Science.gov

Sample records for phosphide reregistration eligibility

  1. Reregistration eligibility document (RED): Oxalic acid

    SciTech Connect

    Not Available

    1992-12-01

    EPA is directed by the Federal Insecticide, Fungicide, and Rodenticide Act as amended in 1988 (FIFRA '88) to review all pesticide products containing active ingredients initially registered before November 1, 1984, and to reregister those products that have a substantially complete data base and do not pose unreasonable adverse effects to people or the environment. This pesticide reregistration program is to be completed by the late 1990's. The Reregistration Eligibility Document (or RED) for oxalic acid discusses the scientific data and other information supporting EPA's regulatory conclusion that products containing a pesticide do not pose unreasonable risks when used as directed by Agency-approved labeling, and are eligible for reregistration.

  2. 75 FR 3233 - Sulfometuron Methyl Amendment to Reregistration Eligibility Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... November 12, 2008 (73 FR 219) (FRL-8388-5), the Agency received comments and mitigation proposals submitted... herbicide sulfometuron methyl. EPA conducted this reassessment of the Sulfometuron Methyl RED in response to... methyl concludes EPA's reregistration eligibility decision making process for this herbicide....

  3. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  4. 76 FR 28776 - Pesticide Reregistration Performance Measures and Goals; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... preamble in FR Doc. 2011-4649, published in the Federal Register of March 2, 2011 (76 FR 11456) (FRL-8859-4... AGENCY Pesticide Reregistration Performance Measures and Goals; Correction AGENCY: Environmental... March 2, 2011, concerning the Agency's progress in meeting its performance measures and goals...

  5. 71 FR 45551 - Metaldehyde Reregistration Eligibility Decision; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-08-09

    ..., published in the Federal Register on May 14, 2004 (69 FR 26819) (FRL-7357-9), explains that in conducting... metaldehyde Docket. Metaldehyde is a molluscicide used to control snails and slugs on a wide variety of sites... molluscicide used to control snails and slugs on a wide variety of sites, including turf, ornamentals,...

  6. 71 FR 45550 - Coppers Reregistration Eligibility Decision; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-08-09

    ..., published in the Federal Register on May 14, 2004 (69 FR 26819)(FRL-7357-9), explains that in conducting..., and in direct aquatic applications as an algaecide, herbicide, molluscicide, and leech control..., molluscicide, and leech control. Direct aquatic application sites include a wide range of water...

  7. 49 CFR 368.5 - Re-registration of certain carriers holding certificates of registration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Re-registration of certain carriers holding certificates of registration. 368.5 Section 368.5 Transportation Other Regulations Relating to Transportation... MUNICIPALITIES. § 368.5 Re-registration of certain carriers holding certificates of registration. (a) Each...

  8. 49 CFR 365.505 - Re-registration and fee waiver for certain applicants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Re-registration and fee waiver for certain applicants. 365.505 Section 365.505 Transportation Other Regulations Relating to Transportation (Continued... Carriers § 365.505 Re-registration and fee waiver for certain applicants. (a) If you filed an...

  9. 49 CFR 365.505 - Re-registration and fee waiver for certain applicants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Re-registration and fee waiver for certain applicants. 365.505 Section 365.505 Transportation Other Regulations Relating to Transportation (Continued... Carriers § 365.505 Re-registration and fee waiver for certain applicants. (a) If you filed an...

  10. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  11. Fatal aluminium phosphide poisoning

    PubMed Central

    Mittal, Sachin; Rani, Yashoda

    2015-01-01

    Aluminium phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law. PMID:27486362

  12. Zinc Phosphide Poisoning

    PubMed Central

    Doğan, Erdal; Güzel, Abdulmenap; Çiftçi, Taner; Aycan, İlker; Çetin, Bedri; Kavak, Gönül Ölmez

    2014-01-01

    Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes. PMID:25101186

  13. 77 FR 15234 - Controlled Substances and List I Chemical Registration and Reregistration Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... FR 15272 (March 22, 1993). \\13\\ American Medical Association v. Reno, 857 F. Supp. 80 (D.D.C. 1994... registration and reregistration was published on July 6, 2011, at 76 FR 39318, with a 60 day comment period..., Public Law 103-200, 107 Stat. 2333. \\6\\ 36 FR 4928 (March 13, 1971); 36 FR 7776 (April 24, 1971). In...

  14. 75 FR 52859 - Re-Registration and Renewal of Aircraft Registration; OMB Approval of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ...: John G. Bent, Civil Aviation Registry, Mike Monroney Aeronautical Center, 6500 South MacArthur..., the FAA published the final rule, ``Re-Registration and Renewal of Aircraft Registration'' (75 FR... accuracy of the Civil Aviation Registry. The rule contained information collection requirements that...

  15. 78 FR 17204 - Pesticide Reregistration Performance Measures and Goals; Annual Progress Report; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... subject to a formal comment period, EPA welcomes input from stakeholders and the general public. Written... AGENCY Pesticide Reregistration Performance Measures and Goals; Annual Progress Report; Notice of... information about EPA's annual achievements in meeting its performance measures and goals for...

  16. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  17. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  18. Managing aluminum phosphide poisonings

    PubMed Central

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  19. Managing aluminum phosphide poisonings.

    PubMed

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-07-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO(4), coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  20. Aluminium phosphide-induced leukopenia.

    PubMed

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-01-01

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical. PMID:24172776

  1. Aluminium phosphide-induced leukopenia

    PubMed Central

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-01-01

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical. PMID:24172776

  2. Phonon properties of americium phosphide

    NASA Astrophysics Data System (ADS)

    Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.

    2016-05-01

    Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.

  3. Can Ni phosphides become viable hydroprocessing catalysts?

    SciTech Connect

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  4. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Zinc phosphide; tolerances for... § 180.284 Zinc phosphide; tolerances for residues. (a) General. Tolerances are established for residues of the phosphine resulting from the use of the rodenticide zinc phosphide in or on the...

  5. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Zinc phosphide; tolerances for... § 180.284 Zinc phosphide; tolerances for residues. (a) General. Tolerances are established for residues of the phosphine resulting from the use of the rodenticide zinc phosphide in or on the...

  6. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Zinc phosphide; tolerances for... § 180.284 Zinc phosphide; tolerances for residues. (a) General. Tolerances are established for residues of the phosphine resulting from the use of the rodenticide zinc phosphide in or on the...

  7. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Zinc phosphide; tolerances for... § 180.284 Zinc phosphide; tolerances for residues. (a) General. Tolerances are established for residues of the phosphine resulting from the use of the rodenticide zinc phosphide in or on the...

  8. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  9. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  10. Transition Metal Phosphide Hydroprocessing Catalysts: A review

    SciTech Connect

    Oyama, S.; Gott, T; Zhao, H; Lee, Y

    2009-01-01

    The diminishing quality of oil feedstocks coupled with increasingly more stringent environmental regulations limiting the content of sulfur in transportation fuels have given rise to a need for improved hydroprocessing technology. This review begins with a summary of the major improvements in hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) catalysts and processes that have been reported in recent years. It then describes a new class of hydroprocessing catalysts, the transition metal phosphides, which have emerged as a promising group of high-activity, stable catalysts. The phosphides have physical properties resembling ceramics, so are strong and hard, yet retain electronic and magnetic properties similar to metals. Their crystal structures are based on trigonal prisms, yet they do not form layered structures like the sulfides. They display excellent performance in HDS and HDN, with the most active phosphide, Ni{sub 2}P, having activity surpassing that of promoted sulfides on the basis of sites titrated by chemisorption (CO for the phosphides, O{sub 2} for the sulfides). In the HDS of difficult heteroaromatics like 4,6-dimethyldibenzothiophene Ni{sub 2}P operates by the hydrogenation pathway, while in the HDN of substituted nitrogen compounds like 2-methylpiperidine it carries out nucleophilic substitution. The active sites for hydrogenation in Ni{sub 2}P have a square pyramidal geometry, while those for direct hydrodesulfurization have a tetrahedral geometry. Overall, Ni{sub 2}P is a promising catalyst for deep HDS in the presence of nitrogen and aromatic compounds.

  11. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  12. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  13. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  14. Efficient water reduction with gallium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-07-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.

  15. Aluminum phosphide poisoning: an unsolved riddle.

    PubMed

    Anand, R; Binukumar, B K; Gill, Kiran Dip

    2011-08-01

    Aluminum phosphide (ALP), a widely used insecticide and rodenticide, is also infamous for the mortality and morbidity it causes in ALP-poisoned individuals. The toxicity of metal phosphides is due to phosphine liberated when ingested phosphides come into contact with gut fluids. ALP poisoning is lethal, having a mortality rate in excess of 70%. Circulatory failure and severe hypotension are common features of ALP poisoning and frequent cause of death. Severe poisoning also has the potential to induce multi-organ failure. The exact site or mechanism of its action has not been proved in humans. Rather than targeting a single organ to cause gross damage, ALP seems to work at the cellular level, resulting in widespread damage leading to multiorgan dysfunction (MOD) and death. There has been proof in vitro that phosphine inhibits cytochrome c oxidase. However, it is unlikely that this interaction is the primary cause of its toxicity. Mitochondria could be the possible site of maximum damage in ALP poisoning, resulting in low ATP production followed by metabolic shutdown and MOD; also, owing to impairment in electron flow, there could be free radical generation and damage, again producing MOD. Evidence of reactive oxygen species-induced toxicity owing to ALP has been observed in insects and rats. A similar mechanism could also play a role in humans and contribute to the missing link in the pathogenesis of ALP toxicity. There is no specific antidote for ALP poisoning and supportive measures are all that are currently available. PMID:21607993

  16. Microwave-assisted synthesis of transition metal phosphide

    SciTech Connect

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  17. Stability and bonding of new superalkali phosphide species.

    PubMed

    Cochran, Elizabeth; Muller, Giel; Meloni, Giovanni

    2015-09-01

    New superalkali phosphide species with the molecular formulas F2Li3P, F2Li3P2, and F4Li6P were investigated. Using the CBS-QB3 composite method to optimize geometry and energetic parameters, four monophosphides, two diphosphides, and one disuperalkali phosphide were discovered that contain intriguing structural features, including hyperlithiation, phosphorus-phosphorus bonds, and planar tetracoordinated phosphorus. It is believed that these features lend to the stability of these structures and may warrant further experimental investigation of these phosphide species to determine if they could play some role in the development of novel chemical reactions and/or materials. PMID:26219751

  18. A systematic review of aluminium phosphide poisoning.

    PubMed

    Mehrpour, Omid; Jafarzadeh, Mostafa; Abdollahi, Mohammad

    2012-03-01

    Every year, about 300,000 people die because of pesticide poisoning worldwide. The most common pesticide agents are organophosphates and phosphides, aluminium phosphide (AlP) in particular. AlP is known as a suicide poison that can easily be bought and has no effective antidote. Its toxicity results from the release of phosphine gas as the tablet gets into contact with moisture. Phosphine gas primarily affects the heart, lungs, gastrointestinal tract, and kidneys. Poisoning signs and symptoms include nausea, vomiting, restlessness, abdominal pain, palpitation, refractory shock, cardiac arrhythmias, pulmonary oedema, dyspnoea, cyanosis, and sensory alterations. Diagnosis is based on clinical suspicion, positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination with coconut oil and sodium bicarbonate, administration of charcoal, and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Moreover, acidosis can be treated with early intravenous administration of sodium bicarbonate, cardiogenic shock with fluid, vasopresor, and refractory cardiogenic shock with intra-aortic baloon pump or digoxin. Trimetazidine may also have a useful role in the treatment, because it can stop ventricular ectopic beats and bigeminy and preserve oxidative metabolism. This article reviews the epidemiological, toxicological, and clinical/pathological aspects of AlP poisoning and its management. PMID:22450207

  19. Registration and reregistration application fees. Confirmation of final rule, remanded for further notice and comment, and response to comments.

    PubMed

    2002-08-01

    DEA is publishing a final rule regarding the registration and reregistration fees charged to controlled substances registrants. DEA is required to charge reasonable fees relating to the registration and control of the manufacture, distribution, and dispensing of controlled substances. To address this mandate, on March 22, 1993 DEA published a final rule in the Federal Register, establishing registration fees for controlled substances registrants (58 FR 15272). Following publication of the final rule, the American Medical Association (AMA) and others filed a complaint in the United States District Court for the District of Columbia objecting to the new fees. The district court issued its final order granting the government's motion for summary judgment and disposing of all claims. The AMA appealed. The United States Court of Appeals for the District of Columbia Circuit found DEA's rulemaking to be inadequate. The appeals court remanded, without vacating, the rule to DEA, requiring the agency to provide an opportunity for meaningful notice and comment on the fee-funded components of the Diversion Control Program. DEA responded to the remand requirement through a document published in the Federal Register on December 30, 1996 (61 FR 68624). This Final Rule supplements the December 30, 1996 Federal Register document and with that document, constitutes the final rule on the Drug Diversion Control Fee Account. PMID:12194173

  20. Doping of indium phosphide with group IV elements

    SciTech Connect

    Zakharenkov, L.F.; Samorukov, B.E.; Zykov, A.M.

    1985-06-01

    This paper studies the doping of single crystals of indium phosphide (InP) with group IV elements using data obtained by measuring the total charge concentration of additives and carriers. Single crystals of indium phosphide were grown by the Czochralski method from liquid melts with a liquid hermetic seal in quartz cubicles. The total impurity concentration was determined by atomic-absorption analysis with + or - 10% error. In order to explain the behavior of germanium and tin in indium phosphide, the authors consider the bond energies of additives in indium phosphide and their tetrahedral radii. The authors conclude that the established higher amphoteric character of germanium with respect to tin is probably explained by the moduli of elasticity of the doped crystal.

  1. Thin boron phosphide coating as a corrosion-resistant layer

    DOEpatents

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  2. Cavity optomechanics in gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew; Hryciw, Aaron C.; Barclay, Paul E.

    2014-04-01

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 105 and mode volumes <10(λ/n)3, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 104 intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g0/2π˜30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  3. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10{sup 5} and mode volumes <10(λ/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  4. BP: synthesis and properties of boron phosphide

    NASA Astrophysics Data System (ADS)

    Woo, Katherine; Lee, Kathleen; Kovnir, Kirill

    2016-07-01

    Cubic boron phosphide, BP, is notorious for its difficult synthesis, thus preventing it from being a widely used material in spite of having numerous favorable technological properties. In the current work, three different methods of synthesis are developed and compared: from the high temperature reaction of elements, Sn flux assisted synthesis, and a solid state metathesis reaction. Structural and optical properties of the products synthesized from the three methods were thoroughly characterized. Solid state metathesis is shown to be the cleanest and most efficient method in terms of reaction temperature and time. Synthesis by Sn flux resulted in a novel Sn-doped BP compound. Undoped BP samples exhibit an optical bandgap of ∼2.2 eV while Sn-doped BP exhibits a significantly smaller bandgap of 1.74 eV. All synthesized samples show high stability in concentrated hydrochloric acid, saturated sodium hydroxide solutions, and fresh aqua regia.

