Sample records for phosphoenolpyruvate-dependent phosphotransferase genes

  1. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans.

    PubMed

    Slee, A M; Tanzer, J M

    1979-11-01

    An inducible phosphoenolpyruvate-dependent sucrose phosphotransferase system has been demonstrated in decryptified cell suspensions of the various common serotypes of the cariogenic microorganism Streptococcus mutans.

  2. Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptococcus mutans.

    PubMed Central

    Boyd, D A; Cvitkovitch, D G; Hamilton, I R

    1994-01-01

    We report the sequencing of a 2,242-bp region of the Streptococcus mutants NG5 genome containing the genes for ptsH and ptsI, which encode HPr and enzyme I (EI), respectively, of the phosphoenolpyruvate-dependent phosphotransferase transport system. The sequence was obtained from two cloned overlapping genomic fragments; one expresses HPr and a truncated EI, while the other expresses a full-length EI in Escherichia coli, as determined by Western immunoblotting. The ptsI gene appeared to be expressed from a region located in the ptsH gene. The S. mutans NG5 pts operon does not appear to be linked to other phosphotransferase transport system proteins as has been found in other bacteria. A positive fermentation pattern on MacConkey-glucose plates by an E. coli ptsI mutant harboring the S. mutans NG5 ptsI gene on a plasmid indicated that the S. mutans NG5 EI can complement a defect in the E. coli gene. This was confirmed by protein phosphorylation experiments with 32P-labeled phosphoenolpyruvate indicating phosphotransfer from the S. mutans NG5 EI to the E. coli HPr. Two forms of the cloned EI, both truncated to varying degrees in the C-terminal region, were inefficiently phosphorylated and unable to complement fully the ptsI defect in the E. coli mutant. The deduced amino acid sequence of HPr shows a high degree of homology, particularly around the active site, to the same protein from other gram-positive bacteria, notably, S. salivarius, and to a lesser extent with those of gram-negative bacteria. The deduced amino acid sequence of S. mutans NG5 EI also shares several regions of homology with other sequenced EIs, notably, with the region around the active site, a region that contains the only conserved cystidyl residue among the various proteins and which may be involved in substrate binding. Images PMID:8132321

  3. Phosphoenolpyruvate-dependent maltose:phosphotransferase activity in Fusobacterium mortiferum ATCC 25557: specificity, inducibility, and product analysis.

    PubMed Central

    Robrish, S A; Fales, H M; Gentry-Weeks, C; Thompson, J

    1994-01-01

    Phosphoenolypyruvate-dependent maltose:phosphotransferase activity was induced in cells of Fusobacterium mortiferum ATCC 25557 during growth on maltose. The disaccharide was rapidly metabolized by washed cells maintained under anaerobic conditions, but fermentation ceased immediately upon exposure of the cell suspension to air. Coincidentally, high levels of a phosphorylated derivative accumulated within the cells. Chemical and enzymatic analyses, in conjunction with data from 1H, 13C, and 31P nuclear magnetic resonance spectroscopy, established the structure of the purified compound as 6-O-phosphoryl-alpha-D-glucopyranosyl-(1-4)-D-glucose (maltose 6-phosphate). A method for the preparation of substrate amounts of this commercially unavailable disaccharide phosphate is described. Permeabilized cells of F. mortiferum catalyzed the phosphoenolpyruvate-dependent phosphorylation of maltose under aerobic conditions. However, the hydrolysis of maltose 6-phosphate (to glucose 6-phosphate and glucose) by permeabilized cells or cell-free preparations required either an anaerobic environment or addition of dithiothreitol to aerobic reaction mixtures. The first step in dissimilation of the phosphorylated disaccharide appears to be catalyzed by an oxygen-sensitive maltose 6-phosphate hydrolase. Cells of F. mortiferum, grown previously on maltose, fermented a variety of alpha-linked glucosides, including maltose, turanose, palatinose, maltitol, alpha-methylglucoside, trehalose, and isomaltose. Conversely, cells grown on the separate alpha-glucosides also metabolized maltose. For this anaerobic pathogen, we suggest that the maltose:phosphotransferase and maltose 6-phosphate hydrolase catalyze the phosphorylative translocation and cleavage not only of maltose but also of structurally analogous alpha-linked glucosides. Images PMID:8195080

  4. Cloning and Molecular Analysis of a Mannitol Operon of Phosphoenolpyruvate-dependent Phosphotransferase (PTS) type From Vibrio cholerae O395

    PubMed Central

    Kumar, Sanath; Smith, Kenneth P.; Floyd, Jody L.; Varela, Manuel F.

