Science.gov

Sample records for phospho protein phosphatase

  1. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. PMID:26742850

  2. A Specific Form of Phospho Protein Phosphatase 2 Regulates Anaphase-promoting Complex/Cyclosome Association with Spindle Poles

    PubMed Central

    Ban, Kenneth H.

    2010-01-01

    In early mitosis, the END (Emi1/NuMA/Dynein-dynactin) network anchors the anaphase-promoting complex/cyclosome (APC/C) to the mitotic spindle and poles. Spindle anchoring restricts APC/C activity, thereby limiting the destruction of spindle-associated cyclin B and ensuring maintenance of spindle integrity. Emi1 binds directly to hypophosphorylated APC/C, linking the APC/C to the spindle via NuMA. However, whether the phosphorylation state of the APC/C is important for its association with the spindle and what kinases and phosphatases are necessary for regulating this event remain unknown. Here, we describe the regulation of APC/C-mitotic spindle pole association by phosphorylation. We find that only hypophosphorylated APC/C associates with microtubule asters, suggesting that phosphatases are important. Indeed, a specific form of PPP2 (CA/R1A/R2B) binds APC/C, and PPP2 activity is necessary for Cdc27 dephosphorylation. Screening by RNA interference, we find that inactivation of CA, R1A, or R2B leads to delocalization of APC/C from spindle poles, early mitotic spindle defects, a failure to congress chromosomes, and decreased levels of cyclin B on the spindle. Consistently, inhibition of cyclin B/Cdk1 activity increased APC/C binding to microtubules. Thus, cyclin B/Cdk1 and PPP2 regulate the dynamic association of APC/C with spindle poles in early mitosis, a step necessary for proper spindle formation. PMID:20089842

  3. Chromosomal localization of the chicken and mammalian orthologues of the orphan phosphatase PHOSPHO1 gene.

    PubMed

    Houston, B; Paton, I R; Burt, D W; Farquharson, C

    2002-12-01

    PHOSPHO1 is a recently identified phosphatase expressed at high levels in the chicken growth plate and which may be involved in generating inorganic phosphate for skeletal matrix mineralization. Using a degenerate RT-PCR approach a fragment of human PHOSPHO1 was cloned. This enabled the identification of the human orthologue on HSA17q21, and the mouse orthologue on a region of MMU11 that exhibits conservation of synteny with HSA17q21. Chicken PHOSPHO1 was mapped by SSCP analysis to position 44 cM on GGA27, adjacent to the HOXB@ (44 cM) and COL1A1 (36 cM) loci. Comparison of genes on GGA27 with their orthologues on the preliminary draft of the human genome identifies regions of conserved synteny equivalent to 25 Mb on HSA17q21.2-23.3 and approximately 20 Mb on GGA27 in which the gene order appears to be conserved. Mapping of the PHOSPHO1 genes to regions of HSA17q21.3, MMU11 and GGA27 that exhibit conservation of synteny provides strong evidence that they are orthologous. PMID:12464021

  4. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  5. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  6. PhosphoTyrosyl Phosphatase Activator of Plasmodium falciparum: Identification of Its Residues Involved in Binding to and Activation of PP2A

    PubMed Central

    Vandomme, Audrey; Fréville, Aline; Cailliau, Katia; Kalamou, Hadidjatou; Bodart, Jean-François; Khalife, Jamal; Pierrot, Christine

    2014-01-01

    In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity. PMID:24521882

  7. A Theileria parva type 1 protein phosphatase activity.

    PubMed

    Cayla, X; Garcia, A; Baumgartner, M; Ozon, R; Langsley, G

    2000-09-01

    The protozoan parasite Theileria (spp. parva and annulata) infects bovine leukocytes and provokes a leukaemia-like disease in vivo. In this study, we have detected a type 1 serine/threonine phosphatase activity with phosphorylase a as a substrate, in protein extracts of parasites purified from infected B lymphocytes. In contrast to this type 1 activity, dose response experiments with okadaic acid (OA), a well characterised inhibitor of type 1 and 2A protein phosphatases, indicated that type 2A is the predominant activity detected in host B cells. Furthermore, consistent with polycation-specific activation of the type 2A phosphatase, protamine failed to activate the parasite-associated phosphorylase a phosphatase activity. Moreover, inhibition of phosphorylase a dephosphorylation by phospho-DARPP-32, a specific type 1 inhibitor, clearly demonstrated that a type 1 phosphatase is specifically associated with the parasite, while the type 2A is predominantly expressed in the host lymphocyte. Since an antibody against bovine catalytic protein phosphatase 1 (PP1) subunit only recognised the PP1 in B cells, but not in parasite extracts, we conclude that in parasites the PP1 activity is of parasitic origin. Intriguingly, since type 1 OA-sensitive phosphatase activity has been recently described in Plasmodium falciparum, we can conclude that these medically important parasites produce their one PP1. PMID:10989153

  8. Loss of Skeletal Mineralization by the Simultaneous Ablation of PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms of Initiation of Skeletal Calcification

    PubMed Central

    Yadav, Manisha C; Simão, Ana Maria Sper; Narisawa, Sonoko; Huesa, Carmen; McKee, Marc D; Farquharson, Colin; Millán, José Luis

    2011-01-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PPi). Mutations in the TNAP gene cause hypophosphatasia, a heritable form of rickets and osteomalacia. Here we show that PHOSPHO1, a phosphatase with specificity for phosphoethanolamine and phosphocholine, plays a functional role in the initiation of calcification and that ablation of PHOSPHO1 and TNAP function prevents skeletal mineralization. Phospho1−/− mice display growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life. Primary cultures of Phospho1−/− tibial growth plate chondrocytes and chondrocyte-derived matrix vesicles (MVs) show reduced mineralizing ability, and plasma samples from Phospho1−/− mice show reduced levels of TNAP and elevated plasma PPi concentrations. However, transgenic overexpression of TNAP does not correct the bone phenotype in Phospho1−/− mice despite normalization of their plasma PPi levels. In contrast, double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality. We conclude that PHOSPHO1 has a nonredundant functional role during endochondral ossification, and based on these data and a review of the current literature, we propose an inclusive model of skeletal calcification that involves intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP, nucleotide pyrophosphatase phosphodiesterase-1, and collagen in the extravesicular progression of mineralization. © 2011 American Society for Bone and Mineral Research. PMID:20684022

  9. Protein phosphatases in pancreatic islets

    PubMed Central

    Ortsäter, Henrik; Grankvist, Nina; Honkanen, Richard E.; Sjöholm1, Åke

    2014-01-01

    The prevalence of diabetes is increasing rapidly world-wide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis. PMID:24681827

  10. Phospho-tyrosine dependent protein–protein interaction network

    PubMed Central

    Grossmann, Arndt; Benlasfer, Nouhad; Birth, Petra; Hegele, Anna; Wachsmuth, Franziska; Apelt, Luise; Stelzl, Ulrich

    2015-01-01

    Post-translational protein modifications, such as tyrosine phosphorylation, regulate protein–protein interactions (PPIs) critical for signal processing and cellular phenotypes. We extended an established yeast two-hybrid system employing human protein kinases for the analyses of phospho-tyrosine (pY)-dependent PPIs in a direct experimental, large-scale approach. We identified 292 mostly novel pY-dependent PPIs which showed high specificity with respect to kinases and interacting proteins and validated a large fraction in co-immunoprecipitation experiments from mammalian cells. About one-sixth of the interactions are mediated by known linear sequence binding motifs while the majority of pY-PPIs are mediated by other linear epitopes or governed by alternative recognition modes. Network analysis revealed that pY-mediated recognition events are tied to a highly connected protein module dedicated to signaling and cell growth pathways related to cancer. Using binding assays, protein complementation and phenotypic readouts to characterize the pY-dependent interactions of TSPAN2 (tetraspanin 2) and GRB2 or PIK3R3 (p55γ), we exemplarily provide evidence that the two pY-dependent PPIs dictate cellular cancer phenotypes. PMID:25814554

  11. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  12. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  13. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

    PubMed Central

    Li, Hui; Li, Kang-shuai; Su, Jing; Chen, Lai-Zhong; Xu, Yun-Fei; Wang, Hong-Mei; Gong, Zheng; Cui, Guo-Ying; Yu, Xiao; Wang, Kai; Yao, Wei; Xin, Tao; Li, Min-Yong; Xiao, Kun-Hong; An, Xiao-fei; Huo, Yuqing; Xu, Zhi-gang; Sun, Jin-Peng; Pang, Qi

    2013-01-01

    Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. PMID:24117863

  14. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis.

    PubMed

    Rahmouni, Souad; Hego, Alexandre; Delierneux, Céline; Wéra, Odile; Musumeci, Lucia; Tautz, Lutz; Oury, Cécile

    2016-01-01

    Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets. PMID:27514813

  15. Role of PHOSPHO1 in Periodontal Development and Function.

    PubMed

    Zweifler, L E; Ao, M; Yadav, M; Kuss, P; Narisawa, S; Kolli, T N; Wimer, H F; Farquharson, C; Somerman, M J; Millán, J L; Foster, B L

    2016-07-01

    The tooth root and periodontal apparatus, including the acellular and cellular cementum, periodontal ligament (PDL), and alveolar bone, are critical for tooth function. Cementum and bone mineralization is regulated by factors including enzymes and extracellular matrix proteins that promote or inhibit hydroxyapatite crystal growth. Orphan Phosphatase 1 (Phospho1, PHOSPHO1) is a phosphatase expressed by chondrocytes, osteoblasts, and odontoblasts that functions in skeletal and dentin mineralization by initiating deposition of hydroxyapatite inside membrane-limited matrix vesicles. The role of PHOSPHO1 in periodontal formation remains unknown and we aimed to determine its functional importance in these tissues. We hypothesized that the enzyme would regulate proper mineralization of the periodontal apparatus. Spatiotemporal expression of PHOSPHO1 was mapped during periodontal development, and Phospho1(-/-) mice were analyzed using histology, immunohistochemistry, in situ hybridization, radiography, and micro-computed tomography. The Phospho1 gene and PHOSPHO1 protein were expressed by active alveolar bone osteoblasts and cementoblasts during cellular cementum formation. In Phospho1(-/-) mice, acellular cementum formation and mineralization were unaffected, whereas cellular cementum deposition increased although it displayed delayed mineralization and cementoid. Phospho1(-/-) mice featured disturbances in alveolar bone mineralization, shown by accumulation of unmineralized osteoid matrix and interglobular patterns of protein deposition. Parallel to other skeletal sites, deposition of mineral-regulating protein osteopontin (OPN) was increased in alveolar bone in Phospho1(-/-) mice. In contrast to the skeleton, genetic ablation of Spp1, the gene encoding OPN, did not ameliorate dentoalveolar defects in Phospho1(-/-) mice. Despite alveolar bone mineralization defects, periodontal attachment and function appeared undisturbed in Phospho1(-/-) mice, with normal PDL

  16. Essential Phosphatases and a Phospho-Degron Are Critical for Regulation of SRC-3/AIB1 Coactivator Function and Turnover

    PubMed Central

    Li, Chao; Liang, Yao-Yun; Feng, Xin-Hua; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.

    2008-01-01

    SRC-3/AIB1 is a master growth coactivator and oncogene, and phosphorylation activates it into a powerful coregulator. Dephosphorylation is a potential regulatory mechanism for SRC-3 function but the identity of such phosphatases remains unexplored. Herein, we report that using functional genomic screening of human Ser/Thr phosphatases targeting SRC-3’s known phosphorylation sites, the phosphatases PDXP, PP1 and PP2A were identified to be key negative regulators of SRC-3 transcriptional coregulatory activity in steroid receptor signalings. PDXP and PP2A dephosphorylate SRC-3 and inhibit its ligand-dependent association with estrogen receptor. PP1 stabilizes SRC-3 protein by blocking its proteasome-dependent turnover through dephosphorylation of two previously unidentified phosphorylation sites (Ser101 and S102) required for activity. These two sites are located within a degron of SRC-3, and are primary determinants of SRC-3 turnover. Moreover, PP1 regulates the oncogenic cell proliferation and invasion functions of SRC-3 in breast cancer cells. PMID:18922467

  17. Bacterial-like PPP protein phosphatases

    PubMed Central

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, “bacterial-like” enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the “eukaryotic-like” phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research. PMID:24675170

  18. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase.

    PubMed

    Rai, Reeta; Singh, Neetu; Elesela, Srikanth; Tiwari, Savitri; Rathaur, Sushma

    2013-01-01

    A 30-kDa acid phosphatase with protein tyrosine phosphatase activity was identified in Setaria cervi (ScPTP). The enzyme was purified to homogeneity using three-step column chromatography. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of purified ScPTP yielded a total of eight peptides matching most closely to phosphoprotein phosphatase of Ricinus communis (RcPP). A hydrophilicity plot of RcPP revealed the presence of these peptides in the hydrophilic region, suggesting their antigenic nature. The substrate specificity of ScPTP with ortho-phospho-L-tyrosine and inhibition with sodium orthovanadate and ammonium molybdate affirmed it as a protein tyrosine phosphatase. ScPTP was also found to be tartrate resistant. The Km and Vmax were 6.60 mM and 83.3 μM/ml/min, respectively, with pNPP and 8.0 mM and 111 μM/ml/min, respectively, with ortho-phospho-L-tyrosine as the substrate. The Ki value with sodium orthovanadate was calculated to be 16.10 mM. Active site modification with DEPC, EDAC and pHMB suggested the presence of histidine, cysteine and aspartate at its active site. Thus, on the basis of MALDI-TOF and biochemical studies, it was confirmed that purified acid phosphatase is a PTP. PMID:23052758

  19. Role of Protein Tyrosine Phosphatases in Plants

    PubMed Central

    Shankar, Alka; Agrawal, Nisha; Sharma, Manisha; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development. PMID:26962298

  20. The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds

    PubMed Central

    Horák, Jakub; Grefen, Christopher; Berendzen, Kenneth W; Hahn, Achim; Stierhof, York-Dieter; Stadelhofer, Bettina; Stahl, Mark; Koncz, Csaba; Harter, Klaus

    2008-01-01

    Background The Arabidopsis response regulator 22 (ARR22) is one of two members of a recently defined novel group of two-component system (TCS) elements. TCSs are stimulus perception and response modules of prokaryotic origin, which signal by a His-to-Asp phosphorelay mechanism. In plants, TCS regulators are involved in hormone response pathways, such as those for cytokinin and ethylene. While the functions of the other TCS elements in Arabidopsis, such as histidine kinases (AHKs), histidine-containing phosphotransfer proteins (AHPs) and A-type and B-type ARRs are becoming evident, the role of ARR22 is poorly understood. Results We present evidence that ARR22 is a preferentially cytoplasmic protein, exclusively expressed in the chalaza of developing seeds. ARR22 specifically interacts with AHP2, AHP3 and AHP5 in yeast and living plant cells. Two new loss-of-function alleles, arr22-2 and arr22-3, were isolated and characterized. With respect to their morphology and metabolite status, no significant difference in the developing seeds of the arr22 mutants was observed compared to wild type. The genetic complementation of the arr22 mutants with a genomic ARR22 fragment resulted in plants (arr22/gARR22) with a pleiotropic phenotype of different penetrance. This phenotype was not observed when the phosphorylatable Asp74 of ARR22 was changed to either a dominant-active Glu or a dominant-inactive Asn. The phenotype of the arr22/gARR22 plants was comparable to that of multiple ahk, ahp and B-type arr mutants. Conclusion Our results favor the model that ARR22 acts as a phospho-histidine phosphatase on specific AHPs in the cytoplasm of Arabidopsis chalaza cells. The lack of any aberrant morphological and metabolite phenotype in the seeds of the arr22 mutants indicates that ARR22 is probably primarily responsible for the fine tuning of specific branches of chalaza-based TCS signalling. Even when slightly mis-expressed, ARR22 interferes with hormone homeostasis in non

  1. Clinical application for the preservation of phospho-proteins through in-situ tissue stabilization

    PubMed Central

    2010-01-01

    Background Protein biomarkers will play a pivotal role in the future of personalized medicine for both diagnosis and treatment decision-making. While the results of several pre-clinical and small-scale clinical studies have demonstrated the value of protein biomarkers, there have been significant challenges to translating these findings into routine clinical care. Challenges to the use of protein biomarkers include inter-sample variability introduced by differences in post-collection handling and ex vivo degradation of proteins and protein modifications. Results In this report, we re-create laboratory and clinical scenarios for sample collection and test the utility of a new tissue stabilization technique in preserving proteins and protein modifications. In the laboratory setting, tissue stabilization with the Denator Stabilizor T1 resulted in a significantly higher yield of phospho-protein when compared to standard snap freeze preservation. Furthermore, in a clinical scenario, tissue stabilization at collection resulted in a higher yield of total phospho-protein, total phospho-tyrosine, pErkT202/Y204 and pAktS473 when compared to standard methods. Tissue stabilization did not have a significant effect on other post-translational modifications such as acetylation and glycosylation, which are more stable ex-vivo. Tissue stabilization did decrease total RNA quantity and quality. Conclusion Stabilization at the time of collection offers the potential to better preserve tissue protein and protein modification levels, as well as reduce the variability related to tissue processing delays that are often associated with clinical samples. PMID:21092202

  2. Protein phosphatases and their regulation in the control of mitosis

    PubMed Central

    Mochida, Satoru; Hunt, Tim

    2012-01-01

    Cell cycle transitions depend on protein phosphorylation and dephosphorylation. The discovery of cyclin-dependent kinases (CDKs) and their mode of activation by their cyclin partners explained many important aspects of cell cycle control. As the cell cycle is basically a series of recurrences of a defined set of events, protein phosphatases must obviously be as important as kinases. However, our knowledge about phosphatases lags well behind that of kinases. We still do not know which phosphatase(s) is/are truly responsible for dephosphorylating CDK substrates, and we know very little about whether and how protein phosphatases are regulated. Here, we summarize our present understanding of the phosphatases that are important in the control of the cell cycle and pose the questions that need to be answered as regards the regulation of protein phosphatases. PMID:22482124

  3. Structure of Human Dual Specificity Protein Phosphatase 23, VHZ, Enzyme-Substrate/Product Complex

    SciTech Connect

    Agarwal,R.; Burley, S.; Swaminathan, S.

    2008-01-01

    Protein phosphorylation plays a crucial role in mitogenic signal transduction and regulation of cell growth and differentiation. Dual specificity protein phosphatase 23 (DUSP23) or VHZ mediates dephosphorylation of phospho-tyrosyl (pTyr) and phospho-seryl/threonyl (pSer/pThr) residues in specific proteins. In vitro, it can dephosphorylate p44ERK1 but not p54SAPK-{beta} and enhance activation of c-Jun N-terminal kinase (JNK) and p38. Human VHZ, the smallest of the catalytically active protein-tyrosine phosphatases (PTP) reported to date (150 residues), is a class I Cys-based PTP and bears the distinctive active site signature motif HCXXGXXRS(T). We present the crystal structure of VHZ determined at 1.93 angstrom resolution. The polypeptide chain adopts the typical a{beta}a PTP fold, giving rise to a shallow active site cleft that supports dual phosphorylated substrate specificity. Within our crystals, the Thr-135-Tyr-136 from a symmetry-related molecule bind in the active site with a malate ion, where they mimic the phosphorylated TY motif of the MAPK activation loop in an enzyme-substrate/product complex. Analyses of intermolecular interactions between the enzyme and this pseudo substrate/product along with functional analysis of Phe-66, Leu-97, and Phe-99 residues provide insights into the mechanism of substrate binding and catalysis in VHZ.

  4. Protein Phosphatase 1 β Paralogs Encode the Zebrafish Myosin Phosphatase Catalytic Subunit

    PubMed Central

    Jayashankar, Vaishali; Nguyen, Michael J.; Carr, Brandon W.; Zheng, Dale C.; Rosales, Joseph B.; Rosales, Joshua B.; Weiser, Douglas C.

    2013-01-01

    Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the in vivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required. PMID:24040418

  5. Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons.

    PubMed Central

    Desdouits, F; Siciliano, J C; Nairn, A C; Greengard, P; Girault, J A

    1998-01-01

    DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, Mr=32000) is highly expressed in striatonigral neurons in which its phosphorylation is regulated by several neurotransmitters including dopamine and glutamate. DARPP-32 becomes a potent inhibitor of protein phosphatase 1 when it is phosphorylated on Thr-34 by cAMP- or cGMP-dependent protein kinases. DARPP-32 is also phosphorylated on Ser-137 by protein kinase CK1 (CK1), in vitro and in vivo. This phosphorylation has an important regulatory role since it inhibits the dephosphorylation of Thr-34 by calcineurin in vitro and in striatonigral neurons. Here, we show that DARPP-32 phosphorylated by CK1 is a substrate in vitro for protein phosphatases 2A and 2C, but not protein phosphatase 1 or calcineurin. However, in substantia nigra slices, dephosphorylation of Ser-137 was markedly sensitive to decreased temperature, and not detectably affected by the presence of okadaic acid under conditions in which dephosphorylation of Thr-34 by protein phosphatase 2A was inhibited. These results suggest that, in neurons, phospho-Ser-137-DARPP-32 is dephosphorylated by protein phosphatase 2C, but not 2A. Thus, DARPP-32 appears to be a component of a regulatory cascade of phosphatases in which dephosphorylation of Ser-136 by protein phosphatase 2C facilitates dephosphorylation of Thr-34 by calcineurin, removing the cyclic nucleotide-induced inhibition of protein phosphatase 1. PMID:9461512

  6. Protein phosphatase 1 is a key player in nuclear events.

    PubMed

    Rebelo, Sandra; Santos, Mariana; Martins, Filipa; da Cruz e Silva, Edgar F; da Cruz e Silva, Odete A B

    2015-12-01

    Reversible protein phosphorylation at serine (Ser), threonine (Thr) and tyrosine (Tyr) residues is among the major regulatory mechanism in eukaryotic cells. The eukaryotic genome encodes many protein kinases and protein phosphatases. However, the localization, activity and specificity towards phosphatase substrates are dictated by a large array of phosphatase binding and regulatory subunits. For protein phosphatase 1 (PP1) more than 200 binding subunits have been described. The various PP1 isoforms and the binding subunits can be located throughout the cell, including in the nucleus. It follows that several nuclear specific PP1 binding proteins (PIPs) have been described and these will be discussed. Among them are PNUTS (phosphatase 1 nuclear targeting subunit), NIPP1 (nuclear inhibitor of PP1) and CREB (cAMP-responsive element-binding protein), which have all been associated with transcription. In fact PP1 can associate with transcription factors fulfilling an important regulatory function, in this respect it can bind to Hox11, human factor C1 (HCF1) and myocyte enhancer factor-2 (MEF2). PP1 also regulates cell cycle progression and centrosome maturation and splitting, again by binding to specific regulatory proteins. Moreover, PP1 together with other protein phosphatases control the entry into mitosis by regulating the activity of mitotic kinases. Thus, PP1, its binding proteins and/or the phosphorylation states of both, directly control a vast array of cell nucleus associated functions, many of which are starting to be unraveled. PMID:26275498

  7. Smooth-muscle caldesmon phosphatase is SMP-I, a type 2A protein phosphatase.

    PubMed

    Pato, M D; Sutherland, C; Winder, S J; Walsh, M P

    1993-07-01

    Caldesmon phosphatase was identified in chicken gizzard smooth muscle by using as substrates caldesmon phosphorylated at different sites by protein kinase C, Ca2+/calmodulin-dependent protein kinase II and cdc2 kinase. Most (approximately 90%) of the phosphatase activity was recovered in the cytosolic fraction. Gel filtration after (NH4)2SO4 fractionation of the cytosolic fraction revealed a single major peak of phosphatase activity which coeluted with calponin phosphatase [Winder, Pato and Walsh (1992) Biochem. J. 286, 197-203] and myosin LC20 phosphatase. Further purification of caldesmon phosphatase was achieved by sequential chromatography on columns of DEAE-Sephacel, omega-amino-octyl-agarose, aminopropyl-agarose and thiophosphorylated myosin LC20-Sepharose. A single peak of caldesmon phosphatase activity was detected at each step of the purification. The purified phosphatase was identified as SMP-I [Pato and Adelstein (1980) J. Biol. Chem. 255, 6535-6538] by subunit composition (three subunits, of 60, 55 and 38 kDa) and Western blotting using antibodies against the holoenzyme which recognize all three subunits and antibodies specific for the 38 kDa catalytic subunit. SMP-I is a type 2A protein phosphatase [Pato, Adelstein, Crouch, Safer, Ingebritsen and Cohen (1983) Eur. J. Biochem. 132, 283-287; Winder et al. (1992), cited above]. Consistent with the conclusion that SMP-I is the major caldesmon phosphatase of smooth muscle, purified SMP-I from turkey gizzard dephosphorylated all three phosphorylated forms of caldesmon, whereas SMP-II, -III and -IV were relatively ineffective. Kinetic analysis of dephosphorylation by chicken gizzard SMP-I of the three phosphorylated caldesmon species and calponin phosphorylated by protein kinase C indicates that calponin is a significantly better substrate of SMP-I than are any of the three phosphorylated forms of caldesmon. We therefore suggest that caldesmon phosphorylation in vivo can be maintained after kinase

  8. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  9. Phospho-proteins patial gradients in a cell of spheroidal shape

    NASA Astrophysics Data System (ADS)

    Sosa, Gerardo; Ramirez-Santiago, Guillermo

    2010-03-01

    Many signalling proteins undergo phosphorilated-dephosphorilated cycles at different locations inside the cell. These cycles give rise to spatial gradients of phosphoproteins. In this work we solve the reaction-difussion equation in a spheroidal geometry and investigate the diffusion of the phosphorilated form of the proteins to evaluate the size of the spatial gradients. This is done in terms of diffusion coefficients as well as protein kinase and phosphatase activities. Previous estimations of these gradients have been done for two geometries [1]: (i) a spherical cell and (ii) for a kinase and a protein each one located on two parallel planar membranes. This type of quantitative analyzes may have important implications in the cellular signaling processes [2].[4pt] [1] G.C. Brown, B.N. Kholodenko, FEBS Letters, vol. 457, p. 452-454[0pt] [2] B.N. Kholodenko, G.C. Brown, J.B. Hoek, Biochem. J. vol. 350, p. 901-907.

  10. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling.

    PubMed

    Khatlani, Tanvir; Pradhan, Subhashree; Da, Qi; Shaw, Tanner; Buchman, Vladimir L; Cruz, Miguel A; Vijayan, K Vinod

    2016-08-12

    The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity. PMID:27334924

  11. Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer

    PubMed Central

    Lui, Vivian Wai Yan; Peyser, Noah D.; Ng, Patrick Kwok-Shing; Hritz, Jozef; Zeng, Yan; Lu, Yiling; Li, Hua; Wang, Lin; Gilbert, Breean R.; General, Ignacio J.; Bahar, Ivet; Ju, Zhenlin; Wang, Zhenghe; Pendleton, Kelsey P.; Xiao, Xiao; Du, Yu; Vries, John K.; Hammerman, Peter S.; Garraway, Levi A.; Mills, Gordon B.; Johnson, Daniel E.; Grandis, Jennifer R.