  5. Successful management of zinc phosphide poisoning

    PubMed Central

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-01-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction. PMID:27390464

  6. Successful management of zinc phosphide poisoning.

    PubMed

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-06-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction. PMID:27390464

  7. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  8. Method for production of free-standing polycrystalline boron phosphide film

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  9. Free-standing polycrystalline boron phosphide film and method for production thereof

    DOEpatents

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  10. Successful Management of Aluminium Phosphide Poisoning Resulting in Cardiac Arrest

    PubMed Central

    Hakimoğlu, Sedat; Dikey, İsmail; Sarı, Ali; Kekeç, Leyla; Tuzcu, Kasım; Karcıoğlu, Murat

    2015-01-01

    Aluminum phosphide has high toxicity when it is ingested, and in case of contact with moisture, phosphine gas is released. Aluminum phosphide poisoning causes metabolic acidosis, arrhythmia, acute respiratory distress syndrome and shock, and there is no specific antidote. A 17-year-old male patient was referred to our hospital because of aluminum phosphide poisoning with 1500 mg of aluminum phosphide tablets. The patient’s consciousness was clear but he was somnolent. Vital parameters were as follows: blood pressure: 85/56 mmHg, pulse: 88 beats/min, SpO2: 94%, temperature: 36.4°C. Because of hypotension, noradrenaline and dopamine infusions were started. The patient was intubated because of respiratory distress and loss of consciousness. Severe metabolic acidosis was determined in the arterial blood gas, and metabolic acidosis was corrected by sodium bicarbonate treatment. In addition to supportive therapy of the poisoning, haemodialysis was performed. Cardiac arrest occurred during follow-ups in the intensive care unit, and sinus rhythm was achieved after 10 min of cardiopulmonary resuscitation. The patient was discharged after three sessions of haemodialysis on the ninth day. As a result, haemodialysis contributed to symptomatic treatment of aluminum phosphide poisoning in this case report. PMID:27366514

  11. Successful Management of Aluminium Phosphide Poisoning Resulting in Cardiac Arrest.

    PubMed

    Hakimoğlu, Sedat; Dikey, İsmail; Sarı, Ali; Kekeç, Leyla; Tuzcu, Kasım; Karcıoğlu, Murat

    2015-08-01

    Aluminum phosphide has high toxicity when it is ingested, and in case of contact with moisture, phosphine gas is released. Aluminum phosphide poisoning causes metabolic acidosis, arrhythmia, acute respiratory distress syndrome and shock, and there is no specific antidote. A 17-year-old male patient was referred to our hospital because of aluminum phosphide poisoning with 1500 mg of aluminum phosphide tablets. The patient's consciousness was clear but he was somnolent. Vital parameters were as follows: blood pressure: 85/56 mmHg, pulse: 88 beats/min, SpO2: 94%, temperature: 36.4°C. Because of hypotension, noradrenaline and dopamine infusions were started. The patient was intubated because of respiratory distress and loss of consciousness. Severe metabolic acidosis was determined in the arterial blood gas, and metabolic acidosis was corrected by sodium bicarbonate treatment. In addition to supportive therapy of the poisoning, haemodialysis was performed. Cardiac arrest occurred during follow-ups in the intensive care unit, and sinus rhythm was achieved after 10 min of cardiopulmonary resuscitation. The patient was discharged after three sessions of haemodialysis on the ninth day. As a result, haemodialysis contributed to symptomatic treatment of aluminum phosphide poisoning in this case report. PMID:27366514

  12. Phosphine by bio-corrosion of phosphide-rich iron.

    PubMed

    Glindemann, D; Eismann, F; Bergmann, A; Kuschk, P; Stottmeister, U

    1998-01-01

    Phosphine is a toxic agent and part of the phosphorus cycle. A hitherto unknown formation mechanism for phosphine in the environment was investigated. When iron samples containing iron phosphide were incubated in corrosive aquatic media affected by microbial metabolites, phosphine was liberated and measured by gas chromatography. Iron liberates phosphine especially in anoxic aquatic media under the influence of sulfide and an acidic pH. A phosphine-forming mechanism is suggested: Phosphate, an impurity of iron containing minerals, is reduced abioticly to iron phosphide. When iron is exposed to the environment (e.g. as outdoor equipment, scrap, contamination in iron milled food or as iron meteorites) and corrodes, the iron phosphide present in the iron is suspended in the medium and can hydrolyze to phosphine. Phosphine can accumulate to measurable quantities in anoxic microbial media, accelerating corrosion and preserving the phosphine formed from oxidation. PMID:19005813

  13. Carbon phosphide monolayers with superior carrier mobility.

    PubMed

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P

    2016-04-28

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics. PMID:27067002

  14. Fabrication challenges for indium phosphide microsystems

    NASA Astrophysics Data System (ADS)

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.

    2015-04-01

    From the inception of III-V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device.

  15. An update on toxicology of aluminum phosphide

    PubMed Central

    2012-01-01

    Aluminum phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC), glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning. PMID:23351193

  16. Eligibility Requirements

    MedlinePlus

    ... Home > Donating Blood > Eligibility Requirements Printable Version Eligibility Requirements This page uses Javascript. Your browser either doesn' ... donors » Weigh at least 110 lbs. Additional weight requirements apply for donors 18-years-old and younger ...

  17. A mild reduction phosphidation approach to nanocrystalline GaP

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Luo, Tao; Huang, Mingxing; Gu, Yunle; Shi, Liang; Qian, Yitai

    2004-12-01

    Nanocrystalline gallium phosphide (GaP) has been prepared through a reduction-phosphidation by using Ga, PCl 3 as gallium and phosphorus sources and metallic sodium as reductant at 350 °C. The XRD pattern can be indexed as cublic GaP with the lattice constant of a=5.446 Å. The TEM image shows particle-like polycrystals and flake-like single crystals. The PL spectrum exhibits one peak at 330 nm for the as-prepared nanocrystalline GaP.

  18. Carbon phosphide monolayers with superior carrier mobility

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  19. Manganese phosphide thin films and nanorods grown on gallium phosphide and on glass substrates

    NASA Astrophysics Data System (ADS)

    Nateghi, N.; Lambert-Milot, S.; Ménard, D.; Masut, R. A.

    2016-05-01

    We report a simple and fast route to grow ferromagnetic manganese phosphide polycrystalline films and nanorods on GaP and on glass substrates using metalorganic vapor phase deposition. Increasing the growth temperature (≥600 °C) and growth time (≥30 min) results in nucleation of secondary MnP crystals on the primary grains. The secondary crystals grow faster along a specific direction of orthorhombic MnP (c-axis) and form long rods (up to ~10 μm) whose diameters are in the nanoscale (20-100 nm). The nanorods can be easily detached from the glass substrate. The films exhibit ferromagnetic behavior with a range of transition temperatures, depending on the growth conditions.

  20. Solvo-thermal synthesis of crystalline dinickel phosphide

    NASA Astrophysics Data System (ADS)

    Lü, Bo; Bai, Yu-Jun; Feng, Xin; Zhao, Yong-Rui; Yang, Jie; Chi, Jie-Ru

    2004-01-01

    Nanocrystalline dinickel phosphide was synthesized via a solvo-thermal route using PCl 3 and NiCl 2 as precursors, and Na as reductant. The crystals were characterized by X-ray powder diffraction and transmission electronic microscopy. It was shown that the product is pure Ni 2P which crystallizes very well with an average size of about 80 nm.

  1. 3D Nanoporous Metal Phosphides toward High-Efficiency Electrochemical Hydrogen Production.

    PubMed

    Tan, Yongwen; Wang, Hao; Liu, Pan; Cheng, Chun; Zhu, Fan; Hirata, Akihiko; Chen, Mingwei

    2016-04-01

    Free-standing nanoporous metal phosphides are fabricated by a novel top-down method, by selectively leaching less-stable metal phases from rapidly solidified two-phase metal-phosphorus alloys. The phosphide phases with relatively high electrochemical stability are left as the skeletons of nanoporous structures. The resultant nanoporous phosphides with tunable pore size and porosity show superior catalytic activities toward electrochemical hydrogen production. PMID:26889914

  2. Histopathological changes in cases of aluminium phosphide poisoning.

    PubMed

    Sinha, U S; Kapoor, A K; Singh, A K; Gupta, A; Mehrotra, Ravi

    2005-04-01

    Of a total of 205 poisoning deaths in our hospital in 2003, 83 cases were due to Aluminium phosphide poisoning and were further analyzed. Most vulnerable age group was 21-40 years and M:F ratio was 2:1. On naked eye examination, almost all the vital organs were found to be congested. On microscopic study, the liver showed central venous congestion, degeneration, haemorrhage, sinusoidal dilation, bile stasis, centrilobular necrosis, Kupffer cell hyperplasia, infiltration by mononuclear cells and fatty change. Microscopy of the lungs revealed alveolar thickening, oedema, dilated capillaries, collapsed alveoli and haemorrhage. In the kidney, changes were degeneration, infiltration, tubular dilation and cloudy swelling. Changes in the brain included congestion and coagulative necrosis and in the stomach, congestion and haemorrhage. Easy availability of this cheap and highly toxic substance was responsible for the sudden spurt of poisoning with aluminium phosphide. PMID:16758658

  3. Determination of series resistance of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving

    1991-01-01

    The series resistance of a solar cell is an important parameter, which must be minimized to achieve high cell efficiencies. The cell series resistance is affected by the starting material, its design, and processing. The theoretical approach proposed by Jia, et. al., is used to calculate the series resistance of indium phosphide solar cells. It is observed that the theoretical approach does not predict the series resistance correctly in all cases. The analysis was modified to include the use of effective junction ideality factor. The calculated results were compared with the available experimental results on indium phosphide solar cells processed by different techniques. It is found that the use of process dependent junction ideality factor leads to better estimation of series resistance. An accurate comprehensive series resistance model is warranted to give proper feedback for modifying the cell processing from the design state.

  4. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts

    SciTech Connect

    Bowker, Richard H.; Smith, Mica C.; Pease, Melissa; Slenkamp, Karla M.; Kovarik, Libor; Bussell, Mark E.

    2011-07-01

    Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.

  5. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  6. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  7. Predicting crystal structures ab initio: group 14 nitrides and phosphides.

    PubMed

    Hart, Judy N; Allan, Neil L; Claeyssens, Frederik

    2010-08-14

    Crystal structures are predicted for a range of group 14 nitrides and phosphides with 1 : 1 stoichiometry, following our method of starting from the known structures for a range of binary compounds and looking for trends in the preferred local bonding environments in the optimised structures. We have previously applied this method to predict the structures of carbon nitride and phosphorus carbide. Here, we use a similar approach to predict the structures of silicon and germanium nitrides and phosphides with 1 : 1 stoichiometry. We find that the local bonding environments in the preferred structures for the nitrides are the same as those for the 3 : 4 stoichiometry. For the phosphides, we have found several possible structures with similar energies. Structures containing hypervalent phosphorus must be considered as these are often low in energy, particularly for GeP; these have not been included in previous work. The greater tendency to form hypervalent phosphorus in GeP than SiP can be rationalised by considering the bond enthalpies for the two compositions. PMID:20603659

  8. Indium phosphide nanowires and their applications in optoelectronic devices

    PubMed Central

    Zafar, Fateen

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed. PMID:27118920

  9. Diphacinone and zinc phosphide toxicity in a flock of Peafowl.

    PubMed

    Shivaprasad, H L; Galey, F

    2001-12-01

    Toxicity probably due to a combination of diphacinone and zinc phosphide was diagnosed in a flock of peafowl, in which 35 birds in a flock of 80 died over a span of 10 days without any apparent clinical signs. Chickens and guinea fowl, 30 each on the same premises, were not affected. Plastic tubes containing diphacinone and zinc phosphide were used on the premises to control ground squirrels. Most of the six dead peafowl, which ranged in age from 6 months to 4 years, had an accumulation of serosanguinous fluid in the abdominal cavity, semi-clotted blood over the liver lobes, increased pericardial fluid, and enlarged and pale kidneys. Pellets of diphacinone and zinc phosphide were found in the crop and gizzard contents from most of the birds. Microscopically, most of the birds had mild to moderate centrolobular degeneration of hepatocytes and multifocal degeneration of myofibres in the heart with infiltration by a few mononuclear cells. Acute nephrosis and mucosal oedema in the oesophagus and crop were also observed. Toxicological analysis of the crop and gizzard contents revealed the presence of diphacinone and phosphine gas, and analysis of the crop contents from two birds for heavy metals revealed zinc levels of up to 6600 parts/10 6 . It was suspected that only the peafowl and not the chickens and guinea fowl were affected because peafowl, with their longer necks, were able to reach into the plastic tubes and eat the pellets. PMID:19184953

  10. Medicaid Eligibility

    MedlinePlus

    ... and children, and individuals receiving Supplemental Security Income (SSI) are examples of mandatory eligibility groups . States have ... the income methodologies of the supplemental security income (SSI) program administered by the Social Security Administration (some ...

  11. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  12. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  13. A gallium phosphide high-temperature bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  14. Hydrogenated microcrystalline silicon electrodes connected by indium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhiko P.; VJ, Logeeswaran; Saif Islam, M.; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Stanley Williams, R.; Chen, Yong

    2007-09-01

    The authors report the connection of two planar hydrogenated silicon (Si:H) electrodes by intersecting and bridging indium phosphide nanowires (InP NWs). A simple metal-semiconductor-metal photoconductor was used as a test vehicle to measure electrical and optical characteristics of the connected InP NWs. This implementation of III-V compound semiconductor nanowires on Si:H combines the characteristics of a direct bandgap semiconductor with the flexible fabrication processes of non-single-crystal silicon platforms that do not require single-crystal substrates.

  15. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  16. Aluminum Phosphide Poisoning-Related Deaths in Tehran, Iran, 2006 to 2013.

    PubMed

    Etemadi-Aleagha, Afshar; Akhgari, Maryam; Iravani, Fariba Sardari

    2015-09-01

    Metal phosphides such as aluminum phosphide are potent insecticides. This highly toxic substance is used for rice and other grains protection in Iran. Due to its high toxicity potential and easy availability, it is widely used as a suicide poison. This substance has no effective antidote and the incidence of deaths due to its poisoning is increasing day by day in Iran. The present study was conducted to show the increasing incidence of fatal aluminum phosphide poisoning and its toxicological and forensic aspects in an 8-year study, 2006 to 2013. Autopsy sheets were reviewed and cases with the history of aluminum phosphide poisoning were selected. Toxicological analysis results, demographic and necroscopic examination findings were studied. A total of 51.8% of studied cases were female. Most of the cases were between 10 and 40 years old. The manner of death was self-poisoning in 85% of cases. Morphine, ethanol, and amitriptyline were the most common additional drugs detected in toxicological analysis. The incidence of fatal aluminum phosphide poisoning cases referred for phosphine analysis was 5.22 and 37.02 per million of population of Tehran in 2006 and 2013, respectively. The results of this study showed that in spite of ban and restrictions, there was a dramatic increase in the incidence of fatal aluminum phosphide poisoning in Tehran from 2006 to 2013. Safety alert should be highlighted in training program for all population groups about the toxic effects of aluminum phosphide tablets. PMID:26402837

  17. Aluminum Phosphide Poisoning-Related Deaths in Tehran, Iran, 2006 to 2013

    PubMed Central

    Etemadi-Aleagha, Afshar; Akhgari, Maryam; Iravani, Fariba Sardari

    2015-01-01

    Abstract Metal phosphides such as aluminum phosphide are potent insecticides. This highly toxic substance is used for rice and other grains protection in Iran. Due to its high toxicity potential and easy availability, it is widely used as a suicide poison. This substance has no effective antidote and the incidence of deaths due to its poisoning is increasing day by day in Iran. The present study was conducted to show the increasing incidence of fatal aluminum phosphide poisoning and its toxicological and forensic aspects in an 8-year study, 2006 to 2013. Autopsy sheets were reviewed and cases with the history of aluminum phosphide poisoning were selected. Toxicological analysis results, demographic and necroscopic examination findings were studied. A total of 51.8% of studied cases were female. Most of the cases were between 10 and 40 years old. The manner of death was self-poisoning in 85% of cases. Morphine, ethanol, and amitriptyline were the most common additional drugs detected in toxicological analysis. The incidence of fatal aluminum phosphide poisoning cases referred for phosphine analysis was 5.22 and 37.02 per million of population of Tehran in 2006 and 2013, respectively. The results of this study showed that in spite of ban and restrictions, there was a dramatic increase in the incidence of fatal aluminum phosphide poisoning in Tehran from 2006 to 2013. Safety alert should be highlighted in training program for all population groups about the toxic effects of aluminum phosphide tablets. PMID:26402837

  18. Recent developments in indium phosphide space solar cell research

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Weinberg, Irving

    1987-01-01

    Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n + p and p + n configurations with total area efficiencies of 17.9 and 15.9 percent (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AM0 efficiency of 20.5 percent was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 to the 16th power/cu cm, respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n + p cells are more radiation resistant at higher fluences than the p + n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.

  19. Recent developments in indium phosphide space solar cell research

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Weinberg, Irving

    1987-01-01

    Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n+p and p+n configurations with total area efficiencies of 17.9 and 15.9% (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AMO efficiency of 20.5% was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 the the 16th power/cu cm respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n+p cells are more radiation resistant at higher fluences than the p+n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.

  20. Earth's Phosphides in Levant and insights into the source of Archean prebiotic phosphorus

    PubMed Central

    Britvin, Sergey N.; Murashko, Michail N.; Vapnik, Yevgeny; Polekhovsky, Yury S.; Krivovichev, Sergey V.