    2010-01-01

    A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395 and its activity studied in Escherichia coli. The 3.9 kb operon comprising of three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EIIMtl) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD) and a mannitol operon repressor (MtlR). The transport of [3H]mannitol by the cloned mannitol operon in E. coli was 13.8±1.4 nmol/min/mg protein. The insertional inactivation of EIIMtl abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon. PMID:21184218

  5. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pas, H.H.; Robillard, G.T.

    1988-07-26

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less

  6. Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutscher, J.; Pevec, B.; Beyreuther, K.

    1986-10-21

    The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolyptic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system,more » HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction. The site of ATP-dependent phosphorylation in HPr of S faecalis has now been determined. (/sup 32/P)P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, they obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, they isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-. Thus, the site of ATP-dependent phosphorylation was determined to be Ser-46 within the primary structure of HPr.« less

  7. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  8. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.

    1997-02-01

    Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less

  9. Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.

    PubMed Central

    Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.

    1993-01-01

    We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067

  10. Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3',5'-phosphate and inducer.

    PubMed

    Saier, M H; Keeler, D K; Feucht, B U

    1982-03-10

    Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.

  11. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutscher, J.; Sauerwald, H.

    1986-06-01

    Recently a report was given of the phosphoenolpyruvate (PEP)-dependent phosphorylation of a 55-kilodalton protein of Streptococus faecalis catalyzed by enzyme I and histidine-containing protein (HPr) of the phosphotransferase system. The purified 55-kilodalton protein was found to exhibit dihydroxyacetone kinase activity. Glycerol was six times more slowly phosphorylated than dihydroxyacetone. The K/sub m/s were found to 0.7 mM for ATP, 0.45 mM for dihydroxyacetone, and 0.9 MM for glycerol. PEP-dependent phosphorylation of dihydroxyacetone kinase stimulated phosphorylation of both substrates about 10-fold. Fructose 1,6-diphosphate at concentrations higher than 2 mM inhibited the activity of phosphorylated and unphosphorylated dihydroxyacetone kinase in a noncompetitivemore » manner. The rate of PEP-dependent phosphorylation of dihydroxyacetone kinase was about 200-fold slower than the phosphorylation rate of III proteins (also called enzyme III or factor III), which so far have been considered the only phosphoryl acceptors of histidyl-phosphorylated HPr. P-Dihydroxyacetone kinase was found to be able to transfer its phosphoryl group in a backward reaction to HPr. Following (/sup 32/P)PEP-dependent phosphorylation and tryptic digestion of dihydroxyacetone kinase, the authors isolated a labeled peptide composed of 37 amino acids, as determined by amino acid analysis. The single histidyl residue of this peptide most likely carries the phosphoryl group in phosphorylated dihydroxyacetone kinase.« less

  12. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate: Mannitol phosphotransferase system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, E.G.; Knowles, J.R.; Khandekar, S.S.