    2014-01-01

    The underpinnings of STAT3 hyperphosphorylation resulting in enhanced signaling and cancer progression are incompletely understood. Loss-of-function mutations of enzymes that dephosphorylate STAT3, such as receptor protein tyrosine phosphatases, which are encoded by the PTPR gene family, represent a plausible mechanism of STAT3 hyperactivation. We analyzed whole exome sequencing (n = 374) and reverse-phase protein array data (n = 212) from head and neck squamous cell carcinomas (HNSCCs). PTPR mutations are most common and are associated with significantly increased phospho-STAT3 expression in HNSCC tumors. Expression of receptor-like protein tyrosine phosphatase T (PTPRT) mutant proteins induces STAT3 phosphorylation and cell survival, consistent with a “driver” phenotype. Computational modeling reveals functional consequences of PTPRT mutations on phospho-tyrosine–substrate interactions. A high mutation rate (30%) of PTPRs was found in HNSCC and 14 other solid tumors, suggesting that PTPR alterations, in particular PTPRT mutations, may define a subset of patients where STAT3 pathway inhibitors hold particular promise as effective therapeutic agents. PMID:24395800

  12. Mammalian Target of Rapamycin (mTOR) Activity Dependent Phospho-Protein Expression in Childhood Acute Lymphoblastic Leukemia (ALL)

    PubMed Central

    Márk, Ágnes; Hajdu, Melinda; Kenessey, István; Sticz, Tamás; Nagy, Eszter; Barna, Gábor; Váradi, Zsófia; Kovács, Gábor; Kopper, László; Csóka, Monika

    2013-01-01

    Modern treatment strategies have improved the prognosis of childhood ALL; however, treatment still fails in 25–30% of patients. Further improvement of treatment may depend on the development of targeted therapies. mTOR kinase, a central mediator of several signaling pathways, has recently attracted remarkable attention as a potential target in pediatric ALL. However, limited data exists about the activity of mTOR. In the present study, the amount of mTOR activity dependent phospho-proteins was characterized by ELISA in human leukemia cell lines and in lymphoblasts from childhood ALL patients (n = 49). Expression was measured before and during chemotherapy and at relapses. Leukemia cell lines exhibited increased mTOR activity, indicated by phospho-S6 ribosomal protein (p-S6) and phosphorylated eukaryotic initiation factor 4E binding protein (p-4EBP1). Elevated p-4EBP1 protein levels were detected in ALL samples at diagnosis; efficacy of chemotherapy was followed by the decrease of mTOR activity dependent protein phosphorylation. Optical density (OD) for p-4EBP1 (ELISA) was significantly higher in patients with poor prognosis at diagnosis, and in the samples of relapsed patients. Our results suggest that measuring mTOR activity related phospho-proteins such as p-4EBP1 by ELISA may help to identify patients with poor prognosis before treatment, and to detect early relapses. Determining mTOR activity in leukemic cells may also be a useful tool for selecting patients who may benefit from future mTOR inhibitor treatments. PMID:23573198

  13. [Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

    PubMed

    Beniaminov, A D; Krasnov, G S; Dmitriev, A A; Puzanov, G A; Snopok, B A; Senchenko, V N; Kashuba, V I

    2016-01-01

    Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation. PMID:27414789

  14. Genetic alterations of protein tyrosine phosphatases in human cancers

    PubMed Central

    Zhao, Shuliang; Sedwick, David; Wang, Zhenghe

    2014-01-01

    Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, protein tyrosine phosphatase T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11 which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. PMID:25263441

  15. Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways.

    PubMed

    Dimchev, Georgi A; Al-Shanti, Nasser; Stewart, Claire E

    2013-05-01

    Muscle progenitor cell migration is an important step in skeletal muscle myogenesis and regeneration. Migration is required for muscle precursors to reach the site of damage and for the alignment of myoblasts prior to their fusion, which ultimately contributes to muscle regeneration. Limited spreading and migration of donor myoblasts are reported problems of myoblast transfer therapy, a proposed therapeutic strategy for Duchenne Muscular Dystrophy, warranting further investigation into different approaches for improving the motility and homing of these cells. In this article, the effect of protein phospho-tyrosine phosphatase and PTEN inhibitor BpV(Hopic) on C2C12 myoblast migration and differentiation was investigated. Applying a wound healing migration model, it is reported that 1 μM BpV(Hopic) is capable of enhancing the migration of C2C12 myoblasts by approximately 40 % in the presence of myotube conditioned media, without significantly affecting their capacity to differentiate and fuse into multinucleated myotubes. Improved migration of myoblasts treated with 1 μM BpV(Hopic) was associated with activation of PI3K/AKT and MAPK/ERK pathways, while their inhibition with either LY294002 or UO126, respectively, resulted in a reduction of C2C12 migration back to control levels. These results propose that bisperoxovanadium compounds may be considered as potential tools for enhancing the migration of myoblasts, while not reducing their differentiation capacity and underpin the importance of PI3K/AKT and MAPK/ERK signalling for the process of myogenic progenitor migration. PMID:23553034

  16. The extended human PTPome: a growing tyrosine phosphatase family.

    PubMed

    Alonso, Andrés; Pulido, Rafael

    2016-04-01

    Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease. PMID:26573778

  17. Characterization of the PEST family protein tyrosine phosphatase BDP1.

    PubMed

    Kim, Y W; Wang, H; Sures, I; Lammers, R; Martell, K J; Ullrich, A

    1996-11-21

    Using a polymerase chain reaction (PCR) amplification strategy, we identified a novel protein tyrosine phosphatase (PTPase) designated Brain Derived Phosphatase (BDP1). The full length sequence encoded an open reading frame of 459 amino acids with no transmembrane domain and had a calculated molecular weight of 50 kDa. The predicted amino acid sequence contained a PEST motif and accordingly, BDP1 shared the greatest homology with members of the PTP-PEST family. When transiently expressed in 293 cells BDP1 hydrolyzed p-Nitrophenylphosphate, confirming it as a functional protein tyrosine phosphatase. Northern blot analysis indicated that BDP1 was expressed not only in brain, but also in colon and several different tumor-derived cell lines. Furthermore, BDP1 was found to differentially dephosphorylate autophosphorylated tyrosine kinases which are known to be overexpressed in tumor tissues. PMID:8950995

  18. Methods to distinguish various types of protein phosphatase activity

    SciTech Connect

    Brautigan, D.L.; Shriner, C.L.

    1988-01-01

    To distinguish the action of protein Tyr(P) and protein Ser(P)/Thr(P) phosphatases on /sup 32/P-labeled phosphoproteins in subcellular fractions different inhibitors and activators are utilized. Comparison of the effects of added compounds provides a convenient, indirect method to characterize dephosphorylation reactions. Protein Tyr(P) phosphatases are specifically inhibited by micromolar Zn2+ or vanadate, and show maximal activity in the presence of EDTA. The other class of cellular phosphatases, specific for protein Ser(P) and Thr(P) residues, are inhibited by fluoride and EDTA. In this class of enzymes two major functional types can be distinguished: those sensitive to inhibition by the heat-stable protein inhibitor-2 and not stimulated by polycations, and those not sensitive to inhibition and stimulated by polycations. Preparation of /sup 32/P-labeled Tyr(P) and Ser(P) phosphoproteins also is presented for the direct measurement of phosphatase activities in preparations by the release of acid-soluble (/sup 32/P)phosphate.

  19. Visualization of Subunit Interactions and Ternary Complexes of Protein Phosphatase 2A in Mammalian Cells

    PubMed Central

    Mo, Shu-Ting; Chiang, Shang-Ju; Lai, Tai-Yu; Cheng, Yu-Ling; Chung, Cheng-En; Kuo, Spencer C. H.; Reece, Kelie M.; Chen, Yung-Cheng; Chang, Nan-Shan; Wadzinski, Brian E.; Chiang, Chi-Wu

    2014-01-01

    Protein phosphatase 2A (PP2A) is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes. We report visualization of PP2A complexes in mammalian cells. Bimolecular fluorescence complementation (BiFC) analysis of PP2A subunit interactions demonstrates that the B subunit plays a key role in directing the subcellular localization of PP2A, and confirms that the A subunit functions as a scaffold in recruiting the B and C subunits to form a heterotrimeric holoenzyme. BiFC analysis also reveals that α4 promotes formation of the AC core dimer. Furthermore, we demonstrate visualization of specific ABC holoenzymes in cells by combining BiFC and fluorescence resonance energy transfer (BiFC-FRET). Our studies not only provide direct imaging data to support previous biochemical observations on PP2A complexes, but also offer a promising approach for studying the spatiotemporal distribution of individual PP2A complexes in cells. PMID:25536081

  20. Displacement affinity chromatography of protein phosphatase one (PP1) complexes

    PubMed Central

    Moorhead, Greg BG; Trinkle-Mulcahy, Laura; Nimick, Mhairi; De Wever, Veerle; Campbell, David G; Gourlay, Robert; Lam, Yun Wah; Lamond, Angus I

    2008-01-01

    Background Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes. PMID:19000314

  1. PARP1 and phospho-p65 protein expression is increased in human HER2-positive breast cancers

    PubMed Central

    Stanley, Jennifer; Klepczyk, Lisa; Keene, Kimberly; Wei, Shi; Li, Yufeng; Forero, Andres; Grizzle, William; Wielgos, Monica; Brazelton, Jason; LoBuglio, Albert F.; Yang, Eddy S.

    2015-01-01

    Purpose Previous studies have shown that basal breast cancers, which may have an inherent “BRCAness” phenotype and sensitivity to inhibitors of poly (ADP-Ribose) polymerase (PARP), express elevated levels of PARP1. Our lab recently reported that HER2+ breast cancers also exhibit sensitivity to PARP inhibitors (PARPi) by attenuating the NF-kB pathway. In this study, we assessed PARP1 and phospho-p65, a marker of activated NF-kB levels in human breast cancer tissues. Methods PARP1 and PARP2 copy number, mRNA, and protein expression was assessed by interrogating the PAM-50 defined breast cancer patient set from the TCGA using the cBioPortal. PARP1 and phospho-p65 immunohistochemistry and correlation to clinical parameters was conducted using 307 primary breast cancer specimens (132 basal, 82 luminal, 93 HER2+) through univariate and multivariate analyses. Results In the PAM50 breast cancer data set, PARP1 and 2 expression was altered in 24/58 (41%) HER2+, 32/81 (40%) basal, and 75/324 (23%) luminal A/B breast cancer patients. This correlated with a statistically significant increase in PARP1 protein levels in HER2+ and basal but not luminal breast cancers (p=0.003, p=0.027, p=0.289, respectively). No change in PARP2 protein level was observed. Interestingly, using breast cancer specimens from 307 patients, HER2 positivity correlated with elevated PARP1 expression (p<0.0001) and was three times more likely than HER2 negative breast cancers to exhibit high PARP1 levels. No significant differences were noted between race, ER status, or PR status for PARP1 expression. Additionally, we found a significant correlation between HER2 status and phospho-p65 expression (p<0.0001). Lastly, a direct correlation between PARP1 and phospho-p65 (p<0.0001) was noted. Conclusions These results indicate a potential connection between HER2, PARP1, and phospho-p65. Furthermore, these data suggest that the PARPi sensitivity we previously observed in HER2+ breast cancer cells may be due

  2. Alterations in the Cerebellar (Phospho)Proteome of a Cyclic Guanosine Monophosphate (cGMP)-dependent Protein Kinase Knockout Mouse*

    PubMed Central

    Corradini, Eleonora; Vallur, Raghavan; Raaijmakers, Linsey M.; Feil, Susanne; Feil, Robert; Heck, Albert J. R.; Scholten, Arjen

    2014-01-01

    The cyclic nucleotide cyclic guanosine monophosphate (cGMP) plays an important role in learning and memory, but its signaling mechanisms in the mammalian brain are not fully understood. Using mass-spectrometry-based proteomics, we evaluated how the cerebellum adapts its (phospho)proteome in a knockout mouse model of cGMP-dependent protein kinase type I (cGKI). Our data reveal that a small subset of proteins in the cerebellum (∼3% of the quantified proteins) became substantially differentially expressed in the absence of cGKI. More changes were observed at the phosphoproteome level, with hundreds of sites being differentially phosphorylated between wild-type and knockout cerebellum. Most of these phosphorylated sites do not represent known cGKI substrates. An integrative computational network analysis of the data indicated that the differentially expressed proteins and proteins harboring differentially phosphorylated sites largely belong to a tight network in the Purkinje cells of the cerebellum involving important cGMP/cAMP signaling nodes (e.g. PDE5 and PKARIIβ) and Ca2+ signaling (e.g. SERCA3). In this way, removal of cGKI could be linked to impaired cerebellar long-term depression at Purkinje cell synapses. In addition, we were able to identify a set of novel putative (phospho)proteins to be considered in this network. Overall, our data improve our understanding of cerebellar cGKI signaling and suggest novel players in cGKI-regulated synaptic plasticity. PMID:24925903

  3. Structural and functional basis of protein phosphatase 5 substrate specificity

    PubMed Central

    Oberoi, Jasmeen; Dunn, Diana M.; Woodford, Mark R.; Mariotti, Laura; Schulman, Jacqualyn; Bourboulia, Dimitra; Mollapour, Mehdi

    2016-01-01

    The serine/threonine phosphatase protein phosphatase 5 (PP5) regulates hormone- and stress-induced cellular signaling by association with the molecular chaperone heat shock protein 90 (Hsp90). PP5-mediated dephosphorylation of the cochaperone Cdc37 is essential for activation of Hsp90-dependent kinases. However, the details of this mechanism remain unknown. We determined the crystal structure of a Cdc37 phosphomimetic peptide bound to the catalytic domain of PP5. The structure reveals PP5 utilization of conserved elements of phosphoprotein phosphatase (PPP) structure to bind substrate and provides a template for many PPP–substrate interactions. Our data show that, despite a highly conserved structure, elements of substrate specificity are determined within the phosphatase catalytic domain itself. Structure-based mutations in vivo reveal that PP5-mediated dephosphorylation is required for kinase and steroid hormone receptor release from the chaperone complex. Finally, our data show that hyper- or hypoactivity of PP5 mutants increases Hsp90 binding to its inhibitor, suggesting a mechanism to enhance the efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors. PMID:27466404

  4. Enzymatic and Functional Analysis of a Protein Phosphatase, Pph3, from Myxococcus xanthus ▿

    PubMed Central

    Kimura, Yoshio; Mori, Yumi; Ina, Youhei; Takegawa, Kaoru

    2011-01-01

    A protein phosphatase, designated Pph3, from Myxococcus xanthus showed the enzymatic characteristics of PP2C-type serine/threonine protein phosphatases, which are metal ion-dependent, okadaic acid-insensitive protein phosphatases. The pph3 mutant under starvation conditions formed immature fruiting bodies and reduced sporulation. PMID:21398555

  5. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology

    PubMed Central

    Nicolaou, Persoulla; Hajjar, Roger J.; Kranias, Evangelia G.

    2009-01-01

    The type 1 protein phosphatase (PP1) is a critical negative regulator of Ca2+ cycling and contractility in the cardiomyocyte. In particular, it mediates restoration of cardiac function to basal levels, after β-adrenergic stimulation, by dephosphorylating key phospho-proteins. PP1 is a holoenzyme comprised of its catalytic and auxiliary subunits. These regulatory proteins dictate PP1's subcellular localization, substrate specificity and activity. Amongst them, inhibitor-1 is of particular importance since it has been implicated as an integrator of multiple neurohormonal pathways, which finely regulate PP1 activity, at the level of the sarcoplasmic reticulum (SR). In fact, perturbations in the regulation of PP1 by inhibitor-1 have been implicated in the pathogenesis of heart failure, suggesting that inhibitor-1-based therapeutic interventions may ameliorate cardiac dysfunction and remodeling in the failing heart. This review will discuss the current views on the role of inhibitor-1 in cardiac physiology, its possible contribution to cardiac disease and its potential as a novel therapeutic strategy. PMID:19481088

  6. Centromeric binding and activity of Protein Phosphatase 4

    PubMed Central

    Lipinszki, Zoltan; Lefevre, Stephane; Savoian, Matthew S.; Singleton, Martin R.; Glover, David M.; Przewloka, Marcin R.

    2015-01-01

    The cell division cycle requires tight coupling between protein phosphorylation and dephosphorylation. However, understanding the cell cycle roles of multimeric protein phosphatases has been limited by the lack of knowledge of how their diverse regulatory subunits target highly conserved catalytic subunits to their sites of action. Phosphoprotein phosphatase 4 (PP4) has been recently shown to participate in the regulation of cell cycle progression. We now find that the EVH1 domain of the regulatory subunit 3 of Drosophila PP4, Falafel (Flfl), directly interacts with the centromeric protein C (CENP-C). Unlike other EVH1 domains that interact with proline-rich ligands, the crystal structure of the Flfl amino-terminal EVH1 domain bound to a CENP-C peptide reveals a new target-recognition mode for the phosphatase subunit. We also show that binding of Flfl to CENP-C is required to bring PP4 activity to centromeres to maintain CENP-C and attached core kinetochore proteins at chromosomes during mitosis. PMID:25562660

  7. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  8. Searching for the role of protein phosphatases in eukaryotic microorganisms.

    PubMed

    da-Silva, A M; Zapella, P D; Andrioli, L P; Campanhã, R B; Fiorini, L C; Etchebehere, L C; da-Costa-Maia, J C; Terenzi, H F

    1999-07-01

    Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism. PMID:10454741

  9. The role of serine/threonine protein phosphatases in exocytosis.

    PubMed Central

    Sim, Alistair T R; Baldwin, Monique L; Rostas, John A P; Holst, Jeff; Ludowyke, Russell I

    2003-01-01

    Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission. PMID:12749763

  10. Characterization of the protein tyrosine phosphatase PRL from Entamoeba histolytica.

    PubMed

    Ramírez-Tapia, Ana Lilia; Baylón-Pacheco, Lidia; Espíritu-Gordillo, Patricia; Rosales-Encina, José Luis

    2015-12-01

    Protein tyrosine phosphatase of regenerating liver (PRL) is a group of phosphatases that has not been broadly studied in protozoan parasites. In humans, PRLs are involved in metastatic cancer, the promotion of cell migration and invasion. PTPs have been increasingly recognized as important effectors of host-pathogen interactions. We characterized the only putative protein tyrosine phosphatase PRL (PTP EhPRL) in the eukaryotic human intestinal parasite Entamoeba histolytica. Here, we reported that the EhPRL protein possessed the classical HCX5R catalytic motif of PTPs and the CAAX box characteristic of the PRL family and exhibited 31-32% homology with the three human PRL isoforms. In amebae, the protein was expressed at low but detectable levels. The recombinant protein (rEhPRL) had enzymatic activity with the 3-o-methyl fluorescein phosphate (OMFP) substrate; this enzymatic activity was inhibited by the PTP inhibitor o-vanadate. Using immunofluorescence we showed that native EhPRL was localized to the cytoplasm and plasma membrane. When the trophozoites interacted with collagen, EhPRL relocalized over time to vesicle-like structures. Interaction with fibronectin increased the presence of the enzyme in the cytoplasm. Using RT-PCR, we demonstrated that EhPRL mRNA expression was upregulated when the trophozoites interacted with collagen but not with fibronectin. Trophozoites recovered from amoebic liver abscesses showed higher EhPRL mRNA expression levels than normal trophozoites. These results strongly suggest that EhPRL may play an important role in the biology and adaptive response of the parasite to the host environment during amoebic liver abscess development, thereby participating in the pathogenic mechanism. PMID:26431820

  11. Protein phosphatase 1α is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis

    PubMed Central

    Ayllón, Verónica; Martínez-A, Carlos; García, Alphonse; Cayla, Xavier; Rebollo, Angelita

    2000-01-01

    Growth factor deprivation is a physiological mechanism to regulate cell death. We utilize an interleukin-2 (IL-2)-dependent murine T-cell line to identify proteins that interact with Bad upon IL-2 stimulation or deprivation. Using the yeast two-hybrid system, glutathione S-transferase (GST) fusion proteins and co-immunoprecipitation techniques, we found that Bad interacts with protein phosphatase 1α (PP1α). Serine phosphorylation of Bad is induced by IL-2 and its dephosphorylation correlates with appearance of apoptosis. IL-2 deprivation induces Bad dephosphorylation, suggesting the involvement of a serine phosphatase. A serine/threonine phosphatase activity, sensitive to the phosphatase inhibitor okadaic acid, was detected in Bad immunoprecipitates from IL-2-stimulated cells, increasing after IL-2 deprivation. This enzymatic activity also dephosphorylates in vivo 32P-labeled Bad. Treatment of cells with okadaic acid blocks Bad dephosphorylation and prevents cell death. Finally, Ras activation controls the catalytic activity of PP1α. These results strongly suggest that Bad is an in vitro and in vivo substrate for PP1α phosphatase and that IL-2 deprivation-induced apoptosis may operate by regulating Bad phosphorylation through PP1α phosphatase, whose enzymatic activity is regulated by Ras. PMID:10811615

  12. Protein kinase and phosphatase activities of thylakoid membranes

    SciTech Connect

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  13. Decoding signals for membrane protein assembly using alkaline phosphatase fusions.

    PubMed Central

    McGovern, K; Ehrmann, M; Beckwith, J

    1991-01-01

    We have used genetic methods to investigate the role of the different domains of a bacterial cytoplasmic membrane protein, MalF, in determining its topology. This was done by analyzing the effects of MalF topology of deleting various domains of the protein using MalF-alkaline phosphatase fusion proteins. Our results show that the cytoplasmic domains of the protein are the pre-eminent topogenic signals. These domains contain information that determines their cytoplasmic location and, thus, the orientation of the membrane spanning segments surrounding them. Periplasmic domains do not appear to have equivalent information specifying their location and membrane spanning segments do not contain information defining their orientation in the membrane. The strength of cytoplasmic domains as topogenic signals varies, correlated with the density of positively charged amino acids within them. Images PMID:1915262

  14. Expanding the Functional Repertoire of CTD Kinase I and RNA Polymerase II: Novel PhosphoCTD-Associating Proteins in the Yeast Proteome†

    PubMed Central

    Phatnani, Hemali P.; Jones, Janice C.; Greenleaf, Arno L.

    2009-01-01

    CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO4 residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957–24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus. PMID:15595826

  15. Detection of Phospho-Sites Generated by Protein Kinase CK2 in CFTR: Mechanistic Aspects of Thr1471 Phosphorylation

    PubMed Central

    Venerando, Andrea; Franchin, Cinzia; Cant, Natasha; Cozza, Giorgio; Pagano, Mario A.; Tosoni, Kendra; Al-Zahrani, Ateeq; Arrigoni, Giorgio; Ford, Robert C.; Mehta, Anil; Pinna, Lorenzo A.

    2013-01-01

    By mass spectrometry analysis of mouse Cystic Fibrosis Transmembrane-conductance Regulator (mCFTR) expressed in yeast we have detected 21 phosphopeptides accounting for 22 potential phospho-residues, 12 of which could be unambiguously assigned. Most are conserved in human CFTR (hCFTR) and the majority cluster in the Regulatory Domain, lying within consensus sequences for PKA, as identified in previous mammalian studies. This validates our yeast expression model. A number of phospho-residues were novel and human conserved, notably mouse Ser670, Ser723, Ser737, and Thr1467, that all lie in acidic sequences, compatible with their phosphorylation by protein kinase CK2. Thr1467 is localized in the C-terminal tail, embedded in a functionally important and very acidic sequence (EETEEE) which displays an optimal consensus for protein kinase CK2. Herein, we show that Thr1467, homologous to human Thr1471 is readily phosphorylated by CK2. Indeed a 42 amino acid peptide encompassing the C-terminal segment of human CFTR is readily phosphorylated at Thr1471 with favorable kinetics (Km 1.7 µM) by CK2 holoenzyme, but neither by its isolated catalytic subunit nor by other acidophilic Ser/Thr kinases (CK1, PLK2/3, GCK/FAM20C). Our finding that by treating CFTR expressing BHK cells with the very specific CK2 inhibitor CX4945, newly synthesized wild type CFTR (and even more its Phe508del mutant) accumulates more abundantly than in the absence of CK2 inhibitor, supports the conclusion that phosphorylation of CFTR by CK2 correlates with decreased stability of the protein. PMID:24058532

  16. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    PubMed

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart. PMID:26198358

  17. Protein Phosphatase-1α Interacts with and Dephosphorylates Polycystin-1

    PubMed Central

    Parnell, Stephen C.; Puri, Sanjeev; Wallace, Darren P.; Calvet, James P.

    2012-01-01

    Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme. PMID:22675472

  18. Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation.

    PubMed

    Liu, Xiaming; Han, Weiwei; Gulla, Sarah; Simon, Nicholas I; Gao, Yanfei; Cai, Changmeng; Yang, Hongmei; Zhang, Xiaoping; Liu, Jihong; Balk, Steven P; Chen, Shaoyong

    2016-01-12

    The phosphoprotein phosphatases are emerging as important androgen receptor (AR) regulators in prostate cancer (PCa). We reported previously that the protein phosphatase 1 catalytic subunit (PP1α) can enhance AR activity by dephosphorylating a site in the AR hinge region (Ser650) and thereby decrease AR nuclear export. In this study we show that PP1α increases the expression of wildtype as well as an S650A mutant AR, indicating that it is acting through one or more additional mechanisms. We next show that PP1α binds primarily to the AR ligand binding domain and decreases its ubiquitylation and degradation. Moreover, we find that the PP1α inhibitor tautomycin increases phosphorylation of AR ubiquitin ligases including SKP2 and MDM2 at sites that enhance their activity, providing a mechanism by which PP1α may suppress AR degradation. Significantly, the tautomycin mediated decrease in AR expression was most pronounced at low androgen levels or in the presence of the AR antagonist enzalutamide. Consistent with this finding, the sensitivity of LNCaP and C4-2 PCa cells to tautomycin, as assessed by PSA synthesis and proliferation, was enhanced at low androgen levels or by treatment with enzalutamide. Together these results indicate that PP1α may contribute to stabilizing AR protein after androgen deprivation therapies, and that targeting PP1α or the AR-PP1α interaction may be effective in castration-resistant prostate cancer (CRPC). PMID:26636645

  19. The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism

    PubMed Central

    Hofmeyer, Kerstin; Treisman, Jessica E.

    2009-01-01

    Receptor protein tyrosine phosphatases (RPTPs) control many aspects of nervous system development. At the Drosophila neuromuscular junction (NMJ), regulation of synapse growth and maturation by the RPTP LAR depends on catalytic phosphatase activity and on the extracellular ligands Syndecan and Dally-like. We show here that the function of LAR in controlling R7 photoreceptor axon targeting in the visual system differs in several respects. The extracellular domain of LAR important for this process is distinct from the domains known to bind Syndecan and Dally-like, suggesting the involvement of a different ligand. R7 targeting does not require LAR phosphatase activity, but instead depends on the phosphatase activity of another RPTP, PTP69D. In addition, a mutation that prevents dimerization of the intracellular domain of LAR interferes with its ability to promote R7 targeting, although it does not disrupt phosphatase activity or neuromuscular synapse growth. We propose that LAR function in R7 is independent of its phosphatase activity, but requires structural features that allow dimerization and may promote the assembly of downstream effectors. PMID:19889974

  20. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression.