    2015-01-01

    Natural phosphides - the minerals containing phosphorus in a redox state lower than zero – are common constituents of meteorites but virtually unknown on the Earth. Herein we present the first rich occurrence of iron-nickel phosphides of terrestrial origin. Phosphide-bearing rocks are exposed in three localities in the surroundings of the Dead Sea, Levant: in the northern Negev Desert, Israel and Transjordan Plateau, south of Amman, Jordan. Seven minerals from the ternary Fe-Ni-P system have been identified with five of them, NiP2, Ni5P4, Ni2P, FeP and FeP2, previously unknown in nature. The results of the present study could provide a new insight on the terrestrial origin of natural phosphides – the most likely source of reactive prebiotic phosphorus at the times of the early Earth. PMID:25667163

  1. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  2. Photoelectrochemical cell having photoanode with thin boron phosphide coating as a corrosion resistant layer

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1984-01-01

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anitcorrosive, and providing it with unexpectedly improved photoresponsive properties.

  3. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    PubMed

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to < 3 nm. The effect of atomic oxygen (AO) exposure on this oxidized carbon phosphide layer was subsequently probed in situ using XPS. Initially AO exposure resulted in a loss of carbon atoms from the surface, but increased the surface concentration of phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers. PMID:16853637

  4. Vapor-Phase Synthesis of Gallium Phosphide Nanowires

    SciTech Connect

    Gu, Dr Zhanjun; Paranthaman, Mariappan Parans; Pan, Zhengwei

    2009-01-01

    Gallium phosphide (GaP) nanowires were synthesized in a high yield by vapor-phase reaction of gallium vapor and phosphorus vapor at 1150 C in a tube furnace system. The nanowires have diameters in the range of 25-100 nm and lengths of up to tens of micrometers. Twinning growth occurs in GaP nanowires, and as a result most nanowires contain a high density of twinning faults. Novel necklacelike GaP nanostructures that were formed by stringing tens of amorphous Ga-P-O microbeads upon one crystalline GaP nanowires were also found in some synthesis runs. This simple vapor-phase approach may be applied to synthesize other important group III-V compound nanowires.

  5. Band structures in silicene on monolayer gallium phosphide substrate

    NASA Astrophysics Data System (ADS)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  6. Fabrication and properties of gallium phosphide variable colour displays

    NASA Technical Reports Server (NTRS)

    Effer, D.; Macdonald, R. A.; Macgregor, G. M.; Webb, W. A.; Kennedy, D. I.

    1973-01-01

    The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission.

  7. A model for pore growth in anodically etched gallium phosphide

    NASA Astrophysics Data System (ADS)

    Ricci, P. C.; Salis, M.; Anedda, A.

    2005-06-01

    The electrochemical etching process of porous gallium phosphide was studied by means of the characteristic current-potential (I-V) curves. Measurements were performed in H2SO4 0.5-M aqueous solution both in the dark and by illuminating the samples with the 351-nm line of an argon laser. Raman spectroscopy was applied to investigate the surface morphology of the samples prepared under different anodizing conditions within the potentiostatic regime. Based on a few reasonable assumptions, a simple model of pore growth is proposed. The enhancing effect in current intensity due to the branching of pores and the opposite effect due to a concomitant decrease in the effective cross area available for carrier transport are accounted for to explain the main features of the recorded I -V curves.

  8. Metal and phosphide phases in Luna 24 soil fragments

    NASA Astrophysics Data System (ADS)

    Axon, H. J.; Nasir, M. J.; Knowles, F.

    1980-06-01

    Soil fragments in the 106-150 and 150-250 micron size ranges were selected for metallographic and microprobe examination on the basis of their magnetic properties. Serial sections of the mounted fragments were examined. One fragment proved to be a compositionally zoned crystal of phosphide with no metal phase but partly embedded in glass. Another was a coarse-grained association of silica with ilmenite and fayalite with a 5-micron particle of metallic iron in troilite. One splinter of oxide contained a central spine of metallic iron. The remaining six fragments contained 10-micron particles of iron-nickel-cobalt alloy with compositions in either the 'meteoritic' or the low Ni-low Co sub-meteoritic composition ranges of Ni, Co content. In some fragments separate particles of alloy had different Ni, Co contents. No particles of high Co metal were encountered.

  9. Andreyivanovite: A Second New Phosphide from the Kaidun Meteorite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael

    2008-01-01

    Andreyivanovite (ideally FeCrP) is another new phosphide species from the Kaidun meteorite, which fell in South Yemen in 1980. Kaidun is a unique breccia containing an unprecedented variety of fragments of different chondritic as well as achondritic lithologies. Andreyivanovite was found as individual grains and linear arrays of grains with a maximum dimension of 8 m within two masses of Fe-rich serpentine. In one sample it is associated with Fe-Ni-Cr sulfides and florenskyite (FeTiP). Andreyivanovite is creamy white in reflected light, and its luster is metallic. The average of nine electron microprobe analyses yielded the formula Fe(Cr0.587 Fe0.150 V0.109 Ti0.081 Ni0.060 Co0.002)P. Examination of single grains of andreyivanovite using Laue patterns collected by in-situ synchrotron X-ray diffraction (XRD), and by electron backscattered diffraction revealed that it is isostructural with florenskyite; we were unable to find single crystals of sufficient quality to perform a complete structure analysis. Andreyivanovite crystallizes in the space group Pnma, and has the anti-PbCl2 structure. Previously-determined cell constants of synthetic material [a = 5.833(1), b = 3.569(1), c = 6.658(1) A] were consistent with our XRD work. We used the XPOW program to calculate a powder XRD pattern; the 5 most intense reflections are d = 2.247 (I = 100), 2.074 (81), 2.258 (46), 1.785 (43), and 1.885 A (34). Andreyivanovite is the second new phosphide to be described from the Kaidun meteorite. Andreyivanovite could have formed as a result of cooling and crystallization of a melted precursor consisting mainly of Fe-Ni metal enriched in P, Ti, and Cr. Serpentine associated with andreyivanovite would then have formed during aqueous alteration on the parent asteroid. It is also possible that the andreyivanovite could have formed during aqueous alteration, however, artificial FeTiP has been synthesized only during melting experiments, at low oxygen fugacity, and there is no evidence that

  10. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOEpatents

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  11. Ab-initio Calculations of Electronic Properties of Boron Phosphide (BP)

    NASA Astrophysics Data System (ADS)

    Ejembi, John; Franklin, Lashaunda; Malozovsky, Yuriy; Bagayoko, Diola

    2014-03-01

    We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende boron phosphide (BP). We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss our preliminary results for the indirect band gap, from Γ to X, of Boron Phosphide. We also report calculated electron and hole effective masses for Boron Phosphide and total (DOS) and partial (pDOS) density of states. Acknowledgments: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.

  12. A case of accidental fatal aluminum phosphide poisoning involving humans and dogs.

    PubMed

    Behera, Chittaranjan; Krishna, Karthik; Bhardwaj, Daya Nand; Rautji, Ravi; Kumar, Arvind

    2015-05-01

    Aluminum phosphide is one of the commonest poisons encountered in agricultural areas, and manner of death in the victims is often suicidal and rarely homicidal or accidental. This paper presents an unusual case, where two humans (owner and housemaid) and eight dogs were found dead in the morning hours inside a room of a house, used as shelter for stray dogs. There was allegation by the son of the owner that his father had been killed. Crime scene visit by forensic pathologists helped to collect vital evidence. Autopsies of both the human victims and the dogs were conducted. Toxicological analysis of viscera, vomitus, leftover food, and chemical container at the crime scene tested positive for aluminum phosphide. The cause of death in both humans and dogs was aluminum phosphide poisoning. Investigation by police and the forensic approach to the case helped in ascertaining the manner of death, which was accidental. PMID:25707792

  13. Unexpected Stable Two-dimensional Silicon Phosphides with Different Stoichiometries

    DOE PAGESBeta

    Yoon, Mina; Wei, Su-Huai; Sumpter, Bobby G

    2015-01-01

    The discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changing the number of layersmore » or applying an in-plane strain. Moreover, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.« less

  14. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2016-01-01

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material. PMID:27175743

  15. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires.

    PubMed

    Greil, J; Assali, S; Isono, Y; Belabbes, A; Bechstedt, F; Valega Mackenzie, F O; Silov, A Yu; Bakkers, E P A M; Haverkort, J E M

    2016-06-01

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material. PMID:27175743

  16. Unresponsive ventricular tachycardia associated with aluminum phosphide poisoning.

    PubMed

    Jadhav, Amar P; Nusair, Maein B; Ingole, Apekshe; Alpert, Martin A

    2012-05-01

    Inhalation or ingestion of aluminum phosphide (AP) generates phosphine gas on exposure to moisture, which, in turn, produces widespread organ toxicity primarily involving the lungs, heart, liver, and kidneys. Cardiac manifestations of AP poisoning include toxic myocarditis, refractory heart failure, bradyarrhythmias, and tachyarrhythmias including ventricular tachycardia (VT). A 19-year-old depressed male farm worker ingested ten 500-mg tablets of Celphos in a suicide attempt. Each Celphos tablet contains 56% AP. Over the course of 10 hours, the patient developed heart failure and respiratory failure associated with a rise in serum troponin level to 12.7 ng/mL. Serum electrolytes (including magnesium) and serum creatinine levels were normal throughout. His course was further complicated by acidemia and hypotension. These hemodynamic and metabolic abnormalities were initially corrected by assisted ventilation and continuous veno-venous hemofiltration. However, he developed hemodynamically stable sustained monomorphic VT, which proved unresponsive to treatment with intravenous magnesium sulfate and intravenous amiodarone therapy. After a decline in blood pressure, 6 attempts at electrocardioversion failed to restore sinus rhythm, and he died. Postmortem histologic examination of myocardium showed contraction band necrosis, early coagulation necrosis, edema, hemorrhage, and pyknosis of cardiac myocyte nuclei. Ventricular tachycardia associated with AP poisoning has been successfully treated with magnesium sulfate, amiodarone, and electrocardioversion. This case report documents failure of all 3 of these therapeutic modalities. PMID:21406319

  17. Photonic integration in indium-phosphide membranes on silicon (IMOS)

    NASA Astrophysics Data System (ADS)

    van der Tol, Jos; Pello, Josselin; Bhat, Shrivatsa; Jiao, Yuqing; Heiss, Dominik; Roelkens, Gunther; Ambrosius, Huub; Smit, Meint

    2014-03-01

    A new photonic integration technique is presented, based on the use of an indium phosphide membrane on top of a silicon chip. This can provide electronic chips (CMOS) with an added optical layer (IMOS) for resolving the communication bottleneck. A major advantage of InP is the possibility to integrate passive and active components (SOAs, lasers) in a single membrane. In this paper we describe progress achieved in both the passive and active components. For the passive part of the circuit we succeeded to bring the propagation loss of our circuits close to the values obtained with silicon; we achieved propagation loss as low as 3.3 dB/cm through optimization of the lithography and the introduction of C60 (fullerene) in an electro resist. Further we report the smallest polarisation converter reported for membrane waveguides ( <10 μm) with low-loss (< 1 dB from 1520- 1550 nm), > 95% polarisation conversion efficiency over the whole C-band and tolerant fabrication. We also demonstrate an InP-membrane wavelength demultiplexer with a loss of 2.8 dB, a crosstalk level of better than 18 dB and a uniformity over the 8 channels of better than 1.2 dB. For the integration of active components we are testing a twin guide integration scheme. We present our design based on optical and electrical simulations and the fabrication techniques.

  18. Comparative performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.; Parat, K. K.

    1987-01-01

    A comparison is made between indium phosphide solar cells whose p-n junctions were processed by open tube capped diffusion, and closed tube uncapped diffusion, of sulfur into Czochralski grown p-type substrates. Air mass zero, total area, efficiencies ranged from 10 to 14.2 percent, the latter value attributed to cells processed by capped diffusion. The radiation resistance of these latter cells was slightly better, under 1 MeV electron irradiation. However, rather than being process dependent, the difference in radiation resistance could be attributed to the effects of increased base dopant concentration. In agreement with previous results, both cells exhibited radiation resistance superior to that of gallium arsenide. The lowest temperature dependency of maximum power was exhibited by the cells prepared by open tube capped diffusion. Contrary to previous results, no correlation was found between open circuit voltage and the temperature dependency of Pmax. It was concluded that additional process optimization was necessary before concluding that one process was better than another.

  19. Successful Treatment of Aluminium Phosphide Poisoning by Extracorporeal Membrane Oxygenation.

    PubMed

    Hassanian-Moghaddam, Hossein; Zamani, Nasim; Rahimi, Mitra; Hajesmaeili, Mohammadreza; Taherkhani, Maryam; Sadeghi, Roxana

    2016-03-01

    Aluminium phosphide (ALP) is one of the most commonly used pesticides worldwide with high mortality rates. Cellular damage and cardiorespiratory failure are the most common causes of mortality and morbidity after poisoning. It is supposed that giving enough time to the patient to survive, the most critical hours after exposure may help the cardiovascular system to recover itself and save the patient's life. During a training workshop for medical extracorporeal membrane oxygenation (ECMO), a 28-year-old ALP-poisoned male was referred to us. Fifty minutes after admission, he developed hypotension and bradycardia and was transferred to ICU. On the second venous blood gas, he had severe metabolic acidosis. After starting the patient on the routine treatment of ALP poisoning, he was a candidate for veno-arterial (VA) ECMO. After three days, lactate level decreased and his general condition improved. On day four, the patient was completely separated from the ECMO machine with acceptable echocardiography and ejection fraction of 40%. One day later, he was extubated, sent to the ward and subsequently discharged in good condition. We suggest this method of treatment for severe ALP poisoning as well as any other poisoning that causes cell toxicity and abrupt cardiovascular or respiratory failure. PMID:26335576

  20. Superconductivity in the Hexagonal Ternary Phosphide ScIrP

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiko; Inohara, Takumi; Yamakawa, Youichi; Yamakage, Ai; Takenaka, Koshi

    2016-01-01

    We report the discovery of a bulk superconducting transition at 3.4 K in the ternary phosphide, ScIrP, which crystallizes in a hexagonal ZrNiAl-type structure without spatial inversion symmetry. On the basis of heat capacity data in a zero magnetic field, ScIrP is suggested to be a weakly-coupled Bardeen-Cooper-Schrieffer superconductor. Alternatively, experimental results under magnetic fields indicate that this material is a type-II superconductor with an upper critical field Hc2 at magnetic fields above 5 T at zero temperature. This moderately high Hc2 does not violate the Pauli limit, but it does imply that there is a significant effect from the strong spin-orbit interaction of Ir 5d electrons in the noncentrosymmetric crystal structure. Electronic structure calculations show an interesting feature of ScIrP, where both the Sc 3d and Ir 5d orbitals contribute to the electronic density of states at the Fermi level.

  1. Therapeutic role of hyperinsulinemia/euglycemia in aluminum phosphide poisoning

    PubMed Central

    Hassanian-Moghaddam, Hossein; Zamani, Nasim

    2016-01-01

    Abstract Background: Different protocols have been suggested to treat aluminum phosphide (ALP) poisoning. We aimed to evaluate the possible therapeutic effect of hyperinsulinemia/euglycemia (HIE) in treatment of ALP poisoning. Methods: In a prospective interventional study, a total of 88 ALP-poisoned patients were included and assigned into HIE group undergoing glucose/insulin/potassium (GIK) protocol and a control group that was managed by routine conventional treatments. The 2 groups were then compared regarding the signs and symptoms of toxicity and their progression, development of complications, and final outcome to detect the possible effect of GIK protocol on the patients’ course of toxicity and outcome. Results: The 2 groups were similar in terms of demographic characteristics and on-arrival vital signs and lab tests. Using GIK protocol resulted in significantly longer hospital stays (24 vs 60 hours; P < 0.001) and better outcomes (72.7% vs 50% mortality; P = 0.03). Regression analysis showed that GIK duration was an independent variable that could prognosticate mortality (odds ratio [95% confidence interval] = 1.045 [1.004,1.087]). The risk of mortality decreased by 4.5% each hour after initiation of GIK. Conclusion: GIK protocol improves the outcome of ALP poisoning and increases the length of hospital stay. PMID:27495040

  2. Severe reversible myocardial injury associated with aluminium phosphide toxicity: A case report and review of literature.

    PubMed

    Elabbassi, Wael; Chowdhury, Mohammed Andaleeb; Fachtartz, Arif Al Nooryani

    2014-10-01

    Aluminium phosphide is commonly used as an insecticide and can be toxic to humans at the cellular level by interfering with mitochondrial energy metabolism. We report on three cases of severe aluminium phosphide cardio-toxicity, resulting in severe decrease in both ventricular heart functions. The first case succumbed to intractable ventricular arrhythmias complicated by multi-organ failure before she died; while the other two cases required invasive hemodynamic support and eventually improved over the course of 10-14 days. We describe our experience and the challenges faced while managing one of them. PMID:25278724

  3. Indium phosphide solar cells - Recent developments and estimated performance in space

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Brinker, David J.

