Science.gov

Sample records for phosphine oxides sulfides

  1. Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides

    PubMed Central

    Malysheva, Svetlana F; Artem’ev, Alexander V; Gusarova, Nina K; Belogorlova, Nataliya A; Albanov, Alexander I; Liu, C W

    2015-01-01

    Summary Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides) under aerobic and solvent-free conditions (80 °C, air, 7–30 h) to afford 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides in 70–93% yields. PMID:26664618

  2. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. PMID:26869216

  3. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  4. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  5. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31Р-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  6. Reducing phosphine after the smoking process using an oxidative treatment.

    PubMed

    Nota, G; Naviglio, D; Romano, R; Ugliano, M; Sabia, V

    2000-02-01

    This article gives a description of the setup in a laboratory of a pilot system to reduce phosphine following the smoking process of foodstuffs. At present, this fumigant is released into the atmosphere and causes serious damage to the environment due to its transformation into aggressive compounds. However, phosphine may prove a good alternative to methyl bromide, which will legally be used as a fumigant until the year 2002, provided it is made inert after the smoking process and transformed into nontoxic and easily disposable substances. Oxidant solutions containing potassium permanganate or potassium bichromate in suitable concentrations proved moderately effective in reducing phosphine. The addition of traces of silver nitrate as a catalyst to the oxidant solutions increased the efficiency in reducing the fumigant, although not completely. Thus it was necessary to use a recycling system to decontaminate air from phosphine, as such an apparatus ensures the complete reduction of phosphine. The mathematical function describing how the concentration of phosphine varies in the smoking chamber also makes it possible to estimate the time necessary to reduce a phosphine concentration from any initial value to a fixed final value. PMID:10691669

  7. Phosphine

    Integrated Risk Information System (IRIS)

    Phosphine ; CASRN 7803 - 51 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  8. A superior method for the reduction of secondary phosphine oxides.

    PubMed

    Busacca, Carl A; Lorenz, Jon C; Grinberg, Nelu; Haddad, Nizar; Hrapchak, Matt; Latli, Bachir; Lee, Heewon; Sabila, Paul; Saha, Anjan; Sarvestani, Max; Shen, Sherry; Varsolona, Richard; Wei, Xudong; Senanayake, Chris H

    2005-09-15

    [reaction: see text] Diisobutylaluminum hydride (DIBAL-H) and triisobutylaluminum have been found to be outstanding reductants for secondary phosphine oxides (SPOs). All classes of SPOs can be readily reduced, including diaryl, arylalkyl, and dialkyl members. Many SPOs can now be reduced at cryogenic temperatures, and conditions for preservation of reducible functional groups have been found. Even the most electron-rich and sterically hindered phosphine oxides can be reduced in a few hours at 50-70 degrees C. This new reduction has distinct advantages over existing technologies. PMID:16146406

  9. A high-throughput hydrophilic interaction liquid chromatography coupled with a charged aerosol detector method to assess trisulfides in IgG1 monoclonal antibodies using tris(2-carboxyethyl)phosphine reaction products: Tris(2-carboxyethyl)phosphine-oxide and tris(2-carboxyethyl)phosphine-sulfide.

    PubMed

    Cornell, Christopher; Karanjit, Amish; Chen, Yan; Jacobson, Fredric

    2016-07-29

    A robust, high-throughput method using hydrophilic interaction liquid chromatography (HILIC) coupled with a charged aerosol detector (CAD) is reported as a novel approach for trisulfide quantitation in monoclonal antibodies (mAbs). The products of mAb reduction using tris(2-carboxyethyl)phosphine (TCEP) include a species (TCEP(S)) that is stoichiometrically produced from trisulfides. The TCEP reaction products are chromatographically separated, detected, and quantified by the HILICCAD method. The method was qualified to quantify trisulfides across a range of 1-40% (mol trisulfide/mol mAb). In all tested matrix components, assay linearity and intermediate precision were established with correlation coefficients (R(2))>0.99, and relative standard deviations (RSD)<10%. A method comparability study was performed using peptide mapping LC-MS as an orthogonal measurement. For the range of 1-40% trisulfides, the analysis demonstrates that, on average, HILICCAD reads between 0.95 and 1.10 times the value of LC-MS with 95% confidence. Applications of the HILICCAD method include trisulfide determination in purified mAbs to be used in the production of cysteine-linked antibody-drug conjugates, and in cell culture development studies to understand sources of, and strategies for control of, trisulfides. PMID:27345209

  10. Oxygen plasma resistant phosphine oxide containing imide/arylene copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1993-01-01

    A series of oxygen plasma resistant imide/arylene ether copolymers were prepared by reacting anhydride-terminated poly(amide acids) and amine-terminated polyarylene ethers containing phosphine oxide units. Inherent viscosities for these copolymers ranged from 0.42 to 0.80 dL/g. After curing, the resulting copolymers had glass transition temperatures ranging from 224 C to 228 C. Solution cast films of the block copolymers were tough and flexible with tensile strength, tensile moduli, and elongation at break up to 16.1 ksi, 439 ksi, and 23 percent, respectively at 25 C and 9.1 ksi, 308 ksi and 97 percent, respectively at 150 C. The copolymers show a significant improvement in resistance to oxygen plasma when compared to the commercial polyimide Kapton. The imide/arylene ether copolymers containing phosphine oxide units are suitable as coatings, films, adhesives, and composite matrices.

  11. Experimental and theoretical investigations of the stereoselective synthesis of p-stereogenic phosphine oxides.

    PubMed

    Copey, Laurent; Jean-Gérard, Ludivine; Framery, Eric; Pilet, Guillaume; Robert, Vincent; Andrioletti, Bruno

    2015-06-15

    An efficient enantioselective strategy for the synthesis of variously substituted phosphine oxides has been developed, incorporating the use of (1S,2S)-2-aminocyclohexanol as the chiral auxiliary. The method relies on three key steps: 1) Highly diastereoselective formation of P(V) oxazaphospholidine, rationalized by a theoretical study; 2) highly diastereoselective ring-opening of the oxazaphospholidine oxide with organometallic reagents that takes place with inversion of configuration at the P atom; 3) enantioselective synthesis of phosphine oxides by cleavage of the remaining P-O bond. Interestingly, the use of a P(III) phosphine precursor afforded a P-epimer oxazaphospholidine. Hence, the two enantiomeric phosphine oxides can be synthesized starting from either a P(V) or a P(III) phosphine precursor, which constitutes a clear advantage for the stereoselective synthesis of sterically hindered phosphine oxides. PMID:25980800

  12. Hydrogen Sulfide Oxidation by Myoglobin.

    PubMed

    Bostelaar, Trever; Vitvitsky, Victor; Kumutima, Jacques; Lewis, Brianne E; Yadav, Pramod K; Brunold, Thomas C; Filipovic, Milos; Lehnert, Nicolai; Stemmler, Timothy L; Banerjee, Ruma

    2016-07-13

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue. PMID:27310035

  13. Polyimides Containing Pendent Phosphine Oxide Groups for Space Applications

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Watson, K. A.; Connell, J. W.

    2002-01-01

    As part of an ongoing materials development activity to produce high performance polymers that are durable to the space environment, phosphine oxide containing polyimides have been under investigation. A novel dianhydride was prepared from 2,5-dihydroxyphenyldiphenylphosphine oxide in good yield. The dianhydride was reacted with commercially available diamines, and a previously reported diamine was reacted with commercially available dianhydrides to prepare isomeric polyimides. The physical and mechanical properties, particularly thermal and optical properties, of the polymers were determined. One material exhibited a high glass transition temperature, high tensile properties, and low solar absorptivity. The chemistry, physical, and mechanical properties of these resins will be discussed.

  14. Advances in Homogeneous Catalysis Using Secondary Phosphine Oxides (SPOs): Pre-ligands for Metal Complexes.

    PubMed

    Achard, Thierry

    2016-01-01

    The secondary phosphine oxides are known to exist in equilibrium between the pentavalent phosphine oxides (SPO) and the trivalent phosphinous acids (PA). This equilibrium can be displaced in favour of the trivalent tautomeric form upon coordination to late transition metals. This tutorial review provides the state of the art of the use of secondary phosphine oxides as pre-ligands in transition metal-catalysed reactions. Using a combination of SPOs and several metals such as Pd, Pt, Ru, Rh and Au, a series of effective and original transformations have been obtained and will be discussed here. PMID:26931212

  15. Phosphine by bio-corrosion of phosphide-rich iron.

    PubMed

    Glindemann, D; Eismann, F; Bergmann, A; Kuschk, P; Stottmeister, U

    1998-01-01

    Phosphine is a toxic agent and part of the phosphorus cycle. A hitherto unknown formation mechanism for phosphine in the environment was investigated. When iron samples containing iron phosphide were incubated in corrosive aquatic media affected by microbial metabolites, phosphine was liberated and measured by gas chromatography. Iron liberates phosphine especially in anoxic aquatic media under the influence of sulfide and an acidic pH. A phosphine-forming mechanism is suggested: Phosphate, an impurity of iron containing minerals, is reduced abioticly to iron phosphide. When iron is exposed to the environment (e.g. as outdoor equipment, scrap, contamination in iron milled food or as iron meteorites) and corrodes, the iron phosphide present in the iron is suspended in the medium and can hydrolyze to phosphine. Phosphine can accumulate to measurable quantities in anoxic microbial media, accelerating corrosion and preserving the phosphine formed from oxidation. PMID:19005813

  16. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides.

    PubMed

    Zhang, Pengbo; Zhang, Liangliang; Gao, Yuzhen; Xu, Jian; Fang, Hua; Tang, Guo; Zhao, Yufen

    2015-05-01

    The general method for the tandem phosphination-decarboxylation-oxidation of alkynyl acids under aerobic conditions has been developed. In the presence of CuSO4·5H2O and TBHP, the reactions provide a novel access to β-ketophosphine oxides in good to excellent yields. This transformation allows the direct formation of a P-C bond and the construction of a keto group in one reaction. PMID:25855268

  17. Prevention of sulfide oxidation in sulfide-rich waste rock

    NASA Astrophysics Data System (ADS)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  18. Synthesis and Coordination Chemistry of Phosphine Oxide Decorated Dibenzofuran Platforms

    SciTech Connect

    Rosario-Amorin, Daniel; Duesler, Eileen N.; Paine, Robert T.; Hay, Benjamin; Delmau, Laetitia Helene; Reilly, Sean D.; Gaunt, Andrew J.; Scott, Brian L.

    2012-01-01

    A four-step synthesis for 4,6-bis(diphenylphosphinoylmethyl)dibenzofuran (4) from dibenzofuran and a two-step synthesis for 4,6-bis(diphenylphosphinoyl)dibenzofuran (5) are reported along with coordination chemistry of 4 with In(III), La(III), Pr(III), Nd(III), Er(III), and Pu(IV) and of 5 with Er(III). Crystal structure determinations for the ligands, 4 {center_dot} CH{sub 3}OH and 5, the 1:1 complexes [In(4)(NO{sub 3}){sub 3}], [Pr(4)(NO{sub 3}){sub 3}(CH{sub 3}CN)] {center_dot} 0.5CH{sub 3}CN, [Er(4)(NO{sub 3}){sub 3}(CH{sub 3}CN)] {center_dot} CH{sub 3}CN, [Pu(4)Cl4] {center_dot} THF and the 2:1 complex [Nd(4){sub 2}(NO{sub 3}){sub 2}]{sub 2}(NO{sub 3}){sub 2} {center_dot} (H{sub 2}O) {center_dot} 4(CH{sub 3}OH) are described. In these complexes, ligand 4 coordinates in a bidentate POP{prime}O{prime} mode via the two phosphine oxide O-atoms. The dibenzofuran ring O-atom points toward the central metal cations, but in every case it is more than 4 {angstrom} from the metal. A similar bidentate POP{prime}O{prime} chelate structure is formed between 5 and Er(III) in the complex, {l_brace}[Er(5){sub 2}(NO{sub 3}){sub 2}](NO{sub 3}) {center_dot} 4(CH{sub 3}OH){r_brace}0.5, although the nonbonded Er{hor_ellipsis} O{sub furan} distance is reduced to 3.6 {angstrom}. The observed bidentate chelation modes for 4 and 5 are consistent with results from molecular mechanics computations. The solvent extraction performance of 4 and 5 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions is described and compared against the extraction behavior of n-octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (O{Phi}DiBCMPO) measured under identical conditions.

  19. Catalyst and process for oxidizing hydrogen sulfide

    SciTech Connect

    Hass, R.H.; Fullerton; Ward, J.W.; Yorba, L.

    1984-04-24

    Catalysts comprising bismuth and vanadium components are highly active and stable, especially in the presence of water vapor, for oxidizing hydrogen sulfide to sulfur or SO/sub 2/. Such catalysts have been found to be especially active for the conversion of hydrogen sulfide to sulfur by reaction with oxygen or SO/sub 2/.

  20. Crystal structure of poly[(μ3-thio­cyanato-κ3 N:S:S)(tri­methyl­phosphine sulfide-κS)copper(I)

    PubMed Central

    Corfield, Peter W. R.

    2014-01-01

    In the title compound, [Cu(NCS)(C3H9PS)]n, the thio­cyanate ions bind the CuI atoms covalently, forming infinite –Cu—SCN—Cu– chains parallel to the a axis. Each CuI atom is also coordinated to a tri­methyl­phosphine sulfide group via a Cu—S bond. Two crystallographically independent chains propagate in opposite directions, and are held together in a ribbon arrangement by long bonds between CuI atoms in the first chain and thio­cyanate S atoms in the second, with Cu—S = 2.621 (1) Å. The geometry around the CuI atoms in the first chain is distorted tetra­hedral, with angles involving the long Cu—S bond much less than ideal, and the S—Cu—N angle between the phosphine sulfide S atom and the thio­cyanate N atom opening out to 133.19 (9)°. Each CuI atom in the second chain appears to be disordered between two positions 0.524 (4) Å apart, with occupancy factors of 0.647 (6) and 0.353 (6). The CuI atom in the major site is in a distorted trigonal–planar configuration, with the S—Cu—N angle between the phosphine sulfide and the thio­cyanate N atom again opened out, to 137.01 (15)°. The CuI atom in the minor site, however, forms in addition a long bond [Cu—S = 2.702 (5) Å] to the phosphine sulfide of the first chain, not the thio­cyanate S atom, to provide a further link between the chains. PMID:25484723

  1. A novel tridentate bis(phosphinic acid)phosphine oxide based europium(III)-selective Nafion membrane luminescent sensor.

    PubMed

    Sainz-Gonzalo, F J; Popovici, C; Casimiro, M; Raya-Barón, A; López-Ortiz, F; Fernández, I; Fernández-Sánchez, J F; Fernández-Gutiérrez, A

    2013-10-21

    A new europium(III) membrane luminescent sensor based on a new tridentate bis(phosphinic acid)phosphine oxide (3) system has been developed. The synthesis of this new ligand is described and its full characterization by NMR, IR and elemental analyses is provided. The luminescent complex formed between europium(III) chloride and ligand 3 was evaluated in solution, observing that its spectroscopic and chemical characteristics are excellent for measuring in polymer inclusion membranes. Included in a Nafion membrane, all the parameters (ligand and ionic additives) that can affect the sensitivity and selectivity of the sensing membrane as well as the instrumental conditions were carefully optimized. The best luminescence signal (λexc = 229.06 nm and λem = 616.02 nm) was exhibited by the sensing film having a Nafion : ligand composition of 262.3 : 0.6 mg mL(-1). The membrane sensor showed a short response time (t95 = 5.0 ± 0.2 min) and an optimum working pH of 5.0 (25 mM acetate buffer solution). The membrane sensor manifested a good selectivity toward europium(III) ions with respect to other trivalent metals (iron, chromium and aluminium) and lanthanide(III) ions (lanthanum, samarium, terbium and ytterbium), although a small positive interference of terbium(III) ions was observed. It provided a linear range from 1.9 × 10(-8) to 5.0 × 10(-6) M with a very low detection limit (5.8 × 10(-9) M) and sensitivity (8.57 × 10(-7) a.u. per M). The applicability of this sensing film has been demonstrated by analyzing different kinds of spiked water samples obtaining recovery percentages of 95-97%. PMID:23967443

  2. Synthesis and Lanthanide Coordination Chemistry of Phosphine Oxide Decorated Dibenzothiophene and Dibenzothiophene Sulfone Platforms

    SciTech Connect

    Rosario-Amorin, Daniel; Ouizem, Sabrina; Dickie, D. A.; Paine, Robert T.; Cramer, Roger E.; Hay, Benjamin; Podair, Julien; Delmau, Laetitia Helene

    2014-01-01

    Syntheses for new ligands based upon dibenzothiophene and dibenzothiophene sulfone platforms, decorated with phosphine oxide and methylphosphine oxide donor groups, are described. Coordination chem. of 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene (8) , 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene- 5, 5- dioxide (9) and 4, 6- bis(diphenylphosphinoyl) dibenzothiophene- 5, 5- dioxide (10) with lanthanide nitrates, Ln(NO3) 3 (H2O) n is outlined, and crystal structure detns. reveal a range of chelation interactions on Ln(III) ions. The HNO3 dependence of the solvent extn. performance of 9 and 10 in 1, 2- dichloroethane for Eu(III) and Am(III) is described and compared against the extn. behavior of related dibenzofuran ligands (2, 3; R = Ph) and n- octyl(phenyl) - N, N- diisobutylcarbamoylmethyl phosphine oxide (4) measured under identical conditions.

  3. Adjustable coordination of a hybrid phosphine-phosphine oxide ligand in luminescent Cu, Ag and Au complexes.

    PubMed

    Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O

    2016-09-28

    A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength. PMID:27530362

  4. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  5. Designing Organic Phosphine Oxide Host Materials Using Heteroaromatic Building Blocks: Inductive Effects on Electroluminescence

    SciTech Connect

    Sapochak, Linda S.; Padmaperuma, Asanga B.; Vecchi, Paul A.; Cai, Xiuyu; Burrows, Paul E.

    2007-11-19

    Phosphine oxide substitution of small molecules with high triplet exciton energies allows development of vacuum sublimable, electron transporting host materials for blue OLEDs. Heteroaromatic building blocks (carbazole, dibenzofuran and dibenzothiophene) with ET ~ 3 eV were incorporated into phosphine oxide (PO) structures. External quantum efficiencies (EQEs) at lighting brightness (i.e., 800 cd/m2) reached as high as 9.8% at 5.2V for OLEDs using the heteroaromatic PO hosts doped with the sky blue phosphor, iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic). Comparing device properties at a similar current density (i.e., J = 13 mA/cm2) showed the dibenzothiophene-bridged PO compound exhibits the highest EQEs and lowest operating voltages at all phosphor dopant levels. These results are explained with respect to the effects of the inductive phosphine oxide substituents on electrochemical, photophysical and electroluminescence properties of the substituted heteroaromatic building blocks.

  6. Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants.

    PubMed

    McCann, Billy W; Silva, Nuwan De; Windus, Theresa L; Gordon, Mark S; Moyer, Bruce A; Bryantsev, Vyacheslav S; Hay, Benjamin P

    2016-06-20

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R2(O)P-link-P(O)R2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theory and the performance of known bis-phosphine oxide extractants. For the case where the link is -CH2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the "anomalous aryl strengthening" effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples. PMID:26883005

  7. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  8. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  9. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  10. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides.

    PubMed

    McDougal, Nolan T; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C; Stoltz, Brian M

    2010-10-20

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives. PMID:21076623

  11. One-Electron Oxidation of Hydrogen Sulfide by a Stable Oxidant: Hexachloroiridate(IV).

    PubMed

    Hu, Ying; Stanbury, David M

    2016-08-01

    Detailed reports on the oxidation of aqueous H2S by mild one-electron oxidants are lacking, presumably because of the susceptibility of these reactions to trace metal-ion catalysis and the formation of turbid sulfur sols. Here we report on the reaction of [IrCl6](2-) with H2S in acetate buffers. Dipicolinic acid (dipic) is shown to be effective in suppressing metal-ion catalysis. In the presence of dipic the reaction produces [IrCl6](3-) and polysulfides; turbidity develops primarily after the Ir(IV) oxidant is consumed. Water-soluble phosphines are shown to prevent the development of turbidity; in the case of tris-hydroxymethylphosphine (THMP) the product is the corresponding sulfide, THMP═S. THMP diminishes the rates of reduction of Ir(IV), and the rate law with sufficient THMP is first order in [Ir(IV)] and first order in [HS(-)]. The rate-limiting step is inferred to be electron transfer from HS(-) to Ir(IV) with ket = 2.9 × 10(4) M(-1) s(-1) at 25.0 °C and μ = 0.1 M. The kinetic inhibition by THMP is attributed to its interception of a polysulfide chain elongation process. PMID:27410173

  12. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    PubMed

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R

    1998-01-01

    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components. PMID:18576062

  13. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi

    SciTech Connect

    Powell, M.A.; Somero, G.N.

    1986-08-01

    Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation (adenosine triphosphate (ATP) synthesis). The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.

  14. Nickel Phosphine Catalysts with Pendant Amines for Electrocatalytic Oxidation of Alcohols

    SciTech Connect

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.; Appel, Aaron M.

    2015-01-01

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  15. Synthesis and fuel cell characterization of blend membranes from phenyl phosphine oxide containing flourinated novel polymers

    NASA Astrophysics Data System (ADS)

    Gürtekin Seden, Merve; Baştürk, Emre; Inan, Tülay Y.; Kayaman Apohan, Nilhan; Güngör, Atilla

    2014-12-01

    Novel fluorinated poly(arylene ether)'s are synthesized from polycondensation of bis (p-hydroxy-tetrafluoro) phenyl) phenyl phosphine oxide (PFPPO-OH) with 4,4‧-dichlorodiphenyl sulfone (DCDPS) and 2,2-bis(4-hydroxyphenyl)propane (Bisfenol A) (Copolymer 1a) or 2,2-bis(4-hydroxyphenyl) hexafluoropropane (Bisphenol AF) (Copolymer 1b). The fluorinated copolymers have been blended with sulphonated poly(ether ether ketone)-SPEEK by solvent casting method. The water uptake and proton conductivity of the blend membranes decreases with the increase of copolymer content as expected, but proton conductivity values are still comparable to that of Nafion117® membrane. Addition of hydrophobic copolymer 1b to the SPEEK caused increase in water vapor transmission. Methanol permeability of the membranes is decreased to 8.2 × 10-8 cm2 s-1 and 1.3 × 10-9 cm2 s-1 by addition of Copolymer 1a and 1b, respectively and they are much lower than that of Nafion® 117 (1.21E-06 (cm2 s-1). The blend membranes endure up to 6.5 h before it starts to dissolve. Hydrogen and oxygen permeability of the blend membranes is one-hundredth of the Nafion®. Fluorinated polymer improved chemical, mechanical, and hydrolytic stability and also phenyl phosphine oxide structure in the ionomer increased the thermal stability, gas and methanol permeability and overcomed the drawbacks of the Nafion® type membranes.

  16. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  17. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  18. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  19. Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines

    SciTech Connect

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM; Helm, Monte L.; Appel, Aaron M.

    2014-09-05

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidation with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  20. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  1. PHOSPHINE-MEDIATED HEINZ BODY FORMATION AND HEMOGLOBIN OXIDATION IN HUMAN ERYTHROCYTES

    EPA Science Inventory

    Exposure of hen erythrocytes in vitro to phosphine (PH 3) induces the development of Heinz body lesions. he lower limit for phosphine mediated Heinz body formation is 1.25 ppm for a four hour exposure. t exposure levels of 3.0 ppm or higher all erythrocytes are observed to contai...

  2. Summary of GPC/DV results for space exposed poly(arylene ether phosphine oxide)s

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie

    1995-01-01

    Gel Permeation Chromatography (GPC) was used to analyze poly(arylene ether phosphine oxide)s whose backbones were identical except for the ketone content and placement. These samples were exposed to low Earth orbit environment (predominantly atomic oxygen) on space shuttle flights. The materials and their unexposed controls were then characterized by GPC to investigate the effect of atomic oxygen on the molecular weight distributions. Analysis of the soluble portion of the samples revealed that there was significant loss of high molecular weight species. The presence of insoluble material also suggested that crosslinking was induced by the atomic oxygen exposure and that this very likely occurred at the high molecular weight portion of the molecular weight distribution.

  3. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. PMID:27093236

  4. Evidence supporting biologically mediated sulfide oxidation in hot spring ecosystems

    NASA Astrophysics Data System (ADS)

    Cox, A. D.; Shock, E.

    2011-12-01

    The sulfide concentration of fluids in hydrothermal ecosystems is one of several factors determining the transition to microbial photosynthesis (Cox et al., 2011, Chem. Geol. 280, 344-351). To investigate the loss of sulfide in Yellowstone hot spring systems, measurements of total dissolved sulfide with respect to time were made in incubation experiments conducted on 0.2-micron filtered (killed controls) vs. unfiltered hot spring water at locations with three different pH:sulfide combinations (pH 2.5 with 50 μM sulfide, 5.2 with 5.6 μM sulfide, and 8.3 with 86 μM sulfide). At the higher pH values, the experiments yielded similar rates of sulfide loss in filtered and unfiltered water of approximately 0.8 (pH 5.2) and 7.6 nmol sulfide L-1s-1 (pH 8.3). At the acidic spring, the unfiltered water lost sulfide at a rate 1.6 times that of the filtered water (8.2 vs. 5 nmol sulfide L-1s-1). These results suggest that the pelagic biomass at the pH 5.2 and 8.3 springs may not affect sulfide loss, whereas in the pH 2.5 spring there appears to be an effect. In addition, the incubation of filamentous biomass with unfiltered water increased the rate of sulfide loss by approximately two-fold at a pH of 2.5 (59 vs. 31 nmol L-1s-1; Cox et al., 2011), five-fold at a pH of 5.2 (3.9 vs. 0.8 nmol sulfide L-1s-1), and barely increased the rate of sulfide loss at a pH of 8.3 (9.1 vs. 8.4 nmol sulfide L-1s-1). Sulfide is predominately present as HS- at a pH of 8.3, which may not be taken up as easily by microorganisms as the H2S (aq) that dominates sulfide speciation at pH 2.5 and 5.2. That the loss of sulfide at acidic pH is due to biotic rather than abiotic factors is further supported by studies with whole mat samples that show greater sulfide consumption than killed controls (D'Imperio et al., 2008, AEM 74, 5802-5808). Taken together, the results of these experiments suggest that the majority of sulfide oxidation occurs in the filamentous biomass of hot spring ecosystems, although

  5. Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording

    NASA Astrophysics Data System (ADS)

    Chang, Yu Mi; Yoon, Sung Cheol; Han, Mijeong

    2007-12-01

    Photopolymer compositions for holographic recording were prepared from aromatic diacrylate having phosphine oxide backbone, a hybrid sol-gel, and photoinitiator. The physical and holographic properties of photopolymer were controlled by the ratio of precursor triethoxysilylpropyl polyethyleneglycol carbamate (TSPEG) in a hybrid sol-gel binder and the content of monomer. The photopolymerization rate and conversion of monomer were monitored by photo-differential scanning calorimetry (photo-DSC). Holographic recording was attempted by photopolymerization of the monomers in the photopolymer film using a 532 nm laser. Holographic gratings were written into the photopolymer samples by interfering two collimated plane wave beams. The temporal growth of the diffracted power was monitored in real-time at 785 nm laser. Contents of monomer and TESPEG were changed in the range of 0-60 wt% and the composition were optimized in terms of diffraction efficiency. Photopolymer film exhibited very high diffraction efficiency of 93.5% and low shrinkage (<0.5%) after the contents of monomer, binder, and TSPEG were optimized.

  6. Phosphine Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Devices

    SciTech Connect

    Von Ruden, Amber L.; Cosimbescu, Lelia; Polikarpov, Evgueni; Koech, Phillip K.; Swensen, James S.; Wang, Liang; Darsell, Jens T.; Padmaperuma, Asanga B.

    2010-10-26

    We report the design, synthesis, thermal, and photophysical properties of two phosphine oxide based electron transport/hole blocking materials, 2,6-bis(4-(diphenylphosphoryl)phenyl)pyridine (BM-A11) and 2,4-bis(4-(diphenyl-phosphoryl)phenyl)pyridine (BM-A10) for blue electrophosphorescent organic light emitting devices (OLEDs). The use of these materials in blue OLED with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C2’]picolinate (Firpic) as the phosphor was demonstrated. Using the dual host device architecture with BM-A10 as the ETM yields a maximum EQE of 8.9% with a power efficiency of 21.5 lm/W (4.0V and 35 cd/m2). When BM-A11 is used as the ETM, the maximum EQE and power efficiency improves to 14.9% and 48.4 lm/W, respectively (3.0V and 40 cd/m2).

  7. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster.

    PubMed

    Liu, Tao; Li, Li; Zhang, Fanhua; Wang, Yuejin

    2015-10-01

    Phosphine (PH3) is a toxic substance to pest insects and is therefore commonly used in pest control. The oxidative damage induced by PH3 is considered to be one of the primary mechanisms of its toxicity in pest insects; however, the precise mode of PH3 action in this process is still unclear. In this study, we evaluated the responses of several oxidative biomarkers and two of the main antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), after fumigation treatment with PH3 in Drosophila melanogaster as a model system. The results showed that larvae exposed to sub-lethal levels of PH3 (0.028 mg/L) exhibited lower aerobic respiration rates and higher levels of hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, unlike SOD, the activity and expression of CAT and its encoding gene were downregulated by PH3 in a time- and dose-dependent manner. Finally, the responses of six potential transcription factors of PH3 were determined by real-time polymerase chain reaction to explore the regulation mechanism of DmCAT by PH3. There were no significant effects of PH3 on three nuclear factor-kappa B homologs (DORSAL, DIF, and RELISH) or two activator protein-1 genes (JUN and FOS), while dramatic inhibition of DNA replication-related element factor (DREF) expression was observed after fumigation with PH3, suggesting that PH3 could inhibit the expression of DmCAT via the DRE/DREF system. These results confirmed that PH3 induces oxidative stress and targets CAT by downregulating its encoding gene in Drosophila. Our results provide new insight into the signal transduction mechanism between PH3 and its target genes. PMID:26453223

  8. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.

    PubMed

    Mora, Mabel; López, Luis R; Lafuente, Javier; Pérez, Julio; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Gamisans, Xavier; Gabriel, David

    2016-02-01

    Respirometry was used to reveal the mechanisms involved in aerobic biological sulfide oxidation and to characterize the kinetics and stoichiometry of a microbial culture obtained from a desulfurizing biotrickling filter. Physical-chemical processes such as stripping and chemical oxidation of hydrogen sulfide were characterized since they contributed significantly to the conversions observed in respirometric tests. Mass transfer coefficient for hydrogen sulfide and the kinetic parameters for chemical oxidation of sulfide with oxygen were estimated. The stoichiometry of the process was determined and the different steps in the sulfide oxidation process were identified. The conversion scheme proposed includes intermediate production of elemental sulfur and thiosulfate and the subsequent oxidation of both compounds to sulfate. A kinetic model describing each of the reactions observed during sulfide oxidation was calibrated and validated. The product selectivity was found to be independent of the dissolved oxygen to hydrogen sulfide concentration ratio in the medium at sulfide concentrations ranging from 3 to 30 mg S L(-1). Sulfide was preferentially consumed (SOURmax = 49.2 mg DO g(-1) VSS min(-1)) and oxidized to elemental sulfur at dissolved oxygen concentrations above 0.8 mg DO L(-1). Substrate inhibition of sulfide oxidation was observed (K(i,S(2-))= 42.4 mg S L(-1)). Intracellular sulfur accumulation also affected negatively the sulfide oxidation rate. The maximum fraction of elemental sulfur accumulated inside cells was estimated (25.6% w/w) and a shrinking particle equation was included in the kinetic model to describe elemental sulfur oxidation. The microbial diversity obtained through pyrosequencing analysis revealed that Thiothrix sp. was the main species present in the culture (>95%). PMID:26704759

  9. Selective synthesis of substituted pyrrole-2-phosphine oxides and -phosphonates from 2H-azirines and enolates from acetyl acetates and malonates.

    PubMed

    Palacios, Francisco; Ochoa de Retana, Ana M; Vélez del Burgo, Ander

    2011-11-18

    A simple and efficient selective synthesis of 1H-pyrrole-2-phosphine oxides 3 and -phosphonates 7 by addition of enolates derived from acetyl acetates to 2H-azirinylphosphine oxide 1 and -phosphonate 6 is reported. Nucleophilic addition of enolates derived from diethyl malonate to 2H-azirines 1 and 6 led to the formation of functionalized 2-hydroxy-1H-pyrrole-5-phosphine oxide 9 and -phosphonate 10, while vinylogous α-aminoalkylphosphine oxides 14 and -phosphonate 15 may be obtained from azirines and the enolate derived from diethyl 2-phenylmalonate. Ring closure of vinylogous derivatives 14 and 15 in the presence of base led to the formation of 1,5-dihydro-3-pyrrolin-2-ones containing a phosphine oxide 17 or a phosphonate group 18. PMID:21999212

  10. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides.

    PubMed

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe(2+) and Fe(3+) in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe(2+) and Fe(3+)), particularly for the case of pyrrhotite minerals. PMID:23531431

  11. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    SciTech Connect

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  12. (2,4,6-Trimethyl­phen­yl)boronic acid–triphenyl­phosphine oxide (1/1)

    PubMed Central

    Roşca, Sorin; Olaru, Marian; Raţ, Ciprian I.

    2012-01-01

    In the crystal structure of the title compound, C9H13BO2·C18H15OP, there are O—H⋯O hydrogen bonds between the O atom of triphenyl­phosphine oxide and one hy­droxy group of the boronic acid. Boronic acid mol­ecules form inversion-related hydrogen-bonded dimers in an R 2 2(8) motif. The structure is consolidated by inter­molecular C—H⋯O bonds and C—H⋯π inter­actions. PMID:22259536

  13. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  14. Wet oxidation of oil-bearing sulfide wastes

    SciTech Connect

    Miller, R.L.; Hotz, N.J.

    1991-01-01

    Oil-bearing metal sulfide sludges produced in treatment of an industrial wastewater, which includes plating wastes, have yielded to treatment by electrooxidation and hydrogen peroxide processes. The oxidation can be controlled to be mild enough to avoid decomposition of the organic phase while oxidizing the sulfides to sulfates. The pH is controlled to near neutral conditions where iron, aluminum and chromium(III) precipitate as hydrous oxides. Other metals, such as lead and barium, may be present as sulfate precipitates with limited solubility, while metals such as nickel and cadmium would be present as complexed ions in a sulfate solution. The oxidations were found to proceed smoothly, without vigorous reaction; heat liberation was minimal. 2 refs., 12 figs.

  15. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  16. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans].

    PubMed

    Malakhova, P T; Chebotarev, G M; Kovalenko, E V; Volkov, Iu A

    1981-01-01

    Samples of natural pyrites and sphalerites were subjected to the action of the mineral medium 9K with 1 g of Fe3+ per litre in the presence and in the absence of Thiobacillus ferrooxidans, and incubated at 28 degrees C under the stationary conditions for 30 days. The chemical composition of the solutions was studied after leaching as well as changes of the surfaces of monoliths. The deepest etching of surfaces with the formation of crusts and films of jarosite, limonite and goslarite occurs upon the combined action of bacteria and Fe3+ in regions of a fine-zonal structure enriched with an isomorphous arsenic admixture which are characterized by a defective weak structure. The pyrite and sphalerite from Charmitan with a higher arsenic and iron content were leached more than the pyrite and sphalerite from Kurgashincan. This was also corroborated by chemical analyses of leaching solutions and by monometric studies of crushed sulfide samples. PMID:7219212

  17. Interactions among sulfide-oxidizing bacteria

    NASA Technical Reports Server (NTRS)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  18. Mathematical model for microbial oxidation of pure lead sulfide by Thiobacillus ferrooxidans.

    PubMed

    Kargi, F

    1989-08-01

    A shrinking-core mathematical model describing bioleaching of lead sulfide is developed considering the deposition of insoluble bio-oxidation products on metal sulfide particle surfaces. Variations in particle size are considered as it affects diffusion limitations. PMID:18588129

  19. Summary of GPC/DV results for space exposed poly(arylene ether phosphine oxides). Final report

    SciTech Connect

    Siochi, E.

    1995-09-01

    Gel Permeation Chromatography (GPC) was used to analyze poly(arylene ether phosphine oxide)s whose backbones were identical except for the ketone content and placement. These samples were exposed to low Earth orbit environment (predominantly atomic oxygen) on space shuttle flights. The materials and their unexposed controls were then characterized by GPC to investigate the effect of atomic oxygen on the molecular weight distributions. Analysis of the soluble portion of the samples revealed that there was significant loss of high molecular weight species. The presence of insoluble material also suggested that crosslinking was induced by the atomic oxygen exposure and that this very likely occurred at the high molecular weight portion of the molecular weight distribution.

  20. Synthesis of P-stereogenic diarylphosphinic amides by directed lithiation: transformation into tertiary phosphine oxides via methanolysis, aryne chemistry and complexation behaviour toward zinc(ii).

    PubMed

    del Águila-Sánchez, Miguel A; Navarro, Yolanda; García López, Jesús; Guedes, Guilherme P; López Ortiz, Fernando

    2016-02-01

    The highly diastereoselective synthesis of P-stereogenic phosphinic amides via directed ortho lithiation (DoLi) of (SC)-P,P-diphenylphosphinic amides with t-BuLi followed by electrophilic quench reactions is described. Functionalised derivatives containing a wide variety of ortho substituents (Cl, Br, I, OH, N3, SiMe3, SnMe3, P(O)Ph2, Me, allyl, (t)BuOCO) have been prepared in high yields with diastereomeric ratios up to 98 : 2. The X-ray diffraction structure of the ortho-stannylated and ortho-iodo compounds showed that the pro-S P-phenyl ring was stereoselectively ortho-deprotonated by the organolithium base. The usefulness of the method is supported by two key transformations, the synthesis of P-stereogenic methyl phosphinates through replacement of the chiral auxiliary by a methoxy group and the first example of the insertion of benzyne into the P-N bond of a P-stereogenic phosphinic amide. A DFT study of this reaction showed that the insertion proceeds through a [2 + 2] cycloaddition and a subsequent ring-opening with retention of the P-configuration. Explorative coordination chemistry of the new P-stereogenic ligands provided access to a chiral phosphinic amide-phosphine oxide Zn(ii) complex, the crystal structure of which is reported. PMID:26370566

  1. Theoretical Study of the First Transition Row Oxides and Sulfides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jt.; Maitre, Philippe; Arnold, James O. (Technical Monitor)

    1994-01-01

    The first transition row oxides and sulfides are studied using several different levels of theory. The calculations show the bonding mechanism in the sulfides and oxides to be very similar. For the oxides, accurate experimental data allow the theoretical methods to be calibrated. The same level of theory is used to study the sulfides where there is far less experimental information. For ScO through MnO and CuO the coupled cluster singles and doubles technique including a perturbational estimate of the unliked triple excitations [CCSD(T)] yields spectroscopic constants ((tau)e, (omega)e, and D0) in good agreement with experiment. The triple excitations are found to be very important in achieving this accuracy. For FeO to NiO, the single determinant self-consistent-field (SCF) approach yields pi orbitals that are localized on the metal or oxygen. This appears to cause problems for the single reference techniques; this is discussed in detail for NiO. The complete-active-space SCF/internally contracted averaged coupled pair functional approach (CASSCF/ICACPF) works well for FeO to NiO. The calculation of accurate dipole moments is found to be very difficult.

  2. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  3. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  4. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system.

    PubMed

    Cervilla, Antonio; Pérez-Pla, Francisco; Llopis, Elisa; Piles, María

    2006-09-01

    The kinetics of the reaction of Mo(VI)(S2C6H4)3 with organic phosphines to produce the anionic Mo(V) complex, Mo(V)(S2C6H4)3-, and phosphine oxide have been investigated. Reaction rates, monitored by UV-vis stopped-flow spectrophotometry, were studied in THF/H2O media as a function of the concentration of phosphine, molybdenum complex, pH, and water concentration. The reaction exhibits pH-dependent phosphine saturation kinetics and is first-order in complex concentration. The water concentration strongly enhances the reaction rate, which is consistent with the formation of Mo(VI)(S2C6H4)3(H2O) adduct as a crucial intermediate. The observed pH dependence of the reaction rate would arise from the distribution between acid and basic forms of this adduct. Apparently, the electrophilic attack by the phosphine at the oxygen requires the coordinated water to be in the unprotonated hydroxide form, Mo(VI)(S2C6H4)3(HO)-. This is followed by the concerted abstraction of 2e-, H+ by the Mo(VI) center to give Mo(IV)(S2C6H4)3(2-), H+, and the corresponding phosphine oxide. However, this Mo(IV) complex product is oxidized rapidly to Mo(V)(S2C6H4)3- via comproportionation with unreacted Mo(VI)(S2C6H4)3. The Mo(V) complex thus formed can be oxidized to the starting Mo(VI) complex upon admission of O2. Consequently, Mo(VI)(S2C6H4)3 is a catalyst for the autoxidation of phosphines in the presence of water. Additionally, there was a detectable variation in the reactivity for a series of tertiary phosphines. The rate of Mo(VI) complex reduction increases as does the phosphine basicity: (p-CH3C6H4)3P > (C6H5)3P > (p-ClC6H4)3P. Oxygen isotope tracing confirms that water rather than dioxygen is the source of the oxygen atom which is transferred to the phosphine. Such reactivity parallels oxidase activity of xanthine enzyme with phosphine as oxygen atom acceptor and Mo(VI)(S2C6H4)3 as electron acceptor. PMID:16933938

  5. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Karpuk, M.E.; Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-09-01

    The system is based on the absorption of hydrogen sulfide (H{sub 2}S) by stannic (tin) oxide. Two sorbents are required, the first sorbent is tin oxide and the second sorbent is a zinc oxide based material (i.e., zinc ferrite or zinc titanate) which is regenerated by air producing SO{sub 2}. TDA`s process carries out a modified Claus reaction to reduce the SO{sub 2} from the second sorbent generation to elemental sulfur. In this case the sulfided stannic oxide forms stannous sulfide (SnS) which reduces the SO{sub 2}. The absorption by SnO{sub 2} could remove over 90% of the H{sub 2}S from typical coal gas streams, but we use zinc ferrite (or zinc titanate), (a) to reduce H{sub 2}S to less than 20 ppM and (b) as a source of SO{sub 2} in regeneration. Due to stoichiometry of regeneration we want to remove half of the H{sub 2}S by SnO{sub 2} and the remainder by the second sorbent. The reactions with stannic oxide minimize the heat released during H{sub 2}S removal and regeneration. The absorption by SnO{sub 2} is slightly endothermic and cools the gas stream by less that 5{degrees}F (2.8{degrees}C) during absorption. Regeneration with SO{sub 2} is exothermic but releases only 11% of the heat that is liberated in regenerating the ZnO. For a nominal 6.5:1 steam to air the regeneration of ZnO increases the temperature by {approx_equal}400{degrees}F. The regeneration of SnO{sub 2} increases the temperature by less than 50{degrees}F (28{degrees}C) in the same gas flow.

  6. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis

    PubMed Central

    Hanson, Thomas E.; Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Hess, Daniel

    2013-01-01

    Previously, we presented data that indicated microbial sulfide oxidation would out-compete strictly chemical, abiotic sulfide oxidation reactions under nearly all conditions relevant to extant ecosystems (Luther et al., 2011). In particular, we showed how anaerobic microbial sulfide oxidation rates were several orders of magnitude higher than even metal catalyzed aerobic sulfide oxidation processes. The fact that biotic anaerobic sulfide oxidation is kinetically superior to abiotic reactions implies that nearly all anaerobic and sulfidic environments should host microbial populations that oxidize sulfide at appreciable rates. This was likely an important biogeochemical process during long stretches of euxinia in the oceans suggested by the geologic record. In particular, phototrophic sulfide oxidation allows the utilization of carbon dioxide as the electron acceptor suggesting that this process should be particularly widespread rather than relying on the presence of other chemical oxidants. Using the Chesapeake Bay as an example, we argue that phototrophic sulfide oxidation may be more important in many environments than is currently appreciated. Finally, we present methodological considerations to assist other groups that wish to study this process. PMID:24391629

  7. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    metal oxides with bimodal pore size distributions can be obtained. Combining nanocasting with chemical etching, a cobalt oxide with a hierarchical porous structure was synthesized, which possessed a surface area up to 250 m(2) g(-1), representing the highest surface area reported to date for nanoporous cobalt oxides. Lastly, this Account also covers the syntheses of nanoporous metal carbides and sulfides. The combination of in situ carburization and nanocasting enabled the syntheses of two ordered nanoporous metal carbides, Mo2C and W2C. For nanoporous metal sulfides, an "oxide-to-sulfide" synthetic strategy was proposed to address the large volume change issue of converting metal nitrate precursors to metal sulfide products in nanocasting. The successful syntheses of ordered nanoporous FeS2, CoS2, and NiS2 demonstrated the feasibility of the "oxide-to-sulfide" method. Concluding remarks include a summary of recent advances in the syntheses of nanoporous metal-based solids and a brief discussion of future opportunities in the hope of stimulating new interests and ideas. PMID:27294847

  8. Synthesis and photophysical studies of tetrazolate-based Eu(III) photoluminescent ternary complexes containing N-heterocyclic phosphine oxides auxiliary co-ligands.

    PubMed

    Mal, Suraj; Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana

    2016-08-01

    Two new ternary tetrazolate Eu(III) complexes with phosphine oxide co-ligands Eu(PTO)3 ·(P1/P2) [PTO = 5-(2-pyridyl-1-oxide)tetrazole, P1 = diphenylphosphorylamino-phenylphosphoryl-benzene, P2 = diphenylphosphorylpyridine)-bis-isobutyricphosphoryl] were synthesized and characterized using UV, fluorescence, IR and (1) H NMR spectroscopic techniques. The analytical data prove that the complexes are mononuclear in nature and the central Eu(III) ion is coordinated by three N and three O atoms of tetrazolate, and two O atoms of the corresponding bidentate phosphine oxide ligands. The ancillary ligand increased the photoluminescence efficiency of Eu(PTO)3 ·P1 (complex 3) by twofold compared with our previously reported Eu(PTO)3 complex (complex 1). Copyright © 2015 John Wiley & Sons, Ltd. PMID:26679054

  9. Mixed-ligand chelate extraction of lanthanides with 1-phenyl-3-methyl-4-(trifluoroacetyl)-5-pyrazolone and some phosphine oxide compounds

    SciTech Connect

    Umetani, S.; Freiser, H.

    1987-09-23

    Mixed-ligand chelate extraction of lanthanides (Ln) such as La, Pr, Eu, Ho, and Yb into chloroform with 1-phenyl-3-methyl-4-(trifluoroacetyl)-5-pyrazolone (HPMTFP) and with one of three phosphine oxide compounds is studied. The phosphine oxide compounds employed in the present work are tri-n-octylphosphine oxide (TOPO), n-octylphenyl(N,N-diisobutylcarbamoylmethyl)phosphine oxide (CMPO), and methylenebis(diphenylphosphine oxide) (MBDPO). Lanthanide ions are found to be extracted from a 0.1 M sodium perchlorate medium as Ln(PMTFP)/sub 3/(TOPO)/sub 2/ and Ln(PMTFP)/sub 3/(CMPO), respectively. In the extraction of lanthanides with the mixture of HPMTFP and MBDPO, the extracted species are found to be Ln(PMTFP)/sub 3/(MBDPO) or Ln(PMTFP)/sub 2/(ClO/sub 4/)(MBDPO)/sub 2/ in the absence or presence of sodium perchlorate, respectively. The extraction constants of these systems do not increase monotonically with atomic number but have a maximum at Eu or Ho. 11 references, 4 tables.

  10. The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Barnes, I.; Becker, K. H.; Patroescu, I.

    1994-11-01

    In laboratory investigations of the gas-phase OH initiated oxidation of dimethyl sulfide (DMS: CH3SCH3) at room temperature the formation of SO2, dimethyl sulfoxide (DMSO: CH3SOCH3), and OCS have been observed. A yield of 0.7±0.2% S was measured for OCS. These new results represent a hitherto unknown and quite considerable in situ atmospheric source of OCS. Based on the global DMS source strength as given in the literature and provided that the results from the laboratory study are valid under atmospheric conditions we estimate a contribution in the range 0.10 to 0.28 Tg (OCS) yr-1 from the gas-phase atmospheric photooxidation of DMS to the global OCS budget.

  11. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash.

    PubMed

    Asaoka, Satoshi; Hayakawa, Shinjiro; Kim, Kyung-Hoi; Takeda, Kazuhiko; Katayama, Misaki; Yamamoto, Tamiji

    2012-07-01

    Hydrogen sulfide is highly toxic to benthic organisms and may cause blue tide with depletion of dissolved oxygen in water column due to its oxidation. The purpose of this study is to reveal the combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash that is a byproduct from coal electric power stations to apply the material as an adsorbent for hydrogen sulfide in natural fields. Sulfur species were identified in both liquid and solid phases to discuss removal mechanisms of the hydrogen sulfide with the granulated coal ash. Batch experiments revealed that hydrogen sulfide decreased significantly by addition of the granulated coal ash and simultaneously the sulfate ion concentration increased. X-ray absorption fine structure analyses showed hydrogen sulfide was adsorbed onto the granulated coal ash and successively oxidized by manganese oxide (III) contained in the material. The oxidation reaction of hydrogen sulfide was coupling with reduction of manganese oxide. On the other hand, iron containing in the granulated coal ash was not involved in hydrogen sulfide oxidation, because the major species of iron in the granulated coal ash was ferrous iron that is not easily reduced by hydrogen sulfide. PMID:22487226

  12. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-06-01

    This Phase II SBIR contract is developing a sorbent and process which removes H{sub 2}S from hot gasified coal and generates sulfur during regeneration of the sorbent. The process can be used with any type of reactor (e.g., fixed or moving bed) and any gasifier (e.g., KRW or Texaco) and shows lower costs that competing H{sub 2}S removal processes. TDA Research`s (TDA) process uses a regenerable stannic oxide-based (SnO{sub 2}) sorbent as the first sorbent and zinc ferrite (or zinc titanate) as a second sorbent to remove H{sub 2}S to very low concentrations. The process converts the sulfides from both sorbents to elemental sulfur, a commercial product which is easy to store and transport. The object of this phase is to develop chemically active, high sulfur loadings, and durable stannic oxide sorbents and to demonstrate the process at the bench scale.