    PubMed

    Galinier, A; Kravanja, M; Engelmann, R; Hengstenberg, W; Kilhoffer, M C; Deutscher, J; Haiech, J

    1998-02-17

    Carbon catabolite repression (CCR) is the prototype of a signal transduction mechanism. In enteric bacteria, cAMP was considered to be the second messenger in CCR by playing a role reminiscent of its actions in eukaryotic cells. However, recent results suggest that CCR in Escherichia coli is mediated mainly by an inducer exclusion mechanism. In many Gram-positive bacteria, CCR is triggered by fructose-1,6-bisphosphate, which activates HPr kinase, presumed to be one of the most ancient serine protein kinases. We here report cloning of the Bacillus subtilis hprK and hprP genes and characterization of the encoded HPr kinase and P-Ser-HPr phosphatase. P-Ser-HPr phosphatase forms a new family of phosphatases together with bacterial phosphoglycolate phosphatase, yeast glycerol-3-phosphatase, and 2-deoxyglucose-6-phosphate phosphatase whereas HPr kinase represents a new family of protein kinases on its own. It does not contain the domain structure typical for eukaryotic protein kinases. Although up to now the HPr modifying/demodifying enzymes were thought to exist only in Gram-positive bacteria, a sequence comparison revealed that they also are present in several Gram-negative pathogenic bacteria. PMID:9465101

  1. Protein phosphatase 2A dysfunction in Alzheimer’s disease

    PubMed Central

    Sontag, Jean-Marie; Sontag, Estelle

    2014-01-01

    Protein phosphatase 2A (PP2A) is a large family of enzymes that account for the majority of brain Ser/Thr phosphatase activity. While PP2A enzymes collectively modulate most cellular processes, sophisticated regulatory mechanisms are ultimately responsible for ensuring isoform-specific substrate specificity. Of particular interest to the Alzheimer’s disease (AD) field, alterations in PP2A regulators and PP2A catalytic activity, subunit expression, methylation and/or phosphorylation, have been reported in AD-affected brain regions. “PP2A” dysfunction has been linked to tau hyperphosphorylation, amyloidogenesis and synaptic deficits that are pathological hallmarks of this neurodegenerative disorder. Deregulation of PP2A enzymes also affects the activity of many Ser/Thr protein kinases implicated in AD. This review will more specifically discuss the role of the PP2A/Bα holoenzyme and PP2A methylation in AD pathogenesis. The PP2A/Bα isoform binds to tau and is the primary tau phosphatase. Its deregulation correlates with increased tau phosphorylation in vivo and in AD. Disruption of PP2A/Bα-tau protein interactions likely contribute to tau deregulation in AD. Significantly, alterations in one-carbon metabolism that impair PP2A methylation are associated with increased risk for sporadic AD, and enhanced AD-like pathology in animal models. Experimental studies have linked deregulation of PP2A methylation with down-regulation of PP2A/Bα, enhanced phosphorylation of tau and amyloid precursor protein, tau mislocalization, microtubule destabilization and neuritic defects. While it remains unclear what are the primary events that underlie “PP2A” dysfunction in AD, deregulation of PP2A enzymes definitely affects key players in the pathogenic process. As such, there is growing interest in developing PP2A-centric therapies for AD, but this may be a daunting task without a better understanding of the regulation and function of specific PP2A enzymes. PMID:24653673

  2. Human neutrophil calmodulin-binding proteins: identification of the calmodulin-dependent protein phosphatase

    SciTech Connect

    Blackburn, W.D.; Tallant, E.A.; Wallace, R.W.

    1986-05-01

    The molecular events in linking neutrophil activation and ligand binding to specific membrane receptors are mediated in part by an increase in intracellular Ca/sup 2 +/. One mechanism by which Ca/sup 2 +/ may trigger neutrophil activation is through Ca/sup 2 +//calmodulin (CaM)-regulated proteins and enzymes. To determine which Ca/sup 2 +//CaM-regulated enzymes may be present in the neutrophil, they have used Western blotting techniques and /sup 125/I-CaM to identify neutrophil CaM-binding proteins. Eleven proteins with molecular weights ranging from 230K to 13.5K bound /sup 125/I-CaM in a Ca/sup 2 +/-dependent manner. One predominant region of /sup 125/I-Cam binding was to a 59K protein; a protein with an identical mobility was labeled by an antisera against brain CaM-dependent phosphatase. Ca/sup 2 +/-dependent phosphatase activity, which was inhibited by the CaM antagonist trifluoperazine, was detected in a neutrophil extract; a radioimmunoassay for the phosphatase indicated that it was present in the extract at approximately 0.2 ..mu..g/mg protein. Most of the CaM-binding proteins, including the 59K protein, were rapidly degraded upon lysis of the neutrophil. There was a close correlation between the degradation of the 59K protein and the loss of Ca/sup 2 +/-dependent phosphatase activity in the neutrophil extract. Thus, human neutrophils contain numerous CaM-binding proteins which are presumably Ca/sup 2 +//calmodulin-regulated enzymes and proteins; the 59K protein is a CaM-dependent phosphatase.

  3. New functional aspects of the atypical protein tyrosine phosphatase VHZ

    PubMed Central

    Kuznetsov, Vyacheslav I.; Hengge, Alvan C.

    2013-01-01

    LDP3 (VHZ) is the smallest classical protein tyrosine phosphatase (PTP) known to date, and was originally misclassified as an atypical dual specificity phosphatase (DSP). Kinetic isotope effects with steady state and pre-steady state kinetics of VHZ and mutants with para-nitrophenol phosphate (pNPP) have revealed several unusual properties. VHZ is significantly more active than previously reported, but remains one of the least active PTPs. Highly unusual for a PTP, VHZ possesses two acidic residues (E134 and D65) in the active site. D65 occupies the position corresponding to the typical general acid in the PTP family. However, VHZ primarily utilizes E134 as the general acid, with D65 taking over this role when E134 is mutated. This unusual behavior is facilitated by two coexisting, but unequally populated, substrate binding modes. Unlike most classical PTPs, VHZ exhibits phosphotransferase activity. Despite the presence of the Q-loop that normally prevents alcoholysis of the phosphoenzyme intermediate in other classical PTPs, VHZ readily phosphorylates ethylene glycol. Although mutations to Q-loop residues affect this phosphotransferase activity, mutations on the IPD-loop that contains the general acid exert more control over this process. A single P68V substitution on this loop completely abolishes phosphotransferase activity. The ability of native VHZ to catalyze transphosphorylation may lead to an imbalance of intracellular phosphorylation, which could explain the correlation of its overexpression with several types of cancer. PMID:24073992

  4. Characterization of the effect of TIMAP phosphorylation on its interaction with protein phosphatase 1.

    PubMed

    Czikora, István; Kim, Kyung-mi; Kása, Anita; Bécsi, Bálint; Verin, Alexander D; Gergely, Pál; Erdodi, Ferenc; Csortos, Csilla

    2011-07-01

    TIMAP, TGF-β inhibited, membrane-associated protein, is highly abundant in endothelial cells (EC). We have shown earlier the involvement of TIMAP in PKA-mediated ERM (ezrin-radixin-moesin) dephosphorylation as part of EC barrier protection by TIMAP (Csortos et al., 2008). Emerging data demonstrate the regulatory role of TIMAP on protein phosphatase 1 (PP1) activity. We provide here evidence for specific interaction (K(a) = 1.80 × 10(6) M(-1)) between non-phosphorylated TIMAP and the catalytic subunit of PP1 (PP1c) by surface plasmon resonance based binding studies. Thiophosphorylation of TIMAP by PKA, or sequential thiophosphorylation by PKA and GSK3β slightly modifies the association constant for the interaction of TIMAP with PP1c and decreases the rate of dissociation. However, dephosphorylation of phospho-moesin substrate by PP1cβ is inhibited to different extent in the presence of non- (~60% inhibition), mono- (~50% inhibition) or double-thiophosphorylated (<10% inhibition) form of TIMAP. Our data suggest that double-thiophosphorylation of TIMAP has minor effect on its binding ability to PP1c, but considerably attenuates its inhibitory effect on the activity of PP1c. PKA activation by forskolin treatment of EC prevented thrombin evoked barrier dysfunction and ERM phosphorylation at the cell membrane (Csortos et al., 2008). With the employment of specific GSK3β inhibitor it is shown here that PKA activation is followed by GSK3β activation in bovine pulmonary EC and both of these activations are required for the rescuing effect of forskolin in thrombin treated EC. Our results suggest that the forskolin induced PKA/GSK3β activation protects the EC barrier via TIMAP-mediated decreasing of the ERM phosphorylation level. PMID:21466834

  5. Phospho-specific recognition by 14-3-3 proteins and antibodies monitored by a high throughput label-free optical biosensor.

    PubMed

    Wu, Meng; Coblitz, Brian; Shikano, Sojin; Long, Shunyou; Spieker, Matt; Frutos, Anthony G; Mukhopadhyay, Sunil; Li, Min

    2006-10-16

    Label-free detection of molecular interactions has considerable potential in facilitating assay development. When combined with high throughput capability, it may be applied to small molecule screens for drug candidates. Phosphorylation is a key posttranslational process that confers diverse regulation in biological systems involving specific protein-protein interactions recognizing the phosphorylated motifs. Using a resonant waveguide grating biosensor, the Epic mark System, we have developed a generic assay to quantitatively measure phospho-specific interactions between a trafficking signal-phosphorylated SWTY peptide and 14-3-3 proteins or anti-phosphopeptide antibodies. Compared with a solution-based fluorescence anisotropy assay, our results support that the high throughput resonant waveguide grating biosensor system has favorable technical profiles in detecting protein-protein interactions that recognize phosphorylated motifs. Hence it provides a new generic HTS platform for phospho-detection. PMID:17011553

  6. Regulation of Eye Development by Protein Serine/Threonine Phosphatases-1 and -2A.

    PubMed

    Wang, L; Yang, Y; Gong, X-D; Huang, Z-X; Nie, Q; Wang, Z-F; Ji, W-K; Hu, X-H; Hu, W-F; Gong, L-L; Zhang, L; Huang, S; Qi, R-L; Yang, T-H; Chen, Z-G; Liu, W-B; Liu, Y-Z; Li, D W-C

    2015-01-01

    The protein serine/threonine phosphatases-1 and -2A are major cellular phosphatases, playing a fundamental role in organisms from prokaryotes to eukaryotes. They contribute to 90% dephosphorylation in eukaryote proteins. In the eye, both phosphatases are highly expressed and display important functions in regulating normal eye development. Moreover, they are implicated in pathogenesis through modulation of stress-induced apoptosis. Here we review the recent progresses on these aspects. PMID:26592247

  7. A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(IV) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate.

    PubMed

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-01

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver-Burk plot, showing a mixed kinetic inhibition. PMID:25621602

  8. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI) Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    PubMed Central

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-01

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 μM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 μM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition. PMID:25621602

  9. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development.

    PubMed

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  10. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development

    PubMed Central

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  11. Protein-Tyrosine Phosphatase 1B Substrates and Metabolic Regulation

    PubMed Central

    Bakke, Jesse; Haj, Fawaz G.

    2014-01-01

    Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes. PMID:25263014

  12. Methods to monitor classical protein-tyrosine phosphatase oxidation

    PubMed Central

    Karisch, Robert; Neel, Benjamin G.

    2012-01-01

    SUMMARY Reactive oxygen species (ROS), particularly H2O2, act as intracellular second messengers in many signaling pathways. Protein-tyrosine phosphatases (PTPs) are now believed to be important targets of ROS. PTPs contain a conserved catalytic cysteine with an unusually low pKa. This property allows PTPs to execute nucleophilic attack on substrate phosphotyrosyl residues, but also renders them highly susceptible to oxidation. Reversible oxidation, which inactivates PTPs, is emerging as an important cellular regulatory mechanism and might contribute to human diseases, including cancer. Given their potential toxicity, it seems likely that ROS generation is highly controlled within cells to restrict oxidation to those PTPs that must be inactivated for signaling to proceed. Thus, identifying ROS-inactivated PTPs could be tantamount to finding the PTP(s) that critically regulate a specific signaling pathway. This article provides an overview of the methods currently available to identify and quantify PTP oxidation and outlines future challenges in redox signaling. PMID:22577968

  13. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  14. Viewing serine/threonine protein phosphatases through the eyes of drug designers

    PubMed Central

    Zhang, Mengmeng; Yogesha, S. D.; Mayfield, Joshua E.; Gill, Gordon N.; Zhang, Yan

    2015-01-01

    Protein phosphatases, as the counterpart to protein kinases, are essential for homeostatic balance of cell signaling. Small chemical compounds that modulate the specific activity of phosphatases can be powerful tools to elucidate the biological functions of these enzymes. More importantly, many phosphatases are central players in the development of pathological pathways where inactivation can reverse or delay the onset of human diseases. Therefore, potent inhibitors for such phosphatases can be of great therapeutic benefit. In contrast to the seemingly identical enzymatic mechanism and structural characterization of eukaryotic protein kinases, protein phosphatases evolved from diverse ancestors, resulting in different domain architectures, reaction mechanisms and active site properties. In this review, we will discuss for each family of serine/threonine protein phosphatases, their involvement in biological process and corresponding strategies for small chemical intervention. Recent advances in modern drug discovery technologies have markedly facilitated the identification of selective inhibitors for some members of the phosphatase family. Furthermore, the rapid growth in knowledge about structure-activity relationships related to possible new drug targets has aided the discovery of natural product inhibitors for phosphatase family. This review summarizes the current state of investigation of the small molecules that regulate the function of serine/threonine phosphatases, the challenges presented and also strategies to overcome these obstacles. PMID:23937612

  15. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  16. Protein tyrosine phosphatases expression during development of mouse superior colliculus.

    PubMed

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-12-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis. PMID:19727691

  17. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  18. Structural basis of protein phosphatase 2A stable latency

    PubMed Central

    Jiang, Li; Stanevich, Vitali; Satyshur, Kenneth A; Kong, Mei; Watkins, Guy R.; Wadzinski, Brian E.; Sengupta, Rituparna; Xing, Yongna

    2013-01-01

    The catalytic subunit of protein phosphatase 2A (PP2Ac) is stabilized in a latent form by α4, a regulatory protein essential for cell survival and biogenesis of all PP2A complexes. Here we report the structure of α4 bound to the N-terminal fragment of PP2Ac. This structure suggests that α4 binding to the full-length PP2Ac requires local unfolding near the active site, which perturbs the scaffold subunit binding site at the opposite surface via allosteric relay. These changes stabilize an inactive conformation of PP2Ac and convert oligomeric PP2A complexes to the α4 complex upon perturbation of the active site. The PP2Ac–α4 interface is essential for cell survival and sterically hinders a PP2A ubiquitination site, important for the stability of cellular PP2Ac. Our results show that α4 is a scavenger chaperone that binds to and stabilizes partially folded PP2Ac for stable latency, and reveal a mechanism by which α4 regulates cell survival, and biogenesis and surveillance of PP2A holoenzymes. PMID:23591866

  19. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.

    PubMed

    Bellomo, Elisa; Hogstrand, Christer; Maret, Wolfgang

    2014-10-01

    Zinc ions, though redox-inert, have either pro-antioxidant or pro-oxidant functions at critical junctures in redox metabolism and redox signalling. They are released from cells and in cells, e.g. from metallothionein, a protein that transduces redox signals into zinc signals (1). The released zinc ions inhibit enzymes such as protein tyrosine phosphatases (PTPs), key regulatory enzymes of cellular phosphorylation signalling. The Ki(Zn) value for inhibition of receptor PTPB is 21pM (2). The binding is about as tight as the binding of zinc to zinc metalloenzymes and suggests tonic zinc inhibition. PTP1-B (PTPN1), an enzyme regulating the insulin and leptin receptors and involved in cancer and diabetes pathobiochemistry, has a Ki(Zn) value of about 5nM (3). Zinc ions bind to the enzyme in the closed conformation when additional metal-binding ligands are brought into the vicinity of the active site. In contrast, redox reactions target cysteines in the active sites of PTPs in the open conformation. This work provides a molecular basis how hydrogen peroxide and free zinc ions generated by growth factor signalling stimulate phosphorylation signalling differentially. (Supported by the Biotechnology and Biological Sciences Research Council UK, grant BB/K001442/1.). PMID:26461422

  20. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  1. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

    PubMed Central

    2013-01-01

    Background The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. Methods We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. Results The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell

  2. Protein phosphatase 2A in stretch-induced endothelial cell proliferation

    NASA Technical Reports Server (NTRS)

    Murata, K.; Mills, I.; Sumpio, B. E.

    1996-01-01

    We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.

  3. Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia.

    PubMed

    Wilkerson, Julia E R; Satriotomo, Irawan; Baker-Herman, Tracy L; Watters, Jyoti J; Mitchell, Gordon S

    2008-03-12

    Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting relevant protein phosphatases uniquely during IH and conferring pattern sensitivity to pLTF. We hypothesized that spinal protein phosphatase inhibition would relieve this braking action of protein phosphatases, thereby revealing pLTF after SH. Anesthetized rats received intrathecal (C4) okadaic acid (25 nm) before SH (25 min, 11% O(2)). Unlike (vehicle) control rats, SH induced a significant pLTF in okadaic acid-treated rats that was indistinguishable from rats exposed to IH (three 5 min episodes, 11% O(2)). IH and SH with okadaic acid may elicit pLTF by similar, serotonin-dependent mechanisms, because intravenous methysergide blocks pLTF in rats receiving IH or okadaic acid plus SH. Okadaic acid did not alter IH-induced pLTF. In summary, pattern sensitivity in pLTF may reflect differential regulation of okadaic acid-sensitive serine/threonine phosphatases; presumably, these phosphatases are less active during/after IH versus SH. The specific okadaic acid-sensitive phosphatase(s) constraining pLTF and their spatiotemporal dynamics during and/or after IH and SH remain to be determined. PMID:18337426

  4. Isolation of Human Mitotic Protein Phosphatase Complexes: Identification of a Complex between Protein Phosphatase 1 and the RNA Helicase Ddx21

    PubMed Central

    De Wever, Veerle; Lloyd, David C.; Nasa, Isha; Nimick, Mhairi; Trinkle-Mulcahy, Laura; Gourlay, Robert; Morrice, Nick; Moorhead, Greg B. G.

    2012-01-01

    Metazoan mitosis requires remodelling of sub-cellular structures to ensure proper division of cellular and genetic material. Faults often lead to genomic instability, cell cycle arrests and disease onset. These key structural changes are under tight spatial-temporal and post-translational control, with crucial roles for reversible protein phosphorylation. The phosphoprotein phosphatases PP1 and PP2A are paramount for the timely execution of mitotic entry and exit but their interaction partners and substrates are still largely unresolved. High throughput, mass-spectrometry based studies have limited sensitivity for the detection of low-abundance and transient complexes, a typical feature of many protein phosphatase complexes. Moreover, the limited timeframe during which mitosis takes place reduces the likelihood of identifying mitotic phosphatase complexes in asynchronous cells. Hence, numerous mitotic protein phosphatase complexes still await identification. Here we present a strategy to enrich and identify serine/threonine protein phosphatase complexes at the mitotic spindle. We thus identified a nucleolar RNA helicase, Ddx21/Gu, as a novel, direct PP1 interactor. Furthermore, our results place PP1 within the toposome, a Topoisomerase II alpha (TOPOIIα) containing complex with a key role in mitotic chromatin regulation and cell cycle progression, possibly via regulated protein phosphorylation. This study provides a strategy for the identification of further mitotic PP1 partners and the unravelling of PP1 functions during mitosis. PMID:22761809

  5. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases

    PubMed Central

    Weber, Silvio; Meyer-Roxlau, Stefanie; Wagner, Michael; Dobrev, Dobromir; El-Armouche, Ali

    2015-01-01

    Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth. PMID:26617522

  6. Structure of the Protein Phosphatase 2A Holoenzyme

    SciTech Connect

    Xu,Y.; Xing, Y.; Chen, Y.; Chao, Y.; Lin, Z.; Fan, E.; Yu, J.; Strack, S.; Jeffrey, P.; Shi, Y.

    2006-01-01

    Protein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B'/B56/PR61. Surprisingly, the B'/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B'/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B'/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A.

  7. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds. PMID:26118418

  8. Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases.

    PubMed

    Kobzar, Oleksandr L; Shevchuk, Michael V; Lyashenko, Alesya N; Tanchuk, Vsevolod Yu; Romanenko, Vadim D; Kobelev, Sergei M; Averin, Alexei D; Beletskaya, Irina P; Vovk, Andriy I; Kukhar, Valery P

    2015-07-21

    α,α-Difluoro-β-ketophosphonated derivatives of tetraazamacrocycles were synthesized and found to be potential inhibitors of protein tyrosine phosphatases. N-Substituted conjugates of cyclam and cyclen with bioisosteric phosphonate groups displayed good activities toward T-cell protein tyrosine phosphatase with IC50 values in the micromolar to nanomolar range and showed selectivity over PTP1B, CD45, SHP2, and PTPβ. Kinetic studies indicated that the inhibitors can occupy the region of the active site of TC-PTP. This study demonstrates a new approach which employs tetraazamacrocycles as a molecular platform for designing inhibitors of protein tyrosine phosphatases. PMID:26058329

  9. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella.

    PubMed

    Chen, Xi'en; Lü, Shumin; Zhang, Yalin

    2014-01-01

    Protein phosphatase 5 (PP5), a unique member of serine/threonine phosphatases, regulates a variety of biological processes. We obtained full-length PP5 cDNAs from three lepidopteran insects, Helicoverpa armigera, Mythimna separata and Plutella xylostella, encoding predicted proteins of 490 (55.98 kDa), 490 (55.82 kDa) and 491 (56.07 kDa) amino acids, respectively. These sequences shared a high identity with other insect PP5s and contained the TPR (tetratricopeptide repeat) domains at N-terminal regions and highly conserved C-terminal catalytic domains. Tissue- and stage-specific expression pattern analyses revealed these three PP5 genes were constitutively expressed in all stages and in tested tissues with predominant transcription occurring at the egg and adult stages. Activities of Escherichia coli-produced recombinant PP5 proteins could be enhanced by almost 2-fold by a known PP5 activator: arachidonic acid. Kinetic parameters of three recombinant proteins against substrate pNPP were similar both in the absence or presence of arachidonic acid. Protein phosphatases inhibitors, okadaic acid, cantharidin, and endothall strongly impeded the activities of the three recombinant PP5 proteins, as well as exerted an inhibitory effect on crude protein phosphatases extractions from these three insects. In summary, lepidopteran PP5s share similar characteristics and are all sensitive to the protein phosphatases inhibitors. Our results also imply protein phosphatase inhibitors might be used in the management of lepidopteran pests. PMID:24823652

  10. Cellular Biochemistry Methods for Investigating Protein Tyrosine Phosphatases

    PubMed Central

    Stanford, Stephanie M.; Ahmed, Vanessa

    2014-01-01

    Abstract Significance: The protein tyrosine phosphatases (PTPs) are a family of proteins that play critical roles in cellular signaling and influence many aspects of human health and disease. Although a wealth of information has been collected about PTPs since their discovery, many questions regarding their regulation and function still remain. Critical Issues: Of particular importance are the elucidation of the biological substrates of individual PTPs and understanding of the chemical and biological basis for temporal and spatial resolution of PTP activity within a cell. Recent Advances: Drawing from recent advances in both biology and chemistry, innovative approaches have been developed to study the intracellular biochemistry and physiology of PTPs. We provide a summary of PTP-tailored techniques and approaches, emphasizing methodologies to study PTP activity within a cellular context. We first provide a discussion of methods for identifying PTP substrates, including substrate-trapping mutants and synthetic peptide libraries for substrate selectivity profiling. We next provide an overview of approaches for monitoring intracellular PTP activity, including a discussion of mechanistic-based probes, gel-based assays, substrates that can be used intracellularly, and assays tied to cell growth. Finally, we review approaches used for monitoring PTP oxidation, a key regulatory pathway for these enzymes, discussing the biotin switch method and variants of this approach, along with affinity trapping techniques and probes designed to detect PTP oxidation. Future Directions: Further development of approaches to investigate the intracellular PTP activity and functions will provide specific insight into their mechanisms of action and control of diverse signaling pathways. Antioxid. Redox Signal. 20, 2160–2178. PMID:24294920

  11. Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Bharatham, Kavitha; Bharatham, Nagakumar; Lee, Keun Woo

    2007-05-01

    A three dimensional chemical feature based pharmacophore model was developed for the inhibitors of protein tyrosine phosphatase 1B (PTP1B) using the CATALYST software, which would provide useful knowledge for performing virtual screening to identify new inhibitors targeted toward type II diabetes and obesity. A dataset of 27 inhibitors, with diverse structural properties, and activities ranging from 0.026 to 600 microM, was selected as a training set. Hypol, the most reliable quantitative four featured pharmacophore hypothesis, was generated from a training set composed of compounds with two H-bond acceptors, one hydrophobic aromatic and one ring aromatic features. It has a correlation coefficient, RMSD and cost difference (null cost-total cost) of 0.946, 0.840 and 65.731, respectively. The best hypothesis (Hypol) was validated using four different methods. Firstly, a cross validation was performed by randomizing the data using the Cat-Scramble technique. The results confirmed that the pharmacophore models generated from the training set were valid. Secondly, a test set of 281 molecules was scored, with a correlation of 0.882 obtained between the experimental and predicted activities. Hypol performed well in correctly discriminating the active and inactive molecules. Thirdly, the model was investigated by mapping on two PTP1B inhibitors identified by different pharmaceutical companies. The Hypol model correctly predicted these compounds as being highly active. Finally, docking simulations were performed on few compounds to substantiate the role of the pharmacophore features at the binding site of the protein by analyzing their binding conformations. These multiple validation approaches provided confidence in the utility of this pharmacophore model as a 3D query for virtual screening to retrieve new chemical entities showing potential as potent PTP1B inhibitors. PMID:17615669

  12. Identification of the Interaction Sites of Inhibitor-3 for Protein Phosphatase-1

    PubMed Central

    Zhang, Lifang; Qi, Zhiqing; Gao, Yan; Lee, Ernest Y.C.

    2008-01-01

    Inhibitor-3 is a potent inhibitor of protein phosphatase-1, with an IC50 in the nanomolar range for the inhibition of the dephosphorylation of phosphorylase a. Human Inhibitor-3 possesses a putative protein phosphatase-1 binding motif, 39KKVEW43. We provide direct evidence that this sequence is involved in PP1 interaction by examining the effects of site-directed mutations of Inhibitor-3 on its ability to inhibit protein phosphatase-1. A second interaction site whose deletion led to loss of inhibitory potency was identified between residues 65–77. The existence of two interaction sites is consistent with the high inhibitory potency of Inhibitor-3, and with current models for other inhibitor and targeting proteins that interact with protein phosphatase-1 with high affinity. PMID:18951879

  13. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  14. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition

    PubMed Central

    Rzechorzek, Nina M.; Connick, Peter; Livesey, Matthew R.; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J.A.; Hardingham, Giles E.; Chandran, Siddharthan

    2015-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling — conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  15. Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury.

    PubMed

    Dvashi, Zeev; Sar Shalom, Hadas; Shohat, Meytal; Ben-Meir, Daniella; Ferber, Shiran; Satchi-Fainaro, Ronit; Ashery-Padan, Ruth; Rosner, Mordechai; Solomon, Arieh S; Lavi, Sara

    2014-11-01

    Protein phosphatase magnesium dependent 1A (PPM1A) has been implicated in fibrosis and skin wounding. We generated PPM1A knockout mice to study the role of PPM1A in the wound healing-inflammation-angiogenesis cross talk. The role of PPM1A in these processes was studied using the ocular alkali burn model system. In the injured cornea the absence of PPM1A led to enhanced inflammatory response, stromal keratocyte transactivation, fibrosis, increased p38 mitogen-activated protein kinase phosphorylation, elevated expression of transforming growth factor-β-related genes (including Acta2, TGF-β, Col1, MMP9, and VEGF) and subsequently to neovascularization. Augmented angiogenesis in the absence of PPM1A is a general process occurring in vivo in PPM1A knockout mice upon subcutaneous Matrigel injection and ex vivo in aortic ring Matrigel cultures. Using primary keratocyte cultures and various experimental approaches, we found that phospho-p38 is a favored PPM1A substrate and that by its dephosphorylation PPM1A participates in the regulation of the transforming growth factor-β signaling cascade, the hallmark of inflammation and the angiogenic process. On the whole, the studies presented here position PPM1A as a new player in the wound healing-inflammation-angiogenesis axis in mouse, reveal its crucial role in homeostasis on injury, and highlight its potential as a therapeutic mediator in pathologic conditions, such as inflammation and angiogenesis disorders, including cancer. PMID:25196308

  16. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition.