    1990-01-01

    The current status of indium phosphide solar cell research is reviewed. In the NASA research program, efficiencies of 18.8 percent were achieved for standard n/p homojunction InP cells while 17 percent was achieved for ITO/InP cells processed by sputtering n-type indium tin oxide onto p-type indium phosphide. The latter represents a cheaper, simpler processing alternative. Computer modeling calculations indicate that efficiencies of over 21 percent are feasible. Relatively large area cells are produced in Japan with a maximum efficiency of 16.6 percent.

  4. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  5. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  6. Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution.

    PubMed

    Xiong, Dehua; Wang, Xiaoguang; Li, Wei; Liu, Lifeng

    2016-07-01

    Iron phosphide (FeP) nanorods have been fabricated by a facile hydrothermal synthesis of iron oxyhydroxide precursors, followed by a convenient phosphorization process. The FeP nanorods dispersed on carbon fiber paper current collectors exhibit outstanding catalytic activity and excellent long-term stability toward the oxygen evolution reaction (OER). PMID:27333123

  7. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution.

    PubMed

    Read, Carlos G; Callejas, Juan F; Holder, Cameron F; Schaak, Raymond E

    2016-05-25

    Transition metal phosphides recently have been identified as promising Earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Here, we present a general and scalable strategy for the synthesis of transition metal phosphide electrodes based on the reaction of commercially available metal foils (Fe, Co, Ni, Cu, and NiFe) with various organophosphine reagents. The resulting phosphide electrodes were found to exhibit excellent electrocatalytic HER and OER performance. The most active electrodes required overpotentials of only -128 mV for the HER in acid (Ni2P), -183 mV for the HER in base (Ni2P), and 277 mV for the OER in base (NiFeP) to produce operationally relevant current densities of 10 mA cm(-2). Such HER and OER performance compares favorably with samples prepared using significantly more elaborate and costly procedures. Furthermore, we demonstrate that the approach can also be utilized to obtain highly active and conformal metal phosphide coatings on photocathode materials, such as highly doped Si, that are relevant to solar fuels production. PMID:27156388

  8. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    NASA Astrophysics Data System (ADS)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  9. Molecular beam epitaxy growth and characterization of dysprosium phosphide and dysprosium arsenide in gallium arsenide and gallium phosphide

    NASA Astrophysics Data System (ADS)

    Lee, Paul Piyawong

    The ability to grow thermally stable Schottky/ohmic contacts and buried, epitaxial metallic or semimetallic layers on semiconductors has many potential applications in novel device structures. Many rare earth group-V compounds with the sodium chloride structure possess the properties that make them potential candidates for stable contacts, buried layers, and other applications. In this work, two novel rare earth compounds, namely dysprosium phosphide (DyP) and dysprosium arsenide (DyAs) have been studied for high temperature ohmic/Schottky contacts to III-V semiconductors as well as for buried metal layers in semiconductor/metal/semiconductor structures. DyP and DyAs have been grown by molecular beam epitaxy on GaAs and GaP substrates. Both DyP and DyAs display metallic behavior and have room temperature resistivities of 8 x 10--5 and 1 x 10--4 Ocm, respectively. The electron concentrations for DyP and DyAs are about 4 x 1020 and 1 x 1021 cm--3, respectively. High quality DyP films as determined by XRD, AFM, and TEM can be achieved at a wide range of substrate temperatures (500°C to 600°C) with excess phosphorus pressure. Unlike most rare earth-group V compounds, DyP films are stable in air with no sign of oxidation. DyP films deposited on n-type GaAs and GaP exhibit Schottky behavior with room temperature barrier heights of 0.83 and 0.90 eV, respectively, with ideality factors close to unity and low reverse bias leakage current densities. These contacts are stable up to 250°C and 350°C for GaAs and GaP, respectively. DyAs films on the other hand, oxidize in air and display weak Schottky behavior on n-type GaAs. DyP has been grown as buried layers in both GaAs/DyP/GaAs and GaAs/DyP/GaP structures. Although high quality DyP layers have been achieved, the GaAs overlayers contain defects such as twins. The poor wetting of GaAs on DyP and the crystal symmetry between the two materials are responsible for the three-dimensional growth and the defects found in the Ga

  10. Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Liu, Danni; Chen, Tao; Zhu, Wenxin; Cui, Liang; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-08-01

    In this letter, we demonstrate for the first time that cobalt phosphide nanowires (CoP NWs) exhibit remarkable catalytic activity toward electrochemical detection of hydrogen peroxide (H2O2). As an enzymeless H2O2 sensor, such CoP NWs show a fast amperometric response within 5 s and a low detection limit of 0.48 μM. In addition, this nonenzymatic sensor displays good selectivity, long-term stability and excellent reproducibility.

  11. Successful management of aluminium phosphide poisoning using intravenous lipid emulsion: Report of two cases

    PubMed Central

    Baruah, Udismita; Sahni, Ameeta; Sachdeva, Harish C.

    2015-01-01

    Aluminum phosphide (ALP) is a cheap, easily available agricultural pesticide which causes lethal poisoning by liberation of phosphine and inhibition of cytochrome c oxidase thereby leading to cellular hypoxia. Although there is no known specific antidote, clinical trials are still going on. We present here two cases of ALP poisoning who were successfully managed by treatment with lipid emulsion and intravenous magnesium sulfate. PMID:26816450

  12. Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection.

    PubMed

    Liu, Danni; Chen, Tao; Zhu, Wenxin; Cui, Liang; Asiri, Abdullah M; Lu, Qun; Sun, Xuping

    2016-08-19

    In this letter, we demonstrate for the first time that cobalt phosphide nanowires (CoP NWs) exhibit remarkable catalytic activity toward electrochemical detection of hydrogen peroxide (H2O2). As an enzymeless H2O2 sensor, such CoP NWs show a fast amperometric response within 5 s and a low detection limit of 0.48 μM. In addition, this nonenzymatic sensor displays good selectivity, long-term stability and excellent reproducibility. PMID:27386800

  13. Hepatotoxicity due to zinc phosphide poisoning in two patients: role of N-acetylcysteine.

    PubMed

    Oghabian, Zohreh; Afshar, Arefeh; Rahimi, Hamid Reza

    2016-08-01

    Zinc phosphide (Zn3P2/ZnP) is used as a rodenticide. The most common signs of toxicity are nausea, vomiting, hypotension, and metabolic acidosis; patients presenting such signs are referred to the emergency department (ED) of the hospitals. Therefore, this study aimed to report two cases of hepatotoxicity following accidental and intentional ZnP poisoning and successful management with N-acetylcysteine (NAC). PMID:27525081

  14. Ultra-fast mechanochemical synthesis of boron phosphides, BP and B12P2.

    PubMed

    Mukhanov, Vladimir A; Vrel, Dominique; Sokolov, Petr S; Le Godec, Yann; Solozhenko, Vladimir L

    2016-06-21

    Here we propose a new approach to the synthesis of single-phase boron phosphides (BP and B12P2) by mechanochemical reactions between boron phosphate and magnesium/magnesium diboride in the presence of an inert diluent (sodium chloride). The proposed method is characterized by the simplicity of implementation, high efficiency, low cost of the product, and good perspectives for large-scale production. PMID:27157207

  15. Evaluation of Metal Phosphide Nanocrystals as Anode Materials for Na-ion Batteries.

    PubMed

    Walter, Marc; Bodnarchuk, Maryna I; Kravchyk, Kostiantyn V; Kovalenko, Maksym V

    2015-01-01

    Sodium-ion batteries (SIBs) are potential low-cost alternatives to lithium-ion batteries (LIBs) because of the much greater natural abundance of sodium salts. However, developing high-performance electrode materials for SIBs is a challenging task, especially due to the ∼50% larger ionic radius of the Na(+) ion compared to Li(+), leading to vastly different electrochemical behavior. Metal phosphides such as FeP, CoP, NiP(2), and CuP(2) remain unexplored as electrode materials for SIBs, despite their high theoretical charge storage capacities of 900-1300 mAh g(-1). Here we report on the synthesis of metal phosphide nanocrystals (NCs) and discuss their electrochemical properties as anode materials for SIBs, as well as for LIBs. We also compare the electrochemical characteristics of phosphides with their corresponding sulfides, using the environmentally benign iron compounds, FeP and FeS(2), as a case study. We show that despite the appealing initial charge storage capacities of up to 1200 mAh g(-1), enabled by effective nanosizing of the active electrode materials, further work toward optimization of the electrode/electrolyte pair is needed to improve the electrochemical performance upon cycling. PMID:26842319

  16. Analysis of uranium-bearing Fe-phosphide from a submerged arc furnace for phosphorus production

    NASA Astrophysics Data System (ADS)

    Voncken, J. H. L.; Scheepers, E.; Yang, Y.

    2006-10-01

    During a study on the Fe-phosphide phase formed during phosphorus production in a submerged arc furnace, a sample of ferrophosphorus was found which contains a so far unknown uranium-bearing Fe-phosphide. Uranium, as well as other trace metals like Mn, V, Cr, Ni, Zr, originates from the apatite ore used. Ti originates partly from the silica and coke used in the reduction process, but mainly from the clay used to produce ore pellets. In this paper the ferrophosphorus is described with respect to composition and crystalline compounds present. The crystallization sequence is discussed with respect to the FeP-phase diagram. The main phases found in the ferrophosphorus are FeP and Fe2P. With respect to trace and minor metals, it is observed that Si preferably enters the FeP-phase, whereas Ti, V, Cr, Mn and Ni preferably enter the Fe2P-phase, which is an analogue of the mineral barringerite. This study gives some insight into the behavior of impurities during crystallization of an iron-rich Fe-phosphide melt. The uranium-bearing phase has an overall Me2P-stoichiometry (Fe1.59, Ti0.06, V0.03, Cr0.02, Mn0.06, Ni0.02, U0.15, Zr0.09)2.02 (P0.96, Si0.02)0.98. An X-ray diffraction pattern of this phase is given for identification purposes.

  17. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    NASA Astrophysics Data System (ADS)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N.

    2013-07-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  18. Evaluation of Potential Oxidative Stress in Egyptian Patients with Acute Zinc Phosphide Poisoning and the Role of Vitamin C

    PubMed Central

    Sagah, Ghada A.; Oreby, Merfat M.; El-Gharbawy, Rehab M.; Ahmed Fathy, Amal S.

    2015-01-01

    Objective To evaluate potential oxidative stress in patients with acute phosphide poisoning and the effect of vitamin C. Methods Participants were females and divided into three groups; group I: healthy volunteers group II: healthy volunteers received vitamin C, group III: patients with acute phosphide poisoning received the supportive and symptomatic treatment and group IV: patients with acute phosphide poisoning received the supportive and symptomatic treatment in addition to vitamin C. All the participants were subjected to thorough history, clinical examination, ECG and laboratory investigations were carried on collected blood and gastric lavage samples on admission. Blood samples were divided into two parts, one for measurement of routine investigations and the second part was used for evaluation of malondialdehyde and total thiol levels before and after receiving the treatment regimen. Results Most of the cases in this study were among the age group of 15–25 years, females, single, secondary school education, from rural areas and suicidal. All vital signs were within normal range and the most common complaint was vomiting and abdominal pain. All cases in this study showed normal routine investigations. The mean MDA levels after receiving treatment decreased significantly in groups II and IV. The mean total thiol levels increased significantly after receiving treatment in groups II and IV. Conclusion It can be concluded that vitamin C has a potential benefit due to its antioxidant property on zinc phosphide induced-oxidative stress in acute zinc phosphide poisoned patients. PMID:26715917

  19. 7 CFR 4288.110 - Applicant eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... requirements associated with advanced biofuel producer eligibility, biofuel eligibility, eligibility... not eligible for this Program. (a) Eligible producer. The applicant must be an advanced...

  20. 7 CFR 4288.110 - Applicant eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... requirements associated with advanced biofuel producer eligibility, biofuel eligibility, eligibility... not eligible for this Program. (a) Eligible producer. The applicant must be an advanced...

  1. Measurement of charge-carrier concentration in indium phosphide by means of an electrolyte-semiconductor contact

    SciTech Connect

    Asanov, O.M.; Gaman, V.I.; Zorkal'tseva, N.N.; Korableva, T.V.; Petrova, N.G.

    1987-11-01

    An electrolyte-semiconductor contact is used to study the conductivity of epitaxial layers and single crystals of n-type indium phosphide obtained by gas transport. Some of the specimens were alloyed with tin and sulfur. The volt-farad characteristics are used to find the potentials of planar zones, which amount to 0.8-1.3 V for different electrolytes. Values of concentration of charge carriers calculated from measured values of capacitance of the electrolyte-indium-phosphide contact showed good agreement with measurements of the Hall effect on single crystals in the range 10/sup 16/-10/sup 18/ cm/sup -3/. The use of measurements of the capacitance of the electrolyte-semiconductor contact with simultaneous etching of a local region made it possible to study the electron distribution in epitaxial layers of indium phosphide.

  2. One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation.

    PubMed

    Wang, Xiaoguang; Kolen'ko, Yury V; Bao, Xiao-Qing; Kovnir, Kirill; Liu, Lifeng

    2015-07-01

    Nickel phosphide is an emerging low-cost, earth-abundant catalyst that can efficiently reduce water to generate hydrogen. However, the synthesis of nickel phosphide catalysts usually involves multiple steps and is laborious. Herein, a convenient and straightforward approach to the synthesis of a three-dimensional (3D) self-supported biphasic Ni5 P4 -Ni2 P nanosheet (NS) array cathode is presented, which is obtained by direct phosphorization of commercially available nickel foam using phosphorus vapor. The synthesized 3D Ni5 P4 -Ni2 P-NS array cathode exhibits outstanding electrocatalytic activity and long-term durability toward the hydrogen evolution reaction (HER) in acidic medium. The fabrication procedure reported here is scalable, showing substantial promise for use in water electrolysis. More importantly, the approach can be readily extended to synthesize other self-supported transition metal phosphide HER cathodes. PMID:26032688

  3. Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide

    SciTech Connect

    Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D.; Roberts, C.; Podolskiy, V. A.; Hoffman, A. J.

    2014-03-31

    We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.

  4. An approach to preparing porous and hollow metal phosphides with higher hydrodesulfurization activity

    SciTech Connect

    Song Limin; Zhang Shujuan; Wei Qingwu

    2011-06-15

    This paper describes an effective method for the synthesis of metal phosphides. Bulk and supported Ni{sub 2}P, Cu{sub 3}P, and CoP were prepared by thermal treatment of metal and the amorphous red phosphorus mixtures. Porous and hollow Ni{sub 2}P particles were also synthesized successfully using this method. The structural properties of these products are investigated using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP-AES) and X-ray photoemission spectroscopy (XPS). A rational mechanism was proposed for the selective formation of Ni{sub 2}P particles. In experimental conditions, the Ni{sub 2}P/SiO{sub 2} catalyst exhibits excellent hydrodesulfurization (HDS) activity for dibenzothiophene (DBT). - Graphical abstract: Bulk and supported Ni{sub 2}P, Cu{sub 3}P, and CoP were prepared by thermal treatment of their metal and amorphous red phosphorus mixtures. Porous and hollow Ni{sub 2}P particles were successfully synthesized by this method also. In the experimental condition, a Ni{sub 2}P/SiO{sub 2} catalyst exhibits excellent hydrodesulfurization activity for dibenzothiophene. Highlights: > A new synthetic route by heat treating mixtures of metal and red phosphorus in flowing N{sub 2} to prepare corresponding metal phosphides. > Porous and hollow Ni{sub 2}P particles may successfully be obtained using the route. > It is very easy to synthesize other bulk and supported metal phosphides using the mixing of bulk and supported metal and red phosphorus by the method. > The Ni{sub 2}P/SiO{sub 2} catalyst synthesized by the route shows a good HDS of dibenzothiophene. > Its operation is simple (only heat treating pure metal and red phosphorus), and the reaction time is short (only 0.5 h).

  5. Annealing behavior of the hydrogen-vacancy complex in bulk indium phosphide crystals

    SciTech Connect

    Ye, Q.; Wolk, J.A.; Bourret-Courchesne, E.D.; Bliss, D.F.