  13. Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway*♦

    PubMed Central

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-01-01

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed. PMID:25225291

  14. Redox-active phosphines: synthesis and crystal structures of palladium(II) complexes of a metallaphosphine in two different oxidation states.

    PubMed

    Tohmé, Ayham; Labouille, Stéphanie; Roisnel, Thierry; Dorcet, Vincent; Carmichael, Duncan; Paul, Frédéric

    2014-05-21

    The redox-active metallaphosphine [Fe(dppe)(η(5)-C5Me5)(C≡C-PPh2)] reacts with [Pd(1,5-cod)Cl2] to give mono- and bis-phosphine coordinated palladium centres as a function of stoichiometry, and these complexes provide a stable redox-active platform which allows reversible one-electron {Fe(II)→Fe(III)(+)} oxidations within the palladium coordination sphere. PMID:24710466

  15. Evaluation of long-term sulfide oxidation processes within pyrrhotite-rich tailings, Lynn Lake, Manitoba.

    PubMed

    Gunsinger, M R; Ptacek, C J; Blowes, D W; Jambor, J L

    2006-02-10

    Oxidation reactions have depleted sulfide minerals in the shallow tailings and have generated sulfate- and metal-rich pore water throughout the East Tailings Management Area (ETMA) at Lynn Lake, Manitoba, Canada. Information concerning the tailings geochemistry and mineralogy suggest the sulfide oxidation processes have reached an advanced stage in the area proximal to the point of tailings discharge. In contrast, the distal tailings, or slimes area, have a higher moisture content close to the impoundment surface, thereby impeding the ingress of oxygen and limiting sulfide oxidation. Numerical modelling of sulfide oxidation indicates the maximum rate of release for sulfate, Fe, and Ni occurred shortly after tailings deposition ceased. Although the sulfide minerals have been depleted in the very shallow tailings, the modelling suggests that sulfide oxidation will continue for hundreds and possibly thousands of years. The combination of sulfide minerals, principally pyrrhotite, that is susceptible to weathering processes and the relatively dry, coarse-grained nature of the tailings have resulted in the formation of a massive-hardpan layer in the proximal area of the ETMA. Because extensive accumulations of secondary oxyhydroxides of ferric iron are already present, remediation strategies for the ETMA should focus on mitigating the release of sulfide oxidation products rather than on preventing further oxidation. PMID:16406605

  16. Joint Recovery of f-Elements Using Solvent Based on Carbamoyl-phosphine Oxides Heading Toward ORGA-Process

    SciTech Connect

    Ozawa, M.; Babain, V.; Shadrin, A.; Strelkov, S.; Kiseleva, R.; Murzin, A.

    2007-07-01

    Development of the recovery system which allows realizing joint recovery of all the actinides from the HLW is one of the relevant questions in radiochemistry. Carbamoyl-phosphine oxides (CMPO) were proposed and studied as extractant for rare-earth and transplutonium elements (RE and TPE) recovery from HLW with high acidity, for example TRUEX- and SETFICS-process. Organic system CMPO with TBP in kerosene is usually used as a solvent. However, low solubility of actinide adducts with CMPO results in third phase formation when the actinides concentration in organic phase is high. Application of fluorinated polar diluents increases the solubility of CMPO adducts with actinides in organic phase. It was shown that solvent based on carbamoyl-phosphonate in fluorinated polar diluents allows to recover both uranium and minor actinides concurrently, and there was no precipitation or third phase formation even at high uranium concentration in organic phase. The f-elements joint recovery process based on this solvent was proposed. Solvent containing octyl-phenyl-N,N-di-isobutyl-carbamoyl-methylene-phosphine oxide (O{phi}D[iB]CMPO) in polar diluent meta-nitro-benzo-trifluoride (fluoro-pole-732) was screened out for these studies. And, combined use of them with TBP modifier allows to provide uranium and europium (americium) high recovery characteristics concurrently with an opportunity of attainment of f-elements high concentration in organic phase. As it was indicated, precipitates or third phase was absent even when uranium content in organic phase was 100 g/l. Recovery efficiency to europium remained sufficiently high for its effective recovery. Organic phase saturation about 100% from theoretical attains in europium recovery with this system. Increasing of (O{phi}D[iB]CMPO) concentration in recovery system from 0.2 to 0.8 M results in europium content increasing in organic phase, but no third phase formation is observed. The highest possible europium content in organic phase

  17. Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides

    PubMed Central

    Couture, Raoul-Marie; Van Cappellen, Philippe; Corkhill, Claire L.; Charnock, John M.; Polya, David A.; Vaughan, David; Vanbroekhoven, Karolien; Lloyd, Jonathan R.

    2013-01-01

    Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 μM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 μM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 μM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit. PMID:23666325

  18. Working with nitric oxide and hydrogen sulfide in biological systems

    PubMed Central

    Yuan, Shuai; Kevil, Christopher G.

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S. PMID:25550314

  19. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review.

    PubMed

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  20. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    PubMed Central

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  1. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    SciTech Connect

    Gevertz, D.; Zimmerman, S.; Jenneman, G.E.

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  2. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution

    NASA Technical Reports Server (NTRS)

    Fry, B.; Ruf, W.; Gest, H.; Hayes, J. M.

    1988-01-01

    Normal sulfur isotope effects averaging epsilon = -5.2 +/- 1.4% (s.d.) were consistently observed for the oxidation of sulfide in aqueous solution. Reaction products were sulfate, thiosulfate and sulfite at pH 10.8-11 in distilled water; S0 was formed in two experiments with synthetic seawater at pH 8-9.5. Because the -5.2% normal isotope effect differs significantly from the previously measured +2% inverse effect associated with anaerobic oxidation of sulfide by photosynthetic bacteria, stable sulfur isotopic measurements are potentially useful for distinguishing aerobic vs. anaerobic sulfide oxidation in marine and freshwater sulfureta.

  3. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide.

    PubMed

    Altaany, Zaid; Moccia, Francesco; Munaron, Luca; Mancardi, Daniele; Wang, Rui

    2014-01-01

    The endothelium is a cellular monolayer that lines the inner surface of blood vessels and plays a central role in the maintenance of cardiovascular homeostasis by controlling platelet aggregation, vascular tone, blood fluidity and fibrinolysis, adhesion and transmigration of inflammatory cells, and angiogenesis. Endothelial dysfunctions are associated with various cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and cardiovascular complications of diabetes. Numerous studies have established the anti-inflammatory, anti-apoptotic, and anti-oxidant effects of hydrogen sulfide (H2S), the latest member to join the gasotransmitter family along with nitric oxide and carbon monoxide, on vascular endothelium. In addition, H2S may prime endothelial cells (ECs) toward angiogenesis and contribute to wound healing, besides to its well-known ability to relax vascular smooth muscle cells (VSMCs), and thereby reducing blood pressure. Finally, H2S may inhibit VSMC proliferation and platelet aggregation. Consistently, a deficit in H2S homeostasis is involved in the pathogenesis of atherosclerosis and of hyperglycaemic endothelial injury. Therefore, the application of H2S-releasing drugs or using gene therapy to increase endogenous H2S level may help restore endothelial function and antagonize the progression of cardiovascular diseases. The present article reviews recent studies on the role of H2S in endothelial homeostasis, under both physiological and pathological conditions, and its putative therapeutic applications. PMID:25005182

  4. Sulfur speciation and sulfide oxidation in the water column of the Black Sea

    NASA Astrophysics Data System (ADS)

    Luther, George W., III; Church, Thomas M.; Powell, David

    We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on

  5. Investigation on Durability and Reactivity of Promising Metal Oxide Sorbents During Sulfidation and Regeneration

    SciTech Connect

    K. C. Kwon

    1997-05-01

    Research activities and efforts of this research project were concentrated on formulating various metal oxide sorbents with various additives under various formulation conditions, conducting experiments on initial reactivity of formulated sorbents with hydrogen sulfide, and testing hardness of formulated sorbents. Experiments on reactivity of formulated metal oxide sorbents with wet hydrogen sulfide contained in a simulated coal gas mixture were carried out for 120 seconds at 550 o C (see Table 1) to evaluate reactivity of formulated sorbents with hydrogen sulfide. Hardness of formulated sorbents was evaluated in addition to testing their reactivity with hydrogen sulfide. A typical simulated coal gas mixture consists of 9107-ppm hydrogen sulfide (0.005 g; 1 wt %), 0.085-g water (15.84 wt %), 0.0029-g hydrogen (0.58 wt %), and 0.4046-g nitrogen (81.34 wt%).

  6. Electrochemical determination of sulfide in fruits using alizarin-reduced graphene oxide nanosheets modified electrode.

    PubMed

    Cao, Xiaodong; Xu, Houchuan; Ding, Shun; Ye, Yongkang; Ge, Xiaoguang; Yu, Li

    2016-03-01

    This study presents a new approach for rapid detection of sulfide using a glassy carbon electrode (GCE) modified with alizarin (Az) and reduced graphene oxide (rGO) nanosheets. The fabricate Az-rGO/GCE sensor shows a notable electrocatalytic activity to sulfide oxidation. The currents of anodic peak centered at +465mV in 0.2M pH 7.0 phosphate buffer were related linearly to the concentrations of sulfide, based on the cyclic voltammetric studies. The linear range was 0.002-3.28mM, and the detection limit was 1μM. The proposed method was applied in sulfide determination of hydrogen sulfide pretreated fruits, and the method was also verified with recovery studies. PMID:26471675

  7. Catalytic activity of metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide

    SciTech Connect

    Marshneva, V.I.; Mokrinskii, V.V.

    1989-02-01

    Separate investigations have been made of the catalytic activities of a wide range of oxides by groups I-VIII metals in the Claus reaction and oxidation of H/sub 2/S by oxygen. Only 9 of 21 oxides used in the Claus reaction exhibit stable activity. The remaining oxides are deactivated, mainly by absorbing H/sub 2/S and being converted into sulfides. There are similar tendencies in the changes of sulfur formation specific velocities in both processes in the series of stable oxides V/sub 2/O/sub 5/, TiO/sub 2/, Mn/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, MgO, Cr/sub 2/O/sub 3/. Vanadium pentoxide is the most active catalyst in the total and partial oxidations of H/sub 2/S and the Claus reaction.

  8. Oxidative nucleophilic strategy for synthesis of thiocyanates and trifluoromethyl sulfides from thiols.

    PubMed

    Yamaguchi, Kazuya; Sakagami, Konomi; Miyamoto, Yumi; Jin, Xiongjie; Mizuno, Noritaka

    2014-12-01

    Thiocyanates and trifluoromethyl sulfides are important compounds and have classically been synthesized via multistep procedures together with the formation of significant amounts of byproducts. Herein, we demonstrate an oxidative nucleophilic strategy for the synthesis of thiocyanates and trifluoromethyl sulfides from thiol starting materials using nucleophilic reagents such as TMSCN and TMSCF3 (TMS = trimethylsilyl). In the presence of a 2 × 2 manganese oxide-based octahedral molecular sieve (OMS-2) and potassium fluoride (KF), various structurally diverse thiocyanates and trifluoromethyl sulfides could be synthesized in almost quantitative yields (typically >90%). The presented cyanation and trifluoromethylation reactions proceed through the OMS-2-catalyzed oxidative homocoupling of thiols to give disulfides followed by nucleophilic bond cleavage to produce the desired compounds and thiolate species (herein S-trimethylsilylated thiols). OMS-2 can catalyze oxidative homocoupling of the thiolate species, thus resulting formally in the quantitative production of thiocyanates and trifluoromethyl sulfides from thiols. PMID:25297894

  9. High-efficiency turquoise-blue electrophosphorescence from a Pt(II)-pyridyltriazolate complex in phosphine oxide host

    SciTech Connect

    Bhansali, Unnat S; Polikarpov, Evgueni; Swensen, James S; Chen, Wei; Jia, Huiping; Gaspar, Daniel J; Gnade, Bruce E; Padmaperuma, Asanga B; Omary, Mohammad A

    2009-12-10

    We have demonstrated high-efficiency turquoise-blue electrophosphorescence from the complex Pt(ptp)2 = bis[3,5–bis(2–pyridyl)–1,2,4–triazolato]platinum(II) doped in the wide band-gap, ambipolar phosphine oxide host HM-A1 = 4-(diphenylphosphoryl)-N,N-diphenylaniline. For devices with 5% Pt(ptp)2 doping in HM-A1, we have achieved a peak external quantum efficiency and power efficiency of (11.8 ± 0.6) % and (61.2 ± 5.9) lm/W with high-pixel values of 13.1 % and 70.6 lm/W, respectively. These parameters maintained (10.6 ± 0.2) % and (40.3 ± 1.2) lm/W at a brightness of 1000 cd/m2 with high-pixel values of 10.8 % and 41.6 lm/W. Examination of several device structures suggests that the high performance is due to improved charge transport and exciton confinement in the emissive region. Devices with 1-10% doping concentration exhibit turquoise-blue emissions (λmax ~ 480 nm) with a monotonic decrease in monomer/excimer intensity ratio upon increasing the doping concentration. Devices with 5% doping exhibit sufficient blue contribution to attain white light upon combination with highly-doped or neat emissive layers of the same phosphor; the work herein represents a significant backdrop toward optimizing such white OLEDs given the performance metrics above, which to our knowledge represent the highest performance for OLEDs that exhibit blue emission maxima.

  10. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  11. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  12. Oxidation of heterocyclic amines, sulfilimines, and phosphine imines with dimethyldioxirane. [Aminofurazans

    SciTech Connect

    Coburn, M.D.

    1987-01-01

    Dimethyldioxirane (DMD) reacted with 3-amino-4-(4-chlorophenyl)furazan (1) to yield 3-(4-chlorophenyl)-4-nitrofurazan (5). DMD reacted with the dimethylsulfilimine of 1 to give the sulfoximine with some 5. Treatment of the trioctylphosphine imine (3) with DMD gave only 5. Other reactions with DMD were studied, including the oxidation of aminofurazans. (DLC)

  13. Alternatives to Sulfide Dehairing: Use of Oxidative Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dehairing of cattle hides with sodium sulfide generates large quantities of waste that are of environmental concern as they have a large biological and chemical oxygen demand. Additionally, sodium sulfide is a potential workplace hazard. We had worked with industry to develop a rapid dehairing...

  14. Synthesis of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide – a tailor-made photoinitiator for dental adhesives

    PubMed Central

    Lamparth, Iris; Angermann, Jörg; Fischer, Urs Karl; Zeuner, Frank; Bock, Thorsten; Liska, Robert; Rheinberger, Volker

    2010-01-01

    Summary Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 °C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by 1H NMR, 13C NMR, 31P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV–vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations. PMID:20502649

  15. Synthesis of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide - a tailor-made photoinitiator for dental adhesives.

    PubMed

    Moszner, Norbert; Lamparth, Iris; Angermann, Jörg; Fischer, Urs Karl; Zeuner, Frank; Bock, Thorsten; Liska, Robert; Rheinberger, Volker

    2010-01-01

    Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 ° C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV-vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations. PMID:20502649

  16. The quinone-binding site of Acidithiobacillus ferrooxidans sulfide: quinone oxidoreductase controls both sulfide oxidation and quinone reduction.

    PubMed

    Zhang, Yanfei; Qadri, Ali; Weiner, Joel H

    2016-04-01

    Sulfide:quinone oxidoreductase (SQR) is a peripheral membrane enzyme that catalyzes the oxidation of sulfide and the reduction of ubiquinone. Ubiquinone binds to a conserved hydrophobic domain and shuttles electrons from a noncovalent flavin adenine dinucleotide cofactor to the membrane-bound quinone pool. Utilizing the structure of decylubiquinone bound to Acidithiobacillus ferrooxidans SQR, we combined site-directed mutagenesis and kinetic approaches to analyze quinone binding. SQR can reduce both benzoquinones and naphthoquinones. The alkyl side-chain of ubiquinone derivatives enhances binding to SQR but limits the enzyme turnover. Pentachlorophenol and 2-n-heptyl-4-hydroxyquinoline-N-oxide are potent inhibitors of SQR with apparent inhibition constants (Ki) of 0.46 μmol·L(-1) and 0.58 μmol·L(-1), respectively. The highly conserved amino acids surrounding the quinone binding site play an important role in quinone reduction. The phenyl side-chains of Phe357 and Phe391 sandwich the benzoquinone head group and are critical for quinone binding. Importantly, conserved amino acids that define the ubiquinone-binding site also play an important role in sulfide oxidation/flavin reduction. PMID:26914540

  17. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.

    PubMed

    Kijjanapanich, Pimluck; Kijjanapanich, Pairoje; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2015-02-01

    Sulfide is the product of the biological sulfate reduction process which gives toxicity and odor problems. Wastewaters or bioreactor effluents containing sulfide can cause severe environmental impacts. Electrochemical treatment can be an alternative approach for sulfide removal and sulfur recovery from such sulfide rich solutions. This study aims to develop a spontaneous electrochemical sulfide oxidation/vanadium(V) reduction cell with a graphite electrode system to recover sulfide as elemental sulfur. The effects of the internal and external resistance on the sulfide removal efficiency and electrical current produced were investigated at different pH. A high surface area of the graphite electrode is required in order to have as less internal resistance as possible. In this study, graphite powder was added (contact area >633 cm(2)) in order to reduce the internal resistance. A sulfide removal efficiency up to 91% and electrical charge of more than 400 C were achieved when using five graphite rods supplemented with graphite powder as the electrode at an external resistance of 30 Ω and a sulfide concentration of 250 mg L(-1). PMID:25463589

  18. Microbially mediated phosphine emission.

    PubMed

    Roels, Joris; Huyghe, Gwen; Verstraete, Willy

    2005-02-15

    There is still a lot of controversy in literature concerning the question whether a biochemical system exists enabling micro-organisms to reduce phosphate to phosphine gas. The search for so-called 'de novo synthesised' phosphine is complicated by the fact that soils, slurries, sludges, etc., which are often used as inocula, usually contain matrix bound phosphine (MBP). Matrix bound phosphine is a general term used to indicate non-gaseous reduced phosphorus compounds that are transformed into phosphine gas upon reaction with bases or acids. A study was carried out to compare the different digestion methods, used to transform matrix bound phosphine into phosphine gas. It was demonstrated that caustic and acidic digestion methods should be used to measure the matrix bound phosphine of the inoculum prior to inoculation to avoid false positive results concerning de novo synthesis. This is especially true if anthropogenically influenced inocula possibly containing minute steel or aluminium particles are used. The comparative study on different digestion methods also revealed that the fraction of phosphorus in mild steel, converted to phosphine during acid corrosion depended on the temperature. Following these preliminary studies, anaerobic growth experiments were set up using different inocula and media to study the emission of phosphine gas. Phosphine was detected in the headspace gases and its quantity and timeframe of emission depended on the medium composition, suggesting microbially mediated formation of the gas. The amount of phosphine emitted during the growth experiments never exceeded the bound phosphine present in inocula, prior to inoculation. Hence, de novo synthesis of phosphine from phosphate could not be demonstrated. Yet, microbially mediated conversion to phosphine of hitherto unknown reduced phosphorus compounds in the inoculum was evidenced. PMID:15713333

  19. Iron sulfide oxidation and the chemistry of acid generation

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick J.; Yelton, Jennifer L.; Reddy, K. J.

    1988-06-01

    Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (AI), iron (Fe), and sulfate (SO4) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6 percent pyrite) and a Chattanooga Shale (1.5 percent pyrite). The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe3+, Fe2+, Al3+, and SO4 2- increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe+pH (redox-potential). The Fe3+ and Fe2+ activities appeared to be controlled by amorphous Fe(OH)3 solid phase above a pH of 6.0 and below pe+pH 11.0. The Fe3+, Fe2+, and SO4 2- activities reached saturation with respect to FeOHSO4 solid phase between pH 3.0 and 6.0 and below pe+pH 11.0 Below a pH of 3.0 and above a pe+pH of 11.0, Fe2+, Fe3+, and SO4 2- activities are supported by FeSO4·7H2O solid phase. Above a pH of 6.0, the Al3+ activity showed an equilibrium with amorphous Al(OH)3 solid phase. Below pH 6.0, Al3+ and SO4 2- activities are regulated by the AlOHSO4 solid phase, irrespective of pe+pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox. As a result, the long-term chemistry associated with disposal environments can be largely predicted (including trace elements).

  20. Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes.

    PubMed

    Pikaar, Ilje; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg; Rabaey, Korneel

    2011-11-01

    Hydrogen sulfide generation is a major issue in sewer management. A novel method based on electrochemical sulfide oxidation was recently shown to be highly effective for sulfide removal from synthetic and real sewage. Here, we compare the performance of five different mixed metal oxide (MMO) coated titanium electrode materials for the electrochemical removal of sulfide from domestic wastewater. All electrode materials performed similarly in terms of sulfide removal, removing 78±5%, 77±1%, 85±4%, 84±1%, and 83±2% at a current density of 10 mA/cm(2) using Ta/Ir, Ru/Ir, Pt/Ir, SnO(2) and PbO(2), respectively. Elevated chloride concentrations, often observed in coastal areas, did not entail any significant difference in performance. Independent of the electrode material used, sulfide oxidation by in situ generated oxygen was the predominant reaction mechanism. Passivation of the electrode surface by deposition of elemental sulfur did not occur. However, scaling was observed in the cathode compartment. This study shows that all the MMO coated titanium electrode materials studied are suitable anodic materials for sulfide removal from wastewater. Ta/Ir and Pt/Ir coated titanium electrodes seem the most suitable electrodes since they possess the lowest overpotential for oxygen evolution, are stable at low chloride concentration and are already used in full scale applications. PMID:21885081

  1. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.

    PubMed

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2014-08-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351

  2. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment

    PubMed Central

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Louise Meyer, Rikke; Peter Revsbech, Niels; Schramm, Andreas; Peter Nielsen, Lars; Risgaard-Petersen, Nils

    2014-01-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351

  3. From Mesomorphic Phosphine Oxide to Clustomesogens Containing Molybdenum and Tungsten Octahedral Cluster Cores.

    PubMed

    Cîrcu, Viorel; Molard, Yann; Amela-Cortes, Maria; Bentaleb, Ahmed; Barois, Philippe; Dorcet, Vincent; Cordier, Stéphane

    2015-09-01

    New clustomesogens (i.e., metal atom clusters containing liquid crystalline (LC) materials) have been obtained by grafting neutral cyanobiphenyl (CB)- or cholesteryl-containing tailor-made dendritic mesomorphic triphenylphosphine oxide ligands on luminescent (M6 Cl(i) 8 )(4+) octahedral cluster cores (M=Mo, W). The LC properties were studied by a combination of polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray powder diffraction analyses. While the organic ligands showed various mesophase types ranging from nematic, SmA columnar (SmACol ), SmA, and SmC phases, it turned out that the corresponding clustomesogens formed layered phases (SmA) over a wide range of temperatures that depend on the nature and density of mesogenic groups employed. Intrinsic luminescence properties of the cluster precursors are preserved over the entire range of LC phase existence. PMID:26211657

  4. Synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water.

    PubMed

    Jacukowicz-Sobala, Irena; Wilk, Łukasz J; Drabent, Krzysztof; Kociołek-Balawejder, Elżbieta

    2015-12-15

    Hybrid materials containing iron oxides based on macroporous and gel-type sulfonic and carboxylic cation exchangers as supporting materials were obtained. Multiple factors, including the kind of functional groups, ion exchange capacity, and polymer matrix type (chemical constitution and porous structure), affected the amount of iron oxides introduced into their matrix (7.8-35.2% Fe). Products containing the highest iron content were obtained using carboxylic cation exchangers, with their inorganic deposit being mostly a mixture of iron(III) oxides, including maghemite. Obtained hybrid polymers were used for removal of sulfides from anoxic aqueous solutions (50-200mgS(2-)/dm(3)). The research showed that the form (Na(+) or H(+)) of ionic groups of hybrid materials had a crucial impact on the sulfide removal process. Due to high iron oxide content (35% Fe), advantageous chemical constitution and porous structure, the highest removal efficiency (60mgS(2-)/g) was exhibited by a hybrid polymer obtained using a macroporous carboxylic cation exchanger as the host material. The process of sulfide removal was very complex and proceeded with heterogeneous oxidation, iron(III) oxide reductive dissolution and formation of sulfide oxidation and precipitation products such as iron(II) sulfides, thiosulfates and polysulfides. PMID:26319332

  5. Oxidative addition of hydrogen to bis(phosphine)platinum(0) complexes: an ab initio theroretical treatment

    SciTech Connect

    Noell, J.O.; Hay, P.J.

    1982-08-25

    Ab initio molecular orbital methods utilizing relativistic core potentials and correlated wave functions are employed to examine the oxidative addition reactions H/sub 2/ + Pt(PH/sub 3/)/sub 2/..-->..cis-Pt(PH/sub 3/)/sub 2/H/sub 2/ and H/sub 2/ + Pt(P(CH/sub 3/)/sub 3/)/sub 2/..-->..cis-Pt(P(CH/sub 3/)/sub 3/)/sub 2/H/sub 2/. For this symmetry-allowed process, an activation barrier of 17 kcal/mol and an exothermicity of 7 kcal/mol are calculated at the SCF level for the PH/sub 3/ liquid; similar values are obtained for the P(CH/sub 3/)/sub 3/ ligand. This implies a barrier of 24 kcal/mol for the reverse reductive elimination reaction. These values were not significantly altered in MC-SCF or CI calculations. This barrier is consistent with available data in the analogous process in six-coordinate complexes but is puzzling in light of the paucity of known four-coordinate cis dihydrides. The reaction is analyzed in terms of three phases: initial repulsion, partial transfer of charge from the platinum to the hydrogen, and final metal-hydrogen bond formation. The relative energies of the cis and trans isomers are also discussed.

  6. Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides.

    PubMed

    Vitvitsky, Victor; Yadav, Pramod K; Kurthen, Angelika; Banerjee, Ruma

    2015-03-27

    A cardioprotectant at low concentrations, H2S is a toxin at high concentrations and inhibits cytochrome c oxidase. A conundrum in H2S homeostasis is its fate in red blood cells (RBCs), which produce H2S but lack the canonical mitochondrial sulfide oxidation pathway for its clearance. The sheer abundance of RBCs in circulation enhances the metabolic significance of their clearance strategy for H2S, necessary to avoid systemic toxicity. In this study, we demonstrate that H2S generation by RBCs is catalyzed by mercaptopyruvate sulfurtransferase. Furthermore, we have discovered the locus of sulfide oxidation in RBCs and describe a new role for an old protein, hemoglobin, which in the ferric or methemoglobin state binds H2S and oxidizes it to a mixture of thiosulfate and hydropolysulfides. Our study reveals a previously undescribed route for the biogenesis of hydropolysulfides, which are increasingly considered important for H2S-based signaling, but their origin in mammalian cells is unknown. An NADPH/flavoprotein oxidoreductase system restores polysulfide-carrying hemoglobin derivatives to ferrous hemoglobin, thus completing the methemoglobin-dependent sulfide oxidation cycle. Methemoglobin-dependent sulfide oxidation in mammals is complex and has similarities to chemistry reported for the dissolution of iron oxides in sulfidic waters and during bioleaching of metal sulfides. The catalytic oxidation of H2S by hemoglobin explains how RBCs maintain low steady-state H2S levels in circulation, and suggests that additional hemeproteins might be involved in sulfide homeostasis in other tissues. PMID:25688092

  7. Sulfide Oxidation by a Noncanonical Pathway in Red Blood Cells Generates Thiosulfate and Polysulfides*

    PubMed Central

    Vitvitsky, Victor; Yadav, Pramod K.; Kurthen, Angelika; Banerjee, Ruma

    2015-01-01

    A cardioprotectant at low concentrations, H2S is a toxin at high concentrations and inhibits cytochrome c oxidase. A conundrum in H2S homeostasis is its fate in red blood cells (RBCs), which produce H2S but lack the canonical mitochondrial sulfide oxidation pathway for its clearance. The sheer abundance of RBCs in circulation enhances the metabolic significance of their clearance strategy for H2S, necessary to avoid systemic toxicity. In this study, we demonstrate that H2S generation by RBCs is catalyzed by mercaptopyruvate sulfurtransferase. Furthermore, we have discovered the locus of sulfide oxidation in RBCs and describe a new role for an old protein, hemoglobin, which in the ferric or methemoglobin state binds H2S and oxidizes it to a mixture of thiosulfate and hydropolysulfides. Our study reveals a previously undescribed route for the biogenesis of hydropolysulfides, which are increasingly considered important for H2S-based signaling, but their origin in mammalian cells is unknown. An NADPH/flavoprotein oxidoreductase system restores polysulfide-carrying hemoglobin derivatives to ferrous hemoglobin, thus completing the methemoglobin-dependent sulfide oxidation cycle. Methemoglobin-dependent sulfide oxidation in mammals is complex and has similarities to chemistry reported for the dissolution of iron oxides in sulfidic waters and during bioleaching of metal sulfides. The catalytic oxidation of H2S by hemoglobin explains how RBCs maintain low steady-state H2S levels in circulation, and suggests that additional hemeproteins might be involved in sulfide homeostasis in other tissues. PMID:25688092

  8. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our

  9. Luminescent lanthanide complexes of a bis-bipyridine-phosphine-oxide ligand as tools for anion detection.

    PubMed

    Charbonnière, Loïc J; Ziessel, Raymond; Montalti, Marco; Prodi, Luca; Zaccheroni, Nelsi; Boehme, Christian; Wipff, Georges

    2002-07-01

    The Gd(3+), Tb(3+), and Eu(3+) complexes of a bis-bipyridine-phenylphosphine oxide ligand PhP(O)(bipy)(2) 1 (bipy for 6-methylene-6'-methyl-2,2'-bipyridine) have been synthesized. In acetonitrile solutions at room temperature, the Tb(3+) and Eu(3+) complexes show a metal-centered luminescence, indicative of an efficient energy transfer from the two bipy subunits to the Ln center. The photophysical properties drastically depend on the nature of the anions present in solution. In particular, addition of 2 equiv of nitrate anions to a solution containing the [Ln.1](OTf-)(3) leads to an 11-fold increase of the luminescence intensity for the Eu(3+) and a 7-fold increase for the Tb(3+) complexes. Similar effects are provided with Cl-, F-, and CH(3)COO- anions. UV-vis titration experiments were used to determine association constants for binding of, respectively, one, two, and three anions. Stepwise anion addition has also been investigated on the molecular level using quantum mechanical (QM) calculations for the Eu complexes. These calculations reproduce the experimental findings, especially if solvent molecule addition is taken into account. The X-ray crystal structure of the nitrate salt of the Tb complex, as well as QM calculation of a similar Eu complex, demonstrates the coordination of three nitrate anions in a bidentate mode and the step-by-step relegation of the bipy subunits in the second coordination sphere. These features give valuable insights into the mechanism of the overall light amplification process. PMID:12083932

  10. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Amit, Iddo; Subramani, Thangavel; Zaidiner, Seva; Rosenwaks, Yossi; Yerushalmi, Roie

    2012-11-27

    Contact doping method for the controlled surface doping of silicon wafers and nanometer scale structures is presented. The method, monolayer contact doping (MLCD), utilizes the formation of a dopant-containing monolayer on a donor substrate that is brought to contact and annealed with the interface or structure intended for doping. A unique feature of the MLCD method is that the monolayer used for doping is formed on a separate substrate (termed donor substrate), which is distinct from the interface intended for doping (termed acceptor substrate). The doping process is controlled by anneal conditions, details of the interface, and molecular precursor used for the formation of the dopant-containing monolayer. The MLCD process does not involve formation and removal of SiO(2) capping layer, allowing utilization of surface chemistry details for tuning and simplifying the doping process. Surface contact doping of intrinsic Si wafers (i-Si) and intrinsic silicon nanowires (i-SiNWs) is demonstrated and characterized. Nanowire devices were formed using the i-SiNW channel and contact doped using the MLCD process, yielding highly doped SiNWs. Kelvin probe force microscopy (KPFM) was used to measure the longitudinal dopant distribution of the SiNWs and demonstrated highly uniform distribution in comparison with in situ doped wires. The MLCD process was studied for i-Si substrates with native oxide and H-terminated surface for three types of phosphorus-containing molecules. Sheet resistance measurements reveal the dependency of the doping process on the details of the surface chemistry used and relation to the different chemical environments of the P═O group. Characterization of the thermal decomposition of several monolayer types formed on SiO(2) nanoparticles (NPs) using TGA and XPS provides insight regarding the role of phosphorus surface chemistry at the SiO(2) interface in the overall MLCD process. The new MLCD process presented here for controlled surface doping

  11. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    PubMed Central

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  12. Aggregate expansivity due to sulfide oxidation. 2: Physico-chemical modeling of sulfate attack

    SciTech Connect

    Casanova, I.; Aguado, A.; Agullo, L.

    1997-11-01

    Weathering of sulfide-bearing aggregates in concrete causes the release of sulfate ions that can react with cement components to yield expansive products. The extent of the sulfate attack of the paste is controlled by the composition and size of the aggregate, the kinetics of sulfide oxidation, the composition of cement and mixing proportioning of concrete. The extent of sulfate attack has been successfully simulated using a combined kinetic-thermodynamic approach.

  13. Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system.

    PubMed

    Cytryn, Eddie; Minz, Dror; Gelfand, Ilya; Neori, Amir; Gieseke, Armin; De Beer, Dirk; Van Rijn, Jaap

    2005-03-15

    In the present work we describe a comprehensive analysis of sulfide oxidation in a fluidized bed reactor (FBR) from an environmentally sustainable, zero-discharge mariculture system. The FBR received oxygen-depleted effluent from a digestion basin (DB) that is responsible for gasification of organic matter and nitrogen. The FBR is a crucial component in this recirculating system because it safeguards the fish from the toxic sulfide produced in the DB. Microscale sulfide oxidation potential and bacterial community composition within FBR biofilms were correlated to biofilter performance by integrating bulk chemical, microsensor (O2, pH, and H2S), and molecular microbial community analyses. The FBR consistently oxidized sulfide during two years of continuous operation, with an estimated average sulfide removal rate of 1.3 g of sulfide-S L(FBR)(-1) d(-1). Maximum sulfide oxidation rates within the FBR biofilms were 0.36 and 0.21 mg of sulfide-S cm(-3) h(-1) in the oxic and anoxic layers, respectively, indicating that both oxygen and nitrate serve as electron acceptors for sulfide oxidation. The estimated anoxic sulfide removal rate, as extrapolated from bench scale, autotrophic, nitrate-amended experiments, was 0.7 g of sulfide-S L(FBR)(-1) d(-1), which is approximately 50% of the total estimated sulfide removal in the FBR. Community composition analyses using denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA gene fragments from FBR samples taken at six-month intervals revealed several sequences that were closely affiliated with sulfide-oxidizing bacteria. These included the denitrifying, sulfide-oxidizing bacteria Thiomicrospira denitrificans, members of the filamentous Thiothrix genus, and sulfide-oxidizing symbionts from the Gammaproteobacteria. In addition, marine Alphaproteobacteria and Bacteroidetes species were present in all of the DGGE profiles examined. DGGE analyses showed significant shifts in the bacterial community composition between

  14. Metal oxide and mercuric sulfide nanoparticles synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Xu, Xin

    Commercially available and laboratory-synthesized metal based nanoparticles (NPs), iron oxide (Fe2O3), copper oxide (CuO), titanium dioxide (TiO2), zinc oxide (ZnO) and mercuric sulfide (HgS) were studied by comprehensive characterizations methods. The general synthesis process was modified sol-gel method. The size and morphology of NPs could be influenced by temperature, sonication, calcination, precursor concentration, pH and types of reaction media. All types of the laboratory-synthesized or commercially available NPs were characterized by physical and chemical processes. One characteristic of NP that can lead to ambiguous toxicity test results was the effect of agglomeration of primary nano-sized particles. Laser light scattering was used to measure the aggregated and particle size distribution. Aggregation effects were apparent and often extensive in some synthesis approaches. Electron microscopy (SEM and TEM) gave the images of those laboratory-synthesized particles and aggregation. The average single particle was about 5-20 nm of ZnO; 20-40 nm of CuO; 10-20 nm of TiO2; 20-35 nm of Fe2O3; 10-15 nm of HgS, while the aggregate size was in the range of a hundred nanometers or more. These five types of NPs were obtained with spherical and oblong formation and the agglomeration of ZnO, CuO, HgS and TiO2 was random, but Fe2O3 has web-like aggregation. Other measurements performed on the particles and aggregates include bandgap energies, surface composition, surface area, hydrodynamic radius, and particle surface charge. In aqueous environment, NPs are subject to processes such as solubilization and aggregation. These processes can be controlling factors in the fate of nanomaterials in environmental settings, including bioavailability to organisms. This study has focused primarily on measurement of the solubility in aqueous media of varying composition (pH, ionic strength, and organic carbon), sedimentation and stability. The aggregate size distribution was

  15. Alternatives to Sulfide Dehairing: Use of Oxidative Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dehairing of cattle hides with sodium sulfate generates large quantities of waste that are of environmental concern as they have a large biological and chemical oxygen demand. Additionally, sodium sulfide is a potential workplace hazard. We had worked with industry to develop a rapid dehairing...

  16. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulfide oxidation: Reaction kinetics and stoichiometry

    PubMed Central

    Xu, Xi-Jun; Chen, Chuan; Guo, Hong-liang; Wang, Ai-jie; Ren, Nan-qi; Lee, Duu-Jong

    2016-01-01

    Sulfide biooxidation by the novel sulfide-oxidizing bacteria Pseudomonas sp. C27, which could perform autotrophic and heterotrophic denitrification in mixotrophic medium, was studied in batch and continuous systems. Pseudomonas sp. C27 was able to oxidize sulfide at concentrations as high as 17.66 mM. Sulfide biooxidation occurred in two distinct stages, one resulting in the formation of sulfur with nitrate reduction to nitrite, followed by thiosulfate formation with nitrite reduction to N2. The composition of end-products was greatly impacted by the ratio of sulfide to nitrate initial concentrations. At a ratio of 0.23, thiosulfate represented 100% of the reaction products, while only 30% with a ratio of 1.17. In the continuous bioreactor, complete removal of sulfide was observed at sulfide concentration as high as 9.38 mM. Overall sulfide removal efficiency decreased continuously upon further increases in influent sulfide concentrations. Based on the experimental data kinetic parameter values were determined. The value of maximum specific growth rate, half saturation constant, decay coefficient, maintenance coefficient and yield were to be 0.11 h−1, 0.68 mM sulfide, 0.11 h−1, 0.21 mg sulfide/mg biomass h and 0.43 mg biomass/mg sulfide, respectively, which were close to or comparable with those reported in literature by other researches. PMID:26864216

  17. Sulfidation of mixed metal oxides in a fluidized-bed reactor

    SciTech Connect

    Christoforou, S.C.; Efthimiadis, E.A.; Vasalos, I.A. )

    1995-01-01

    Mixed metal oxides were used for the removal of hydrogen sulfide from a hot gas stream. Sorbents were prepared according to the dry and wet impregnation techniques. The desulfurization performance of the metal oxide sorbents was experimentally tested in a fluidized-bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that the preparation procedure and technique, the type and the amount of the impregnated metal oxide, the type of the solid carrier, and the size of the solid reactant affect the H[sub 2]S removal capacity of the sorbents. The pore structure of fresh and sulfided sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  18. Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture

    PubMed Central

    Kamp, Anja; Stief, Peter; Schulz-Vogt, Heide N.

    2006-01-01

    A lithotrophic freshwater Beggiatoa strain was enriched in O2-H2S gradient tubes to investigate its ability to oxidize sulfide with NO3− as an alternative electron acceptor. The gradient tubes contained different NO3− concentrations, and the chemotactic response of the Beggiatoa mats was observed. The effects of the Beggiatoa sp. on vertical gradients of O2, H2S, pH, and NO3− were determined with microsensors. The more NO3− that was added to the agar, the deeper the Beggiatoa filaments glided into anoxic agar layers, suggesting that the Beggiatoa sp. used NO3− to oxidize sulfide at depths below the depth that O2 penetrated. In the presence of NO3− Beggiatoa formed thick mats (>8 mm), compared to the thin mats (ca. 0.4 mm) that were formed when no NO3− was added. These thick mats spatially separated O2 and sulfide but not NO3− and sulfide, and therefore NO3− must have served as the electron acceptor for sulfide oxidation. This interpretation is consistent with a fourfold-lower O2 flux and a twofold-higher sulfide flux into the NO3−-exposed mats compared to the fluxes for controls without NO3−. Additionally, a pronounced pH maximum was observed within the Beggiatoa mat; such a pH maximum is known to occur when sulfide is oxidized to S0 with NO3− as the electron acceptor. PMID:16820468

  19. Influence of various nitrogenous electron acceptors on the anaerobic sulfide oxidation.

    PubMed

    Jing, Cai; Ping, Zheng; Mahmood, Qaisar

    2010-05-01

    The effect of nitrate and nitrite as electron acceptors on the performance of anaerobic sulfide oxidizing process (ASO process) was investigated. For nitrate-ASO process, the maximum influent nitrogen concentration was lower than that in nitrite-ASO process, but the maximum influent sulfur concentration was higher than that of nitrite-ASO process. The half saturation values for nitrogen and sulfur in both processes were similar. The minimum reaction time taken for nitrite and sulfide was relatively shorter than in nitrite-ASO reactor. As indicated by sensitivity ratio, activated sludge was more tolerant to sulfide, which had no significant differences between two processes; while it was relatively more sensitive to nitrite over nitrate. PCR-DGGE fingerprints, Dice and Shannon similarity indices and sequencing results all suggested that the microbial communities in both reactors were similar. The use of nitrate as an electron acceptor may be preferable over nitrite to treat sulfide-rich wastewaters. PMID:20047830

  20. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is

  1. The sulfide ore looping oxidation process: An alternative to current roasting and smelting practice

    NASA Astrophysics Data System (ADS)

    McHugh, Larry F.; Balliett, Robert; Mozolic, Jean A.

    2008-07-01

    This novel method utilizes the reactions of metal sulfides and metal oxides. It is applicable to single-metal systems such as Mo, Cu, Co, Ni, Fe, and Zn individual sulfides and to mixed sulfides such as chalcopyrite and Mo/Fe. In addition to primary ores, waste stream products such as spent catalysts can be effectively processed. The benchmark work done on MoS2/MoO3 resulted in an MoO2 product with less than 0.095 wt.% sulfur. Other sulfide concentrate materials showed similar results. In the first stage of the looping process, a highly concentrated SO2 off-gas stream is produced that could be directed to an acid plant or converted to liquid. The products from the first process step can be directed down line for further processing or can be used as is. In the second step of looping oxidation, the product is oxidized back to its fully oxidized state and is mainly looped back to drive the oxidation process in the first reaction. There are also several opportunities for energy recovery and conversion, making looping oxidation an energy-efficient process.

  2. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Yù; Pei, Qi; Feng, Ting; Mao, Hui; Zhang, Wei; Wu, Shuyao; Liu, Daliang; Wang, Hongyu; Song, Xi-Ming

    2015-08-01

    Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron-hole pairs.

  3. Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Brabec, Michelle Y.; Lyons, Timothy W.; Mandernack, Kevin W.

    2012-04-01

    Sulfide-mediated anoxygenic photosynthesis (SMAP) carried out by anaerobic phototrophic bacteria may have played an important role in sulfur cycling, formation of sulfate, and, perhaps, primary production in the Earth’s early oceans. Determination of ε34SSO4-Sulfide- and ε18OSO4-H2O values for bacterial sulfide oxidation will permit more refined interpretation of the δ34S and δ18OSO4 values measured in modern anoxic environments, such as meromictic lakes where sulfide commonly extends into the photic zone, and in the ancient rock record, particularly during periods of the Precambrian when anoxic and sulfidic (euxinic) conditions were believed to be more pervasive than today. Laboratory experiments with anaerobic purple and green sulfur phototrophs, Allochromatium vinosum and Chlorobaculum tepidum, respectively, were conducted to determine the sulfur and oxygen isotope fractionation during the oxidation of sulfide to sulfate. Replicate experiments were conducted at 25 °C for A. vinosum and 45 °C for C. tepidum, and in duplicate at three different starting oxygen isotope values for water to determine sulfate-water oxygen isotope fractionations accurately (ε18OSO4-H2O). ε18OSO4-H2O values of 5.6 ± 0.2‰ and 5.4 ± 0.1‰ were obtained for A. vinosum and C. tepidum, respectively. Temperature had no apparent effect on the ε18OSO4-H2O values. By combining all data from both cultures, an average ε18OSO4-H2O value of 5.6 ± 0.3‰ was obtained for SMAP. This value falls between those previously reported for bacterial oxidation of sphalerite and elemental sulfur (7-9‰) and abiotic and biotic oxidation of pyrite and chalcopyrite (2-4‰). Sulfur isotope fractionation between sulfide and sulfate formed by A.vinosum was negligible (0.1 ± 0.2‰) during all experiments. For C. tepidum an apparent fractionation of -2.3 ± 0.5‰ was observed during the earlier stages of oxidation based on bulk δ34S measurements of sulfate and sulfide and became smaller (-0.7

  4. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring

    PubMed Central

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-01-01

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  5. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  6. Mechanisms of phosphine toxicity.

    PubMed

    Nath, Nisa S; Bhattacharya, Ishita; Tuck, Andrew G; Schlipalius, David I; Ebert, Paul R

    2011-01-01

    Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH(3)), the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N) and arsenic (As), which also produce toxic hydrides, namely, NH(3) and AsH(3). The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity. PMID:21776261

  7. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    SciTech Connect

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-06-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique.

  8. Tris{N-[bis-(dimethyl-amino)phosphino-yl]-2,2,2-trichloro-acetamido}(triphenyl-phosphine oxide)holmium(III).

    PubMed

    Amirkhanov, Oleksiy V; Marchenko, Ivan O; Moroz, Olesia V; Sliva, Tetyana Yu; Fritsky, Igor O

    2010-01-01

    In the title compound, [Ho(C(6)H(12)Cl(3)N(3)O(2)P)(3)(C(18)H(15)OP)], the Ho(III) ion is surrounded by six O atoms from the three bidentate N-[bis-(dimethyl-amino)phosphino-yl]-2,2,2-trichloro-acetamido ligands (L(-)) and by one O atom from the triphenyl-phosphine oxide ligand, with the formation of a distorted monocapped octa-hedron. In one ligand L(-), the trichloro-methyl group is rotationally disordered between two orientations in a 1:1 ratio, while two dimethyl-amino groups in another ligand L(-) are disordered between two conformations, each with the same 1:1 ratio. PMID:21579292

  9. Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems.

    PubMed

    Gao, Tianyu; Shi, Ying; Liu, Fan; Zhang, Yashan; Feng, Xionghan; Tan, Wenfeng; Qiu, Guohong

    2015-06-15

    Todorokite, formed from Mn(II) in supergene environments, can affect the transformation and migration of dissolvable sulfides in soils and water. In this work, todorokite was synthesized with different degrees of crystallinity, and the redox mechanism of dissolvable sulfide and todorokite was studied in both closed and open aqueous systems. The influences of pH, temperature, crystallinity, the amount of manganese oxides, and oxygen gas on S(2-) oxidation process were investigated. It is found that S(2-) was oxidized to S(0), SO3(2-), S2O3(2-) and SO4(2-), and about 90% of S(2-) was converted into S(0) in closed systems. The participation of oxygen facilitated the further oxidation of S(0) to S2O3(2-). S(0) and S2O3(2-) were formed with the conversion rates of S(2-) about 45.3% and 38.4% after 1h of reaction, respectively, and the conversion rate for S2O3(2-) increased as reaction prolonged for a longer period. In addition, todorokite was reduced to Mn(OH)2 in the presence of nitrogen gas, and its chemical stability increased when oxygen gas was admitted into the reaction system during the process. The oxidation rate of dissolvable sulfide followed a pseudo-first-order kinetic law in the initial stage (within 10 min), and the initial oxidation rate constant of S(2-) increased with elevating temperature, increasing the quantity and decreasing crystallinity of todorokite. The initial oxidation rate of dissolvable sulfide decreased with continuous feeding of O2 into the test solution, possibly due to a decrease in active Mn(III) content in todorokite. The present work demonstrates the redox behaviors and kinetics of dissolvable sulfide and todorokite in aquatic environments. PMID:25746570

  10. [Oxidation Process of Dissolvable Sulfide by Manganite and Its Influencing Factors].