    1990-07-24

    The authors have determined the overall stereochemical course of the reactions leading to the phosphorylation of D-mannitol by mannitol-specific enzyme II (EII{sup Mtl}) of the Escherichia coli phosphoenolpyruvate- (PEP) dependent phosphotransferase system (PTS). In the presence of enzyme I and HPr of the PTS, and of membranes containing EII{sup Mtl}, the phospho group from ((R)-{sup 16}O, {sup 17}O, {sup 18}O)PEP was transferred to D-mannitol to form mannitol 1-phosphate with overall inversion of the configuration at phosphorus with respect to that of PEP. Since in the course of these reactions enzyme I and HPr are each covalently phosphorylated at a singlemore » site and inversion of the chiral phospho group from PEP indicates an odd number of transfer steps overall, transfer from phospho-HPr to mannitol via EII{sup Mtl} must also occur in an odd number of steps. Taken together with the fact that catalytically important phospho-EII{sup Mtl} intermediates have been demonstrated biochemically, the results imply that EII{sup Mtl} is sequentially phosphorylated at two different sites during phospho transfer from phospho-HPr to mannitol. This conclusion is consistent with the available evidence on phospho-EII{sup Mtl} intermediates and in particular with the recent report that two different phospho peptides can be isolated from the fully phosphorylated protein.« less

  13. The phosphoenolpyruvate:sugar phosphotransferase system is involved in sensitivity to the glucosylated bacteriocin sublancin.

    PubMed

    Garcia De Gonzalo, C V; Denham, E L; Mars, R A T; Stülke, J; van der Donk, W A; van Dijl, J M

    2015-11-01

    The mode of action of a group of glycosylated antimicrobial peptides known as glycocins remains to be elucidated. In the current study of one glycocin, sublancin, we identified the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Bacillus species as a key player in bacterial sensitivity. Sublancin kills several Gram-positive bacteria, such as Bacillus species and Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). Unlike other classes of bacteriocins for which the PTS is involved in their mechanism of action, we show that the addition of PTS-requiring sugars leads to increased resistance rather than increased sensitivity, suggesting that sublancin has a distinct mechanism of action. Collectively, our present mutagenesis and genomic studies demonstrate that the histidine-containing phosphocarrier protein (HPr) and domain A of enzyme II (PtsG) in particular are critical determinants for bacterial sensitivity to sublancin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Regulatory Tasks of the Phosphoenolpyruvate-Phosphotransferase System of Pseudomonas putida in Central Carbon Metabolism

    PubMed Central

    Chavarría, Max; Kleijn, Roelco J.; Sauer, Uwe; Pflüger-Grau, Katharina; de Lorenzo, Víctor

    2012-01-01

    ABSTRACT Two branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacterium Pseudomonas putida KT2440. One branch encompasses a complete set of enzymes for fructose intake (PTSFru), while the other (N-related PTS, or PTSNtr) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTSFru or PTSNtr genes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIANtr) displayed significantly higher fluxes in the reactions of the pyruvate shunt, which bypasses malate dehydrogenase in the TCA cycle. This was consistent with the increased activity of the malic enzyme and the pyruvate carboxylase found in the corresponding PTS mutants. Genetic evidence suggested that such a metabolic effect of PtsN required the transfer of high-energy phosphate through the system. The EIIANtr protein of the PTSNtr thus helps adjust central metabolic fluxes to satisfy the anabolic and energetic demands of the overall cell physiology. PMID:22434849

  15. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

    PubMed

    Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J

    1999-09-01

    The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.

  16. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    PubMed Central

    2008-01-01

    Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a

  17. Analysis of the Transcriptional Regulator GlpR, Promoter Elements, and Posttranscriptional Processing Involved in Fructose-Induced Activation of the Phosphoenolpyruvate-Dependent Sugar Phosphotransferase System in Haloferax mediterranei

    PubMed Central

    Cai, Lei; Cai, Shuangfeng; Zhao, Dahe; Wu, Jinhua; Wang, Lei; Liu, Xiaoqing; Li, Ming; Hou, Jing; Zhou, Jian; Liu, Jingfang; Han, Jing