    1998-12-31

    In order to explain the effects of hydrogen on the electrical properties of bulk indium phosphide crystals, they have performed a series of high temperature annealing studies with both undoped and iron-doped indium phosphide crystals. The samples were annealed at 900 C for 6, 36, and 72 hours, respectively, under a phosphorus overpressure of five atmospheres. Samples were characterized at 10 K by Fourier transform infrared absorption spectroscopy which allowed us to measure the concentrations of both the Fe{sup 2+} and V{sub In}-H{sub 4} defects simultaneously. Undoped samples were further characterized by the Hall effect measurements. The authors find in the iron-doped samples that the [Fe{sup 2+}]/[Fe{sup 3+}] ratio decreases gradually with increasing annealing time, indicating a reduction in the number of donors in the samples. In the undoped samples, annealing leads to a reduction of the free electron concentration accompanied by an increase in the 77 K mobility. The increase of the sample`s mobility eliminates the possibility that the reduction of the free electron concentration is due to an increase in the concentration of the compensating acceptors. The explanation for the observed behavior in all samples is that hydrogen acts as a donor and it diffuses out of the crystal during the annealing process. Based on the experimental data, they propose a calibration equation of [V{sub In}-H{sub 4}] = 4.2 {times} 10{sup 16} cm{sup {minus}1} {times} Absorbance (cm{sup {minus}1}) which is used to correlate the hydrogen-vacancy complex concentrations with the changes of the V{sub In}-H{sub 4} absorption peak in both the iron-doped and the undoped samples. Their results confirm the donor nature of the hydrogen-vacancy complex and provide strong evidence regarding the reduction mechanism of free carrier concentrations in bulk indium phosphide crystals during high temperature annealing under a phosphorus atmosphere.

  6. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    SciTech Connect

    Liu, Xuguang; Xu, Lei; Zhang, Baoquan

    2014-04-01

    Preparation of supported nickel phosphide (Ni{sub 2}P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni{sub 2}P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni{sub 2}P structure, verified by XRD characterization results. The alumina (namely, γ-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, or α-Al{sub 2}O{sub 3}) with distinct physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni{sub 2}P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N{sub 2}-sorption isotherm. The uniform surface energy of α-Al{sub 2}O{sub 3} results only in the nickel phosphosate precursor and thus the Ni{sub 2}P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, and γ-Al{sub 2}O{sub 3}) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni{sub 3}P, Ni{sub 12}P{sub 5}, Ni{sub 2}P). - Highlights: • Preparing pure Ni{sub 2}P. • Elucidating nickel phosphate precursor. • Associating with surface energy.

  7. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.

    2016-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.

  8. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  9. Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide

    NASA Astrophysics Data System (ADS)

    Wei, Qun; Yan, Haiyan; Zhu, Xuanmin; Lin, Zhengzhe; Yao, Ronghui

    2016-01-01

    Structural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re2P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re2P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grüneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.

  10. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm‑2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm‑2 at 1.64 V.

  11. Solution-based synthesis and purification of zinc tin phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Sheets, Erik J.; Balow, Robert B.; Yang, Wei-Chang; Stach, Eric A.; Agrawal, Rakesh

    2015-11-01

    The solution-based synthesis of nanoscale earth-abundant semiconductors has the potential to unlock simple, scalable, and tunable material processes which currently constrain development of novel compounds for alternative energy devices. One such promising semiconductor is zinc tin phosphide (ZnSnP2). We report the synthesis of ZnSnP2 nanowires via a solution-liquid-solid mechanism utilizing metallic zinc and tin in decomposing trioctylphosphine (TOP). Dried films of the reaction product are purified of binary phosphide phases by annealing at 345 °C. Tin is removed using a 0.1 M nitric acid treatment leaving pure ZnSnP2 nanowires. Diffuse reflectance spectroscopy indicates ZnSnP2 has a direct bandgap energy of 1.24 eV which is optimal for solar cell applications. Using a photoelectrochemical cell, we demonstrate cathodic photocurrent generation at open circuit conditions from the ZnSnP2 nanowires upon solar simulated illumination confirming p-type conductivity.The solution-based synthesis of nanoscale earth-abundant semiconductors has the potential to unlock simple, scalable, and tunable material processes which currently constrain development of novel compounds for alternative energy devices. One such promising semiconductor is zinc tin phosphide (ZnSnP2). We report the synthesis of ZnSnP2 nanowires via a solution-liquid-solid mechanism utilizing metallic zinc and tin in decomposing trioctylphosphine (TOP). Dried films of the reaction product are purified of binary phosphide phases by annealing at 345 °C. Tin is removed using a 0.1 M nitric acid treatment leaving pure ZnSnP2 nanowires. Diffuse reflectance spectroscopy indicates ZnSnP2 has a direct bandgap energy of 1.24 eV which is optimal for solar cell applications. Using a photoelectrochemical cell, we demonstrate cathodic photocurrent generation at open circuit conditions from the ZnSnP2 nanowires upon solar simulated illumination confirming p-type conductivity. Electronic supplementary information (ESI

  12. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide.

    PubMed

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-10

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm(-2) at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm(-2) at 1.64 V. PMID:27146428

  13. A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting.

    PubMed

    Yan, Ya; Xia, Bao Yu; Ge, Xiaoming; Liu, Zhaolin; Fisher, Adrian; Wang, Xin

    2015-12-01

    The design of cheap and efficient water splitting systems for sustainable hydrogen production has attracted increasing attention. A flexible electrode, based on carbon cloth substrate and iron phosphide nanotubes coated with an iron oxide/phosphate layer, is shown to catalyze overall water splitting. The as-prepared flexible electrode demonstrates remarkable electrocatalytic activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at modest overpotentials. The surface iron oxide/phosphate, which is formed in situ, is proposed to improve the HER activity by facilitating the water-dissociation step and serves directly as the catalytically-active component for the OER process. PMID:26493157

  14. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    PubMed

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. PMID:26050844

  15. Could hydroxyethyl starch be a therapeutic option in management of acute aluminum phosphide toxicity?

    PubMed

    Marashi, Sayed Mahdi; Arefi, Mohammad; Behnoush, Behnam; Nasrabad, Mahdi Ghazanfari; Nasrabadi, Zeynab Nasri

    2011-04-01

    Acute aluminum phosphide poisoning is a serious toxicity and results in high mortality rate despite the progress of critical care. After ingestion, phosphine gas is released and absorbed quickly, causing systemic poisoning and cell hypoxia. Excessive thirst, severe hypotension, arrhythmias, tachypnea, and severe metabolic acidosis are the common clinical manifestations. We think acute metabolic response which characteristically occurs in severe injury also happens in aluminum phosphide poisoning. Necropsy examinations indicate congestion in almost all vital organs because of leakage of fluids from intravascular to extravascular space. The most favorable type of fluid for intravascular volume resuscitation persists and is disputed. Colloids remain in the intravascular space rather than crystalloids, and provide more rapid hemodynamic stabilization. Furthermore, hydroxyethyl starch solution may have other benefits e.g. it can reduce the extra vascular leak of albumin and fluids from an endothelial injury site. As refractory hypotension and cardiovascular collapse, because leakage of fluids from intravascular to extravascular space are common cause of death in this toxicity, we propose that hydroxyethyl starch can dominate this refractory hypotension and consequently acute metabolic response. PMID:21288649

  16. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    SciTech Connect

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-05-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni{sub 2}P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni{sub 2}P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni{sub 2}P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni{sub 2}P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni{sub 2}P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni{sub 2}P was postulated and discussed in detail. To investigate its catalytic properties, SiO{sub 2} supported three-dimensional Ni{sub 2}P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni{sub 2}P/SiO{sub 2}.

  17. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    SciTech Connect

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogen through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.

  18. Report on Institutional Eligibility.

    ERIC Educational Resources Information Center

    George Washington Univ., Washington, DC. Inst. for Educational Leadership.

    The federal government has traditionally relied on a variety of private accrediting bodies and state chartering and licensing authorities for determining eligibility and exercising direct supervision and consumer protection in education. As Federal financial assistance directly to students has expanded (3 million students received $6.4 million in…

  19. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  20. Aluminum phosphide poisoning: Possible role of supportive measures in the absence of specific antidote.

    PubMed

    Agrawal, Vijay Kumar; Bansal, Abhishek; Singh, Ranjeet Kumar; Kumawat, Bhanwar Lal; Mahajan, Parul

    2015-02-01

    Aluminum phosphide (ALP) poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning. PMID:25722553

  1. Strain tunable electronic and magnetic properties of pristine and semihydrogenated hexagonal boron phosphide

    SciTech Connect

    Yu, Jin; Guo, Wanlin

    2015-01-26

    Tunable electromagnetic properties of pristine two-dimensional boron phosphide (h-BP) nanosheet and its semihydrogenated structure were studied by density functional theory computations. In sharp contrast to previously reported tensile strain-induced red shift in two-dimensional semiconductors, the direct gap of h-BP undergoes blue shift under biaxial tensile strain. Once semihydrogenated, the h-BP not only transform from the nonmagnetic semiconductor into metal which is spin-resolved but also exhibits linear response between the magnetic moment and biaxial strain with a slope up to 0.005 μB/1%. These findings provide a simple and effective route to tune the electronic and magnetic properties of h-BP nanostructures in a wide range and should inspire experimental enthusiasm.

  2. Synthesis and Superconducting Properties of a Hexagonal Phosphide ScRhP

    NASA Astrophysics Data System (ADS)

    Inohara, Takumi; Okamoto, Yoshihiko; Yamakawa, Youichi; Takenaka, Koshi

    2016-09-01

    We report the synthesis and superconducting properties of the ternary phosphide ScRhP. The crystal structure of ScRhP is determined to be the ordered Fe2P type with the hexagonal Pbar{6}2m space group by powder X-ray diffraction experiments. Resistivity, magnetization, and heat capacity data indicate that ScRhP is a bulk superconductor with a transition temperature Tc of 2 K. This Tc is lower than that of its 5d analogue, ScIrP (Tc = 3.4 K), although ScRhP is found to have larger electronic density of states at the Fermi energy and a higher Debye temperature than those of ScIrP.

  3. Bragg coherent x-ray diffractive imaging of a single indium phosphide nanowire

    NASA Astrophysics Data System (ADS)

    Dzhigaev, D.; Shabalin, A.; Stankevič, T.; Lorenz, U.; Kurta, R. P.; Seiboth, F.; Wallentin, J.; Singer, A.; Lazarev, S.; Yefanov, O. M.; Borgström, M.; Strikhanov, M. N.; Samuelson, L.; Falkenberg, G.; Schroer, C. G.; Mikkelsen, A.; Feidenhans‘l, R.; Vartanyants, I. A.

    2016-06-01

    Three-dimensional (3D) Bragg coherent x-ray diffractive imaging (CXDI) with a nanofocused beam was applied to quantitatively map the internal strain field of a single indium phosphide nanowire. The quantitative values of the strain were obtained by pre-characterization of the beam profile with transmission ptychography on a test sample. Our measurements revealed the 3D strain distribution in a region of 150 nm below the catalyst Au particle. We observed a slight gradient of the strain in the range of ±0.6% along the [111] growth direction of the nanowire. We also determined the spatial resolution in our measurements to be about 10 nm in the direction perpendicular to the facets of the nanowire. The CXDI measurements were compared with the finite element method simulations and show a good agreement with our experimental results. The proposed approach can become an effective tool for in operando studies of the nanowires.

  4. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    SciTech Connect

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.

  5. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    PubMed

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-01

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions. PMID:27196435

  6. Indium phosphide solar cells: status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Brinker, D. J.

    1986-01-01

    The current status of indium phosphide cell research is reviewed and state of the art efficiencies compared to those of GaAs and Si. It is shown that the radiation resistance of InP cells is superior to that of either GaAs or Si under 1 MeV electron and 10 MeV proton irradiation. Using lightweight blanket technology, a SEP array structure and projected cell efficiencies, array specific powers are obtained for all three cell types. Array performance is calculated as a function of time in orbit. The results indicate that arrays using InP cells can outperform those using GaAs or Si in orbits where radiation is a significant cell degradation factor. It is concluded that InP solar cells are excellent prospects for future use in the space radiation environment.

  7. Sc-Sc bonding in the new ternary phosphide ScNiP

    SciTech Connect

    Kleinke, H.; Franzen, H.F.

    1998-05-01

    The new phosphide ScNiP can be synthesized by arc-melting of ScP and Ni, or by arc-melting of Sc with NiP. The lattice constants, as obtained from the bulk sample, are a = 6.3343(8) {angstrom}, b = 3.7375(7) {angstrom}, c = 7.0917(8), and V = 167.89(4) {angstrom}{sup 3}. ScNiP crystallizes in the Co{sub 2}Si structure type. Although one might assign the trivalent state to Sc, corresponding to a formal ionic formula of Sc{sup 3+}Ni{sup {+-}0}P{sup 3{minus}}, the structure of ScNiP contains Sc-Sc bonds and shows weak metallic properties, as expected based on extended Hueckel calculations.

  8. Structure characterization and strain relief analysis in CVD growth of boron phosphide on silicon carbide

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Abbott, Julia K. C.; Brasfield, John D.; Liu, Peizhi; Dale, Alexis; Duscher, Gerd; Rack, Philip D.; Feigerle, Charles S.

    2015-02-01

    Boron phosphide (BP) is a material of interest for development of a high-efficiency solid-state thermal neutron detector. For a thick film-based device, microstructure evolution is key to the engineering of material synthesis. Here, we report epitaxial BP films grown on silicon carbide with vicinal steps and provide a detailed analysis of the microstructure evolution and strain relief. The BP film is epitaxial in the near-interface region but deviates from epitaxial growth as the film develops. Defects such as coherent and incoherent twin boundaries, dislocation loops, stacking faults concentrate in the near-interface region and segment this region into small domains. The formation of defects in this region do not fully release the strain originated from the lattice mismatch. Large grains emerge above the near-interface region and grain boundaries become the main defects in the upper part of the BP film.

  9. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents.

    PubMed

    Oghabian, Zohreh; Mehrpour, Omid

    2016-08-01

    Aluminium phosphide (AlP) is used to protect stored grains from rodents. It produces phosphine gas (PH3), a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-year-old male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols. PMID:27606117

  10. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    PubMed Central

    Oghabian, Zohreh; Mehrpour, Omid

    2016-01-01

    Aluminium phosphide (AlP) is used to protect stored grains from rodents. It produces phosphine gas (PH3), a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-year-old male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols. PMID:27606117

  11. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  12. Effect of emitter parameter variation on the performance of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.

    1990-01-01

    Metalorganic chemical-vapor-deposited heteroepitaxial indium phosphide (InP) solar cell experimental results were simulated by using a PC-1D computer model. The effect of emitter parameter variation on the performance of n(+)/p/p(+) heteroepitaxial InP/GaAs solar cell was presented. The thinner and lighter doped emitters were observed to offer higher cell efficiencies. The influence of emitter thickness and minority carrier diffusion length on the cell efficiency with respect to dislocation density was studied. Heteroepitaxial cells with efficiencies similar to present day homojunction InP efficiencies (greaater than 16 percent AM0) were shown to be attainable if a dislocation density lower than 10(exp 6)/sq cm could be achieved. A realistic optimized design study yielded InP solar cells of over 22 percent AM0 efficiency at 25 C.

  13. Effect of InAlAs window layer on efficiency of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide bandgap, lattice-matched indium aluminum arsenide (In(0.52)Al(0.48)As) window layer on the performance of InP solar cells was investigated by using the numerical code PC-1D. The p(+)n InP solar cell performance improved significantly with the use of the window layer. No improvement was seen for the n(+)p InP cells. The cell results were explained by the band diagram of the heterostructure and the conduction band energy discontinuity. The calculated current voltage and internal quantum efficiency results clearly demonstrated that In(0.52)Al(0.48)As is a very promising candidate for a window layer material for p(+)n InP solar cells.

  14. Effect of emitter parameter variation on the performance of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Metallorganic chemical-vapor-deposited heteroepitaxial indium phosphide (InP) solar cell experimental results were simulated by using a PC-1D computer model. The effect of emitter parameter variation on the performance of n(+)/p/p(+) heteroepitaxial InP/GaAs solar cell was presented. The thinner and lighter doped emitters were observed to offer higher cell efficiencies. The influence of emitter thickness and minority carrier diffusion length on the cell efficiency with respect to dislocation density was studied. Heteroepitaxial cells with efficiencies similar to present day homojunction InP efficiencies (greater than 16 percent AMO) were shown to be attainable if a dislocation density lower than 10(exp 6)/sq cm could be achieved. A realistic optimized design study yielded InP solar cells of over 22 percent AMO efficiency at 25 C.

