structures was the primary objective of this study. Hybrid structures of 30mer polyT ssDNA and HiPCORTM swCNTs were conjugated using a well known non-covalent interaction protocol. Atomic force microscopy (AFM) was used to scan and generate topographic images and perform nanoindentation tests on the hybrid structures. Molecular dynamics (MD) simulations using a commercial MD program, Materials StudioRTM were performed to study the nature of non-covalent interactions between the ssDNA and the swCNT on the pico-second timescale. AFM topography scans of the bare control HiPCORTM swCNTs indicated an average diameter of about 1.0 nm and length of 800 nm. Similarly, the control 30mer polyT ssDNA was found to resemble a half-hemispherical domed structure with an average height of 2.1 nm. Nanoindentation tests yielded the transverse Young's modulus of the control swCNTs to be 78.0 GPa. The control ssDNA were found to have a Young's modulus of 3.3 GPa and 4.0 MPa in dry and wet environments, respectively. Topographic scans of the ssDNA/swCNT hybrid structures showed the slender swCNTs fully or partially coated along their lengths by ssDNA. The height of the hybrid structures ranged from 2.5 nm to 7.5 nm. Nanoindentation tests on the ssDNA coated portions of the hybrid structures indicated that, their Young's modulus exponentially decreased with increasing coating thickness. Thinly coated sections were found to have a Young's modulus of 100.0 GPa and 7.0 MPa in dry and wet conditions respectively. The thick walled hybrid sections were found to have an average Young

  17. Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Lei, Y. J.; Zhang, D. P.; Shen, Z. B.

    2017-12-01

    Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.

  18. Solid-phase microfibers based on polyethylene glycol modified single-walled carbon nanotubes for the determination of chlorinated organic carriers in textiles.

    PubMed

    Zhang, Wei-Ya; Sun, Yin; Wang, Cheng-Ming; Wu, Cai-Ying

    2011-09-01

    Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol-gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol-gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol-gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L(-1) (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L(-1) for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.

  19. CFD Code Validation of Wall Heat Fluxes for a G02/GH2 Single Element Combustor

    NASA Technical Reports Server (NTRS)

    Lin, Jeff; West, Jeff S.; Williams, Robert W.; Tucker, P. Kevin

    2005-01-01

    This paper puts forth the case for the need for improved injector design tools to meet NASA s Vision for Space Exploration goals. Requirements for this improved tool are outlined and discussed. The potential for Computational Fluid Dynamics (CFD) to meet these requirements is noted along with its current shortcomings, especially relative to demonstrated solution accuracy. The concept of verification and validation is introduced as the primary process for building and quantifying the confidence necessary for CFD to be useful as an injector design tool. The verification and validation process is considered in the context of the Marshall Space Flight Center (MSFC) Combustion Devices CFD Simulation Capability Roadmap via the Simulation Readiness Level (SRL) concept. The portion of the validation process which demonstrates the ability of a CFD code to simulate heat fluxes to a rocket engine combustor wall is the focus of the current effort. The FDNS and Loci-CHEM codes are used to simulate a shear coaxial single element G02/GH2 injector experiment. The experiment was conducted a t a chamber pressure of 750 psia using hot propellants from preburners. A measured wall temperature profile is used as a boundary condition to facilitate the calculations. Converged solutions, obtained from both codes by using wall functions with the K-E turbulence model and integrating to the wall using Mentor s baseline turbulence model, are compared to the experimental data. The initial solutions from both codes revealed significant issues with the wall function implementation associated with the recirculation zone between the shear coaxial jet and the chamber wall. The FDNS solution with a corrected implementation shows marked improvement in overall character and level of comparison to the data. With the FDNS code, integrating to the wall with Mentor s baseline turbulence model actually produce a degraded solution when compared to the wall function solution with the K--E model. The Loci

  20. A quantitative comparison of resolution, scanning speed and lifetime behavior of CVD grown Single Wall Carbon Nanotubes and silicon SPM probes using spectral methods

    NASA Astrophysics Data System (ADS)

    Krause, O.; Bouchiat, V.; Bonnot, A. M.