    PubMed

    Rzechorzek, Nina M; Connick, Peter; Livesey, Matthew R; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J A; Hardingham, Giles E; Chandran, Siddharthan

    2016-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling--conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  17. Stabilization of glucose-6-phosphatase activity by a 21 000-dalton hepatic microsomal protein.

    PubMed Central

    Burchell, A; Burchell, B; Monaco, M; Walls, H E; Arion, W J

    1985-01-01

    Hepatic microsomal glucose-6-phosphatase activity was rendered extremely unstable by a variety of techniques: (a) incubation at pH 5.0; (b) extraction of the microsomal fraction in the presence of 1% Lubrol; (c) various purification procedures. These techniques all result in the removal of a 21 kDa polypeptide from the fraction containing glucose-6-phosphatase activity. The 21 kDa protein was purified to apparent homogeneity by solubilization in the detergent Lubrol 12A-9 and chromatography on Fractogel TSK DEAE-650(S) and centrifugation at 105 000 g. The 21 kDa protein stabilizes glucose-6-phosphatase activity, whereas other purified hepatic microsomal proteins do not. The 21 kDa protein appears to be a potential regulator of glucose-6-phosphatase activity. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2996501

  18. Inhibition of CDC25B Phosphatase Through Disruption of Protein-Protein Interaction

    SciTech Connect

    Lund, George; Dudkin, Sergii; Borkin, Dmitry; Ni, Wendi; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-04-29

    CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation of CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes.

  19. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    PubMed Central

    Hadler, Kieran S; Huber, Thomas; Cassady, A Ian; Weber, Jane; Robinson, Jodie; Burrows, Allan; Kelly, Gregory; Guddat, Luke W; Hume, David A; Schenk, Gerhard; Flanagan, Jack U

    2008-01-01

    Background Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism. PMID:18771593

  20. Carboxy-terminal modulator protein attenuated extracellular matrix deposit by inhibiting phospho-Akt, TGF-β1 and α-SMA in kidneys of diabetic mice.

    PubMed

    Chen, Ning; Hao, Jun; Li, Lisha; Li, Fan; Liu, Shuxia; Duan, Huijun

    2016-06-10

    Glomerulosclerosis and tubular interstitial extracellular matrix deposit and fibrosis are the main features of diabetic nephropathy, which are mediated by activation of PI3K/Akt signal pathway. Carboxy-terminal modulator protein (CTMP) is known as a negative regulator of PI3K/Akt pathway. Whether CTMP regulates renal extracellular matrix metabolism of diabetic nephropathy is still not known. Here, renal decreased CTMP, enhanced phospho-Akt (Ser 473), TGF-β1, α-SMA and extracellular matrix deposit are found in diabetic mice. Furthermore, high glucose decreases CTMP expression accompanied by enhanced phospho-Akt (Ser 473), TGF-β1 and α-SMA in cultured human renal proximal tubular epithelial cells (HKC), which are effectively prevented by transfection of pYr-ads-4-musCTMP vector. Moreover, delivery of pYr-ads-4-musCTMP vector into kidneys via tail vein of diabetic mice increases CTMP expression by 8.84 times followed by 60.00%, 76.50% and 24.37% decreases of phospho-Akt (Ser 473), TGF-β1 and α-SMA compared with diabetic mice receiving pYr-adshuttle-4 vector. Again, increased renal extracellular matrix accumulation of diabetic mice is also inhibited with delivery of pYr-ads-4-musCTMP vector. Our results indicate that CTMP attenuates renal extracellular matrix deposit by regulating the phosphorylation of Akt, TGF-β1 and α-SMA expression in diabetic mice. PMID:27166156

  1. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN

    PubMed Central

    Davidson, Lindsay; Maccario, Helene; Perera, Nevin M.; Yang, Xuesong; Spinelli, Laura; Tibarewal, Priyanka; Glancy, Ben; Gray, Alex; Weijer, Cornelis J.; Downes, C. Peter; Leslie, Nick R.

    2009-01-01

    PTEN is a tumour suppressor with phosphatase activity in vitro against both lipids and proteins and other potential non-enzymatic mechanisms of action. Although the importance of PTEN’s lipid phosphatase activity in regulating the PI3K signalling pathway is recognised, the significance of PTEN’s other mechanisms of action is currently unclear. Here, we describe the systematic identification of a PTEN mutant, PTEN Y138L, with activity against lipid, but not soluble substrates. Using this mutant we provide evidence for the interfacial activation of PTEN against lipid substrates. We also show that when re-expressed at physiological levels in PTEN null U87MG glioblastoma cells the protein phosphatase activity of PTEN is not required to regulate cellular PtdInsP3 levels or the downstream protein kinase Akt/PKB. Finally, in 3D Matrigel cultures of U87MG cells similarly re-expressing PTEN mutants, both the protein and lipid phosphatase activities were required to inhibit invasion, but either activity alone significantly inhibited proliferation, albeit only weakly for the protein phosphatase activity. Our data provides a novel tool to address the significance of PTEN’s separable lipid and protein phosphatase activities and suggest that both activities act to suppress proliferation and act together to suppress invasion. PMID:19915616

  2. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    SciTech Connect

    Chan, C.P.; McNall, S.J.; Krebs, E.G.; Fischer, E.H. )

    1988-09-01

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using ({sup 32}P)phosphorylase {alpha} as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at {approx}5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase.

  3. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.

    PubMed

    Srinivasan, Bharath; Marks, Hanna; Mitra, Sreyoshi; Smalley, David M; Skolnick, Jeffrey

    2016-07-15

    The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete. PMID:27208174

  4. The endogenous inhibitor of protein kinase-C in the rat ovary is a protein phosphatase.

    PubMed

    Eyster, K M; Waller, M S; Miller, T L; Miller, C J; Johnson, M J; Persing, J S

    1993-09-01

    Calcium- and lipid-dependent protein kinase (PKC) activity in the ovary of the pseudopregnant rat is masked by an endogenous inhibitor of PKC. These studies were undertaken to examine the mechanism of action of the endogenous inhibitor of PKC in the rat ovary. The addition of the phosphatase inhibitors calyculin-A (0.09 nM), microcystin-LR (6.4 nM), and okadaic acid (10 nM) resulted in the loss of PKC inhibitory activity and an increase in basal PKC activity in rat ovarian cytosol. In phosphatase assays, significant dephosphorylation of histone-III-S or myelin basic protein that had been phosphorylated by PKC occurred within 4 min after the addition of ovarian cytosol from the pseudopregnant rat. This dephosphorylation was prevented from the pseudopregnant rat. This dephosphorylation was prevented by the addition of calyculin-A (0.73 nM) and was removed by fractionation of ovarian cytosol on diethylaminoethyl cellulose. No inhibition of PKC activity was observed when the PKC-specific peptides AcMBP-(4-14) and [Ser25]PKC-(19-31) were used as the substrate for phosphorylation. In addition, rat ovarian cytosol did not exhibit phosphatase activity when the peptide AcMBP-(4-14) was used as the substrate. Addition of ovarian cytosol resulted in dephosphorylation of phosphorylase-alpha phosphorylated by phosphorylase kinase, but not dephosphorylation of histone-II-A or histone-VIII-S phosphorylated by PKA. The data suggest that the endogenous inhibitor of PKC in the rat ovary is a protein phosphatase. PMID:7689949

  5. Developmental regulation of hexosamine biosynthesis by protein phosphatases 2A and 2C in Blastocladiella emersonii.

    PubMed

    Etchebehere, L C; Simon, M N; Campanhã, R B; Zapella, P D; Véron, M; Maia, J C

    1993-08-01

    Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases. PMID:8394312

  6. Dephosphorylation of Tctex2-related dynein light chain by type 2A protein phosphatase.

    PubMed

    Inaba, Kazuo

    2002-10-01

    Sperm flagellar movements are regulated by cAMP-dependent protein phosphorylation. Tctex2-related light chain of outer arm dynein is a well-defined phosphorylated protein that is phosphorylated at activation of sperm motility. Here, the protein phosphatase that dephosphorylates Tctex2-related dynein light chain (LC2) has been characterized in salmonid fish sperm. Most of the phosphatase activity against LC2 is found in Triton-soluble fraction of flagella but trace extent of the activity is retained in the axoneme. The dephosphorylation of LC2 is inhibited by okadaic acid at more than 1nM, whereas that of dynein alpha heavy chain is inhibited at more than 10nM. The addition of Ca(2+) gives no direct effect on LC2 dephosphorylation, but it accelerates the dephosphorylation of the regulatory subunit of cAMP-dependent protein kinase, resulting in the decrease of LC2 phosphorylation. The activity to dephosphorylate the LC2 is separated by MonoQ ion-exchange column chromatography along with the immunoreactivity to the antibody against the catalytic subunit of type 2A protein phosphatase. These results suggest that LC2 is dephosphorylated by type 2A protein phosphatase and that dynein alpha heavy chain and the regulatory subunit of cAMP-dependent protein kinase are dephosphorylated by other types of protein phosphatases. PMID:12359223

  7. Protein tyrosine and serine–threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: Identification and potential functions

    PubMed Central

    Byrum, C.A.; Walton, K.D.; Robertson, A.J.; Carbonneau, S.; Thomason, R.T.; Coffman, J.A.; McClay, D.R.

    2011-01-01

    Protein phosphatases, in coordination with protein kinases, play crucial roles in regulation of signaling pathways. To identify protein tyrosine phosphatases (PTPs) and serine–threonine (ser–thr) phosphatases in the Strongylocentrotus purpuratus genome, 179 annotated sequences were studied (122 PTPs, 57 ser–thr phosphatases). Sequence analysis identified 91 phosphatases (33 conventional PTPs, 31 dual specificity phosphatases, 1 Class III Cysteine-based PTP, 1 Asp-based PTP, and 25 ser–thr phosphatases). Using catalytic sites, levels of conservation and constraint in amino acid sequence were examined. Nine of 25 receptor PTPs (RPTPs) corresponded to human, nematode, or fly homologues. Domain structure revealed that sea urchin-specific RPTPs including two, PTPRLec and PTPRscav, may act in immune defense. Embryonic transcription of each phosphatase was recorded from a high-density oligonucleotide tiling microarray experiment. Most RPTPs are expressed at very low levels, whereas nonreceptor PTPs (NRPTPs) are generally expressed at moderate levels. High expression was detected in MAP kinase phosphatases (MKPs) and numerous ser–thr phosphatases. For several expressed NRPTPs, MKPs, and ser–thr phosphatases, morpholino antisense-mediated knockdowns were performed and phenotypes obtained. Finally, to assess roles of annotated phosphatases in endomesoderm formation, a literature review of phosphatase functions in model organisms was superimposed on sea urchin developmental pathways to predict areas of functional activity. PMID:17087928

  8. Characterization of the major phosphofructokinase-dephosphorylating protein phosphatases from Ascaris suum muscle.

    PubMed

    Daum, G; Schmid, B; MacKintosh, C; Cohen, P; Hofer, H W

    1992-07-13

    In contrast to the mammalian enzyme, PFK from the nematode Ascaris suum is activated following phosphorylation (Daum et al. (1986) Biochem. Biophys. Res. Commun. 139, 215-221) catalyzed by a cAMP-dependent protein kinase (Thalhofer et al. (1988) J. Biol. Chem. 263, 952-957). In the present report, we describe the characterization of the major PFK dephosphorylating phosphatases from Ascaris muscle. Two of these phosphatases exhibit apparent M(r) values of 174,000 and 126,000, respectively, and are dissociated to active 33 kDa proteins by ethanol precipitation. Denaturing electrophoresis of each of the enzyme preparations showed two bands of M(r) 33,000 and 63,000. The enzymes are classified as type 2A phosphatases according to their inhibition by subnanomolar concentrations of okadaic acid, the lack of inhibition by heat-stable phosphatase inhibitors 1 and 2, and their preference for the alpha- rather than for the beta-subunit of phosphorylase kinase. Like other type 2A phosphatases, they exhibit broad substrate specificities, are activated by divalent cations and polycations, and inhibited by fluoride, inorganic phosphate and adenine nucleotides. In addition, we have found that PFK is also dephosphorylated by an unusual protein phosphatase. This exhibits kinetic properties similar to type 2A protein phosphatases, but has a distinctly lower sensitivity towards inhibition by okadaic acid (IC50 approx. 20 nM). Partial purification of the enzyme provided evidence that it is composed of a 30 kDa catalytic subunit and probably two other subunits (molecular masses 66 and 72 kDa). The dephosphorylation of PFK by protein phosphatases is strongly inhibited by heparin. This effect, however, is substrate-specific and does not occur with Ascaris phosphorylase a. PMID:1321672

  9. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  10. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry.

    PubMed Central

    Kennelly, Peter J

    2003-01-01

    Protein phosphorylation/dephosphorylation has long been considered a recent addition to Nature's regulatory arsenal. Early studies indicated that this molecular regulatory mechanism existed only in higher eukaryotes, suggesting that protein phosphorylation/dephosphorylation had emerged to meet the particular signal-transduction requirements of multicellular organisms. Although it has since become apparent that simple eukaryotes and even bacteria are sites of protein phosphorylation/dephosphorylation, the perception widely persists that this molecular regulatory mechanism emerged late in evolution, i.e. after the divergence of the contemporary phylogenetic domains. Only highly developed cells, it was reasoned, could afford the high 'overhead' costs inherent in the acquisition of dedicated protein kinases and protein phosphatases. The advent of genome sequencing has provided an opportunity to exploit Nature's phylogenetic diversity as a vehicle for critically examining this hypothesis. In tracing the origins and evolution of protein phosphorylation/dephosphorylation, the members of the Archaea, the so-called 'third domain of life', will play a critical role. Whereas several studies have demonstrated that archaeal proteins are subject to modification by covalent phosphorylation, relatively little is known concerning the identities of the proteins affected, the impact on their functional properties, or the enzymes that catalyse these events. However, examination of several archaeal genomes has revealed the widespread presence of several ostensibly 'eukaryotic' and 'bacterial' protein kinase and protein phosphatase paradigms. Similar findings of 'phylogenetic trespass' in members of the Eucarya (eukaryotes) and the Bacteria suggest that this versatile molecular regulatory mechanism emerged at an unexpectedly early point in development of 'life as we know it'. PMID:12444920

  11. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    SciTech Connect

    Eto, Masumi; Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi; Kim, Jee In

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  12. Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii.

    PubMed

    Gentry, Matthew S; Romá-Mateo, Carlos; Sanz, Pascual

    2013-01-01

    Lafora disease (LD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of glycogen-like inclusions in the cytoplasm of cells from most tissues of affected patients. One hundred years after the first description of these inclusions, the molecular bases underlying the processes involved in LD physiopathology are finally being elucidated. The main cause of the disease is related to the activity of two proteins, the dual-specificity phosphatase laforin and the E3-ubiquitin ligase malin, which form a functional complex. Laforin is unique in humans, as it is composed of a carbohydrate-binding module attached to a cysteine-based catalytic dual-specificity phosphatase domain. Laforin directly dephosphorylates glycogen, but other proteinaceous substrates, if they exist, have remained elusive. Recently, an emerging set of laforin-binding partners apart from malin have been described, suggestive of laforin roles unrelated to its catalytic activity. Further investigations based on different transgenic mouse models have shown that the laforin-malin complex is also involved in other cellular processes, such as response to endoplasmic reticulum stress and misfolded protein clearance by the lysosomal pathway. However, controversial data and some missing links still make it difficult to assess the concrete relationship between glycogen deregulation and neuronal damage leading to the fatal symptoms observed in LD patients, such as myoclonic seizures and epilepsy. Consequently, clinical treatments are far from being achieved. In the present review, we focus on the knowledge of laforin biology, not only as a glucan phosphatase, but also as an adaptor protein involved in several physiological pathways. PMID:22364389

  13. Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A

    SciTech Connect

    Van Hoof, C.; Cayla, X.; Merlevede, W.; Goris, J.

    1995-07-20

    The PTPA gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. PTPA, cloned from human genomic libraries, is encoded by one single-copy gene, composed of 10 exons and 9 introns with a total length of about 60 kb. The transcription start site was determined, and the 5{prime} flanking sequence was analyzed for its potential as a promotor. This region lacks a TATA sequence in the appropriate position relative to the transcription start, is very GC-rich, and contains upstream of the transcription start four Sp1 sites, a feature common to many TATA-less promotors. Based on the homology with DNA binding consensus sequences of transcription factors, we identified in this promotor region several putative DNA binding sites for transcription factors, such as NF-{kappa}B, Myb, Ets-1, Myc, and ATF. Transfection experiments with a construct containing the PTPA promotor region inserted 5{prime} of a luciferase reporter gene revealed that the 5{prime} flanking sequence of the PTPA gene indeed displayed promotor activity that seems to be cell-line dependent. By fluorescence in situ hybridization and G-banding, the PTPA gene was localized to the 9q34 region. The PTPA gene is positioned centromeric of c-abl in a region embracing several genes implicated in oncogenesis. 28 refs., 8 figs., 1 tab.

  14. Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5 Activity.

    PubMed

    Yamaguchi, Fuminori; Tsuchiya, Mitsumasa; Shimamoto, Seiko; Fujimoto, Tomohito; Tokumitsu, Hiroshi; Tokuda, Masaaki; Kobayashi, Ryoji

    2016-01-01

    Oxidative stress is the consequence of an imbalance between the production of harmful reactive oxygen species and the cellular antioxidant system for neutralization, and it activates multiple intracellular signaling pathways, including apoptosis signal-regulating kinase 1 (ASK1). Protein phosphatase 5 (PP5) is a serine/threonine phosphatase involved in oxidative stress responses. Previously, we reported that S100 proteins activate PP5 in a calcium-dependent manner. S100 proteins belong to a family of small EF-hand calcium-binding proteins involved in many processes such as cell proliferation, differentiation, apoptosis, and inflammation. Therefore, we investigated the effects of oxidative stress on S100 proteins, their interaction with PP5, and PP5 enzyme activity. Recombinant S100A2 was easily air-oxidized or Cu-oxidized, and oxidized S100A2 formed cross-linked dimers and higher molecular-mass complexes. The binding of oxidized S100A2 to PP5 was reduced, resulting in decreased PP5 activation in vitro. Oxidation also impaired S100A1, S100A6, S100B, and S100P to activate PP5, although the low dose of oxidized S100 proteins still activated PP5. Hydrogen peroxide (H2O2) induced S100A2 oxidation in human keratinocytes (HaCaT) and human hepatocellular carcinoma (Huh-7) cells. Furthermore, H2O2 reduced the binding of S100A2 to PP5 and decreased PP5 activation in HaCaT and Huh-7 cells. Importantly, even the low dose of S100A2 achieved by knocking down increased dephosphorylation of ASK1 and reduced caspase 3/7 activity in Huh-7 cells treated with H2O2. These results indicate that oxidative stress impairs the ability of S100 proteins to bind and activate PP5, which in turn modulates the ASK1-mediated signaling cascades involved in apoptosis. PMID:27600583

  15. Structural and binding studies of the three-metal center in two mycobacterial PPM Ser/Thr protein phosphatases.

    PubMed

    Wehenkel, Annemarie; Bellinzoni, Marco; Schaeffer, Francis; Villarino, Andrea; Alzari, Pedro M

    2007-12-01

    Phospho-Ser/Thr protein phosphatases (PPs) are dinuclear metalloenzymes classed into two large families, PPP and PPM, on the basis of sequence similarity and metal ion dependence. The archetype of the PPM family is the alpha isoform of human PP2C (PP2Calpha), which folds into an alpha/beta domain similar to those of PPP enzymes. The recent structural studies of three bacterial PPM phosphatases, Mycobacterium tuberculosis MtPstP, Mycobacterium smegmatis MspP, and Streptococcus agalactiae STP, confirmed the conservation of the overall fold and dinuclear metal center in the family, but surprisingly revealed the presence of a third conserved metal-binding site in the active site. To gain insight into the roles of the three-metal center in bacterial enzymes, we report structural and metal-binding studies of MtPstP and MspP. The structure of MtPstP in a new trigonal crystal form revealed a fully active enzyme with the canonical dinuclear metal center but without the third metal ion bound to the catalytic site. The absence of metal correlates with a partially unstructured flap segment, indicating that the third manganese ion contributes to reposition the flap, but is dispensable for catalysis. Studies of metal binding to MspP using isothermal titration calorimetry revealed that the three Mn(2+)-binding sites display distinct affinities, with dissociation constants in the nano- and micromolar range for the two catalytic metal ions and a significantly lower affinity for the third metal-binding site. In agreement, the structure of inactive MspP at acidic pH was determined at atomic resolution and shown to lack the third metal ion in the active site. Structural comparisons of all bacterial phosphatases revealed positional variations in the third metal-binding site that are correlated with the presence of bound substrate and the conformation of the flap segment, supporting a role of this metal ion in assisting enzyme-substrate interactions. PMID:17961594

  16. Protein Phosphatases Decrease Their Activity during Capacitation: A New Requirement for This Event

    PubMed Central

    Signorelli, Janetti R.; Díaz, Emilce S.; Fara, Karla; Barón, Lina; Morales, Patricio

    2013-01-01

    There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the

  17. Negative regulation of multifunctional Ca2+/calmodulin-dependent protein kinases: physiological and pharmacological significance of protein phosphatases

    PubMed Central

    Ishida, A; Sueyoshi, N; Shigeri, Y; Kameshita, I

    2008-01-01

    Multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in intracellular Ca2+ signaling pathways. There is growing evidence that CaMKs are involved in the pathogenic mechanisms underlying various human diseases. In this review, we begin by briefly summarizing our knowledge of the involvement of CaMKs in the pathogenesis of various diseases suggested to be caused by the dysfunction/dysregulation or aberrant expression of CaMKs. It is widely known that the activities of CaMKs are strictly regulated by protein phosphorylation/dephosphorylation of specific phosphorylation sites. Since phosphorylation status is balanced by protein kinases and protein phosphatases, the mechanism of dephosphorylation/deactivation of CaMKs, corresponding to their ‘switching off', is extremely important, as is the mechanism of phosphorylation/activation corresponding to their ‘switching on'. Therefore, we focus on the regulation of multifunctional CaMKs by protein phosphatases. We summarize the current understanding of negative regulation of CaMKs by protein phosphatases. We also discuss the biochemical properties and physiological significance of a protein phosphatase that we designated as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), and those of its homologue CaMKP-N. Pharmacological applications of CaMKP inhibitors are also discussed. These compounds may be useful not only for exploring the physiological functions of CaMKP/CaMKP-N, but also as novel chemotherapies for various diseases. PMID:18454172

  18. Dephosphorylation of Tyrosine 393 in Argonaute 2 by Protein Tyrosine Phosphatase 1B Regulates Gene Silencing in Oncogenic RAS-Induced Senescence

    PubMed Central

    Yang, Ming; Haase, Astrid D.; Huang, Fang-Ke; Coulis, Gérald; Rivera, Keith D.; Dickinson, Bryan C.; Chang, Christopher J.; Pappin, Darryl J.; Neubert, Thomas A.; Hannon, Gregory J.; Boivin, Benoit; Tonks, Nicholas K.

    2014-01-01

    SUMMARY Oncogenic RAS (H-RASV12) induces premature senescence in primary cells by triggering production of reactive oxygen species (ROS), but the molecular role of ROS in senescence remains elusive. We investigated whether inhibition of protein tyrosine phosphatases by ROS contributed to H-RASV12-induced senescence. We identified protein tyrosine phosphatase 1B (PTP1B) as a major target of H-RASV12-induced ROS. Inactivation of PTP1B was necessary and sufficient to induce premature senescence in H-RASV12-expressing IMR90 fibroblasts. We identified phospho-Tyr 393 of argonaute 2 (AGO2) as a direct substrate of PTP1B. Phosphorylation of AGO2 at Tyr 393 inhibited loading with microRNAs (miRNA) and thus miRNA-mediated gene silencing, which counteracted the function of H-RASV12-induced oncogenic miRNAs. Overall, our data illustrate that premature senescence in H-RASV12-transformed primary cells is a consequence of oxidative inactivation of PTP1B and inhibition of miRNA-mediated gene silencing. PMID:25175024

  19. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  20. Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis.

    PubMed

    Amand, Mathieu; Erpicum, Charlotte; Gilles, Christine; Noël, Agnès; Rahmouni, Souad

    2016-01-01

    Therapeutic perspectives targeting angiogenesis in cancer stimulated an intense investigation of the mechanisms triggering and governing angiogenic processes. Several publications have highlighted the importance of typical dual-specificity phosphatases (DSPs) or MKPs in endothelial cells and their role in controlling different biological functions implicated in angiogenesis such as migration, proliferation, apoptosis, tubulogenesis, and cell adhesion. However, among atypical DSPs, the only one investigated in angiogenesis was DUSP3. We recently identified this DSP as a new key player in endothelial cells and angiogenesis. In this chapter we provide with detailed protocols and models used to investigate the role of DUSP3 in endothelial cells and angiogenesis. We start the chapter with an overview of the role of several DSPs in angiogenesis. We continue with providing a full description of a highly efficient transfection protocol to deplete DUSP3 using small interfering RNA (siRNA) in the primary human umbilical vein endothelial cells (HUVEC). We next describe the major assays used to investigate different processes involved in angiogenesis such as tube formation assay, proliferation assay and spheroids sprouting assay. We finish the chapter by validating our results in DUSP3-knockout mice using in vivo angiogenesis assays such as Matrigel plug and Lewis lung carcinoma cell subcutaneous xenograft model followed by anti-CD31 immunofluorescence and ex vivo aortic ring assay. All methods described can be adapted to other phosphatases and signaling molecules. PMID:27514814

  1. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag.