  15. Effect of InAlAs window layer on the efficiency of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide-bandgap lattice-matched indium aluminum arsenide (In0.52Al0.48As) window layer on the performance of InP solar cells was investigated using a numerical code PC-1D. The p(+)n InP solar cell performance improves significantly with the use of a window layer. No improvement is seen for n(+)p InP cells. Cell results are explained by the band diagram of the heterostructure and the conduction-band energy discontinuity. The calculated I-V and internal quantum efficiency results clearly demonstrate that In0.52Al0.48As is a promising candidate as a window layer material for p(+)n InP solar cells.

  16. Synthesis of the titanium phosphide telluride Ti 2PTe 2: A thermochemical approach

    NASA Astrophysics Data System (ADS)

    Philipp, Frauke; Schmidt, Peer; Milke, Edgar; Binnewies, Michael; Hoffmann, Stefan

    2008-04-01

    The phosphide telluride Ti 2PTe 2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti 2PTe 2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti 2PTe 2(s) decomposes to Ti 2P (s) and Te 2(g) in six consecutive steps. The growth of single crystals of Ti 2PTe 2 is thermodynamically described as a chemical vapour transport with TiCl 4(g) acting as the transport agent.

  17. An approach to preparing porous and hollow metal phosphides with higher hydrodesulfurization activity

    NASA Astrophysics Data System (ADS)

    Song, Limin; Zhang, Shujuan; Wei, Qingwu

    2011-06-01

    This paper describes an effective method for the synthesis of metal phosphides. Bulk and supported Ni 2P, Cu 3P, and CoP were prepared by thermal treatment of metal and the amorphous red phosphorus mixtures. Porous and hollow Ni 2P particles were also synthesized successfully using this method. The structural properties of these products are investigated using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP-AES) and X-ray photoemission spectroscopy (XPS). A rational mechanism was proposed for the selective formation of Ni 2P particles. In experimental conditions, the Ni 2P/SiO 2 catalyst exhibits excellent hydrodesulfurization (HDS) activity for dibenzothiophene (DBT).

  18. Redox mechanism in the binary transition metal phosphide Cu3P

    NASA Astrophysics Data System (ADS)

    Mauvernay, B.; Doublet, M.-L.; Monconduit, L.

    2006-05-01

    The electrochemical behaviour of the binary transition metal phosphide Cu3P towards lithium is investigated through galvano- and potentiostatic measurements. Obtained through high-temperature synthesis, this system shows a better volumetric capacity than graphite and a good capacity retention. In situ X-ray diffraction and first-principles electronic structure calculations are combined with the electrochemical results to show that the complete insertion of 3Li+ in the Cu3P electrode proceeds with the formation of three intermediate phases of lithium composition LixCu(3-x)P (x=1,2,3). The extra capacity previously observed in discharge is now clearly assigned to lithium insertion into the CuP2 impurity and to SEI reactions.

  19. Aluminum phosphide poisoning: Possible role of supportive measures in the absence of specific antidote

    PubMed Central

    Agrawal, Vijay Kumar; Bansal, Abhishek; Singh, Ranjeet Kumar; Kumawat, Bhanwar Lal; Mahajan, Parul

    2015-01-01

    Aluminum phosphide (ALP) poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning. PMID:25722553

  20. Uninsured but Eligible Children

    PubMed Central

    DeVoe, Jennifer E.; Krois, Lisa; Edlund, Christine; Smith, Jeanene; Carlson, Nichole E.

    2016-01-01

    Background Despite expansions in public health insurance programs, millions of US children lack coverage. Nearly two-thirds of Oregon’s uninsured children seem to be eligible for public insurance. Objectives We sought to identify uninsured but eligible children and to examine how parental coverage affects children’s insurance status. Methods We collected primary data from families enrolled in Oregon’s food stamp program, which has similar eligibility requirements to public health insurance in Oregon. In this cross-sectional, multivariable analysis, results from 2861 surveys were weighted back to a population of 84,087 with nonresponse adjustment. Key predictor variables were parental insurance status and type of insurance; the outcome variable was children’s insurance status. Results Nearly 11% of children, presumed eligible for public insurance, were uninsured. Uninsurance among children was associated with being Hispanic, having an employed parent, and higher household earnings (133–185% of the federal poverty level). Children with an uninsured parent were more likely to be uninsured, compared with those who had insured parents (adjusted odds ratio 14.21, 95% confidence interval 9.23–20.34). More surprisingly, there was a higher rate of uninsured children among privately-insured parents, compared with parents covered by public insurance (adjusted odds ratio 4.39, 95% confidence interval 2.00–9.66). Conclusions Low-income Oregon parents at the higher end of the public insurance income threshold and those with private insurance were having the most difficulty keeping their children insured. These findings suggest that when parents succeed in pulling themselves out of poverty and gaining employment with private health insurance coverage, children may be getting left behind. PMID:18162849

  1. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  2. Materials Development for Boron Phosphide Based Neutron Detectors: Final Technical Report

    SciTech Connect

    Edgar, James Howard

    2014-09-12

    The project goal was to improve the quality of boron phosphide (BP) by optimizing its epitaxial growth on single crystal substrates and by producing bulk BP single crystals with low dislocation densities. BP is potentially a good semiconductor for high efficiency solid state neutron detectors by combining neutron capture and charge creation within the same volume. The project strategy was to use newly available single crystal substrates, silicon carbide and aluminum nitride, engineered to produce the best film properties. Substrate variables included the SiC polytype, crystallographic planes, misorientation of the substrate surface (tilt direction and magnitude) from the major crystallographic plane, and surface polarity (Si and C). The best films were (111)BP on silicon-face (0001) 4H-SiC misoriented 4° in the [1-100] direction, and BP on (100) and (111) 3C-SiC/Si; these substrates resulted in films that were free of in-plane twin defects, as determined by x-ray topography. The impact of the deposition temperature was also assessed: increasing the temperature from 1000 °C to 1200 °C produced films that were more ordered and more uniform, and the size of individual grains increased by more than a factor of twenty. The BP films were free of other compounds such as icosahedral boron phosphide (B12P2) over the entire temperature range, as established by Raman spectroscopy. The roughness of the BP films was reduced by increasing the phosphine to diborane ratio from 50 to 200. Bulk crystals were grown by reacting boron dissolved in nickel with phosphorus vapor to precipitate BP. Crystals with dimensions up to 2 mm were produced.

  3. Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal- and phosphorus-containing resins.

    PubMed

    Yao, Zhiwei; Tong, Jin; Qiao, Xue; Jiang, Jun; Zhao, Yu; Liu, Dongmei; Zhang, Yichi; Wang, Haiyan

    2015-11-28

    Dispersed pure phases of MoP and Ni2P nanoparticles supported by carbon were synthesized by carbonization of metal- and phosphorus-containing resins under an inert atmosphere. The solid products and the evolution of gases during the carbonization process were investigated by various techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), N2 adsorption-desorption analysis, and mass spectrometry (MS). The resins underwent two carbonization stages: the low-temperature carbonization stage (<650 °C) and the high-temperature carbonization stage (≥650 °C). There was an initial reduction of Mo and Ni precursors in the low-temperature region. However, the formation of phosphides was observed in the high-temperature carbonization stage, in which Mo(Ni) and POx species were further reacted with the carbonization products (C, H2 and CH4) to yield Mo(Ni) phosphide. Note that compared with the traditional H2-temperature-programmed reduction (H2-TPR) method, this novel synthesis route produced a large amount of CO(x) besides H2O, leading to a lower water vapor pressure. In addition, the residual carbon produced from resin can play a role in bonding of nanoparticle aggregation. Therefore, the better dispersions and higher surface areas of the as-prepared phosphide nanoparticles were attributed to the mitigation of hydrothermal sintering and the intimate contact between phosphide nanoparticles and carbon species. PMID:26501890

  4. 76 FR 17611 - Propylene Oxide; Proposed Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... Register of September 24, 2008 (73 FR 54954) (FRL-8382-2). EPA took the opposite action--amending the..., 2008 (73 FR 31788, 317990) (FRL-8363-9). The Reregistration Eligibility Decision for propylene oxide..., Reregistration Eligibility Decision for Propylene Oxide, in the Federal Register of August 9, 2006 (71 FR...

  5. Zinc phosphide

    Integrated Risk Information System (IRIS)

    Zinc phoshide ; CASRN 1314 - 84 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. 7 CFR 1421.302 - Eligible producer and eligible land.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the 2008 Through 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.302 Eligible producer and... producer of wheat, barley, oats, or triticale in the 2008 through 2012 crop years. Also, to be an eligible...) Producers who elect to graze 2008 through 2012 crop wheat, barley, oats, or triticale will not be...

  7. 7 CFR 3575.27 - Eligible lenders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GENERAL Community Programs Guaranteed Loans § 3575.27 Eligible lenders. (a) Eligible lenders. Eligible... involving community development-type projects. These lenders must also be subject to credit examination...

  8. 7 CFR 3575.27 - Eligible lenders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... GENERAL Community Programs Guaranteed Loans § 3575.27 Eligible lenders. (a) Eligible lenders. Eligible... involving community development-type projects. These lenders must also be subject to credit examination...

  9. 7 CFR 755.4 - Eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FARMERS AND RANCHERS § 755.4 Eligibility. (a) To be eligible to receive payments under this part, a geographically disadvantaged farmer or rancher must: (1) Be a producer of an eligible agricultural commodity...

  10. 42 CFR 418.20 - Eligibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) MEDICARE PROGRAM HOSPICE CARE Eligibility, Election and Duration of Benefits § 418.20 Eligibility requirements. In order to be eligible to elect hospice care under Medicare, an individual must be— (a)...

  11. Eligibility and EDI create new opportunities.

    PubMed

    Moynihan, J J; McLure, M L

    1998-01-01

    A growing number of providers and payers are using EDI to automate the eligibility verification process. Some have integrated EDI eligibility verification into their patient scheduling routine. Others find it makes sense to integrate EDI eligibility into the patient registration process. Switching to electronic processing of eligibility information can make more information available faster to the many people involved in eligibility data processing. However, business office staff will have to be better trained to interpret eligibility data. PMID:10175110

  12. Dual-eligible dilemma.

    PubMed

    Ortolon, Ken

    2012-06-01

    Texas physicians are feeling the pinch of a decision Texas lawmakers made last year to drastically cut what the state will pay for "dual-eligible" patients - those who are old enough to qualify for Medicare and whose income qualifies them for Medicaid. On top of those cuts, a glitch in the computer systems that are supposed to communicate claims data between Medicare and the Medicaid program meant that thousands of claims for which Medicaid should have paid at least a portion of the bill were returned with zero payment. Texas Health and Human Services Commission officials say the computer glitch is resolved, but Texas Medical Association officials and physicians in the Rio Grande Valley say the damage may already be done. PMID:22714987

  13. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  14. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    PubMed

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations. PMID:26711014

  15. Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties

    NASA Astrophysics Data System (ADS)

    Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; Sumpter, Bobby G.; Wei, Su-Huai

    2015-03-01

    The discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several semiconducting silicon phosphide (SixPy ) monolayers, which could be formed stably at the stoichiometries of y /x ≥1 . Interestingly, some of these compounds, i.e., P -6 m 2 Si1P1 and P m Si1P2 , have comparable or even lower formation enthalpies than their known allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0

  16. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    SciTech Connect

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-21

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B{sub 0} = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, γ{sub G}{sup TO }= 1.26 and γ{sub G}{sup LO }= 1.13, just like in the case of other A{sup III}B{sup V} diamond-like phases, for which γ{sub G}{sup TO }> γ{sub G}{sup LO }≅ 1. We also established that the pressure dependence of the effective electro-optical constant α is responsible for a strong change in relative intensities of the TO and LO modes from I{sub TO}/I{sub LO} ∼ 0.25 at 0.1 MPa to I{sub TO}/I{sub LO} ∼ 2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.

  17. Elastic, magnetic and electronic properties of iridium phosphide Ir2P

    DOE PAGESBeta

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; et al

    2016-02-24

    Cubic (space group: Fm3¯m) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0' = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64more » GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less

  18. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  19. Elastic, magnetic and electronic properties of iridium phosphide Ir2P

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; He, Duanwei; Zhao, Yusheng

    2016-02-01

    Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0‧ = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first - principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well-sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements.

  20. Size-dependent magnetic and electrocatalytic properties of nickel phosphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Yuan; Lin, Yan; Liu, Yunqi; Liu, Chenguang

    2016-03-01

    Nickel phosphide (Ni2P) nanoparticles (NPs) with different sizes were synthesized via thermal decomposition of bis(triphenylphosphine)nickel dichloride precursor in the presence of oleylamine. The size of the as-synthesized Ni2P NPs could easily be controlled by increasing the reaction temperature from 300 to 340 °C. The structure and morphology were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). Then the influences of the size of the Ni2P NPs on the magnetic and electrocatalytic properties were investigated systematically. The results indicate that the as-synthesized Ni2P NPs exhibit ferromagnetic characteristic at 5 K. The Ni2P NPs with small size exhibit superparamagnetism and the larger size exhibit ferromagnetic characteristic at 300 K. The blocking temperature, saturation magnetization, remanent magnetization and coercivity increased significantly with the increase of size of Ni2P NPs, indicating the strong size effect of Ni2P NPs for magnetic properties. Electrochemical tests indicate that the catalytic activity can be enhanced by decreasing the size of Ni2P NPs. Due to the larger electrochemical active surface area and higher electrical conductivity, the Ni2P NPs with small size exhibit higher electrocatalytic activity. This work suggests that the size of Ni2P NPs is an important factor to affect the magnetic and electrocatalytic properties.

  1. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h. PMID:27064172

  2. Elastic, magnetic and electronic properties of iridium phosphide Ir2P

    PubMed Central

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; He, Duanwei; Zhao, Yusheng

    2016-01-01

    Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0′ = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements. PMID:26905444

  3. Hydrodesulfurization Properties of Rhodium Phosphide: Comparison with Rhodium Metal and Sulfide Catalysts

    SciTech Connect

    Hayes, John R.; Bowker, Richard H.; Gaudette, Amy F.; Smith, Mica C.; Moak, Cameron E.; Nam, Charles Y.; Pratum, Thomas K.; Bussell, Mark E.

    2010-12-15

    Silica-supported rhodium phosphide (Rh2P/SiO2) catalysts were prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), 31P solid-state NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and chemisorption measurements. XRD and TEM analysis of a 5 wt.% Rh2P/SiO2 catalyst confirmed the presence of well-dispersed Rh2P crystallites on the silica support having an average crystallite size of 10 nm. NMR spectroscopy showed unsupported and silica-supported Rh2P to be metallic and XPS spectroscopy yielded a surface composition of Rh1.94P1.00 that is similar to that expected from the bulk stoichiometry. The 5 wt.% Rh2P/SiO2 catalyst exhibited a higher dibenzothiophene (DBT) hydrodesulfurization (HDS) activity than did Rh/SiO2 and sulfided Rh/SiO2 catalysts having a similar Rh loading and was also more active than a commercial NiAMo/Al2O3 catalyst. The Rh2P/SiO2 catalyst showed excellent stability over a 100 h DBT HDS activity measurement and was more S tolerant than the Rh/SiO2 catalyst. The Rh2P/SiO2 catalyst strongly favored the hydrogenation pathway for DBT HDS, while the Rh/SiO2 and sulfided Rh/SiO2 catalysts favored the direct desulfurization pathway.

  4. Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability

    NASA Astrophysics Data System (ADS)

    Ni, Yonghong; Jin, Lina; Hong, Jianming

    2011-01-01

    In this paper, we employed a facile hydrothermal route to successfully synthesize nanosized nickel phosphide particles with controlled phases via selecting different surfactants at different temperatures and times. The phases of the as-obtained products were determined by X-ray powder diffraction (XRD) patterns and Rietveld refinement of XRD data. The morphologies of the products were characterized by (high resolution) transmission electron microscopy (HR/TEM) and field emission scanning electron microscopy (FESEM). Experiments indicated that pure Ni2P phase could be prepared when nontoxic red phosphorus and nickel dichloride were used as starting materials in the presence of polyvinylpyrrolidone (PVP, 30 K), sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) or polyethylene glycol 10000 (PEG-10000) at 160 °C for 10 h. When acrylamide (AM) was selected as the surfactant, however, pure Ni12P5 phase could be prepared by prolonging the reaction time to 20 h at 160 °C, or enhancing the reaction temperature to 180 °C for 10 h. Furthermore, the experiments indicated that the pure Ni2P phase possessed a stronger photocatalytic degradation ability than the pure Ni12P5 phase.