    2007-03-01

    Due to their extreme aspect ratios and exceptional mechanical properties Carbon Nanotubes terminated silicon probes have proven to be the ''ideal'' probe for Atomic Force Microscopy. But especially for the manufacturing and use of Single Walled Carbon Nanotubes there are serious problems, which have not been solved until today. Here, Single and Double Wall Carbon Nanotubes, batch processed and used as deposited by Chemical Vapor Deposition without any postprocessing, are compared to standard and high resolution silicon probes concerning resolution, scanning speed and lifetime behavior.

  1. All-Organic Actuator Fabricated with Single Wall Carbon Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Lowther, Sharon E.; Harrison, Joycelyn S.; Kang, Jinho; Park, Cheol; Park, Chan Eon

    2008-01-01

    Compliant electrodes to replace conventional metal electrodes have been required for many actuators to relieve the constraint on the electroactive layer. Many conducting polymers have been proposed for the alternative electrodes, but they still have a problem of poor thermal stability. This article reports a novel all-organic actuator with single wall carbon nanotube (SWCNT) films as the alternative electrode. The SWCNT film was obtained by filtering a SWCNT solution through an anodized alumina membrane. The conductivity of the SWCNT film was about 280 S/cm. The performance of the SWCNT film electrode was characterized by measuring the dielectric properties of NASA Langley Research Center - Electroactive Polymer (LaRC-EAP) sandwiched by the SWCNT electrodes over a broad range of temperature (from 25 C to 280 C) and frequency (from 1 KHz to 1 MHz). The all-organic actuator with the SWCNT electrodes showed a larger electric field-induced strain than that with metal electrodes, under identical measurement conditions.

  2. Biomolecular Doping of Single-Walled Carbon Nanotubes by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Rojas, Enrique; Paulson, Scott; Stern, Mike; Staii, Cristian; Dratman, Mary; Johnson, Alan

    2004-03-01

    Electron doping of semiconducting single-walled carbon nanotubes (SWNTs) by the thyroid hormone triiodothyronine (T3) is observed. T3 is applied locally, in solution, to SWNT field effect transistors (FETs) and binds along the length of the nanotube. T3 acts as an electron donor, shifting the I-V gate characteristics towards negative values of gate voltage. Shifts in the characteristics are measured as a function of the concentration of the solution. The effect is nearly reversible by rinsing the FETs with the solvent. Several days after application of T3, with no solvent rinsing, the gate characteristics are also nearly reversed. Experiments with a similar molecule for which the phenol ring is brominated as well as experiments with the de-iodinated molecule (T0) are performed to inform the effect of the iodine. The interaction of T3 with SWNTs may suggest a electronic interaction of T3 with other one-dimensional systems such as DNA.

  3. Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride

    PubMed Central

    Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming

    2012-01-01

    The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy. PMID:23240076

  4. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    NASA Astrophysics Data System (ADS)

    Ryan, Peter; Wu, Yu-Chiao; Somu, Sivasubramanian; Adams, George; McGruer, Nicol

    2011-04-01

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  5. Monolithic Solid Based on Single-Walled Carbon Nanohorns: Preparation, Characterization, and Practical Evaluation as a Sorbent.

    PubMed

    Fresco-Cala, Beatriz; López-Lorente, Ángela I; Cárdenas, Soledad

    2018-05-25

    A monolithic solid based solely on single walled carbon nanohorns (SWNHs) was prepared without the need of radical initiators or gelators. The procedure involves the preparation of a wet jelly-like system of pristine SWNHs followed by slow drying (48 h) at 25 °C. As a result, a robust and stable porous network was formed due to the interaction between SWNHs not only via π-π and van der Waals interactions, but also via the formation of carbon bonds similar to those observed within dahlia aggregates. Pristine SWNHs and the SWNH monolith were characterized by several techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen intrusion porosimetry. Taking into account the efficiency of carbon nanoparticles in sorption processes, the potential applicability of the SWNH-monolith in this research field was explored using toluene; m-, p-, and o-xylene; ethylbenzene; and styrene, as target analytes. Detection limits were 0.01 µg·L -1 in all cases and the inter-day precision was in the interval 7.4⁻15.7%. The sorbent performance of the nanostructured monolithic solid was evaluated by extracting the selected compounds from different water samples with recovery values between 81.5% and 116.4%.