    2014-01-01

    Among all known archaeal strains, the phosphoenolpyruvate-dependent phosphotransferase system (PTS) for fructose utilization is used primarily by haloarchaea, which thrive in hypersaline environments, whereas the molecular details of the regulation of the archaeal PTS under fructose induction remain unclear. In this study, we present a comprehensive examination of the regulatory mechanism of the fructose PTS in the haloarchaeon Haloferax mediterranei. With gene knockout and complementation, microarray analysis, and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), we revealed that GlpR is the indispensable activator, which specifically binds to the PTS promoter (PPTS) during fructose induction. Further promoter-scanning mutation indicated that three sites located upstream of the H. mediterranei PPTS, which are conserved in most haloarchaeal PPTSs, are involved in this induction. Interestingly, two PTS transcripts (named T8 and T17) with different lengths of 5′ untranslated region (UTR) were observed, and promoter or 5′ UTR swap experiments indicated that the shorter 5′ UTR was most likely generated from the longer one. Notably, the translation efficiency of the transcript with this shorter 5′ UTR was significantly higher and the ratio of T8 (with the shorter 5′ UTR) to T17 increased during fructose induction, implying that a posttranscriptional mechanism is also involved in PTS activation. With these insights into the molecular regulation of the haloarchaeal PTS, we have proposed a working model for haloarchaea in response to environmental fructose. PMID:24334671

  18. Lactobacillus casei 64H Contains a Phosphoenolpyruvate-Dependent Phosphotransferase System for Uptake of Galactose, as Confirmed by Analysis of ptsH and Different gal Mutants

    PubMed Central

    Bettenbrock, Katja; Siebers, Ulrike; Ehrenreich, Petra; Alpert, Carl-Alfred

    1999-01-01

    Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different. PMID:9864334

  19. Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae.

    PubMed

    Yamamoto, Shouji; Ohnishi, Makoto

    2017-09-15

    In Vibrio cholerae , the genes required for chitin utilization and natural competence are governed by the chitin-responsive two-component system (TCS) sensor kinase ChiS. In the classical TCS paradigm, a sensor kinase specifically phosphorylates a cognate response regulator to activate gene expression. However, our previous genetic study suggested that ChiS stimulates the non-TCS transcriptional regulator TfoS by using mechanisms distinct from classical phosphorylation reactions (S. Yamamoto, J. Mitobe, T. Ishikawa, S. N. Wai, M. Ohnishi, H. Watanabe, and H. Izumiya, Mol Microbiol 91:326-347, 2014, https://doi.org/10.1111/mmi.12462). TfoS specifically activates the transcription of tfoR , encoding a small regulatory RNA essential for competence gene expression. Whether ChiS and TfoS interact directly remains unknown. To determine if other factors mediate the communication between ChiS and TfoS, we isolated transposon mutants that turned off tfoR :: lacZ expression but possessed intact chiS and tfoS genes. We demonstrated an unexpected association of chitin-induced signaling pathways with the glucose-specific enzyme IIA (EIIA glc ) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses revealed that dephosphorylated EIIA glc inactivated natural competence and tfoR transcription. Chitin-induced expression of the chb operon, which is required for chitin transport and catabolism, was also repressed by dephosphorylated EIIA glc Furthermore, the regulation of tfoR and chb expression by EIIA glc was dependent on ChiS and intracellular levels of ChiS were not affected by disruption of the gene encoding EIIA glc These results define a previously unknown connection between the PTS and chitin signaling pathways in V. cholerae and suggest a strategy whereby this bacterium can physiologically adapt to the existing nutrient status. IMPORTANCE The EIIA glc

  20. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme III/sup mtl/ of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme II/sup mtl/ of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, B.; Frank, R.; Deutscher, J.

    1988-08-23

    Enzyme III/sup mtl/ is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, the authors report the isolation of III/sup mtl/ from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of III/sup mtl/ with (/sup 32/P)PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase GLu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp-Asp. The correspondingmore » peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which they assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the III/sup mtl/ proteins was found to be 15,000. They have also determined the N-terminal sequence of both proteins. Comparison of the III/sup mtl/ peptide sequences and the C-terminal part of the enzyme II/sup mtl/ of Escherichia coli reveals considerable sequence homology, which supports the suggestion that II/sup mtl/ of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II.« less

  1. Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.

    PubMed

    Suter, T M; Viswanathan, V K; Cianciotto, N P

    1997-06-01

    A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae.

  2. Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.