  5. Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties

    SciTech Connect

    Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; Sumpter, Bobby G.; Wei, Su-Huai

    2015-03-03

    We report that the discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x ≥1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changing the number of layers or applying an in-plane strain. Furthermore, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.

  6. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    PubMed Central

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  7. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-06-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula.

  8. Pure and carbon-doped boron phosphide (6,0) zigzag nanotube: A computational NMR study

    NASA Astrophysics Data System (ADS)

    Arshadi, S.; Bekhradnia, A. R.; Alipour, F.; Abedini, S.

    2015-11-01

    Calculations were performed for investigation of the properties of the electronic structure of Carbon- Doped Boron Phosphide Nanotube (CDBPNT). Pristine and three models of C-doped structures of (6,0) zigzag BPNT were studied at density functional theory (DFT) in combination with 6-311G* basis set using Gaussian package of program. The calculated parameters reveal that various 11B and 31P nuclei are divided into some layers with equivalent electrostatic properties. The electronic structure properties are highly influenced by replacement of 11B and 31P atoms by 12C atoms in pristine model. Furthermore, the HOMO-LUMO gap energy for suggested doped models (I), (II) and (III) were lower than pure BPNT pristine systems. The dipole moment values of models (II) and (III) were decreased to 1.788 and 1.789, respectively while the dipole moments of model (I) were enhanced to 4.373, in compare to pure pristine one (2.586). The magnitude of changes in Chemical Shielding (CS) tensor parameters revealed that the electron density at the site of 31P was higher than that at the site of 11B due to carbon doping.

  9. Aluminum oxide coating for post-growth photo emission wavelength tuning of indium phosphide nanowire networks

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan; Kobayashi, Nobuhiko P.

    2013-09-01

    Semiconductor-oxide nanostructure devices can be a very intriguing material platform if optoelectronic properties of the original semiconductor nanostructures can be tuned by explicitly controlling properties of the oxide coating. This paper describes our finding that optical properties of semiconductor nanowires can be tuned by depositing a thin layer of metal oxide. In this experiment, indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst. The nanowires formed three-dimensional nanowire networks from which collective optical properties were obtained. The nanowire network was coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. We observed continuous blue shift in photoluminescence spectra when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from an intrinsic negative fixed charge from the oxide surface. Samples were further characterized by scanning electron microscopy, transmission electron microscopy, and selective area diffractometry in an attempt to explain the physical mechanisms for the blue shift.

  10. Elastic, magnetic and electronic properties of iridium phosphide Ir2P

    DOE PAGESBeta

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; et al

    2016-02-24

    Cubic (space group: Fm3¯m) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPamore » from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less

  11. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction.

    PubMed

    Shi, Yanmei; Zhang, Bin

    2016-03-14

    The urgent need of clean and renewable energy drives the exploration of effective strategies to produce molecular hydrogen. With the assistance of highly active non-noble metal electrocatalysts, electrolysis of water is becoming a promising candidate to generate pure hydrogen with low cost and high efficiency. Very recently, transition metal phosphides (TMPs) have been proven to be high performance catalysts with high activity, high stability, and nearly ∼100% Faradic efficiency in not only strong acidic solutions, but also in strong alkaline and neutral media for electrochemical hydrogen evolution. In this tutorial review, an overview of recent development of TMP nanomaterials as catalysts for hydrogen generation with high activity and stability is presented. The effects of phosphorus (P) on HER activity, and their synthetic methods of TMPs are briefly discussed. Then we will demonstrate the specific strategies to further improve the catalytic efficiency and stability of TMPs by structural engineering. Making use of TMPs as cocatalysts and catalysts in photochemical and photoelectrochemical water splitting is also discussed. Finally, some key challenges and issues which should not be ignored during the rapid development of TMPs are pointed out. These strategies and challenges of TMPs are instructive for designing other high-performance non-noble metal catalysts. PMID:26806563

  12. Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties

    DOE PAGESBeta

    Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; Sumpter, Bobby G.; Wei, Su-Huai

    2015-03-03

    We report that the discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x ≥1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changingmore » the number of layers or applying an in-plane strain. Furthermore, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.« less

  13. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide.

    PubMed

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H Q

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)-a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  14. Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability.

    PubMed

    Ni, Yonghong; Jin, Lina; Hong, Jianming

    2011-01-01

    In this paper, we employed a facile hydrothermal route to successfully synthesize nanosized nickel phosphide particles with controlled phases via selecting different surfactants at different temperatures and times. The phases of the as-obtained products were determined by X-ray powder diffraction (XRD) patterns and Rietveld refinement of XRD data. The morphologies of the products were characterized by (high resolution) transmission electron microscopy (HR/TEM) and field emission scanning electron microscopy (FESEM). Experiments indicated that pure Ni2P phase could be prepared when nontoxic red phosphorus and nickel dichloride were used as starting materials in the presence of polyvinylpyrrolidone (PVP, 30 K), sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) or polyethylene glycol 10000 (PEG-10000) at 160 °C for 10 h. When acrylamide (AM) was selected as the surfactant, however, pure Ni12P5 phase could be prepared by prolonging the reaction time to 20 h at 160 °C, or enhancing the reaction temperature to 180 °C for 10 h. Furthermore, the experiments indicated that the pure Ni2P phase possessed a stronger photocatalytic degradation ability than the pure Ni12P5 phase. PMID:21049133

  15. Theoretical investigation of indium phosphide buried ring resonators for new angular velocity sensors

    NASA Astrophysics Data System (ADS)

    Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario Nicola

    2013-02-01

    Here, we report the guidelines to be followed to optimize the design of a new angular velocity sensor based on an indium phosphide (InP) ring resonator. Optical properties of InP ring resonators have been investigated together with some significant physical effects for improving the sensor sensitivity. Three-dimensional algorithms have been utilized for the theoretical estimation of the waveguide loss. An optimized waveguide with propagation loss <0.3 dB/cm and a ring resonator with a quality factor of 1.5×106 have been designed. Performance of angular velocity sensors based on InP low-loss ring resonators has been estimated and discussed. Resolution of 10 deg/h and bias drift in the range of 0.1 to 0.3 deg/h have been evaluated for a fully integrated optical gyro including an InGaAsP/InP optical cavity having a footprint less than 24 cm2.

  16. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    PubMed

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%. PMID:27124203

  17. High pressure study of the zinc phosphide semiconductor compound in two different phases

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali

    2009-07-01

    Electronic and structural properties of the zinc phosphide semiconductor compound are calculated at hydrostatic pressure using the full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method in both cubic and tetragonal phases. The exchange-correlation potential is treated by the generalized gradient approximation within the scheme of Perdew, Burke and Ernzerhof, GGA96 (1996 Phys. Rev. Lett. 77 3865). Also, the Engel and Vosko GGA formalism, EV-GGA (Engel and Vosko 1993 Phys. Rev. B 47 13164), is used to improve the band-gap results. Internal parameters are optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The lattice constants, internal parameters, bulk modulus, cohesive energy and band structures have been calculated and compared to the available experimental and theoretical results. The structural calculations predict that the stable phase is tetragonal. The effects of hydrostatic pressure on the behavior of band parameters such as band-gap, valence bandwidths and internal gaps (the energy gap between different parts of the valence bands) are studied using both GGA96 and EV-GGA.

  18. Elastic, magnetic and electronic properties of iridium phosphide Ir2P.

    PubMed

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; He, Duanwei; Zhao, Yusheng

    2016-01-01

    Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0' = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first - principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well-sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements. PMID:26905444

  19. Low resistance silver contacts to indium phosphide - Electrical and metallurgical considerations

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1993-01-01

    The electrical and metallurgical behavior of the Ag-InP contact system has been investigated. Specific contact resistivity (Rc) values in the low 10 exp -6 Ohm sq cm range are readily achieved on n-InP (Si: 1.7 x 10 exp 18/cu cm) after sintering at 400 C for several minutes. The low Rc values, however, are shown to be accompanied by dissolution of InP into the metallization, resulting in device degradation. An analysis of the sinter-induced metallurgical interactions shows this system to be similar to the well-characterized Au-InP system, albeit with fundamental differences. The similarities include the dissociative diffusion of In, the reaction-suppressing effect of SiO2 capping, and especially, the formation of a phosphide layer at the metal-InP interface. The low post-sinter Rc values in the Ag-InP system may be due to the presence of a AgP2 layer at the metal-InP interface; low values of Rc can be achieved without incurring device degrading metallurgical interactions by introducing a thin AgP2 layer between the InP and the current carrying metallization.

  20. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  1. Forward-biased current annealing of radiation degraded indium phosphide and gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Michael, Sherif; Cypranowski, Corinne; Anspaugh, Bruce

    1990-01-01

    The preliminary results of a novel approach to low-temperature annealing of previously irradiated indium phosphide and gallium arsenide solar cells are reported. The technique is based on forward-biased current annealing. The two types of III-V solar cells were irradiated with 1-MeV electrons to a fluence level of (1-10) x 10 to the 14th electrons/sq cm. Several annealing attempts were made, varying all conditions. Optimum annealing was achieved when cells were injected with minority currents at a constant 90 C. The current density for each type of cell was also determined. Significant recovery of degraded parameters was achieved in both cases. However, the InP cell recovery notably exceeded the recovery in GaAs cells. The recovery is thought to be caused by current-stimulated reordering of the radiator-induced displacement damage. Both types of cell were then subjected to several cycles of irradiation and annealing. The results were also very promising. The significant recovery of degraded cell parameters at low temperature might play a major role in considerably extending the end of life of future spacecraft.

  2. ROLE OF C AND P SITES ON THE CHEMICAL ACTIVITY OF METAL CARBIDE AND PHOSPHIDES: FROM CLUSTERS TO SINGLE-CRYSTAL SURFACES

    SciTech Connect

    RODRIGUEZ,J.A.; VINES, F.; LIU, P.; ILLAS, F.

    2007-07-01

    Transition metal carbides and phosphides have shown tremendous potential as highly active catalysts. At a microscopic level, it is not well understood how these new catalysts work. Their high activity is usually attributed to ligand or/and ensemble effects. Here, we review recent studies that examine the chemical activity of metal carbide and phosphides as a function of size, from clusters to extended surfaces, and metal/carbon or metal/phosphorous ratio. These studies reveal that the C and P sites in these compounds cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates.

  3. A comparative field trial, conducted without pre-treatment census baiting, of the rodenticides zinc phosphide, thallium sulphate and gophacide against Rattus norvegicus.

    PubMed Central

    Rennison, B. D.

    1976-01-01

    The effectiveness of the single-dose poison treatments of farm rat infestations, analysed by comparing the weights of the post-treatment census bait takes in covariance with the weights of the prebait takes, showed that treatments with 2-5% zinc phosphide, 0-3% thallium sulphate or 0-3% gophacide were equally effective and significantly better than were treatments with 1% zinc phosphide or 0-1% thallium sulphate. The methodology and sensitivity of different analyses are also considered. PMID:1068192

  4. 38 CFR 21.9520 - Basic eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Basic eligibility. 21.9520 Section 21.9520 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VOCATIONAL REHABILITATION AND EDUCATION Post-9/11 GI Bill Eligibility § 21.9520 Basic eligibility. An individual may establish eligibility...

  5. 7 CFR 1160.114 - Eligible organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Eligible organization. 1160.114 Section 1160.114... Order Definitions § 1160.114 Eligible organization. Eligible organization means an organization eligible... organization pursuant to section 501(c) (3), (5), or (6) of the Internal Revenue Code (26 U.S.C. 501(c) (3),...

  6. 7 CFR 1260.114 - Eligible organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Eligible organization. 1260.114 Section 1260.114... Promotion and Research Order Definitions § 1260.114 Eligible organization. Eligible organization means any organization which has been certified by the Secretary pursuant to the Act and this part as being eligible...

  7. 7 CFR 63.5 - Eligible organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Eligible organization. 63.5 Section 63.5 Agriculture... IMPROVEMENT CENTER General Provisions Definitions § 63.5 Eligible organization. Eligible organization means any national organization that meets the criteria provided for in § 63.105 as being eligible to...

  8. 24 CFR 206.45 - Eligible properties.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... marketable. Conveyance of the property may only be restricted as permitted under 24 CFR 203.41 or 24 CFR 234... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Eligible properties. 206.45 Section... CONVERSION MORTGAGE INSURANCE Eligibility; Endorsement Eligible Properties § 206.45 Eligible properties....

  9. 12 CFR 1261.5 - Director eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Director eligibility. 1261.5 Section 1261.5... DIRECTORS Federal Home Loan Bank Boards of Directors: Eligibility and Elections § 1261.5 Director eligibility. (a) Eligibility requirements for member directors. Each member director, and each nominee to...

  10. 12 CFR 1261.5 - Director eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Director eligibility. 1261.5 Section 1261.5... DIRECTORS Federal Home Loan Bank Boards of Directors: Eligibility and Elections § 1261.5 Director eligibility. (a) Eligibility requirements for member directors. Each member director, and each nominee to...

  11. 12 CFR 1261.5 - Director eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Director eligibility. 1261.5 Section 1261.5... DIRECTORS Federal Home Loan Bank Boards of Directors: Eligibility and Elections § 1261.5 Director eligibility. (a) Eligibility requirements for member directors. Each member director, and each nominee to...

  12. 12 CFR 1261.5 - Director eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Director eligibility. 1261.5 Section 1261.5... DIRECTORS Federal Home Loan Bank Boards of Directors: Eligibility and Elections § 1261.5 Director eligibility. (a) Eligibility requirements for member directors. Each member director, and each nominee to...

  13. 13 CFR 301.2 - Applicant eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 301.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE ELIGIBILITY, INVESTMENT RATE AND APPLICATION REQUIREMENTS Applicant Eligibility § 301.2 Applicant eligibility... Eligible Applicant that is a non-profit organization must include in its application for...

  14. 13 CFR 301.2 - Applicant eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 301.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE ELIGIBILITY, INVESTMENT RATE AND APPLICATION REQUIREMENTS Applicant Eligibility § 301.2 Applicant eligibility... Eligible Applicant that is a non-profit organization must include in its application for...

  15. 13 CFR 301.2 - Applicant eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 301.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE ELIGIBILITY, INVESTMENT RATE AND APPLICATION REQUIREMENTS Applicant Eligibility § 301.2 Applicant eligibility... Eligible Applicant that is a non-profit organization must include in its application for...

  16. 25 CFR 700.181 - Eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES Replacement Housing Payments § 700.181 Eligibility. (a) Basic eligibility requirements. A certified eligible head of.../she is not a member, is eligible for the replacement housing payment specified at § 700.183(a)....

  17. 25 CFR 700.181 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES Replacement Housing Payments § 700.181 Eligibility. (a) Basic eligibility requirements. A certified eligible head of.../she is not a member, is eligible for the replacement housing payment specified at § 700.183(a)....

  18. 25 CFR 700.181 - Eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES Replacement Housing Payments § 700.181 Eligibility. (a) Basic eligibility requirements. A certified eligible head of.../she is not a member, is eligible for the replacement housing payment specified at § 700.183(a)....

  19. 25 CFR 700.181 - Eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES Replacement Housing Payments § 700.181 Eligibility. (a) Basic eligibility requirements. A certified eligible head of.../she is not a member, is eligible for the replacement housing payment specified at § 700.183(a)....

  20. 25 CFR 700.181 - Eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES Replacement Housing Payments § 700.181 Eligibility. (a) Basic eligibility requirements. A certified eligible head of.../she is not a member, is eligible for the replacement housing payment specified at § 700.183(a)....

  1. 7 CFR 1260.114 - Eligible organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Eligible organization. 1260.114 Section 1260.114... Promotion and Research Order Definitions § 1260.114 Eligible organization. Eligible organization means any organization which has been certified by the Secretary pursuant to the Act and this part as being eligible...

  2. 7 CFR 1160.114 - Eligible organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Eligible organization. 1160.114 Section 1160.114... Order Definitions § 1160.114 Eligible organization. Eligible organization means an organization eligible... organization pursuant to section 501(c) (3), (5), or (6) of the Internal Revenue Code (26 U.S.C. 501(c) (3),...