    PubMed

    Luo, Yao; Li, Shan; Tan, Wen-feng; Liu, Fan; Cai, Chong-fa; Qiu, Guo-hong

    2016-04-15

    As one of the manganese oxides, which are easily generated and widely distributed in supergene environment, manganite participates in the oxidation of dissolvable sulfide (S²⁻), and affects the migration, transformation, and the fate of sulfides. In the present work, the redox mechanism was studied by determining the intermediates, and the influence of initial pH and oxygen atmosphere on the processes were studied. The chemical composition, crystal structures and micromorphologies were characterized by XRD, FTIR and TEM. The concentration of S²⁻ and its oxidation products were analyzed using spectrophotometer, high performance liquid chromatograph and ion chromatograph. The results indicated that elemental sulfur was formed as the major oxidation product of S²⁻ oxidation, and decreased pH could accelerate the oxidation rate of S²⁻ in the initial stage, however, there was no significant influence on final products. Elemental S could be further oxidized to S₂O₃²⁻ when the reaction system was bubbled with oxygen, and manganite exhibited excellent catalytic performance and chemical stability during the oxidation of dissolvable sulfide by oxygen. After reaction of more than 10 h, the crystal structure of manganite remained stable. PMID:27548980

  11. Product distribution study of the Cl-atom initiated oxidation of ethyl methyl sulfide and diethyl sulfide

    NASA Astrophysics Data System (ADS)

    Oksdath-Mansilla, Gabriela; Peñéñory, Alicia B.; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.

    2014-03-01

    The products formed in the gas-phase reactions of Cl atoms with (CH3CH2)2S and CH3CH2SCH3 have been investigated in a large volume reactor in NOx-free air at atmospheric pressure and (298 ± 2) K using long path “in situ” FTIR spectroscopy for the analysis. HCl, SO2 and CH3CHO were identified as the major products for both reactions. For the Cl + CH3CH2SCH3 reaction HCHO was also identified as a major product. The yields of the products obtained for the reaction of Cl with (CH3CH2)2S were (59 ± 2) %, (52 ± 5) % and (103 ± 4) % for HCl, SO2 and CH3CHO, respectively. For the reaction of Cl with CH3CH2SCH3 yields of (43 ± 5) %, (55 ± 3) %, (58 ± 3) % and (53 ± 5) % were obtained for HCl, SO2, CH3CHO and HCHO, respectively. This is the first products and mechanistic study for the gas-phase Cl-initiated oxidation of non-CH3SCH3 alkyl sulfides. Comparison with previous results for the reaction of Cl with dimethyl sulfide is made and simple atmospheric degradation mechanisms are postulated to explain the formation of the observed products.

  12. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.

    PubMed

    Vera, Mario; Schippers, Axel; Sand, Wolfgang

    2013-09-01

    Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use. PMID:23720034

  13. Magnetite-sulfide chondrules and nodules in CK carbonaceous chondrites - Implications for the timing of CK oxidation

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    CK carbonaceous chondrites contain rare (about 0.1 vol pct) magnetite-sulfide chondrules that range from about 240 to 500 microns in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures, and concentric layering. They resemble the magnetite-sulfide nodules occurring inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration. Hence, the pervasive silicate darkening of CK chondrites was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.

  14. Temperature dependence of the oxidative stability of corn oil and polyalphaolefin in the presence of sulfides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of sulfide-modified corn oil (SMCO) and ditertiary dodecyl pentasulfide (PS) additives on the oxidative stability of corn (CO) and polyalphaolefin (PAO) oils was investigated using pressurized differential scanning calorimetry in dynamic (DDSC) and isothermal (IDSC) modes. DDSC showed a ...

  15. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals

    EPA Science Inventory

    Cadmium enrichment (relative to Fe and Zn) in paddy rice grain occurs during the pre-harvest drainage of flooded soil, which causes oxidative dissolution of sulfide minerals present in reduced soil. We investigated this process over a range of environmentally realistic Cdcontain...

  16. Anthropogenic Oxidation of Seafloor Massive Sulfide (SMS) deposits: Implications for Localized Seafloor Acid Generation

    NASA Astrophysics Data System (ADS)

    Bilenker, L.; Romano, G. Y.; Mckibben, M. A.

    2011-12-01

    A rapid increase in the price of transition metals in recent years has piqued interest in deep sea in situ mining of seafloor massive sulfide (SMS) deposits. There are important unanswered questions about the potential environmental effects of seafloor mining, particularly localized sulfuric acid generation. Currently there is a paucity of data on the oxidation kinetics of sulfide minerals in seawater. Seafloor massive sulfides oxidize rapidly via irreversible, acid-producing reactions. The oxidation kinetics of these minerals need to be quantified to estimate the significance of acid production. Laboratory experiments have been performed to evaluate the effects of pH, temperature, oxidant concentration, and mineral surface area on the rate of oxidation of chalcopyrite (CuFeS2) and pyrrhotite (Fe1-xS) in seawater. Temperature controlled circulation baths, Teflon reaction vessels, synthetic seawater, and pure, hand sorted natural sulfide mineral crystals are used in experiments. Both batch and flow-through reactor methods are employed. Reaction products are analyzed using ICP-MS. The rate law is expressed as follows: R = k (MO2,aq)a(MH+)b where R is the specific mineral oxidation rate (moles/m2/sec), k is the rate constant (a function of temperature), and a and b are reaction orders for molar aqueous species' concentrations (M). The initial rate method is used to determine the reaction order of each variable. Chalcopyrite and pyrrhotite are being studied because as the slowest- and fastest-oxidizing of the common sulfide minerals found in SMS deposits, they bound the range of rates seen in seafloor settings and can be used to place lower and upper limits on abiotic rates of metal release and sulfuric acid production. Experiments to date indicate an oxidation rate of pyrrhotite several times faster than that of chalcopyrite. The rate laws, when incorporated into reactive-transport computer codes, will enable the prediction of localized anthropogenic sulfuric acid

  17. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura

    Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, hot springs, and some lakes. Hydrogen sulfide can also result as a by-product from industrial activities, such as food processing, coke ovens, paper mills, tanneries, and petroleum refineries. Sometimes, it is considered to be an industrial pollutant. However, hydrogen can be decomposed from H 2S and then used as fuel for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide as a feedstock in a solid oxide fuel cell is discussed. A system configuration of an SOFC combined with an external H 2S decomposition device is proposed, where a certain amount of natural gas is supplied to the SOFC. The exhaust fuel gas of the SOFC is after-burned with exhaust air from the SOFC, and the heat of the combustion gas is utilized in the decomposition of H 2S in a decomposition reactor (DR) to produce hydrogen to feed the SOFC. The products are electricity and industry-usable sulfur. Through a mass and energy balance, a preliminary thermodynamic analysis of this system is performed, and the system efficiency is calculated. Also in this paper, the challenges in creating the proposed configuration are discussed, and the direction of future work is presented.

  18. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.

    PubMed

    Wakai, Satoshi; Kikumoto, Mei; Kanao, Tadayoshi; Kamimura, Kazuo

    2004-12-01

    The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa(3)-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells. PMID:15618623

  19. Reduced graphene oxide based silver sulfide hybrid films formed at a liquid/liquid interface

    SciTech Connect

    Bramhaiah, K. John, Neena S.

    2014-04-24

    Free-standing, ultra-thin films of silver sulfide and reduced graphene oxide (RGO) based silver sulfide hybrids are prepared at a liquid/liquid interface employing in situ chemical reaction strategy. Ag{sub 2}S and RGO−Ag{sub 2}S hybrid films are characterized by various techniques such as UV-visible and photo luminescence spectroscopy, X-ray diffraction and scanning electron microscopy. The morphology of hybrid films consists of Ag{sub 2}S nanocrystals on RGO surface while Ag{sub 2}S films contains branched network of dendritic structures. RGO−Ag{sub 2}S exhibit interesting optical and electrical properties. The hybrid films absorb in the region 500–650 nm and show emission in the red region. A higher conductance is observed for the hybrid films arising from the RGO component. This simple low cost method can be extended to prepare other RGO based metal sulfides.

  20. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  1. Kinetic investigation of sulfidizing annealing of scorodite in processing of refractory oxidized gold-containing ores

    NASA Astrophysics Data System (ADS)

    Boboev, I. R.; Strizhko, L. S.; Bobozoda, Sh.; Gorbunov, E. P.

    2016-03-01

    The results of kinetic studies on the removal of arsenic from scorodite using sulfidizing annealing are presented. The reaction order with respect to the reactant and the activation energy are established from the experimental data. The rate-determining step of the sulfidizing annealing process is determined. The main reactions that occur during the sulfidizing of arsenic in scorodite are proposed on the basis of the obtained results and confirmed by thermodynamic calculations and chemical analyses. The major results of testing this technology, as applied to the refractory oxidized ores in which arsenic is mainly concentrated in scorodite, are presented. Arsenic removal from this ore is confirmed by chemical and quantitative X-ray diffraction analyses and by qualitative phase analysis. Industrial use of this technology provides safe and efficient processing of refractory gold-containing ores, where arsenic is mainly concentrated in scorodite.

  2. Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron

    SciTech Connect

    Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.; Tratnyek, P. G.; Lezama Pacheco, Juan S.; Kukkadapu, Ravi K.; Kovarik, Libor; Engelhard, Mark H.; Bowden, Mark E.

    2014-06-02

    The dissolution of Tc(IV) sulfide and concurrent transformation of sulfidated ZVI during 2 oxidation were examined. Kinetic data obtained with 10 mL batch reactors showed that Tc(VII) 3 reduced by sulfidated nZVI has significantly slower reoxidation rates than Tc(VII) reduced by 4 nZVI only. In a 50 mL batch reactor, initial inhibition of Tc(IV) dissolution was apparent and 5 lasted until 120 hours at S/Fe = 0.112, presumably due to the redox buffer capacity of FeS. This 6 is evidenced by the parallel trends in oxidation-reduction potentials (ORP) and Tc dissolution 7 kinetics. Mӧssbauer spectra and micro X-ray diffraction of S/Fe = 0.112 suggested the 8 persistence of FeS after 24-h oxidation although X-ray photoelectron spectroscopy indicated 9 substantial surface oxidation. After 120-h oxidation, all characterizations showed complete 10 oxidation of FeS, which further indicates that FeS inhibits Tc oxidation. X-ray absorption 11 spectroscopy for S/Fe = 0.011 showed significantly increasing percentage of TcS2 in the solid 12 phase after 24-h oxidation, indicating TcS2 is more resistant to oxidation than TcO2. At S/Fe = 13 0.112, the XAS results revealed significant transformation of Tc speciation from TcS2 to TcO2 14 after 120-h oxidation at S/Fe = 0.112. Given that no apparent Tc dissolution occurred during this 15 period, the speciation transformation might play a secondary role in hindering Tc oxidation, 16 especially as redox buffer capacity approached depletion.

  3. Analysis of a microbial community oxidizing inorganic sulfide and mercaptans.

    PubMed

    Duncan, K E; Sublette, K L; Rider, P A; Stepp, A; Beitle, R R; Conner, J A; Kolhatkar, R

    2001-01-01

    Successful treatment of refinery spent-sulfidic caustic (which results from the addition of sodium hydroxide solutions to petroleum refinery waste streams) was achieved in a bioreactor containing an enrichment culture immobilized in organic polymer beads with embedded powdered activated carbon (Bio-Sep). The aerobic enrichment culture had previously been selected using a gas mixture of hydrogen sulfide and methyl mercaptan (MeSH) as the sole carbon and energy sources. The starting cultures for the enrichment consisted of several different Thiobacilli spp. (T. thioparus, T. denitrificans, T. thiooxidans, and T. neopolitanus), as well as activated sludge from a refinery aerobic wastewater treatment system and sludge from an industrial anaerobic digester. Microscopic examination (light and SEM) of the beads and of microbial growth on the walls of the bioreactor revealed a great diversity of microorganisms. Further characterization was undertaken starting with culturable aerobic heterotrophic microorganisms (sequencing of PCR-amplified DNA coding for 16S rRNA, Gram staining) and by PCR amplification of DNA coding for 16S rRNA extracted directly from the cell mass, followed by the separation of the PCR products by DGGE (denaturing gradient gel electrophoresis). Eight prominent bands from the DGGE gel were sequenced and found to be closest to sequences of uncultured Cytophagales (3 bands), Gram-positive cocci (Micrococcineae), alpha proteobacteria (3 bands), and an unidentified beta proteobacterium. Culturable microbes included several genera of fungi as well as various Gram-positive and Gram-negative heterotrophic bacteria not seen in techniques using direct DNA extraction. PMID:11485441

  4. Frustrated Lewis pair modification by 1,1-carboboration: disclosure of a phosphine oxide triggered nitrogen monoxide addition to an intramolecular P/B frustrated Lewis pair.

    PubMed

    Liedtke, René; Scheidt, Felix; Ren, Jinjun; Schirmer, Birgitta; Cardenas, Allan Jay P; Daniliuc, Constantin G; Eckert, Hellmut; Warren, Timothy H; Grimme, Stefan; Kehr, Gerald; Erker, Gerhard

    2014-06-25

    The vicinal frustrated Lewis pair (FLP) mes2P-CH2CH2-B(C6F5)2 (3) reacts with phenyl(trimethylsilyl)acetylene by 1,1-carboboration to give the extended C3-bridged FLP 6 featuring a substituted vinylborane subunit. The FLP 6 actively cleaves dihydrogen. The FLP 3 also undergoes a 1,1-carboboration reaction with diphenylphosphino(trimethylsilyl)acetylene to give the P/B/P FLP 11 that features a central unsaturated four-membered heterocyclic P/B FLP and a pendant CH2CH2-Pmes2 functional group. Compound 11 reacts with nitric oxide (NO) by oxidation of the pendant Pmes2 unit to the P(O)mes2 phosphine oxide and N,N-addition of the P/B FLP unit to NO to yield the persistent P/B/PO FLPNO aminoxyl radical 14. This reaction is initiated by P(O)mes2 formation and opening of the central Ph2P···B(C6F5)2 linkage triggered by the pendant CH2CH2-P(O)mes2 group. PMID:24850528

  5. Oxidation and sulfidation of implanted and unimplanted AISI 446 steel

    SciTech Connect

    Srinivasan, V.; McCormick, A.W.; Rai, A.K. )

    1990-12-01

    AISI 446 steel exhibited parabolic rate kinetics from the beginning during isothermal oxidation in oxygen at 850C. On the other hand, a pronounced transient oxidation with faster kinetics was observed in Ce- and Xe-implanted AISI 446 steels. The implantation, however, did not affect the steady-state parabolic rate constant, 3.77{plus minus}0.18{times}10{sup {minus}5} mg{sup 2}/cm{sup 4} min. The initial response of implanted steels to oxidation with pronounced transient oxidation was attributed to the physical defects of implantation. The oxide grains formed on AISI 446 early in the process of oxidation were rich in Fe and Cr, and after long exposure the spinel MnCr{sub 2}O{sub 4} became the major constituent of the scale. Ce-implantation did not have any effect on the corrosion behavior of AISI 446 in H{sub 2}/H{sub 2}O/H{sub 2}S/Ar at 850C. The scale had three zones: an outer layer with FeS, (FeCr)S, and spinel oxide; an intermediate layer of (FeCr)S; and an inner layer of Cr-rich oxide and (FeCr)S below the original metal surface.

  6. Application of the redox potential for controlling a sulfide oxidizing bioreactor

    SciTech Connect

    Janssen, A.J.H.; Meijer, S.; Lettinga, G.; Bontsema, J.

    1998-10-20

    The investigations described show that the formation of elemental sulfur from the biological oxidation of sulfide can be optimized by controlling the redox state of the solution. The nonsoluble sulfur can be removed by gravity sedimentation and re-used as a raw material, i.e., in bioleaching processes. It was shown that, by supplying an almost stoichiometrical amount of oxygen to the recirculated gas phase, the formation of sulfate is minimized. The redox potential is mainly determined by the sulfide concentration because this compound has a high standard exchange current density with the platinum electrode surface. By maintaining a particular redox set-point value, in fact, the reactor becomes a sulfide-stat. It was shown that in a sulfide-oxidizing bioreactor the measured redox potential, using a polished redox electrode, is kinetically determined rather than thermodynamically. The optimal redox value for sulfur formation is between {minus}147 and {minus}137 mV. The presented results are currently used for controlling several full-scale installations, which desulfurize biogas and high-pressure natural gas.

  7. Oxidation and sulfidation resistant alloys with silicon additions

    SciTech Connect

    Dunning, John S.; Alman, David E.; Poston, J.A., Jr.; Siriwardane, R.

    2003-01-01

    The Albany Research Center (ARC) has considerable experience in developing lean chromium, austenitic stainless steels with improved high temperature oxidation resistance. Using basic alloy design principles, a baseline composition of Fe-16Cr-16Ni-2Mn-1Mo alloys with Si and Al addition at a maximum of 5 weight percent was selected for potential application at temperatures above 700ºC for supercritical and ultra-supercritical power plant application. The alloys were fully austenitic. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700ºC to 800ºC. Oxidation resistances of alloys with Si only additions were outstanding, particularly at 800ºC (i.e., these alloys possessed weight gains 4 times less than a standard type-304 alloy). In addition, Si alloys pre-oxidized at 800ºC, showed a zero weight gain in subsequent testing for 1000 hours at 700ºC. Similar improvements were observed for Si only alloy after H2S exposure at 700ºC compared with type 304 stainless steel. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms at ARC. Depth profile analysis and element concentration profiles (argon ion etching/x-ray photoelectron spectroscopy) were conducted on oxidized specimens and base material at the National Energy Technology Laboratory.

  8. High-temperature oxidation/sulfidation resistance of iron-aluminide coatings

    SciTech Connect

    Tortorelli, P.F.; Wright, I.G.; Goodwin, G.M.; Howell, M.

    1996-04-01

    Iron aluminides containing > 20-25 at. % Al have oxidation and sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. Accordingly, these alloys may find application as coatings or claddings on more conventional higher-strength materials which are generally less corrosion-resistant at high temperatures. To this end, iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. Specimens were cut from weld deposits and exposed to a highly aggressive oxidizing-sulfidizing (H2S-H2-H2O-Ar) environment at 800 C. All the weld overlayers showed good corrosion behavior under isothermal conditions, including a gas metal arc-produced deposit with only 21 at. % Al. Rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initally grown scales spalled and the rate of reaction was then not controlled by formation of slowly growing Al oxide. Higher starting Al concentrations (> {approximately} 25 at. %) are needed to assure overall oxidation-sulfidation resistance of the weld overlays, but hydrogen cracking susceptibility must be minimized in order to physically separate the corrosive species from the reactive substrate material.

  9. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    PubMed

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors. PMID:23751359

  10. Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills.

    PubMed

    Fang, Yuan; Du, Yao; Feng, Huan; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang

    2015-04-01

    Because H2S emitted by landfill sites has seriously endangered human health, its removal is urgent. H2S removal by use of an autotrophic denitrification landfill biocover has been reported. In this process, nitrate-reducing and sulfide-oxidizing bacteria use a reduced sulfur source as electron donor when reducing nitrate to nitrogen gas and oxidizing sulfur compounds to sulfate. The research presented here was performed to investigate the possibility of endogenous mitigation of H2S by autotrophic denitrification of landfill waste. The sulfide oxidation bioprocess accompanied by nitrate reduction was observed in batch tests inoculated with mineralized refuse from a landfill site. Repeated supply of nitrate resulted in rapid oxidation of the sulfide, indicating that, to a substantial extent, the bioprocess may be driven by functional microbes. This bioprocess can be realized under conditions suitable for the autotrophic metabolic process, because the process occurred without addition of acetate. H2S emissions from landfill sites would be substantially reduced if this bioprocess was introduced. PMID:25680916

  11. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes

    NASA Astrophysics Data System (ADS)

    Niemeyer, Zachary L.; Milo, Anat; Hickey, David P.; Sigman, Matthew S.

    2016-06-01

    The mechanistic foundation behind the identity of a phosphine ligand that best promotes a desired reaction outcome is often non-intuitive, and thus has been addressed in numerous experimental and theoretical studies. In this work, multivariate correlations of reaction outcomes using 38 different phosphine ligands were combined with classic potentiometric analyses to study a Suzuki reaction, for which the site selectivity of oxidative addition is highly dependent on the nature of the phosphine. These studies shed light on the generality of hypotheses regarding the structural influence of different classes of phosphine ligands on the reaction mechanism(s), and deliver a methodology that should prove useful in future studies of phosphine ligands.

  12. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes.

    PubMed

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F M; Sorokin, Dimitry Y; Keesman, Karel J; Janssen, Albert J H

    2016-09-15

    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S, thiols are commonly present in sour gas streams. We investigated the inhibition mode and the corresponding inhibition constants of six thiols and the corresponding diorgano polysulfanes on the biological oxidation of H2S. A linear relationship was found between the calculated IC50 values and the lipophilicity of the inhibitors. Moreover, a mathematical model was proposed to estimate the biomass activity in the absence and presence of sulfurous inhibitors. The biomass used in the respiration tests originated from a full-scale biodesulfurization reactor. A microbial community analysis of this biomass revealed that two groups of microorganism are abundant, viz. Ectothiorhodospiraceae and Piscirickettsiaceae. PMID:27295619

  13. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  14. Alteration of Mantle Sulfides: the Effects of Oxidation and Melt Infiltration in a Kilbourne Hole Harzburgite Xenolith

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Harvey, J.; Warren, J. M.; Klein, F.; Walshaw, R.

    2013-12-01

    Sulfides, while commonly present in volumetrically minor amounts (< 0.1 modal %; e.g.[1]) in the mantle, impart a strong control over many of the highly siderophile and strongly chalcophile elements. The mass balance of some elements, such as Os, are almost completely controlled by heterogeneously distributed sulfide grains[2][3]. Hence, processes that re-distribute sulfides and / or alter their composition can have profound effects on the information preserved within them regarding primary mantle processes. Different generations of interstitial sulfide may partly or completely re-equilibrate with one another or may be exposed to open-system processes that mobilize and / or precipitate sulfides[4]. In mantle xenoliths in particular, supergene weathering at the Earth's surface can oxidize sulfide to soluble sulfate, and its removal affects highly siderophile and strongly chalcophile element abundances [6]. Here we present the initial results from a study of interstitial mantle sulfides (n = 24) recovered from a single harzburgitic xenolith from Kilbourne Hole, NM. Large compositional differences are observed in the sulfides even at the scale of a single xenolith. Mono-sulfide solid solution has exsolved into two Fe-Ni-rich phases, one with a significantly larger Ni content for a given Fe abundance. Occurrences of Cu-rich sulfides are rare, but where present Cu can account for up to 22 weight % of the sulfide. Critically, no fresh, unaltered sulfides were recovered and in all of the sulfides there is evidence for at least two secondary processes. EDS mapping of the sulfides reveals pervasive, but incomplete, oxidation in all of the grains; Raman spectroscopy reveals this oxide to be goethite. In addition, there is also evidence for the interaction of many of the sulfides with a volatile-rich silicate melt. Silicate melt veins cross-cut the original sulfide mineralogy in some areas of the sulfide grain, while leaving other areas virtually untouched. The degree of

  15. Inhibition of sulfide mineral oxidation by surface coating agents: batch and field studies.

    PubMed

    Ji, Min-Kyu; Gee, Eun-Do; Yun, Hyun-Shik; Lee, Woo-Ram; Park, Young-Tae; Khan, Moonis Ali; Jeon, Byong-Hun; Choi, Jaeyoung

    2012-08-30

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH(2)PO(4), MgO and KMnO(4) as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H(2)O(2) or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO(4)(2-)) production in the presence of KMnO(4) (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO(4)(2-) production was observed in presence of KH(2)PO(4) (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH(2)PO(4) decreased SO(4)(2-) production from 200 to 13 mg L(-1) and it also reduced Cu and Mn from 8 and 3 mg L(-1), respectively to <0.05 mg L(-1) (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites. PMID:22727481

  16. Morphological development of oxide-sulfide scales on iron and iron-manganese alloys

    SciTech Connect

    McAdam, G.; Young, D.J.

    1987-10-01

    Pure iron and alloys containing 2, 15, 25, and 50 wt.% manganese have been reacted at 1073 K in controlled gas atmospheres of SO/sub 2/-CO/sub 2/-CO-N/sub 2/. Equilibrium gas compositions were such that (1) FeS was stable but not FeO, or (2) both FeS and FeO were stable, or (3) FeO was stable but not FeS; in all cases, both MnS and MnO were stable. Under all reaction conditions, pure iron corroded to produce both sulfide and oxide. The resultant scale morphologies were consistent with local solid-gas equilibrium for the case in which both oxide and sulfide were stable but in the other cases indicated that equilibrium was not achieved and that direct reaction with SO/sub 2/(g) was responsible for corrosion. Additions of manganese did not greatly alter the scale morphologies. Under reaction conditions that were oxidizing and sulfidizing, very high levels of manganese were required to reduce the corrosion rate. On the other hand, relatively low levels had a beneficial effect both when FeO but not FeS was thermodynamically stable and similarly when FeS but not FeO was stable.

  17. High temperature hydrogen sulfide removal with stannic oxide

    SciTech Connect

    Karpuk, M.E.; Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1994-10-01

    This contract focuses on the development of sorbents and processes for removal of H{sub 2}S from hot coal gas with the product of sorbent regeneration being elemental sulfur. TDA Research`s process uses a regenerable tin(IV) oxide-based (SnO{sub 2}) sorbent as the first sorbent and zinc ferrite (or zinc titanate) as a second sorbent.

  18. Collaborative flowsheet development studies using cobalt dicarbollide and phosphine oxide for the partitioning of radionuclides from Idaho Chemical Processing Plant high-activity liquid waste with centrifugal contactors

    SciTech Connect

    Law, J.D.; Herbst, R.S.; Todd, T.A.

    1996-12-31

    Two solvent extraction technologies under development in Russia for the partitioning of radionuclides from radioactive wastes were tested at the Idaho Chemical Processing Plant (ICPP) with simulated high-activity liquid waste (HAW) on a continuous basis using 24 stages of 2-cm diameter centrifugal contactors. Two flowsheet tests were conducted with chlorinated cobalt dicarbollide (ChCoDiC) to evaluate the separation of cesium and strontium from ICPP HAW. Also, a flowsheet test was performed with a derivative of phosphine oxide (POR) to evaluate the separation of actinides, rare earths, and technetium from ICPP HAW. All experiments utilized a non-radioactive HAW simulant prepared to emulate the macro (or matrix) constituents of actual ICPP HAW at their average tank composition. The behavior of the species of interest was monitored using the stable forms of Sr and Cs, europium as a surrogate for americium, and rhenium as a surrogate for technetium. Removal efficiencies and distribution coefficients were determined for each flowsheet at steady-state conditions. Results of this testing indicate the POR and ChCoDiC processes can be used to effectively treat ICPP HAW. This series of tests is a continuation of ongoing efforts to evaluate the applicability of these Russian developed technologies to U.S. nuclear wastes under the auspices of a joint program between the U.S. Department of Energy and the Russian Ministry of Atomic Energy.

  19. Nanoscale Control Over Interfacial Properties in Mixed Reverse Micelles Formulated by Using Sodium 1,4-bis-2-ethylhexylsulfosuccinate and Tri-n-octyl Phosphine Oxide Surfactants.

    PubMed

    Odella, Emmanuel; Falcone, R Darío; Silber, Juana J; Correa, N Mariano

    2016-08-01

    The interfacial properties of pure reverse micelles (RMs) are a consequence of the magnitude and nature of noncovalent interactions between confined water and the surfactant polar head. Addition of a second surfactant to form mixed RMs is expected to influence these interactions and thus affect these properties at the nanoscale level. Herein, pure and mixed RMs stabilized by sodium 1,4-bis-2-ethylhexylsulfosuccinate and tri-n-octyl phosphine oxide (TOPO) surfactants in n-heptane were formulated and studied by varying both the water content and the TOPO mole fraction. The microenvironment generated was sensed by following the solvatochromic behavior of the 1-methyl-8-oxyquinolinium betaine probe and (31) P NMR spectroscopy. The results reveal unique properties of mixed RMs and we give experimental evidence that free water can be detected in the polar core of the mixed RMs at very low water content. We anticipate that these findings will have an impact on the use of such media as nanoreactors for many types of chemical reactions, such as enzymatic reactions and nanoparticle synthesis. PMID:27128745

  20. Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies

    USGS Publications Warehouse

    Sato, M.

    1992-01-01

    At temperatures prevailing near the Earth's surface, metastable co-existence of chemical substances is common because chemical reactions that would directly lead to the attainment of thermody-namically most stable equilibria are often blocked by high activation energy barriers. The persistency of a metastable assemblage is then governed by alternative reaction paths that provide lower activation energy barriers. Comparison of observed mineral assemblages in the supergene oxidized and enriched sulfide ores with corresponding stability Eh-pH diagrams reveals that the supergene assemblages are mostly metastable due primarily to the persistency of sulfide minerals beyond stability boundaries. A new set of diagrams called persistency-field Eh-pH diagrams has been constructed for binary metal sulfides on the basis of electrochemical and other experimental data. Each diagram delineates the persistency field, which is a combined field of thermodynamic stability and reaction path-controlled metastability, for a specific sulfide mineral. When applied to the supergene assemblages, these new diagrams show much better correspondence to the field observations. Although there may still be room for further refinement, the new diagrams appear to provide a strong visual aid to the understanding of the behavior of sulfide minerals in the supergene conditions. ?? 1992.

  1. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment-water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands). Our results show that e-SOx enhanced sediment O2 consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment-water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment-water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO3 dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H2S oxidation (an alkalinity sink) in deeper sediments to cathodic O2 reduction (an alkalinity source) near the sediment-water interface. The resulting sediment alkalinity

  2. Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters.

    PubMed

    Mora, Mabel; Fernández, Maikel; Gómez, José Manuel; Cantero, Domingo; Lafuente, Javier; Gamisans, Xavier; Gabriel, David

    2015-01-01

    Monitoring the biological activity in biotrickling filters is difficult since it implies estimating biomass concentration and its growth yield, which can hardly be measured in immobilized biomass systems. In this study, the characterization of a sulfide-oxidizing nitrate-reducing biomass obtained from an anoxic biotrickling filter was performed through the application of respirometric and titrimetric techniques. Previously, the biomass was maintained in a continuous stirred tank reactor under steady-state conditions resulting in a growth yield of 0.328 ± 0.045 g VSS/g S. To properly assess biological activity in respirometric tests, abiotic assays were conducted to characterize the stripping of CO2 and sulfide. The global mass transfer coefficient for both processes was estimated. Subsequently, different respirometric tests were performed: (1) to solve the stoichiometry related to the autotrophic denitrification of sulfide using either nitrate or nitrite as electron acceptors, (2) to evaluate the inhibition caused by nitrite and sulfide on sulfide oxidation, and (3) to propose, calibrate, and validate a kinetic model considering both electron acceptors in the overall anoxic biodesulfurization process. The kinetic model considered a Haldane-type equation to describe sulfide and nitrite inhibitions, a non-competitive inhibition to reflect the effect of sulfide on the elemental sulfur oxidation besides single-step denitrification since no nitrite was produced during the biological assays. PMID:24705508

  3. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments

    SciTech Connect

    Peterson, G.S.; Ankley, G.T.; Leonard, E.N.

    1996-12-01

    Recent studies have demonstrated the role of acid-volatile sulfide (AVS) in controlling the bioavailability of several cationic metals in anoxic sediments. However, metal-sulfide complexes can be relatively labile with respect to oxidation associated with factors such as seasonal changes in rates of oxidation/production of AVS. Another potentially important mechanism of AVS oxidation in surficial sediments is bioturbation. The authors used different densities of the burrowing oligochaete Lumbriculus variegatus in a series of laboratory experiments to evaluate the effect of bioturbation on oxidation of AVS and subsequent bioavailability of cadmium and zinc spiked into freshwater sediments. Metal bioavailability was determined directly by bioaccumulation in the test organisms and indirectly through analysis of interstitial (pore) water metal concentrations. In the studies, horizon-specific sediment analyses were conducted to assess spatial differences in AVS and pore-water metal concentrations specifically related to organism activity. Burrowing activity of the oligochaete significantly reduced AVS concentrations in surficial sediments in a density-dependent manner and resulted in elevated interstitial water concentrations of cadmium but not zinc. Concentrations of cadmium in pore water from deeper horizons were consistently lower than those in the surficial sediments. The bioaccumulation of cadmium, but not zinc, but the oligochaetes. Overall, the results indicate that bioturbation can enhance the bioavailability of some cationic metals in surficial sediments, via oxidation of AVS, and demonstrate the importance of analyzing surficial sediments when assessing bioavailability of metals in sediments.

  4. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake.

    PubMed

    Pjevac, Petra; Korlević, Marino; Berg, Jasmine S; Bura-Nakić, Elvira; Ciglenečki, Irena; Amann, Rudolf; Orlić, Sandi

    2015-01-01

    Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica's chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake's chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake. PMID:25344237

  5. Community Shift from Phototrophic to Chemotrophic Sulfide Oxidation following Anoxic Holomixis in a Stratified Seawater Lake

    PubMed Central

    Korlević, Marino; Berg, Jasmine S.; Bura-Nakić, Elvira; Ciglenečki, Irena; Amann, Rudolf; Orlić, Sandi

    2014-01-01

    Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica's chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake's chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake. PMID:25344237

  6. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    PubMed

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation. PMID:22920540

  7. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System

    PubMed Central

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-01-01

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi’s azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction. PMID:26347115

  8. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System.

    PubMed

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-10-26

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi's azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction. PMID:26347115

  9. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.

    PubMed

    Janfada, Behdokht; Yazdian, Fatemeh; Amoabediny, Ghassem; Rahaie, Mahdi

    2015-01-01

    Four sulfur-oxidizing bacteria (Thiobacillus thioparus, Acidithiobacillus thiooxidans PTCC1717, Acidithiobacillus ferrooxidans PTCC1646, and Acidithiobacillus ferrooxidans PTCC1647) were used as biorecognition elements in a hydrogen sulfide biosensing system. All the experiments were performed in 0.1 M phosphate buffer solution containing 1-20 ppm H2S with optimum pH and temperature for each species. Although H2 S was applied to the biosensing system, the dissolved O2 content decreased. Dissolved O2 consumed by cells in both free and immobilized forms was measured using a dissolved oxygen sensor. Free bacterial cells exhibit fast response (<200 Sec). Immobilization of the cells on polyvinyl alcohol was optimized using an analytical software. Immobilized A. ferrooxidans and A. thiooxidans retained more than 50% of activity after 30 days of immobilization. According to the data, A. thiooxidans and A. ferrooxidans are appropriate species for hydrogen sulfide biosensor. PMID:25158614

  10. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect

    Schwartz, Viviane; Baskova, Svetlana; Armstrong, Timothy R.

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  11. Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system.

    PubMed

    Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; de Beer, Dirk; Minz, Dror

    2005-10-01

    Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term incubations (10 to 20 h), total DNA and RNA were extracted, and a 550-bp fragment of the 16S rRNA genes was PCR amplified either directly or after reverse transcription. DGGE analysis of DNA showed no significant change of the original microbial consortia upon incubation. In contrast, DGGE of cDNA revealed several phylotypes whose relative band intensities markedly increased or decreased in response to certain incubation conditions, indicating enhanced or suppressed rRNA transcription and thus implying metabolic activity under these conditions. Specifically, species of the gammaproteobacterial genus Thiomicrospira and phylotypes related to symbiotic sulfide oxidizers could be linked to oxygen-dependent sulfide oxidation, while members of the Rhodobacteraceae (genera Roseobacter, Rhodobacter, and Rhodobium) were putatively active in anoxic, nitrate-dependent sulfide oxidation. For all these organisms, the physiology of their closest cultured relatives matches their DT-DGGE-inferred function. In addition, higher band intensities following exposure to 5 mM sulfide and nitrate were observed for Thauera-, Hydrogenophaga-, and Dethiosulfovibrio-like phylotypes. For these genera, nitrate-dependent sulfide oxidation has not been documented previously and therefore DT-DGGE might indicate a higher relative tolerance to high sulfide concentrations than that of other community members. We anticipate that DT-DGGE will be of general use in tracing functionally equivalent yet

  12. Identification of Bacteria Potentially Responsible for Oxic and Anoxic Sulfide Oxidation in Biofilters of a Recirculating Mariculture System

    PubMed Central

    Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; de Beer, Dirk; Minz, Dror

    2005-01-01

    Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term incubations (10 to 20 h), total DNA and RNA were extracted, and a 550-bp fragment of the 16S rRNA genes was PCR amplified either directly or after reverse transcription. DGGE analysis of DNA showed no significant change of the original microbial consortia upon incubation. In contrast, DGGE of cDNA revealed several phylotypes whose relative band intensities markedly increased or decreased in response to certain incubation conditions, indicating enhanced or suppressed rRNA transcription and thus implying metabolic activity under these conditions. Specifically, species of the gammaproteobacterial genus Thiomicrospira and phylotypes related to symbiotic sulfide oxidizers could be linked to oxygen-dependent sulfide oxidation, while members of the Rhodobacteraceae (genera Roseobacter, Rhodobacter, and Rhodobium) were putatively active in anoxic, nitrate-dependent sulfide oxidation. For all these organisms, the physiology of their closest cultured relatives matches their DT-DGGE-inferred function. In addition, higher band intensities following exposure to 5 mM sulfide and nitrate were observed for Thauera-, Hydrogenophaga-, and Dethiosulfovibrio-like phylotypes. For these genera, nitrate-dependent sulfide oxidation has not been documented previously and therefore DT-DGGE might indicate a higher relative tolerance to high sulfide concentrations than that of other community members. We anticipate that DT-DGGE will be of general use in tracing functionally equivalent yet

  13. Solution-processible brilliantly luminescent Eu(III) complexes with host-featured phosphine oxide ligands for monochromic red-light-emitting diodes.

    PubMed

    Wang, Jianzhe; Han, Chunmiao; Xie, Guohua; Wei, Ying; Xue, Qin; Yan, Pengfei; Xu, Hui

    2014-08-25

    A series of solution-processible electroluminescent (EL) Eu(3+) complexes were constructed with a self-host strategy, in which neutral ligands were employed as functionalized bidentate phosphine oxide (PO) ligands named DPEPOArn (DPEPO = bis(2-(diphenylphosphino)phenyl) ether oxide). The solubility of these complexes was dramatically improved owing to the increased ratios of organic components. This further enhanced the antenna effect of these ligands in both singlet and triplet energy-transfer processes to support high photoluminescent quantum yields (PLQYs) up to 86 % for their Eu(3+) complexes, which is outstanding among conjugated Eu(3+) complexes. Density function theory (DFT) simulations and electrochemical analysis further verified the contributions of DPEPOArn to the carrier injecting/transporting ability of the complexes. In this sense, these functionalized PO ligands served as hosts in optoelectronic processes, which rendered the self-host feature of their Eu(3+) complexes. With the enhanced electrical properties, the spin-coated single-layer organic light-emitting diodes (OLEDs) of these complexes achieved improved low driving voltages, such as onset voltages about 6 V, compared to their Eu(3+)-contained red-emitting polymeric analogues. [Eu(DBM)3DPEPODPNA2] (DBM = 1,3-diphenylpropane-1,3-dione, DPNA = diphenylnaphthylamine) with the most enhanced electrical properties and suitable frontier molecular orbital (FMO) and triplet state locations endowed its devices with the biggest maximum luminance of >90 cd m(-2) and the highest EL efficiencies. This work verified the potential of small molecular EL Eu(3+) complexes for solution-processed OLEDs through rational function integrations. PMID:25065610

  14. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation

    USGS Publications Warehouse

    Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn

    2014-01-01

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.

  15. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.

    PubMed

    Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn

    2014-02-28

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. PMID:24462894

  16. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  17. Kinetic and morphological development of oxide-sulfide scales on manganese at 1,073 K

    SciTech Connect

    McAdam, G.; Yound, D.J. )

    1992-04-01

    The corrosion behavior of manganese in controlled gas atmospheres of SO{sub 2}-CO{sub 2}-CO-N{sub 2} at 1073 K was studied. Under all conditions, the gas phase was slow to equilibrate, and catalysis of the gas affected the corrosion mechanism and resulting scale morphologies. Product scales invariably became detached from the metal during reaction, but the high manganese vapor pressure meant that no slowing of reaction resulted. Corrosion under conditions where MnS was the equilibrium reaction product led to the formation of a sulfide scale. At low p{sub s{sub 2}} values, this scale grew by reaction with either COS or SO{sub 2} according to parabolic kinetics. Gases with equilibrium compositions calculated to produce MnO, in fact corroded manganese to produce an inner layer of oxide plus sulfide, and an outer layer of MnO. The tendency to form sulfide was more marked at lower SO{sub 2} partial pressure and higher sulfur activities, the latter resulting from gas catalysis. These effects are due to the fact that SO{sub 2} is the principal reactant species.

  18. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Stachnik, Łukasz; Majchrowska, Elżbieta; Yde, Jacob C.; Nawrot, Adam P.; Cichała-Kamrowska, Katarzyna; Ignatiuk, Dariusz; Piechota, Agnieszka

    2016-07-01

    This study aims to determine the rate of chemical denudation and the relationships between dominant geochemical reactions operating in the proglacial and subglacial environments of the polythermal glacier Werenskioldbreen (SW Svalbard) during an entire ablation season. Water sampling for major ion chemistry was performed at a proglacial hydrometric station and from subglacial outflows from May to September 2011. These data were combined with measurements of discharge and supraglacial ablation rates. The slopes and intercepts in best-fit regressions of [*Ca2+ + *Mg2+ vs. *SO42-] and [HCO3- vs. *SO42-] in meltwater from ice-marginal subglacial channels were close to the stoichiometric parameters of sulfide oxidation and simple hydrolysis coupled to carbonate dissolution (*concentrations corrected for input of sea-salt). This shows that these relationships predominates the meltwater chemistry. Our findings also show that sulfide oxidation is a better indicator of the configuration of subglacial drainage systems than, for instance, Na+ and K+. In the proglacial area and in sub-artesian outflows, the ion associations represent sulfide oxidation but other processes such as ion exchange and dissolution of Ca and Mg efflorescent salts may also contribute to the solute variations. These processes may cause enhanced fluxes of Ca2+ and HCO3- from glacierized basins during the early ablation and peak flow seasons as the proglacial salts re-dissolve. The overall chemical denudation rate in the basin for 2011 (ranging from 1601 to 1762 meq m-2 yr-1 (121.9 to 132.2 t km-2 yr-1)) was very high when compared to other Svalbard valley glaciers suggesting that the high rate of chemical denudation was mostly caused by the high rates of discharge and ablation. Chemical weathering intensities (876 and 964 meq m-3 yr-1) exceeded previously reported intensities in Svalbard.

  19. First-principles search for n -type oxide, nitride, and sulfide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Garrity, Kevin F.

    2016-07-01

    Oxides have many potentially desirable characteristics for thermoelectric applications, including low cost and stability at high temperatures, but thus far there are few known high z T n -type oxide thermoelectrics. In this work, we use high-throughput first-principles calculations to screen transition metal oxides, nitrides, and sulfides for candidate materials with high power factors and low thermal conductivity. We find a variety of promising materials, and we investigate these materials in detail in order to understand the mechanisms that cause them to have high power factors. These materials all combine a high density of states near the Fermi level with dispersive bands, reducing the trade-off between the Seebeck coefficient and the electrical conductivity, but they do so for several different reasons. In addition, our calculations indicate that many of our candidate materials have low thermal conductivity.

  20. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    SciTech Connect

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  1. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms

    PubMed Central

    Vacek, Thomas P; Rehman, Shahnaz; Neamtu, Diana; Yu, Shipeng; Givimani, Srikanth; Tyagi, Suresh C

    2015-01-01

    Atherosclerosis is an inflammatory process that involves activation of matrix metalloproteinases (MMPs); MMPs degrade collagen and allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of other cellular material, resulting in occlusion of the vessel and ischemic events to tissues in need of nutrients. Homocysteine has been shown to activate MMPs via an increase in oxidative stress and acting as a signaling molecule on receptors like the peroxisome proliferator activated receptor-γ and N-methyl-D-aspartate receptor. Nitric oxide has been shown to be beneficial in some cases of deactivating MMPs. However, in other cases, it has been shown to be harmful. Further studies are warranted on the scenarios that are beneficial versus destructive. Hydrogen sulfide (H2S) has been shown to decrease MMP activities in all cases in the literature by acting as an antioxidant and vasodilator. Various MMP-knockout and gene-silencing models have been used to determine the function of the many different MMPs. This has allowed us to discern the role that each MMP has in promoting or alleviating pathological conditions. Furthermore, there has been some study into the MMP polymorphisms that exist in the population. The purpose of this review is to examine the role of MMPs and their polymorphisms on the development of atherosclerosis, with emphasis placed on pathways that involve nitric oxide, hydrogen sulfide, and homocysteine. PMID:25767394

  2. Potent Suppression of Kv1.3 Potassium Channel and IL-2 Secretion by Diphenyl Phosphine Oxide-1 in Human T Cells

    PubMed Central

    Zhao, Ning; Dong, Qian; Du, Li-Li; Fu, Xiao-Xing; Du, Yi-Mei; Liao, Yu-Hua

    2013-01-01

    Diphenyl phosphine oxide-1 (DPO-1) is a potent Kv1.5 channel inhibitor that has therapeutic potential for the treatment of atrial fibrillation. Many other Kv1.5 channel blockers also potently inhibit the Kv1.3 channel, but whether DPO-1 blocks Kv1.3 channels has not been investigated. The Kv1.3 channel is highly expressed in activated T cells, which is considered a favorable target for immunomodulation. Accordingly, we hypothesized that DPO-1 may exert immunosuppressive and anti-inflammatory effects by inhibiting Kv1.3 channel activity. In this study, DPO-1 blocked Kv1.3 current in a voltage-dependent and concentration-dependent manner, with IC50 values of 2.58 µM in Jurkat cells and 3.11 µM in human peripheral blood T cells. DPO-1 also accelerated the inactivation rate and negatively shifted steady-state inactivation. Moreover, DPO-1 at 3 µM had no apparent effect on the Ca2+ activated potassium channel (KCa) current in both Jurkat cells and human peripheral blood T cells. In Jurkat cells, pre-treatment with DPO-1 for 24 h decreased Kv1.3 current density, and protein expression by 48±6% and 60±9%, at 3 and 10 µM, respectively (both p<0.05). In addition, Ca2+ influx to Ca2+-depleted cells was blunted and IL-2 production was also reduced in activated Jurkat cells. IL-2 secretion was also inhibited by the Kv1.3 inhibitors margatoxin and charybdotoxin. Our results demonstrate for the first time that that DPO-1, at clinically relevant concentrations, blocks Kv1.3 channels, decreases Kv1.3 channel expression and suppresses IL-2 secretion. Therefore, DPO-1 may be a useful treatment strategy for immunologic disorders. PMID:23717641

  3. cis-Bis(nitrato-κ2 O,O′)bis­(triethyl­phosphine oxide-κO)nickel(II)

    PubMed Central

    Seidel, Rüdiger W.

    2009-01-01

    In the title compound, [Ni(NO3)2(C6H15OP)2], the NiII ion, lying on a crystallographic twofold axis, adopts a distorted octa­hedral coordination, consisting of O-donor atoms of two symmetry-related triethyl­phospine oxide and two bidentate nitrate ligands. PMID:21582983

  4. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem

    NASA Astrophysics Data System (ADS)

    Hayakawa, Atsushi; Hatakeyama, Mizuho; Asano, Ryoki; Ishikawa, Yuichi; Hidaka, Shin

    2013-06-01

    studies of denitrification have focused on organic carbon as an electron donor, but reduced sulfur can also support denitrification. Few studies have reported nitrate (NO3-) reduction coupled with pyrite oxidation and its stoichiometry in surface sediments, especially without experimental pyrite addition. In this study, we evaluated NO3- reduction coupled with sulfur oxidation by long-term incubation of surface sediments from a sulfide-rich ecosystem in Akita Prefecture, Japan. The surface sediments were sampled from a mud pool and a riverbed. Fresh sediments and water were incubated under anoxic conditions (and one oxic condition) at 20°C. NO3- addition increased the SO42- concentration and decreased the NO3- concentration. SO42- production (∆SO42-) was strongly and linearly correlated with NO3- consumption (∆NO3-) during the incubation period (R2 = 0.983, P < 0.01, and n = 8), and the slope of the regression (∆NO3-/∆SO42-) and the stoichiometry indicated sulfur-driven NO3- reduction by indigenous autotrophic denitrifying bacteria. Framboidal pyrite and marcasite (both FeS2) were present in the sediments and functioned as the electron donors for autotrophic denitrification. Both ∆NO3- and ∆SO42- were higher in the riverbed sediment than in the mud pool sediment, likely because of the higher amount of easily oxidizable S (pyrite) in the riverbed sediment. Consistently low ammonium (NH4+) concentrations indicated that NO3- reduction by dissimilatory NO3- reduction to NH4+ was small but could not be disregarded. Our results demonstrate that sulfide-rich ecosystems with easily oxidizable metal-bound sulfides such as FeS2 near the ground surface may act as denitrification hot spots.

  5. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    PubMed

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur. PMID:27003697

  6. Sulfidation of rock-salt-type transition metal oxide nanoparticles as an example of a solid state reaction in colloidal nanoparticles.

    PubMed

    Chen, Chih-Jung; Chiang, Ray-Kuang

    2011-01-28

    The sulfidation of colloidal rock-salt-type MO (M = Fe, Mn and Co) nanocrystals was performed in organic solvents using dissolved elemental sulfur at moderate temperatures. The vacancy defects in these rock-salt-type structures clearly promote complete oxide-sulfide conversion. The conversion products were hollow metal sulfide (pyrrhotite (Fe(1-x)S), Co(1-x)S and α-MnS) nanoparticles. These conversions by sulfidation proceed rapidly, making difficult the isolation of intermediates. The sulfidation intermediates, when the supply of sulfur was insufficient, had interesting structures, in which the metal oxide cores were surrounded by metal sulfide shells or had surfaces that were decorated with metal sulfide islands. Based on the above results, a mechanism of surface nucleation, shell formation, and void formation by diffusion processes is proposed. PMID:21140007

  7. Light-Dependent Sulfide Oxidation in the Anoxic Zone of the Chesapeake Bay Can Be Explained by Small Populations of Phototrophic Bacteria

    PubMed Central

    Bennett, Alexa J.; Hanson, Thomas E.; Luther, George W.