    PubMed

    Garcia, Francisco J; Carroll, Kate S

    2016-05-24

    Protein tyrosine phosphatases are crucial regulators of signal transduction and function as antagonists towards protein tyrosine kinases to control reversible tyrosine phosphorylation, thereby regulating fundamental physiological processes. Growing evidence has supported the notion that reversible oxidative inactivation of the catalytic cysteine residue in protein tyrosine phosphatases serves as an oxidative post-translational modification that regulates its activity to influence downstream signaling by promoting phosphorylation and induction of the signaling cascade. The oxidation of cysteine to the sulfenic acid is often transient and difficult to detect, thus making it problematic in understanding the role that this oxidative post-translational modification plays in redox-biology and pathogenesis. Several methods to detect cysteine oxidation in biological systems have been developed, though targeted approaches to directly detect oxidized phosphatases are still lacking. Herein we describe the development of a novel immunochemical approach to directly profile oxidized phosphatases. This immunochemical approach consists of an antibody designed to recognize the conserved sequence of the PTP active site (VHCDMDSAG) harboring the catalytic cysteine modified with dimedone (CDMD), a nucleophile that chemoselectively reacts with cysteine sulfenic acids to form a stable thioether adduct. Additionally, we provide biochemical and mass spectrometry workflows to be used in conjugation with this newly developed immunochemical approach to assist in the identification and quantification of basal and oxidized phosphatases. PMID:26757830

  2. Tailoring a low-molecular weight protein tyrosine phosphatase into an efficient reporting protein

    SciTech Connect

    Liu, Xiao-Yan; Li, Lan-Fen; Su, Xiao-Dong; Shenzhen Graduate School of Peking University, Shenzhen 518055

    2009-05-15

    Fusion reporter methods are important tools for biology and biotechnology. An ideal reporter protein in a fusion system should have little effects on its fusion partner and provide an easy and accurate readout. Therefore, a small monomeric protein with high activity for detection assays often has advantages as a reporter protein. For this purpose, we have tailored the human B-form low-molecular-weight phosphotyrosyl phosphatase (HPTP-B) to increase its general applicability as a potent reporter protein. With the aim to eliminate interference from cysteine residues in the native HPTP-B, combined with a systematic survey of N- and C-terminal truncated variants, a series of cysteine to serine mutations were introduced, which allowed isolation of an engineered soluble protein with suitable biophysical properties. When we deleted both the first six residues and the last two residues, we still obtained a soluble mutant protein with correct folding and similar activity with wild-type protein. This mutant with two cysteine to serine mutations, HPTP-B{sup N{sub {Delta}}6-C{sub {Delta}}2-C90S-C109S}, has good potential as an optimal reporter.

  3. Molecular Cloning and Functional Expression of a Protein-Serine/Threonine Phosphatase from the Hyperthermophilic Archaeon Pyrodictium abyssi TAG11

    PubMed Central

    Mai, Bianca; Frey, Gerhard; Swanson, Ronald V.; Mathur, Eric J.; Stetter, K. O.

    1998-01-01

    An open reading frame coding for a putative protein-serine/threonine phosphatase was identified in the hyperthermophilic archaeon Pyrodictium abyssi TAG11 and named Py-PP1. Py-PP1 was expressed in Escherichia coli, purified from inclusion bodies, and biochemically characterized. The phosphatase gene is part of an operon which may provide, for the first time, insight into a physiological role for archaeal protein phosphatases in vivo. PMID:9696747

  4. Analysis of Smad Phosphatase Activity In Vitro.

    PubMed

    Shen, Tao; Qin, Lan; Lin, Xia

    2016-01-01

    Phosphorylation of Smad1/5/8 at the C-terminal SXS motif by BMP type I receptors is one of the most critical events in BMP signaling. Conversely, protein phosphatases that dephosphorylate phospho-Smad1/5/8 can consequently prevent or terminate BMP signaling. PPM1H is an undercharacterized phosphatase in the PPM family. We recently demonstrated that PPM1H can dephosphorylate Smad1 in the cytoplasm and block BMP signaling responses in cellular assays. Here we describe in vitro method showing that PPM1H is a bona fide phosphatase for Smad1/5/8. PPM1H is produced as GST fusion protein in E. coli, and purified against glutathione sepharose beads. Bacterially purified recombinant PPM1H possesses phosphatase activity toward artificial substrate para-nitrophenyl phosphate (pNPP). Recombinant PPM1H also dephosphorylates immuno-purified phosphorylated Smad1 in test tubes. These direct in vitro phosphatase assays provide convincing evidence demonstrating the role of PPM1H as a specific phosphatase for P-Smad1. PMID:26520120

  5. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.

    PubMed

    Li, Xue; Oghi, Kenneth A; Zhang, Jie; Krones, Anna; Bush, Kevin T; Glass, Christopher K; Nigam, Sanjay K; Aggarwal, Aneel K; Maas, Richard; Rose, David W; Rosenfeld, Michael G

    2003-11-20

    The precise mechanistic relationship between gene activation and repression events is a central question in mammalian organogenesis, as exemplified by the evolutionarily conserved sine oculis (Six), eyes absent (Eya) and dachshund (Dach) network of genetically interacting proteins. Here, we report that Six1 is required for the development of murine kidney, muscle and inner ear, and that it exhibits synergistic genetic interactions with Eya factors. We demonstrate that the Eya family has a protein phosphatase function, and that its enzymatic activity is required for regulating genes encoding growth control and signalling molecules, modulating precursor cell proliferation. The phosphatase function of Eya switches the function of Six1-Dach from repression to activation, causing transcriptional activation through recruitment of co-activators. The gene-specific recruitment of a co-activator with intrinsic phosphatase activity provides a molecular mechanism for activation of specific gene targets, including those regulating precursor cell proliferation and survival in mammalian organogenesis. PMID:14628042

  6. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  7. Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase, TOPP4

    PubMed Central

    Qin, Qianqian; Wang, Wei; Guo, Xiaola; Yue, Jing; Huang, Yan; Xu, Xiufei; Li, Jia; Hou, Suiwen

    2014-01-01

    Gibberellins (GAs) are a class of important phytohormones regulating a variety of physiological processes during normal plant growth and development. One of the major events during GA-mediated growth is the degradation of DELLA proteins, key negative regulators of GA signaling pathway. The stability of DELLA proteins is thought to be controlled by protein phosphorylation and dephosphorylation. Up to date, no phosphatase involved in this process has been identified. We have identified a dwarfed dominant-negative Arabidopsis mutant, named topp4-1. Reduced expression of TOPP4 using an artificial microRNA strategy also resulted in a dwarfed phenotype. Genetic and biochemical analyses indicated that TOPP4 regulates GA signal transduction mainly via promoting DELLA protein degradation. The severely dwarfed topp4-1 phenotypes were partially rescued by the DELLA deficient mutants rga-t2 and gai-t6, suggesting that the DELLA proteins RGA and GAI are required for the biological function of TOPP4. Both RGA and GAI were greatly accumulated in topp4-1 but significantly decreased in 35S-TOPP4 transgenic plants compared to wild-type plants. Further analyses demonstrated that TOPP4 is able to directly bind and dephosphorylate RGA and GAI, confirming that the TOPP4-controlled phosphorylation status of DELLAs is associated with their stability. These studies provide direct evidence for a crucial role of protein dephosphorylation mediated by TOPP4 in the GA signaling pathway. PMID:25010794

  8. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    PubMed Central

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  9. Transcriptional responses to cantharidin a protein phosphatase inhibitor in Arabidopsis thaliana reveal the involvement of multiple signal transduction pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cantharidin is a natural compound isolated from the blister beetle (Epicauta spp.). It is a very potent inhibitor of serine/threonine protein phosphatases PPP, especially PP2A and PP4. Protein phosphatases and kinases maintain a sensitive balance between phosphorylated and dephosphorylated forms of ...

  10. A New Fluorescence-Based Method Identifies Protein Phosphatases Regulating Lipid Droplet Metabolism

    PubMed Central

    Bozaquel-Morais, Bruno L.; Madeira, Juliana B.; Maya-Monteiro, Clarissa M.; Masuda, Claudio A.; Montero-Lomeli, Mónica

    2010-01-01

    In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs) and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4), type 2A phosphatase and its related regulator (pph21 and sap185), type 2C protein phosphatases (ptc1, ptc4, ptc7) and dual phosphatases (pps1, msg5) were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190) were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive) in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis. PMID:21060891

  11. The Nuclear Envelope Protein, LAP1B, Is a Novel Protein Phosphatase 1 Substrate

    PubMed Central

    Santos, Mariana; Rebelo, Sandra; Van Kleeff, Paula J. M.; Kim, Connie E.; Dauer, William T.; Fardilha, Margarida; da Cruz e Silva, Odete A.; da Cruz e Silva, Edgar F.

    2013-01-01

    Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases. PMID:24116158

  12. Activation of a protein tyrosine phosphatase and inactivation of Raf-1 by somatostatin.

    PubMed Central

    Reardon, D B; Wood, S L; Brautigan, D L; Bell, G I; Dent, P; Sturgill, T W

    1996-01-01

    Human somatostatin receptor 3 ('hsstr3') was transiently expressed in NIH 3T3 cells stably transformed with Ha-Ras (G12V). Somatostatin activated a protein tyrosine phosphatase and inactivated the constitutively active, membrane-associated form of the Raf-1 serine kinase present in these cells in vivo and in vitro. PMID:8670047

  13. MECHANISM OF PROTEIN TYROSINE PHOSPHATASE INHIBITION IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    EPA Science Inventory

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to Zn2+ inhibits protein tyrosine phosphatase (PTP) activity and leads to activation of epidermal growth factor receptor (EGFR) signaling in ...

  14. Serine/threonine protein phosphatases: multi-purpose enzymes in control of defense mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine/threonine protein phosphatases are a group of enzymes involved in the regulation of defense mechanisms in plants. This paper describes the effects of an inhibitor of these enzymes on the expression of all of the genes associated with these defense mechanisms. The results suggest that inhibi...

  15. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    PubMed Central

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  16. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae.

    PubMed Central

    Tu, J; Carlson, M

    1995-01-01

    Protein phosphatase type 1 (PP1) is encoded by GLC7, an essential gene in Saccharomyces cerevisiae. The GLC7 phosphatase is required for glucose repression and appears to function antagonistically to the SNF1 protein kinase. Previously, we characterized a mutation, glc7-T152K, that relieves glucose repression but does not interfere with the function of GLC7 in glycogen metabolism. We proposed that the mutant GLC7T152K phosphatase is defective in its interaction with a regulatory subunit that directs participation of PP1 in the glucose repression mechanism. Here, we present evidence that REG1, a protein required for glucose repression, is one such regulatory subunit. We show that REG1 is physically associated with GLC7. REG1 interacts with GLC7 strongly and specifically in the two-hybrid system, and REG1 and GLC7 fusion proteins co-immunoprecipitate from cell extracts. Moreover, overexpression of a REG1 fusion protein suppresses the glc7-T152K mutant defect in glucose repression. This and other genetic evidence indicate that the two proteins function together in regulating glucose repression. These results suggest that REG1 is a regulatory subunit of PP1 that targets its activity to proteins in the glucose repression regulatory pathway. Images PMID:8846786

  17. PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity.

    PubMed Central

    Iwanicki, Adam; Herman-Antosiewicz, Anna; Pierechod, Marcin; Séror, Simone J; Obuchowski, Michał

    2002-01-01

    Bacillus subtilis is a Gram-positive bacterium with a relatively large number of protein phosphatases. Previous studies have shown that some Ser/Thr phosphatases play an important role in the life cycle of this bacterium [Losick and Stragier (1992) Nature (London) 355, 601-604; Yang, Kang, Brody and Price (1996) Genes Dev. 10, 2265-2275]. In this paper, we report the biochemical properties of a putative, previously uncharacterized phosphatase, PrpE, belonging to the PPP family. This enzyme shares homology with other PPP phosphatases as well as with symmetrical diadenosine tetraphosphatases related to ApaH (symmetrical Ap(4)A hydrolase) from Escherichia coli. A His-tagged recombinant PrpE was purified from E. coli and shown to have Ni(2+)-dependent and okadaic acid-resistant phosphatase activity against a synthetic phosphorylated peptide and hydrolase activity against diadenosine 5',5"'-tetraphosphate. Unexpectedly, PrpE was able to remove phosphate from phosphotyrosine, but not from phosphothreonine or phosphoserine. PMID:12059787

  18. Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Travis, Sue M.; Berger, Herbert A.; Welsh, Michael J.

    1997-01-01

    cAMP-dependent phosphorylation activates the cystic fibrosis transmembrane conductance regulator (CFTR) in epithelia. However, the protein phosphatase (PP) that dephosphorylates and inactivates CFTR in airway and intestinal epithelia, two major sites of disease, is not certain. We found that in airway and colonic epithelia, neither okadaic acid nor FK506 prevented inactivation of CFTR when cAMP was removed. These results suggested that a phosphatase distinct from PP1, PP2A, and PP2B was responsible. Because PP2C is insensitive to these inhibitors, we tested the hypothesis that it regulates CFTR. We found that PP2Cα is expressed in airway and T84 intestinal epithelia. To test its activity on CFTR, we generated recombinant human PP2Cα and found that it dephosphorylated CFTR and an R domain peptide in vitro. Moreover, in cell-free patches of membrane, addition of PP2Cα inactivated CFTR Cl− channels; reactivation required readdition of kinase. Finally, coexpression of PP2Cα with CFTR in epithelia reduced the Cl− current and increased the rate of channel inactivation. These results suggest that PP2C may be the okadaic acid-insensitive phosphatase that regulates CFTR in human airway and T84 colonic epithelia. It has been suggested that phosphatase inhibitors could be of therapeutic value in cystic fibrosis; our data suggest that PP2C may be an important phosphatase to target. PMID:9380758

  19. Possible protein phosphatase inhibition by bis(hydroxyethyl) sulfide, a hydrolysis product of mustard gas

    SciTech Connect

    Brimfield, A.A.

    1995-12-31

    Recently, the natural vesicant cantharidin was shown to bind exclusively to and inhibit protein phosphatase 2A (PP2A) in mouse tissue extracts (Li and Casida (1992) Proc. Nati. Acad. Sci. USA 89, 11867-11870). To explore the generality of this effect in vesicant action, we measured the protein serinelthreonine phosphatase activity in mouse liver cytosol (in the form of the okadaic acid inhibitable increment of p-nitrophenyl phosphate (p-NPP) phosphatase activity) in the presence of aqueous sulfur mustard or its hydrolysis product, bis(hydroxyethyl)sulfide (TDG). Sulfur mustard inhibited p-NPP hydrolysis. However, inhibition correlated with the time elapsed between thawing and the addition of mustard to the enzyme preparation, not with concentration. TDG exhibited a direct, concentration-related inhibition of p-NPP hydrolysis between 30 and 300 1LM. We conclude that sulfur mustard also has an inhibitory effect on protein serinelthreonine phosphatases. However, the inhibition is an effect of its non-alkykating hydrolysis product TDG, not of sulfur mustard itself.

  20. Purification and characterization of a protein phosphatase that dephosphorylates pyruvate kinase in an anoxia tolerant animal.

    PubMed

    Brooks, S P; Storey, K B

    1996-05-01

    A protein phosphatase that dephosphorylates pyruvate kinase (PK) in vitro was purified and characterized from the foot muscle of the anoxia tolerant gastropod mollusc Busycon canaliculatum. Purification involved three steps: negative chromatography through Blue Dextran and CM Sephadex, affinity chromatography on DEAE Sephadex and gel exclusion chromatography on Sephacryl S-400. Pyruvate kinase phosphatase (PK-Pase) activity was monitored by following changes in PK I50 values for L-alanine that had previously been linked to changes in the degree of PK phosphorylation. The purified PK-Pase gave a single band on SDS-polyacrylamide gel electrophoresis with a molecular weight of 41 +/- 1 kdaltons. Isoelectric focusing analysis showed that the PK-Pase had an isoelectric point of 4.2 +/- 0.1. Kinetic analysis showed that the enzyme was a Type 2C protein phosphatase with a pH optimum of 6.5. Maximal activity required the presence of magnesium ions (KM = 7.9 +/- 0.6 microM) although high concentrations of Mg2+ were inhibitory (I50 = 2.3 +/- 0.4 mM). The protein phosphatase activity was not affected by either spermine, cAMP, cGMP, potassium phosphate, tartrate, NaF, HgCl2, citrate or concentrations of CaCl2 less than 10 mM. The enzyme could also use ATP, ADP, and GTP as substrates. PMID:8739044

  1. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases.

    PubMed

    Immormino, Robert M; Starbird, Chrystal A; Silversmith, Ruth E; Bourret, Robert B

    2015-06-01

    Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to reactions substantially faster than those for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as the anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to those of wild-type CheY. Crystal structures of CheY DR complexed with MoO4(2-) or WO4(2-) revealed active site hydrogen bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with the leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases. PMID:25928369

  2. Unbiased selective isolation of protein N-terminal peptides from complex proteome samples using phospho tagging (PTAG) and TiO(2)-based depletion.

    PubMed

    Mommen, Geert P M; van de Waterbeemd, Bas; Meiring, Hugo D; Kersten, Gideon; Heck, Albert J R; de Jong, Ad P J M

    2012-09-01

    A positional proteomics strategy for global N-proteome analysis is presented based on phospho tagging (PTAG) of internal peptides followed by depletion by titanium dioxide (TiO(2)) affinity chromatography. Therefore, N-terminal and lysine amino groups are initially completely dimethylated with formaldehyde at the protein level, after which the proteins are digested and the newly formed internal peptides modified with the PTAG reagent glyceraldhyde-3-phosphate in nearly perfect yields (> 99%). The resulting phosphopeptides are depleted through binding onto TiO(2), keeping exclusively a set of N-acetylated and/or N-dimethylated terminal peptides for analysis by liquid chromatography-tandem MS. Analysis of peptides derivatized with differentially labeled isotopic analogs of the PTAG reagent revealed a high depletion efficiency (> 95%). The method enabled identification of 753 unique N-terminal peptides (428 proteins) in N. meningitidis and 928 unique N-terminal peptides (572 proteins) in S. cerevisiae. These included verified neo-N termini from subcellular-relocalized membrane and mitochondrial proteins. The presented PTAG approach is therefore a novel, versatile, and robust method for mass spectrometry-based N-proteome analysis and identification of protease-generated cleavage products. PMID:22729381

  3. Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Crowe, Mark L; Chalk, Alistair M; Waddell, Nic J; Kolle, Gabriel; Faulkner, Geoffrey J; Kodzius, Rimantas; Katayama, Shintaro; Wells, Christine; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Alternative transcripts of protein kinases and protein phosphatases are known to encode peptides with altered substrate affinities, subcellular localizations, and activities. We undertook a systematic study to catalog the variant transcripts of every protein kinase-like and phosphatase-like locus of mouse . Results By reviewing all available transcript evidence, we found that at least 75% of kinase and phosphatase loci in mouse generate alternative splice forms, and that 44% of these loci have well supported alternative 5' exons. In a further analysis of full-length cDNAs, we identified 69% of loci as generating more than one peptide isoform. The 1,469 peptide isoforms generated from these loci correspond to 1,080 unique Interpro domain combinations, many of which lack catalytic or interaction domains. We also report on the existence of likely dominant negative forms for many of the receptor kinases and phosphatases, including some 26 secreted decoys (seven known and 19 novel: Alk, Csf1r, Egfr, Epha1, 3, 5,7 and 10, Ephb1, Flt1, Flt3, Insr, Insrr, Kdr, Met, Ptk7, Ptprc, Ptprd, Ptprg, Ptprl, Ptprn, Ptprn2, Ptpro, Ptprr, Ptprs, and Ptprz1) and 13 transmembrane forms (four known and nine novel: Axl, Bmpr1a, Csf1r, Epha4, 5, 6 and 7, Ntrk2, Ntrk3, Pdgfra, Ptprk, Ptprm, Ptpru). Finally, by mining public gene expression data (MPSS and microarrays), we confirmed tissue-specific expression of ten of the novel isoforms. Conclusion These findings suggest that alternative transcripts of protein kinases and phosphatases are produced that encode different domain structures, and that these variants are likely to play important roles in phosphorylation-dependent signaling pathways. PMID:16507138

  4. An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator.

    PubMed Central

    Longin, Sari; Jordens, Jan; Martens, Ellen; Stevens, Ilse; Janssens, Veerle; Rondelez, Evelien; De Baere, Ivo; Derua, Rita; Waelkens, Etienne; Goris, Jozef; Van Hoof, Christine

    2004-01-01

    We have described recently the purification and cloning of PP2A (protein phosphatase 2A) leucine carboxylmethyltransferase. We studied the purification of a PP2A-specific methylesterase that co-purifies with PP2A and found that it is tightly associated with an inactive dimeric or trimeric form of PP2A. These inactive enzyme forms could be reactivated as Ser/Thr phosphatase by PTPA (phosphotyrosyl phosphatase activator of PP2A). PTPA was described previously by our group as a protein that stimulates the in vitro phosphotyrosyl phosphatase activity of PP2A; however, PP2A-specific methyltransferase could not bring about the activation. The PTPA activation could be distinguished from the Mn2+ stimulation observed with some inactive forms of PP2A, also found associated with PME-1 (phosphatase methylesterase 1). We discuss a potential new function for PME-1 as an enzyme that stabilizes an inactivated pool of PP2A. PMID:14748741

  5. EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases.

    PubMed

    Wang, Yongbo; Liu, Zexian; Cheng, Han; Gao, Tianshun; Pan, Zhicheng; Yang, Qing; Guo, Anyuan; Xue, Yu

    2014-01-01

    We present here EKPD (http://ekpd.biocuckoo.org), a hierarchical database of eukaryotic protein kinases (PKs) and protein phosphatases (PPs), the key molecules responsible for the reversible phosphorylation of proteins that are involved in almost all aspects of biological processes. As extensive experimental and computational efforts have been carried out to identify PKs and PPs, an integrative resource with detailed classification and annotation information would be of great value for both experimentalists and computational biologists. In this work, we first collected 1855 PKs and 347 PPs from the scientific literature and various public databases. Based on previously established rationales, we classified all of the known PKs and PPs into a hierarchical structure with three levels, i.e. group, family and individual PK/PP. There are 10 groups with 149 families for the PKs and 10 groups with 33 families for the PPs. We constructed 139 and 27 Hidden Markov Model profiles for PK and PP families, respectively. Then we systematically characterized ∼50,000 PKs and >10,000 PPs in eukaryotes. In addition, >500 PKs and >400 PPs were computationally identified by ortholog search. Finally, the online service of the EKPD database was implemented in PHP + MySQL + JavaScript. PMID:24214991

  6. The protein phosphatase inhibitor calyculin A stimulates chemokine production by human synovial cells.

    PubMed Central

    Jordan, N J; Watson, M L; Westwick, J

    1995-01-01

    Cultured human synovial fibroblasts express mRNA for the chemotactic cytokines (chemokines) interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1) and regulated upon activation normal T-cell expressed and presumably secreted (RANTES), when stimulated with IL-1 or tumour necrosis factor alpha (TNF alpha). Calyculin A, a potent type 1/2A protein serine/threonine phosphatase inhibitor, was used to examine the role of protein phosphatases in the regulation of chemokine gene expression. Calyculin A (1 nM) mimicked IL-1 by inducing IL-8 and MCP-1 mRNA expression in synovial cells. IL-8 mRNA was induced over a similar time period (1-6 h) in response to IL-1 or calyculin A, whereas MCP-1 mRNA was induced more rapidly (1-2 h) by calyculin A than by IL-1 (4-6 h). Expression of RANTES mRNA occurred in response to TNF alpha, but could not be induced by stimulation with calyculin A alone. These results suggest that inhibition of protein phosphatase type 1/2A may have a differential role in the regulation of the expression of each of the chemokine genes. Synovial fibroblasts also secreted IL-8 and IL-6 peptide when stimulated with either IL-1/TNF alpha or calyculin A. The amount of IL-8 and IL-6 peptide produced in response to calyculin A was significantly increased above that produced by untreated synovial cells, though it was much less than the amount induced by IL-1 or TNF alpha. Calyculin A also acted synergistically with IL-1 or TNF alpha to cause a 2-fold potentiation of IL-1- or TNF alpha-induced IL-8 mRNA and peptide and RANTES mRNA expression. These results suggest that although inhibition of a protein phosphatase may be able to regulate the magnitude of IL-1-induced chemokine gene expression, the IL-1 signal transduction pathway involves components in addition to phosphatase inhibition, possibly including the activation of a protein kinase, the action of which may be opposed by a protein phosphatase inhibited by calyculin A. Images Figure 1 Figure 2 Figure 3

  7. Kinetic Characterization of O-Phospho-L-Tyrosine Phosphohydrolase Activity of Two Fungal Phytases.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal phytases belonging to 'Histidine Acid Phosphatase' or HAP class of phosphomonoesterase that catalyzes the hydrolysis of phytic acid could also hydrolyze O-phospho-tyrosine. Two phytases from Aspergillus niger and Aspergillus awamori with pH optima 2.5 were tested for phospho-tyrosine hydrola...

  8. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential.

    PubMed

    Wehenkel, Annemarie; Bellinzoni, Marco; Graña, Martin; Duran, Rosario; Villarino, Andrea; Fernandez, Pablo; Andre-Leroux, Gwénaëlle; England, Patrick; Takiff, Howard; Cerveñansky, Carlos; Cole, Stewart T; Alzari, Pedro M

    2008-01-01

    Reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes, not only in eukaryotes but also in bacteria. A growing body of evidence suggests that Ser/Thr phosphorylation play important roles in the physiology and virulence of Mycobacterium tuberculosis, the etiological agent of tuberculosis. This pathogen uses 'eukaryotic-like' Ser/Thr protein kinases and phosphatases not only to regulate many intracellular metabolic processes, but also to interfere with signaling pathways of the infected host cell. Disrupting such processes by means of selective inhibitors may thus provide new pharmaceutical weapons to combat the disease. Here we review the current knowledge on Ser/Thr protein kinases and phosphatases in M. tuberculosis, their regulation mechanisms and putative substrates, and we explore their therapeutic potential as possible targets for the development of new anti-mycobacterial compounds. PMID:17869195

  9. Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae.