  6. Molecular dynamics simulation of the folding of single alkane chains with different lengths on single-walled carbon nanotubes and graphene.

    PubMed

    Liu, Yan Fang; Yang, Hua; Zhang, Hui

    2018-05-31

    Chain folding is an important step during polymer crystallization. In order to study the effects of the surface on chain folding, molecular dynamics simulations of the folding of different alkane chains on three kinds of single-walled carbon nanotubes (SWCNTs) and graphene were performed. The folding behaviors of the single alkane chains on these surfaces were found to be different from their folding behaviors in vacuum. The end-to-end distances of the chains were calculated to explore the chain folding. An increasing tendency to fold into two or more stems with increasing alkane chain length was observed. This result indicates that the occurrence and the stability of chain folding are related to the surface curvature, the diameter of the SWCNT, and surface texture. In addition, the angle between the direction of the alkane chain segment and the direction of the surface texture was measured on different surfaces.

  7. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Mei, Xuesong; Wang, Wenjun; Yang, Xinju; Xie, Hui; Yang, Lijun; Wang, Yang

    2017-03-01

    Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO2 substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.

  8. Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody

    PubMed Central

    Goldschmidt, Jürgen; Pethe, Annette; Hagemeyer, Christoph E.; Neudorfer, Irene; Zirlik, Andreas; Weber, Wolfgang A.; Bode, Christoph; Meyer, Philipp T.

    2011-01-01

    Background Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. Methodology/Principal Findings LIBS as well as an unspecific control single-chain antibody were labeled with 111Indium (111In) via bifunctional DTPA ( = 111In-LIBS/111In-control). Autoradiography after incubation with 111In-LIBS on activated platelets in vitro (mean 3866±28 DLU/mm2, 4010±630 DLU/mm2 and 4520±293 DLU/mm2) produced a significantly higher ligand uptake compared to 111In-control (2101±76 DLU/mm2, 1181±96 DLU/mm2 and 1866±246 DLU/mm2) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of 111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630±10650 DLU/mm2 vs. 17390±7470 DLU/mm2; P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with 111In-LIBS resulted in a significant increase of the target-to-background ratio compared to 111In-control (1.99±0.36 vs. 1.1±0.24; P<0.01). Conclusions/Significance Nuclear imaging with 111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis

  9. Investigation on Single-walled Carbon Nanotubes-Liposomes Conjugate to Treatment Tumor with Dual-mechanism.

    PubMed

    Zhu, Xiali; Huang, Heqing; Zhang, Yingjie; Xie, Yingxia; Hou, Lin; Zhang, Huijuan; Zhang, Zhenzhong

    2015-01-01

    Single-walled carbon nanotubes (SWNT) have been widely explored as carriers for drug delivery because of their large surface area, high near-infrared absorption coefficient and facile transport through cellular membranes. In this study, Lysine (Lys) modified SWNT-liposomes conjugate loaded with doxorubicin (DOX) was designed to enhance the targeted drug delivery and antitumor effect. The conjugate (DOX-Lys/SWNT-Lip) was prepared with pH gradient methods, and the mean particle size and drug entrapment efficiency were 223±5.9 nm and 85.9 %, respectively. In vitro drug release study showed that DOX released much slowly from DOX-Lys/SWNT-Lip than from DOX solution, but faster than that of DOX-Lys/SWNT. DOX-Lys/SWNT-Lip could efficiently cross the cell membrane and afford higher anti-tumor efficacy on MCF-7 cells in vitro. For in vivo experiment, normal saline (N.S.), and DOX or DOX-Lys/SWNTLip were given to the S180 tumor bearing mice by i.v. administration, and followed by exposing the tumor site to nearinfrared laser (NIR) irradiation at 808 nm for 2 min. The relative tumor volumes in DOX-Lys/SWNT-Lip group and DOX group were obviously smaller than those of N.S. group. When combined with NIR laser irradiation, the suppression on tumor growth was much stronger. In conclusion, this study may provide potentially viable clinical strategies for tumor treatment with chemotherapy and photothermal therapy dual-mechanism.