    2015-01-01

    Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min−1 (mg protein−1). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone. PMID:26296727

  8. Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures.

    PubMed

    Ahonen, L; Tuovinen, O H

    1992-02-01

    The purpose of the work was to quantitatively characterize temperature effects on the bacterial leaching of sulfide ore material containing several sulfide minerals. The leaching was tested at eight different temperatures in the range of 4 to 37 degrees C. The experimental technique was based on column leaching of a coarsely ground (particle diameter, 0.59 to 5 mm) ore sample. The experimental data were used for kinetic analysis of chalcopyrite, sphalerite, and pyrrhotite oxidation. Chalcopyrite yielded the highest (73 kJ/mol) and pyrrhotite yielded the lowest (25 kJ/mol) activation energies. Especially with pyrrhotite, diffusion contributed to rate limitation. Arrhenius plots were also linear for the reciprocals of lag periods and for increases of redox potentials (dmV/dt). Mass balance analysis based on total S in leach residue was in agreement with the highest rate of leaching at 37 and 28 degrees C. The presence of elemental S in leach residues was attributed to pyrrhotite oxidation. PMID:16348648

  9. INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION. QUARTERLY AND FINAL REPORT

    SciTech Connect

    K.C. KWON

    1998-08-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Experiments on removal reaction of H{sub 2}S from coal gas mixtures with formulated metal oxide sorbents were conducted in a batch reactor or a differential reactor. The objectives of this research project are to formulate promising metal oxide sorbents for removal of sulfur from coal gas mixtures, to find initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of hydrogen, nitrogen and moisture on dynamic absorption and equilibrium absorption at various absorption temperatures. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders, and calcining these powder mixtures. The Research Triangle Institute (RTI), a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide, and review experimental results.

  10. Extraction of actinides and fission products by octyl(phenyl)-N,N-diisobutylcarbamoylmethyl-phosphine oxide from nitric acid media.

    PubMed

    Mathur, J N; Murali, M S; Natarajan, P R; Badheka, L P; Banerji, A

    1992-05-01

    Extraction of promethium(III), uranium(VI), plutonium(IV), americium(III), zirconium(IV), ruthenium(III), iron(III) and palladium(II) has been carried out with a mixture of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and tributyl phosphate (TBP) in dodecane. The effects of nitric acid, TBP and CMPO concentrations on the extraction of these metal ions have been studied. The nature of the species of the above metal ions extracted into the organic phase has been suggested. PMID:18965406

  11. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  12. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    PubMed Central

    Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Owings, Shannon M.; Hanson, Thomas E.; Beinart, Roxanne A.; Girguis, Peter R.

    2011-01-01

    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment. PMID:21833317

  13. Thermodynamic Analysis of Looping Sulfide Oxidation Production of MoO2 from Molybdenite for Energy Capture and Generation

    NASA Astrophysics Data System (ADS)

    Lessard, Joseph D.; Shekhter, Leonid N.; Gribbin, Daniel G.; McHugh, Lawrence F.

    2013-11-01

    Conventional processing of molybdenum sulfide concentrates involves decades-old technology and often inefficient processing. Molybdenum trioxide (MoO3) is produced from the sulfide concentrate and used by the steel industry to produce steel alloys. An alternative and more attractive molybdenum product, molybdenum dioxide (MoO2), is produced using the Looping Sulfide Oxidation process. By examining the thermodynamics of the molybdenum-sulfur-oxygen system, the conditions necessary to selectively produce MoO2 over the trioxide have been identified. Under such conditions, oxygen, MoO3, or a mixture of the two can be used to convert the sulfide concentrate. Some of the resulting MoO2 is collected as final product, while some is oxidized to MoO3 and looped back to the conversion furnace to complete the cycle. A thermodynamic analysis of the reaction schemes and a discussion of the potential for energy capture are presented. The Looping Sulfide Oxidation process presents a paradigm shift in the production and consumption of molybdenum.

  14. Intense photo- and tribo-luminescence of three tetrahedral manganese(II) dihalides with chelating bidentate phosphine oxide ligand.

    PubMed

    Chen, Jun; Zhang, Qing; Zheng, Fa-Kun; Liu, Zhi-Fa; Wang, Shuai-Hua; Wu, A-Qing; Guo, Guo-Cong

    2015-02-21

    Three air-stable tetrahedral manganese(ii) dihalide complexes [MnX2(DPEPO)] (DPEPO = bis[2-(diphenylphosphino)phenyl]ether oxide; X = Cl, Br and I) were prepared. All of the obtained compounds were structurally characterized by single-crystal X-ray diffraction analyses, which reveal that they crystallize in centrosymmetric space groups and feature an isolated mononuclear structure with Mn(2+) in a tetrahedral environment. Interestingly, these complexes show excellent photoluminescent performance in neat solid form, with the highest total quantum yield (Φtotal) of up to 70% recorded for the dibromide complex. Intense green flashes of light could be observed by the naked eye when rubbing the manganese(ii) complexes. PMID:25597698

  15. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    PubMed Central

    Li, Shiue-Lin; Nealson, Kenneth H.

    2015-01-01

    Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes. PMID:25741331

  16. Sulfidation of electrodeposited microcrystalline/nanocrystalline cuprous oxide thin films for solar energy applications

    NASA Astrophysics Data System (ADS)

    Jayathilaka, K. M. D. C.; Kapaklis, V.; Siripala, W.; Jayanetti, J. K. D. S.

    2012-12-01

    Grain size of polycrystalline semiconductor thin films in solar cells is optimized to enhance the efficiency of solar cells. This paper reports results on an investigation carried out on electrodeposited n-type cuprous oxide (Cu2O) thin films on Ti substrates with small crystallites and sulfidation of them to produce a thin-film solar cell. During electrodeposition of Cu2O films, pH of an aqueous acetate bath was optimized to obtain films of grain size of about 100 nm, that were then used as templates to grow thicker n-type nanocrystalline Cu2O films. XRD and SEM analysis revealed that the films were of single phase and the substrates were well covered by the films. A junction of Cu2O/CuxS was formed by partially sulfiding the Cu2O films using an aqueous sodium sulfide solution. It was observed that the photovoltaic properties of nano Cu2O/CuxS heterojunction structures are better than micro Cu2O/CuxS heterojunction solar cells. Resulting Ti/nano Cu2O/CuxS/Au solar cell structure produced an energy conversion efficiency of 0.54%, Voc = 610 mV and Jsc = 3.4 mA cm-2, under AM 1.5 illumination. This is a significant improvement compared to the use of microcrystalline thin film Cu2O in the solar cell structure where the efficiency of the cell was limited to 0.11%. This improvement is attributed mainly to the increased film surface area associated with nanocrystalline Cu2O films.

  17. Physiological and biochemical responses of rice seeds to phosphine exposure during germination.

    PubMed

    Niu, Xiaojun; Mi, Lina; Li, Yadong; Wei, Aishu; Yang, Zhiquan; Wu, Jiandong; Zhang, Di; Song, Xiaofei

    2013-11-01

    Rice seeds (Tianyou, 3618) were used to examine the physiological and biochemical responses to phosphine exposure during germination. A control (0 mg m(-3)) and four concentrations of phosphine (1.4 mg m(-3), 4.2 mg m(-3), 7.0 mg m(-3) and 13.9 mg m(-3)) were used to treat the rice seeds. Each treatment was applied for 90 min once per day for five days. The germination rate (GR); germination potential (GP); germination index (GI); antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and lipid peroxidation measured through via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seeds to phosphine exposure. These indicators were determined once per day for five days. The results indicated that the GR, GP and GI of the rice seeds markedly decreased after phosphine exposure. The changes in the activities of the antioxidant enzymes due to the phosphine exposure were also significant. The exposure lowered the CAT and SOD activities and increased POD activity in the treated rice seeds compared with controls. The MDA content exhibited a slow increase trend with the increase of phosphine concentration. These results suggest that phosphine has inhibitory effects on seed germination. In addition, phosphine exposure caused oxidative stress in the seeds. The antioxidant enzymes could play a pivotal role against oxidative injury. Overall, the effect of phosphine on rice seeds is different from what has been reported previously for insects and mammals. PMID:23992639

  18. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    SciTech Connect

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  19. Proteomic analysis of peach fruit moth larvae treated with phosphine.

    PubMed

    Liu, Tao; Li, Li; Li, Baishu; Zhang, Fanhua; Wang, Yuejin

    2012-01-01

    Phosphine has been used worldwide for the control of stored-product insects for many years. However, the molecular mechanism of its toxicity is not clearly understood. In the current study, larvae of the peach fruit moth were fumigated with phosphine. Proteomic analysis was then performed to identify the regulated proteins. Our results confirmed the phosphine toxicity on the peach fruit moth. The median lethal time LT50 was 38.5 h at 330 ppm at 25 degrees C. During fumigation, the respiration of the peach fruit moth was extremely inhibited. Of the 26 regulated proteins, 16 were identified by MALDI-TOF mass spectrometry after a 24 h treatment. The proteins were classified as related to metabolism (25 %), anti-oxidation (6 %), signal transduction (38 %), or defense (19 %). The rest (13 %) were unclassified. Phosphine regulation of ATP and glutathione contents, as well as of ATP synthase and glutathione S-transferase 2 activities were confirmed by enzyme activity analysis. These results demonstrate that complex transcriptional regulations underlie phosphine fumigation. New theories on the mechanism of phosphine toxicity may also be established based on these results. PMID:22201993

  20. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems. PMID:26348539

  1. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter.

    PubMed

    Yu, Zhi-Guo; Peiffer, Stefan; Göttlicher, Jörg; Knorr, Klaus-Holger

    2015-05-01

    The reactivity of natural dissolved organic matter toward sulfide and has not been well studied with regard to electron transfer, product formation, and kinetics. We thus investigated the abiotic transformation of sulfide upon reaction with reduced and nonreduced Sigma-Aldrich humic acid (HA), at pH 6 under anoxic conditions. Sulfide reacted with nonreduced HA at conditional rate constants of 0.227-0.325 h(-1). The main transformation products were elemental S (S0) and thiosulfate (S2O3(2-)), yielding electron accepting capacities of 2.82-1.75 μmol e- (mg C)(-1). Native iron contents in the HA could account for only 6-9% of this electron transfer. About 22-37% of S reacted with the HA to form organic S (Sorg). Formation of Sorg was observed and no inorganic transformation products occurred for reduced HA. X-ray absorption near edge structure spectroscopy supported Sorg to be mainly zerovalent, such as thiols, organic di- and polysulfides, or heterocycles. In conclusion, our results demonstrate that HA can abiotically reoxidize sulfide in anoxic environments at rates competitive to sulfide oxidation by molecular oxygen or iron oxides. PMID:25850807

  2. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization.

    PubMed

    Kobayashi, Takuro; Li, Yu-You; Kubota, Kengo; Harada, Hideki; Maeda, Takeki; Yu, Han-Qing

    2012-01-01

    The microbial mats responsible for biological desulfurization from biogas in a full-scale anaerobic digester were characterized in terms of their structure, as well as their chemical and microbial properties. Filament-shaped elemental sulfur 100-500 μm in length was shown to cover the mats, which cover the entire headspace of the digester. This is the first report on filamentous sulfur production in a non-marine environment. The results of the analysis of the mats suggest that the key players in the sulfide oxidation and sulfur production in the bio-desulfurization in the headspace of the digester were likely to be two sulfide-oxidizing bacteria (SOB) species related to Halothiobacillus neapolitanus and Sulfurimonas denitrificans, and that the microbial community, cell density, activity for sulfide oxidation varied according to the environmental conditions at the various locations of the mats. Since the water and nutrients necessary for the SOB were provided by the digested sludge droplets deposited on the mats, and our results show that a higher rate of sulfide oxidation occurred with more frequent digested sludge deposition, the habitat of the SOB needs to be made in the lower part of the headspace near the liquid level of the digested sludge to maintain optimal conditions. PMID:21735263

  3. Sulfide oxidation by hydrogen peroxide catalyzed by iron complexes: two metal centers are better than one.

    PubMed

    Mekmouche, Yasmina; Hummel, Helga; Ho, Raymond Y N; Que, Lawrence; Schünemann, Volker; Thomas, Fabrice; Trautwein, Alfred X; Lebrun, Colette; Gorgy, Karine; Leprêtre, Jean-Claude; Collomb, Marie-Noëlle; Deronzier, Alain; Fontecave, Marc; Ménage, Stéphane

    2002-03-01

    Peroxoiron species have been proposed to be involved in catalytic cycles of iron-dependent oxygenases and in some cases as the active intermediates during oxygen-transfer reactions. The catalytic properties of a mononuclear iron complex, [Fe(II)(pb)(2)(CH(3)CN)(2)] (pb=(-)4,5-pinene-2,2'-bipyridine), have been compared to those of its related dinuclear analogue. Each system generates specific peroxo adducts, which are responsible for the oxidation of sulfides to sulfoxides. The dinuclear catalyst was found to be more reactive and (enantio)selective than its mononuclear counterpart, suggesting that a second metal site affords specific advantages for stereoselective catalysis. These results might help for the design of future enantioselective iron catalysts. PMID:11891908

  4. Mössbauer study of electrochemically deposited amorphous iron-sulfide-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Kajima, Takahiro; Kawai, Shoichi; Mibu, Ko

    2016-03-01

    Iron-sulfide-oxide thin films, which are promising candidates for solar cell materials, were deposited by electrochemical deposition. As-deposited and annealed films were characterized by Mössbauer spectroscopy, X-ray diffraction (XRD), and Raman scattering at room temperature. The as-deposited film is amorphous, and the oxygen content is about 1/4 of the sulfur content (S/Fe ≈ 1.5, O/Fe ≈ 0.4). The Mössbauer spectrum for the as-deposited film is a doublet with a broad line profile having hyperfine parameters similar to those of FeS2 pyrite or marcasite. This indicates that Fe atoms are in the Fe2+ low-spin state, as in FeS2.

  5. Highly improved electroluminescence from a series of novel Eu(III) complexes with functional single-coordinate phosphine oxide ligands: tuning the intramolecular energy transfer, morphology, and carrier injection ability of the complexes.

    PubMed

    Xu, Hui; Yin, Kun; Huang, Wei

    2007-01-01

    The functional single-coordinate phosphine oxide ligands (4-diphenylaminophenyl)diphenylphosphine oxide (TAPO), (4-naphthalen-1-yl-phenylaminophenyl)diphenylphosphine oxide (NaDAPO), and 9-[4-(diphenylphosphinoyl)phenyl]-9H-carbazole (CPPO), as the direct combinations of hole-transporting moieties, and electron-transporting triphenylphosphine oxide (TPPO) were designed and synthesized (amines or carbazole), together with their Eu(III) complexes [Eu(tapo)(2)(tta)(3)] (1), [Eu(nadapo)(2)(tta)(3)] (2), and [Eu(cppo)(2)(tta)(3)] (3; TTA: 2-thenoyltrifluoroacetonate). The investigation indicated that by taking advantage of the modification inertia of the phosphine oxide ligands, the direct introduction of the hole-transport groups as chromophore made TAPO, NaDAPO, and CPPO obtain the most compact structure and mezzo S(1) and T(1) energy levels, which improved the intramolecular energy transfer in their Eu(III) complexes. The amorphous phase of 1-3 proved the weak intermolecular interaction, which resulted in extraordinarily low self-quenching of the complexes. The excellent double-carrier transport ability of the ligands was studied with Gaussian calculations, and the bipolar structure of TAPO and CPPO was proved. The great improvement of the double-carrier transport ability of 1-3 was shown by cyclic voltammetry. Their HOMO and LUMO energy levels of around 5.3 and 3.0 eV, respectively, are the best results for Eu(III) complexes reported so far. A single-layer organic light-emitting diode of 2 had the impressive brightness of 59 cd m(-2) which, to the best of our knowledge, is the highest reported so far. Both of the four-layer devices based on pure 1 and 2 had a maximum brightness of more than 1000 cd m(-2), turn-on voltages lower than 5 V, maximum external quantum yields of more than 3 % and excellent spectral stability. PMID:17918175

  6. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    SciTech Connect

    Agúndez, M.; Cernicharo, J.; Encrenaz, P.; Teyssier, D.

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  7. Confirmation of Circumstellar Phosphine

    NASA Astrophysics Data System (ADS)

    Agúndez, M.; Cernicharo, J.; Decin, L.; Encrenaz, P.; Teyssier, D.

    2014-08-01

    Phosphine (PH3) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH3 in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH3. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH3 in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R * from the star, with an abundance of 10-8 relative to H2. The detection of PH3 challenges chemical models, none of which offer a satisfactory formation scenario. Although PH3 holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH3 outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  8. High-temperature experimental analogs of primitive meteoritic metal-sulfide-oxide assemblages

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Lauretta, Dante S.

    2010-03-01

    We studied the oxidation-sulfidation behavior of an Fe-based alloy containing 4.75 wt.% Ni, 0.99 wt.% Co, 0.89 wt.% Cr, and 0.66 wt.% P in H 2-H 2O-CO-CO 2-H 2S gas mixtures at 1000 °C. The samples were cooled at rates of ˜3000 °C/h, comparable to estimates of the conditions after a chondrule-formation event in the early Solar System. Gas compositions were monitored in real time by a quadrupole mass spectrometer residual gas analyzer. Linear rate constants associated with gas-phase adsorption were determined. Reaction products were analyzed by optical microscopy, wavelength-dispersive-spectroscopy X-ray elemental mapping, and electron probe microanalysis. Based on analysis of the Fe-Ni-S ternary phase diagram and the reaction products, the primary corrosion product is a liquid of composition 66.6 wt.% Fe, 3.5 wt.% Ni, 29.9 wt.% S, and minor amounts of P, Cr, and Co. Chromite (FeCr 2O 4) inclusions formed by oxidation and are present in the metal foil and at the outer boundary between the sulfide and experimental atmosphere. During cooling the liquid initially crystallizes into taenite (average composition ˜15 wt.% Ni), monosulfide solid solution [mss, (Fe,Ni,Co,Cr) 1-xS], and Fe-phosphates. Upon further cooling, kamacite exsolves from this metal, enriching the taenite in Ni. The remnant metal core is enriched in P and Co and depleted in Cr at the reaction interface, relative to the starting composition. The unreacted metal core composition remains unchanged, suggesting the reactions did not reach equilibrium. We present a detailed model of reaction mechanisms based on the observed kinetics and sample morphologies, and discuss meteoritic analogs in the CR chondrite MacAlpine Hills 87320.

  9. Thermithiobacillus plumbiphilus sp. nov., a sulfur-oxidizing bacterium isolated from lead sulfide.

    PubMed

    Watanabe, Tomohiro; Miura, Aya; Shinohara, Arisa; Kojima, Hisaya; Fukui, Manabu

    2016-05-01

    A novel sulfur oxidizer, strain wk12T, was isolated from an industrially synthesized lead (II) sulfide. The G+C content of the genomic DNA was around 58.5 mol%. The major components in the cellular fatty acid profile were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The strain oxidized lead sulfide, thiosulfate and tetrathionate as electron donors to support autotrophic growth. Cells of strain wk12T were motile, rod-shaped (0.5-1.0 × 0.7-2.2 μm), and Gram-stain-negative. For growth, the temperature range was 5-37 °C, and optimum growth was observed at 28-32 °C. The pH range for growth was 5.8-8.7, with optimum growth at pH 6.4-7.1. Optimum growth of the isolate was observed in medium without NaCl, and no growth was observed in the medium containing 0.5 M or more NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the class Acidithiobacillia. The closest relative with a validly published name was Thermithiobacillus tepidarius DSM 3134T, with a 16S rRNA gene sequence similarity of 96 %. On the basis of phylogenetic and phenotypic properties, strain wk12T represents a novel species of the genus Thermithiobacillus, for which the name Thermithiobacillus plumbiphilus sp. nov. is proposed. The type strain is wk12T ( = NBRC 111508T = DSM 101799T). PMID:26873326

  10. Biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Sublette, K.L.; Rajganesh, B.; Woolsey, M.; Plato, A.

    1995-12-31

    Caustics are used in petroleum refinering to remove hydrogen sulfide from various hydrocarbon streams. Spent sulfidic caustics from two Conoco refineries have been successfully biotreated on bench and pilot scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic.

  11. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, April--June 1995

    SciTech Connect

    Kwon, K.C.

    1995-07-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute, a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results.

  12. Thermodynamic modeling and experimental analysis of oxidation/sulfidation of nickel-chromium-aluminum model alloy coatings

    NASA Astrophysics Data System (ADS)

    Mueller, Erik M.

    With the current focus on finding future energy sources, land-based power gas turbines offer a desirable alternative to common coal-fired steam power generation. Ni-Cr-Al-X alloys are the material basis for producing overlay bond coats for the turbine blades used in sections of the turbine engine experiencing the most extreme environments. These overlay coatings are designed to provide environmental protection for the blades and vanes. While the oxidation of such alloys has been investigated and modeled in-depth, the concurrent sulfidation attack has not. This corrosion mode is now being heavily researched with the desire to use gasified coal, biomass, and other renewable fuel sources in gas turbines that often contain significant amounts of sulfur. The purpose of this dissertation was to use thermodynamic calculations to describe and predict the oxidation/sulfidation processes of two Ni-Cr-Al model alloys regarding phase evolution, composition, and component activities. These calculations, in the form of potential and phase fraction diagrams, combined with sulfidation experiments using kinetic measurements and materials characterization techniques, were able to describe and predict the simultaneous oxidation and sulfidation that occurred in these alloys.

  13. Thermodynamic modeling and experimental analysis of oxidation/sulfidation of nickel-chromium-aluminum model alloy coatings

    NASA Astrophysics Data System (ADS)

    Mueller, Erik M.

    With the current focus on finding future energy sources, land-based power gas turbines offer a desirable alternative to common coal-fired steam power generation. Ni-Cr-Al-X alloys are the material basis for producing overlay bond coats for the turbine blades used in sections of the turbine engine experiencing the most extreme environments. These overlay coatings are designed to provide environmental protection for the blades and vanes. While the oxidation of such alloys has been investigated and modeled in-depth, the concurrent sulfidation attack has not. This corrosion mode is now being heavily researched with the desire to use gasified coal, biomass, and other renewable fuel sources in gas turbines that often contain significant amounts of sulfur. The purpose of this dissertation was to use thermodynamic calculations to describe and predict the oxidation/sulfidation processes of two Ni-Cr-Al model alloys regarding phase evolution, composition, and component activities. These calculations, in the form of potential and phase fraction diagrams, combined with sulfidation experiments using kinetic measurements and materials characterization techniques, were able to describe and predict the simultaneous oxidation and sulfidation that occurred in these alloys.

  14. Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments.

    PubMed

    Carpenter, Julian; Bi, Yuqiang; Hayes, Kim F

    2015-01-20

    Iron sulfide precipitates formed under sulfate reducing conditions may buffer U(IV) insoluble solid phases from reoxidation after oxidants re-enter the reducing zone. In this study, sediment column experiments were performed to quantify the effect of biogenic mackinawite on U(IV) stability in the presence of nitrite or dissolved oxygen (DO). Two columns, packed with sediment from an abandoned U contaminated mill tailings site near Rifle, CO, were biostimulated for 62 days with an electron donor (3 mM acetate) in the presence (BRS+) and absence (BRS−) of 7 mM sulfate. The bioreduced sediment was supplemented with synthetic uraninite (UO2(s)), sterilized by gamma-irradiation, and then subjected to a sequential oxidation by nitrite and DO. Biogenic iron sulfides produced in the BRS+ column, mostly as mackinawite, inhibited U(IV) reoxidation and mobilization by both nitrite and oxygen. Most of the influent nitrite (0.53 mM) exited the columns without oxidizing UO2, while a small amount of nitrite was consumed by iron sulfides precipitates. An additional 10-day supply of 0.25 mM DO influent resulted in the release of about 10% and 49% of total U in BRS+ and BRS– columns, respectively. Influent DO was effectively consumed by biogenic iron sulfides in the BRS+ column, while DO and a large U spike were detected after only a brief period in the effluent in the BRS– column. PMID:25525972

  15. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, October--December 1994

    SciTech Connect

    Kwon, K.C.

    1995-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbent for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes.

  16. Phosphonate–phosphinate rearrangement.

    PubMed

    Qian, Renzhe; Roller, Alexander; Hammerschmidt, Friedrich

    2015-01-16

    LiTMP metalated dimethyl N-Boc-phosphoramidates derived from 1-phenylethylamine and 1,2,3,4-tetrahydronaphthalen-1-ylamine highly selectively at the CH3O group to generate short-lived oxymethyllithiums. These isomerized to diastereomeric hydroxymethylphosphonamidates (phosphate–phosphonate rearrangement). However, s-BuLi converted the dimethyl N-Boc-phosphoramidate derived from 1-phenylethylamine to the N-Boc α-aminophosphonate preferentially. Only s-BuLi deprotonated dimethyl hydroxymethylphosphonamidates at the benzylic position and dimethyl N-Boc α-aminophosphonates at the CH3O group to induce phosphonate–phosphinate rearrangements. In the former case, the migration of the phosphorus substituent from the nitrogen to the carbon atom followed a retentive course with some racemization because of the involvement of a benzyllithium as an intermediate. PMID:25525945

  17. Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction.

    SciTech Connect

    Lee, Ji-Hoon; Kennedy, David W.; Dohnalkova, Alice; Moore, Dean A.; Nachimuthu, Ponnusamy; Reed, Samantha B.; Fredrickson, Jim K.

    2011-09-27

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 produced γ-MnS (rambergite) nanoparticles under the concurrent reduction of synthetic MnO2 and thiosulfate coupled to H2 oxidation. Using two MR-1 mutants defective in outer membrane c-type cytochromes (ΔmtrC/ΔomcA and ΔmtrC/ΔomcA/ΔmtrF) to eliminate the direct reduction pathway for solid electron acceptors, it was determined that respiratory reduction of MnO2 was dominant relative to chemical reduction by biogenic sulfide generated from bacterial thiosulfate reduction. Although bicarbonate was excluded from the medium, incubations of MR-1 using lactate as the sole electron donor produced MnCO3 (rhodochrosite) as well as MnS in nearly equivalent amounts as estimated by micro X-ray diffraction (micro-XRD) analysis. It was concluded that carbonate released from lactate metabolism promoted MnCO3 formation and that Mn(II) mineralogy was strongly affected by carbonate ions even in the presence of abundant sulfide and weakly alkaline conditions that favor the precipitation of MnS. Formation of the biogenic MnS, as determined by a combination of micro-XRD, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction analyses was consistent with equilibrium speciation modeling predictions. Although biogenic MnS likely only forms and is stable over a relatively narrow range of conditions, it may be a significant sink for Mn in anoxic marine basins and terrestrial subsurface sediments where Mn and sulfur compounds are undergoing concurrent reduction.

  18. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production

    NASA Astrophysics Data System (ADS)

    Bach, Wolfgang; Edwards, Katrina J.

    2003-10-01

    Microbial processes within the ocean crust are of potential importance in controlling rates of chemical reactions and thereby affecting chemical exchange between the oceans and lithosphere. We here assess the oxidation state of altered ocean crust and estimate the magnitude of microbial biomass production that might be supported by oxidative and nonoxidative alteration. Compilations of Fe 2O 3, FeO, and S concentrations from DSDP/ODP drill core samples representing upper basaltic ocean crust suggest that Fe 3+/ΣFe increases from 0.15 ± 0.05 to 0.45 ± 0.15 within the first 10-20 Myr of crustal evolution. Within the same time frame 70 ± 25% of primary sulfides in basalt are oxidized. With an annual production of 4.0 ± 1.8 × 10 15 g of upper (500 ± 200 m) crust and average initial concentrations of 8.0 ± 1.3 wt% Fe and 0.125 ± 0.020 wt% S, we estimate annual oxidation rates of 1.7 ± 1.2 × 10 12 mol Fe and 1.1 ± 0.7 × 10 11 mol S. We estimate that 50% of Fe oxidation may be attributed to hydrolysis, producing 4.5 ± 3.0 × 10 11 mol H 2/yr. Thermodynamic and bioenergetic calculations were used to estimate the potential chemolithoautotrophic microbial biomass production within ridge flanks. Combined, aerobic and anaerobic Fe and S oxidation may support production of up to 48 ± 21 × 10 10 g cellular carbon (C). Hydrogen-consuming reactions may support production of a similar or larger microbial biomass if iron reduction, nitrate reduction, or hydrogen oxidation by O 2(aq) are the prevailing metabolic reactions. If autotrophic sulfate reduction or methanogenesis prevail, the potential biomass production is 9 ± 7 × 10 10 g C/yr and 3 ± 2 × 10 10 g C/yr, respectively. Combined primary biomass production of up to ˜1 × 10 12 g C/yr may be similar to that fueled by anaerobic oxidation of organic matter in deep-seated heterotrophic systems. These estimates suggest that water-rock reactions may support significant microbial life within ridge flank

  19. New catalysts active for the mild oxidation of hydrogen sulfide to sulfur

    SciTech Connect

    Laperdrix, E.; Costentin, G.; Guyen, N.N.; Saur, O.; Lavalley, J.C.

    1999-10-25

    Nickel iron phosphates were studied for the selective oxidation of hydrogen sulfide to sulfur. Nickel iron phosphate and Fe/Cr samples were more active than simple iron, chromium, and mixed iron-chromium oxides, which has been previously studied. Nickel iron phosphate catalyst prepared by solid-solid method with, consequently, a very low specific surface area was intrinsically active and selective to sulfur (conversion 17%, S{sub n} selectivity 97%); no rapid deactivation was observed. Even though higher specific surface area samples, prepared according to a solution method at various calcination temperatures, showed better performance (conversion 76%, S{sub n}selectivity {gt}90%), the specific activity depended on the crystallinity of the samples. The reaction is apparently structure sensitive. The structure of the catalytic material must facilitate electronic exchange, evidence by Moessbauer characterization. The establishment of the mixed valency Fe{sub 2+}/Fe{sup 3+} under catalytic feed was shown to be an essential factor in this reaction.

  20. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System

    PubMed Central

    Nagpure, B. V.; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress. PMID:26640616

  1. Protective effect of diallyl sulfide on oxidative stress and nephrotoxicity induced by gentamicin in rats.

    PubMed

    Pedraza-Chaverrí, José; Maldonado, Perla D; Barrera, Diana; Cerón, Alejandra; Medina-Campos, Omar N; Hernández-Pando, Rogelio

    2003-12-01

    Gentamicin (GM) is an antibiotic whose clinical use is limited by its nephrotoxicity. Experimental evidences suggest a role of reactive oxygen species in GM-induced nephrotoxicity. In this work we explored the effect of diallyl sulfide (DAS), a garlic-derived compound with antioxidant properties, on GM-induced nephrotoxicity. Four groups of rats were studied: (1) Control, treated intragastrically with olive oil as a vehicle, (2) GM, treated subcutaneously with GM (125 mg/kg/day for 4 days), (3) DAS, treated intragastrically with DAS (50 mg/kg/day for 4 days), and (4) GM + DAS. Nephrotoxicity was made evident by: (1) the increase in creatinine and blood urea nitrogen in serum, (2) the increase in urinary excretion of N-acetyl-beta-D-glucosaminidase and total protein, and (3) necrosis of proximal tubular cells. These functional and structural alterations were prevented or ameliorated by DAS treatment. In addition, GM increased levels of renal oxidative stress markers nitrotyrosine and protein carbonyl groups which were also ameliorated by DAS in GM + DAS group. The mechanism by which DAS has a protective effect on GM-induced nephrotoxicity may be related, at least in part, to the decrease in oxidative stress in renal cortex. PMID:14674690

  2. Semi-Coke–Supported Mixed Metal Oxides for Hydrogen Sulfide Removal at High Temperatures

    PubMed Central

    Jie, Mi; Yongyan, Zhang; Yongsheng, Zhu; Ting, Guo; Huiling, Fan

    2012-01-01

    Abstract To improve the desulfurization efficiency of sorbents at low cost, modified semi-coke was used as the substrate for mixed metal oxides (ZFM; oxides of zinc [Zn], iron [Fe], and manganese [Mn]) in hot gas desulfurization. Performance of the prepared ZFM/modified semi-coke (MS) sorbents were evaluated in a fixed-bed reactor in the temperature range 400–550°C. Results showed that the molar ratio of Mn to Zn, effect of the substrate, the calcination temperature, and the sulfidation temperature influenced the performance of the sorbents. Optimum conditions for the preparation of the ZFM/MS sorbents were molar ratio of Mn(NO3)2·6H2O, Zn(NO3)2, and Fe(NO3)3, 0.6:1:2; mass ratio of ZFM0.6 to modified semi-coke support, 1:1; and calcination temperature, 600°C. The ZFM0.6/MS sorbent thus prepared exhibited the best sorption sulfur capacity of 27.46% at 450°C. PMID:22783061

  3. Tracking photosynthetic sulfide oxidation in a meromictic lake using sulfate δ34S and δ18O

    NASA Astrophysics Data System (ADS)

    Gilhooly, W. P.; Reinhard, C.; Lyons, T. W.; Glass, J. B.

    2012-12-01

    Phototrophic sulfur bacteria oxidize sulfide and fix carbon dioxide in the presence of sunlight without producing oxygen. Environmental conditions in the Paleo- and Mesoproterozoic, when atmospheric oxygen concentrations were at low levels and portions of the oceans were anoxic and sulfidic (euxinic), were conducive to widespread carbon fixation by anoxygenic photosynthesis. This pathway may have helped sustain euxinic conditions in the Proterozoic water column. With limited organic biomarker and geochemical evidence for widespread production of anoxygenic phototrophs, however, additional proxies are needed to fingerprint paleoecological and biogeochemical signals associated with photic zone euxinia. Paired δ34S and δ18O from ancient sulfates (gypsum, barite, or CAS) may offer an added constraint on the history and ecological dominance of photosynthetic S-oxidation. Sulfate-oxygen can fractionate during sulfate reduction, but the extent of isotopic enrichment is controlled either by kinetic isotope effects imparted during intracellular enzymatic steps or equilibrium oxygen exchange with ambient water. An improved understanding of these processes can be gained from modern natural environments. Mahoney Lake is a density-stratified lake located within the White Lake Basin of British Columbia. The euxinic water column supports a dense plate of purple sulfur bacteria (Amoebobacter purpureus) that thrives where free sulfide intercepts the photic zone at ~7 m water depth. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within this meromictic lake. Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S >50‰) are consistent with sulfate reduction in both the sediments and the anoxic

  4. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  5. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    PubMed Central

    Ayswarya, A.; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  6. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2005-06-01

    The fractionation of the isotopes of Mo between different geological environments has recently been determined to high accuracy using mass spectrometry ( Barling et al., 2001). Fractionation is observed between Mo in seawater, where it exists primarily in the form of the Mo(VI) anion molybdate, MoO 4-2, and in oxic sediments, where the Mo is isotopically lighter than in sea water by ˜1.8‰ (in terms of the 97Mo, 95Mo isotope pair). EXAFS evidence exists for a five- or six-coordinate Mo environment in the Fe,Mn oxyhydroxides of ferromanganese nodules ( Kuhn et al., 2003). In sediment regimes which are anoxic and sulfidic (sometimes referred to as euxinic), where the Mo(VI) is expected to exist as a sulfide, no fractionation is observed compared to seawater. This is presumably because of the stoichiometric conversion of the Mo from MoO 4-2 to MoS 4-2 ( Erickson and Helz, 2000) and then to other sulfides. If the conversion is stoichiometrically complete, mass balance requires the same isotopic distribution in reactant and product. This is a result of the very high equilibrium constant for this reaction. Thus, to understand isotopic fractionation processes both the equilibrium constants for the isotopic fractionation reactions and the equilbrium constants for transformation of one chemical compound to another must be considered. We here present quantum mechanical calculations of the isotopic fractionation equilibrium constants for the isotopes 92Mo and 100Mo between MoO 4-2, MoO 3(OH) -, MoO 2(OH) 2, MoO 3, MoO 3(OH 2) 3, MoS 4-2 and a number of other oxidic and sulfidic complexes of Mo. The fractionation equilibrium constants are calculated directly from the computed vibrational, rotational and translational contributions to the free energy in the gas-phase using quantum methods. Calculated vibrational frequencies and ratios of frequencies for different isotopomers are first obtained using a number of different quantum methods and compared with available

  7. Effect of ferric oxide on the high-temperature removal of hydrogen sulfide over ZnO-Fe{sub 2}O{sub 3} mixed metal oxide sorbent

    SciTech Connect

    Lee, Y.S.; Kim, H.T.; Yoo, K.O.

    1995-04-01

    The effect of ferric oxide on the removal of hydrogen sulfide over ZnO-Fe{sub 2}O{sub 3} mixed metal oxide sorbents and on the oxidative regeneration of sulfided sorbents was investigated. When ferric oxide was added to the zinc oxide, the reduction of ZnO was retarded by interaction of ZnO with ZnFe{sub 2}O{sub 4}. This interaction was confirmed by larger binding energies of Zn 2P{sub 3/2} and Zn 2P{sub 1/2}, identified by ESCA, of the ZnO-ZnFe{sub 2}O{sub 4} sorbent than those of ZnO. Zinc ferrite with a spinel structure yielded not only high H{sub 2}S removal capacity but also much SO{sub 2} generation. A linear increase of SO{sub 2} generation was confirmed up to 50 wt % Fe{sub 2}O{sub 3}. Resulting from the thermal decomposition of H{sub 2}S over metal sulfides, H{sub 2} generation increased with respect to Fe{sub 2}O{sub 3} according to a quadratic equation. Channeling, caused by sintering during sulfidation, made the flow path of the reactant change and thus pure ZnO sorbent and the sorbent containing 3 wt % Fe{sub 2}O did not sulfurate completely. Addition of Fe{sub 2}O{sub 3} prevented surface structural change like sintering of ZnO during sulfidation.

  8. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.

    PubMed

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100-500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50-500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3-100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100-300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging. PMID:23537657

  9. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    PubMed

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis. PMID:25010831

  10. A Matter of Timing: Contrasting Effects of Hydrogen Sulfide on Oxidative Stress Response in Shewanella oneidensis

    PubMed Central

    Wu, Genfu; Wan, Fen; Fu, Huihui; Li, Ning

    2015-01-01

    ABSTRACT Hydrogen sulfide (H2S), well known for its toxic properties, has recently become a research focus in bacteria, in part because it has been found to prevent oxidative stress caused by treatment with some antibiotics. H2S has the ability to scavenge reactive oxygen species (ROS), thus preventing oxidative stress, but it is also toxic, leading to conflicting reports of its effects in different organisms. Here, with Shewanella oneidensis as a model, we report that the effects of H2S on the response to oxidative stress are time dependent. When added simultaneously with H2O2, H2S promoted H2O2 toxicity by inactivating catalase, KatB, a heme-containing enzyme involved in H2O2 degradation. Such an inhibitory effect may apply to other heme-containing proteins, such as cytochrome cbb3 oxidase. When H2O2 was supplied 20 min or later after the addition of H2S, the oxidative-stress-responding regulator OxyR was activated, resulting in increased resistance to H2O2. The activation of OxyR was likely triggered by the influx of iron, a response to lowered intracellular iron due to the iron-sequestering property of H2S. Given that Shewanella bacteria thrive in redox-stratified environments that have abundant sulfur and iron species, our results imply that H2S is more important for bacterial survival in such environmental niches than previously believed. IMPORTANCE Previous studies have demonstrated that H2S is either detrimental or beneficial to bacterial cells. While it can act as a growth-inhibiting molecule by damaging DNA and denaturing proteins, it helps cells to combat oxidative stress. Here we report that H2S indeed has these contrasting biological functions and that its effects are time dependent. Immediately after H2S treatment, there is growth inhibition due to damage of heme-containing proteins, at least to catalase and cytochrome c oxidase. In contrast, when added a certain time later, H2S confers an enhanced ability to combat oxidative stress by activating the

  11. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    NASA Astrophysics Data System (ADS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  12. The role of Zr and Nb in oxidation/sulfidation behavior of Fe-Cr-Ni alloys

    SciTech Connect

    Natesan, K. ); Baxter, D.J. INCO Alloy Ltd., Hereford, England )

    1990-11-01

    05Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20 wt % Cr is required for service at temperatures up to 1000{degree}C; the presence of sulfur, however, inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined over a wide temperature range (650 to 1000{degree}C), with particular emphasis on the effects of alloy Cr content and the radiation of reactive elements such as Nb and Zr. Both Nb and Zr are shown to promote protective oxidation behavior on the 12 wt % Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen/sulfur environments. Additions of Nb and Zr at 3 wt % level resulted in stabilization of Cr{sub 2}O{sub 3} scale and led to a barrier layer of Nb- or Zr-rich oxide at the scale/metal interface, which acted to minimize the transport of base metal cations across the scale. Oxide scales were preformed in sulfur-free environments and subsequently exposed to oxygen/sulfur mixed-gas atmospheres. Preformed scales were found to delay the onset of breakaway corrosion. Corrosions test results obtained under isothermal and thermal cycling conditions are presented. 58 refs., 55 figs., 8 tabs.

  13. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes.

    PubMed

    Niemeyer, Zachary L; Milo, Anat; Hickey, David P; Sigman, Matthew S

    2016-06-01

    The mechanistic foundation behind the identity of a phosphine ligand that best promotes a desired reaction outcome is often non-intuitive, and thus has been addressed in numerous experimental and theoretical studies. In this work, multivariate correlations of reaction outcomes using 38 different phosphine ligands were combined with classic potentiometric analyses to study a Suzuki reaction, for which the site selectivity of oxidative addition is highly dependent on the nature of the phosphine. These studies shed light on the generality of hypotheses regarding the structural influence of different classes of phosphine ligands on the reaction mechanism(s), and deliver a methodology that should prove useful in future studies of phosphine ligands. PMID:27219707

  14. General synthesis of P-stereogenic compounds: the menthyl phosphinate approach.

    PubMed

    Berger, Olivier; Montchamp, Jean-Luc

    2016-08-21

    Easily prepared menthyl phosphinates of high diastereoisomeric purity provide versatile intermediates for the synthesis of P-stereogenic compounds. Previous efforts starting about fifty years ago have been hampered by a lack of generality so the menthyl route has been nearly abandoned. Herein we provide a general solution to this long-standing problem and describe a general synthesis of menthyl H-phosphinate and disubstituted phosphinate esters. The method to prepare these versatile precursors relies on a simple and inexpensive process avoiding the use of phosphorus trichloride, Grignard reagents, and complicated cryogenic crystallizations. Established protocols can then be employed to synthesize P-stereogenic secondary and tertiary phosphine oxides and therefore P-stereogenic phosphine ligands. PMID:27438509

  15. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    SciTech Connect

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  16. The Role of Sulfur Oxidation in Carbonate Precipitation and Dissolution Within Sulfidic Hot Springs

    NASA Astrophysics Data System (ADS)

    Alford, S. E.; Kapitulčinová, D.; Kotrc, B.; Langerhuus, A. T.; Berelson, W.; Dawson, S.; Corsetti, F.; Hanselmann, K.; Johnson, H.; Spear, J.; Stevenson, B. S.; de La Torre, J.; 2008, G.

    2008-12-01

    Geothermal waters that have interacted with subsurface limestones often precipitate aragonite and calcite (travertine) upon cooling and degassing of CO2, forming terraced travertine deposits like those at Mammoth Hot Springs (MHS) in Yellowstone National Park. It has been shown that surfaces of filamentous microbial "Aquificales-dominated streamer communities" comprising the Apron and Channel Facies in these systems can act as nucleation sites for carbonate precipitation leading to the fine-scale tubular micro-structures consistently observed in travertine terraces, modern and ancient. The expected carbonate precipitates were found on streamer communities on the proximal Slope facies, however, ESEM imaging and EDX analysis revealed sulfur crystals, rather than carbonate precipitates, in association with Aquificales-dominated communities collected near the mouth of Narrow Gauge (pH 6.43, T 73.5°C), a sulfidic bicarbonate spring within the MHS system. Thermodynamic analysis of geochemical spring water datasets (data from Angel Terrace Spring applied to the Narrow Gauge site) demonstrates that lowering of the acid-neutralizing capacity (ANC) of spring waters can be achieved by sulfur oxidation. Although the first step of oxidation from H2S to S° cannot account for the lack of aragonite on the streamer biofilms, oxidation of even small amounts of S° to S2O32- and further to SO42- markedly decreases ANC. This microbially mediated reaction may lead to a shift in the local pH and a shift in the ion activity product (IAP) for Ca2+ x CO32- to below the solubility product (Ksp) of CaCO3. Our calculations suggest that this reaction, sulfur oxidation with oxygen to sulfate, can liberate sufficient protons to drive aragonite to undersaturation, if the initial sulfur concentration is 5 mM, and the [Ca] and [CO3] concentrations are initially 0.01 M and 1-10 uM, respectively. The potential importance of sulfur oxidation in hot springs, the molecular signatures of this process

  17. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells.

    PubMed

    Moraes, B S; Souza, T S O; Foresti, E

    2011-01-01

    Sulfide-oxidizing autotrophic denitrification is an advantageous alternative over heterotrophic denitrification, and may have potential for nitrogen removal of low-strength wastewaters, such as anaerobically pre-treated domestic sewage. This study evaluated the fundamentals and kinetics of this process in batch reactors containing suspended and immobilized cells. Batch tests were performed for different NOx-/S2- ratios and using nitrate and nitrite as electron acceptors. Autotrophic denitrification was observed for both electron acceptors, and NOx-/S2- ratios defined whether sulfide oxidation was complete or not. Kinetic parameter values obtained for nitrate were higher than for nitrite as electron acceptor. Zero-order models were better adjusted to profiles obtained for suspended cell reactors, whereas first-order models were more adequate for immobilized cell reactors. However, in the latter, mass transfer physical phenomena had a significant effect on kinetics based on biochemical reactions. Results showed that sulfide-oxidizing autotrophic denitrification can be successfully established for low-strength wastewaters and have potential for nitrogen removal from anaerobically pre-treated domestic sewage. PMID:22097054

  18. Factors affecting activated carbon-based catalysts for selective hydrogen sulfide oxidation

    SciTech Connect

    Li, Huixing; Monnell, J.D.; Alvin, M.A.; Vidic, R.D.

    2008-09-01

    The primary product of coal gasification processes is synthesis gas (syngas), a mixture of CO, H2, CO2, H2O and a number of minor components. Among the most significant minor components in syngas is hydrogen sulfide (H2S). In addition to its adverse environmental impact, H2S poisons the catalysts and hydrogen purification membranes, and causes severe corrosion in gas turbines. Technologies that can remove H2S from syngas and related process streams are, therefore, of considerable practical interest. To meet this need, we work towards understanding the mechanism by which prospective H2S catalysts perform in simulated fuel gas conditions. Specifically, we show that for low-temperature gas clean-up (~1408C) using activated carbon fibers and water plays a significant role in H2S binding and helps to prolong the lifetime of the material. Basic surface functional groups were found to be imperative for significant conversion of H2S to daughter compounds, whereas metal oxides (La and Ce) did little to enhance this catalysis. We show that although thermal regeneration of the material is possible, the regenerated material has a substantially lower catalytic and sorption capacity.

  19. Carbon Monoxide, Hydrogen Sulfide, and Nitric Oxide as Signaling Molecules in the Gastrointestinal Tract

    PubMed Central

    Farrugia, Gianrico; Szurszewski, Joseph H.

    2014-01-01

    Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for H2S) smelly gaseous molecules; now they are known to have important signaling functions in the gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric nerves and can regulate the immune system. The pathways that produce nitric oxide (NO) H2S and CO interact—each can inhibit and potentiate the level and activity of the other. However, there are significant differences between these molecules, such as in half-lives; CO is more stable and therefore able to have effects distal to the site of production, whereas NO and H2S are short lived and act only close to sites of production. We review their signaling functions in the luminal gastrointestinal tract and discuss how their pathways interact. We also describe other physiologic functions of CO and H2S and how they might be used as therapeutic agents. PMID:24798417

  20. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. PMID:25772261

  1. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species.

    PubMed

    Hancock, John T; Whiteman, Matthew

    2016-02-01

    Signaling in cells involving reactive compounds is well established. Reactive oxygen species (ROS) and nitric oxide (NO) are known to be extremely influential in the control of a range of physiological responses in many organisms, from animals to plants. Often, their generation is triggered in reaction to stress, and it is common for ROS and NO metabolism to interact to give a coordinated response. Recently, hydrogen sulfide (H2 S) has also been found to be an important signaling molecule, being shown to be involved in vascular tone in animals. Of relevance to respiration, in plants, H2 S has been shown to affect stomatal apertures and the transpiration stream, while, in animals, H2 S has been shown to be a source of electrons for ATP synthesis in mitochondria. However, in signaling, H2 S does not work in isolation, and it is likely that it will interact with both ROS and NO. This may occur at a variety of levels, from influencing the generation of such molecules, interacting directly, or competing for control of downstream signaling events. A full understanding of the impact of this toxic molecule in the control of cells requires all these factors to be taken into account. PMID:25782612

  2. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.