    PubMed

    Garipler, Görkem; Mutlu, Nebibe; Lack, Nathan A; Dunn, Cory D

    2014-01-28

    Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. PMID:24474773

  10. A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain.

    PubMed

    Weitzdoerfer, Rachel; Toran, Nuria; Subramaniyan, Saraswathi; Pollak, Arnold; Dierssen, Mara; Lubec, Gert

    2015-06-01

    Down syndrome (DS; trisomy 21) is the most frequent cause of mental retardation with major cognitive and behavioral deficits. Although a series of aberrant biochemical pathways has been reported, work on signaling proteins is limited. It was, therefore, the aim of the study to test a selection of protein kinases and phosphatases known to be essential for memory and learning mechanisms in fetal DS brain. 12 frontal cortices from DS brain were compared to 12 frontal cortices from controls obtained at legal abortions. Proteins were extracted from brains and western blotting with specific antibodies was carried out. Primary results were used for networking (IntAct Molecular Interaction Database) and individual predicted pathway components were subsequently quantified by western blotting. Levels of calcium-calmodulin kinase II alpha, transforming growth factor beta-activated kinase 1 as well as phosphatase and tensin homolog (PTEN) were reduced in cortex of DS subjects and network generation pointed to interaction between PTEN and the dendritic spine protein drebrin that was subsequently determined and reduced levels were observed. The findings of reduced levels of cognitive-function-related protein kinases and the phosphatase may be relevant for interpretation of previous work and may be useful for the design of future studies on signaling in DS brain. Moreover, decreased drebrin levels may point to dendritic spine abnormalities. PMID:25740605

  11. Reactivity of Cdc25 phosphatase at low pH and with thiophosphorylated protein substrate.

    PubMed

    Rudolph, Johannes

    2005-08-01

    Cdc25s, dual-specificity phosphatases that dephosphorylate and activate cyclin-dependent kinases, are important regulators of the eukaryotic cell cycle. Herein, we probe the protonation state of the phosphate on the protein substrate of Cdc25 by pH-dependent studies and thiosubstitution. We have extended the useable range of pH for this enzyme substrate pair by using high concentrations of glycerol under acidic conditions. Using the protein substrate, we find a slope of 2 for the acidic side of the bell-shaped pH-rate profile, as found with other protein tyrosine phosphatases. Using thiophosphorylated protein substrate, we find no change in the basic side of the pH-rate profile, despite a large reduction in activity as measured by kcat/Km (0.18%) or kcat (0. 11%). In contrast, the acidic side of the profile changes shows a slope of 1, consistent with the 1.5 pH unit shift associated with thiosubstitution. Thus, Cdc25, like other protein phosphatases, uses a dianionic phosphorylated substrate. PMID:16023486

  12. Integrative Transcriptome Profiling of Cognitive Aging and Its Preservation through Ser/Thr Protein Phosphatase Regulation

    PubMed Central

    Park, C. Sehwan; Valomon, Amandine; Welzl, Hans

    2015-01-01

    Environmental enrichment has been reported to delay or restore age-related cognitive deficits, however, a mechanism to account for the cause and progression of normal cognitive decline and its preservation by environmental enrichment is lacking. Using genome-wide SAGE-Seq, we provide a global assessment of differentially expressed genes altered with age and environmental enrichment in the hippocampus. Qualitative and quantitative proteomics in naïve young and aged mice was used to further identify phosphorylated proteins differentially expressed with age. We found that increased expression of endogenous protein phosphatase-1 inhibitors in aged mice may be characteristic of long-term environmental enrichment and improved cognitive status. As such, hippocampus-dependent performances in spatial, recognition, and associative memories, which are sensitive to aging, were preserved by environmental enrichment and accompanied by decreased protein phosphatase activity. Age-associated phosphorylated proteins were also found to correspond to the functional categories of age-associated genes identified through transcriptome analysis. Together, this study provides a comprehensive map of the transcriptome and proteome in the aging brain, and elucidates endogenous protein phosphatase-1 inhibition as a potential means through which environmental enrichment may ameliorate age-related cognitive deficits. PMID:26102285

  13. Chasing Phosphoarginine Proteins: Development of a Selective Enrichment Method Using a Phosphatase Trap*

    PubMed Central

    Trentini, Débora Broch; Fuhrmann, Jakob; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging post-translational protein modification implicated in the bacterial stress response. Although early reports suggested that arginine phosphorylation also occurs in higher eukaryotes, its overall prevalence was never studied using modern mass spectrometry methods, owing to technical difficulties arising from the acid lability of phosphoarginine. As shown recently, the McsB and YwlE proteins from Bacillus subtilis function as a highly specific protein arginine kinase and phosphatase couple, shaping the phosphoarginine proteome. Using a B. subtilis ΔywlE strain as a source for arginine-phosphorylated proteins, we were able to adapt mass spectrometry (MS) protocols to the special chemical properties of the arginine modification. Despite this progress, the analysis of protein arginine phosphorylation in eukaryotes is still challenging, given the great abundance of serine/threonine phosphorylations that would compete with phosphoarginine during the phosphopeptide enrichment procedure, as well as during data-dependent MS acquisition. We thus set out to establish a method for the selective enrichment of arginine-phosphorylated proteins as an initial step in the phosphoproteomic analysis. For this purpose, we developed a substrate-trapping mutant of the YwlE phosphatase that retains binding affinity toward arginine-phosphorylated proteins but cannot hydrolyze the captured substrates. By testing a number of active site substitutions, we identified a YwlE mutant (C9A) that stably binds to arginine-phosphorylated proteins. We further improved the substrate-trapping efficiency by impeding the oligomerization of the phosphatase mutant. The engineered YwlE trap efficiently captured arginine-phosphorylated proteins from complex B. subtilis ΔywlE cell extracts, thus facilitating identification of phosphoarginine sites in the large pool of cellular protein modifications. In conclusion, we present a novel tool for the selective enrichment and

  14. A subset of RAB proteins modulates PP2A phosphatase activity.

    PubMed

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  15. A subset of RAB proteins modulates PP2A phosphatase activity

    PubMed Central

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine–threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  16. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    SciTech Connect

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M.; Iuliano, Rodolfo; Fusco, Alfredo; Polikarpov, Igor

    2006-09-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit.

  17. Circadian Regulation of Sucrose Phosphate Synthase Activity in Tomato by Protein Phosphatase Activity.

    PubMed Central

    Jones, T. L.; Ort, D. R.

    1997-01-01

    Sucrose phosphate synthase (SPS), a key enzyme in sucrose biosynthesis, is regulated by protein phosphorylation and shows a circadian pattern of activity in tomato. SPS is most active in its dephosphorylated state, which normally coincides with daytime. Applying okadaic acid, a potent protein phosphatase inhibitor, prevents SPS activation. More interesting is that a brief treatment with cycloheximide, a cytoplasmic translation inhibitor, also prevents the light activation of SPS without any effect on the amount of SPS protein. Cordycepin, an inhibitor of transcript synthesis and processing, has the same effect. Both of these inhibitors also prevent the activation phase of the circadian rhythm in SPS activity. Conversely, cycloheximide and cordycepin do not prevent the decline in circadian SPS activity that normally occurs at night. These observations indicate that SPS phosphatase activity but not SPS kinase activity is controlled, directly or indirectly, at the level of gene expression. Taken together, these data imply that there is a circadian rhythm controlling the transcription of a protein phosphatase that subsequently dictates the circadian rhythm in SPS activity via effects on this enzyme's phosphorylation state. PMID:12223667

  18. Expression, purification, and characterization of human osteoclastic protein-tyrosine phosphatase catalytic domain in Escherichia coli.

    PubMed

    Jiang, Huan; Sui, Yuan; Cui, Yue; Lin, Peng; Li, Wannan; Xing, Shu; Wang, Deli; Hu, Min; Fu, Xueqi

    2015-03-01

    Osteoclastic protein tyrosine phosphatase (PTP-oc) is a structurally unique transmembrane protein tyrosine phosphatase (PTP) that contains only a relatively small intracellular PTP catalytic domain, does not have an extracellular domain, and lacks a signal peptide proximal to the NH2 terminus. The present study reports the expression, purification, and characterization of the intracellular catalytic domain of PTP-oc (ΔPTP-oc). ΔPTP-oc was expressed in Escherichia coli cells as a fusion with a six-histidine tag and was purified via nickel affinity chromatography. When with para-nitrophenylphosphate (p-NPP) as a substrate, ΔPTP-oc exhibited classical Michaelis-Menten kinetics. Its responses to temperature and ionic strength were similar to those of other PTPs. The optimal pH value of ΔPTP-oc is approximately 7.0, unlike other PTPs, whose optimal pH values are approximately 5.0. PMID:25462809

  19. Positive Regulation of TRAF6-Dependent Innate Immune Responses by Protein Phosphatase PP1-γ

    PubMed Central

    Chiang, Chih-yuan; Nguyen, Quy T.; Maestre, Ana M.; Mulder, Lubbertus C. F.; Secundino, Ismael; De Jesus, Paul D.; König, Renate; Simon, Viviana; Nizet, Victor; MacLeod, Graham; Varmuza, Susannah; Fernandez-Sesma, Ana; Chanda, Sumit K.

    2014-01-01

    Innate immune sensors such as Toll-like receptors (TLRs) differentially utilize adaptor proteins and additional molecular mediators to ensure robust and precise immune responses to pathogen challenge. Through a gain-of-function genetic screen, we identified the gamma catalytic subunit of protein phosphatase 1 (PP1-γ) as a positive regulator of MyD88-dependent proinflammatory innate immune activation. PP1-γ physically interacts with the E3 ubiquitin ligase TRAF6, and enhances the activity of TRAF6 towards itself and substrates such as IKKγ, whereas enzymatically inactive PP1-γ represses these events. Importantly, these activities were found to be critical for cellular innate responses to pathogen challenge and microbial clearance in both mouse macrophages and human monocyte lines. These data indicate that PP1-γ phosphatase activity regulates overall TRAF6 E3 ubiquitin ligase function and promotes NF-κB-mediated innate signaling responses. PMID:24586659

  20. Structural Basis for the Catalytic Activity of Human SER/THR Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E.

    2004-01-01

    Serinekhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth. Here we report the 1.6 Angstrom resolution crystal structure of PP5 catalytic domain with metal and phosphate ions in the active site. The structure reveals a mechanism for PPS-mediated catalysis that requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1),-M(sub 2)-His(sup 427)-W(sup 2)-His(sup 304)-Asp(sup 274) catalytic motif, and provides a structural basis for the exceptional catalytic proficiency of protein phosphatases placing them among the most powerful catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of PP5 should aid development of specific inhibitors.

  1. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E. M.

    2004-01-01

    Serinehhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth and cellular responses to stress. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 A. From this structure we resolved the mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a con served Aspn-271-M(sub 1):M(sub 2)-W(sup 1)-His-427-His-304-Asp-274 catalytic motif. The structure of PPSc provides a structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  2. Inhibition of CDC25B Phosphatase Through Disruption of Protein–Protein Interaction

    PubMed Central

    2015-01-01

    CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation of CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes. PMID:25423142

  3. Disruption of striatal-enriched protein tyrosine phosphatase (STEP) function in neuropsychiatric disorders

    PubMed Central

    Karasawa, Takatoshi; Lombroso, Paul J.

    2014-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific tyrosine phosphatase that plays a major role in the development of synaptic plasticity. Recent findings have implicated STEP in several psychiatric and neurological disorders, including Alzheimer’s disease, schizophrenia, fragile X syndrome, Huntington’s disease, stroke/ischemia, and stress-related psychiatric disorders. In these disorders, STEP protein expression levels and activity are dysregulated, contributing to the cognitive deficits that are present. In this review, we focus on the most recent findings on STEP, discuss how STEP expression and activity are maintained during normal cognitive function, and how disruptions in STEP activity contribute to a number of illnesses. PMID:25218562

  4. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus

    PubMed Central

    Winkelströter, Lizziane K.; Dolan, Stephen K.; Fernanda dos Reis, Thaila; Bom, Vinícius Leite Pedro; Alves de Castro, Patrícia; Hagiwara, Daisuke; Alowni, Raneem; Jones, Gary W.; Doyle, Sean; Brown, Neil Andrew; Goldman, Gustavo H.

    2015-01-01

    Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen. PMID:25943523

  5. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus.

    PubMed

    Winkelströter, Lizziane K; Dolan, Stephen K; Fernanda Dos Reis, Thaila; Bom, Vinícius Leite Pedro; Alves de Castro, Patrícia; Hagiwara, Daisuke; Alowni, Raneem; Jones, Gary W; Doyle, Sean; Brown, Neil Andrew; Goldman, Gustavo H

    2015-07-01

    Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen. PMID:25943523

  6. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability

    PubMed Central

    Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela

    2014-01-01

    Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ−/− mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ−/− mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ−/− mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper–tyrosine-phosphorylated in the PTPσ−/− mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ−/− mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD. PMID:24385580

  7. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants.

    PubMed

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  8. Activation of SPS from darkened spinach leaves by an endogenous protein phosphatase

    SciTech Connect

    Huber, S.C.; Huber, J.L. )

    1990-05-01

    Sucrose-phosphate synthase from darkened spinach leaves has a low activation state but can undergo a time-dependent activation in desalted leaf extracts that is inhibited by Pi, molybdate, okadaic acid and vanadate, but stimulated by fluoride. SPS labeled in vivo with ({sup 32}P)Pi in excised leaves in the dark loses incorporated {sup 32}P with time when extracts are incubated at 25{degree}C. This loss is largely prevented by vanadate, suggesting that an endogenous protein phosphatase can use SPS as substrate. Changes in phosphorylation state are closely paralleled by changes in SPS activation state. The spontaneous activation achieved in the extracts can be reversed by addition of 2 mM MgATP. Feeding okadaic acid to darkened leaves prevents light activation of SPS suggesting that the endogenous protein phosphatase is similar to the type-1 enzyme of animal tissues. Overall, the results are consistent with the notion that light activation of SPS involves dephosphorylation of inhibitory phosphorylation site(s). Regulation of the protein phosphatase by Pi may be of physiological significance.

  9. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  10. Is Protein Phosphatase Inhibition Responsible for the Toxic Effects of Okadaic Acid in Animals?

    PubMed Central

    Munday, Rex

    2013-01-01

    Okadaic acid (OA) and its derivatives, which are produced by dinoflagellates of the genera Prorocentrum and Dinophysis, are responsible for diarrhetic shellfish poisoning in humans. In laboratory animals, these toxins cause epithelial damage and fluid accumulation in the gastrointestinal tract, and at high doses, they cause death. These substances have also been shown to be tumour promoters, and when injected into the brains of rodents, OA induces neuronal damage reminiscent of that seen in Alzheimer’s disease. OA and certain of its derivatives are potent inhibitors of protein phosphatases, which play many roles in cellular metabolism. In 1990, it was suggested that inhibition of these enzymes was responsible for the diarrhetic effect of these toxins. It is now repeatedly stated in the literature that protein phosphatase inhibition is not only responsible for the intestinal effects of OA and derivatives, but also for their acute toxic effects, their tumour promoting activity and their neuronal toxicity. In the present review, the evidence for the involvement of protein phosphatase inhibition in the induction of the toxic effects of OA and its derivatives is examined, with the conclusion that the mechanism of toxicity of these substances requires re-evaluation. PMID:23381142

  11. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts.

    PubMed

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis. PMID:26538836

  12. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts

    PubMed Central

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis. PMID:26538836

  13. Mitogen-Activated Protein Kinase Phosphatase 2 Regulates the Inflammatory Response in Sepsis▿

    PubMed Central

    Cornell, Timothy T.; Rodenhouse, Paul; Cai, Qing; Sun, Lei; Shanley, Thomas P.

    2010-01-01

    Sepsis results from a dysregulation of the regulatory mechanisms of the pro- and anti-inflammatory response to invading pathogens. The mitogen-activated protein (MAP) kinase cascades are key signal transduction pathways involved in the cellular production of cytokines. The dual-specific phosphatase 1 (DUSP 1), mitogen-activated protein kinase phosphatase-1 (MKP-1), has been shown to be an important negative regulator of the inflammatory response by regulating the p38 and Jun N-terminal protein kinase (JNK) MAP kinase pathways to influence pro- and anti-inflammatory cytokine production. MKP-2, also a dual-specific phosphatase (DUSP 4), is a phosphatase highly homologous with MKP-1 and is known to regulate MAP kinase signaling; however, its role in regulating the inflammatory response is not known. We hypothesized a regulatory role for MKP-2 in the setting of sepsis. Mice lacking the MKP-2 gene had a survival advantage over wild-type mice when challenged with intraperitoneal lipopolysaccharide (LPS) or a polymicrobial infection via cecal ligation and puncture. The MKP-2−/− mice also exhibited decreased serum levels of both pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], IL-6) and anti-inflammatory cytokines (IL-10) following endotoxin challenge. Isolated bone marrow-derived macrophages (BMDMs) from MKP-2−/− mice showed increased phosphorylation of the extracellular signal-regulated kinase (ERK), decreased phosphorylation of JNK and p38, and increased induction of MKP-1 following LPS stimulation. The capacity for cytokine production increased in MKP-2−/− BMDMs following MKP-1 knockdown. These data support a mechanism by which MKP-2 targets ERK deactivation, thereby decreasing MKP-1 and thus removing the negative inhibition of MKP-1 on cytokine production. PMID:20351138

  14. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  15. Phosphonate monoesters on a thiacalix[4]arene framework as potential inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Trush, Viacheslav V; Kharchenko, Sergiy G; Tanchuk, Vsevolod Yu; Kalchenko, Vitaly I; Vovk, Andriy I

    2015-09-01

    Monoester derivatives of thiacalix[4]arene tetrakis(methylphosphonic) acid were found to be capable of inhibiting protein tyrosine phosphatase 1B. In addition, these compounds can strongly bind to human serum albumin. PMID:26205135

  16. Pyruvate dehydrogenase/sub b/ phosphatase inhibition by NADH and dihydrolipoamide along with effects of and capacity for binding the phosphatase to the bovine kidney transacetylase-protein X subcomplex

    SciTech Connect

    Roche, T.E.; Rahmatullah, M.; Maher, J.

    1986-05-01

    NADH inhibits PDH/sub b/ phosphatase activity when /sup 32/P-PDH is associated with the intact complex but not when /sup 32/P-PDH is prepared free of other components of the complex. Addition of the transacetylase-protein X (E2-X) subcomplex both activated the phosphatase and restored NADH inhibition. Low levels of dihydrolipoyl dehydrogenase associated with the subcomplex might be required for NADH inhibition. Dihydrolipoamide gave inhibition of the phosphatase equivalent to NADH and the combination did not give additional inhibition suggesting a common mechanism. Pretreatment of phosphorylated complex and phosphatase with 2.0 mM dithiothreitol nearly eliminated inhibition of the phosphatase by NADH or dihydrolipoamide. Strong arsenite inhibition of phosphatase activity occurred only in the presence of NADH suggesting modification of thiols reduced by NADH can alter phosphatase activity. Only about 6 molecules of purified phosphatase could be activated by 1 molecule of E2-X subcomplex (initial velocities measured in 15s period). Since that corresponded to the number of protein X rather than E2 subunits, protein X may contribute to the Ca/sup 2 +/-dependent binding of the phosphatase. Since protein X also contains a lipoyl moiety, it may also contribute to NADH inhibition of the phosphatase.

  17. Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages.

    PubMed

    Escalona-Montaño, A R; Ortiz-Lozano, D M; Rojas-Bernabé, A; Wilkins-Rodriguez, A A; Torres-Guerrero, H; Mondragón-Flores, R; Mondragón-Gonzalez, R; Becker, I; Gutiérrez-Kobeh, L; Aguirre-Garcia, M M

    2016-09-01

    Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages. PMID:27220404

  18. Identification of protein phosphatases dephosphorylating mRNP proteins from cryptobiotic gastrulae of the brine shrimp A. salina.

    PubMed

    Thoen, C; Van Hove, L; Cohen, P; Slegers, H

    1985-08-30

    In the cytosol of A. salina cryptobiotic gastrulae at least five protein phosphatases active on phosphorylase a have been detected by ion exchange chromatography on DEAE-cellulose. Only two of these enzymes (PP-X and PP-Y) are active in mRNP dephosphorylation. Both enzymes are insensitive to inhibitor-1 and -2 and stimulation of enzymatic activity (2.5-fold with PP-X and 6.5-fold with PP-Y) can be accomplished by ethanol treatment of the native enzymes, or freeze-thawing in the presence of 1.7% (v/v) 2-mercaptoethanol. These properties allow PP-X and PP-Y to be classified as type-2A enzymes according to the nomenclature of Cohen. This paper is the first report of protein phosphatases capable of dephosphorylating mRNP proteins. PMID:2994667

  19. Global Analysis of Serine/Threonine and Tyrosine Protein Phosphatase Catalytic Subunit Genes in Neurospora crassa Reveals Interplay Between Phosphatases and the p38 Mitogen-Activated Protein Kinase

    PubMed Central

    Ghosh, Arit; Servin, Jacqueline A.; Park, Gyungsoon; Borkovich, Katherine A.

    2013-01-01

    Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock. PMID:24347630

  20. Structural Diversity in Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regulators

    SciTech Connect

    Marsh, J.A.; Allaire, M.; Dancheck, B.; Ragusa, M.J.; Forman-Kay, J.D.; Peti, Wolfgang

    2010-09-08

    Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three nonhomologous, intrinsically disordered proteins: I-2, spinophilin, and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, preformed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex.

  1. Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae.

    PubMed Central

    van Zyl, W; Huang, W; Sneddon, A A; Stark, M; Camier, S; Werner, M; Marck, C; Sentenac, A; Broach, J R

    1992-01-01

    We have determined that TPD3, a gene previously identified in a screen for mutants defective in tRNA biosynthesis, most likely encodes the A regulatory subunit of the major protein phosphatase 2A species in the yeast Saccharomyces cerevisiae. The predicted amino acid sequence of the product of TPD3 is highly homologous to the sequence of the mammalian A subunit of protein phosphatase 2A. In addition, antibodies raised against Tpd3p specifically precipitate a significant fraction of the protein phosphatase 2A activity in the cell, and extracts of tpd3 strains yield a different chromatographic profile of protein phosphatase 2A than do extracts of isogenic TPD3 strains. tpd3 deletion strains generally grow poorly and have at least two distinct phenotypes. At reduced temperatures, tpd3 strains appear to be defective in cytokinesis, since most cells become multibudded and multinucleate following a shift to 13 degrees C. This is similar to the phenotype obtained by overexpression of the protein phosphatase 2A catalytic subunit or by loss of CDC55, a gene that encodes a protein with homology to a second regulatory subunit of protein phosphatase 2A. At elevated temperatures, tpd3 strains are defective in transcription by RNA polymerase III. Consistent with this in vivo phenotype, extracts of tpd3 strains fail to support in vitro transcription of tRNA genes, a defect that can be reversed by addition of either purified RNA polymerase III or TFIIIB. These results reinforce the notion that protein phosphatase 2A affects a variety of biological processes in the cell and provide an initial identification of critical substrates for this phosphatase. Images PMID:1328868

  2. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades

    PubMed Central

    Jiang, Cheng-shi; Liang, Lin-fu; Guo, Yue-wei

    2012-01-01

    This article provides an overview of approximately 300 secondary metabolites with inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), which were isolated from various natural sources or derived from synthetic process in the last decades. The structure-activity relationship and the selectivity of some compounds against other protein phosphatases were also discussed. Potential pharmaceutical applications of several PTP1B inhibitors were presented. PMID:22941286

  3. Analysis of Protein Phosphatase-1 and Aurora Protein Kinase Suppressors Reveals New Aspects of Regulatory Protein Function in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Anuprita; Cannon, John F.

    2013-01-01

    Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates. PMID:23894419

  4. Protein Phosphatase 1 (PP1) Is a Post-Translational Regulator of the Mammalian Circadian Clock

    PubMed Central

    Schmutz, Isabelle; Wendt, Sabrina; Schnell, Anna; Kramer, Achim; Mansuy, Isabelle M.; Albrecht, Urs

    2011-01-01

    Circadian clocks coordinate the timing of important biological processes. Interconnected transcriptional and post-translational feedback loops based on a set of clock genes generate and maintain these rhythms with a period of about 24 hours. Many clock proteins undergo circadian cycles of post-translational modifications. Among these modifications, protein phosphorylation plays an important role in regulating activity, stability and intracellular localization of clock components. Several protein kinases were characterized as regulators of the circadian clock. However, the function of protein phosphatases, which balance phosphorylation events, in the mammalian clock mechanism is less well understood. Here, we identify protein phosphatase 1 (PP1) as regulator of period and light-induced resetting of the mammalian circadian clock. Down-regulation of PP1 activity in cells by RNA interference and in vivo by expression of a specific inhibitor in the brain of mice tended to lengthen circadian period. Moreover, reduction of PP1 activity in the brain altered light-mediated clock resetting behavior in mice, enhancing the phase shifts in either direction. At the molecular level, diminished PP1 activity increased nuclear accumulation of the clock component PER2 in neurons. Hence, PP1, may reduce PER2 phosphorylation thereby influencing nuclear localization of this protein. This may at least partially influence period and phase shifting properties of the mammalian circadian clock. PMID:21712997

  5. Mannose 6 Dephosphorylation of Lysosomal Proteins Mediated by Acid Phosphatases Acp2 and Acp5

    PubMed Central

    Makrypidi, Georgia; Damme, Markus; Müller-Loennies, Sven; Trusch, Maria; Schmidt, Bernhard; Schlüter, Hartmut; Heeren, Joerg; Lübke, Torben; Saftig, Paul

    2012-01-01

    Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5−/−) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5−/− mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products. PMID:22158965

  6. Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins.

    PubMed

    Verrastro, Ivan; Tveen-Jensen, Karina; Woscholski, Rudiger; Spickett, Corinne M; Pitt, Andrew R

    2016-01-01

    Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured. PMID:26561776

  7. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  8. Carboxyl-Terminal Receptor Domains Control the Differential Dephosphorylation of Somatostatin Receptors by Protein Phosphatase 1 Isoforms

    PubMed Central

    Lehmann, Andreas; Kliewer, Andrea; Märtens, Jan Carlo; Nagel, Falko; Schulz, Stefan

    2014-01-01

    We have recently identified protein phosphatase 1β (PP1β) as G protein-coupled receptor (GPCR) phosphatase for the sst2 somatostatin receptor using siRNA knockdown screening. By contrast, for the sst5 somatostatin receptor we identified protein phosphatase 1γ (PP1γ) as GPCR phosphatase using the same approach. We have also shown that sst2 and sst5 receptors differ substantially in the temporal dynamics of their dephosphorylation and trafficking patterns. Whereas dephosphorylation and recycling of the sst2 receptor requires extended time periods of ∼30 min, dephosphorylation and recycling of the sst5 receptor is completed in less than 10 min. Here, we examined which receptor domains determine the selection of phosphatases for receptor dephosphorylation. We found that generation of tail-swap mutants between sst2 and sst5 was required and sufficient to reverse the patterns of dephosphorylation and trafficking of these two receptors. In fact, siRNA knockdown confirmed that the sst5 receptor carrying the sst2 tail is predominantly dephosphorylated by PP1β, whereas the sst2 receptor carrying the sst5 tail is predominantly dephosphorylated by PP1γ. Thus, the GPCR phosphatase responsible for dephosphorylation of individual somatostatin receptor subtypes is primarily determined by their different carboxyl-terminal receptor domains. This phosphatase specificity has in turn profound consequences for the dephosphorylation dynamics and trafficking patterns of GPCRs. PMID:24637622

  9. Functional diversity of protein phosphatase-1, a cellular economizer and reset button.

    PubMed

    Ceulemans, Hugo; Bollen, Mathieu

    2004-01-01

    The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle. PMID:14715909

  10. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A

    SciTech Connect

    Xing,Y.; Li, Z.; Chen, Y.; Stock, J.; Jeffrey, P.; Shi, Y.

    2008-01-01

    Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the underlying mechanism of PME-1 function remains enigmatic. Here we report the crystal structures of PME-1 by itself and in complex with a PP2A heterodimeric core enzyme. The structures reveal that PME-1 directly binds to the active site of PP2A and that this interaction results in the activation of PME-1 by rearranging the catalytic triad into an active conformation. Strikingly, these interactions also lead to inactivation of PP2A by evicting the manganese ions that are required for the phosphatase activity of PP2A. These observations identify a dual role of PME-1 that regulates PP2A activation, methylation, and holoenzyme assembly in cells.

  11. Protein Phosphatase 1ß Limits Ring Canal Constriction during Drosophila Germline Cyst Formation

    PubMed Central

    Yamamoto, Shinya; Bayat, Vafa; Bellen, Hugo J.; Tan, Change

    2013-01-01

    Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well. PMID:23936219

  12. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  13. A Phospho-SIM in the Antiviral Protein PML is Required for Its Recruitment to HSV-1 Genomes.

    PubMed

    Smith, Miles C; Box, Andrew C; Haug, Jeffrey S; Lane, William S; Davido, David J

    2014-01-01

    Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML's activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1. PMID:25513827

  14. A Phospho-SIM in the Antiviral Protein PML is Required for Its Recruitment to HSV-1 Genomes

    PubMed Central

    Smith, Miles C.; Box, Andrew C.; Haug, Jeffrey S.; Lane, William S.; Davido, David J.

    2014-01-01

    Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML’s activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1. PMID:25513827

  15. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase* ♦

    PubMed Central

    Fan, Gaofeng; Aleem, Saadat; Yang, Ming; Miller, W. Todd; Tonks, Nicholas K.

    2015-01-01

    Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity. PMID:25897081

  16. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening

    PubMed Central

    Kuznetsov, Vyacheslav I.; Hengge, Alvan C.; Johnson, Sean J.