    PubMed Central

    Suter, T M; Viswanathan, V K; Cianciotto, N P

    1997-01-01

    A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae. PMID:9174205

  3. The phosphotransferase system-dependent sucrose utilization regulon in enteropathogenic Escherichia coli strains is located in a variable chromosomal region containing iap sequences.

    PubMed

    Treviño-Quintanilla, Luis Gerardo; Escalante, Adelfo; Caro, Alma Delia; Martínez, Alfredo; González, Ricardo; Puente, José Luis; Bolívar, Francisco; Gosset, Guillermo

    2007-01-01

    The capacity to utilize sucrose as a carbon and energy source (Scr(+) phenotype) is a highly variable trait among Escherichia coli strains. In this study, seven enteropathogenic E. coli (EPEC) strains from different sources were studied for their capacity to grow using sucrose. Liquid media cultures showed that all analyzed strains have the Scr(+) phenotype and two distinct groups were defined: one of five and another of two strains displaying doubling times of 67 and 125 min, respectively. The genes conferring the Scr(+) phenotype in one of the fast-growing strains (T19) were cloned and sequenced. Comparative sequence analysis revealed that this strain possesses the scr regulon genes scrKYABR, encoding phosphoenolpyruvate:phosphotransferase system-dependent sucrose transport and utilization activities. Transcript level quantification revealed sucrose-dependent induction of scrK and scrR genes in fast-growing strains, whereas no transcripts were detected in slow-growing strains. Sequence comparison analysis revealed that the scr genes in strain T19 are almost identical to those present in the scr regulon of prototype EPEC E2348/69 and in both strains, the scr genes are inserted in the chromosomal intergenic region of hypothetical genes ygcE and ygcF. Comparison of the ygcE-ygcF intergenic region sequence of strains MG1655, enterohemorrhagic EDL933, uropathogenic ECFT073 and EPEC T19-E2348/69 revealed that the number of extragenic highly repeated iap sequences corresponded to nine, four, two and none, respectively. These results show that the iap sequence-containing chromosomal ygcE-ygcF intergenic region is highly variable in E. coli. Copyright (c) 2007 S. Karger AG, Basel.

  4. Identification of the Operon for the Sorbitol (Glucitol) Phosphoenolpyruvate:Sugar Phosphotransferase System in Streptococcus mutans

    PubMed Central

    Boyd, David A.; Thevenot, Tracy; Gumbmann, Markus; Honeyman, Allen L.; Hamilton, Ian R.

    2000-01-01

    Transposon mutagenesis and marker rescue were used to isolate and identify an 8.5-kb contiguous region containing six open reading frames constituting the operon for the sorbitol P-enolpyruvate phosphotransferase transport system (PTS) of Streptococcus mutans LT11. The first gene, srlD, codes for sorbitol-6-phosphate dehydrogenase, followed downstream by srlR, coding for a transcriptional regulator; srlM, coding for a putative activator; and the srlA, srlE, and srlB genes, coding for the EIIC, EIIBC, and EIIA components of the sorbitol PTS, respectively. Among all sorbitol PTS operons characterized to date, the srlD gene is found after the genes coding for the EII components; thus, the location of the gene in S. mutans is unique. The SrlR protein is similar to several transcriptional regulators found in Bacillus spp. that contain PTS regulator domains (J. Stülke, M. Arnaud, G. Rapoport, and I. Martin-Verstraete, Mol. Microbiol. 28:865–874, 1998), and its gene overlaps the srlM gene by 1 bp. The arrangement of these two regulatory genes is unique, having not been reported for other bacteria. PMID:10639465

  5. Comparative Genomic Analyses of the Bacterial Phosphotransferase System

    PubMed Central

    Barabote, Ravi D.; Saier, Milton H.

    2005-01-01

    We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer. PMID:16339738

  6. Characterization of mutant histidine-containing proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waygood, E.B.; Reiche, B.; Hengstenberg, W.