    PubMed

    Sun, Ruimin; Wei, Qiulong; Li, Qidong; Luo, Wen; An, Qinyou; Sheng, Jinzhi; Wang, Di; Chen, Wei; Mai, Liqiang

    2015-09-23

    As an alternative system of rechargeable lithium ion batteries, sodium ion batteries revitalize researchers' interest due to the low cost, abundant sodium resources, and similar storage mechanism to lithium ion batteries. VS4 has emerged as a promising anode material for SIBs due to low cost and its unique linear chains structure that can offer potential sites for sodium storage. Herein, we present the growth of VS4 on reduced graphene oxide (rGO) as SIBs anode for the first time. The VS4/rGO anode exhibits promising performance in SIBs. It delivers a reversible capacity of 362 mAh g(-1) at 100 mA g(-1) and a good rate performance. We also investigate the sodium storage behavior of the VS4/rGO. Different than most transition metal sulfides, the VS4/rGO composite experiences a three-step separation mechanism during the sodiation process (VS4 to metallic V and Na2S, then the electrochemical mechanism is akin to Na-S). The VS4/rGO composite proves to be a promising material for rechargeable SIBs. PMID:26328897

  3. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability?

    PubMed Central

    Whiteman, Matthew; Moore, Philip K

    2009-01-01

    Abstract Hydrogen sulfide (H2S) is a well known and pungent toxic gas that has recently been shown to be synthesised in man from the amino acids cystathionine, homocysteine and cysteine by at least two distinct enzymes; cystathionine-γ-lyase and cystathionine-β-synthase. In the past few years, H2S has emerged as a novel and increasingly important mediator in the cardiovascular system but delineating the precise physiology and pathophysiology of H2S is proving to be complex and difficult to unravel with disparate findings reported with cell types, tissue types and animal species reported. Therefore, in this review we summarize the mechanisms by which H2S has been proposed to regulate blood pressure and cardiac function, discuss the mechanistic discrepancies reported in the literature as well as the therapeutic potential of H2S. We also examine the methods of H2S detection in biological fluids, processes for H2S removal and discuss the reported blood levels of H2S in man and animal models of cardiovascular pathology. We also highlight the complex interaction of H2S with nitric oxide in regulating cardiovascular function in health and disease. PMID:19374684

  4. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Hettich, Robert {Bob} L; Orphan, V

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  5. Hydrogen Sulfide Increases Nitric Oxide Production and Subsequent S-Nitrosylation in Endothelial Cells

    PubMed Central

    Chen, Ping-Ho; Fu, Yaw-Syan; Wang, Yun-Ming; Yang, Kun-Han; Wang, Danny Ling; Huang, Bin

    2014-01-01

    Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid methyl ester (FA-OMe), and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK), and protein kinase B (Akt). By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN) with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation. PMID:24971375

  6. Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat

    PubMed Central

    Anuar, Farhana; Whiteman, Matthew; Siau, Jia Ling; Kwong, Shing Erl; Bhatia, Madhav; Moore, Philip K

    2006-01-01

    The biosynthesis of both nitric oxide (NO) and hydrogen sulfide (H2S) is increased in lipopolysaccharide (LPS)-injected mice and rats but their interaction in these models is not known. In this study we examined the effect of the NO donor, nitroflurbiprofen (and the parent molecule flurbiprofen) on NO and H2S metabolism in tissues from LPS-pretreated rats. Administration of LPS (10 mg kg−1, i.p.; 6 h) resulted in an increase (P<0.05) in plasma TNF-α, IL-1β and nitrate/nitrite (NOx) concentrations, liver H2S synthesis (from added cysteine), CSE mRNA, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO) activity (marker for neutrophil infiltration) and nuclear factor-kappa B (NF-κB) activation. Nitroflurbiprofen (3–30 mg kg−1, i.p.) administration resulted in a dose-dependent inhibition of the LPS-mediated increase in plasma TNF-α, IL-1β and NOx concentration, liver H2S synthesis (55.00±0.95 nmole mg protein−1, c.f. 62.38±0.47 nmole mg protein−1, n=5, P<0.05), CSE mRNA, iNOS, MPO activity and NF-κB activation. Flurbiprofen (21 mg kg−1, i.p.) was without effect. These results show for the first time that nitroflurbiprofen downregulates the biosynthesis of proinflammatory H2S and suggest that such an effect may contribute to the augmented anti-inflammatory activity of this compound. These data also highlight the existence of ‘crosstalk' between NO and H2S in this model of endotoxic shock. PMID:16491094

  7. Surface modifications of steels to improve corrosion resistance in sulfidizing-oxidizing environments

    NASA Astrophysics Data System (ADS)

    Behrani, Vikas

    Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind

  8. Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1989-01-01

    Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.

  9. One-pot synthesis of reduced graphene oxide-cadmium sulfide nanocomposite and its photocatalytic hydrogen production.

    PubMed

    Zeng, Peng; Zhang, Qinggang; Peng, Tianyou; Zhang, Xiaohu

    2011-12-28

    Reduced graphene oxide (RGO)-cadmium sulfide (CdS) nanocomposites were successfully prepared by a one-pot solvothermal process without pretreatment of graphene oxide (GO) and a precipitation process, in which GO needs to be pre-reduced by hydrazine. The as-obtained RGO-CdS nanocomposites were used as photocatalysts for hydrogen production under visible light irradiation, and it was found that the product derived from the one-pot solvothermal process showed much better photoactivity than that from the precipitation method. PMID:22068902

  10. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-07-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  11. 40 CFR 721.6020 - Phosphine, dialkylyphenyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphine, dialkylyphenyl. 721.6020... Substances § 721.6020 Phosphine, dialkylyphenyl. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as phosphine dialkylphenyl (P-83-1023)...

  12. 40 CFR 721.6020 - Phosphine, dialkylyphenyl.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphine, dialkylyphenyl. 721.6020... Substances § 721.6020 Phosphine, dialkylyphenyl. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as phosphine dialkylphenyl (P-83-1023)...

  13. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    NASA Astrophysics Data System (ADS)

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-06-01

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide and ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, 34S, and three 13C species of the DMS-DME and a-type and b-type rotational transitions for the normal, 34S, and two 13C species of the EO-ES. The observed transitions were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)---O and one S---H-C(DME) hydrogen bonds. The barrier height V3 to internal rotation of the "free" methyl group in the DME was determined to be 915.4 (23) wn, which is smaller than that of the DME monomer, 951.72 (70) wn, and larger than that of the DME dimer, 785.4 (52) wn. For the EO-ES complex the observed data were interpreted in the terms of an antiparallel Cs geometry with the EO bound to the ES by two C-H(ES)---O and two S---H-C(EO) hydrogen bonds. We have applied a natural bond orbital (NBO) analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which were closely correlated with the binding energy EB, as found for other related complexes. Y. Niide and M. Hayashi, J. Mol. Spectrosc. 220, 65-79 (2003). Y. Tatamitani, B. Liu, J. Shimada, T. Ogata, P. Ottaviani, A. Maris, W. Caminati, and J. L. Alonso, J. Am. Chem. Soc. 124, 2739-2743 (2002).

  14. Study of the active surface on titanium oxide catalysts for the oxidation of hydrogen sulfide

    SciTech Connect

    Khanmamedov, T.K.; Kalinkin, A.V.; Rakhimova, N.R.

    1989-02-01

    A study was carried out on the change in the composition of a Ti-Mo-W catalyst depending on the conditions for their treatment by H/sub 2/S-SO/sub 2/ and H/sub 2/S-O/sub 2/ gas mixtures, which serve as models for the technological gases in Klaus apparatuses and the direct catalytic oxidation of H/sub 2/S. X-ray photoelectron spectroscopy was used to establish the formation of sulfur as S/sup 2/minus// and S/sup 6+/ on the surface. The presence of S/sup 6+/ along with the changes in E/sub b/ of the electrons in the T-Mo-W catalyst indicates the formation of MoS/sub 2/ and TiO(SO/sub 4/) species.

  15. A classification scheme of oxide sulfides to guide the design of new hole-conducting transparent materials

    NASA Astrophysics Data System (ADS)

    Trimarchi, Giancarlo; Lam, Kanber; Freeman, Arthur; Poeppelmeier, Kenneth; Zunger, Alex

    2013-03-01

    The addition of S to transition metal oxides has been contemplated as a way to overcome the limitations of pure oxides by producing a hybridized O-S band with lighter hole mass and narrower gap. Here, we show that O-S mixing could lead either to a continuous band broadening and an upward shift of the valence bands (``band amalgamation'' scenario) or to the formation of S-localized states deep in the band gap of the host oxide above the O band (``band pinning'' scenario). We survey the La-based oxide sulfides by first-principles methods and we observe the following types of VBM wavefunction in relation to the coordination of the O and S atoms: (i) O and S segregate into separate molecular units; the VBM is preferentially localized on the S units (e.g., LaOCuS). (ii) O and S segregate into separate molecular units; the VBM is delocalized on both O and S units (e.g., (LaO)2SnS3). (iii) O and S are spatially mixed in the lattice; the VBM is preferentially localized on S (e.g., LaGaOS2). (iv) O and S are spatially mixed in the lattice; the VBM is delocalized on both S and O (e.g., LaCrOS2). Thus, selecting the type of anion coordination is a posible route to tune the hole conductivity in oxide sulfides. Funded by the DOE's EFRC for Inverse Design

  16. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  17. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine. PMID:27133282

  18. Zinc oxide nanocubes as a destructive nanoadsorbent for the neutralization chemistry of 2-chloroethyl phenyl sulfide: A sulfur mustard simulant.

    PubMed

    Kiani, Armin; Dastafkan, Kamran

    2016-09-15

    Zinc oxide nanocubes were surveyed for their destructive turn-over to decontaminate 2-chloro ethyl phenyl sulfide, a sulfur mustard simulant. Prior to the reaction, nanocubes were prepared through sol-gel method using monoethanolamine, diethylene glycol, and anhydrous citric acid as the stabilizing, cross linking/structure directing agents, respectively. The formation of nanoscale ZnO, the cubic morphology, crystalline structure, and chemical-adsorptive characteristics were certified by FESEM-EDS, TEM-SAED, XRD, FTIR, BET-BJH, H2-TPR, and ESR techniques. Adsorption and destruction reactions were tracked by GC-FID analysis in which the effects of polarity of the media, reaction time, and temperature on the destructive capability of the surface of nanocubes were investigated and discussed. Results demonstrated that maximum neutralization occurred in n-heptane solvent after 1/2h at 55°C. Kinetic study construed that the neutralization reaction followed the pseudo-second order model with a squared correlation coefficient and rate constant of 0.9904 and 0.00004gmg(-1)s(-1), respectively. Furthermore, GC-MS measurement confirmed the formation of 2-hydroxy ethyl phenyl sulfide (2-HEPS) and phenyl vinyl sulfide (PVS) as neutralization products that together with Bronsted and Lewis acid/base approaches exemplify the role of hydrolysis and elimination mechanisms on the surface of zinc oxide nanocubes. PMID:27309947

  19. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.

    PubMed

    Wakai, Satoshi; Tsujita, Mizuho; Kikumoto, Mei; Manchur, Mohammed A; Kanao, Tadayoshi; Kamimura, Kazuo

    2007-11-01

    Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells. PMID:17986789

  20. Effects of sulfide and low redox potential on the inhibition of nitrous oxide reduction by acetylene in Pseudomonas nautica.

    PubMed

    Jensen, K M; Cox, R P

    1992-09-01

    Membrane introduction mass spectrometry was used to investigate the inhibitory effect of acetylene on the nitrous oxide reductase activity of intact cells of Pseudomonas nautica. We studied the effects of the concentrations of nitrate and sulfide, and the redox potential, which have all been implicated in causing a decrease in the inhibitory effects of acetylene during measurements of denitrification in natural environments. There was no evidence that the concentration of nitrate influenced the effect of acetylene. Lowering the redox potential with the reductant Ti(III)-nitrilotriacetate caused a slight alleviation of acetylene inhibition. Much greater effects at the same redox potential were obtained with concentrations of sulfide in the range 1-10 microM. PMID:1526461

  1. Studies on the regeneration of sulfided iron oxide sorbent with steam-air mixtures. Final technical report

    SciTech Connect

    Tamhankar, S.S.

    1982-10-01

    The work reported here was performed as a continuation of studies conducted previously at West Virginia University (WVU), Department of Chemical Engineering on a hot-fuel-gas desulfurization process using a regenerable iron oxide-silica sorbent. The overall process consists of two stages: the absorption or the H/sub 2/S removal stage and the sorbent regeneration stage. In the absorption stage the iron oxide reacts with H/sub 2/S to form iron sulfide. For regeneration of the sulfided sorbent, various schemes have been proposed. Studies at WVU have been aimed at identifying the important reactions involved in absorption and regeneration stages, elucidating their mechanisms and investigating detailed kinetics. In the first two phases of the study, reactions in H/sub 2/S absorption and in sorbent regeneration by air/SO/sub 2/ were investigated. This report addresses regeneration of the sulfided sorbent using steam-air mixtures. Experiments were conducted in a thermo-gravimetric analyzer (TGA) apparatus. The weight changes were recorded as a function of time during the reactions of iron sulfide (in the presulfided sorbent) with nitrogen-stream and air-steam mixtures. In addition, several solid samples at different conversion levels were anlayzed by LECO sulfur anlaysis technique and by Mossbauer spectroscopy. Based on these results, a reaction mechanism has been postulated. Additional work is necessary to investigate the gas-phase reactions which may be taking place simultaneously in a fixed - or a fluidized-bed reactor, and to formulate the overall reaction scheme. 14 figures, 3 tables.

  2. Kinetic and morphological development of oxide-sulfide scales on iron at 1,073 K

    SciTech Connect

    McAdam, G.; Young, D.J. )

    1992-04-01

    The corrosion behavior of pure iron has been investigated at 1,073 K in controlled gas atmospheres of SO{sub 2}-CO{sub 2}-CO-N{sub 2}. The equilibrium gas compositions were such that: (1) FeS was stable with respect to FeO, (2) FeO was stable with respect to FeS, and (3) only one of the solids was stable with respect to the gas sulfur and oxygen activities. The resultant scale morphologies are discussed along with the observed parabolic corrosion kinetics. It was shown that duplex (oxide plus sulfide) scales could be produced under all three reaction conditions. Careful adjustment of gas compositions permitted comparisons to be made among sets of experiments having (1) the same p{sub s{sub 2}} value but different p{sub so{sub 2}} and p{sub o{sub 2}}values, (2) the same p{sub o{sub 2}} value but different p{sub so{sub 2}} and p{sub s{sub 2}} values, and (3) the same p{sub so{sub 2}}value but different p{sub s{sub 2}} and p{sub o{sub 2}}values. In this way it was confirmed that the reactant species was SO{sub 2} over a wide range of gas compositions, and under conditions in which solid-state diffusion was rate-controlling. The exception was found at very high p{sub s{sub 2}} values, where elemental sulfur was the reactant. Catalysis of the reactant gas demonstrated that the results could be affected by the slow approach to equilibrium of the gas phase.

  3. Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Ma, Qingxin

    2008-04-01

    The experimental determination of rate constants for atmospheric reactions and how these rate constants vary with temperature remain a crucially important part of atmosphere science. In this study, the temperature dependence of the heterogeneous reaction of carbonyl sulfide (COS) on magnesium oxide (MgO) has been investigated using a Knudsen cell reactor and a temperature-programmed reaction apparatus. We found that the adsorption and the heterogeneous reaction are sensitive to temperature. The initial uptake coefficients (gammat(Ini)) of COS on MgO decrease from 1.07 +/- 0.71 x 10-6 to 4.84 +/- 0.60 x 10-7 with the increasing of temperature from 228 to 300 K, and the steady state uptake coefficients (gammat(SS)) increase from 5.31 +/- 0.06 x 10-8 to 1.68 +/- 0.41 x 10-7 with the increasing of temperature from 240 to 300 K. The desorption rate constants (kdes) were also found to increase slightly with the enhancement of temperature. The empirical formula between the uptake coefficients, desorption rate constants and temperature described in the form of Arrhenius expression were obtained. The activation energies for the heterogeneous reaction and desorption of COS on MgO were measured to be 11.02 +/- 0.34 kJ.mol-1 and 6.30 +/- 0.81 kJ.mol-1, respectively. The results demonstrate that the initial uptake of COS on MgO is mainly contributed by an adsorption process and the steady state uptake is due to a catalytic reaction. The environmental implication was also discussed. PMID:18302353

  4. Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico.

    PubMed

    Larkin, J M; Henk, M C

    1996-01-01

    Mats consisting of the large sulfide-oxidizing bacterium, Beggiatoa, were collected from the sediment/water interface at several locations in the Gulf of Mexico. The collection sites were associated with the presence of petroleum hydrocarbons or the microbial breakdown products of the hydrocarbons. The morphologies of the mats varied with the nature of the underlying sediments, and some mats were pigmented either yellow or orange instead of the usual white. At one site, beggiatoas were found that had a diameter of nearly 200 mu m, making them the largest prokaryotic organism known. In filaments with a diameter of over approximately 10 mu m the cytoplasm was restricted to a thin layer immediately underlying the cell membrane, and the majority of the cell consisted of a vacuole with unknown contents. Beggiatoa filaments often rotated as they moved by gliding. Parallel rows of 15 nm diameter pores were found on the surface of the beggiatoas. The pores may have been wound in a spiral fashion around the cell. These pores may be involved in the gliding motility of the bacteria by the motion imparted by the excretion of slime through the pores. Several structures with the typical morphology of prokaryotic cells but lacking a cell wall were found within the vacuolar and cytoplasmic portions of the hollow beggiatoas. Some of these internal "symbionts" ultrastructurally resembled methanotrophic bacteria like those that have been seen in animals taken from vent areas. Other symbionts ultrastructurally resembled autotrophic bacteria with carboxysome-like structures. These internal symbionts may enable the Beggiatoa to grow in different environments on different carbon sources. They also provide important evidence for the endosymbiotic theory of the evolution of internal organelles of eukaryotic organisms. PMID:8820662

  5. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.

    PubMed

    de Livera, Jennifer; McLaughlin, Mike J; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled "reaction cell" experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. PMID:21277005

  6. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, January 1 - March 31, 1996

    SciTech Connect

    1996-12-31

    Research activities and efforts of this research project were concentrated on conducting experiments on initial reaction rates of hydrogen sulfide with the formulated sorbents, and developing a reaction rate equation containing a reaction rate constant in terms of disappearance of H{sub 2}S, a reaction order with respect to hydrogen sulfide, and a reaction order with respect to the TU-24 metal oxide sorbent.

  7. Chiral phosphines in nucleophilic organocatalysis

    PubMed Central

    Xiao, Yumei; Sun, Zhanhu

    2014-01-01

    Summary This review discusses the tertiary phosphines possessing various chiral skeletons that have been used in asymmetric nucleophilic organocatalytic reactions, including annulations of allenes, alkynes, and Morita–Baylis–Hillman (MBH) acetates, carbonates, and ketenes with activated alkenes and imines, allylic substitutions of MBH acetates and carbonates, Michael additions, γ-umpolung additions, and acylations of alcohols. PMID:25246969

  8. Catalytic performance and deactivation of precipitated iron catalyst for selective oxidation of hydrogen sulfide to elemental sulfur in the waste gas streams from coal gasification

    SciTech Connect

    Mashapa, T.N.; Rademan, J.D.; van Vuuren, M.J.J.

    2007-09-15

    The selective oxidation of hydrogen sulfide to elemental sulfur, using a commercial, precipitated silica promoted ferric oxide based catalyst, was investigated in laboratory and pilot-plant reactors. Low levels of hydrogen sulfide (1-3 vol%) can be readily removed, but a continuous slow decrease in catalyst activity was apparent. X-ray photoelectron spectroscopy showed that the loss of activity was due to the formation of ferrous sulfate, which is known to be less active than the ferric oxide. In addition, studies using a model feed showed that the propene and HCN impurities in the plant feed stocks also act as potent catalyst poisons.

  9. Oxidation processes of aromatic sulfides by hydroxyl radicals in colloidal solution of TiO 2 during pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Tojo, Sachiko; Tachikawa, Takashi; Fujitsuka, Mamoru; Majima, Tetsuro

    2004-01-01

    The pulse radiolysis technique has been used to elucidate the oxidation reaction of aromatic sulfides by hydroxyl radicals on the TiO 2 nanoparticles in pH 2 aqueous solution. The hydroxyl radicals generated during the pulse radiolysis of the colloidal TiO 2 aqueous solution were strongly adsorbed on the TiO 2 particles with an apparent association constant ( Kapp) of ˜10 6 M -1. The hydroxyl radicals trapped on the TiO 2 surface exhibit the absorption spectrum with a maximum peak at 370 nm. In order to clear the oxidative ability of this species, the oxidation processes of 4-methylthiophenylmethanol (MTPM) and 2-phenylthioethanol (PTE) in the colloidal TiO 2 aqueous solution have been examined based on the kinetic analysis of the transient absorption.

  10. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    PubMed

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions. PMID:22667349

  11. Synthesis and Microwave Spectra of Simple Phosphines, Possible Components of the Atmospheres of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Guillemin, J. C.; Petitprez, D.; Demaison, J.; Wlodarczak, G.; Mollendal, H.

    The atmospheres of Jupiter and Saturn mainly contain hydrogen (H2), helium (He) and, at a lower concentration, several hydrocarbons like methane (CH4), ethane (H3C-CH3), benzene (C6H6), acetylene (HC≡ CH), butadiyne (HC≡ C-C≡ CH), .... Polyatomic components with a heteroatom are also present: ammonia (NH3), phosphine (PH3), germane (GeH4), arsine (AsH3), dihydrogen sulfide (SH2), ... Laboratory photolysis of these heterocompounds with hydrocarbons leads to numerous products which are, for the two most important parts, adducts (1 + 1 adducts) and oxidized adducts (1 + 1 adducts with the lost of dihydrogen). As a simple example the photolysis of ammonia in the presence of propene leads to two major compounds: the n-propylphosphine (H3C-CH2-CH2-PH2) and the allylphosphine (H2C=CH-CH2-PH2). On the basis of the photoproducts characterized in our lab experiments,1 we recorded the microwave spectra of such phosphines. We report here the MW spectra of allyl- (H2C=CH-CH2-PH2), propargyl- (HC≡ C-CH2-PH2). and allenylphosphine (H2C=C=CH-PH2).2 For these compounds, we observed some rotamers which complicate the spectra but, more importantly, which will complicate their detection in the planetary atmospheres. To continue on this idea, we will also describe the spectra we recently published on a 3-butenyl compound (3-buteneselenol) to show how the high number of rotamers added to many isotopomers highly increases the difficulty to detect such species in planetary atmospheres if they are present. Many studies on the synthesis and recording spectra of various simple germanes, thiols, arsines and phosphines are currently under progress in our laboratories. The particular procedures used to synthesize these unstable or pyrophoric compounds will be described. 1 Adv. Space Res. 1995, 16, 85-92 ; 1997, 19, 1093-1102. 2 Inorg. Chem. 2001, 40, 3719-3724 ; J. Phys. Chem. A 2002, 106, 11481-11487 ; 2003, 107, 1403.

  12. Fourier Transform Microwave Spectra of CO{2}-ETHYLENE Sulfide, CO{2}-ETHYLENE Oxide and CO{2}-PROPYLENE Oxide Complexes

    NASA Astrophysics Data System (ADS)

    Orita, Yukari; Kawashima, Yoshiyuki; Hirota, Eizi

    2010-06-01

    We have previously examined the difference in roles of O and S in structure and dynamics of the CO-ethylene oxide (EO) and CO-ethylene sulfide (ES) complexes. We have extended the investigation to CO{2}-EO and CO{2}-ES for comparison. We have also observed the CO{2}-propylene oxide (PO) complex, which is an important intermediate in the reaction of PO with CO{2} leading to polycarbonate. Both a-type and b-type transitions were observed for the CO{2}-EO and CO{2}-ES, but no c-type transitions were observed at all. We also detected the {34}S and {13}C isotopic species in natural abundance and the species containing {18}OCO and C{18}O% {2}, which were synthesized by burning paper in an {18}O{2} and{% 16}O{2} mixture. By analyzing the observed spectra we concluded the CO{2} moiety of CO{2}-EO and CO{2}-ES located in a plane % prependicular to the three-membered ring and bisecting the COC or CSC angle of EO or ES, respectively, as in the case of CO-EO and CO-ES complexes. An % ab initio MO calculation at the level of MP2/6-311G(d, p) yielded an optimized structure in good agreement with the experimental result. We have derived from the observed spectra the distance, the stretching force constant, and the binding energy of the bonds between the constituents of the CO{2}-EO and CO{2}-ES complexes and have found that the distances of the two complexes were shorter by 0.2Å than those in CO-EO and CO-ES, respectively, and that the intermolecular bonds were two times stronger in the CO{2} complexes than in the corresponding CO complexes. We have concluded from the observed spectra that the CO{2} moiety in CO{2}-PO is located on the PO three-membered ring plane opposite to the methyl group. The constituents in CO{2}-PO were more weakly bound than those in CO{2}-EO and CO{2}-ES. S. Sato, Y. Kawashima, Y. Tatamitani, and E. Hirota, 63rd International Symposium on Molecular Spectroscopy, WF05 (2008).

  13. Sulfide Oxidation in Marine Sedimentary Rocks as a Source of Trace Metals and Sulfate to Urban California Streams

    NASA Astrophysics Data System (ADS)

    Bardsley, A.; Hammond, D. E.; von Bitner, T.

    2013-12-01

    Watersheds in southern Orange County, CA have received regulatory scrutiny for elevated levels of total dissolved solids (TDS) along with cadmium, nickel, and sulfate as threats to in-stream and marine ecology. Multiple source investigations have failed to attribute these chronic contaminants to anthropogenic sources. Patterns of high TDS in the study region's surface waters correlate poorly with landuse and instead appear to follow geologic substrate. Measurements of springs and seeps reveal groundwater pH as low as 4.8, TDS as high as 8700 mg/L, dissolved concentrations of sulfate up to 50 mM, cadmium up to 1.8 uM, selenium up to 2.4 uM, and nickel up to 14.8 uM flowing directly into creeks. We suggest that subsurface oxidation of sulfide in prevalent Neogene marine sedimentary rock formations is the key weathering mechanism behind this phenomenon. Bulk analysis of the Capistrano and other local formations indicates that they are enriched in select trace metals up to two orders of magnitude relative to average crustal abundance, making them a plausible source of contamination to groundwater, and ultimately, surface water. Though carbonate dissolution in these same formations may offset the acidity at some sites, many groundwater samples were substantially undersaturated in calcite and capable of maintaining low pH and high dissolved metals concentration. While sulfide mineral weathering has been invoked as the cause of significant contamination at former mining sites and undeveloped mineralized regions, our findings indicate this same weathering mechanism may have implications for urbanized catchments that contain marine sedimentary units. Sulfide mineral oxidation can result in substantial sulfate loading, acid production and subsequent mobilization of trace metals and other ions from the surrounding rock matrix, leading to high dissolved contaminant levels. To evaluate water and sulfate sources to these high TDS springs, we measured stable isotopes of water and

  14. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  15. Organophosphorus reagents as extractants-part 3. Synergic effect of triphenyl phosphine oxide and bis(diphenyl phosphinyl) alkanes on extraction of iron(III) from thiocyanate medium with 2,4-pentdione.

    PubMed

    Lobana, T S; Bhatia, P K

    1992-06-01

    The extraction of iron(III) from thiocyanate medium was carried out with a synergic combination of 2,4-pentdione (Hacac) and either triphenyl phosphine oxide (Ph(3) PO) or bis (diphenylphosphinyl) alkanes, Ph(2)P(O)(CH(2))(n).P(O)PH(2) [ligand abbreviation, n: dpeO(2), 2; dpbO(2), 4]. Iron(III) was quantitatively separated from its binary mixture with chromium(III), manganese(III), cobalt(II), nickel(II), zinc(II), cadmium(II), mercury(II), lead(II), magnesium(II) and from steel samples. Copper(II) and silver(I) however, interfered. The percentage extraction was 99.0%. The respective extraction constants, K(HA), K(L) or K(syn), for the extracted species, [Fe(NCS)(acac)(2)(H(2)O)] (HA Hacac), Fe(NCS)(3)L(2) [L b Ph(3)PO, dpeO(2) or dpbO(2)], or Fe(NCS)(acac)(2)L were found to be: K(HA), 1.48 x 10(3), K(L), 1.80 x 10(2) (L Ph(3)PO), 2.02 x 10(2) (L dpeO(2) or dpbO(2)) and K(syn), 1.87 x 10(6) (L Ph(3)PO), 2.56 x 10(6) [L dpeO(2) or dpbO(2)]. PMID:18965433

  16. Adhesion of Poly(phenylene sulfide) Resin with Polymeric Film of Triazine Thiol on Aluminum Surface Modified by Anodic Oxidation.

    PubMed

    Chung, Eun Hyuk; Jang, Eun Kyung; Hong, Tae Eun; Kim, Jong Pil; Kim, Hyun Gyu; Jin, Jong Sung; Hyun, Myung Ho; Shin, Dong Su; Bae, Jong-Seong; Jeong, Euh Duck

    2015-01-01

    Various surface modifications have been applied to improve the adhesion properties of aluminum for the cap plate and sealing quality of electrolyte on Li ion batteries. In this study, we have tried to find the effective condition for the polymerization of triazine thiols (TT) on modified aluminum surfaces by anodic aluminum oxide. Characterization of polymerized films on aluminum was explored by scanning electron microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy analysis. Scanning electron microscopy results reveal that meaningful roughness was formed on aluminum surfaces by anodic oxidation. Secondary ion mass spectroscopy analysis results represent that the peel strength was found to depend on film thickness and the composition of the adhesion layer. As a result, Al/PPS (polyphenylene sulfide) resin assemblies developed in this study have superior adhesive property. Therefore, these assemblies might be a viable candidate for a sealing technique for Li ion batteries. PMID:26301310

  17. Iron-Catalyzed Ortho C-H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand.

    PubMed

    Shang, Rui; Ilies, Laurean; Nakamura, Eiichi

    2016-08-17

    Iron-catalyzed C-H functionalization of aromatics has attracted widespread attention from chemists in recent years, while the requirement of an elaborate directing group on the substrate has so far hampered the use of simple aromatic carbonyl compounds such as benzoic acid and ketones, much reducing its synthetic utility. We describe here a combination of a mildly reactive methylaluminum reagent and a new tridentate phosphine ligand for metal catalysis, 4-(bis(2-(diphenylphosphanyl)phenyl)phosphanyl)-N,N-dimethylaniline (Me2N-TP), that allows us to convert an ortho C-H bond to a C-CH3 bond in aromatics and heteroaromatics bearing simple carbonyl groups under mild oxidative conditions. The reaction is powerful enough to methylate all four ortho C-H bonds in benzophenone. The reaction tolerates a variety of functional groups, such as boronic ester, halide, sulfide, heterocycles, and enolizable ketones. PMID:27487172

  18. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles.

    PubMed

    Bharde, Atul A; Parikh, Rasesh Y; Baidakova, Maria; Jouen, Samuel; Hannoyer, Baetrice; Enoki, Toshiaki; Prasad, B L V; Shouche, Yogesh S; Ogale, Satish; Sastry, Murali

    2008-06-01

    The bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (gamma-Fe2O3) and greigite (Fe3S4) under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end products can be tuned by the choice of precursors used. PMID:18454562

  19. Oxidative Addition of Disulfides, Alkyl Sulfides, and Diphosphides to an Aluminum(I) Center.

    PubMed

    Chu, Terry; Boyko, Yaroslav; Korobkov, Ilia; Kuzmina, Lyudmila G; Howard, Judith A K; Nikonov, Georgii I

    2016-09-01

    The aluminum(I) compound NacNacAl (1) reacts with diphenyl disulfide and diethyl sulfide to form the respective four-coordinate bis(phenyl sulfide) complex NacNacAl(SPh)2 (2) and alkyl thiolate aluminum complex NacNacAlEt(SEt) (3). As well, reaction of 1 with tetraphenyl diphosphine furnishes the bis(diphenyl phosphido) complex NacNacAl(PPh2)2 (4). Production of 3 and 4 are the first examples of C(sp(3))-S and R2P-PR2 activation by a main-group element complex. All three complexes were characterized by multinuclear NMR spectroscopy and X-ray crystal structure analysis. Furthermore, a variable-temperature NMR spectroscopic study was undertaken on 4 to study its dynamic behavior in solution. PMID:27529564

  20. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death.

    PubMed

    Valmas, Nicholas; Zuryn, Steven; Ebert, Paul R

    2008-10-30

    Phosphine is the most widely used fumigant for the protection of stored commodities against insect pests, especially food products such as grain. However, pest insects are developing resistance to phosphine and thereby threatening its future use. As phosphine inhibits cytochrome c oxidase (complex IV) of the mitochondrial respiratory chain and reduces the strength of the mitochondrial membrane potential (DeltaPsi(m)), we reasoned that mitochondrial uncouplers should act synergistically with phosphine. The mitochondrial uncouplers FCCP and PCP caused complete mortality in populations of both wild-type and phosphine-resistant lines of Caenorhabditis elegans simultaneously exposed to uncoupler and phosphine at concentrations that were individually nonlethal. Strong synergism was also observed with a third uncoupler DNP. We have also tested an alternative complex IV inhibitor, azide, with FCCP and found that this also caused a synergistic enhancement of toxicity in C. elegans. To investigate potential causes of the synergism, we measured DeltaPsi(m), ATP content, and oxidative damage (lipid hydroperoxides) in nematodes subjected to phosphine-FCCP treatment and found that neither an observed 50% depletion in ATP nor oxidative stress accounted for the synergistic effect. Instead, a synergistic reduction in DeltaPsi(m) was observed upon phosphine-FCCP co-treatment suggesting that this is directly responsible for the subsequent mortality. These results support the hypothesis that phosphine-induced mortality results from the in vivo disruption of normal mitochondrial activity. Furthermore, we have identified a novel pathway that can be targeted to overcome genetic resistance to phosphine. PMID:18755236

  1. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content.

    PubMed

    Sorokin, Dimitry Y; Foti, Mirjam; Pinkart, Holly C; Muyzer, Gerard

    2007-01-01

    Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 10(7) cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov. PMID:17114324

  2. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles.

    PubMed

    Babaahamdi-Milani, Majid; Nezamzadeh-Ejhieh, Alireza

    2016-11-15

    The Ni(II)-Pb(II) exchanged clinoptilolite nanoparticles (NCP) were transformed to corresponding oxides and sulfides via calcination and sulfiding processes, respectively. The obtained catalysts were characterized by XRD, FT-IR, TEM and DRS and used in photodegradation of p-nitrophenol (4-NP) aqueous solution under Hg-lamp irradiation. Results showed considerable increase in activity of the coupled semiconductors with respect to monocomponent one. In NiO-PbO-NCP system, conduction band (CB) of NiO is enough negative for easily migration of photogenerated electrons to CB-PbO level, while such phenomena take place from more negative CB-PbS level to CB-NiS level in NiS-PbS-NCP. These phenomena significantly prevented from electron-hole recombination which increased photocatalytic activity of the coupled semiconductors. Best photodegradation activities obtained by NiO1.3%-PbO14.7%-NCP and NiS2.1%-PbS10.0%-NCP, confirming semiconductors' mass-ratio dependence of the photocatalytic process. The supported coupled semiconductors showed blue shifts in band gap energies with respect to the bulk semiconductors which confirm formation of semiconductors nanoparticles inside the zeolite framework. The highest degradation percentage of 4-NP was obtained at: 0.5gL(-1) photocatalysts, 15mgL(-1) 4-NP at pH 7.5. PMID:27427895

  3. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant.

    PubMed

    Shen, Rong; Kusakabe, Taichi; Yatsu, Tomofumi; Kanno, Yuichiro; Takahashi, Keisuke; Nemoto, Kiyomitsu; Kato, Keisuke

    2016-01-01

    An efficient Pd(II)/Pd⁰-p-benzoquinone/hydroquinone-CuCl₂/CuCl catalyst system was developed that uses environmentally friendly molecular oxygen as the terminal oxidant to catalyze the cyclization-carbonylation-cyclization coupling reaction (CCC-coupling reaction) of (o-alkynyl phenyl) (methoxymethyl) sulfides. PMID:27607997

  4. Facile ligand oxidation and ring nitration in ruthenium complexes derived from a ligand with dicarboxamide-N and phosphine-P donors.

    PubMed

    Fry, Nicole L; Rose, Michael J; Nyitray, Crystal; Mascharak, Pradip K

    2008-12-15

    The reaction of the tetradentate dicarboxamide ligand 1,2-bis-N-[2'(diphenylphosphanyl)benzoyl]diaminobenzene (dppbH(2)) with RuCl(3) in DMF or ethanol results in metal-mediated ligand oxidation and formation of the diamagnetic Ru(II) complex [(dppQ)Ru(Cl)(2)] (1) with N(2)P(2) chromophore. The o-phenylenedicarboxamide portion of the dppb(2-) ligand is oxidized to a o-benzoquinonediimine (bqdi) moiety in [(dppQ)Ru(Cl)(2)]. Presence of oxygen accelerates the ligand oxidation process. Unlike other tetradentate dicarboxamide ligands with pyridine-N, phenolato-O, or thiolato-S donors, dppb(2-) provides stability to the +2 oxidation state of ruthenium and facilitates oxidation of the coordinated ligand frame. Results of spectroscopic and redox studies strongly support the +2 oxidation state of Ru in 1. Exposure of 1 to NO(g) does not lead to formation of any metal nitrosyl; instead, the bqdi ring is nitrated to afford [(NO(2)dppQ)Ru(Cl)(2)] (2). PMID:19006289

  5. Visible-Light-Induced Photoredox Catalysis of Dye-Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides.

    PubMed

    Lang, Xianjun; Zhao, Jincai; Chen, Xiaodong

    2016-04-01

    TiO2 photoredox catalysis has recently attracted much interest for use in performing challenging organic transformations under mild reaction conditions. However, the reaction scheme is hampered by the fact that TiO2 can only be excited by UV light of wavelengths λ shorter than 385 nm. One promising strategy to overcome this issue is to anchor an organic, preferably metal-free dye onto the surface of TiO2 . Importantly, we observed that the introduction of a catalytic amount of the redox mediator TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] ensured the stability of the anchored dye, alizarin red S, thereby resulting in the selective oxidation of organic sulfides with O2 . This result affirms the essential role of the redox mediator in enabling the organic transformations by visible-light photoredox catalysis. PMID:26969891

  6. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    SciTech Connect

    Swanson, R.

    1984-04-10

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range.

  7. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, July 1 - September 30, 1995

    SciTech Connect

    1995-12-31

    Hot-gas desulfurization for the integrated gasification combined cycle process has been investigated by many to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur- absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results. 1 ref., 10 figs., 11 tabs.

  8. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes.

    PubMed

    Wu, Dan; Hu, Qingxun; Liu, Xinhua; Pan, Lilong; Xiong, Qinghui; Zhu, Yi Zhun

    2015-04-30

    Oxidative stress plays a great role in the pathogenesis of heart failure (HF). Oxidative stress results in apoptosis, which can cause the damage of cardiomyocytes. Hydrogen sulfide (H2S), the third gasotransmitter, is a good reactive oxygen species (ROS) scavenger, which has protective effect against HF. Sirtuin-1 (SIRT1) is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that plays a critical role in promoting cell survival under oxidative stress. The purpose of this article is to investigate the interaction between H2S and SIRT1 under oxidative stress in H9c2 cardiomyocytes. Oxidative stress was induced by hydrogen peroxide (H2O2). Treatment with NaSH (25-100 µmol/L) dose-dependently increased the cell viability and improved the cell apoptosis induced by H2O2 in H9c2 cardiomyocytes. The protective effect of NaSH against the apoptosis could be attenuated by SIRT1 inhibitor Ex 527 (10 µmol/L). Treatment with NaSH (100 µmol/L) could increase the expression of SIRT1 in time dependent manner, which decreased by different concentration of H2O2. NaSH (100 µmol/L) increased the cellular ATP level and the expression of ATPase. These effects were attenuated by Ex 527 (10 µmol/L). After NaSH (100 µmol/L) treatment, the decrease in ROS production and the enhancement in SOD, GPx and GST expression were observed. Ex 527 (10 µmol/L) reversed these effects. In conclusion, for the first time, this article can identify antioxidative effects of H2S under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. PMID:25461268

  9. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  10. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated. PMID:27133088

  11. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution.

    PubMed

    Esmaili-Hafshejani, Javad; Nezamzadeh-Ejhieh, Alireza

    2016-10-01

    Photocatalytic activity of the coupled ZnO-CuO and ZnS-CuS semiconductors supported onto clinoptilolite nanoparticles (CNP) and micronized one (CMP) was studied in photodegradation of benzophenone (BP) aqueous solution. The ZnO-CuO/CNP (or MCP) and ZnS-CuS/CNP (or MCP) catalysts were prepared via calcination and sulfiding of their Zn(II)-Cu(II) ion-exchanged samples, respectively. XRD patterns confirmed loading of the mentioned semiconductors onto the zeolite, and nano dimension of the catalysts was confirmed by XRD and TEM results. Typical Tauc plots obtained from UV-vis DRS spectra showed red shifts for the band gap energies of the supported coupled semiconductors with respect to the supported monocomponent ones especially for ZnO/NCP and ZnS/NCP catalysts. Also, in both indirect and direct transitions, these red shifts were more considerable in the oxidic systems with respect to the sulfidic systems. Accordingly, the supported oxidic systems showed better photocatalytic activity than the sulfidic one. In the oxidic systems changing the dose of CuO played important role while in the sulfidic systems ZnS played considerable role in the degradation of BP. In the used systems, CuO and ZnS played the main e/h generators in the oxidic and sulfidic systems, respectively, while ZnO and CuS played the preventer e/h recombination. Based on the results, production of e/h is the rate limiting step in the used systems. The maximum degradation activity of the catalysts was obtained at: 0.12gL(-1) of ZnO0.80-CuO3.18/NCP and 0.10gL(-1) of ZnS1.39-CuS2.88/NCP catalysts, initial BP concentration of 30mgL(-1) at pH 7.5. PMID:27235827

  12. Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs.

    PubMed

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2016-04-01

    Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75μm) and coarse (500 to 1200μm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  13. Characterization of the molecular structure at modified polymer surfaces and polyphenylene sulfide/copper interphases

    SciTech Connect

    Webster, H.F. II.

    1992-01-01

    This research focused on the use of infrared reflection absorption spectroscopy (IRRAS) and x-ray photoelectron spectroscopy (XPS) to investigate the molecular structure of modified and unmodified thin films. The optical constants of polyphenylene sulfide (PPS) were determined and exact optical theory was utilized to simulate spectra for a variety of reflectance techniques. The surface modification of polystyrene, polyphenylene sulfide, and poly(arylene ether) phosphine oxides was also examined. A new technique, variable temperature reflection absorption spectroscopy (VTRAS) was developed as a method to investigate the reorganization of thin PPS films on a variety of substrates. Both the crystallization and melting temperatures could be determined for quenched coatings on a variety of substrates. While degradation under vacuum was not observed on chromium and aluminum surfaces, PPS films on the original ordered state after exposure to temperatures near 300[degrees]C. Spin coated films of polyetherimide were shown to be oriented after spin coating, and the relaxation to a more random state could also be observed by the VTRAS technique. Degradation of PPS films in air was examined and the diffusion of copper species into the bulk of the film with the formation of copper carboxylates was observed. Bonded PPS/copper laminates were investigated and the particular surface chemistry was crucial in determining the peel strength observed. Chemical oxidation with alkaline persulfate solutions resulted in a needle-like surface oxide morphology, and bond strengths were increased by this pretreatment method. The formation of excess cuprous sulfide at the interface was the most probable cause of poor adhesion in these systems. Foil pretreatment by thermal oxidation gave the highest peel strength, and exhibited the lowest amount of interfacial cuprous sulfide.

  14. Pyritic event beds and sulfidized Fe (oxyhydr)oxide aggregates in metalliferous black mudstones of the Paleoproterozoic Talvivaara formation, Finland

    NASA Astrophysics Data System (ADS)

    Virtasalo, Joonas J.; Laitala, Jaakko J.; Lahtinen, Raimo; Whitehouse, Martin J.

    2015-12-01

    The Paleoproterozoic, 2.0-1.9 Ga Talvivaara formation of Finland was deposited during the Shunga Event, a worldwide episode of enhanced accumulation of organic-rich sediments in the aftermath of the Lomagundi-Jatuli carbon isotope excursion. Sulfidic carbonaceous mudstones in the Talvivaara formation contain one of the largest known shale-hosted nickel deposits. In order to gain new insight into this Shungian sedimentary environment, sedimentological, petrographical and in situ S and Fe isotopic microanalyses were carried out on samples representing depositional and early-diagenetic conditions. The event-bedded lithology with tidal signatures in the organic-rich mudstones strongly indicates deposition from predominantly river-delivered mud on a highly-productive coastal area, below storm-wave base. The riverine supply of phosphorus, sulfate and iron supported high primary productivity and resulted in strong lateral and vertical chemical gradients in the nearshore waters with a shallow oxic surface layer underlain by euxinic water. The stratigraphic upper part of the Talvivaara formation contains banded intervals of thin alternating pyrite beds and carbonaceous mudstone beds. The pyrite beds were deposited by seaward excursions of the concentrated, acidic Fe-rich river plume subsequent to droughts or dry seasons, which led to intense pyrite precipitation upon mixing with euxinic waters. δ34S and δ56Fe values of the bedded pyrite (median δ34S = - 10.3 ‰ and δ56Fe = - 0.79 ‰) are consistent with the reaction of dissolved Fe(II) with H2S from bacterial sulfate reduction. Organic-rich clayey Fe-monosulfide-bearing granules were transported from the muddy estuary, and enclosed in Fe (oxyhydr)oxide aggregates that were forming by wave and current reworking in nearshore accumulations of river-delivered iron. The isotopic composition of these presently pyrrhotitic inclusions (median δ34S = - 3.3 ‰ and δ56Fe = - 1.6 ‰) indicates microbial iron reduction. The Fe

  15. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    DOEpatents

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  16. Molecular and biochemical evidence on the protection of cardiomyocytes from phosphine-induced oxidative stress, mitochondrial dysfunction and apoptosis by acetyl-L-carnitine.

    PubMed

    Baghaei, Amir; Solgi, Reza; Jafari, Abbas; Abdolghaffari, Amir Hossein; Golaghaei, Alireza; Asghari, Mohammad Hossein; Baeeri, Maryam; Ostad, Seyed Nasser; Sharifzadeh, Mohammad; Abdollahi, Mohammad

    2016-03-01

    The aim of the present study was to investigate the efficacy of acetyl-L-carnitine (ALCAR) on pathologic changes of mitochondrial respiratory chain activity, ATP production, oxidative stress, and cellular apoptosis/necrosis induced by aluminum phosphide (AlP) poisoning. The study groups included: the Sham that received almond oil only; the AlP that received oral LD50 dose of aluminum; the AC-100, AC-200, and AC-300 which received concurrent oral LD50 dose of AlP and single 100, 200, and 300 mg/kg of ALCAR by intraperitoneal injection. After 24 h, the rats were sacrificed; the heart and blood sample were taken for measurement of biochemical and mitochondrial factors. The results specified that ALCAR significantly attenuated the oxidative stress (elevated ROS and plasma iron levels) caused by AlP poisoning. ALCAR also increased the activity of cytochrome oxidase, which in turn amplified ATP production. Furthermore, flow cytometric assays and caspase activity indicated that ALCAR prohibited AlP-induced apoptosis in cardiomyocytes. PMID:26773361

  17. A Novel Mechanism of Formaldehyde Neurotoxicity: Inhibition of Hydrogen Sulfide Generation by Promoting Overproduction of Nitric Oxide

    PubMed Central

    Zhou, Cheng-Fang; Zhuang, Yuan-Yuan; Zhang, Ping; Gu, Hong-Feng; Hu, Bi

    2013-01-01

    Background Formaldehyde (FA) induces neurotoxicity by overproduction of intracellular reactive oxygen species (ROS). Increasing studies have shown that hydrogen sulfide (H2S), an endogenous gastransmitter, protects nerve cells against oxidative stress by its antioxidant effect. It has been shown that overproduction of nitric oxide (NO) inhibits the activity of cystathionine-beta-synthase (CBS), the predominant H2S-generating enzyme in the central nervous system. Objective We hypothesize that FA-caused neurotoxicity involves the deficiency of this endogenous protective antioxidant gas, which results from excessive generation of NO. The aim of this study is to evaluate whether FA disturbs H2S synthesis in PC12 cells, and whether this disturbance is associated with overproduction of NO. Principal Findings We showed that exposure of PC12 cells to FA causes reduction of viability, inhibition of CBS expression, decrease of endogenous H2S production, and NO production. CBS silencing deteriorates FA-induced decreases in endogenous H2S generation, neurotoxicity, and intracellular ROS accumulation in PC12 cells; while ADMA, a specific inhibitor of NOS significantly attenuates FA-induced decreases in endogenous H2S generation, neurotoxicity, and intracellular ROS accumulation in PC12 cells. Conclusion/Significance Our data indicate that FA induces neurotoxicity by inhibiting the generation of H2S through excess of NO and suggest that strategies to manipulate endogenous H2S could open a suitable novel therapeutic avenue for FA-induced neurotoxicity. PMID:23359814

  18. Photodegradation of dimethyl sulfide (DMS) in natural waters: laboratory assessment of the nitrate-photolysis-induced DMS oxidation.