    2013-01-01

    The recently discovered 150-residue human VHZ (VH1 related protein, Z member) is one of the smallest protein tyrosine phosphatases (PTPs) known, and contains only the minimal structural elements common to all PTPs. We report a substrate screening analysis and a crystal structure of the VHZ complex with vanadate at 1.1 Å resolution, with a detailed structural comparison with other members of the protein tyrosine phosphatase family, including classical tyrosine-specific protein tyrosine phosphatases (PTPs) and dual specific phosphatases (DSPs). A screen with 360 phosphorylated peptides shows VHZ efficiently catalyzes the hydrolysis of phospho-tyrosine(pY)-containing peptides, but exhibits no activity toward phospho-serine (pS) or phospho-threonine (pT) peptides. The new structure reveals a deep and narrow active site more typical of the classical tyrosine specific PTPs. Despite the high structural and sequence similarities between VHZ and classical PTPs, its general acid IPD-loop is most likely conformationally rigid, in contrast to the flexible WPD counterpart of classical PTPs. VHZ also lacks substrate recognition domains and other domains typically found on classical PTPs. It is therefore proposed that VHZ is more properly classified as an atypical PTP rather than an atypical DSP, as has been suggested. PMID:23145819

  17. Co-expression of protein tyrosine kinases EGFR-2 and PDGFRβ with protein tyrosine phosphatase 1B in Pichia pastoris.

    PubMed

    Tu, Pham Ngoc; Wang, Yamin; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing

    2014-02-28

    The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Coexpression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and PDGFRβ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and PDGFRβ fusion proteins were purified by Ni(2+) affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and PDGFRβ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics. PMID:24248091

  18. Potential Role for Purple Acid Phosphatase in the Dephosphorylation of Wall Proteins in Tobacco Cells1[W

    PubMed Central

    Kaida, Rumi; Serada, Satoshi; Norioka, Naoko; Norioka, Shigemi; Neumetzler, Lutz; Pauly, Markus; Sampedro, Javier; Zarra, Ignacio; Hayashi, Takahisa; Kaneko, Takako S.

    2010-01-01

    It is not yet known whether dephosphorylation of proteins catalyzed by phosphatases occurs in the apoplastic space. In this study, we found that tobacco (Nicotiana tabacum) purple acid phosphatase could dephosphorylate the phosphoryl residues of three apoplastic proteins, two of which were identified as α-xylosidase and β-glucosidase. The dephosphorylation and phosphorylation of recombinant α-xylosidase resulted in a decrease and an increase in its activity, respectively, when xyloglucan heptasaccharide was used as a substrate. Attempted overexpression of the tobacco purple acid phosphatase NtPAP12 in tobacco cells not only decreased the activity levels of the glycosidases but also increased levels of xyloglucan oligosaccharides and cello-oligosaccharides in the apoplast during the exponential phase. We suggest that purple acid phosphatase controls the activity of α-xylosidase and β-glucosidase, which are responsible for the degradation of xyloglucan oligosaccharides and cello-oligosaccharides in the cell walls. PMID:20357138

  19. The Protein Phosphatases of Synechocystis sp. Strain PCC 6803: Open Reading Frames sll1033 and sll1387 Encode Enzymes That Exhibit both Protein-Serine and Protein-Tyrosine Phosphatase Activity In Vitro.

    SciTech Connect

    Li, Ruiliang; Potters, M B.; Shi, Liang; Kennelly, Peter J.

    2005-09-01

    The open reading frames (ORFs) encoding two potential protein-serine/threonine phosphatases from the cyanobacterium Synechocystis sp. strain PCC 6803 were cloned and their protein products expressed in Escherichia coli cells. The product of ORF sll1033, SynPPM3, is a homologue of the PPM family of protein-serine/threonine phosphatases found in all eukaryotes as well as many members of the Bacteria. Surprisingly, the recombinant protein phosphatase dephosphorylated phosphotyrosine- as well as phosphoserine-containing proteins in vitro. While kinetic analyses indicate that the enzyme was more efficient at dephosphorylating the latter, replacement of Asp(608) by asparagine enhanced activity toward a phosphotyrosine-containing protein fourfold. The product of ORF sll1387, SynPPP1, is the sole homolog of the PPP family of protein phosphatases encoded by the genome of Synechocystis sp. strain PCC 6803. Like many other bacterial PPPs, the enzyme dephosphorylated phosphoserine- and phosphotyrosine-containing proteins with comparable efficiencies. However, while previously described PPPs from prokaryotic organisms required the addition of exogenous metal ion cofactors, such as Mg(2+) or Mn(2+), for activity, recombinantly produced SynPPP1 displayed near-maximal activity in the absence of added metals. Inductively coupled plasma mass spectrometry indicated that recombinant SynPPP1 contained significant quantities, 0.32 to 0.44 mol/mole total, of Mg and Mn. In this respect, the cyanobacterial enzyme resembled eukaryotic members of the PPP family, which are metalloproteins. mRNA encoding SynPPP1 or SynPPM3 could be detected in cells grown under many, but not all, environmental conditions.

  20. Structure of thermotoga maritima stationary phase survival protein SurE : a novel acid phosphatase.

    SciTech Connect

    Zhang, R.-G; Skarina, T.; Katz, J. E.; Khachatryan, A; Vyas, S.; Arrowsmith, C. H.; Clarke, S.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Biosciences Division; Univ. of Toronto; Univ. of California; Clinical Genomics Centre /Proteomics, Univ. Health Network

    2001-11-01

    Background: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase {sigma} subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. Results: The structure of SurE from Thermotoga maritima was determined at 2.0 Angstroms. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. Conclusions: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.

  1. Phosphacan and Receptor Protein Tyrosine Phosphatase β Expression Mediates Deafferentation-Induced Synaptogenesis

    PubMed Central

    Harris, Janna L.; Reeves, Thomas M.; Phillips, Linda L.

    2009-01-01

    This study documents the spatial and temporal expression of three structurally related chondroitin sulfated proteoglycans (CSPGs) during synaptic regeneration induced by brain injury. Using the unilateral entorhinal cortex lesion model of adaptive synaptogenesis, we documented mRNA and protein profiles of phosphacan and its two splice variants, full length receptor protein tyrosine phosphatase β (RPTPβ) and the short transmembrane receptor form (sRPTPβ), at 2, 7, and 15 d postlesion. We report that whole hippocampal sRPTPβ protein and mRNA are persistently elevated over the first two weeks after UEC. As predicted, this transmembrane family member was localized adjacent to synaptic sites in the deafferented neuropil and showed increased distribution over that zone following lesion. By contrast, whole hippocampal phosphacan protein was not elevated with deafferentation, however, its mRNA was increased during the period of sprouting and synapse formation (7d). When the zone of synaptic reorganization was sampled using molecular layer/granule cell (ML/GCL) enriched dissections, we observed an increase in phosphacan protein at 7d, concurrent with the observed hippocampal mRNA elevation. Immunohistochemistry also showed a shift in phosphacan distribution from granule cell bodies to the deafferented ML at 2 and 7d postlesion. Phosphacan and sRPTPβ were not co-localized with glial fibrillary acid protein (GFAP), suggesting that reactive astrocytes were not a major source of either proteoglycan. While transcript for the developmentally prominent full length RPTPβ was also increased at 2 and 15d, its protein was not detected in our adult samples. These results indicate that phosphacan and RPTPβ splice variants participate in both the acute degenerative and long-term regenerative phases of reactive synaptogenesis. These results suggest that increase in the transmembrane sRPTPβ tyrosine phosphatase activity is critical to this plasticity, and that local elevation of

  2. Discovery and Optimization of Sulfonyl Acrylonitriles as Selective, Covalent Inhibitors of Protein Phosphatase Methylesterase-1

    PubMed Central

    Bachovchin, Daniel A.; Zuhl, Andrea M.; Speers, Anna E.; Wolfe, Monique R.; Weerapana, Eranthie; Brown, Steven J.; Rosen, Hugh; Cravatt, Benjamin F.

    2011-01-01

    The serine hydrolase protein phosphatase methylesterase-1 (PME-1) regulates the methylesterification state of protein phosphatase 2A (PP2A) and has been implicated in cancer and Alzheimer's disease. We recently reported a fluorescence polarization-activity-based protein profiling (fluopol-ABPP) high-throughput screen for PME-1 that uncovered a remarkably potent and selective class of aza-β-lactam (ABL) PME-1 inhibitors. Here, we describe a distinct set of sulfonyl acrylonitrile inhibitors that also emerged from this screen. The optimized compound, 28 (AMZ30), selectively inactivates PME-1 and reduces the demethylated form of PP2A in living cells. Considering that 28 is structurally unrelated to ABL inhibitors of PME-1, these agents, together, provide a valuable set of pharmacological probes to study the role of methylation in regulating PP2A function. We furthermore observed that several serine hydrolases were sensitive to analogs of 28, suggesting that more extensive structural exploration of the sulfonyl acrylonitrile chemotype may result in useful inhibitors for other members of this large enzyme class. PMID:21639134

  3. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme.

    PubMed

    Caselli, Anna; Paoli, Paolo; Santi, Alice; Mugnaioni, Camilla; Toti, Alessandra; Camici, Guido; Cirri, Paolo

    2016-10-01

    Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors. PMID:27421795

  4. Kinetic isotope effects in the characterization of catalysis by protein tyrosine phosphatases.

    PubMed

    Hengge, Alvan C

    2015-11-01

    Although thermodynamically favorable, the uncatalyzed hydrolysis of phosphate monoesters is extraordinarily slow, making phosphatases among the most catalytically efficient enzymes known. Protein-tyrosine phosphatases (PTPs) are ubiquitous in biology, and kinetic isotope effects were one of the key mechanistic tools used to discern molecular details of their catalytic mechanism and the transition state for phosphoryl transfer. Later, the unique level of detail KIEs provided led to deeper questions about the potential role of protein motions in PTP catalysis. The recent discovery that such motions are responsible for different catalytic rates between PTPs arose from questions originating from KIE data showing that the transition states and chemical mechanisms are identical, combined with structural data demonstrating superimposable active sites. KIEs also reveal perturbations to the transition state as mutations are made to residues directly involved in chemistry, and to residues that affect protein motions essential for catalysis. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. PMID:25840000

  5. HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin.

    PubMed

    Yu, Nancy; Kakunda, Michael; Pham, Victoria; Lill, Jennie R; Du, Pan; Wongchenko, Matthew; Yan, Yibing; Firestein, Ron; Huang, XiaoDong

    2015-04-01

    The Wnt/β-catenin pathway causes accumulation of β-catenin in the cytoplasm and its subsequent translocation into the nucleus to initiate the transcription of the target genes. Without Wnt stimulation, β-catenin forms a complex with axin (axis inhibitor), adenomatous polyposis coli (APC), casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK3β) and undergoes phosphorylation-dependent ubiquitination. Phosphatases, such as protein phosphatase 2A (PP2A), interestingly, also are components of this degradation complex; therefore, a balance must be reached between phosphorylation and dephosphorylation. How this balance is regulated is largely unknown. Here we show that a heat shock protein, HSP105, is a previously unidentified component of the β-catenin degradation complex. HSP105 is required for Wnt signaling, since depletion of HSP105 compromises β-catenin accumulation and target gene transcription upon Wnt stimulation. Mechanistically, HSP105 depletion disrupts the integration of PP2A into the β-catenin degradation complex, favoring the hyperphosphorylation and degradation of β-catenin. HSP105 is overexpressed in many types of tumors, correlating with increased nuclear β-catenin protein levels and Wnt target gene upregulation. Furthermore, overexpression of HSP105 is a prognostic biomarker that correlates with poor overall survival in breast cancer patients as well as melanoma patients participating in the BRIM2 clinical study. PMID:25645927

  6. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    SciTech Connect

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  7. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1.

    PubMed

    Bachovchin, Daniel A; Zuhl, Andrea M; Speers, Anna E; Wolfe, Monique R; Weerapana, Eranthie; Brown, Steven J; Rosen, Hugh; Cravatt, Benjamin F

    2011-07-28

    The serine hydrolase protein phosphatase methylesterase-1 (PME-1) regulates the methylesterification state of protein phosphatase 2A (PP2A) and has been implicated in cancer and Alzheimer's disease. We recently reported a fluorescence polarization-activity-based protein profiling (fluopol-ABPP) high-throughput screen for PME-1 that uncovered a remarkably potent and selective class of aza-β-lactam (ABL) PME-1 inhibitors. Here, we describe a distinct set of sulfonyl acrylonitrile inhibitors that also emerged from this screen. The optimized compound, 28 (AMZ30), selectively inactivates PME-1 and reduces the demethylated form of PP2A in living cells. Considering that 28 is structurally unrelated to ABL inhibitors of PME-1, these agents, together, provide a valuable set of pharmacological probes to study the role of methylation in regulating PP2A function. We furthermore observed that several serine hydrolases were sensitive to analogues of 28, suggesting that more extensive structural exploration of the sulfonyl acrylonitrile chemotype may result in useful inhibitors for other members of this large enzyme class. PMID:21639134

  8. PD-1 Increases PTEN Phosphatase Activity While Decreasing PTEN Protein Stability by Inhibiting Casein Kinase 2

    PubMed Central

    Patsoukis, Nikolaos; Li, Lequn; Sari, Duygu; Petkova, Victoria

    2013-01-01

    Programmed death 1 (PD-1) is a potent inhibitor of T cell responses. PD-1 abrogates activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism remains unclear. We determined that during T cell receptor (TCR)/CD3- and CD28-mediated stimulation, PTEN is phosphorylated by casein kinase 2 (CK2) in the Ser380-Thr382-Thr383 cluster within the C-terminal regulatory domain, which stabilizes PTEN, resulting in increased protein abundance but suppressed PTEN phosphatase activity. PD-1 inhibited the stabilizing phosphorylation of the Ser380-Thr382-Thr383 cluster within the C-terminal domain of PTEN, thereby resulting in ubiquitin-dependent degradation and diminished abundance of PTEN protein but increased PTEN phosphatase activity. These effects on PTEN were secondary to PD-1-mediated inhibition of CK2 and were recapitulated by pharmacologic inhibition of CK2 during TCR/CD3- and CD28-mediated stimulation without PD-1. Furthermore, PD-1-mediated diminished abundance of PTEN was reversed by inhibition of ubiquitin-dependent proteasomal degradation. Our results identify CK2 as a new target of PD-1 and reveal an unexpected mechanism by which PD-1 decreases PTEN protein expression while increasing PTEN activity, thereby inhibiting the PI3K/Akt signaling axis. PMID:23732914

  9. Structural and Mechanistic Characterization of L-Histidinol Phosphate Phosphatase from the PHP Family of Proteins

    PubMed Central

    Ghodge, Swapnil V.; Fedorov, Alexander A.; Fedorov, Elena V.; Hillerich, Brandan; Seidel, Ronald; Almo, Steven C.; Raushel, Frank M.

    2013-01-01

    l-Histidinol phosphate phosphatase (HPP) catalyzes the hydrolysis of L-histidinol phosphate to L-histidinol and inorganic phosphate, the penultimate step in the biosynthesis of L-histidine. HPP from the polymerase and histidinol phosphatase (PHP) family of proteins possesses a trinuclear active site and a distorted (β/α)7-barrel protein fold. This group of enzymes is closely related to the amidohydrolase superfamily of enzymes. The mechanism of phosphomonoester bond hydrolysis by the PHP family of HPP enzymes was addressed. Recombinant HPP from Lactococcus lactis subsp. lactis that was expressed in Escherichia coli contained a mixture of iron and zinc in the active site and had a catalytic efficiency of ~103 M−1 s−1. Expression of the protein under iron-free conditions resulted in the production of enzyme with a two orders of magnitude improvement in catalytic efficiency and a mixture of zinc and manganese in the active site. Solvent isotope and viscosity effects demonstrated that proton transfer steps and product dissociation steps are not rate-limiting. X-ray structures of HPP were determined with sulfate, L-histidinol/phosphate, and a complex of L-histidinol and arsenate bound in the active site. These crystal structures and the catalytic properties of variants were used to identify the structural elements required for catalysis and substrate recognition by the HPP family of enzymes within the amidohydrolase superfamily. PMID:23327428

  10. Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A

    NASA Technical Reports Server (NTRS)

    Jackson, K.; Soll, D.; Evans, M. L. (Principal Investigator)

    1999-01-01

    The heterotrimeric protein phosphatase 2A (PP2A) is a component of multiple signaling pathways in eukaryotes. Disruption of PP2A activity in Arabidopsis is known to alter auxin transport and growth response pathways. We demonstrated that the regulatory subunit A of an Arabidopsis PP2A interacts with a novel cyclophilin, ROC7. The gene for this cyclophilin encodes a protein that contains a unique 30-amino acid extension at the N-terminus, which distinguishes the gene product from all previously identified Arabidopsis cyclophilins. Altered forms of ROC7 cyclophilin with mutations in the conserved DENFKL domain did not bind to PP2A. Unlike protein phosphatase 2B, PP2A activity in Arabidopsis extracts was not affected by the presence of the cyclophilin-binding molecule cyclosporin. The ROC7 transcript was expressed to high levels in all tissues tested. Expression of an ROC7 antisense transcript gave rise to increased root growth. These results indicate that cyclophilin may have a role in regulating PP2A activity, by a mechanism that differs from that employed for cyclophilin regulation of PP2B.

  11. HSP105 Recruits Protein Phosphatase 2A To Dephosphorylate β-Catenin

    PubMed Central

    Yu, Nancy; Kakunda, Michael; Pham, Victoria; Lill, Jennie R.; Du, Pan; Wongchenko, Matthew; Yan, Yibing; Firestein, Ron

    2015-01-01

    The Wnt/β-catenin pathway causes accumulation of β-catenin in the cytoplasm and its subsequent translocation into the nucleus to initiate the transcription of the target genes. Without Wnt stimulation, β-catenin forms a complex with axin (axis inhibitor), adenomatous polyposis coli (APC), casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK3β) and undergoes phosphorylation-dependent ubiquitination. Phosphatases, such as protein phosphatase 2A (PP2A), interestingly, also are components of this degradation complex; therefore, a balance must be reached between phosphorylation and dephosphorylation. How this balance is regulated is largely unknown. Here we show that a heat shock protein, HSP105, is a previously unidentified component of the β-catenin degradation complex. HSP105 is required for Wnt signaling, since depletion of HSP105 compromises β-catenin accumulation and target gene transcription upon Wnt stimulation. Mechanistically, HSP105 depletion disrupts the integration of PP2A into the β-catenin degradation complex, favoring the hyperphosphorylation and degradation of β-catenin. HSP105 is overexpressed in many types of tumors, correlating with increased nuclear β-catenin protein levels and Wnt target gene upregulation. Furthermore, overexpression of HSP105 is a prognostic biomarker that correlates with poor overall survival in breast cancer patients as well as melanoma patients participating in the BRIM2 clinical study. PMID:25645927

  12. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast.

    PubMed Central

    Jiang, Y; Broach, J R

    1999-01-01

    Tor proteins, homologous to DNA-dependent protein kinases, participate in a signal transduction pathway in yeast that regulates protein synthesis and cell wall expansion in response to nutrient availability. The anti-inflammatory drug rapamycin inhibits yeast cell growth by inhibiting Tor protein signaling. This leads to diminished association of a protein, Tap42, with two different protein phosphatase catalytic subunits; one encoded redundantly by PPH21 and PPH22, and one encoded by SIT4. We show that inactivation of either Cdc55 or Tpd3, which regulate Pph21/22 activity, results in rapamycin resistance and that this resistance correlates with an increased association of Tap42 with Pph21/22. Furthermore, we show Tor-dependent phosphorylation of Tap42 both in vivo and in vitro and that this phosphorylation is rapamycin sensitive. Inactivation of Cdc55 or Tpd3 enhances in vivo phosphorylation of Tap42. We conclude that Tor phosphorylates Tap42 and that phosphorylated Tap42 effectively competes with Cdc55/Tpd3 for binding to the phosphatase 2A catalytic subunit. Furthermore, Cdc55 and Tpd3 promote dephosphorylation of Tap42. Thus, Tor stimulates growth-promoting association of Tap42 with Pph21/22 and Sit4, while Cdc55 and Tpd3 inhibit this association both by direct competition and by dephosphorylation of Tap42. These results establish Tap42 as a target of Tor and add further refinement to the Tor signaling pathway. PMID:10329624

  13. TIPRL Inhibits Protein Phosphatase 4 Activity and Promotes H2AX Phosphorylation in the DNA Damage Response

    PubMed Central

    Rosales, Kimberly Romero; Reid, Michael A.; Yang, Ying; Tran, Thai Q.; Wang, Wen-I; Lowman, Xazmin; Pan, Min; Kong, Mei

    2015-01-01

    Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response. PMID:26717153

  14. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau.

    PubMed

    Liu, Shi-Jie; Zheng, Ping; Wright, David K; Dezsi, Gabi; Braine, Emma; Nguyen, Thanh; Corcoran, Niall M; Johnston, Leigh A; Hovens, Christopher M; Mayo, Jamie N; Hudson, Matthew; Shultz, Sandy R; Jones, Nigel C; O'Brien, Terence J

    2016-07-01

    There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in neurodegenerative diseases commonly associated with epilepsy, such as Alzheimer's disease and traumatic brain injury. Here we used the protein phosphatase 2A activator sodium selenate to investigate the role of protein phosphatase 2A in three different rat models of epileptogenesis: amygdala kindling, post-kainic acid status epilepticus, and post-traumatic epilepsy. Protein phosphatase 2A activity was decreased, and tau phosphorylation increased, in epileptogenic brain regions in all three models. Continuous sodium selenate treatment mitigated epileptogenesis and prevented the biochemical abnormalities, effects which persisted after drug withdrawal. Our studies indicate that limbic epileptogenesis is associated with downregulation of protein phosphatase 2A and the hyperphosphorylation of tau, and that targeting this mechanism with sodium selenate is a potential anti-epileptogenic therapy. PMID:27289302

  15. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function.

    PubMed

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F; Mori Sequeiros García, M Mercedes; Maloberti, Paula M; Orlando, Ulises D; Mele, Pablo G; Poderoso, Cecilia; Podesta, Ernesto J

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed. PMID:27375556

  16. Identification and Biochemical Characterization of Protein Phosphatase 5 from the Cantharidin-Producing Blister Beetle, Epicauta chinensis

    PubMed Central

    Chen, Xi’en; Lü, Shumin; Zhang, Yalin

    2013-01-01

    Protein phosphatase 5 (PP5) is a unique member of serine/threonine phosphatases which has been recognized in regulation of diverse cellular processes. A cDNA fragment encoding PP5 (EcPP5) was cloned and characterized from the cantharidin-producing blister beetle, E. chinensis. EcPP5 contains an open reading frame of 1500 bp that encodes a protein of 56.89 kDa. The deduced amino acid sequence shares 88% and 68% identities to the PP5 of Tribolium castaneum and humans, respectively. Analysis of the primary sequence shows that EcPP5 has three TPR (tetratricopeptide repeat) motifs at its N-terminal region and contains a highly conserved C-terminal catalytic domain. RT-PCR reveals that EcPP5 is expressed in all developmental stages and in different tissues. The recombinant EcPP5 (rEcPP5) was produced in Escherichia coli and purified to homogeneity. The purified protein exhibited phosphatase activity towards pNPP (p-nitrophenyl phosphate) and phosphopeptides, and its activity can be enhanced by arachidonic acid. In vitro inhibition study revealed that protein phosphatase inhibitors, okadaic acid, cantharidin, norcantharidin and endothall, inhibited its activity. Further, protein phosphatase activity of total soluble protein extract from E. chinensis adults could be impeded by these inhibitors suggesting there might be some mechanism to protect this beetle from being damaged by its self-produced cantharidin. PMID:24351830

  17. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  18. Protein phosphatase 2C is involved in the cAMP-dependent ciliary control in Paramecium caudatum.

    PubMed

    Noguchi, Munenori; Sasaki, Jun-Ya; Kamachi, Hiroyuki; Inoue, Hiroshi

    2003-02-01

    Forward swimming of the Triton-extracted model of Paramecium is stimulated by cAMP. Backward swimming of the model induced by Ca(2+) is depressed by cAMP. Cyclic AMP and Ca(2+) act antagonistically in setting the direction of the ciliary beat. Some ciliary axonemal proteins from Paramecium caudatum are phosphorylated in a cAMP-dependent manner. In the presence of cAMP, axonemal 29- and 65-kDa polypeptides were phosphorylated by endogenous A-kinase in vitro. These phosphoproteins, however, were not dephosphorylated after in vitro phosphorylation, presumably because of the low endogenous phosphoprotein phosphatase activity associated with isolated axonemes. We purified the protein phosphatase that specifically dephosphorylated the 29- and 65-kDa phosphoproteins from Paramecium caudatum. The molecular weight of the protein phosphatase was 33 kDa. The protein phosphatase had common characteristics as protein phosphatase 2C (PP2C). The characteristics of the protein phosphatase were the same as those of the PP2C from Paramecium tetraurelia (PtPP2C) [Grothe et al., 1998: J. Biol. Chem. 273:19167-19172]. We concluded that the phosphoprotein phosphatase is the PP2C from Paramecium caudatum (PcPP2C). The PcPP2C markedly accelerated the backward swimming of the Triton-extracted model in the presence of Ca(2+). On the other hand, the PcPP2C slightly depressed the forward swimming speed. This indicates that the PP2C plays a role in the cAMP-dependent regulation of ciliary movement in Paramecium caudatum through dephosphorylation of 29- and/or 65-kDa regulatory phosphoproteins by terminating the action of cAMP. PMID:12529856

  19. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast

    PubMed Central

    Castermans, Dries; Somers, Ils; Kriel, Johan; Louwet, Wendy; Wera, Stefaan; Versele, Matthias; Janssens, Veerle; Thevelein, Johan M

    2012-01-01

    The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein

  20. Dual-Specificity Phosphatase 4 Regulates STAT5 Protein Stability and Helper T Cell Polarization*

    PubMed Central

    Liao, Fang-Hsuean; Chan, Yi-Chiao; Huang, Ching-Yu

    2015-01-01

    Immune responses are critically regulated by the functions of CD4 helper T cells. Based on their secreted cytokines, helper T cells are further categorized into different subsets like Treg or Th17 cells, which suppress or promote inflammatory responses, respectively. Signals from IL-2 activate the transcription factor STAT5 to promote Treg but suppress Th17 cell differentiation. Our previous results found that the deficiency of a dual-specificity phosphatase, DUSP4, induced STAT5 hyper-activation, enhanced IL-2 signaling, and increased T cell proliferation. In this report, we examined the effects of DUSP4 deficiency on helper T cell differentiation and STAT5 regulation. Our in vivo data showed that DUSP4 mice were more resistant to the induction of autoimmune encephalitis, while in vitro differentiations revealed enhanced iTreg and reduced Th17 polarization in DUSP4-deficient T cells. To study the cause of this altered helper T cell polarization, we performed luciferase reporter assays and confirmed that, as predicted by our previous report, DUSP4 over-expression suppressed the transcription factor activity of STAT5. Surprisingly, we also found that DUSP4-deficient T but not B cells exhibited elevated STAT5 protein levels, and over-expressed DUSP4 destabilized STAT5 in vitro; moreover, this destabilization required the phosphatase activity of DUSP4, and was insensitive to MG132 treatment. Finally, domain-mapping results showed that both the substrate-interacting and the phosphatase domains of DUSP4 were required for its optimal interaction with STAT5, while the coiled-coil domain of STAT5 appeared to hinder this interaction. Our data thus provide the first genetic evidence that DUSP4 is important for helper T cell development. In addition, they also help uncover the novel, DUSP4-mediated regulation of STAT5 protein stability. PMID:26710253

  1. Protein Phosphatase 2A as a Therapeutic Target in Acute Myeloid Leukemia

    PubMed Central

    Arriazu, Elena; Pippa, Raffaella; Odero, María D.