    1987-06-01

    Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and Salmonella typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of /sup 32/P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and producedmore » no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, Usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pIs, inhibited PTS sugar phosphorylation assays, but the antibody-JPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a ..beta..-sheet structure.« less

  7. Recombinant organisms capable of fermenting cellobiose

    DOEpatents

    Ingram, Lonnie O.; Lai, Xiaokuang; Moniruzzaman, Mohammed; York, Sean W.

    2000-01-01

    This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.

  8. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene.

    PubMed

    Lupton, S D; Brunton, L L; Kalberg, V A; Overell, R W

    1991-06-01

    The hygromycin phosphotransferase gene was fused in-frame with the herpes simplex virus type 1 thymidine kinase gene. The resulting fusion gene (termed HyTK) confers hygromycin B resistance for dominant positive selection and ganciclovir sensitivity for negative selection and provides a means by which these selectable phenotypes may be expressed and regulated as a single genetic entity.

  9. An homolog of the Frz Phosphoenolpyruvate:carbohydrate phosphoTransferase System of extraintestinal pathogenic Escherichia coli is encoded on a genomic island in specific lineages of Streptococcus agalactiae.

    PubMed

    Patron, Kévin; Gilot, Philippe; Camiade, Emilie; Mereghetti, Laurent

    2015-06-01

    We identified a Streptococcus agalactiae metabolic region (fru2) coding for a Phosphoenolpyruvate:carbohydrate phosphoTransferase System (PTS) homologous to the Frz system of extraintestinal pathogenic Escherichia coli strains. The Frz system is involved in environmental sensing and regulation of the expression of adaptation and virulence genes in E. coli. The S. agalactiae fru2 region codes three subunits of a PTS transporter of the fructose-mannitol family, a transcriptional activator of PTSs of the MtlR family, an allulose-6 phosphate-3-epimerase, a transaldolase and a transketolase. We demonstrated that all these genes form an operon. The fru2 operon is present in a 17494-bp genomic island. We analyzed by multilocus sequence typing a population of 492 strains representative of the S. agalactiae population and we showed that the presence of the fru2 operon is linked to the phylogeny of S. agalactiae. The fru2 operon is always present within strains of clonal complexes CC 1, CC 7, CC 10, CC 283 and singletons ST 130 and ST 288, but never found in other CCs and STs. Our results indicate that the fru2 operon was acquired during the evolution of the S. agalactiae species from a common ancestor before the divergence of CC 1, CC 7, CC 10, CC 283, ST 130 and ST 288. As S. agalactiae strains of CC 1 and CC 10 are frequently isolated from adults with invasive disease, we hypothesize that the S. agalactiae Fru2 system senses the environment to allow the bacterium to adapt to new conditions encountered during the infection of adults. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants.

    PubMed

    Walters, D A; Vetsch, C S; Potts, D E; Lundquist, R C

    1992-01-01

    Embryogenic maize (Zea mays L.) callus cultures were transformed by microprojectile bombardment with a chimeric hygromycin phosphotransferase (HPT) gene and three transformed lines were obtained by selecting for hygromycin resistance. All lines contained one or a few copies of the intact HPT coding sequence. Fertile, transgenic plants were regenerated and the transmission of the chimeric gene was demonstrated through two complete generations. One line inherited the gene in the manner expected for a single, dominant locus, whereas two did not.

  11. Fructose Degradation in the Haloarchaeon Haloferax volcanii Involves a Bacterial Type Phosphoenolpyruvate-Dependent Phosphotransferase System, Fructose-1-Phosphate Kinase, and Class II Fructose-1,6-Bisphosphate Aldolase