  10. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  11. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice.

    PubMed

    Bhirde, Ashwin A; Patel, Sachin; Sousa, Alioscka A; Patel, Vyomesh; Molinolo, Alfredo A; Ji, Youngmi; Leapman, Richard D; Gutkind, J Silvio; Rusling, James F

    2010-12-01

    To study the distribution and clearance of polyethylene glycol (PEG)-ylated single-walled carbon nanotube (SWCNTs) as drug delivery vehicles for the anticancer drug cisplatin in mice. PEG layers were attached to SWCNTs and dispersed in aqueous media and characterized using dynamic light scattering, scanning transmission electron microscopy and Raman spectroscopy. Cytotoxicity was assessed in vitro using Annexin-V assay, and the distribution and clearance pathways in mice were studied by histological staining and Raman spectroscopy. Efficacy of PEG-SWCNT-cisplatin for tumor growth inhibition was studied in mice. PEG-SWCNTs were efficiently dispersed in aqueous media compared with controls, and did not induce apoptosis in vitro. Hematoxylin and eosin staining, and Raman bands for SWCNTs in tissues from several vital organs from mice injected intravenously with nanotube bioconjugates revealed that control SWCNTs were lodged in lung tissue as large aggregates compared with the PEG-SWCNTs, which showed little or no accumulation. Characteristic SWCNT Raman bands in feces revealed the presence of bilary or renal excretion routes. Attachment of cisplatin on bioconjugates was visualized with Z-contrast scanning transmission electron microscopy. PEG-SWCNT-cisplatin with the attached targeting ligand EGF successfully inhibited growth of head and neck tumor xenografts in mice. PEG-SWCNTs, as opposed to control SWCNTs, form more highly dispersed delivery vehicles that, when loaded with both cisplatin and EGF, inhibit growth of squamous cell tumors.

  12. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.

    PubMed

    Shiraki, Tomohiro; Tsuzuki, Akiko; Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2016-03-24

    For the first time, the thermodynamics are described for the formation of double-stranded DNA (ds-DNA)-single-walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds-DNAs d(A)20 -d(T)20 and nuclear factor (NF)-κB decoy. UV/Vis/near-IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single-stranded DNAs (ss-DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20-d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm ) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF-κB decoy DNA and no Tm in the ss-DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Demo opto-electronic power source based on single-walled carbon nanotube sheets.

    PubMed

    Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan

    2010-08-24

    It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.

  14. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection.

    PubMed

    Wang, Yonghong; Wang, Ping; Wang, Yiqiang; He, Xiaoxiao; Wang, Kemin

    2015-08-15

    In this work, a simple and sensitive electrochemical strategy for arsenite detection based on the ability of arsenite bound to single-strand DNA (ssDNA) and the signal transduction of single wall carbon nanotubes (SWCNTs) is developed. To realize this purpose, the ssDNA/SWCNTs complexes were formed at first by making ssDNA wrapped around SWCNTs via π-stacking. In the presence of arsenite, the arsenite could strongly bind with the G/T bases of ssDNA and decrease the π-π interaction between ssDNA and SWCNTs, resulting in a certain amount of ssDNA dissociating from the complexes. The separated SWCNTs were selectively assembled on the self-assembled monolayer (SAM) modified Au electrode. Then the SWCNTs onto the SAM-modified Au electrode substantially restored heterogeneous electron transfer that was almost totally blocked by the SAM. The assembled SWCNTs could generate a considerably sensitive and specific tactic for signal transduction, which was related to the concentration of the arsenite. Through detecting the currents mediated by SWCNTs, a linear response to concentration of arsenite ranging from 0.5 to 10ppb and a detection limit of 0.5ppb was readily achieved with desirable specificity and sensitivity. Such a SWCNTs-based biosensor creates a simple, sensitive, nonradioactive route for detection of arsenite. In addition, this demonstration provides a new approach to fabrication of stable biosensors with favorable electrochemical properties believed to be appealing to electroanalytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Annexin-directed β-glucuronidase for the targeted treatment of solid tumors.