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous malignant disorder of hematopoietic progenitor cells in which several genetic and epigenetic aberrations have been described. Despite progressive advances in our understanding of the molecular biology of this disease, the outcome for most patients is poor. It is, therefore, necessary to develop more effective treatment strategies. Genetic aberrations affecting kinases have been widely studied in AML; however, the role of phosphatases remains underexplored. Inactivation of the tumor-suppressor protein phosphatase 2A (PP2A) is frequent in AML patients, making it a promising target for therapy. There are several PP2A inactivating mechanisms reported in this disease. Deregulation or specific post-translational modifications of PP2A subunits have been identified as a cause of PP2A malfunction, which lead to deregulation of proliferation or apoptosis pathways, depending on the subunit affected. Likewise, overexpression of either SET or cancerous inhibitor of protein phosphatase 2A, endogenous inhibitors of PP2A, is a recurrent event in AML that impairs PP2A activity, contributing to leukemogenesis progression. Interestingly, the anticancer activity of several PP2A-activating drugs (PADs) depends on interaction/sequestration of SET. Preclinical studies show that pharmacological restoration of PP2A activity by PADs effectively antagonizes leukemogenesis, and that these drugs have synergistic cytotoxic effects with conventional chemotherapy and kinase inhibitors, opening new possibilities for personalized treatment in AML patients, especially in cases with SET-dependent inactivation of PP2A. Here, we review the role of PP2A as a druggable tumor suppressor in AML. PMID:27092295

  2. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability

    PubMed Central

    Houge, Gunnar; Haesen, Dorien; Vissers, Lisenka E.L.M.; Mehta, Sarju; Parker, Michael J.; Wright, Michael; Vogt, Julie; McKee, Shane; Tolmie, John L.; Cordeiro, Nuno; Kleefstra, Tjitske; Willemsen, Marjolein H.; Reijnders, Margot R.F.; Berland, Siren; Hayman, Eli; Lahat, Eli; Brilstra, Eva H.; van Gassen, Koen L.I.; Zonneveld-Huijssoon, Evelien; de Bie, Charlotte I.; Hoischen, Alexander; Eichler, Evan E.; Holdhus, Rita; Steen, Vidar M.; Døskeland, Stein Ove; Hurles, Matthew E.; FitzPatrick, David R.; Janssens, Veerle

    2015-01-01

    Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding–deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance. PMID:26168268

  3. Human cytomegalovirus carries serine/threonine protein phosphatases PP1 and a host-cell derived PP2A.

    PubMed Central

    Michelson, S; Turowski, P; Picard, L; Goris, J; Landini, M P; Topilko, A; Hemmings, B; Bessia, C; Garcia, A; Virelizier, J L

    1996-01-01

    Human cytomegalovirus (CMV), a herpesvirus, is an important cause of morbidity and mortality in immunocompromised patients. When studying hyper-immediate-early events after contact between CMV virions and the cell membrane, we observed a hypophosphorylation of cellular proteins within 10 min. This can be explained in part by our finding that purified CMV contains serine/threonine protein phosphatase activities. Biochemical analyses indicate that this protein phosphatase activity has all characteristics of type 1 and 2A protein phosphatases (PP1 and PP2A). Specifically, PP1 accounts for approximately 30% and PP2A accounts for the remaining 70% of the phosphorylase phosphatase activity found. CMV produced in astrocytoma cells stably expressing an amino-terminally tagged PP2A catalytic subunit contained tagged enzyme, thus demonstrating the cellular origin of CMV-associated PP2A. PP2A is specifically found inside the virus, associated with the nucleocapsid fraction. Western blot (immunoblot) analysis of purified virus revealed the presence of the catalytic subunits of PP2A and PP1. Furthermore, the catalytic subunit of PP2A appears to be complexed to the regulatory subunits PR65 and PR55, which is also the most abundant configuration of this enzyme found in the host cells. Incubation of virus with okadaic acid before contact of CMV with cells prevented hypophosphorylation of cellular proteins, thus demonstrating the role of CMV-associated phosphatases in this phenomenon. CMV can thus transport an active enzyme from one cell to another. PMID:8627658

  4. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  5. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B.

    PubMed

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-01-01

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity. PMID:26865097

  6. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.

    PubMed Central

    Garbers, C; DeLong, A; Deruére, J; Bernasconi, P; Söll, D

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis. Images PMID:8641277

  7. A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation.

    PubMed

    Sokolov, Lubomir N; Dominguez-Solis, Jose R; Allary, Anne-Laure; Buchanan, Bob B; Luan, Sheng

    2006-06-20

    Starch is the ultimate storage molecule formed in the photosynthetic fixation of carbon dioxide by chloroplasts. Starch accumulates during the day and is degraded at night to intermediates that are exported to heterotrophic organs. The mechanism by which diurnal cycles control the transitory biosynthesis and degradation of chloroplast starch has long remained a mystery. We now report evidence that a dual-specificity protein phosphatase, DSP4, binds to starch granules during the day and dissociates at night. Disruption of the DSP4 gene resulted in a dramatic increase in the level of starch in mutant Arabidopsis plants. Moreover, although composition was apparently unchanged, the morphology of the starch granule was significantly altered compared to the wild type counterpart. Two regulatory factors linked to light (i.e., pH and redox status) changed both the activity and the starch-binding capacity of DSP4. The results further revealed that DSP4 represents a major fraction of granule-bound phosphatase activity during the day but not at night. Our study suggests that DSP4 acts as a bridge between light-induced redox changes and protein phosphorylation in the regulation of starch accumulation. PMID:16772378

  8. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B

    PubMed Central

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-01-01

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity. PMID:26865097

  9. Alterations in the Interactome of Serine/Threonine Protein Phosphatase Type-1 in Atrial Fibrillation Patients

    PubMed Central

    Chiang, David Y.; Lebesgue, Nicolas; Beavers, David L.; Alsina, Katherina M.; A. Damen, J. Mirjam; Voigt, Niels; Dobrev, Dobromir; Wehrens, Xander H.T.; Scholten, Arjen

    2015-01-01

    BACKGROUND Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, yet current pharmacological treatments are limited. Serine/threonine protein phosphatase type-1 (PP1), a major phosphatase in the heart, consists of a catalytic subunit (PP1c) and a large set of regulatory (R)-subunits that confer localization and substrate specificity to the holoenzyme. Previous studies suggest that PP1 is dysregulated in AF, but the mechanisms are unknown. OBJECTIVES The purpose of this study was to test the hypothesis that PP1 is dysregulated in paroxysmal atrial fibrillation (PAF) at the level of its R-subunits. METHODS Cardiac lysates were coimmunoprecipitated with anti-PP1c antibody followed by mass spectrometry–based, quantitative profiling of associated R-subunits. Subsequently, label-free quantification (LFQ) was used to evaluate altered R-subunit–PP1c interactions in PAF patients. R-subunits with altered binding to PP1c in PAF were further studied using bioinformatics, Western blotting (WB), immunocytochemistry, and coimmunoprecipitation. RESULTS A total of 135 and 78 putative PP1c interactors were captured from mouse and human cardiac lysates, respectively, including many previously unreported interactors with conserved PP1c docking motifs. Increases in binding were found between PP1c and PPP1R7, cold-shock domain protein A (CSDA), and phosphodiesterase type-5A (PDE5A) in PAF patients, with CSDA and PDE5A being novel interactors validated by bioinformatics, immunocytochemistry, and coimmunoprecipitation. WB confirmed that these increases in binding cannot be ascribed to their changes in global protein expression alone. CONCLUSIONS Subcellular heterogeneity in PP1 activity and downstream protein phosphorylation in AF may be attributed to alterations in PP1c–R-subunit interactions, which impair PP1 targeting to proteins involved in electrical and Ca2+ remodeling. This represents a novel concept in AF pathogenesis and may provide more specific drug

  10. A RP-UFLC Assay for Protein Tyrosine Phosphatases: Focus on Protein Tyrosine Phosphatase Non-Receptor Type 2 (PTPN2).

    PubMed

    Duval, Romain; Bui, Linh-Chi; Berthelet, Jérémy; Dairou, Julien; Mathieu, Cécile; Guidez, Fabien; Dupret, Jean-Marie; Cools, Jan; Chomienne, Christine; Rodrigues-Lima, Fernando

    2015-01-01

    Protein tyrosine phosphatases (PTPs) are involved in numerous signaling pathways and dysfunctions of certain of these enzymes have been linked to several human diseases including cancer and autoimmune diseases. PTPN2 is a PTP mainly expressed in hematopoietic cells and involved in growth factor and JAK/STAT signaling pathways. Loss of function analyses in patients with mutation/deletion of the PTPN2 gene and knock-out mouse models indicate that PTPN2 acts as a tumor suppressor in T-cell malignancies and as a regulator of inflammation and immunity. The use of sensitive and quantitative assays is of prime importance to better characterize the biochemical properties of PTPN2 and its biological roles. We report a highly sensitive non-radioactive assay that allows the measurement of the activity of purified PTPN2 and of endogenous PTPN2 immunoprecipitated on agarose beads. The assay relies on separation and quantitation by reverse-phase ultra fast liquid chromatography (RP-UFLC) of a fluorescein-labeled phosphotyrosine peptide substrate derived from the sequence of STAT1. The applicability and reliability of this approach is supported by kinetic and mechanistic studies using PTP inhibitors. More broadly, our PTPN2 assay provides the basis for the design of flexible methods for the measurement of other PTPs. PMID:26040922

  11. Monitoring protein phosphatase 1 isoform levels as a marker for cellular stress.

    PubMed

    Amador, Fátima Camões; Henriques, Ana Gabriela; da Cruz E Silva, Odete A B; da Cruz E Silva, Edgar F

    2004-01-01

    Reversible protein phosphorylation is a central mechanism regulating many biological functions, and abnormal protein phosphorylation can have a devastating impact on cellular control mechanisms, including a contributing role in neurodegenerative processes. Hence, many promising novel drug development strategies involve targeting protein phosphorylation systems. In this study, we demonstrate that various cellular stresses relevant to neurodegeneration can specifically affect the protein expression levels of protein phosphatase 1 (PP1). PP1 levels were altered upon exposure of PC12 and COS-1 cells to aluminium, Abeta peptides, sodium azide, and even heat shock. Particularly interesting, given PP1's involvement in aging and neurodegeneration, was the consistent decrease in PP1gamma(1) levels in response to stress agents. In fact, alterations in the expression levels of PP1 appear to correspond to an early response of stress induction, that is, before alterations in heat shock proteins can be detected. Our data suggest that monitoring PP1 isoform expression could constitute a useful diagnostic tool for cellular stress, possibly even neurodegeneration. Additionally, our results strengthen the rationale for signal transduction therapeutics and indicate that altering the specific activity of PP1 either directly or by targeting its regulatory proteins may be a useful therapeutic development strategy for the future. PMID:15113600

  12. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  13. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities.

    PubMed

    Hendriks, Wiljan J A J; Pulido, Rafael

    2013-10-01

    Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man. PMID:23707412

  14. Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B.

    PubMed

    Li, Xun; Köhn, Maja

    2016-08-01

    Phosphotyrosine peptides are useful starting points for inhibitor design and for the search for protein tyrosine phosphatase (PTP) phosphoprotein substrates. To identify novel phosphopeptide substrates of PTP1B, we developed a computational prediction protocol based on a virtual library of protein sequences with known phosphotyrosine sites. To these we applied sequence-based methods, biologically meaningful filters and molecular docking. Five peptides were selected for biochemical testing of their potential as PTP1B substrates. All five peptides were equally good substrates for PTP1B compared to a known peptide substrate whereas appropriate control peptides were not recognized, showing that our protocol can be used to identify novel peptide substrates of PTP1B. PMID:27025565

  15. Conserved Residues in the N Terminus of Lipin-1 Are Required for Binding to Protein Phosphatase-1c, Nuclear Translocation, and Phosphatidate Phosphatase Activity*

    PubMed Central

    Kok, Bernard P. C.; Skene-Arnold, Tamara D.; Ling, Ji; Benesch, Matthew G. K.; Dewald, Jay; Harris, Thurl E.; Holmes, Charles F. B.; Brindley, David N.

    2014-01-01

    Lipin-1 is a phosphatidate phosphatase in glycerolipid biosynthesis and signal transduction. It also serves as a transcriptional co-regulator to control lipid metabolism and adipogenesis. These functions are controlled partly by its subcellular distribution. Hyperphosphorylated lipin-1 remains sequestered in the cytosol, whereas hypophosphorylated lipin-1 translocates to the endoplasmic reticulum and nucleus. The serine/threonine protein phosphatase-1 catalytic subunit (PP-1c) is a major protein dephosphorylation enzyme. Its activity is controlled by interactions with different regulatory proteins, many of which contain conserved RVXF binding motifs. We found that lipin-1 binds to PP-1cγ through a similar HVRF binding motif. This interaction depends on Mg2+ or Mn2+ and is competitively inhibited by (R/H)VXF-containing peptides. Mutating the HVRF motif in the highly conserved N terminus of lipin-1 greatly decreases PP-1cγ interaction. Moreover, mutations of other residues in the N terminus of lipin-1 also modulate PP-1cγ binding. PP-1cγ binds poorly to a phosphomimetic mutant of lipin-1 and binds well to the non-phosphorylatable lipin-1 mutant. This indicates that lipin-1 is dephosphorylated before PP-1cγ binds to its HVRF motif. Importantly, mutating the HVRF motif also abrogates the nuclear translocation and phosphatidate phosphatase activity of lipin-1. In conclusion, we provide novel evidence of the importance of the lipin-1 N-terminal domain for its catalytic activity, nuclear localization, and binding to PP-1cγ. PMID:24558042

  16. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition.

    PubMed

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A; Lombroso, Paul J; Azkue, Jon J; Pérez-Navarro, Esther

    2016-02-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception. PMID:26270590

  17. Networks of protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse.

    PubMed

    Mucic, Goran; Sase, Sunetra; Stork, Oliver; Lubec, Gert; Li, Lin

    2015-03-01

    Although protein kinases and phosphatases have been reported to be involved in fear memory, information about these signalling molecules in the individual phases of contextual fear conditioning (cFC) is limited. C57BL/6J mice were tested in cFC, sacrificed and hippocampi were used for screening of approximately 800 protein kinases and phosphatases by protein microarrays with subsequent Western blot confirmation of threefold higher or lower hippocampal levels as compared to foot shock controls. Immunoblotting of the protein kinases and phosphatases screened out was carried out by Western blotting. A network of protein kinases and phosphatases was generated (STRING 9.1). Animals learned the task in the paradigm and protein kinase and phosphatase levels were determined in the individual phases acquisition, consolidation and retrieval and compared to foot shock controls. Protein kinases discoidin containing receptor 2 (DDR2), mitogen activated protein kinase kinase kinase 7 (TAK1), protein phosphatases dual specificity protein phosphatase (PTEN) and protein phosphatase 2a (PP2A) were modulated in the individual phases of cFC. Phosphatidyl-inositol-3,4,5-triphosphate 3-phosphatase and phosphatidylinositol-3 kinase (PI3K) that is interacting with PTEN were modulated as well. Freezing time was correlating with PP2A levels in the retrieval phase of cFC. The abovementioned protein kinases, phosphatases and inositol-signalling enzymes were not reported so far in cFC and the results are relevant for interpretation of previous and design of future studies in cFC or fear memory. Protein phosphatase PP2A was, however, the only signalling compound tested that was directly linked to retrieval in the cFC. PMID:25461266

  18. Ahnak protein activates protein kinase C (PKC) through dissociation of the PKC-protein phosphatase 2A complex.

    PubMed

    Lee, In Hye; Lim, Hee Jung; Yoon, Suhyeon; Seong, Je Kyung; Bae, Duk Soo; Rhee, Sue Goo; Bae, Yun Soo

    2008-03-01

    We have previously reported that central repeated units (CRUs) of Ahnak act as a scaffolding protein networking phospholipase Cgamma and protein kinase C (PKC). Here, we demonstrate that an Ahnak derivative consisting of four central repeated units binds and activates PKC-alpha in a phosphatidylserine/1,2-dioleoyl-sn-glycerol-independent manner. Moreover, NIH3T3 cells expressing the 4 CRUs of Ahnak showed enhanced c-Raf, MEK, and Erk phosphorylation in response to phorbol 12-myristate 13-acetate (PMA) compared with parental cells. To evaluate the effect of loss-of-function of Ahnak in cell signaling, we investigated PKC activation and Raf phosphorylation in embryonic fibroblast cells (MEFs) of the Ahnak knock-out (Ahnak(-/-)) mouse. Membrane translocation of PKC-alpha and phosphorylation of Raf in response to PMA or platelet-derived growth factor were decreased in Ahnak null MEF cells compared with wild type MEFs. Several lines of evidence suggest that PKC-alpha activity is regulated through association with protein phosphatase 2A (PP2A). A co-immunoprecipitation assay indicated that the association of PKC-alpha with PP2A was disrupted in NIH3T3 cells expressing 4 CRUs of Ahnak in response to PMA. Consistently, Ahnak null MEF cells stimulated by PMA showed enhanced PKC-PP2A complex formation, and add-back expression of Ahnak into Ahnak null MEF cells abolished the PKC-PP2A complex formation in response to PMA. These data indicate that Ahnak potentiates PKC activation through inhibiting the interaction of PKC with PP2A. PMID:18174170

  19. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    PubMed

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone. PMID:26373709

  20. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    SciTech Connect

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  1. Protein Tyrosine Phosphatase α in the Dorsomedial Striatum Promotes Excessive Ethanol-Drinking Behaviors

    PubMed Central

    Ben Hamida, Sami; Darcq, Emmanuel; Wang, Jun; Wu, Su; Phamluong, Khanhky; Kharazia, Viktor

    2013-01-01

    We previously found that excessive ethanol drinking activates Fyn in the dorsomedial striatum (DMS) (Wang et al., 2010; Gibb et al., 2011). Ethanol-mediated Fyn activation in the DMS leads to the phosphorylation of the GluN2B subunit of the NMDA receptor, to the enhancement of the channel's activity, and to the development and/or maintenance of ethanol drinking behaviors (Wang et al., 2007, 2010). Protein tyrosine phosphatase α (PTPα) is essential for Fyn kinase activation (Bhandari et al., 1998), and we showed that ethanol-mediated Fyn activation is facilitated by the recruitment of PTPα to synaptic membranes, the compartment where Fyn resides (Gibb et al., 2011). Here we tested the hypothesis that PTPα in the DMS is part of the Fyn/GluN2B pathway and is thus a major contributor to the neuroadaptations underlying excessive ethanol intake behaviors. We found that RNA interference (RNAi)-mediated PTPα knockdown in the DMS reduces excessive ethanol intake and preference in rodents. Importantly, no alterations in water, saccharine/sucrose, or quinine intake were observed. Furthermore, downregulation of PTPα in the DMS of mice significantly reduces ethanol-mediated Fyn activation, GluN2B phosphorylation, and ethanol withdrawal-induced long-term facilitation of NMDAR activity without altering the intrinsic features of DMS neurons. Together, these results position PTPα upstream of Fyn within the DMS and demonstrate the important contribution of the phosphatase to the maladaptive synaptic changes that lead to excessive ethanol intake. PMID:24005290

  2. An Affinity-Based Fluorescence Polarization Assay for Protein Tyrosine Phosphatases

    PubMed Central

    Zhang, Sheng; Chen, Lan; Kumar, Sanjai; Wu, Li; Lawrence, David S.; Zhang, Zhong-Yin

    2007-01-01

    Protein tyrosine phosphatases (PTPs) are important signaling enzymes that control such fundamental processes as proliferation, differentiation, survival/apoptosis, as well as adhesion and motility. Potent and selective PTP inhibitors serve not only as powerful research tools, but also as potential therapeutics against a variety illness including cancer and diabetes. PTP activity-based assays are widely used in high throughput screening (HTS) campaigns for PTP inhibitor discovery. These assays suffer from a major weakness, in that the reactivity of the active site Cys can cause serious problems as highly reactive oxidizing and alkylating agents may surface as hits. We describe the development of a fluorescence polarization (FP)-based displacement assay that makes the use of an active site Cys to Ser mutant PTP (e.g., PTP1B/C215S) that retains the wild type binding affinity. The potency of library compounds is assessed by their ability to compete with the fluorescently labeled active site ligand for binding to the Cys to Ser PTP mutant. Finally, the substitution of the active site Cys by a Ser renders the mutant PTP insensitive to oxidation and alkylation and thus will likely eliminate “false” positives due to modification of the active site Cys that destroy the phosphatase activity. PMID:17532513

  3. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling

    PubMed Central

    Tsai, Wan-Chen; Chen, Chien-Lin; Chen, Hong-Chen

    2015-01-01

    Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells. PMID:26204488

  4. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking

    PubMed Central

    Hellmuth, Klaus; Grosskopf, Stefanie; Lum, Ching Tung; Würtele, Martin; Röder, Nadine; von Kries, Jens Peter; Rosario, Marta; Rademann, Jörg; Birchmeier, Walter

    2008-01-01

    The protein tyrosine phosphatase Shp2 is a positive regulator of growth factor signaling. Gain-of-function mutations in several types of leukemia define Shp2 as a bona fide oncogene. We performed a high-throughput in silico screen for small-molecular-weight compounds that bind the catalytic site of Shp2. We have identified the phenylhydrazonopyrazolone sulfonate PHPS1 as a potent and cell-permeable inhibitor, which is specific for Shp2 over the closely related tyrosine phosphatases Shp1 and PTP1B. PHPS1 inhibits Shp2-dependent cellular events such as hepatocyte growth factor/scatter factor (HGF/SF)-induced epithelial cell scattering and branching morphogenesis. PHPS1 also blocks Shp2-dependent downstream signaling, namely HGF/SF-induced sustained phosphorylation of the Erk1/2 MAP kinases and dephosphorylation of paxillin. Furthermore, PHPS1 efficiently inhibits activation of Erk1/2 by the leukemia-associated Shp2 mutant, Shp2-E76K, and blocks the anchorage-independent growth of a variety of human tumor cell lines. The PHPS compound class is therefore suitable for further development of therapeutics for the treatment of Shp2-dependent diseases. PMID:18480264

  5. Protein Tyrosine Phosphatase PTPRS Is an Inhibitory Receptor on Human and Murine Plasmacytoid Dendritic Cells.

    PubMed

    Bunin, Anna; Sisirak, Vanja; Ghosh, Hiyaa S; Grajkowska, Lucja T; Hou, Z Esther; Miron, Michelle; Yang, Cliff; Ceribelli, Michele; Uetani, Noriko; Chaperot, Laurence; Plumas, Joel; Hendriks, Wiljan; Tremblay, Michel L; Häcker, Hans; Staudt, Louis M; Green, Peter H; Bhagat, Govind; Reizis, Boris

    2015-08-18

    Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system, receptor protein tyrosine phosphatase sigma (PTPRS) is expressed specifically on pDCs. Surface PTPRS was rapidly downregulated after pDC activation, and only PTPRS(-) pDCs produced IFN-α. Antibody-mediated PTPRS crosslinking inhibited pDC activation, whereas PTPRS knockdown enhanced IFN response in a pDC cell line. Similarly, murine Ptprs and the homologous receptor phosphatase Ptprf were specifically co-expressed in murine pDCs. Haplodeficiency or DC-specific deletion of Ptprs on Ptprf-deficient background were associated with enhanced IFN response of pDCs, leukocyte infiltration in the intestine and mild colitis. Thus, PTPRS represents an evolutionarily conserved pDC-specific inhibitory receptor, and is required to prevent spontaneous IFN production and immune-mediated intestinal inflammation. PMID:26231120

  6. Essential, Overlapping and Redundant Roles of the Drosophila Protein Phosphatase 1α and 1β Genes

    PubMed Central

    Kirchner, Jasmin; Gross, Sascha; Bennett, Daimark; Alphey, Luke

    2007-01-01

    Protein serine/threonine phosphatase type 1 (PP1) has been found in all eukaryotes examined to date and is involved in the regulation of many cellular functions, including glycogen metabolism, muscle contraction, and mitosis. In Drosophila, four genes code for the catalytic subunit of PP1 (PP1c), three of which belong to the PP1α subtype. PP1β9C (flapwing) encodes the fourth PP1c gene and has a specific and nonredundant function as a nonmuscle myosin phosphatase. PP1α87B is the major form and contributes ∼80% of the total PP1 activity. We describe the first mutant alleles of PP1α96A and show that PP1α96A is not an essential gene, but seems to have a function in the regulation of nonmuscle myosin. We show that overexpression of the PP1α isozymes does not rescue semilethal PP1β9C mutants, whereas overexpression of either PP1α96A or PP1β9C does rescue a lethal PP1α87B mutant combination, showing that the lethality is due to a quantitative reduction in the level of PP1c. Overexpression of PP1β9C does not rescue a PP1α87B, PP1α96A double mutant, suggesting an essential PP1α-specific function in Drosophila. PMID:17513890

  7. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling.

    PubMed

    Tsai, Wan-Chen; Chen, Chien-Lin; Chen, Hong-Chen

    2015-09-15

    Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells. PMID:26204488

  8. Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A.

    PubMed Central

    Gaussin, V; Hue, L; Stalmans, W; Bollen, M

    1996-01-01

    The activation of hepatic acetyl-CoA carboxylase by Na(+)-cotransported amino acids such as glutamine has been attributed mainly to the stimulation of its dephosphorylation by accumulating dicarboxylic acids, e.g. glutamate. We report here on a hepatic species of protein phosphatase-2A that activates acetyl-CoA carboxylase in the presence of physiological concentrations of glutamate or Mg2+ and, under these conditions, accounts for virtually all the hepatic acetyl-CoA carboxylase phosphatase activity. Glutamate also stimulated the dephosphorylation of a synthetic pentadecapeptide encompassing the Ser-79 phosphorylation site of rat acetyl-CoA carboxylase, but did not affect the dephosphorylation of other substrates such as phosphorylase. Conversely, protamine, which stimulated the dephosphorylation of phosphorylase, inhibited the activation of acetyl-CoA carboxylase. A comparison with various species of muscle protein phosphatase-2A showed that the stimulatory effects of glutamate and Mg2+ on the acetyl-CoA carboxylase phosphatase activity are largely mediated by the regulatory A subunit. Glutamate and Mg2+ emerge from our study as novel regulators of protein phosphatase-2A when acting on acetyl-CoA carboxylase. PMID:8645208

  9. Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain

    PubMed Central

    Primo, María E.; Jakoncic, Jean; Noguera, Martín E.; Risso, Valeria A.; Sosa, Laura; Sica, Mauricio P.; Solimena, Michele; Poskus, Edgardo; Ermácora, Mario R.

    2011-01-01

    ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo. PMID:21935384

  10. Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain

    SciTech Connect

    Primo M. E.; Jakoncic J.; Noguera M.E.; Risso V.A.; Sosa L.; Sica M.P.; Solimena M.; Poskus E. and Ermacora M.

    2011-09-15

    ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.