    PubMed

    Bouillon, René-Christian; Miller, William L

    2005-12-15

    The interaction of sunlight and dissolved chromophoric matter produces reactive chemical species that are significant in the removal of dimethyl sulfide (DMS) in the surface ocean. Using artificial solar radiation, we examined the role of several inorganic components of seawater on the kinetics of NO3- -photolysis-induced DMS removal in aqueous solution. This study strongly suggests that NO3- photolysis products react significantly with DMS in aqueous solution possibly via an electrophilic attack on the electron-rich sulfur atom. This supports previous field observations that indicate that NO3- photolysis has a substantial control on DMS photochemistry in nutrient-rich waters. A key finding of this research is that the oxidation rate of DMS induced by NO3- photolysis is dramatically enhanced in the presence of bromide ion. Moreover, our results suggest that bicarbonate/carbonate ions are involved in free radical production/scavenging processes important for DMS photochemistry. These reactions are pH dependent. We propose that DMS removal by some selective free radicals derived from bromide and bicarbonate/carbonate ion oxidation is a potentially important and previously unrecognized pathway for DMS photodegradation in marine waters. PMID:16475324

  19. Corrosion behavior of an HVOF-sprayed Fe3Al coating in a high-temperature oxidizing/sulfidizing environment

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Shrestha, S.; Harvey, D.

    2005-01-01

    An iron aluminide (Fe3Al) intermetallic coating was deposited onto a F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was examined by electron microscopy and X-ray diffraction and was characterized in terms of oxidation and adhesion. Fe3Al-coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment at 500, 600, 700, and 800DGC for approximately seven days. The gaseous environment consisted of N2-10%CO-5%CO2-2%H2O-0.12%H2S (by volume). All specimens gained mass after exposure to the environment and the mass gains were found to be inversely proportional to temperature increases. Representative specimens exposed at each temperature were cross-sectioned and subjected to examination under a scanning electron microscope (SEM) and X-ray mapping. Results are presented in terms of corrosion weight gain and corrosion product formation. The purpose of the research presented here was to evaluate the effectiveness of an HVOF-sprayed Fe3Al coating in protecting a steel substrate exposed to a fossil energy environment.

  20. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas.

    PubMed

    Krischan, J; Makaruk, A; Harasek, M

    2012-05-15

    Reliable and selective removal of hydrogen sulfide (H(2)S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H(2)S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H(2)S was absorbed from a gas stream containing large amounts of carbon dioxide (CO(2)) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO(3)) and hydrogen peroxide (H(2)O(2)). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H(2)S with H(2)O(2), high H(2)S removal efficiencies were achieved while the CO(2) absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180m(3)/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H(2)S contents in the crude gas. PMID:22440540

  1. Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms

    SciTech Connect

    Rodrigues, A.; Duchesne, J.; Fournier, B.; Durand, B.; Rivard, P.; Shehata, M.

    2012-10-15

    Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damaged concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.

  2. Microbiological Oxidation Of Sulfide Chimney Promoted By Warm Diffusing Flow In CDE Hydrothermal Field In Eastern Lau Spreading Center

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Li, J.; Yang, Q.

    2008-12-01

    A hydrothermal field named as "CDE"(COMRA Discovery Expedition) at 176°11'W, 20° 40'S, about 4 miles south of known ABE hydrothermal field, was discovered by R/V DaYang YiHao in May, 2007. There are amounts of anemones and white microbe mats attached on some pillar sulfide chimneys (from less than one meter to more than 5 meters in height). Some crabs, fishes and microbe mats could be seen in/near chimney groups. Abnormal signatures of turbidity, temperature and CH4 are very strong shown by intensive surveys in deep waters above/near the CDE hydrothermal field by MAPR, CTD and onboard GC analysis of water samplers, respectively. Another prominent characteristics of the chimneys in the CDE is that they are cover with thick oxides/hydroxides crust. It is interesting to notice that there are considerable amounts of Fe oxidant bacteria (FeOB) clones exist in sample of oxide crust according to the phylogenetic analysis by 16S rRNA genes libraries construction. The FeOB clones have higher similarity (>94%) with those known Fe oxidant bacteria such as the genus of Gallionella and Mariprofundus ferrooxydans. In addition, abundant spiral, sheath-like textures known typical sign of FeOB are observed in the samples by Environmental Scanning Electron Microscope (ESEM). Optimum grow temperature of isolations similar to our clones is 20- 35°C. The heat, supporting to colonization of anemones, microbe mats and FeOB with oxides crust, could be supplied by probably neighboring high temperature active venting in the field as there are no visible black or white plumes associated with those video-imaged chimneys during our survey. Another alternative speculation is that those chimneys are warm. After extinction of high temperature venting, diffuse flow with a temperature lower than about 100°C are still active through porous structure in the chimney. The warm chimney provides the ideal habitats of some biologic colonization. In turn, oxidation promoted by FeOB activities makes a

  3. Phosphine photochemistry in Saturn's atmosphere

    NASA Technical Reports Server (NTRS)

    Kaye, J. A.; Strobel, D. F.

    1983-01-01

    The phosphine photochemistry on Saturn is studied with a 1D photochemical model. The PH3 concentration is rapidly depleted with height (scale height 3.5 km) in the upper troposphere. Formation of P, a probable precursor of P4, (a potential red chromophore in the atmosphere), is highly improbable unless the rate constant for the recombination reaction PH + H2 + M yields PH3 + M is less than 10 to the -41st cm exp 6/molecule-squared sec. Coupling of PH3 and hydrocarbon photochemistry, specifically the C2H2 catalyzed photodissociation of CH, is important. Column production rates of the organophosphorus compounds CH3PH2 and HCP of 3 x 10 to the 8th/sq cm sec are predicted, with potentially observable column densities of greater than 1 x 10 to the 17th/sq cm.

  4. Crystal structure of a samarium(III) nitrate chain cross-linked by a bis-carbamoyl­methyl­phosphine oxide ligand

    PubMed Central

    Stoscup, Julie A.; Staples, Richard J.; Biros, Shannon M.

    2014-01-01

    In the title compound poly[aqua­bis­(μ-nitrato-κ4 O,O′:O,O′′)tetra­kis­(nitrato-κ2 O,O′){μ4-tetra­ethyl [(ethane-1,2-diyl)bis(aza­nedi­yl)bis­(2-oxo­ethane-2,1-di­yl)]di­phospho­nate-κ2 O,O′}disamarium(III)], [Sm2(NO3)6(C14H30N2O8P2)(H2O)]n, a 12-coordinate SmIII and a nine-coordinate SmIII cation are alternately linked via shared bis-bidentate nitrate anions into a corrugated chain extending parallel to the a axis. The nine-coordinate SmIII atom of this chain is also chelated by a bidentate, yet flexible, carbamoyl­methyl­phoshine oxide (CMPO) ligand and bears one water mol­ecule. This water mol­ecule is hydrogen bonded to nitrate groups bonded to the 12-coordinate SmIII cation. The CMPO ligand, which lies about an inversion center, links neighboring chains along the c axis, forming sheets parallel to the ac plane. Hydrogen bonds between the amide NH group and metal-bound nitrate anions are also present in these sheets. The sheets are packed along the b axis through only van der Waals inter­actions. PMID:25484648

  5. Crystal structure of a samarium(III) nitrate chain cross-linked by a bis-carbamoyl-methyl-phosphine oxide ligand.

    PubMed

    Stoscup, Julie A; Staples, Richard J; Biros, Shannon M

    2014-10-01

    In the title compound poly[aqua-bis-(μ-nitrato-κ(4) O,O':O,O'')tetra-kis-(nitrato-κ(2) O,O'){μ4-tetra-ethyl [(ethane-1,2-diyl)bis(aza-nedi-yl)bis-(2-oxo-ethane-2,1-di-yl)]di-phospho-nate-κ(2) O,O'}disamarium(III)], [Sm2(NO3)6(C14H30N2O8P2)(H2O)] n , a 12-coordinate Sm(III) and a nine-coordinate Sm(III) cation are alternately linked via shared bis-bidentate nitrate anions into a corrugated chain extending parallel to the a axis. The nine-coordinate Sm(III) atom of this chain is also chelated by a bidentate, yet flexible, carbamoyl-methyl-phoshine oxide (CMPO) ligand and bears one water mol-ecule. This water mol-ecule is hydrogen bonded to nitrate groups bonded to the 12-coordinate Sm(III) cation. The CMPO ligand, which lies about an inversion center, links neighboring chains along the c axis, forming sheets parallel to the ac plane. Hydrogen bonds between the amide NH group and metal-bound nitrate anions are also present in these sheets. The sheets are packed along the b axis through only van der Waals inter-actions. PMID:25484648

  6. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; Sinnet, Brian; Morgenroth, Eberhard; Kaegi, Ralf

    2014-05-01

    Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides. PMID:24678586

  7. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  8. Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excello Shale Member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA

    USGS Publications Warehouse

    Hatch, J.R.; Leventhal, M.S.

    1997-01-01

    A process of early diagenetic partial oxidation of organic matter and sulfides has altered the chemical composition of the Middle Pennsylvanian Excello Shale Member of the Fort Scott Limestone and equivalents in the northern Midcontinent region. This process was identified by comparison of organic carbon contents, Rock-Eval hydrogen indices, organic carbon ??13C and element compositions of core and surface mine samples of the Excello Shale Member with analyses of three other underlying and overlying organic-matter-rich marine shales (offshore shale lithofacies) from southern Iowa, northern Missouri, eastern Kansas and northeastern Oklahoma. The end product of the partial oxidation process is shale with relatively low contents of hydrogen-poor, C13-enriched organic matter, lower contents of sulfur and sulfide-forming elements, and relatively unchanged contents of phosphorus and many trace elements (e.g. Cr, Ni, and V). However, because of lower organic carbon contents, element/organic carbon ratios are greatly increased. The partial oxidation process apparently took place during subaerial exposure of the overlying marine carbonate member (Blackjack Creek Member of the Fort Scott Limestone) following a marine regression when meteoric waters percolated down to the level of the Excello muds allowing oxidation of organic matter and sulfides. This hypothesis is supported by earlier workers, who have identified meteoric carbonate cements within, and soil horizons at the top of the Blackjack Creek Member. The period of oxidation is constrained in that organic matter and sulfides in the Little Osage Shale Member of the Fort Scott Limestone and equivalents (immediately overlying the Blackjack Creek Member) appear unaltered. Similar alteration of other shales in the Middle and Upper Pennsylvanian sections may be local to regional in extent and would depend on the extent and duration of the marine regression and be influenced by local variations in permeability and topography

  9. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    PubMed Central

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2), tungsten oxide (WO3) and indium oxide (In2O3) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500) followed by WO3 (1200) and In2O3 (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2) or oxidizing (NO2) gases. PMID:22291557

  10. Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide.

    PubMed

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO(2)), tungsten oxide (WO(3)) and indium oxide (In(2)O(3)) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H(2)S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of R(air)/R(gas) is given by Cu-SnO(2) films (2500) followed by WO(3) (1200) and In(2)O(3) (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO(2)) or oxidizing (NO(2)) gases. PMID:22291557

  11. A mathematical model for the bacterial oxidation of a sulfide ore concentrate

    SciTech Connect

    Nagpal, S.; Dahlstrom, D. . Dept. of Chemical Engineering); Oolman, T. )

    1994-03-05

    The effect of dilution rate and feed solids concentration on the bacterial leaching of a pyrite/arsenopyrite ore concentrate was studied. A mathematical model was developed for the process based on the steady-state data collected over the range of dilution rates (20 to 110 h) and feed solids concentrations (6 to 18% w/v) studied. A modified Monod model with inhibition by arsenic was used to model bacterial ferrous ion oxidation rates. The model assumes that (1) pyrite and arsenopyrite leaching occurs solely by the action of ferric iron produced from the bacterial oxidation of ferrous iron and (2) bacterial growth rates are proportional to ferrous ion oxidation rate. The equilibrium among the various ionic species present in the leach solution that are likely to have a significant effect on the bioleach process were included in the model.

  12. A mathematical model for the bacterial oxidation of a sulfide ore concentrate.

    PubMed

    Nagpal, S; Dahlstrom, D; Oolman, T

    1994-03-01

    The effect of dilution rate and feed solids concentration on the bacterial leaching of a pyrite/arsenopyrite ore concentrate was studied. A mathematical model was developed for the process based on the steady-state data collected over the range of dilution rates (20 to 110 h) and feed solids concentrations (6 to 18% w/v) studied. A modified Monod model with inhibition by arsenic was used to model bacterial ferrous ion oxidation rates. The model assumes that (i) pyrite and arsenopyrite leaching occurs solely by the action of ferric iron produced from the bacterial oxidation of ferrous iron and (ii) bacterial growth rates are proportional to ferrous ion oxidation rate. The equilibrium among the various ionic species present in the leach solution that are likely to have a significant effect on the bioleach process were included in the model. (c) 1994 John Wiley & Sons, Inc. PMID:18615718

  13. A Novel Acidimicrobium Species in Continuous Cultures of Moderately Thermophilic, Mineral-Sulfide-Oxidizing Acidophiles▿

    PubMed Central

    Cleaver, Adam A.; Burton, Nicolas P.; Norris, Paul R.

    2007-01-01

    A novel species of Acidimicrobium appeared to be the predominant ferrous iron oxidizer in a mixed culture that effected the continuous, efficient extraction of nickel from a mineral concentrate at 49°C, but it was not isolated in pure culture. It outcompeted Acidimicrobium ferrooxidans, which was expected to have a major role in iron oxidation in reactors gassed with air, and was outnumbered at 49°C only by the sulfur-oxidizing Acidithiobacillus caldus. Sulfobacillus species were expected to compete with Acidimicrobium species when culture aeration was enriched with carbon dioxide, but they were a minor component of the populations with and without this enrichment. Sulfobacillus thermosulfidooxidans replaced the Acidimicrobium species and Acidithiobacillus caldus when the temperature was increased to 55°C. PMID:17468267

  14. Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific Ocean ▿ †

    PubMed Central

    Ver Eecke, Helene C.; Kelley, Deborah S.; Holden, James F.

    2009-01-01

    The abundances of hyperthermophilic heterotrophs, methanogens, and autotrophic reducers of amorphous Fe(III) oxide in 18 samples of deep-sea hydrothermal vent sulfide chimneys of the Endeavour Segment were measured. The results indicate that conditions favor the growth of iron reducers toward the interiors of these deposits and that of heterotrophs toward the outer surfaces near high-temperature polychaete worms (Paralvinella sulfincola). PMID:18978076

  15. Oxidation rate of iron sulfides as affected by surface area, morphology, oxygen concentration and autotrophic bacteria

    SciTech Connect

    Pugh, C.E.

    1984-05-01

    The relationship between surface area and rate of oxidation of Fe sulphides (pyrite and marcasite) separated from Texas lignite was studied. The reaction kinetics with respect to Fe sulphide morphology and particle size were evaluated. The oxygen concentration and the presence of autotrophic Fe and S-oxidizing bacteria (thiobacillus ferro-oxidans) on the rate of oxidation were also evaluated. The formation of sulphate from Fe sulphide was selected to measure the rate of oxidation. Relative reaction rates for different morphological forms of Fe sulphide were: marcasite > framboidal pyrite > massive pyrite. As the surface area of pyrite doubled, reaction rate increased by a factor of 1.5. Sulphate production for the 5 to 2 ..mu..m fraction was twice that of the 50 to 20 ..mu..m fraction. Reaction rate was approximately fivefold greater for non-inoculated treatments at 20% O/sub 2/ compared with 0% O/sub 2/ and was approximately ninefold greater for the same treatment inoculated with T. ferro-oxidans.

  16. AC Conduction and Time-Temperature Superposition Scaling in a Reduced Graphene Oxide-Zinc Sulfide Nanocomposite.

    PubMed

    Chakraborty, Koushik; Das, Poulomi; Chakrabarty, Sankalpita; Pal, Tanusri; Ghosh, Surajit

    2016-05-18

    We report, herein, the results of an in depth study and concomitant analysis of the AC conduction [σ'(ω): f=20 Hz to 2 MHz] mechanism in a reduced graphene oxide-zinc sulfide (RGO-ZnS) composite. The magnitude of the real part of the complex impedance decreases with increase in both frequency and temperature, whereas the imaginary part shows an asymptotic maximum that shifts to higher frequencies with increasing temperature. On the other hand, the conductivity isotherm reveals a frequency-independent conductivity at lower frequencies subsequent to a dispersive conductivity at higher frequencies, which follows a power law [σ'(ω)∝ω(s) ] within a temperature range of 297 to 393 K. Temperature-independent frequency exponent 's' indicates the occurrence of phonon-assisted simple quantum tunnelling of electrons between the defects present in RGO. Finally, this sample follows the "time-temperature superposition principle", as confirmed from the universal scaling of conductivity isotherms. These outcomes not only pave the way for increasing our elemental understanding of the transport mechanism in the RGO system, but will also motivate the investigation of the transport mechanism in other order-disorder systems. PMID:26864678

  17. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    PubMed

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. PMID:27083071

  18. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    PubMed

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams. PMID:26829048

  19. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    PubMed

    Ng, K Y; Kamimura, K; Sugio, T

    2000-01-01

    When incubated under anaerobic conditions, five strains of Thiobacillus ferrooxidans tested produced hydrogen sulfide (H2S) from elemental sulfur at pH 1.5. However, among the strains, T. ferrooxidans NASF-1 and AP19-3 were able to use both elemental sulfur and tetrathionate as electron acceptors for H2S production at pH 1.5. The mechanism of H2S production from tetrathionate was studied with intact cells of strain NASF-1. Strain NASF-1 was unable to use dithionate, trithionate, or pentathionate as an electron acceptor. After 12 h of incubation under anaerobic conditions at 30 degrees C, 1.3 micromol of tetrathionate in the reaction mixture was decomposed, and 0.78 micromol of H2S and 0.6 micromol of trithionate were produced. Thiosulfate and sulfite were not detected in the reaction mixture. From these results, we propose that H2S is produced at pH 1.5 from tetrathionate by T. ferrooxidans NASF-1, via the following two-step reaction, in which AH2 represents an unknown electron donor in NASF-1 cells. Namely, tetrathionate is decomposed by tetrathionate-decomposing enzyme to give trithionate and elemental sulfur (S4O6(2-)-->S3O6(2-) + S(o), Eq. 1), and the elemental sulfur thus produced is reduced by sulfur reductase using electrons from AH2 to give H2S (S(o) + AH2-->H2S + A, Eq. 2). The optimum pH and temperature for H2S production from tetrathionate under argon gas were 1.5 and 30 degrees C, respectively. Under argon gas, the H2S production from tetrathionate stopped after 1 d of incubation, producing a total of 2.5 micromol of H2S/5 mg protein. In contrast, under H2 conditions, H2S production continued for 6 d, producing a total of 10.0 micromol of H2S/5 mg protein. These results suggest that electrons from H2 were used to reduce elemental sulfur produced as an intermediate to give H2S. Potassium cyanide at 0.5 mM slightly inhibited H2S production from tetrathionate, but increased that from elemental sulfur 3-fold. 2,4-Dinitrophenol at 0.05 mM, carbonylcyanide

  20. Quantum Mechanics/Molecular Mechanics Studies on the Sulfoxidation of Dimethyl Sulfide by Compound I and Compound 0 of Cytochrome P450: Which Is the Better Oxidant?

    NASA Astrophysics Data System (ADS)

    Porro, Cristina S.; Sutcliffe, Michael J.; de Visser, Sam P.

    2009-06-01

    The cytochromes P450 are ubiquitous enzymes that are involved in key metabolizing processes in the body through the monoxygenation of substrates; however, their active oxidant is elusive. There have been reports that implicate that two oxidants, namely, the iron(IV)-oxo porphyrin cation radical (compound I) and the iron(III)-hydroperoxo complex (compound 0), both act as oxidants of sulfoxidation reactions, which contrasts theoretical studies on alkene epoxidation by compounds I and 0 that implicated compound 0 as a sluggish oxidant. To resolve this controversy and to establish the potency of compound I and compound 0 in sulfoxidation reactions, we have studied dimethyl sulfide sulfoxidation by both oxidants using the quantum mechanics/molecular mechanics (QM/MM) technique on cytochrome P450 enzymes and have set up a model of two P450 isozymes: P450cam and P450BM3. The calculations support earlier gas-phase density functional theory modeling and show that compound 0 is a sluggish oxidant that is unable to compete with compound I. Furthermore, compound I is shown to react with dimethyl sulfide via single-state reactivity on a dominant quartet spin state surface.

  1. Hydrogen sulfide modulates sub-cellular susceptibility to oxidative stress induced by myocardial ischemic reperfusion injury.

    PubMed

    Ansari, Shakila Banu; Kurian, Gino A

    2016-05-25

    In this study, we compared the impact of H2S pre (HIPC) and post-conditioning (HPOC) on oxidative stress, the prime reason for myocardial ischemia reperfusion injury (I/R), in different compartments of the myocardium, such as the mitochondria beside its subpopulations (interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria) and microsomal fractions in I/R injured rat heart. The results demonstrated that compared to I/R rat heart, HIPC and HPOC treated hearts shows reduced myocardial injury, enhanced antioxidant enzyme activities and reduced the level of TBARS in different cellular compartments. The extent of recovery (measured by TBARS and GSH levels) in subcellular fractions, were in the following descending order: microsome > SSM > IFM in both HIPC and HPOC. In summary, oxidative stress mediated mitochondrial dysfunction, one of the primary causes for I/R injury, was partly recovered by HIPC and HPOC treatment, with significant improvement in SSM fraction compared to the IFM. PMID:27041072

  2. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms

    PubMed Central

    Kühl, Michael; Jørgensen, Bo Barker

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively. PMID:16348687

  3. Selenium Sulfide

    MedlinePlus

    Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium sulfide usually is used twice a week for the first ... it is irritating. Rinse off all of the lotion.Do not use this medication on children younger ...

  4. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation.

    PubMed

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu; Jensen, Frank B; Thiel, Bonnie; Evans, Alina L; Kindberg, Jonas; Fröbert, Ole; Stuehr, Dennis J; Kevil, Christopher G; Fago, Angela

    2014-08-01

    During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears. PMID:24909614

  5. Mechanistic chemical perspective of hydrogen sulfide signaling.

    PubMed

    Nagy, Péter

    2015-01-01

    Hydrogen sulfide is now a well-appreciated master regulator in a diverse array of physiological processes. However, as a consequence of the rapid growth of the area, sulfide biology suffers from an increasing number of controversial observations and interpretations. A better understanding of the underlying molecular pathways of sulfide's actions is key to reconcile controversial issues, which calls for rigorous chemical/biochemical investigations. Protein sulfhydration and coordination/redox chemical interactions of sulfide with heme proteins are the two most extensively studied pathways in sulfide biochemistry. These pathways are important mediators of protein functions, generate bioactive sulfide metabolites, contribute to sulfide storage/trafficking and carry antioxidant functions. In addition, inorganic polysulfides, which are oxidative sulfide metabolites, are increasingly recognized as important players in sulfide biology. This chapter provides an overview of our mechanistic perspective on the reactions that govern (i) sulfide's bioavailability (including the delicate enzyme machineries that orchestrate sulfide production and consumption and the roles of the large sulfide-storing pools as biological buffers), (ii) biological significance and mechanisms of persulfide formation (including the reduction of disulfides, condensation with sulfenic acids, oxidation of thiols with polysulfides and radical-mediated pathways), (iii) coordination and redox chemical interactions of sulfide with heme proteins (including cytochrome c oxidase, hemoglobins, myoglobins and peroxidases), and (iv) the chemistry of polysulfides. PMID:25725513

  6. Hydrogen Sulfide Regulates Ca2+ Homeostasis Mediated by Concomitantly Produced Nitric Oxide via a Novel Synergistic Pathway in Exocrine Pancreas

    PubMed Central

    Moustafa, Amira

    2014-01-01

    Abstract Aim: The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca2+ homeostasis in rat pancreatic acini. Results: Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. The NaHS-induced [Ca2+]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca2+ but was abolished by thapsigargin, indicating that both Ca2+ entry and Ca2+ release contributed to the increase. The [Ca2+]i increase was markedly inhibited in the presence of NG-monomethyl L-arginine or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), and diaminofluorescein-2/diaminofluorescein-2 triazole (DAF-2/DAF-2T) fluorometry demonstrated that nitric oxide (NO) was also produced by H2S in a dose-dependent manner with an EC50 of 64.8 μM, indicating that NO was involved in the H2S effect. The H2S-induced [Ca2+]i increase was inhibited by pretreatment with U73122, xestospongin C, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, KT5823, and GP2A, indicating that phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, soluble guanylate cyclase (sGC), protein kinase G (PKG), and Gq-protein play roles as intermediate components in the H2S-triggered intracellular signaling. Innovation: To our knowledge, our study is the first one highlighting the effect of H2S on intracellular Ca2+ dynamics in pancreatic acinar cells. Moreover, a novel cascade was presumed to function via the synergistic interaction between H2S and NO. Conclusion: We conclude that H2S affects [Ca2+]i homeostasis that is mediated by H2S-evoked NO production via an endothelial nitric oxide synthase (eNOS)-NO-sGC-cyclic guanosine monophosphate-PKG-Gq-protein-PLC-IP3 pathway to induce Ca2+ release, and this pathway is identical to the one we recently proposed for a sole effect of NO and the two gaseous molecules synergistically function to regulate Ca2+ homeostasis

  7. Solution Processing of Cadmium Sulfide Buffer Layer and Aluminum-Doped Zinc Oxide Window Layer for Thin Films Solar Cells

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Islam, Mohammad; Achour, Amine; Hayat, Ansar; Ahsan, Bilal; Rasheed, Haroon; Salam, Shahzad; Mujahid, Mohammad

    2014-07-01

    Cadmium sulfide (CdS) and aluminum-doped zinc oxide (Al:ZnO) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al:ZnO thin films were produced using chemical bath deposition (CBD) and sol-gel technique, respectively. For CBD CdS, the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12-17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS) to 3.76 eV along with a shift in the absorption edge toward 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al:ZnO films prepared via spin coating of precursor sols containing 0.90-1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is 2.7 × 10-4 Ω ṡ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

  8. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots

    PubMed Central

    Chen, Juan; Wang, Wen-Hua; Wu, Fei-Hua; He, En-Ming; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K+/Na+ balance by decreasing the net K+ efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K+ uptake system (HvHAK4). H2S and NO maintained the lower Na+ content in the cytoplast by increasing the amount of PM H+-ATPase, the transcriptional levels of PM H+-ATPase (HvHA1) and Na+/H+ antiporter (HvSOS1). H2S and NO modulated Na+ compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na+/H+ antiporter (HvVNHX2) and H+-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na+/H+ antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal. PMID:26213372

  9. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    PubMed

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-01

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. PMID:26212441

  10. Sulfide Oxidation by O2: Synthesis, Structure and Reactivity of Novel Sulfide-Incorporated Fe(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Siegler, Maxime A.

    2013-01-01

    The unsymmetrical iron(II) bis(imino)pyridine complexes [FeII(LN3SMe)(H2O)3](OTf)2 (1), and [FeII(LN3SMe)Cl2] (2) were synthesized and their reactivity with O2 was examined. Complexes 1 and 2 were characterized by single crystal X-ray crystallography, LDI-MS, 1H-NMR and elemental analysis. The LN3SMe ligand was designed to incorporate a single sulfide donor and relies on the bis(imino)pyridine scaffold. This scaffold was selected for its ease of synthesis and its well-precedented ability to stabilize Fe(II) ions. Complexes 1 and 2 ware prepared via a metal-assisted template reaction from the unsymmetrical pyridyl ketone precursor 2-(O=CMe)-6-(2,6-(iPr2-C6H3N=CMe)-C5H3N. Reaction of 1 with O2 was shown to afford the S-oxygenated sulfoxide complex [Fe(LN3S(O)Me)(OTf)]2+(3), whereas compound 2, under the same reaction conditions, afforded the corresponding sulfone complex [Fe(LN3S(O2)Me)Cl]2+ (4). PMID:23878411

  11. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    NASA Astrophysics Data System (ADS)

    Huang, Liangliang; Seredych, Mykola; Bandosz, Teresa J.; van Duin, Adri C. T.; Lu, Xiaohua; Gubbins, Keith E.

    2013-11-01

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  12. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    SciTech Connect

    Huang, Liangliang; Gubbins, Keith E.; Seredych, Mykola; Bandosz, Teresa J.; Duin, Adri C. T. van; Lu, Xiaohua

    2013-11-21

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H{sub 2}S and H{sub 2}O/H{sub 2}S mixtures on GO materials and compare the results with experiment. We find that H{sub 2}S molecules dissociate on the carbonyl functional groups, and H{sub 2}O, CO{sub 2}, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H{sub 2}O/H{sub 2}S mixtures, H{sub 2}O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H{sub 2}S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  13. Water Splitting and CO2 Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO4, and a Reduced Graphene Oxide Electron Mediator.

    PubMed

    Iwase, Akihide; Yoshino, Shunya; Takayama, Tomoaki; Ng, Yun Hau; Amal, Rose; Kudo, Akihiko

    2016-08-17

    Metal sulfides are highly active photocatalysts for water reduction to form H2 under visible light irradiation, whereas they are unfavorable for water oxidation to form O2 because of severe self-photooxidation (i.e., photocorrosion). Construction of a Z-scheme system is a useful strategy to split water into H2 and O2 using such photocorrosive metal sulfides because the photogenerated holes in metal sulfides are efficiently transported away. Here, we demonstrate powdered Z-schematic water splitting under visible light and simulated sunlight irradiation by combining metal sulfides as an H2-evolving photocatalyst, reduced graphene oxide (RGO) as an electron mediator, and a visible-light-driven BiVO4 as an O2-evolving photocatalyst. This Z-schematic photocatalyst composite is also active in CO2 reduction using water as the sole electron donor under visible light. PMID:27459021

  14. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m

    SciTech Connect

    Kanagawa, T.; Mikami, E.

    1989-03-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  15. Animal adaptations for tolerance and exploitation of poisonous sulfide.

    PubMed

    Grieshaber, M K; Völkel, S

    1998-01-01

    Many aquatic animal species can survive sulfide exposure to some extent through oxidation of the sulfide, which results mainly in thiosulfate. In several species, sulfide oxidation is localized in the mitochondria and is accompanied by ATP synthesis. In addition, blood-based and intracellular compounds can augment sulfide oxidation. The formation of thiosulfate requires oxygen, which results in an increase in oxygen consumption of some species. If not all sulfide is detoxified, cytochrome C oxidase is inhibited. Under these conditions, a sulfide-dependent anaerobic energy metabolism commences. PMID:9558453

  16. Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine

    PubMed Central

    Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

    2000-01-01

    Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

  17. Field method for sulfide determination

    SciTech Connect

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  18. Evaluation of ferric oxide and ferric citrate for their effects on fermentation, production of sulfide and methane, and abundance of select microbial populations using in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2016-07-01

    This study systematically evaluated the effect of ferric iron on sulfate reduction to sulfide, feed digestion and fermentation, methane production, and populations of select ruminal microbes using in vitro rumen cultures. Ferric oxide (Fe2O3) and ferric citrate (C6H5FeO7) at six concentrations (0, 25, 50, 100, 150, and 200mg/L as Fe(3+)) were tested. Ferric iron decreased production of both H2S gas in culture headspace (up to 71.9%) and aqueous sulfide (up to 80.8%), without adversely affecting other fermentation parameters, with ferric citrate being more effective than ferric oxide. Total archaeal population was increased by ferric citrate, but methane production was not affected significantly. The population of sulfate reducing bacteria was affected differently by ferric oxide than by ferric citrate. The results of this study could guide future in vivo studies to develop effective solutions to abate sulfur-associated polioencephalomalacia in cattle fed high-sulfur diet such as dried distiller's grains with solubles. PMID:27043055

  19. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae).

    PubMed

    Ashitani, T; Garboui, S S; Schubert, F; Vongsombath, C; Liblikas, I; Pålsson, K; Borg-Karlson, A-K

    2015-12-01

    Hyptis suaveolens (Lamiaceae), a plant traditionally used as a mosquito repellent, has been investigated for repellent properties against nymphs of the tick Ixodes ricinus. Essential oils and volatile compounds of fresh and dried leaves, from plants originating from Laos and Guinea-Bissau, were identified by GC-MS and tested in a tick repellency bioassay. All the essential oils were strongly repellent against the ticks, even though the main volatile constituents differed in their proportions of potentially tick repellent chemicals. (+)/(-)-sabinene were present in high amounts in all preparations, and dominated the emission from dry and fresh leaves together with 1,8-cineol and α-phellandrene. 1,8-Cineol and sabinene were major compounds in the essential oils from H. suaveolens from Laos. Main compounds in H. suaveolens from Guinea-Bissau were (-)-sabinene, limonene and terpinolene. Among the sesquiterpene hydrocarbons identified, α-humulene exhibited strong tick repellency (96.8 %). Structure activity studies of oxidation or sulfidation products of germacrene D, α-humulene and β-caryophyllene, showed increased tick repellent activity: of mint sulfide (59.4 %), humulene-6,7-oxide (94.5 %) and caryophyllene-6,7-oxide (96.9 %). The substitution of oxygen with sulfur slightly lowered the repellency. The effects of the constituents in the oils can then be regarded as a trade off between the subsequently lower volatility of the sesquiterpene derivatives compared to the monoterpenes and may thus increase their potential usefulness as tick repellents. PMID:26385208

  20. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    PubMed

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  1. CYTOGENETIC EFFECTS OF PHOSPHINE INHALATION BY RODENTS

    EPA Science Inventory

    Phosphine (PH3) is a highly toxic grain fumigant that can be produced from the reaction of metal phosphides with water. o determine the in vivo cytogenetic effects of inhalation of PH3, male CD-1 mice were exposed to either 0, 5, 10, or 15 ppm target concentrations of PH3 for 6 h...

  2. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes*

    PubMed Central

    Lee, Hak Joo; Feliers, Denis; Mariappan, Meenalakshmi M.; Sataranatarajan, Kavithalakshmi; Choudhury, Goutam Ghosh; Gorin, Yves; Kasinath, Balakuntalam S.

    2015-01-01

    Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). Nω-Nitro-l-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1

  3. Partial Molar Volumes of Components and Species in O-S-Fe-Ni Oxide and Sulfide Liquids

    NASA Astrophysics Data System (ADS)

    Kress, V. C.

    2007-12-01

    High-quality thermochemical models are now available for sulfide liquids at one bar pressure. An accurate description of the volume mixing properties of these liquids is required in order to apply these one-bar models to important problems at elevated pressure, including sulfide-hosted ore formation, sulfur cycling in convergent margin settings and core formation. Our experimental data have been combined with select density data from other laboratories to calibrate a comprehensive model for density and partial molar volumes of liquids in the O-S- Fe-Ni system. Our results indicate significant negative deviation from linear mixing across the Fe-S, Ni-S and Cu-S binaries. This result is in qualitative agreement with those from prior studies. In the context of associated homogeneous speciation models for sulfide liquids (Kress, 2000, 2007), this negative volume of mixing can be interpreted as a strongly negative volume of reaction for the formation for intermediate melt species from end member elemental components (Δ Vf). Our regression yields Δ Vf values of -6.2, -9.4 and -9.1 cc/mol for FeS, NiS and CuS respectively. There is insufficient oxygen in experimental liquids to resolve a composition dependence for v¯O, but the unrealistic negative regressed value for oxygen partial molar volume suggests a negative Δ Vf for FeO and FeO1.5. Partial molar volumes of Fe, Ni and Cu liquid species are calculated from Nash and Steinemann (1995). All other v¯i are assumed to be linear mixtures of component species volumes. This assumption also implies a moderate negative Δ Vf for the species in question. The resulting model reproduces experimental densities from our laboratory with a 3.6% average error. This is comparable to the estimated measurement error. The larger 5.1% error for the full data set can be attributed to lower precision in some of the other studies and the effects of inter-laboratory error. The sulfide volume model can be applied to calculate thermochemical

  4. Metabolism in the Uncultivated Giant Sulfide-Oxidizing Bacterium Thiomargarita Namibiensis Assayed Using a Redox-Sensitive Dye

    NASA Astrophysics Data System (ADS)

    Bailey, J.; Flood, B.; Ricci, E.

    2014-12-01

    The colorless sulfur bacteria are non-photosynthetic chemolithotrophs that live at interfaces between nitrate, or oxygen, and hydrogen sulfide. In sulfidic settings such as cold seeps and oxygen minimum zones, these bacteria are thought to constitute a critical node in the geochemical cycling of carbon, sulfur, nitrogen, and phosphorous. Many of these bacteria remain uncultivated and their metabolisms and physiologies are incompletely understood. Thiomargarita namibiensis is the largest of these sulfur bacteria, with individual cells reaching millimetric diameters. Despite the current inability to maintain a Thiomargarita culture in the lab, their large size allows for individual cells to be followed in time course experiments. Here we report on the novel use of a tetrazolium-based dye that measures the flux of NADH production from catabolic pathways via a colorimetric response. Staining with this dye allows for metabolism to be detected, even in the absence of observable cell division. When coupled to microscopy, this approach also allows for metabolism in Thiomargaritato be differentiated from that of epibionts or contaminants in xenic samples. The results of our tetrazolium dye-based assay suggests that Thiomargarita is the most metabolically versatile under anoxic conditions where it appears capable of using acetate, succinate, formate, thiosulfate, citrate, thiotaurine, hydrogen sulfide, and perhaps hydrogen as electron donors. Under hypoxic conditions, staining results suggest the utilization of acetate, citrate, and hydrogen sulfide. Cells incubated under oxic conditions showed the weakest tetrazolium staining response, and then only to hydrogen sulfide and questionably succinate. These initial results using a redox sensitive dye suggest that Thiomargarita is most metabolically versatile under anaerobic and hypoxic conditions. The results of this assay can be further evaluated using molecular approaches such as transcriptomics, as well as provide cultivation

  5. Evidence for Niche Partitioning Revealed by the Distribution of Sulfur Oxidation Genes Collected from Areas of a Terrestrial Sulfidic Spring with Differing Geochemical Conditions

    PubMed Central

    Engel, Annette Summers

    2013-01-01

    The diversity and phylogenetic significance of bacterial genes in the environment has been well studied, but comparatively little attention has been devoted to understanding the functional significance of different variations of the same metabolic gene that occur in the same environment. We analyzed the geographic distribution of 16S rRNA pyrosequences and soxB genes along a geochemical gradient in a terrestrial sulfidic spring to identify how different taxonomic variations of the soxB gene were naturally distributed within the spring outflow channel and to identify possible evidence for altered SoxB enzyme function in nature. Distinct compositional differences between bacteria that utilize their SoxB enzyme in the Paracoccus sulfide oxidation pathway (e.g., Bradyrhizobium, Paracoccus, and Rhodovulum) and bacteria that utilize their SoxB enzyme in the branched pathway (e.g., Chlorobium, Thiothrix, Thiobacillus, Halothiobacillus, and Thiomonas) were identified. Different variations of the soxB genes were present at different locations within the spring outflow channel in a manner that significantly corresponded to geochemical conditions. The distribution of the different soxB gene sequence variations suggests that the enzymes encoded by these genes are functionally different and could be optimized to specific geochemical conditions that define niche space for bacteria capable of oxidizing reduced sulfur compounds. PMID:23220955

  6. Synthesis, Characterization, and Catalytic Activity of Sulfided Silico-Alumino-Titanate (Si-Al-Ti) Mixed Oxides Xerogels Supported Ni-Mo Catalyst

    SciTech Connect

    Al-Adwani, H.A.; Anthony, R.G.; Gardner, T.J.; Thammachote, N.

    1999-02-24

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136-367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 3.6-4.7 nrn. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ti catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  7. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions

    SciTech Connect

    Fowler, T.A.; Crundwell, F.K.

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferroxidans at the same conditions in solution. The extent of leaching of ZnS with Bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, which no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T.ferroxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.

  8. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions.

    PubMed

    Fowler, T A; Crundwell, F K

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  9. Selective Irreversible Inhibition of Neuronal and Inducible Nitric-oxide Synthase in the Combined Presence of Hydrogen Sulfide and Nitric Oxide*

    PubMed Central

    Heine, Christian L.; Schmidt, Renate; Geckl, Kerstin; Schrammel, Astrid; Gesslbauer, Bernd; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C. F.

    2015-01-01

    Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation. PMID:26296888

  10. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies that exploit the properties of silver nanoparticles (Ag-NPs) raises questions concerning the impact of Ag on the environment. Ag-NPs are currently among the most widely used in the nanotechnology industry and the amount released into the environment is expected to increase along with production (1). When present in geochemical systems, Ag-NPs may undergo a variety of changes due to varying redox, pH, and chemical conditions. Expected changes range from surface modification (e.g., oxidation, sulfidation, chloridation etc.) to complete dissolution and re-precipitation. In this context, the focus of our work is on understanding the behavior of synthetic Ag-NPs with different particle sizes under varying conditions relevant to the environment. Sulfidation of Ag-NPs is of particular interest since it among the processes most likely to occur in aqueous systems, in particular under reducing conditions. Three sizes of Ag-NPs coated with polyvinyl pyrrolidone were produced using the polyol process (2) (7 ±1; 20 ±4, and 40 ±9 nm). Batch solutions containing the different Ag-NPs were subsequently reacted with Na2S solutions of different concentrations. The sulfidation process was followed step-wise for 24 hours and the corrosion products formed were characterized by electron microscopy (TEM/SEM), diffraction (XRD), and photo-electron spectroscopy (XPS). Surface charge (pHPZC) of the products formed during this process was also measured, as were changes in solubility and reactivity. Based on experimental observations we infer that the sulfidation process is the result of dissolution-precipitation and find that: (i) acanthite (Ag2S) is formed as a corrosion product; (ii) Ag-NPs aggregation increased with sulfidation rate; (iii) pHPZC increases with the rate of sulfidation; and (iv) the solubility of the corrosion products formed from sulfidation appears lower than that of non-sulfidated Ag-NPs. We observe size-dependent differences in

  11. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  12. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  13. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  14. Perfluoropropenyl-containing phosphines from HFC replacements.

    PubMed

    Brisdon, Alan K; Ali Ghaba, Hana; Beutel, Bernd; Ejgandi, Amina; Egjandi, Amina; Addaraidi, Arij; Pritchard, Robin G

    2015-12-01

    A series of new perfluoropropenyl-containing phosphines of the type R3-nP(E-CF[double bond, length as m-dash]CFCF3)n (R = Ph, iPr, n = 1, 2; R = tBu, n = 2) have been prepared from the reaction of the hydrofluoroolefin Z-CF3CF[double bond, length as m-dash]CFH (HFO-1225ye) with base and the appropriate chlorophosphine, while reaction with Cl2PCH2CH2PCl2 gave (CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2, the first example of a bidentate perfluoroalkenyl-containing phosphine. An alternative route to these phosphines based on the room- or low-temperature deprotonation of CF3CF2CH2F (HFC-236ea) gives mainly the E-isomer, but also a small amount of the Z-isomer, the ratio of which depends on the reaction temperature. All of the phosphines could be readily oxidised with either H2O2 or urea·H2O2, and the phosphine selenides R3-nP(Se)(E-CF[double bond, length as m-dash]CFCF3)n (R = Ph, n = 1,2; R = iPr, n = 1; R = tBu, n = 2) were also prepared. The steric and electronic properties of these ligands were determined based on their platinum(ii), palladium(ii) and molybdenum carbonyl complexes. The crystal structures of (CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2, (CF3CF[double bond, length as m-dash]CF)2P(O)CH2CH2P(O)(CF[double bond, length as m-dash]CFCF3)2, iPr2P(Se)(CF[double bond, length as m-dash]CFCF3)2, trans-[PtCl2{Ph(3-n)P(E-CF[double bond, length as m-dash]CFCF3)n}2] (n = 1 or 2), trans-[PdCl2{R2P(E-CF[double bond, length as m-dash]CFCF3)}2] (R = Ph, iPr) and [Mo(CO)4{(CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2}] are reported. PMID:26212860

  15. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.

    PubMed

    Peng, Shengjie; Han, Xiaopeng; Li, Linlin; Zhu, Zhiqiang; Cheng, Fangyi; Srinivansan, Madhavi; Adams, Stefan; Ramakrishna, Seeram

    2016-03-01

    Exploitation of high-performance anode materials is essential but challenging to the development of sodium-ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g(-1) at 1 A g(-1) ), excellent rate capability (636 mAh g(-1) at 0.1 A g(-1) and 306 mAh g(-1) at 10 A g(-1)), and extraordinarily cycle stability (420 mAh g(-1) at 1 A g(-1) after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high-performance SIBs. PMID:26763142

  16. 4-Toluenesulfonyloxymethyl-(H)-phosphinate: A Reagent for the Introduction of O- and S-Methyl-(H)-phosphinate Moieties.

    PubMed

    Kostov, Ondřej; Páv, Ondřej; Buděšínský, Miloš; Liboska, Radek; Šimák, Ondřej; Petrová, Magdalena; Novák, Pavel; Rosenberg, Ivan

    2016-06-01

    The straightforward synthesis of sodium 4-toluenesulfonyloxymethyl-(H)-phosphinate and (H)-phosphinomethylisothiouronium tosylate as new reagents for the preparation of O- and S-methyl-(H)-phosphinic acid derivatives, respectively, is described. The reactivity of both reagents was demonstrated by the preparation of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in the 5'- and 3'-series and 2',5'-dideoxyribonucleoside-5'-S-methyl-(H)-phosphinates. These compounds represent a new class of monomers compatible with the solid phase synthesis of oligonucleotides by H-phosphonate chemistry, as it was proved with the synthesis of a fully phosphonate heptamer. PMID:27177076

  17. Oxidation of Aryl Diphenylmethyl Sulfides Promoted by a Nonheme Iron(IV)-Oxo Complex: Evidence for an Electron Transfer-Oxygen Transfer Mechanism.

    PubMed

    Barbieri, Alessia; De Carlo Chimienti, Rosemilia; Del Giacco, Tiziana; Di Stefano, Stefano; Lanzalunga, Osvaldo; Lapi, Andrea; Mazzonna, Marco; Olivo, Giorgio; Salamone, Michela

    2016-03-18

    The oxidation of a series of aryl diphenylmethyl sulfides (4-X-C6H4SCH(C6H5)2, where X = OCH3 (1), X = CH3 (2), X = H (3), and X = CF3 (4)) promoted by the nonheme iron(IV)-oxo complex [(N4Py)Fe(IV)═O](2+) occurs by an electron transfer-oxygen transfer (ET-OT) mechanism as supported by the observation of products (diphenylmethanol, benzophenone, and diaryl disulfides) deriving from α-C-S and α-C-H fragmentation of radical cations 1(+•)-4(+•), formed besides the S-oxidation products (aryl diphenylmethyl sulfoxides). The fragmentation/S-oxidation product ratios regularly increase through a decrease in the electron-donating power of the aryl substituents, that is, by increasing the fragmentation rate constants of the radical cations as indicated by a laser flash photolysis (LFP) study of the photochemical oxidation of 1-4 carried out in the presence of N-methoxyphenanthridinium hexafluorophosphate (MeOP(+)PF6(-)). PMID:26886491

  18. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  19. Strained germanium-tin (GeSn) p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide passivation

    NASA Astrophysics Data System (ADS)

    Wang, Lanxiang; Su, Shaojian; Wang, Wei; Gong, Xiao; Yang, Yue; Guo, Pengfei; Zhang, Guangze; Xue, Chunlai; Cheng, Buwen; Han, Genquan; Yeo, Yee-Chia

    2013-05-01

    High-mobility strained Ge0.958Sn0.042 p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide [(NH4)2S] surface passivation were demonstrated. A ˜10 nm thick fully-strained single crystalline GeSn layer was epitaxially grown on Ge (1 0 0) substrate as the channel layer. (NH4)2S surface passivation was performed for the GeSn surface, followed by gate stack formation. Ge0.958Sn0.042 p-MOSFETs with (NH4)2S passivation show decent electrical characteristics and a peak effective mobility of 509 cm2/V s, which is the highest reported peak mobility obtained for GeSn channel p-MOSFETs so far.

  20. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Chen, Taiqiang; Lu, Ting; Chua, Daniel H. C.; Pan, Likun

    2016-01-01

    Layered nickel sulfide (NS)-reduced graphene oxide (RGO) composites are prepared via a simple microwave-assisted method and subsequent annealing in N2/H2 atmosphere. A detailed array of characterization tools are used to study their morphology, structure and electrochemical performance. It was found that these composites exhibit significantly improved sodium-ion storage ability as compared with pure NS under galvanostatic cycling at a specific current of 100 mA g-1 in a potential limitation of 0.005-3.0 V. Furthermore, the composite with the RGO content of 35 wt.% achieves a high maximum reversible specific capacity of about 391.6 mAh g-1 at a specific current of 100 mA g-1 after 50 cycles. These results prove that NS-RGO composites are highly promising when applied directly as anode materials in sodium-ion batteries.

  1. 40 CFR 180.225 - Phosphine; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Phosphine; tolerances for residues. 180.225 Section 180.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.225 Phosphine; tolerances for residues....

  2. Preparation of phosphines through C–P bond formation

    PubMed Central

    Wauters, Iris; Debrouwer, Wouter

    2014-01-01

    Summary Phosphines are an important class of ligands in the field of metal-catalysis. This has spurred the development of new routes toward functionalized phosphines. Some of the most important C–P bond formation strategies were reviewed and organized according to the hybridization of carbon in the newly formed C–P bond. PMID:24991257

  3. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    PubMed

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C. PMID:25844443

  4. Effect of Nitrate on Biogenic Sulfide Production

    PubMed Central

    Jenneman, Gary E.; McInerney, M. J.; Knapp, Roy M.