    PubMed Central

    Pickl, Andreas; Johnsen, Ulrike

    2012-01-01

    The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly upregulated as a cotranscript. The in-frame deletion of HVO_1499, designated ptfC (ptf stands for phosphotransferase system for fructose) and encoding the putative fructose-specific membrane component EIIC, resulted in a loss of growth on fructose, which could be recovered by complementation in trans. Transcripts of HVO_1500 (pfkB) and HVO_1494 (fba), encoding putative fructose-1-phosphate kinase (1-PFK) and fructose-1,6-bisphosphate aldolase (FBA), respectively, as well as 1-PFK and FBA activities were specifically upregulated in fructose-grown cells. pfkB and fba knockout mutants did not grow on fructose, whereas growth on glucose was not inhibited, indicating the functional involvement of both enzymes in fructose catabolism. Recombinant 1-PFK and FBA obtained after homologous overexpression were characterized as having kinetic properties indicative of functional 1-PFK and a class II type FBA. From these data, we conclude that fructose uptake in H. volcanii involves a fructose-specific PTS generating fructose-1-phosphate, which is further converted via fructose-1,6-bisphosphate to triose phosphates by 1-PFK and FBA. This is the first report of the functional involvement of a bacterial-like PTS and of class II FBA in the sugar metabolism of archaea. PMID:22493022

  12. Expression of the hygromycin B phosphotransferase gene confers tolerance to the herbicide glyphosate.

    PubMed

    Peñaloza-Vázquez, A; Oropeza, A; Mena, G L; Bailey, A M

    1995-05-01

    Escherichia coli cells and tobacco (cv. Xanthi) plants transformed with the hygromycin B phosphotransferase gene were able to grow in culture medium containing glyphosate at 2.0 mM. The growth of tobacco calli in media containing increasing glyphosate concentrations was measured. The ID50 for glyphosate was 1.70±0.03 mM for hygromycin-B resistant plants, and 0.45±0.02 mM for control plants. Regenerated plants and progeny selected for resistance to hygromycin B were tested for glyphosate tolerance by spraying them with Faena herbicide (formulated glyphosate with surfactant) at a dose equal to 0.24 kg/ha. This was two times the dose required to kill 100 percent of the control plants. Phosphotransferase activity was measured in the extracts of the transformed leaves by the incorporation of (32)P from [γ(-32)P]ATP and it was observed that hygromycin B phosphotransferase was able to recognize the molecule of glyphosate as substrate.

  13. Cloning and expression in Escherichia coli of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Zalacain, M; Malpartida, F; Pulido, D; Jiménez, A

    1987-01-15

    The Streptomyces hygroscopicus hyg gene encoding a hygromycin B phosphotransferase has been introduced into different sites of both the Escherichia coli plasmid pBR322 and the Escherichia coli-Saccharomyces cerevisiae shuttle vector YRp7. When this gene was inserted into the BamHI site of pBR322 and then cloned in E. coli phosphorylating activity was not detected, indicating that the hyg gene promoter was not functional in this bacterium. However, when the hyg gene was inserted into either the unique PstI site of pBR322 or into each of the two PstI sites of YRp7, phosphotransferase activity was observed. Analysis of the translation products from these constructions by coupled in vitro transcription-translation systems suggested that in all cases transcrition was regulated by a promoter not provided by the inserted hyg gene and that the synthesized polypeptide was identical to that present in S. hygroscopicus.

  14. The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes.

    PubMed

    Anderson, A S; Clark, D J; Gibbons, P H; Sigmund, J M

    2002-08-01

    The conserved nature of the genes that code for actinomycete secondary metabolite biosynthetic pathways suggests a common evolutionary ancestor and incidences of lateral gene transfer. Resistance genes associated with these biosynthetic pathways also display a high degree of similarity. Actinomycete aminoglycoside phosphotransferase antibiotic resistance enzymes (APH) are coded for by such genes and are therefore good targets for evaluating the bioactive potential of actinomycetes. A set of universal PCR primers for APH encoding genes was used to probe genomic DNA from three collections of actinomycetes to determine the utility of molecular screening. An additional monitoring of populations for the predominance of specific classes of enzymes to predict the potential of environmental sites for providing isolates with interesting metabolic profiles. Approximately one-fifth of all isolates screened gave a positive result by PCR. The PCR products obtained were sequenced and compared to existing APH family members. Sequence analysis resolved the family into nine groups of which six had recognizable phenotypes: 6'-phosphotransferase (APH(6)), 3'-phosphotransferase (APH(3)), hydroxyurea phosphotransferase (HUR), peptide phosphotransferase, hygromycin B phosphotransferase (APH(7")) and oxidoreductase. The actinomycetes screened fell into seven groups, including three novel groups with unknown phenotypes. The strains clustered according to the environmental site from where they were obtained, providing evidence for the movement of these genes within populations. The value of this as a method for obtaining novel compounds and the significance to the ecology of antibiotic biosynthesis are discussed.