  3. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  4. Ternary Phosphide Ho 2Cu 6- xP 5- y, Its Crystal Structure, and REm+ n(Cu 2P 3) m(Cu 4P 2) n Relationship with Other Rhombohedral Rare-Earth Copper Phosphides

    NASA Astrophysics Data System (ADS)

    Mozharivskyj, Yurij; Kuz'ma, Yurij B.

    2000-04-01

    Crystals of the phosphide Ho2Cu6-xP5-y (x=0.41, y=0.50) have been prepared by annealing pressed powders of the elements at 800°C for 2 weeks. The structure was determined by single-crystal methods: space group Roverline3m (No. 166), Z=3, a=3.976(1) Å, c=40.554(8) Å, R=0.045 for 243 independent reflections [F>4σ(F)]. The unit cell of Ho2Cu6-xP5-y can be built from a close packing of Ho atoms and fragments of Cu3P, with one of the fragments containing additional P atoms. It can be also considered as an intercalation of additional P atoms in the YbCu3-xP2 structure (P. Klüfers, A. Mewis, and H. U. Schuster, Z. Kristallogr. 149, 211 (1979)). The REm+n(Cu2P3)m(Cu4P2)n relationship with other rare-earth copper phosphides, having similar structural characteristics is discussed.

  5. Effect of acute aluminum phosphide exposure on rats: a biochemical and histological correlation.

    PubMed

    Anand, R; Kumari, Priyanka; Kaushal, Alka; Bal, Amanjit; Wani, Willayat Y; Sunkaria, Aditya; Dua, Raina; Singh, Surjit; Bhalla, Ashish; Gill, Kiran Dip

    2012-11-23

    Aluminum phosphide (AlP), a widely used fumigant and rodenticide leads to high mortality if ingested. Its toxicity is due to phosphine liberated when it comes in contact with moisture. The exact mechanism of action of phosphine is not known. In this study male Wistar rats were used. The animals received a single dose (20mg AlP/kg body weight i.g.) orally. Basic serum biochemical parameters, activity of mitochondrial complexes, antioxidant enzymes and parameters of oxidative stress, individual mitochondrial cytochrome levels were measured along with tissue histopathology and immunostaining for cytochrome c and compared with controls. The serum levels of creatinine kinase-MB, lactate dehydrogenase, magnesium and cortisol were higher (p<0.01); the activities of mitochondrial complexes I, II, IV were observed to be significantly decreased in liver tissue in treated rats (p<0.01). The activity of catalase was lower (p<0.05) with a significant increase in lipid peroxidation (p<0.05) whereas superoxide dismutase and glutathione peroxidase were unaffected in them. There was a significant decrease in all the cytochromes in brain and liver tissues (p<0.05) with the exception of cytochrome b in brain, the levels of which remained same. Histopathology revealed congestion in most organs with centrizonal hemorrhagic necrosis in liver. Ultra structural changes indicating mitochondrial injury was observed in heart, liver and kidney tissues. There was also a marked reduction in the cytochrome-c immunostaining compared to the controls. Toxicity due to AlP appears to result as a consequence of both-energy insufficiency and oxidative stress, with a possible and preferential interaction with the tissue cytochromes. PMID:23041170

  6. CVD growth and properties of boron phosphide on 3C-SiC

    NASA Astrophysics Data System (ADS)

    Padavala, Balabalaji; Frye, C. D.; Wang, Xuejing; Raghothamachar, Balaji; Edgar, J. H.

    2016-09-01

    Improving the crystalline quality of boron phosphide (BP) is essential for realizing its full potential in semiconductor device applications. In this study, 3C-SiC was tested as a substrate for BP epitaxy. BP films were grown on 3C-SiC(100)/Si, 3C-SiC(111)/Si, and 3C-SiC(111)/4H-SiC(0001) substrates in a horizontal chemical vapor deposition (CVD) system. Films were produced with good crystalline orientation and morphological features in the temperature range of 1000-1200 °C using a PH3+B2H6+H2 mixture. Rotational twinning was absent in the BP due to the crystal symmetry-matching with 3C-SiC. Confocal 3D Raman imaging of BP films revealed primarily uniform peak shift and peak widths across the scanned area, except at defects on the surface. Synchrotron white beam X-ray topography showed the epitaxial relationship between BP and 3C-SiC was (100) < 011 > BP||(100) < 011 > 3C-SiC and (111) < 11 2 ̅ > BP||(111) < 11 2 ̅ > 3C-SiC. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis indicated residual tensile strain in the films and improved crystalline quality at temperatures below 1200 °C. These results indicated that BP properties could be further enhanced by employing high quality bulk 3C-SiC or 3C-SiC epilayers on 4H-SiC substrates.

  7. Elevated Carboxyhaemoglobin Concentrations by Pulse CO-Oximetry is Associated with Severe Aluminium Phosphide Poisoning.

    PubMed

    Mashayekhian, Mohammad; Hassanian-Moghaddam, Hossein; Rahimi, Mitra; Zamani, Nasim; Aghabiklooei, Abbas; Shadnia, Shahin

    2016-09-01

    In pulse CO-oximetry of aluminium phosphide (ALP)-poisoned patients, we discovered that carboxyhaemoglobin (CO-Hb) level was elevated. We aimed to determine whether a higher CO level was detected in patients with severe ALP poisoning and if this could be used as a prognostic factor in these patients. In a prospective case-control study, 96 suspected cases of ALP poisoning were evaluated. In the ALP-poisoned group, demographic characteristics, gastric and exhalation silver nitrate test results, average CO-Hb saturation, methaemoglobin saturation, and blood pressure and blood gas analysis until death/discharge were recorded. Severely poisoned patients were defined as those with systolic blood pressure ≤80 mmHg, pH ≤7.2, or HCO3 ≤15 meq/L or those who died, while patients with minor poisoning were those without any of these signs/symptoms. A control group (37 patients) was taken from other medically ill patients to detect probable effects of hypotension and metabolic acidosis on CO-Hb and methaemoglobin saturations. Of 96 patients, 27 died and 37 fulfilled the criteria for severe poisoning. All patients with carbon monoxide saturation >18% met the criteria to be included in the severe poisoning group and all with a SpCO >25% died. Concerning all significant variables in univariate analysis of severe ALP toxicity, the only significant variable which could independently predict death was carbon monoxide saturation. Due to high mortality rate and need for intensive care support, early prediction of outcome is vital for choosing an appropriate setting (ICU or ordinary ward). CO-oximetry is a good diagnostic and prognostic factor in patients with ALP poisoning even before any clinical evidence of toxicity will develop. PMID:26899262

  8. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    SciTech Connect

    Wagner, Hannes; Ohrdes, Tobias; Dastgheib-Shirazi, Amir; Puthen-Veettil, Binesh; König, Dirk; Altermatt, Pietro P.

    2014-01-28

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  9. Hydroxyethyl Starch Could Save a Patient With Acute Aluminum Phosphide Poisoning.

    PubMed

    Marashi, Sayed Mahdi; Nasri Nasrabadi, Zeynab; Jafarzadeh, Mostafa; Mohammadi, Sogand

    2016-07-01

    A 40-year-old male patient with suicidal ingestion of one tablet of aluminium phosphide was referred to the department of toxicology emergency of Baharloo Hospital, Tehran, Iran. The garlic odor was smelled from the patient and abdominal pain and continuous vomiting as well as agitation and heartburn were the first signs and symptoms. Systolic and diastolic blood pressures at the arrival time were 95 and 67 mmHg, respectively. Gastric lavage with potassium permanganate (1:10,000), and 2 vials of sodium bicarbonate through a nasogastric tube was started for the patient and the management was continued with free intravenous infusion of 1 liter of NaCl 0.9% serum plus NaHCO3, hydrocortisone acetate (200 mg), calcium gluconate (1 g) and magnesium sulfate (1 g). Regarding the large intravenous fluid therapy and vasoconstrictor administering (norepinephrine started by 5 µg/min and continued till 15 µg/min), there were no signs of response and the systolic blood pressure was 49 mmHg. At this time, hydroxyethyl starch (HES) (6% hetastarch 600/0.75 in 0.9% sodium chloride) with a dose of 600 cc in 6 hours was started for the patient. At the end of therapy with HES, the patient was stable with systolic and diastolic blood pressure of 110 and 77 mmHg, respectively. He was discharged on the 6th day after the psychological consultation, with normal clinical and paraclinical examinations. This is the first report of using HES in the management of AlP poisoning and its benefit to survive the patient. PMID:27424021

  10. 20 CFR 664.230 - Are the eligibility barriers for eligible youth the same as the eligibility barriers for the five...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Are the eligibility barriers for eligible youth the same as the eligibility barriers for the five percent of youth participants who do not have to... Eligibility for Youth Services § 664.230 Are the eligibility barriers for eligible youth the same as...

  11. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    PubMed

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically. PMID:25250976

  12. Exploiting the Brønsted Acidity of Phosphinecarboxamides for the Synthesis of New Phosphides and Phosphines

    PubMed Central

    Jupp, Andrew R; Trott, Gemma; Payen de la Garanderie, Éléonore; Holl, James D G; Carmichael, Duncan; Goicoechea, Jose M

    2015-01-01

    We demonstrate that the synthesis of new N-functionalized phosphinecarboxamides is possible by reaction of primary and secondary amines with PCO− in the presence of a proton source. These reactions proceed with varying degrees of success, and although primary amines generally afford the corresponding phosphinecarboxamides in good yields, secondary amines react more sluggishly and often give rise to significant decomposition of the 2-phosphaethynolate precursor. Of the new N-derivatized phosphinecarboxamides available, PH2C(O)NHCy (Cy=cyclohexyl) can be obtained in sufficiently high yields to allow for the exploration of its Brønsted acidity. Thus, deprotonating PH2C(O)NHCy with one equivalent of potassium bis(trimethylsilyl)amide (KHMDS) gave the new phosphide [PHC(O)NHCy]−. In contrast, deprotonation with half of an equivalent gives rise to [P{C(O)NHCy}2]− and PH3. These phosphides can be employed to give new phosphines by reactions with electrophiles, thus demonstrating their enormous potential as chemical building blocks. PMID:25892576

  13. 7 CFR 1421.302 - Eligible producer and eligible land.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... committed to a crop rotation, normal for the locality, that includes harvesting the subject crop for grain... the 2008 Through 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.302 Eligible producer and... producer of wheat, barley, oats, or triticale in the 2008 through 2012 crop years. Also, to be an...

  14. 7 CFR 1421.302 - Eligible producer and eligible land.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... committed to a crop rotation, normal for the locality, that includes harvesting the subject crop for grain... the 2008 Through 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.302 Eligible producer and... producer of wheat, barley, oats, or triticale in the 2008 through 2012 crop years. Also, to be an...

  15. 7 CFR 1421.302 - Eligible producer and eligible land.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... committed to a crop rotation, normal for the locality, that includes harvesting the subject crop for grain... the 2008 Through 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.302 Eligible producer and... producer of wheat, barley, oats, or triticale in the 2008 through 2012 crop years. Also, to be an...

  16. 7 CFR 1421.302 - Eligible producer and eligible land.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... committed to a crop rotation, normal for the locality, that includes harvesting the subject crop for grain... the 2008 Through 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.302 Eligible producer and... producer of wheat, barley, oats, or triticale in the 2008 through 2012 crop years. Also, to be an...

  17. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-90-7) in F344/N rats and B6C3F1 mice (inhalation studies).

    PubMed

    2001-07-01

    Indium phosphide is used to make semiconductors,injection lasers, solar cells, photodiodes, and light-emittingdiodes. Indium phosphide was nominated for study because of its widespread use in the microelectronics industry, the potential for worker exposure,and the absence of chronic toxicity data. Male and female F344/N rats and B6C3F1 mice were exposed to indium phosphide (greater than 99% pure) by inhalation for 14 weeks or 2 years. The frequency of micronuclei was determined in the peripheral blood of mice exposed to indium phosphide for 14 weeks. 14-WEEK STUDY IN RATS: Groups of 10 male and 10 female rats were exposed to particulate aerosols of indium phosphide with amass median aerodynamic diameter of approximately 1.2 microm at concentrations of 0, 1, 3, 10, 30, or 100 mg/m3 by inhalation, 6 hours per day, 5 days per week (weeks 1 through 4 and weeks 10 through 14) or 7 days per week (weeks 5 through 9) to accommodate a concurrent teratology study. One male in the 100 mg/m3 group died before the end of the study. Body weight gains of all males and females exposed to 100 mg/m3 were less than those of the chamber controls. As a result of indium phosphide exposure, the lungs of all exposed rats had a gray to black discoloration and were significantly enlarged, weighing 2.7- to 4.4-fold more than those of the chamber controls. Indium phosphide particles were observed throughout the respiratory tract and in the lung-associated lymph nodes. A spectrum of inflammatory and proliferative lesions generally occurred in the lungs of all exposed groups of rats and consisted of alveolar proteinosis, chronic inflammation, interstitial fibrosis, and alveolar epithelial hyperplasia. Pulmonary inflammation was attended by increased leukocyte and neutrophil counts in the blood. The alveolar proteinosis was the principal apparent reason for the increase in lung weights. Indium phosphide caused inflammation at the base of the epiglottis of the larynx and hyperplasia of the

  18. 42 CFR 435.831 - Income eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AND AMERICAN SAMOA Specific Eligibility and Post-Eligibility Financial Requirements for the Medically... reimbursable under Medicaid. Effective Date Note: At 77 FR 17208, Mar. 23, 2012, § 435.831 was amended in...

  19. 7 CFR 1220.618 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.618 Eligibility. (a) Eligible... group interest. A group of individuals, such as members of a family, joint tenants, tenants in common,...

  20. 46 CFR 295.10 - Eligibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OPERATORS MARITIME SECURITY PROGRAM (MSP) Establishment of MSP Fleet and Eligibility § 295.10 Eligibility... Agreements for inclusion in the MSP Fleet pursuant to the provisions of subtitle B, title VI, of the...

  1. 24 CFR 234.501 - Eligibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONDOMINIUM OWNERSHIP MORTGAGE INSURANCE Eligibility Requirements-Projects-Conversion Individual Sales Units § 234.501 Eligibility requirements. The requirements set forth in 24 CFR part 200, subpart A, apply...

  2. 12 CFR 1807.200 - Applicant eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in 12 CFR 1805.201, that has been in existence as a legally formed entity as set forth in the Notice... CAPITAL MAGNET FUND Eligibility § 1807.200 Applicant eligibility. (a) General requirements. An...

  3. 12 CFR 1807.200 - Applicant eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in 12 CFR 1805.201, that has been in existence as a legally formed entity as set forth in the Notice... CAPITAL MAGNET FUND Eligibility § 1807.200 Applicant eligibility. (a) General requirements. An...

  4. 12 CFR 1807.200 - Applicant eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in 12 CFR 1805.201, that has been in existence as a legally formed entity as set forth in the Notice... CAPITAL MAGNET FUND Eligibility § 1807.200 Applicant eligibility. (a) General requirements. An...

  5. 12 CFR 1807.200 - Applicant eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in 12 CFR 1805.201, that has been in existence as a legally formed entity as set forth in the Notice... CAPITAL MAGNET FUND Eligibility § 1807.200 Applicant eligibility. (a) General requirements. An...

  6. 7 CFR 254.5 - Household eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INDIAN HOUSEHOLDS IN OKLAHOMA § 254.5 Household eligibility. (a) Certification procedures. All applicant... 253.7. (b) Urban places. No household living in an urban place in Oklahoma shall be eligible for...

  7. 28 CFR 17.44 - Access eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE CLASSIFIED NATIONAL SECURITY INFORMATION AND ACCESS TO CLASSIFIED INFORMATION Access to Classified Information § 17.44 Access eligibility. (a) Determinations of eligibility for access to classified information are separate from suitability determinations with respect...

  8. 28 CFR 17.44 - Access eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE CLASSIFIED NATIONAL SECURITY INFORMATION AND ACCESS TO CLASSIFIED INFORMATION Access to Classified Information § 17.44 Access eligibility. (a) Determinations of eligibility for access to classified information are separate from suitability determinations with respect...

  9. 7 CFR 2903.3 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.3 Eligibility. (a) Eligibility is... knowledge of biodiesel fuel production, use, or distribution and the ability to conduct educational...

  10. 7 CFR 249.6 - Participant eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SENIOR FARMERS' MARKET NUTRITION PROGRAM (SFMNP) Participant Eligibility... congregate nutrition services are provided, as categorically eligible to receive SFMNP benefits....