    1986-01-01

    The addition of 59 mM nitrate inhibited biogenic sulfide production in dilute sewage sludge (10% [vol/vol]) amended with 20 mM sulfate and either acetate, glucose, or hydrogen as electron donors. Similar results were found when pond sediment or oil field brines served as the inoculum. Sulfide production was inhibited for periods of at least 6 months and was accompanied by the oxidation of resazurin from its colorless reduced state to its pink oxidized state. Lower amounts of nitrate (6 or 20 mM) and increased amounts of sewage sludge resulted in only transient inhibition of sulfide production. The addition of 156 mM sulfate to bottles with 59 mM nitrate and 10% (vol/vol) sewage sludge or pond sediment resulted in sulfide production. Nitrate, nitrite, and nitrous oxide were detected during periods where sulfide production was inhibited, whereas nitrate, nitrite, and nitrous oxide were below detectable levels at the time sulfide production began. The oxidation of resazurin was attributed to an increase in nitrous oxide which persisted in concentration of about 1.0 mM for up to 5 months. The numbers of sulfate-reducing organisms decreased from 106 CFU ml−1 sludge to less than detectable levels after prolonged incubation of oxidized bottles. The addition of 10 mM glucose to oxidized bottles after 14.5 weeks of incubation resulted in rereduction of the resazurin and subsequent sulfide production. The prolonged inhibition of sulfide production was attributed to an increase in oxidation-reduction potential due to biogenic production of nitrous oxide, which appeared to have a cytotoxic effect on sulfate-reducing populations. PMID:16347078

  5. Prototypical phosphine complexes of antimony(III).

    PubMed

    Chitnis, Saurabh S; Burford, Neil; McDonald, Robert; Ferguson, Michael J

    2014-05-19

    Complexes of the generic formula [Cln(PR3)mSb]((3-n)+) (n = 1, 2, 3, or 4 and m = 1 or 2) have been prepared featuring [ClSb](2+), [Cl2Sb](1+), Cl3Sb, or [Cl4Sb](1-) as acceptors with one or two phosphine ligands {PMe3, PPh3, PCy3 (Cy = C6H11)}. The solid-state structures of the complexes reveal foundational features that define the coordination chemistry of a lone pair bearing stibine acceptor site. The experimental observations are interpreted with dispersion-corrected density functional theory calculations to develop an understanding of the bonding and structural diversity. PMID:24773563

  6. Communication: Tunnelling splitting in the phosphine molecule.

    PubMed

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2. PMID:27608982

  7. Mechanism of the sulfurisation of phosphines and phosphites using 3-amino-1,2,4-dithiazole-5-thione (xanthane hydride).

    PubMed

    Hanusek, Jirí; Russell, Mark A; Laws, Andrew P; Jansa, Petr; Atherton, John H; Fettes, Kevin; Page, Michael I

    2007-02-01

    Contrary to a previous report, the sulfurisation of phosphorus(III) derivatives by 3-amino-1,2,4-dithiazole-5-thione (xanthane hydride) does not yield carbon disulfide and cyanamide as the additional reaction products. The reaction of xanthane hydride with triphenyl phosphine or trimethyl phosphite yields triphenyl phosphine sulfide or trimethyl thiophosphate, respectively, and thiocarbamoyl isothiocyanate which has been trapped with nucleophiles. The reaction pathway involves initial nucleophilic attack of the phosphorus at sulfur next to the thiocarbonyl group of xanthane hydride followed by decomposition of the phosphonium intermediate formed to products. The Hammett rho-values for the sulfurisation of substituted triphenyl phosphines and triphenyl phosphites in acetonitrile are approximately -1.0. The entropies of activation are very negative (-114+/-15 J mol-1 K-1) with little dependence on solvent which is consistent with a bimolecular association step leading to the transition state. The negative values of DeltaS(not equal) and rho values indicate that the rate limiting step of the sulfurisation reaction is formation of the phosphonium ion intermediate which has an early transition state with little covalent bond formation. The site of nucleophilic attack has been also confirmed using computational calculations. PMID:17252130

  8. Synthesis of magnetic rhenium sulfide composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Naimei; Tu, Weixia

    2009-10-01

    Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe 3O 4 and ReS 2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g -1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.

  9. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  10. Response of sulfide:quinone oxidoreductase to sulfide exposure in the echiuran worm Urechis unicinctus.

    PubMed

    Ma, Yu-Bin; Zhang, Zhi-Feng; Shao, Ming-Yu; Kang, Kyoung-Ho; Shi, Xiao-Li; Dong, Ying-Ping; Li, Jin-Long

    2012-04-01

    Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. In this study, we examined the response of SQR to sulfide exposure (25, 50, and 150 μM) at mRNA, protein, and enzyme activity levels in the body wall and hindgut of the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The results revealed SQR mRNA expression during sulfide exposure in the body wall and hindgut increased in a time- and concentration-dependent manner that increased significantly at 12 h and continuously increased with time. At the protein level, SQR expression in the two tissues showed a time-dependent relationship that increased significantly at 12 h in 50 μM sulfide and 6 h in 150 μM, and then continued to increase with time while no significant increase appeared after 25 μM sulfide exposure. SQR enzyme activity in both tissues increased significantly in a time-dependent manner after 50 μM sulfide exposure. We concluded that SQR expression could be induced by sulfide exposure and that the two tissues studied have dissimilar sulfide metabolic patterns. A U. unicinctus sulfide-induced detoxification mechanism was also discussed. PMID:21997848

  11. Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50‧N East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Toner, B. M.; Fakra, S. C.; Marcus, M. A.; White, S. N.; Thurnherr, A. M.; German, C. R.

    2012-07-01

    Deep-sea hydrothermal plume particles are known to sequester seawater trace elements and influence ocean-scale biogeochemical budgets. The relative importance of biotic versus abiotic oxidation-reduction and other particle-forming reaction, however, and the mechanisms of seawater trace element sequestration remain unknown. Suspended particulate material was collected from a non-buoyant hydrothermal plume by in situ filtration at 9°50‧N East Pacific Rise during a 3-day, 24 sample, time-series. Twenty-three samples were digested for total elemental analysis. One representative sample was selected for particle-by-particle geochemical analyses including elemental composition by X-ray fluorescence, speciation of Fe, S, and C by 1s X-ray absorption near edge structure spectroscopy, and X-ray diffraction. Consistent with past studies, positive linear correlations were observed for P, V, As, and Cr with Fe in the bulk chemistry. Arsenic was associated with both Fe oxyhydroxides and sulfides but not uniformly distributed among either mineral type. Particle aggregation was common. Aggregates were composed of minerals embedded in an organic matrix; the minerals ranged from <20 nm to >10 μm in diameter. The speciation of major mineral forming elements (Fe, Mn, S) was complex. Over 20 different minerals were observed, nine of which were either unpredicted by thermodynamic modeling or had no close match in the thermodynamic database. Sulfur-bearing phases consisted of polysulfides (S6, S8), and metal sulfides (Fe, Cu, Zn, Mn). Four dominant species, Fe oxyhydroxide, Fe monosulfide, pyrrhotite, and pyrite, accounted for >80% of the Fe present. Particulate Mn was prevalent in both oxidized and reduced minerals. The organic matrix was: (1) always associated with minerals, (2) composed of biomolecules, and (3) rich in S. Possible sources of this S-rich organic matter include entrained near vent biomass and in situ production by S-oxidizing microorganisms. These results indicate

  12. Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations.

    PubMed

    Wang, Tianli; Han, Xiaoyu; Zhong, Fangrui; Yao, Weijun; Lu, Yixin

    2016-07-19

    Even though seminal reports on phosphine catalysis appeared in the 1960s, in the last few decades of the past century trivalent phosphines were viewed primarily as useful ligands for transition-metal-mediated processes. The 1990s saw revived interest in using phosphines in organic catalysis, but the key advances in asymmetric phosphine catalysis have all come within the past decade. The uniqueness of phosphine catalysis can be attributed to the high nucleophilicity of the phosphorus atom. In typical phosphine-catalyzed reactions, nucleophilic attacks of the phosphorus atom on electron-deficient multiple bonds create different reactive ylide-type intermediates. When such structurally diverse zwitterionic species react with a variety of suitable substrates, new reaction patterns are often discovered and a diverse array of reactions can be developed. In recent years, substantial progress has been made in the field of asymmetric phosphine catalysis; many new reactions have been discovered, and numerous enantioselective processes have been reported. However, we felt that powerful and versatile phosphine catalysts that can work for a wide range of asymmetric reactions are still lacking. We therefore set our goal to develop a family of easily derived phosphine catalysts that are efficient in asymmetric induction for a broad range of phosphine-mediated transformations. This Account describes our efforts in the past few years on the development of amino acid-based bifunctional phosphines and their applications to enantioselective processes. Building upon our previous success in primary-amine-mediated enamine catalysis, we first established that bifunctional phosphines could be readily prepared from amino acids. In most of our studies, we chose threonine as the key backbone for catalyst development, and threonine-based monoamino acid or dipeptide bifunctional phosphines have displayed remarkable stereochemical control. We began our investigations by demonstrating the

  13. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  14. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation.

    PubMed

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  15. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  16. The hydrogen sulfide releasing compounds ATB-346 and diallyl trisulfide attenuate streptozotocin-induced cognitive impairment, neuroinflammation, and oxidative stress in rats: involvement of asymmetric dimethylarginine.

    PubMed

    Mostafa, Dalia K; El Azhary, Nesrine M; Nasra, Rasha A

    2016-07-01

    Hydrogen sulfide (H2S) has attracted interest as a gaseous mediator involved in diverse processes in the nervous system, particularly with respect to learning and memory. However, its therapeutic potential in Alzheimer disease (AD) is not fully explored. Therefore, the effects of H2S-releasing compounds against AD-like behavioural and biochemical abnormalities were investigated. Memory deficit was induced by intracerberoventicular injection of streptozotocin (STZ, 3 mg·kg(-1)). Animals were randomly assigned into 5 groups (12 rats each): normal control, STZ treated, and 3 drug-treated groups receiving naproxen, H2S-releasing naproxen (ATB-346), and diallyl trisulfide in 20, 32, 40 mg·kg(-1)·day(-1), respectively. Memory function was assessed by passive avoidance and T-maze tasks. After 21 days, hippocampal IL-6, malondialdehyde, reduced glutathione (GSH), asymmetric dimethylarginine (ADMA), and acetylcholinestrase activity were determined. ATB-346 and diallyl trisulfide ameliorated behavioural performance and reduced malondialdehyde, ADMA, and acetylcholinestrase activity while increasing GSH. This study demonstrates the beneficial effects of H2S release in STZ-induced memory impairment by modulation of neuroinflammation, oxidative stress, and cholinergic function. It also delineates the implication of ADMA to the cognitive impairment induced by STZ. These findings draw the attention to H2S-releasing compounds as new candidates for treating neurodegenerative disorders that have prominent oxidative and inflammatory components such as AD. PMID:27088818

  17. Metal oxides remove hydrogen sulfide from landfill gas produced from waste mixed with plaster board under wet conditions.

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2008-08-01

    Hydrogen sulfide (H2S) is a major odorant in landfills. We have studied H2S production from landfill residual waste with and without sulfur-containing plaster board, including the influence of the water content in the waste. The laboratory experiments were conducted in 30-L polyethylene containers with a controlled water level. We also studied how different materials removed H2S in reactive layers on top of the waste. The organic waste produced H2S in concentrations of up to 40 parts per million (ppm) over a period of 80 days. When plaster board was added, the H2S concentration increased to 800 ppm after a lag period of approximately 40 days with a high water level, and to approximately 100 ppm after 50 days with a low water level. The methane (CH4) concentration in the initial experiment was between 5 and 70% after 80 days. The CH4 concentration in the second experiment increased to nearly 70% in the container with a high water level, slowly declining to approximately 60% between days 20 and 60. The CH4 concentrations during the experiments resembled normal landfill concentrations. Metallic filter materials were very efficient in removing H2S, whereas organic filter materials showed poor H2S removal. PMID:18720651

  18. Synthesis of a "Masked" Terminal Nickel(II) Sulfide by Reductive Deprotection and its Reaction with Nitrous Oxide.

    PubMed

    Hartmann, Nathaniel J; Wu, Guang; Hayton, Trevor W

    2015-12-01

    The addition of 1 equiv of KSCPh3 to [L(R)NiCl] (L(R) = {(2,6-iPr2C6H3)NC(R)}2CH; R = Me, tBu) in C6H6 results in the formation of [L(R)Ni(SCPh3)] (1: R = Me; 2: R = tBu) in good yields. Subsequent reduction of 1 and 2 with 2 equiv of KC8 in cold (-25 °C) Et2O in the presence of 2 equiv of 18-crown-6 results in the formation of "masked" terminal Ni(II) sulfides, [K(18-crown-6)][L(R)Ni(S)] (3: R = Me; 4: R = tBu), also in good yields. An X-ray crystallographic analysis of these complexes suggests that they feature partial multiple-bond character in their Ni-S linkages. Addition of N2O to a toluene solution of 4 provides [K(18-crown-6)][L(tBu)Ni(SN=NO)], which features the first example of a thiohyponitrite (κ(2)-[SN=NO](2-)) ligand. PMID:26457792

  19. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: I. Thermodynamic constants at ambient conditions

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Krivovichev, V. G.; Depmeir, W.

    2010-12-01

    Understanding and deciphering processes proceeding near the surface are among the urgent tasks of contemporary mineralogy and geochemistry, which are especially important for resolving ecological challenges and developing principles of rational environmental management. The paper presents systematized data published on thermodynamics of minerals (arsenates, sulfates, selenites, and selenates), which are formed in the weathering zone of sulfide ores, and determines approaches to quantitative physicochemical modeling of their formation conditions. Diagrams of phase and chemical equilibria (Eh-pH, diagrams of solubility) of the subsystems of the model system Fe-Cu-Zn-Pb-Co-Ni-As-Se-S-H2O (Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+//SeO{3/2-}, SeO{4/2-}, AsO{4/3-}, SO{4/2-}, OH--H2O) are used as a thermodynamic basis for modeling mineral-forming processes in the weathering zone of ore deposits. Seventy-two arsenates, about 70 sulfates, and 7 selenites and selenates have been identified in the framework of this system. The available published values of standard thermodynamic functions of the formation of minerals and chemical compounds are given, as well as the Pitzer equation parameters to describe the sulfate systems, which are substantially specific due to the high solubility of their components.

  20. Synthesis of 9H-Pyrrolo[1,2-a]indole and 3H-Pyrrolizine Derivatives via a Phosphine-Catalyzed Umpolung Addition/Intramolecular Wittig Reaction.

    PubMed

    Saleh, Nidal; Voituriez, Arnaud

    2016-05-20

    The first umpolung addition/intramolecular Wittig reaction, catalytic in phosphine, is described. The in situ phosphine oxide reduction was accomplished by the use of silane and a catalytic amount of bis(4-nitrophenyl)phosphate. This catalytic protocol is applicable to the synthesis of a wide range of functionalized 9H-pyrrolo[1,2-a]indoles and pyrrolizines (18 examples, 70-98% yields). PMID:27080174

  1. Diastereoselective solution and multipin-based combinatorial array synthesis of a novel class of potent phosphinic metalloprotease inhibitors.

    PubMed

    Makaritis, Anastasios; Georgiadis, Dimitris; Dive, Vincent; Yiotakis, Athanasios

    2003-05-01

    The solution-phase synthesis and resolution of new phosphinopeptidic building blocks containing a triple bond was realized in high yields and optical purities (units 3 a-d). The absolute configuration of the target compounds was unambiguously established by NMR studies. A post-assembly diversification strategy of these blocks was developed through 1,3-dipolar cycloaddition of a variety of in situ prepared nitrile oxides. This strategy led to the rapid and efficient diastereoselective preparation of a novel class of isoxazole-containing phosphinic peptides (peptides 5 a-i). Solid-phase version of this strategy was efficiently achieved on multipin solid technology, by developing a new protocol for the coupling of P-unprotected dipeptidic blocks with solid supported amino acids in a quantitative and diastereoselective manner. Optimization of dipolar cycloadditions onto pin-embodied phosphinic peptides allowed the convenient preparation of this new class of pseudopeptides. The crude phosphinic peptides (9 a-k) were obtained in high yields and purity as determined by RP-HPLC. Inhibition assays of some of these peptides revealed that they behave as very potent inhibitors of MMPs, outmatching previously reported phosphinic peptides, in terms of potency (K(i) in the range of few nM). PMID:12740857

  2. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  3. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  4. Mechanisms of hydrogen sulfide removal with steel making slag.

    PubMed

    Kim, Kyunghoi; Asaoka, Satoshi; Yamamoto, Tamiji; Hayakawa, Shinjiro; Takeda, Kazuhiko; Katayama, Misaki; Onoue, Takasumi

    2012-09-18

    In the present study, we experimentally investigated the removal of hydrogen sulfide using steel-making slag (SMS) and clarified the mechanism of hydrogen sulfide removal with the SMS. The results proved that SMS is able to remove hydrogen sulfide dissolved in water, and the maximum removal amount of hydrogen sulfide per unit weight of the SMS for 8 days was estimated to be 37.5 mg S/g. The removal processes of hydrogen sulfide were not only adsorption onto the SMS, but oxidation and precipitation as sulfur. The chemical forms of sulfide adsorbed onto the SMS were estimated to be sulfur and manganese sulfide in the ratio of 81% and 19%, respectively. It is demonstrated here that the SMS is a promising material to remediate organically enriched coastal sediments in terms of removal of hydrogen sulfide. Furthermore, using SMS is expected to contribute to development of a recycling-oriented society. PMID:22894171

  5. Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism.

    PubMed

    Chen, Lian-Yun; Chen, Qin; Zhu, Xiao-Jing; Kong, De-Song; Wu, Li; Shao, Jiang-Juan; Zheng, Shi-Zhong

    2016-07-01

    Garlic is one natural source of organic sulfur containing compounds and has shown promise in the treatment of chronic liver disease. Dietary garlic consumption is inversely correlated with the progression of alcoholic fatty liver (AFL), although the exact underlying mechanisms are not clear. Our previous studies also have shown that diallyl trisulfide (DATS), the primary organosulfur compound from Allium sativum L, displayed anti-lipid deposition and antioxidant properties in AFL. The aim of the present study was to clarify the underlying mechanisms. In the present study, we used the intragastric infusion model of alcohol administration and human normal liver cell line LO2 cultured with suitable ethanol to mimic the pathological condition of AFL. We showed that accumulation of intracellular reactive oxygen species (ROS) was lowered significantly by the administration of DATS, but antioxidant capacity was increased by DATS. Additionally, DATS inhibited hepatocyte apoptosis via down-regulating Bax expression and up-regulating Bcl-2 expression, and attenuated alcohol-induced caspase-dependent apoptosis. More importantly, using iodoacetamide (IAM) to block hydrogen sulfide (H2S) production from DATS, we noted that IAM abolished all the above effects of DATS in ethanol-treated LO2 cells. Lastly, we found DATS could increase the expressions of cystathionine gamma-lyase (CSE) and cystathionine beta-synthase (CBS), the major H2S-producing enzymes. These results demonstrate that DATS protect against alcohol-induced fatty liver via a H2S-mediated mechanism. Therefore, targeting H2S may play a therapeutic role for AFL. PMID:27107369

  6. Crystal and Magnetic Structures of the Oxide Sulfides CaCoSO and BaCoSO.

    PubMed

    Salter, Edward J T; Blandy, Jack N; Clarke, Simon J

    2016-02-15

    CaCoSO, synthesized from CaO, Co, and S at 900 °C, is isostructural with CaZnSO and CaFeSO. The structure is non-centrosymmetric by virtue of the arrangement of the vertex-sharing CoS3O tetrahedra which are linked by their sulfide vertices to form layers. The crystal structure adopts space group P63mc (No. 186), and the lattice parameters are a = 3.7524(9) Å and c = 11.138(3) Å at room temperature with two formula units in the unit cell. The compound is highly insulating, and powder neutron diffraction measurements reveal long-range antiferromagnetic order with a propagation vector k = (1/3, 1/3, 1/2). The magnetic scattering from a powder sample can be modeled starting from a 120° arrangement of Co(2+) spin vectors in the triangular planes and then applying a canting out of the planes which can be modeled in the magnetic space group C(c)c (space group 9.40 in the Belov, Neronova, and Smirnova (BNS) scheme) with Co(2+) moments of 2.72(5) μ(B). The antiferromagnetic structure of the recently reported compound BaCoSO, which has a very different crystal structure from CaCoSO, is also described, and this magnetic structure and the magnitude of the ordered moment (2.75(2) μ(B)) are found by experiment to be similar to those predicted computationally. PMID:26824255

  7. Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals

    DOEpatents

    Katti, K.V.; Singh, P.R.; Reddy, V.S.; Katti, K.K.; Volkert, W.A.; Ketring, A.R.

    1999-03-02

    This research discloses a compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises a functionalized hydroxyalkyl phosphine ligand and a metal combined with the ligand. 16 figs.

  8. Composition of Aqueous Solutions in Equilibrium with Sulfides and Oxides of Iron at 350{degrees}C.

    PubMed

    Raymahashay, B C; Holland, H D

    1968-11-22

    Solutions of potassium chloride (pH-buffered and 1-molal) equilibrated at 350 degrees C with pyrrhotite, pyrite, and magnetite contained approximately 1 millimole of reduced sulfur and less than 0.1 millimole of oxidized sulfur per kilogram. Similar solutions equilibrated with pyrite, magnetite, and hematite contained approximately 1 millimole of reduced sulfur, but 3 to 6 millimoles of oxidized sulfur per kilogram. Both types of solutions contained less than 0.1 millimole of iron per kilogram at pH >/= 6 and approximately 100 millimoles per kilogram at pH 2. PMID:17769075

  9. Oxygen enhances phosphine toxicity for postharvest pest control.

    PubMed

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  10. Phosphine derivatives of sparfloxacin - Synthesis, structures and in vitro activity

    NASA Astrophysics Data System (ADS)

    Komarnicka, Urszula K.; Starosta, Radosław; Guz-Regner, Katarzyna; Bugla-Płoskońska, Gabriela; Kyzioł, Agnieszka; Jeżowska-Bojczuk, Małgorzata

    2015-09-01

    We synthesized two derivatives of sparfloxacin (HSf): aminomethyl(diphenyl)phosphine (PSf) and its oxide (OPSf). The compounds were characterized by NMR spectroscopy, MS and elemental analysis. In addition, the molecular structures of the compounds were determined using DFT and X-ray (OPSf) analysis. The antibacterial activity of HSf and both derivatives was tested against four reference and fifteen clinical Gram-positive and Gram-negative strains of bacteria (sensitive or resistant to fluoroquinolones). The results showed that the activity of PSf was similar to or higher than the activity of HSf, while OPSf was found significantly less active. The compounds were also tested in vitro toward the following cancer cell lines: mouse colon carcinoma (CT26) and human lung adenocarcinoma (A549). Regardless of the cancer cell line, derivatization of HSf resulted in the gradual increase of cytotoxicity. OPSf exhibited the highest one (4 h - incubation time: IC50(CT26) = 51.0 ± 1.2; IC50(A549) = 74.9 ± 1.4 and 24 h: IC50(CT26) = 109.2 ± 8.8; IC50(A549) = 52.7 ± 9.2).

  11. Phosphine toxicity: a story of disrupted mitochondrial metabolism.

    PubMed

    Sciuto, Alfred M; Wong, Benjamin J; Martens, Margaret E; Hoard-Fruchey, Heidi; Perkins, Michael W

    2016-06-01

    Rodenticides and pesticides pose a significant threat not only to the environment but also directly to humans by way of accidental and/or intentional exposure. Metal phosphides, such as aluminum, magnesium, and zinc phosphides, have gained popularity owing to ease of manufacture and application. These agents and their hydrolysis by-product phosphine gas (PH3 ) are more than adequate for eliminating pests, primarily in the grain storage industry. In addition to the potential for accidental exposures in the manufacture and use of these agents, intentional exposures must also be considered. As examples, ingestion of metal phosphides is a well-known suicide route, especially in Asia; and intentional release of PH3 in a populated area cannot be discounted. Metal phosphides cause a wide array of effects that include cellular poisoning, oxidative stress, cholinesterase inhibition, circulatory failure, cardiotoxicity, gastrointestinal and pulmonary toxicity, hepatic damage, neurological toxicity, electrolyte imbalance, and overall metabolic disturbances. Mortality rates often exceed 70%. There are no specific antidotes against metal phosphide poisoning. Current therapeutic intervention is limited to supportive care. The development of beneficial medical countermeasures will rely on investigative mechanistic toxicology; the ultimate goal will be to identify specific treatments and therapeutic windows for intervention. PMID:27219283

  12. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  13. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    PubMed

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  14. Toxicity of phosphine fumigation against Bactrocera tau at low temperature.

    PubMed

    Li, Li; Liu, Tao; Li, Baishu; Zhang, Fanhua; Dong, Shujun; Wang, Yuejin

    2014-04-01

    Bactrocera tau (Walker) is one of the most harmful pests to fruits and vegetables. To counteract this pest, the development of phytosanitary treatment is required to comply with the pest regulation requirements of certain countries. This study investigated the toxicity of phosphine fumigation against B. tau under low temperature conditions. Different growth stages (eggs and instars) of B. tau were exposed to 1.07 mg/liter phosphine for 1-10 d at 5 degrees C, and compared with unfumigated flies at 5 degrees C. The results showed that tolerance to cold treatment alone or phosphine fumigation at low temperatures generally increased with the stage of insect development. However, eggs incubated for 12 h at 25 degrees C represented the most tolerant growth stage to phosphine fumigation at 5 degrees C. Furthermore, 8.56- to 2.18-d exposure periods were required to achieve 99% mortality with a range of phosphine concentrations from 0.46 to 3.81 mg/liter. C0.62 t = k expression was obtained from the LT99 values, indicating that the exposure time was more important than the phosphine concentration. PMID:24772539

  15. Asymmetric Synthesis of Chiral Atropisomeric Bis-Aryl Organophosphorus from Menthyl H-Phosphinate.

    PubMed

    Ma, Yan-Na; Yang, Shang-Dong

    2016-04-01

    This review describes new methods for the synthesis of chiral monophosphine ligands with menthyl phenylphosphinate as a chiral auxiliary through asymmetric Suzuki-Miyaura cross-coupling reactions and asymmetric C-H functionalization. The chiral menthyl phenylphosphinate as a chiral auxiliary is easy to prepare and the menthyl group can easily be transformed into other functional groups, with the chiral center synchronously remaining. These methodologies provide highly efficient and practical strategies for the synthesis of novel axially chiral biaryl monophosphine oxides and their corresponding phosphines. Meanwhile, these reactions are easy to handle and exhibit wide scope for substrates with excellent diastereomeric ratios. PMID:26991107

  16. Three Gaseous Neurotransmitters, Nitric oxide, Carbon Monoxide, and Hydrogen Sulfide, Are Involved in the Neurogenic Relaxation Responses of the Porcine Internal Anal Sphincter

    PubMed Central

    Folasire, Oladayo; Mills, Kylie A; Sellers, Donna J; Chess-Williams, Russ

    2016-01-01

    Background/Aims The internal anal sphincter (IAS) plays an important role in maintaining continence and a number of neurotransmitters are known to regulate IAS tone. The aim of this study was to determine the relative importance of the neurotransmitters involved in the relaxant and contractile responses of the porcine IAS. Methods Responses of isolated strips of IAS to electrical field stimulation (EFS) were obtained in the absence and presence of inhibitors of neurotransmitter systems. Results Contractile responses of the sphincter to EFS were unaffected by the muscarinic receptor antagonist, atropine (1 μM), but were almost completely abolished by the adrenergic neuron blocker guanethidine (10 μM). Contractile responses were also reduced (by 45% at 5 Hz, P < 0.01) following desensitisation of purinergic receptors with α,β-methylene-ATP (10 μM). In the presence of guanethidine, atropine, and α,β-methylene-ATP, the remaining relaxatory responses to EFS were examined. These responses were not altered by the cyclooxygenase inhibitor, indomethacin (5 μM), the vasoactive intestinal polypeptide receptor antagonist, [d-p-Cl-Phe6,Leu17]-vasoactive intestinal peptide (PheLeu-VIP; 100 nM), or the purinoceptor antagonists, 8-phenyltheophyline (P1 receptors) or suramin (P2 receptors). However, relaxation responses were reduced by Nω-nitro-L-arginine (L-NNA; 100 μM), an inhibitor of nitric oxide synthesis (40–50% reduction), zinc protoprophyrin IX (10 μM), an inhibitor of carbon monoxide synthesis (20–40% reduction), and also propargylglycine (30 μM) and aminooxyacetic acid (30 μM), inhibitors of hydrogen sulphide synthesis (15–20% reduction). Conclusions Stimulation of IAS efferent nerves releases excitatory and inhibitory neurotransmitters: noradrenaline is the predominant contractile transmitter with a smaller component from ATP, whilst 3 gases mediate relaxation responses to EFS, with the combined contributions being nitric oxide > carbon monoxide

  17. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na(+)/K(+) Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress.

    PubMed

    Mostofa, Mohammad G; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na(+) and the Na(+)/K(+) ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  18. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  19. Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions.

    PubMed

    Foo, C Y; Lim, H N; Pandikumar, A; Huang, N M; Ng, Y H

    2016-03-01

    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+). PMID:26595899

  20. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also

  1. Compositions, ages, and diagenetic histories of the carbonate, sulfide, oxide, and phosphatic concretions at Gay Head, Massachusetts

    USGS Publications Warehouse

    Poppe, L.J.; Commeau, R.F.; O'Leary, D. W.

    1988-01-01

    The calcite/ankerite concretions were formed in a hot, seasonally arid, caliche-prone environment of early Raritan age; the pyrite, marcasite, and siderite concretions precipitated in sediments deposited in low-energy, marshy, estuarine environments of late Raritan age. The phosphate concretions formed in a middle to inner shelf environment. The goethite and lepidocrocite concretions are secondary oxidation or alteration products of the prexistent Cretaceous concretions that were excavated during the Pleistocene and incorporated into the glacial drift. -from Authors

  2. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  3. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  4. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT)

    SciTech Connect

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth H; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mikhailova, Natalia; Pati, Amrita; Palaniappan, Krishna; Land, Miriam L; Pan, Chongle; Rohde, Manfred; Pukall, Rudiger; Goker, Markus; Detter, J. Chris; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Mavromatis, K

    2012-01-01

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp, harbors 3,626 protein-coding and 69 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.

    PubMed

    Cheng, Liqiu; House, Mitch W; Weiss, W Jason; Banks, M Katherine

    2016-02-01

    Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process. PMID:26707733

  6. The effect of sulfide inhibition on the ANAMMOX process.

    PubMed

    Jin, Ren-Cun; Yang, Guang-Feng; Zhang, Qian-Qian; Ma, Chun; Yu, Jin-Jin; Xing, Bao-Shan

    2013-03-01

    The feasibility of anaerobic ammonium oxidation (ANAMMOX) process to treat wastewaters containing sulfide was studied in this work. Serum bottles were used as experimental containers in batch tests to analyze the short-term response of the ANAMMOX process under sulfide stress. The IC(50) of sulfide-S for ANAMMOX biomass was substrates-dependent and was calculated to be 264 mg L(-1) at an initial total nitrogen level of 200 mg L(-1) (molar ratio of ammonium and nitrite was 1:1). The long-term effects and the performance recovery under sulfide stress were continuously monitored and evaluated in an upflow anaerobic sludge blanket reactor. The performance of the ANAMMOX system was halved at an sulfide-S level of 32 mg L(-1) within 13 days; however, the nitrogen removal rate (NRR) decreased by only 17.2% within 18 days at an sulfide-S concentration of 40 mg L(-1) after long-time acclimatization of sludge in the presence of sulfide. The ANAMMOX performance recovered under sulfide-S level of 8 mg L(-1) with a steady NRR increasing speed, linear relationship between the NRR and operation time. The synchronic reduce in the specific ANAMMOX activity and the biomass extended the apparent doubling time of the nitrogen removal capacity and decreased biomass growth rate. PMID:23273856

  7. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)).

    PubMed

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Rohde, Manfred; Pukall, Rüdiger; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Mavromatis, Konstantinos

    2012-07-30

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp harbors 3,626 protein-coding and 69 RNA genes, and is a part of the GenomicEncyclopedia ofBacteria andArchaea project. PMID:23407703

  8. Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations.

    PubMed

    Zambianchi, F; Pasta, P; Carrea, G; Colonna, S; Gaggero, N; Woodley, J M

    2002-06-01

    The performance, in Baeyer-Villiger and heteroatom oxidations, of a partially purified preparation of cyclohexanone monooxygenase obtained from an Escherichia coli strain in which the gene of the enzyme was cloned and overexpressed was investigated. As model reactions, the oxidations of racemic bicyclo[3.2.0]hept-2-en-6-one into two regioisomeric lactones and of methyl phenyl sulphide into the corresponding (R)-sulphoxide were used. Enzyme stability and reuse, substrate and product inhibition, product removal, and cofactor recycling were evaluated. Of the various NADPH regeneration systems tested, 2-propanol/alcohol dehydrogenase from Thermoanerobium brockii appeared the most suitable because of the low cost of the second substrate and the high regeneration rate. Concerning enzyme stability, kosmotropic salts were the only additives able to improve it (e.g., half-life from 1 day in diluted buffer to 1 week in 1 M sodium sulphate) but only under storage conditions. Instead, significant stabilization under working conditions was obtained by immobilization on Eupergit C (half-life approximately 2.5 days), a procedure that made it possible to reuse the catalyst up to 16 times with complete substrate (5 g x L(-1)) conversion at each cycle. Reuse of free enzyme was also achieved in a membrane reactor but with lower efficiency. Water-organic solvent biphasic systems, which would overcome substrate inhibition and remove from the aqueous phase, where reaction takes place, the formed product, were unsuccessful because of their destabilizing effect on cyclohexanone monooxygenase. More satisfactory was continuous substrate feeding, which shortened reaction times and, very importantly, yielded in the case of bicyclo[3.2.0]hept-2-en-6-one (10 g x L(-1)) both lactone products with high optical purity (enantiomeric excess > or = 96%), which was not the case when all of the substrate was added in a single batch. PMID:12115117

  9. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  10. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-05-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  11. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  12. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  13. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling.

    PubMed

    Olson, Kenneth R

    2012-10-01

    Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes. PMID:22430869

  14. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma. PMID:19933342

  15. Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation.

    PubMed

    Sun, Junhui; Aponte, Angel M; Menazza, Sara; Gucek, Marjan; Steenbergen, Charles; Murphy, Elizabeth

    2016-05-01

    Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO. PMID:26907390

  16. Sulfide-Driven Microbial Electrosynthesis

    SciTech Connect

    Gong, YM; Ebrahim, A; Feist, AM; Embree, M; Zhang, T; Lovley, D; Zengler, K

    2013-01-01

    Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day.m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day.m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.

  17. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur in the Presence of Coal-Derived Fuel Gas

    SciTech Connect

    Stevens, R.W., Jr.; Gardner, T.H.; Shekhawat, Dushyant; Berry, D.A.; Freed, A.D.

    2005-09-01

    A rotatable central composite design approach was utilized to examine the activity and selectivity of an activated carbon-based catalyst during partial oxidation of H2S to elemental sulfur. Tests were conducted at 400 psig with a 4000 ppmv H2S inlet concentration in the presence of coal-derived fuel gas (i.e., CO, CO2, H2, and H2O). Temperature, space velocity, and O2:H2S ratio were chosen as process variables for the study to generate response surface maps of elemental sulfur yield and longevity. Temperature was varied from 150-300°C; gas hourly space velocity varied from 1000 -15000 h-1 (STP); O2:H2S varied from 0.5-2.0. Evolution of SO2 and/or COS during some of the tests indicated the presence of side reactions. The relationship between the process variables and catalyst performance as well as the results of catalyst characterization is discussed.

  18. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite.

    PubMed

    Mukkabla, Radha; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-10-26

    A Bi2 S3 /graphene oxide (GO) composite enwrapped by a poly(3,4-ethylenedioxythiophene) (PEDOT) coating was prepared for the first time for use as an anode in Li-ion batteries. Pristine Bi2 S3 nanoflowers and composites of Bi2 S3 /GO and Bi2 S3 /GO/PEDOT were assembled into half cells with Li metal as the counter electrode, and initial discharge capacities of 833, 1020, and 1300 mAh g(-1) , respectively, were obtained. Composites of Bi2 S3 /GO/PEDOT and Bi2 S3 /GO showed superior cycling stability and better rate capability than pristine Bi2 S3 . GO provides highly conducting interconnections, which allow facile propagation of electrons during charge/discharge, and this improves the ion-uptake capability of the Bi2 S3 nanoflowers and also increases the rate capability. PEDOT furnishes a protective coating that prevents detachment of the material from the current collector during cycling, and it also imparts better cycling stability to the Bi2 S3 /GO/PEDOT composite. PMID:26247745

  19. Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas

    PubMed Central

    Valmas, Nicholas; Ebert, Paul R.

    2006-01-01

    Background With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. Principal Findings Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20°C has been determined with an LC50 of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20°C is 600 times more potent than phosphine (LC50 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, phosphine in a laboratory environment has now been substantially reduced by the implementation of our novel gas generation chamber. We have also identified a novel phosphine synergist, the glutathione depletor DEM, suggesting an effective pathway to be targeted in future synergist research; as well as quantifying the efficacy of a potential alternative to phosphine, dimethyl disulphide. PMID:17205134

  20. Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in major stored-cereal pests worldwide. To understand the molecular bases of phosphine resistance in insects, we used RNA-...

  1. Responses of Phosphate Transporter Gene and Alkaline Phosphatase in Thalassiosira pseudonana to Phosphine

    PubMed Central

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton. PMID:23544096

  2. Mechanism of phosphine borane deprotection with amines: the effects of phosphine, solvent and amine on rate and efficiency.

    PubMed

    Lloyd-Jones, Guy C; Taylor, Nicholas P

    2015-03-27

    The kinetics of borane transfer from simple tertiary phosphine borane adducts to a wide range of amines have been determined. All data obtained, including second-order kinetics, lack of cross-over, and negative entropies of activation for reaction of triphenylphosphine borane with quinuclidine and triethylamine, are consistent with a direct (SN 2-like) transfer process, rather than a dissociative (SN 1-like) process. The identities of the amine, phosphine, and solvent all impact substantially on the rate (k) and equilibrium (K) of the transfer, which in some cases vary by many orders of magnitude. P-to-N transfer is more efficient with cyclic amines in apolar solvents due to reduced entropic costs and ground-state destabilisation. Taken as a whole, the data allow informed optimisation of the deprotection step from the stand-point of rate, or synthetic convenience. In all cases, both reactants should be present at high initial concentration to gain kinetic benefit from the bimolecularity of the process. Ultimately, the choice of amine is dictated by the identity of the phosphine borane complex. Aryl-rich phosphine boranes are sufficiently reactive to allow use of diethylamine or pyrrolidine as a volatile low polarity solvent and reactant, whereas more alkyl-rich phosphines benefit from the use of more reactive amines, such as 1,4-diaza[2.2.2]bicyclooctane (DABCO), in apolar solvents at higher temperatures. PMID:25704230

  3. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere

    NASA Astrophysics Data System (ADS)

    Glindemann, Dietmar; Edwards, Marc; Schrems, Otto

    Phosphine (PH 3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften83(1996a)131; Atmos. Environ. 37(2003)24 29). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds. Here, we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) for 5 s to a spark induced by microwave. The gas product analyzed by gas chromatography contained phosphine (yield up to 0.6 g kg -1 phosphate P) and methylphosphine (CH 3)PH 2 (yield up to 0.02 g kg -1 phosphate P). We suggest a plasma-chemical formation mechanism where organic compounds or methane or secondary hydrogen thereof reduce phosphate to phosphine of which a small fraction can subsequently react with methyl radicals to form methylphosphine. A small yield of 6 mg phosphine per kg phosphate P was even obtained in methane free medium, by simple plasmatic recombination of inorganic phosphorus. We believe that methane and hydrogen are useful model substances of pyrolytic gases with high reducing power which may form if lightning strikes biomass, soil and aerosol. These results suggest evidence that phosphine and methylphosphine (detectable in the field by intense garlic odor) are produced when atmospheric lightning strikes the ground or aerosol which is containing oxidized forms of phosphorus and chemical reductants. Additional reviewed data show that laboratory lightning was able to reduce a much more significant portion of phosphate to phosphite (up to 25% yield), methylphosphonic acid (up to 8.5% yield) and traces of hypophosphite in a matter of seconds.

  4. Synthetic, structural, NMR, and computational study of a geminally bis(peri-substituted) tridentate phosphine and its chalcogenides and transition-metal complexes.

    PubMed

    Ray, Matthew J; Randall, Rebecca A M; Arachchige, Kasun S Athukorala; Slawin, Alexandra M Z; Bühl, Michael; Lebl, Tomas; Kilian, Petr

    2013-04-15

    Coupling of two acenaphthene backbones through a phosphorus atom in a geminal fashion gives the first geminally bis(peri-substituted) tridentate phosphine 1. The rigid nature of the aromatic backbone and overall crowding of the molecule result in a rather inflexible ligand, with the three phosphorus atoms forming a relatively compact triangular cluster. Phosphine 1 displays restricted dynamics on an NMR time scale, which leads to the anisochronicity of all three phosphorus nuclei at low temperatures. Strained bis- and tris(sulfides) 2 and 3 and the bis(selenide) 4 have been isolated from the reaction of 1 with sulfur and selenium, respectively. These chalcogeno derivatives display pronounced in-plane and out-of-plane distortions of the aromatic backbones, indicating the limits of their angular distortions. In addition, we report metal complexes with tetrahedral [(1)Cu(MeCN)][BF4] (5), square planar [(1)PtCl][Cl] (6), trigonal bipyramidal [(1)FeCl2] (7), and octahedral fac-[(1)Mo(CO)3] (8) geometries. In all of these complexes the tris(phosphine) backbone is distorted, however to a significantly smaller extent than that in the mentioned chalcogenides 2-4. Complexes 5 and 8 show fluxionality in (31)P and (1)H NMR. All new compounds 1-8 were fully characterized, and their crystal structures are reported. Conclusions from dynamic NMR observations were augmented by DFT calculations. PMID:23534381

  5. Synergistic extraction of Eu(III) and Am(III) by thenoyltrifluoroacetone and neutral donor extractants: (Carbamoylmethyl)phosphine oxide and 2,6-bis((diphenylphosphino)methyl)pyridine N,P,P,-trioxide

    SciTech Connect

    Rao, L.; Xia, Y.; Rapko, B.M.; Martin, P.F.

    1998-07-01

    Solvent extraction of Eu(III) and Am(III) from weakly acidic solutions with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and 2,6-bis((diphenylphosphino)methyl)pyridine N,P,P-trioxide (NOPOPO) in 1,2-dichloroethane was studied on a comparative basis. NOPOPO was found to exhibit unusually high extractability for Eu(III) and Am(III), probably due to its trifunctional nature, sufficient steric flexibility and basicity of the functional groups. Both CMPO and NOPOPO demonstrated synergistic effects in extraction of Eu(III) and Am(III) when used in combination with thenoyltrifluoroacetone (HTTA). However, the stoichiometry of the extracted species with CMPO/HTTA and NOPOPO/HTTA was different under similar experimental conditions. The extractant dependencies of the synergistic extractions suggest that the extracted species are the adduct complexes, M(ClO{sub 4})(TTA){sub 2}(CMPO){sub 2} and M(ClO{sub 4}){sub 2}(TTA)(NOPOPO){sub 2}, respectively. It was also observed that CMPO and CMPO/HTTA in dichloroethane extracted Eu(III) and Am(III) equally well, with very similar extraction constants. However, NOPOPO and NOPOPO/HTTA in dichloroethane demonstrated a slight preference for Eu(III) over Am(III), with the extraction constants for Eu(III) more than one order of magnitude higher than that for Am(III).

  6. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts.

    PubMed

    Girguis, P R; Childress, J J; Freytag, J K; Klose, K; Stuber, R

    2002-10-01

    Intracellular symbiosis requires that the host satisfy the symbiont's metabolic requirements, including the elimination of waste products. The hydrothermal vent tubeworm Riftia pachyptila and the hydrocarbon seep worm Lamellibrachia cf luymesi are symbiotic with chemolithoautotrophic bacteria that produce sulfate and protons as end-products. In this report, we examine the relationship between symbiont metabolism and host proton equivalent elimination in R. pachyptila and L. cf luymesi, and the effects of sulfide exposure on proton-equivalent elimination by Urechis caupo, an echiuran worm that lacks intracellular symbionts (for brevity, we will hereafter refer to proton-equivalent elimination as 'proton elimination'). Proton elimination by R. pachyptila and L. cf luymesi constitutes the worms' largest mass-specific metabolite flux, and R. pachyptila proton elimination is, to our knowledge, the most rapid reported for any metazoan. Proton elimination rates by R. pachyptila and L. cf luymesi correlated primarily with the rate of sulfide oxidation. Prolonged exposure to low environmental oxygen concentrations completely inhibited the majority of proton elimination by R. pachyptila, demonstrating that proton elimination does not result primarily from anaerobic metabolism. Large and rapid increases in environmental inorganic carbon concentrations led to short-lived proton elimination by R. pachyptila, as a result of the equilibration between internal and external inorganic carbon pools. U. caupo consistently exhibited proton elimination rates 5-20 times lower than those of L. cf luymesi and R. pachyptila upon exposure to sulfide. Treatment with specific ATPase inhibitors completely inhibited a fraction of proton elimination and sulfide and inorganic carbon uptake by R. pachyptila, suggesting that proton elimination occurs in large part via K(+)/H(+)-ATPases and Na(+)/H(+)-ATPases. In the light of these results, we suggest that protons are the primary waste product of the

  7. Process for thin film deposition of cadmium sulfide

    DOEpatents

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  8. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore

    NASA Astrophysics Data System (ADS)

    Biswas, Sujoy; Pathak, P. N.; Roy, S. B.

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.

  9. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure.

    PubMed

    Scuffi, Denise; Álvarez, Consolación; Laspina, Natalia; Gotor, Cecilia; Lamattina, Lorenzo; García-Mata, Carlos

    2014-12-01

    Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells. PMID:25266633

  10. Hydrogen Sulfide Generated by l-Cysteine Desulfhydrase Acts Upstream of Nitric Oxide to Modulate Abscisic Acid-Dependent Stomatal Closure1[C][W

    PubMed Central

    Scuffi, Denise; Álvarez, Consolación; Laspina, Natalia; Gotor, Cecilia; Lamattina, Lorenzo; García-Mata, Carlos

    2014-01-01

    Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells. PMID:25266633

  11. Nano-encapuslated of zinc sulfide:silver with indium tin oxide and aluminum doped zinc oxide for flat panel display applications

    NASA Astrophysics Data System (ADS)

    Ollinger, Michael

    2002-09-01

    Reduction in cathodoluminescent degradation through the application of nanometer thick films of indium tin oxide (ITO) and aluminum doped zinc oxide (ZAO) has been investigated using x-ray photoelectron spectroscopy (XPS), cathodoluminescent degradation, scanning electron microscopy, transmission electron spectroscopy, and optical spectrometry. The partial pressure of water and the oxygen deposition pressure used during the coating process were controlled as parameters critical to degradation. The cathodoluminescent measurements were performed at vacuum levels between 1 · 10-7 to 5 · 10-5 Torr as measured by residual gas analysis. The primary electron beam used in the degradation experiments varied from 5--15 keV and the electron current density varied between two conditions: 10 muA/cm2 and 0.10 muA/cm2. The ITO coatings were deposited at 1 · 10-5 Torr while the ZAO films were deposited at 100 mTorr, 0.6 mTorr, and 0.14 mTorr using a modified pulsed laser ablation technique. For the ITO coated ZnS:Ag phosphors, the amount of water vapor pressure present during cathodoluminescent degradation had a dramatic effect on the brightness lifetime. The higher the partial pressure of water, the faster the degradation rate of the phosphor. The ITO coating on the ZnS:Ag phosphor reduced the rate of cathodoluminescent degradation at both partial pressures of water that were studied. XPS showed that the coatings provided sufficient protection against the adverse affects from the water vapor. For the ZAO coated ZnS:Ag phosphors, it was shown that the partial pressure used during the coating process effected the cathodoluminescent degradation lifetimes. The coating performed at the lowest vacuum level of oxygen provided the longest brightness lifetime. This increased phosphor lifetime was attributed to the highly deficient nature of the ZAO coating at this vacuum pressure and the continuous nature of the coating. XPS showed that the ZAO deposited at lower oxygen pressures

  12. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    PubMed

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance. PMID:27510460

  13. Submicromolar Phosphinic Inhibitors of E. coli Aspartate Transcarbamoylase

    PubMed Central

    Coudray, Laëtitia; Kantrowitz, Evan R.; Montchamp, Jean-Luc

    2009-01-01

    The design, syntheses, and enzymatic activity of two submicromolar competitive inhibitors of aspartate transcarbamoylase (ATCase) are described. The phosphinate inhibitors are analogs of N-phosphonacetyl-L-aspartate (PALA) but have a reduced charge at the phosphorus moiety. The mechanistic implications are discussed in terms of a possible cyclic transition-state during enzymatic catalysis. PMID:19097895

  14. Characterizing Exoplanet Atmospheres : A Complete Line List for Phosphine

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ability to characterise the atmospheres of cool stars, brown dwarfs and exoplanets requires fundamental data for all species contributing significantly to their opacity. However, with notable exceptions such as water and ammonia, existing molecular line lists are not sufficiently accurate or complete to allow for a full spectroscopic analysis of these bodies. ExoMol (www.exomol.com [1]) is a project that aims to rectify this by generating comprehensive line lists for all molecules likely to be detected in the atmospheres of cool astrophysical objects in the foreseeable future. The spectral data is generated by employing ab initio quantum mechanical methods, performing empirical refinement based on experimental spectroscopic data and harnessing high performance computing. Here we present our work on phosphine, (PH3), an equilateral pyramidal molecule (the phosphorus analogue to ammonia). Phosphine is known to be important for the atmospheres of giant-planets, cool stars and many other astronomical bodies. Rotational transition features of phosphine have been found in the far- infrared spectra of Saturn and Jupiter [2, 3], where it is a marker for vertical convection zones. A computed room temperature line list of phosphine is presented here [4], illustrated in the accompanying figure 1. This line list is a precursor to a high temperature equivalent to be produced in the near future, necessary for the analysis of cool stars and brown dwarfs. All the transitions' energy levels and Einstein A-coefficients were computed using the program TROVE [5].