    PubMed

    Guillen, Katrin P; Ruben, Eliza A; Virani, Needa; Harrison, Roger G

    2017-02-01

    Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme β-glucuronidase (βG), capable of converting several innocuous prodrugs into chemotherapeutics. We targeted βG to phosphatidylserine on tumor cells, tumor vasculature and metastases via annexin A1/A5. Phosphatidylserine shows promise as a universal marker for solid tumors and allows for tumor type-independent targeting. To create fusion proteins, human annexin A1/A5 was genetically fused to the activity-enhancing 16a3 mutant of human βG, expressed in chemically defined, fed-batch suspension culture, and chromatographically purified. All fusion constructs achieved >95% purity with yields up to 740 μg/l. Fusion proteins displayed cancer selective cell-surface binding with cell line-dependent binding stability. One fusion protein in combination with the prodrug SN-38 glucuronide was as effective as the drug SN-38 on Panc-1 pancreatic cancer cells and HAAE-1 endothelial cells, and demonstrated efficacy against MCF-7 breast cancer cells. βG fusion proteins effectively enable localized combination therapy that can be tailored to each patient via prodrug selection, with promising clinical potential based on their near fully human design. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane

    PubMed Central

    Hirama, Takashi; Das, Raibatak; Yang, Yanbo; Ferguson, Charles; Won, Amy; Yip, Christopher M.; Kay, Jason G.; Grinstein, Sergio; Parton, Robert G.; Fairn, Gregory D.

    2017-01-01

    Caveolae are bulb-shaped nanodomains of the plasma membrane that are enriched in cholesterol and sphingolipids. They have many physiological functions, including endocytic transport, mechanosensing, and regulation of membrane and lipid transport. Caveola formation relies on integral membrane proteins termed caveolins (Cavs) and the cavin family of peripheral proteins. Both protein families bind anionic phospholipids, but the precise roles of these lipids are unknown. Here, we studied the effects of phosphatidylserine (PtdSer), phosphatidylinositol 4-phosphate (PtdIns4P), and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) on caveolar formation and dynamics. Using live-cell, single-particle tracking of GFP-labeled Cav1 and ultrastructural analyses, we compared the effect of PtdSer disruption or phosphoinositide depletion with caveola disassembly caused by cavin1 loss. We found that PtdSer plays a crucial role in both caveola formation and stability. Sequestration or depletion of PtdSer decreased the number of detectable Cav1-GFP puncta and the number of caveolae visualized by electron microscopy. Under PtdSer-limiting conditions, the co-localization of Cav1 and cavin1 was diminished, and cavin1 degradation was increased. Using rapamycin-recruitable phosphatases, we also found that the acute depletion of PtdIns4P and PtdIns(4,5)P2 has minimal impact on caveola assembly but results in decreased lateral confinement. Finally, we show in a model of phospholipid scrambling, a feature of apoptotic cells, that caveola stability is acutely affected by the scrambling. We conclude that the predominant plasmalemmal anionic lipid PtdSer is essential for proper Cav clustering, caveola formation, and caveola dynamics and that membrane scrambling can perturb caveolar stability. PMID:28698382

  17. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    PubMed

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  18. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  19. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F

    2014-11-01

    The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.

  20. The adsorption of L-phenylalanine on oxidized single-walled carbon nanotubes.

    PubMed

    Piao, Lingyu; Liu, Quanrun; Li, Yongdan; Wang, Chen

    2009-02-01

    A simple and green approach was proceeded to obtain a stable single-walled carbon nanotubes (SWNTs)/L-phenylalanine (Phe) solution. The oxidized SWNTs (OSWNT) were used in this work. The scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), Raman spectrometer, Fourier transform-infrared resonance (FT-IR), Ultraviolet-visible (UV-vis) spectroscopy, Thermogravimetric analysis (TGA) and High performance liquid chromatography (HPLC) were joined together to investigate the interaction between OSWNT and Phe. The OSWNT became soluble in the water and formed a stable solution since the Phe was adsorbed. The absorbed amount of Phe on the OSWNT is around 33 wt%. Adsorption of the Phe was mainly carried out on the OSWNT with smaller diameters. The Phe molecules were absorbed on the OSWNT by conjunct interaction of the pi-pi stacking, hydrogen bond and part of covalent bond.