  15. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    PubMed

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use. PMID:22812116

  16. Microbial control of hydrogen sulfide production

    SciTech Connect

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  17. Water-Soluble Phosphine Capable of Dissolving Elemental Gold: The Missing Link between 1,3,5-Triaza-7-phosphaadamantane (PTA) and Verkade's Ephemeral Ligand.

    PubMed

    Britvin, Sergey N; Lotnyk, Andriy

    2015-04-29

    We herein describe a tricyclic phosphine with previously unreported tris(homoadamantane) cage architecture. That water-soluble, air- and thermally stable ligand, 1,4,7-triaza-9-phosphatricyclo[5.3.2.1(4,9)]tridecane (hereinafter referred to as CAP) exhibits unusual chemical behavior toward gold and gold compounds: it readily reduces Au(III) to Au(0), promotes oxidative dissolution of nanocrystalline gold(0) with the formation of water-soluble trigonal CAP-Au(I) complexes, and displaces cyanide from [Au(CN)2](-) affording triangular [Au(CAP)3](+) cation. From the stereochemical point of view, CAP can be regarded as an intermediate between 1,3,5-triaza-7-phosphaadamantane (PTA) and very unstable aminophosphine synthesized by Verkade's group: hexahydro-2a,4a,6a-triaza-6b-phosphacyclopenta[cd]pentalene. The chemical properties of CAP are likely related to its anomalous stereoelectronic profile: combination of strong electron-donating power (Tolman's electronic parameter 2056.8 cm(-1)) with the low steric demand (cone angle of 109°). CAP can be considered as macrocyclic counterpart of PTA with the electron-donating power approaching that of strongest known phosphine electron donors such as P(t-Bu)3 and PCy3. Therefore, CAP as sterically undemanding and electron-rich ligand populates the empty field on the stereoelectronic map of phosphine ligands: the niche between the classic tertiary phosphines and the sterically undemanding aminophosphines. PMID:25897572

  18. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  19. Crystallinity of Fe-Ni Sulfides in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Zolensky, M. E.; Ohsumi, K.; Mikouchi, T.; Hagiya, K.; Le, L.

    2008-03-01

    We examine the crystallinity and crystal structures of Fe-Ni sulfides in five carbonaceous chondrites - Acfer 094 (CM2), Tagish Lake (C2 ungrouped), Kaidun C1, Bali (CV2/3 oxidized), and Efremovka (CV3 reduced).

  20. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  1. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  2. Henry's law constant for phosphine in seawater: determination and assessment of influencing factors

    NASA Astrophysics Data System (ADS)

    Fu, Mei; Yu, Zhiming; Lu, Guangyuan; Song, Xiuxian

    2013-07-01

    The Henry's Law constant ( k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23°C). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.

  3. Modeling of Sulfide Microenvironments on Mars

    NASA Technical Reports Server (NTRS)

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  4. Rhodium catalysed hydroformylation of alkenes using highly fluorophilic phosphines.

    PubMed

    Adams, Dave J; Bennett, James A; Cole-Hamilton, David J; Hope, Eric G; Hopewell, Jonathan; Kight, Jo; Pogorzelec, Peter; Stuart, Alison M

    2005-12-21

    Highly fluorophilic phosphines incorporating at least one aromatic ring containing two directly attached perfluoroalkyl groups have been synthesised, their partition coefficients (organic phase : fluorous phase) measured and their electronic properties probed using (1)J(PtP) data for their trans-[PtCl(2)L(2)] complexes. These phosphines have been used as modifying ligands for the rhodium catalysed hydroformylation of 1-octene in perfluorocarbon solvents. Catalyst activity, regioselectivity and the levels of rhodium leaching to the product phase vary with the substitution patterns of the modifying ligands that do not correlate with the electronic properties or partition coefficients of these ligands, but can be interpreted in terms of differences in the resting states of the catalysts. PMID:16311639

  5. Phosphine-mediated Highly Enantioselective Spirocyclization with Ketimines as Substrates.

    PubMed

    Han, Xiaoyu; Chan, Wai-Lun; Yao, Weijun; Wang, Yongjiang; Lu, Yixin

    2016-05-23

    Phosphine-catalyzed enantioselective annulation reactions involving ketimines are a daunting synthetic challenge owing to the intrinsic low reactivity of ketimine substrates. A highly enantioselective [3+2] cycloaddition reaction that makes use of isatin-derived ketimines as reaction partners was developed. Notably, both simple and γ-substituted allenoates could be utilized, and various 3,2'-pyrrolidinyl spirooxindoles with a tetrasubstituted stereocenter were obtained in excellent yields and with nearly perfect enantioselectivity (>98 % ee in all cases). PMID:27080309

  6. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  7. Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS

    NASA Technical Reports Server (NTRS)

    Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.

    2004-01-01

    On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.

  8. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  9. Zirconium-catalyzed intermolecular hydrophosphination using a chiral, air-stable primary phosphine.

    PubMed

    Bange, Christine A; Ghebreab, Michael B; Ficks, Arne; Mucha, Neil T; Higham, Lee; Waterman, Rory

    2016-02-01

    Catalytic hydrophosphination of alkenes using a chiral, air-stable primary phosphine, (R)-[2'-methoxy(1,1'-binapthalen)-2-yl]phosphine, (R)-MeO-MOPH2, proceeds under mild conditions with a zirconium catalyst, [κ(5)-N,N,N,N,C-(Me3SiNCH2CH2)2NCH2CH2NSiMe2CH]Zr (1), to selectively furnish anti-Markovnikov, air-stable secondary phosphines or tertiary phosphines with slight modification of the protocol. An intermediate in the catalysis, [(N3N)Zr(R)-MeO-MOPH] (4), was structurally characterized. PMID:26530894

  10. Advances in Nucleophilic Phosphine Catalysis of Alkenes, Allenes, Alkynes, and MBHADs

    PubMed Central

    Fan, Yi Chiao

    2014-01-01

    In nucleophilic phosphine catalysis, tertiary phosphines undergo conjugate additions to activated carbon–carbon multiple bonds to form β-phosphonium enolates, β-phosphonium dienolates, β-phosphonium enoates, and vinyl phosphonium ylides as intermediates. When these reactive zwitterionic species react with nucleophiles and electrophiles, they may generate carbo- and heterocycles with multifarious molecular architectures. This Article describes the reactivities of these phosphonium zwitterions, the applications of phosphine catalysis in the syntheses of biologically active compounds and natural products, and recent developments in the enantioselective phosphine catalysis. PMID:24196409

  11. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  12. Removal of hydrogen sulfide from drilling fluids

    SciTech Connect

    Gilligan Jr., T. J.

    1985-10-22

    The present invention relates to a process for scavenging hydrogen sulfide which frequently becomes entrained in drilling fluid during the course of drilling operations through subterranean formations. The process consists of introducing a solid oxidant in powdered form into the circulating drilling fluid when hydrogen sulfide is encountered. The solid oxidants are selected from the group consisting of calcium hypochlorite (Ca-(OCl)/sub 2/), sodium perborate (NaBO/sub 3/), potassium permanganate (KMnO/sub 4/), and potassium peroxydisulfate (K/sub 2/S/sub 2/O/sub 8/). The solid oxidants are soluble in the drilling fluid, promoting fast and complete scavenging reactions without adversely altering the drilling fluid rheology.

  13. Hydrotreating with catalysts comprising mixtures of an amorphous sulfide or trivalent chromium and microcrystallites of molybdenum sulfide or tungsten sulfide

    SciTech Connect

    Jacobson, A.J.; Ho, T.C.; Chianelli, R.R.; Steger, J.J.; Montagna, A.A.

    1989-03-14

    A process is described for hydrorefining a hydrocarbon feed to reduce the contents of nitrogen compounds and sulfur compounds in the feed which comprises contacting the feed at an elevated temperature of at least about 150/sup 0/C and in the presence of hydrogen with a catalyst consisting essentially of a mixture of (i) an amorphous sulfide of trivalent chromium and (ii) microcrystallities of a metal sulfide of a metal selected from the group consisting of Mo, W and mixture thereof, the contacting occurring for a time sufficient to hydrorefine at least a portion of the feed. The patent also describes a process for improving the oxidation stability of a nitrogen and sulfur containing lube oil feed which comprises contacting the feed at an elevated temperature of at least about 150/sup 0/C and in the presence of hydrogen with a catalyst consisting essentially of a mixture of (i) an amorphous sulfide of trivalent chromium and (ii) microcrystallities of metal sulfides of a metal selected from the group consisting of Mo, W and mixture thereof, the contacting occurring for a time sufficient to improve the oxidation stability of the lube oil feed.

  14. Synthesis of γ-hydroxypropyl P-chirogenic (±)-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors.

    PubMed

    Binyamin, Iris; Meidan-Shani, Shoval; Ashkenazi, Nissan

    2015-01-01

    The synthesis of P-chirogenic (±)-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent. PMID:26425187

  15. Influence of sulfide concentration on the corrosion behavior of titanium in a simulated oral environment.

    PubMed

    Harada, Rino; Takemoto, Shinji; Kinoshita, Hideaki; Yoshinari, Masao; Kawada, Eiji

    2016-05-01

    This study assessed the corrosion behavior of titanium in response to sulfide by determining the effects of sulfide concentration and pH over immersion period. Corrosion was evaluated through changes in color, glossiness, surface characterization, and titanium release. Sulfide solutions were prepared in 3 different concentrations with Na2S, each in pH unadjusted (sulfide-alkaline) and pH adjusted to 7.5 (sulfide-neutral). Titanium discoloration increased and glossiness decreased as sulfide concentration and immersion period increased in sulfide-alkaline solutions. Coral-like complexes were observed on the surface of these specimens, which became more pronounced as concentration increased. Small amounts of titanium release were detected in sulfide-alkaline solutions; however, this was not affected by immersion periods. Corrosion was indicated through considerable surface oxidation suggesting the formation of a thick oxide layer. No significant changes in color and glossiness, or titanium release were indicated for titanium specimens immersed in sulfide-neutral solutions indicating that pH had a significant effect on corrosion. Our findings suggest that a thick oxide layer on the titanium surface was formed in sulfide-alkaline solutions due to excessive oxidation. PMID:26952423

  16. Uptake of dissolved sulfide by Spartina alterniflora: evidence from natural sulfur isotope abundance ratios

    SciTech Connect

    Carlson, P.R. Jr.; Forrest, J.

    1982-05-07

    The difference in the stable sulfur isotope ratios of sulfate and sulfide in marsh pore water was used to verify the uptake of hydrogen sulfide by the salt marsh cordgrass Spartina alterniflora in a North Carolina salt marsh. Most of the plant sulfur derived from pore-water sulfide was recovered as sulfate, an indication that the sulfide had been oxidized within the plant. The anaysis of the sulfur isotope ratios of other coastal halophytes may be a useful technique for determining whether sulfide is taken up by plants in saline wetlands.

  17. Sulfide inhibition of and metabolism by cytochrome c oxidase.

    PubMed

    Nicholls, Peter; Marshall, Doug C; Cooper, Chris E; Wilson, Mike T

    2013-10-01

    Hydrogen sulfide (H2S), a classic cytochrome c oxidase inhibitor, is also an in vitro oxidase substrate and an in vivo candidate hormonal ('gasotransmitter') species affecting sleep and hibernation. H2S, nitric oxide (NO) and carbon monoxide (CO) share some common features. All are low-molecular-mass physiological effectors and also oxidase inhibitors, capable of binding more than one enzyme site, and each is an oxidizable 'substrate'. The oxidase oxidizes CO to CO2, NO to nitrite and sulfide to probable persulfide species. Mitochondrial cytochrome c oxidase in an aerobic steady state with ascorbate and cytochrome c is rapidly inhibited by sulfide in a biphasic manner. At least two successive inhibited species are involved, probably partially reduced. The oxidized enzyme, in the absence of turnover, occurs in at least two forms: the 'pulsed' and 'resting' states. The pulsed form reacts aerobically with sulfide to form two intermediates, 'P' and 'F', otherwise involved in the reaction of oxygen with reduced enzyme. Sulfide can directly reduce the oxygen-reactive a3CuB binuclear centre in the pulsed state. The resting enzyme does not undergo such a step, but only a very slow one-electron reduction of the electron-transferring haem a. In final reactivation phases, both the steady-state inhibition of catalysis and the accumulation of P and F states are reversed by slow sulfide oxidation. A model for this complex reaction pattern is presented. PMID:24059525

  18. Sol-gel processing of metal sulfides

    NASA Astrophysics Data System (ADS)

    Stanic, Vesha

    Metal sulfides were synthesised via a sol-gel process using various metal alkoxides and hydrogen sulfide in toluene. Colloidal gels were prepared from germanium ethoxide, germanium isopropoxide, zinc tert-butoxide and tungsten (VI) ethoxide, whereas colloidal powder was produced from tungsten (V) dichloride ethoxide. Special precautions were necessary to protect the reaction mixture from water contamination which produced metal oxides. Results indicated that the main source of water is the hydrogen sulfide gas. In addition, synthesis of metal sulfides from a mixture of metal oxide and sulfide was demonstrated by the example of monoclinic germanium disulfide. It was produced by reaction of the sol-gel product with sulfur. Heat treatment of the sol-gel product and sulfur yielded single phase GeSsb2. The sol-gel prepared materials and their heat treated products were characterized by various methods. A chemical kinetics study of the functional groups -OR, -SH and Ssp{2-} was carried out for the sol-gel processing of GeSsb2 from of hydrogen sulfide and two different alkoxides, germanium ethoxide and germanium isopropoxide. The study was performed for different concentrations of precursors at different molar ratios and temperatures. The results indicate that the proposed reaction mechanism was simplified under appropriate reaction conditions. Experimentally determined rate constants of thiolysis and condensations demonstrate that thiolysis is slow and that condensations are fast steps, regardless of the studied reaction conditions. A study of the temperature effect on the reaction rate constant shows that it increases with temperature in accord with both Arrhenius law and transition-state theory. Activation energies, Esba, and activation parameters DeltaSsp{ddagger}, DeltaHsp{ddagger} and DeltaGsp{ddagger}, were determined for thiolysis and condensation reactions. The potentiometric tiration method was used for quantitative determination of germanium sulfide and

  19. Experiments in Thermodynamics and Kinetics of Phosphine Substitution in (p-Cymene)RuCl[subscript 2](PR[subscript 3])

    ERIC Educational Resources Information Center

    Ozerov, Oleg V.; Fafard, Claudia M.; Hoffman, Norris W.

    2007-01-01

    This manuscript describes a set of three experiments that investigates the thermodynamic and kinetic aspects of phosphine substitution at a Ru center. In the first experiment, the students synthesize a Ru organometallic complex containing a phosphine ligand. In the second, equilibria for phosphine substitution involving several different…

  20. Phosphine-ligated dinitrosyl iron complexes for redox-controlled NO release.

    PubMed

    Wittkamp, F; Nagel, C; Lauterjung, P; Mallick, B; Schatzschneider, U; Apfel, U-P

    2016-06-21

    Here we present the syntheses and structural, spectroscopic, as well as electrochemical properties of four dinitrosyl iron complexes (DNICs) based on silicon- and carbon-derived di- and tripodal phosphines. Whereas CH3C(CH2PPh2)3 and Ph2Si(CH2PPh2)2 coordinate iron in a η(2) - binding mode, CH3Si(CH2PPh2)3 undergoes cleavage of one Si-C bond to afford [Fe(NO)2(P(CH3)Ph2)2] at elevated temperatures. The complexes were characterized by IR spectroelectrochemistry as well as UV-vis measurements. The oxidized {Fe(NO)2}(9) compounds were obtained by oxidation with (NH4)2[Ce(NO3)6] and their properties evaluated with Mössbauer and IR spectroscopy. Stability experiments on the complexes suggest that they are capable of releasing their NO-ligands in the oxidized {Fe(NO)2}(9) but not in the reduced {Fe(NO)2}(10) form. A detailed DFT analysis is provided in order to understand the electronic configurations and the complexes' ability to release NO. PMID:27241282

  1. Transition Metal Complexes of Phosphinous Acids Featuring a Quasichelating Unit: Synthesis, Characterization, and Hetero-bimetallic Complexes.

    PubMed

    Allefeld, Nadine; Bader, Julia; Neumann, Beate; Stammler, Hans-Georg; Ignat'ev, Nikolai; Hoge, Berthold

    2015-08-17

    Diorganophosphane oxides were employed as preligands for the synthesis of catalytically active transition metal complexes of the phosphinous acids (CF3)2POH and (C2F5)2POH. Their reactions with solid PtCl2 and PdCl2 led to the formation of mononuclear phosphinous acid complexes [Cl2M{P(R(f))2OH}2] (M = Pd, Pt; R(f) = C2F5, CF3), which can be crystallized, for example, as its pyridinium salts, 2[HPy](+)[Cl2Pd{P(CF3)2O}2](2-). In vacuo HCl is liberated from the neutral palladium complexes affording mixtures of di- and polynuclear complexes. Moreover, (C2F5)2POH was reacted with several β-diketonato complexes of palladium, platinum, and nickel yielding air- and moisture-stable complexes [(acac)M{[P(R(f))2O]2H}], featuring a quasichelating phosphinous acid phosphinito unit {P(R(f))2O···H···O(R(f))2P}(-). Treatment of [Ni(Cp)2] (Cp = cyclopentadienyl) and [(cod)RhCl]2 (cod = 1,5-cyclooctadiene) with (C2F5)2POH leads to the substitution of one Cp or chloro ligand by a quasichelating unit. The novel coordination compounds were characterized by NMR and IR spectroscopies, mass spectrometry, and X-ray diffraction analysis. The platinum complex [(acac)Pt{[P(C2F5)2O]2H}] (acac = acetylacetonato) was used for the construction of hetero-bimetallic complexes by the treatment with [(cod)RhCl]2 and [Ni(Cp)2]. The trinuclear bimetallic complex [{(acac)Pt[P(C2F5)2O]2}2Ni] is the first structurally characterized hetero-bimetallic species containing a bis(perfluoroalkyl)phosphinito bridge. PMID:26242286

  2. Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent.

    PubMed

    Herbert, B R; Molloy, M P; Gooley, A A; Walsh, B J; Bryson, W G; Williams, K L

    1998-05-01

    In this study, dithiothreitol was replaced by tributyl phosphine as the reducing agent in both the sample solution for the first-dimensional isoelectric focusing and during the immobilised pH gradient (IPG) equilibration procedure. Tributyl phosphine improves protein solubility during isoelectric focusing, which results in shorter run times and increased resolution. Tributyl phosphine is nonionic and thus does not migrate in the IPG, therefore maintaining reducing conditions during the course of the first-dimensional separation. The increased solubility provided by the maintenance of reducing conditions gives improved focusing and decreased horizontal streaking on the subsequent second-dimension gel. The use of tributyl phosphine in the equilibration step allows the procedure to be simplified, incorporating reduction and alkylation in a single step. This is possible because, in direct contrast to dithiothreitol (DTT), tributyl phosphine does not contain a free thiol and therefore does not react with thiol-specific alkylating reagents. PMID:9629925

  3. Functional Analysis of Three Sulfide:Quinone Oxidoreductase Homologs in Chlorobaculum tepidum▿ †

    PubMed Central

    Chan, Leong-Keat; Morgan-Kiss, Rachael M.; Hanson, Thomas E.

    2009-01-01

    Sulfide:quinone oxidoreductase (SQR) catalyzes sulfide oxidation during sulfide-dependent chemo- and phototrophic growth in bacteria. The green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum) can grow on sulfide as the sole electron donor and sulfur source. C. tepidum contains genes encoding three SQR homologs: CT0117, CT0876, and CT1087. This study examined which, if any, of the SQR homologs possess sulfide-dependent ubiquinone reduction activity and are required for growth on sulfide. In contrast to CT0117 and CT0876, transcripts of CT1087 were detected only when cells actively oxidized sulfide. Mutation of CT0117 or CT1087 in C. tepidum decreased SQR activity in membrane fractions, and the CT1087 mutant could not grow with ≥6 mM sulfide. Mutation of both CT0117 and CT1087 in C. tepidum completely abolished SQR activity, and the double mutant failed to grow with ≥4 mM sulfide. A C-terminal His6-tagged CT1087 protein was membrane localized, as was SQR activity. Epitope-tagged CT1087 was detected only when sulfide was actively consumed by cells. Recombinantly produced CT1087 and CT0117 proteins had SQR activity, while CT0876 did not. In summary, we conclude that, under the conditions tested, both CT0117 and CT1087 function as SQR proteins in C. tepidum. CT0876 may support the growth of C. tepidum at low sulfide concentrations, but no evidence was found for SQR activity associated with this protein. PMID:19028893

  4. Water-soluble hydroxyalkylated phosphines: examples of their differing behaviour toward ruthenium and rhodium.

    PubMed

    Higham, Lee J; Whittlesey, Michael K; Wood, Paul T

    2004-12-21

    The reaction of P(CH2OH)3 (I) and P(C6H5)(CH2OH)2 (II) with RuCl3 in methanol eliminates two equivalents of formaldehyde to yield the mixed tertiary and secondary phosphine complexes all-trans-[RuCl2(P(CH2OH)3)2(P(CH2OH)2H)2] (1) and [RuCl2(P(C6H5)(CH2OH)2)2(P(C6H5)(CH2OH)H)2] (2), respectively. There is a high degree of hydrogen-bonding interactions between the hydroxymethyl groups in 1 and 2, although the phenyl groups of the latter reduce the extent of the network compared to 1. The generation of these mixed secondary and tertiary phosphine complexes is unprecedented. Under the same reaction conditions, the tris(hydroxypropyl)phosphine III formed no ruthenium complex. The reaction of P(CH2OH)3, P(C6H5)(CH2OH)2 and P{(CH2)3OH}3 with [RhCl(1,5-cod)]2 in an aqueous/dichloromethane biphasic medium yielded [RhH2(P(CH2OH)3)4]+ (3), [RhH2(P(C6H5)(CH2OH)2)4]+ (4) and [Rh(P(C6H5)(CH2OH)2)4]+ (5) and [Rh(P{(CH2)3OH}3)4]+ (6), respectively. Treating 5 with dihydrogen rapidly gave 4. The hydroxypropyl compound 6 formed the corresponding dihydride much more slowly in aqueous solution, although [RhH2(P{(CH2)3OH}3)4]+ (7) was readily formed by reaction with dihydrogen. Two separate reaction pathways are therefore involved; for P(CH2OH)3 and to a lesser extent P(C6H5)(CH2OH)2, the hydride source in the product is likely to be the aqueous solvent or the hydroxyl protons, whilst for P{(CH2)3OH}3 an oxidative addition of H2 is favoured. The protic nature of and was illustrated by the H-D exchange observed in d2-water. Dihydrides 3 and 4 reacted with carbon monoxide to yield the dicarbonyl cations [Rh(CO)2(P(CH2OH)3)3]+ (8) and [Rh(CO)2(P(C6H5)(CH2OH)2)3]+ (9). The analogous experiment with [RhH2(P{(CH2)3OH}3)4]+ resulted in phosphine exchange, although our experimental evidence points to the possibility of more than one fluxional process in solution. PMID:15573173

  5. Photochemistry of phosphine and Jupiter's great red spot

    SciTech Connect

    Noy, N.; Podolak, M.; Bar-Nun, A.

    1981-12-20

    We present the results of an experimental investigation of the ultraviolet photolysis of mixtures of phosphine in hydrogen. Under no circumstances could red phosphorus be produced in this system. Rather, the product was always yellow. The measured indices of refraction of the phosphorus produced were used to fit the variation of reflectivity of Jupiter's Great Red Spot with wavelength. It was found that the phosphorus particles have to be small (0.05 ..mu..m) and their layer should have an optical depth of about one at lambda = 0.4 ..mu..m.

  6. Phosphine on Jupiter and implications for the Great Red Spot

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Lewis, J. S.

    1975-01-01

    A study of the chemistry and photochemistry of the recently discovered phosphine in the atmosphere of Jupiter suggests that the red colorations on this planet result from photochemical production of red phosphorus particles. Chemical-dynamical models of this red phosphorus haze imply that the intensity of the red coloration is a strong function of the strength of vertical turbulent mixing in the atmosphere. If the Jovian Great Red Spot is a region of considerable dynamical activity our model provides a self-consistent explanation for the redness of this region in comparison to the rest of the planet.

  7. Essential role of phosphines in organocatalytic β-boration reaction.

    PubMed

    Pubill-Ulldemolins, Cristina; Bonet, Amadeu; Gulyás, Henrik; Bo, Carles; Fernández, Elena

    2012-12-28

    The use of phosphines to assist the organocatalytic β-boration reaction of α,β-unsaturated carbonyl compounds has been demonstrated with a selected number of substrates. The new method eludes the use of Brönsted bases to promote the catalytic active species and PR(3) becomes essential to interact with the substrate resulting in the formation of a zwitterionic phosphonium enolate. This species can further deprotonate MeOH when B(2)pin(2) is present forming eventually the ion pair [α-(H),β-(PR(3))-ketone](+)[B(2)pin(2)·MeO](-) that is responsible for the catalysis. PMID:23147697

  8. Oxidation of heterocyclic nitrogen yields to nitroheterocycles. [Nitrofurazans

    SciTech Connect

    Coburn, M.D.

    1985-01-01

    In the process of finding new routes to synthesize nitrofurazans the investigators compared the oxidation of a sulfilimide and a phosphine imine derived from 3-amino-4-(chlorophenyl)furazan (1). The sulfilimine, 3-(4-chlorophenyl)-4-dimethyl-sulfiliminofurazan (2), was prepared by treating 1 with dimethyl sulfide ditriflate. Oxidation of 1 with peroxytrifluoroacetic acid (ptfa) in dichloromethane gave a mixture that was chromatographed to give 3-(4-chlorophenyl)-4- nitro-furazan (5) in 11% yield and azoxy(4-chlorophenylfurazan) (6) in 32% yield. Under the same conditions, 2 gave a 96% yield of 5 with no trace of 6. Oxidation of diaminofurazan (7) with ptfa gives 3-amino-4-nitrofurazan (8), which was converted to the sulfilimine. Treatment of the sulfilimine with anhydrous ptfa in dichloromethane gave a solution that contained dimethyl sulfone according to /sup 13/C-NMR analysis, but no nitrocarbon could be detected. However, the /sup 14/N-NMR spectrum contained a very sharp singlet with a width at half-height of 19 Hz and a chemical shift almost identical to that of 5. Thus, it appears that we may have formed dinitrofurazan in solution, but we have not been able to isolate it in pure form as yet. 10 refs., 4 figs.

  9. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  10. Photophysical studies of chromium sensitizers designed for excited state hole transfer to semiconductors and sequential hole/electron transfers from photoexcited cadmium sulfide nanorods to mononuclear ruthenium water-oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Tseng, Huan-Wei

    a photoexcited cadmium sulfide nanorod and [Ru(diethyl 2,2'-bipyridine-4,4'-dicarboxylate)(2,2':6',2"-terpyridine)Cl] +, a mononuclear water-oxidation catalyst. Upon photoexcitation, hole transfer from the cadmium sulfide nanorod oxidizes the catalyst (Ru 2+ → Ru3+) on a 100 ps to 1 ns timescale. This is followed by electron transfer (10-100 ns) from the nanorod to reduce the Ru3+ center. The relatively slow electron transfer dynamics may provide opportunities for the accumulation of multiple holes at the catalyst, which is required for water oxidation.

  11. Study on the sulfidation behavior of smithsonite

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-02-01

    Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pHIEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, CS in the solution declined from 1000 × 10-6 mol/L to 1.4 × 10-6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S2- and CO32- ions.

  12. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors.

    PubMed

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  13. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors

    PubMed Central

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  14. Hydrogen sulfide prodrugs—a review

    PubMed Central

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  15. Hydrogen sulfide prodrugs-a review.

    PubMed

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-09-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  16. Micro-aeration for hydrogen sulfide removal from biogas

    NASA Astrophysics Data System (ADS)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  17. Copper-catalyzed C-H bond direct chalcogenation of aromatic compounds leading to diaryl sulfides, selenides, and diselenides by using elemental sulfur and selenium as chalcogen sources under oxidative conditions.

    PubMed

    Shibahara, Fumitoshi; Kanai, Takafumi; Yamaguchi, Eiji; Kamei, Akika; Yamauchi, Takayuki; Murai, Toshiaki

    2014-01-01

    The reactions of aromatic compounds and elemental chalcogens catalyzed by a copper salt with molecular oxygen as an oxidant were carried out. The reaction of 3-substituted imidazo[1,5-a]pyridines and elemental sulfur in the presence of CuTC (copper(I) thiophenecarboxylate) gave the corresponding bisimidazopyridyl sulfides in good to quantitative yields. The reaction proceeded even under aerobic oxidation conditions. The use of a polar solvent was crucial for the reaction, and DMSO (dimethyl sulfoxide) in particular stimulated the reaction. The reaction could be applied to common aromatic compounds, such as N-methyl indole and dialkyl anilines. The reaction of indole proceeded at the nucleophilic C3 position rather than at the acidic C2 position. In addition, the reaction of dialkyl anilines proceeded with an ortho, para orientation. The reactions of imidazopyridines and elemental selenium under similar conditions gave the corresponding bisimidazopyridyl diselenides along with bisimidazopyridyl monoselenides. The resulting diselenides were readily converted to the corresponding monoselenides with unreacted imidazopyridines under the same conditions. The reaction could be applied to the copolymerization of bifunctional bisimidazopyridines and elemental sulfur to give oligomeric copolymers in quantitative yield. PMID:24347073

  18. Spontaneous dehydrocoupling in peri-substituted phosphine-borane adducts.

    PubMed

    Taylor, Laurence J; Surgenor, Brian A; Wawrzyniak, Piotr; Ray, Matthew J; Cordes, David B; Slawin, Alexandra M Z; Kilian, Petr

    2016-02-01

    Bis(borane) adducts Acenap(PiPr2·BH3)(PRH·BH3) (Acenap = acenaphthene-5,6-diyl; 4a, R = Ph; 4b, R = ferrocenyl, Fc; 4c, R = H) were synthesised by the reaction of excess H3B·SMe2 with either phosphino-phosphonium salts [Acenap(PiPr2)(PR)](+)Cl(-) (1a, R = Ph; 1b, R = Fc), or bis(phosphine) Acenap(PiPr2)(PH2) (3). Bis(borane) adducts 4a-c were found to undergo dihydrogen elimination at room temperature, this spontaneous catalyst-free phosphine-borane dehydrocoupling yields BH2 bridged species Acenap(PiPr2)(μ-BH2)(PR·BH3) (5a, R = Ph; 5b, R = Fc; 5c, R = H). Thermolysis of 5c results in loss of the terminal borane moiety to afford Acenap(PiPr2)(μ-BH2)(PH) (14). Single crystal X-ray structures of 3, 4b and 5a-c are reported. PMID:26314761

  19. Atomic layer deposition of metal sulfide materials.

    PubMed

    Dasgupta, Neil P; Meng, Xiangbo; Elam, Jeffrey W; Martinson, Alex B F

    2015-02-17

    CONSPECTUS: The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application

  20. Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities.

    PubMed

    Pikaar, Ilje; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg; Rabaey, Korneel

    2011-03-01

    Hydrogen sulfide generation is the key cause of sewer pipe corrosion, one of the major issues in water infrastructure. Current abatement strategies typically involve addition of various types of chemicals to the wastewater, which incurs large operational costs. The transport, storage and application of these chemicals also constitute occupational and safety hazards. In this study, we investigated high rate electrochemical oxidation of sulfide at Ir/Ta mixed metal oxide (MMO) coated titanium electrodes as a means to remove sulfide from wastewater. Both synthetic and real wastewaters were used in the experiments. Electrochemical sulfide oxidation by means of indirect oxidation with in-situ produced oxygen appeared to be the main reaction mechanism at Ir/Ta MMO coated titanium electrodes. The maximum obtained sulfide removal rate was 11.8 ± 1.7 g S m(-2) projected anode surface h(-1) using domestic wastewater at sulfide concentrations of ≥ 30 mg L(-1) or higher. The final products of the oxidation were sulfate, thiosulfate and elemental sulfur. Chloride and acetate concentrations did not entail differences in sulfide removal, nor were the latter two components affected by the electrochemical oxidation. Hence, the use of electrodes to generate oxygen in sewer systems may constitute a promising method for reagent-free removal of sulfide from wastewater. PMID:21300393

  1. Sulfide as a signaling molecule in autophagy

    PubMed Central

    Gotor, Cecilia; García, Irene; Crespo, José L.; Romero, Luis C.

    2013-01-01

    Hydrogen sulfide is already recognized as an important signaling molecule in mammalian systems, and emerging data suggest that H2S is a signaling molecule just as important as nitric oxide (NO) and H2O2 in plants. Although sulfide is generated in chloroplasts and mitochondria, it is present predominantly in the charged HS- form due to the basic pH inside both organelles, thus requiring an active transporter, which is yet to be identified, to be released. In Arabidopsis, we found that the cytosolic L-cysteine desulfhydrase DES1 is involved in the degradation of cysteine, and therefore responsible for the generation of H2S in this cellular compartment. DES1 deficiency leads to the induction of autophagy. Moreover, we have demonstrated that sulfide in particular exerts a general effect on autophagy through negative regulation, in a way unrelated to nutrient deficiency. The mechanisms of H2S action and its molecular targets are largely unknown, although in animal systems, protein S-sulfhydration has been proposed as a mechanism for sulfide-mediated signaling. PMID:23328265

  2. Phosphine and diphosphine complexes of silicon(IV) halides.

    PubMed

    Levason, William; Pugh, David; Reid, Gillian

    2013-05-01

    The reaction of SiX4 (X = Cl or Br) with PMe3 in anhydrous CH2Cl2 forms trans-[SiX4(PMe3)2], while the diphosphines, Me2P(CH2)2PMe2, Et2P(CH2)2PEt2, and o-C6H4(PMe2)2 form cis-[SiX4(diphosphine)], all containing six-coordinate silicon centers. With Me2PCH2PMe2 the product was trans-[SiCl4(κ(1)-Me2PCH2PMe2)2]. The complexes have been characterized by X-ray crystallography, microanalysis, IR, and multinuclear ((1)H, (13)C{(1)H}, and (31)P{(1)H}) NMR spectroscopies. The complexes are stable solids and not significantly dissociated in nondonor solvents, although they are very moisture and oxygen sensitive. This stability conflicts with the predictions of recent density functional theory (DFT) calculations (Wilson et al. Inorg. Chem. 2012, 51, 7657-7668) which suggested six-coordinate silicon phosphines would be unstable, and also contrasts with the failure to isolate complexes with SiF4 (George et al. Dalton Trans. 2011, 40, 1584-1593). No reaction occurred between phosphines and SiI4, or with SiX4 and arsine ligands including AsMe3 and o-C6H4(AsMe2)2. Attempts to make five-coordinate [SiX4(PR3)] using the sterically bulky phosphines, P(t)Bu3, P(i)Pr3, or PCy3 failed, with no apparent reaction occurring, consistent with predictions (Wilson et al. Inorg. Chem. 2012, 51, 7657-7668) that such compounds would be very endothermic, while the large cone angles of the phosphines presumably preclude formation of six-coordination at the small silicon center. The reaction of Si2Cl6 with PMe3 or the diphosphines in CH2Cl2 results in instant disproportionation to the SiCl4 adducts and polychlorosilanes, but from hexane solution very unstable white [Si2Cl6(PMe3)2] and [Si2Cl6(diphosphine)] (diphosphine = Me2P(CH2)2PMe2 or o-C6H4(PMe2)2) precipitate. The reactions of SiHCl3 with PMe3 and Me2P(CH2)2PMe2 also produce the SiCl4 adducts, but using Et2P(CH2)2PEt2, colorless [SiHCl3{Et2P(CH2)2PEt2}] was isolated, which was characterized by an X-ray structure which showed a pseudo

  3. Enhanced elementary sulfur recovery with sequential sulfate-reducing, denitrifying sulfide-oxidizing processes in a cylindrical-type anaerobic baffled reactor.

    PubMed

    Huang, Cong; Zhao, Youkang; Li, Zhiling; Yuan, Ye; Chen, Chuan; Tan, Wenbo; Gao, Shuang; Gao, Lingfang; Zhou, Jizhong; Wang, Aijie

    2015-09-01

    Simultaneous removal of COD, SO4(2-) and NO3(-) and recovery of elemental sulfur (S(0)) were evaluated in a four-compartment anaerobic baffled reactor (ABR) with separated functional units of sulfate reduction (SR) and denitrifying sulfide removal (DSR). Optimal SO4(2-)-S/NO3(-)-N ratio was evaluated as 5:5, with a substantial improvement of S(0) recovery maintained at 79.1%, one of the highest level ever reported; meanwhile, removal rates of COD, SO4(2-) and NO3(-) were approached at 71.9%, 92.9% and 98.6%, respectively. Nitrate served as a key factor to control the shift of SR and DSR related populations, with the possible involvement of Thauera sp. during SR and Sulfurovum sp. or Acidiferrobacter sp. during DSR, respectively. DsrB and aprA genes were the most abundant during SR and DSR processes, respectively. Cylindrical-type ABR with the improved elemental sulfur recovery was recommended to deal with sulfate and nitrate-laden wastewater under the optimized SO4(2-)/NO3(-) ratio. PMID:26080105

  4. Hydrogen Sulfide Prolongs Postharvest Storage of Fresh-Cut Pears (Pyrus pyrifolia) by Alleviation of Oxidative Damage and Inhibition of Fungal Growth

    PubMed Central

    Gao, Shuai-Ping; Wu, Jun; Li, Yan-Hong; Zheng, Ji-Lian; Han, Yi; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    Hydrogen sulfide (H2S) has proved to be a multifunctional signaling molecule in plants and animals. Here, we investigated the role of H2S in the decay of fresh-cut pears (Pyrus pyrifolia). H2S gas released by sodium hydrosulfide (NaHS) prolonged the shelf life of fresh-cut pear slices in a dose-dependent manner. Moreover, H2S maintained higher levels of reducing sugar and soluble protein in pear slices. H2S significantly reduced the accumulation of hydrogen peroxide (H2O2), superoxide radicals (•O2−) and malondialdehyde (MDA). Further investigation showed that H2S fumigation up-regulated the activities of antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD), while it down-regulated those of lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO). Furthermore, H2S fumigation effectively inhibited the growth of two fungal pathogens of pear, Aspergillus niger and Penicillium expansum, suggesting that H2S can be developed as an effective fungicide for postharvest storage. The present study implies that H2S is involved in prolonging postharvest storage of pears by acting as an antioxidant and fungicide. PMID:24454881

  5. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  6. Toxicity of phosphine to Carposina niponensis (Lepidoptera: Carposinadae) at low temperature.

    PubMed

    Bo, Liu; Fanhua, Zhang; Yuejin, Wang

    2010-12-01

    Carposina niponensis Matsumura (Lepidoptera: Carposinadae), is widely distributed in pome fruit production areas in China and presents a problem in some export markets because it is considered a quarantine pest by some countries. Methyl bromide is the only fumigant used for fumigation of apples (Malus spp.) for export. However, phosphine is a candidate replacement that can be applied directly at low temperature. Here, laboratory tests showed that tolerance of different stages of C. niponensis to phosphine fumigation at 0 degrees C differed greatly; first-second-instar larvae were the least tolerant stage and the mature fifth instars were the most tolerant stage. In the mature larvae, fumigation tests, with a range of phosphine concentrations from 0.42 to 1.95 mg/liters and exposure periods of 24 h to 14 d at 0 degrees C indicated narcosis when phosphine concentration was > or = 1.67 mg/liter and that a 15.52-8.14-d fumigation period was required to achieve 99% mortality with different phosphine concentrations. The expression of C(0.7)T = k was obtained, which indicated that exposure time was much more important than concentration of phosphine in mortality of mature larvae of C. niponensis. All results suggested that phosphine fumigation at low temperature offers promising control of C. niponensis infestation in pome fruit. PMID:21309217

  7. Hydrogen Sulfide Protects against Chronic Unpredictable Mild Stress-Induced Oxidative Stress in Hippocampus by Upregulation of BDNF-TrkB Pathway

    PubMed Central

    Zou, Wei; Wang, Chun-Yan; Tan, Hui-Ying; Zeng, Hai-Ying; Zhang, Ping; Gu, Hong-Feng

    2016-01-01

    Chronic unpredictable mild stress (CUMS) induces hippocampal oxidative stress. H2S functions as a neuroprotectant against oxidative stress in brain. We have previously shown the upregulatory effect of H2S on BDNF protein expression in the hippocampus of rats. Therefore, we hypothesized that H2S prevents CUMS-generated oxidative stress by upregulation of BDNF-TrkB pathway. We showed that NaHS (0.03 or 0.1 mmol/kg/day) ameliorates the level of hippocampal oxidative stress, including reduced levels of malondialdehyde (MDA) and 4-hydroxy-2-trans-nonenal (4-HNE), as well as increased level of glutathione (GSH) and activity of superoxide dismutase (SOD) in the hippocampus of CUMS-treated rats. We also found that H2S upregulated the level of BDNF and p-TrkB protein in the hippocampus of CUMS rats. Furthermore, inhibition of BDNF signaling by K252a, an inhibitor of the BDNF receptor TrkB, blocked the antioxidant effects of H2S on CUMS-induced hippocampal oxidative stress. These results reveal the inhibitory role of H2S in CUMS-induced hippocampal oxidative stress, which is through upregulation of BDNF/TrkB pathway. PMID:27525050

  8. Oxygenated phosphine fumigation for control of Epiphyas postvittana (Lepidoptera: Tortricidae) eggs on lettuce.

    PubMed

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2014-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), is a quarantined pest in most countries. Its establishment in California and potential spread to other parts of the state and beyond make it urgent to develop effective postharvest treatments to control the pest on fresh commodities. Fumigation with cylindered phosphine at low temperature has emerged to be a practical methyl bromide alternative treatment for postharvest pest control on fresh commodities. However, its use to control E. postvittana eggs on sensitive commodities such as lettuce is problematic. E. postvittana eggs are tolerant of phosphine and long phosphine treatment also injures lettuce. In the current study, E. postvittana eggs were subjected to oxygenated phosphine fumigations to develop an effective treatment at a low storage temperature of 2 degrees C. In addition, soda lime as a CO2 absorbent was tested to determine its effects in reducing and preventing injuries to lettuce associated with phosphine fumigations. Three-day fumigation with 1,000 ppm phosphine under 60% O2 achieved 100% mortality of E. postvittana eggs in small-scale laboratory tests. In the presence of the CO2 absorbent, a 3-d large-scale fumigation of lettuce with 1,700 ppm phosphine under 60% O2 resulted in a relative egg mortality of 99.96% without any negative effect on lettuce quality. The 3-d fumigation treatment without the CO2 absorbent, however, resulted in significant injuries to lettuce and consequential quality reductions. The study demonstrated that oxygenated phosphine fumigation has the potential to control E. postvittana eggs and the CO2 absorbent has the potential to prevent injuries and quality reductions of lettuce associated with long-term oxygenated phosphine fumigation. PMID:25195424

  9. Sulfide elimination by intermittent nitrate dosing in sewer sediments.

    PubMed

    Liu, Yanchen; Wu, Chen; Zhou, Xiaohong; Zhu, David Z; Shi, Hanchang

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control condition were investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide) ratio with slight excess nitrate is necessary for optimal conditions of efficient sulfide control with lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems. PMID:25597685

  10. Dibenzyl Sulfide Metabolism by White Rot Fungi

    PubMed Central

    Van Hamme, Jonathan D.; Wong, Eddie T.; Dettman, Heather; Gray, Murray R.; Pickard, Michael A.

    2003-01-01

    Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated. PMID:12571066

  11. Electrochemical properties of bare nickel sulfide and nickel sulfide-carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Son, Mun Yeong; Choi, Jeong Hoo; Kang, Yun Chan

    2014-04-01

    Spherical bare nickel sulfide and nickel sulfide-carbon composite powders are prepared by a one-step spray pyrolysis. Submicron bare nickel sulfide particles with a dense structure have mixed crystal phases of NiS, Ni7S6, and NixS6. The nickel sulfide-carbon composite powders prepared from a spray solution containing 0.1 M sucrose have a main crystal structure of Ni7S6 phase with small impurity peaks of NixS6 phase. A nickel oxide-carbon composite powder is first formed as an intermediate product in the front part of the reactor at 800 °C. Fast decomposition of thiourea at this high temperature results in the evolution of hydrogen sulfide gas, which then forms the nickel sulfide-carbon composite powders by direct sulfidation of nickel oxide under the reducing atmosphere. Nickel sulfide nanocrystals with a size of a few nanometers are uniformly distributed inside the spherical carbon matrix. The nickel sulfide-carbon composite powders prepared with 0.1 M sucrose have an excellent discharge capacity of 472 mA h g-1 at a high current density of 1000 mA g-1, even after 500 cycles, with the corresponding capacity retention measured after the first cycle being 86%.

  12. Utilization of Hyperbaric Oxygen Therapy and Induced Hypothermia After Hydrogen Sulfide Exposure

    PubMed Central

    Asif, Mir J.; Exline, Matthew C.

    2013-01-01

    Hydrogen sulfide is a toxic gas produced as a byproduct of organic waste and many industrial processes. Hydrogen sulfide exposure symptoms may vary from mild (dizziness, headaches, nausea) to severe lactic acidosis via its inhibition of oxidative phosphorylation, leading to cardiac arrhythmias and death. Treatment is generally supportive. We report the case of a patient presenting with cardiac arrest secondary to hydrogen sulfide exposure treated with both hyperbaric oxygen therapy and therapeutic hypothermia with great improvement in neurologic function. PMID:22004989

  13. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium

    USGS Publications Warehouse

    Visscher, P.T.; Taylor, B.F.

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.

  14. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium.

    PubMed Central

    Visscher, P T; Taylor, B F

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters. PMID:8285707

  15. Nitrite as an antidote for acute hydrogen sulfide intoxication

    SciTech Connect

    Beck, J.F.; Bradbury, C.M.; Connors, A.J.; Donini, J.C.

    1981-11-01

    The detoxification of hydrogen sulfide (H/sub 2/S) by a heme catalyzed oxidation was examined as part of an on-going study of H/sub 2/S toxicity. Interlocking O/sub 2/ absorption and sulfide depletion data indicate that both oxyhemoglobin and methemoglobin are effective catalytic agents. Although the latter is more efficacious, the life time of excess sulfide in the presence of oxygen and either of the above is of the order of minutes. It has also been established that the formation of methemoglobin following nitrite administration occurs preferentially under oxygen poor conditions. Under an atmospheric or oxygen enriched environment, which favors sulfide depletion, the nitrite retards sulfide oxidation. Thus nitrite as an antidote for acute H/sub 2/S intoxication can only be effective within the first few minutes after the exposure, at which time resuscitation and/or ventilation of the victim is likely to produce conditions in which the nitrite actually slows sulfide removal.

  16. Copper sulfide solid-state electrolytic memory devices

    NASA Astrophysics Data System (ADS)

    You, Liang

    Copper sulfide thin films with electrical switching and memory effect were grown using a chemical vapor reaction apparatus. The formation of copper sulfide film undergoes a process which includes nucleation, growth of nucleation, coalescence into continuous film, and film thickening. The initial phase of the sulfide growth was reaction limited followed by a diffusion limited phase involving out-diffusion of copper. The thin film tends to nucleate and grow at energy favorable sites such as twinning boundary. Sulfidation of polycrystalline copper results in formation of voids at the interface between the copper and its sulfide. (111) copper has the highest sulfidation rate followed by (100) and (110) copper planes. Moreover, the sulfidation rate near the microfabricated plug edge was found to be faster than the rate at the center of the plug. A mechanism based on competing sulfidation sites due to the geometry difference between the plugs' center and their edge is presented to explain this phenomenon. We show for the first time that field-assisted solid-electrolyte copper sulfide thin film device can function as a switch by reversing the voltage polarity between copper and inert metal electrodes through a copper-sulfide layer in planar and vertical structures. The copper oxide at the top of copper sulfide greatly increased the turn-on voltage. The turn-on voltage depends linearly on the film thickness. Copper sulfide devices in micrometer dimension were microfabricated using IC compatible techniques and characterized showing the same switching effect. Electrode contact area effect on switching performance was investigated in term of turn-on voltage, turn-off voltage, on-state resistance and off-state resistance. Four-point resistance measurement unit, Hall Effect and transfer length measurement were also fabricated together with copper sulfide switching devices and they were studied in order to determine the CuxS carrier type, carrier concentration, film resistivity

  17. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    NASA Astrophysics Data System (ADS)

    Lajin, Bassam; Francesconi, Kevin A.

    2016-06-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  18. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine.

    PubMed

    Lajin, Bassam; Francesconi, Kevin A

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools. PMID:27247020

  19. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    PubMed Central

    Lajin, Bassam; Francesconi, Kevin A.

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools. PMID:27247020

  20. Sulfide detoxification in plant mitochondria.

    PubMed

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material. PMID:25747485