  15. Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina.

    PubMed

    Park, Soohyun; Chang, Kwang Suk; Jin, Eonseon; Pack, Seung Pil; Lee, Jinwon

    2013-01-01

    A new phosphoenolpyruvate carboxylase (PEPC) gene of Dunaliella salina is identified using homology analysis was conducted using PEPC gene of Chlamydomonas reinhardtii and Arabidopsis thaliana. Recombinant E. coli SGJS115 with increased production of malate and oxaloacetate was developed by introducing codon-optimized phosphoenolpyruvate carboxylase2 (OPDSPEPC2) gene of Dunaliella salina. E. coli SGJS115 yielded a 9.9 % increase in malate production. In addition, E. coli SGJS115 exhibited two times increase in the yield of oxaloacetate over the E. coli SGJS114 having identified PEPC2 gene obtained from Dunaliella salina.

  16. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system.

    PubMed

    Pérez-Morales, Deyanira; Bustamante, Víctor H

    2016-02-01

    A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression. © 2015 John Wiley & Sons Ltd.

  17. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    PubMed

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  18. Streptomyces griseus streptomycin phosphotransferase: expression of its gene in Escherichia coli and sequence homology with other antibiotic phosphotransferases and with eukaryotic protein kinases.

    PubMed

    Lim, C K; Smith, M C; Petty, J; Baumberg, S; Wootton, J C

    1989-12-01

    The aphD gene of Streptomyces griseus, encoding a streptomycin 6-phosphotransferase (SPH), was sub-cloned in the pBR322-based expression vector pRK9 (which contains the Serratia marcescens trp promoter) with selection for expression of streptomycin resistance in Escherichia coli. Two hybrid plasmids, pCKL631 and pCKL711, were isolated which conferred resistance. Both contained a approximately 2 kbp fragment already suspected to include aphD. The properties of in vitro deletion derivatives of these plasmids were consistent with the presumed location of aphD. In vitro deletion of a sequence including most of the trp promoter largely, but not quite completely, abolished the ability of the plasmid to confer streptomycin resistance, confirming that expression was indeed principally from the trp promoter. A polypeptide of approximately 34.5 kDa was present in minicells containing plasmids that conferred streptomycin resistance, but was absent when the plasmids contained in vitro deletions removing streptomycin resistance. Part of the fragment was sequenced and an open reading frame corresponding to aphD identified. A computer-assisted comparison of the deduced SPH sequence with those of other antibiotic phosphotransferases suggested a common structure A-B-C-D-E, where B and D were conserved between all sequences compared while A, C and E divided between the streptomycin and hygromycin B phosphotransferases on one hand and kanamycin/neomycin ones on the other. A composite sequence data base was searched for homologues to consensus matrices constructed from five approximately 12-residue subsequences within blocks B and D. For one subsequence, corresponding to the N-terminal portion of block D, those sequences from the database that yielded the highest homology scores comprised almost entirely either antibiotic phosphotransferases or eukaryotic protein kinases. Possible evolutionary implications of this homology, previously described by other groups, are discussed.

  19. Expression of Hygromycin Phosphotransferase Alters Virulence of Histoplasma capsulatum▿

    PubMed Central

    Smulian, A. George; Gibbons, Reta S.; Demland, Jeffery A.; Spaulding, Deborah T.; Deepe, George S.

    2007-01-01

    The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene. PMID:17873086

  20. Expression of hygromycin phosphotransferase alters virulence of Histoplasma capsulatum.

    PubMed

    Smulian, A George; Gibbons, Reta S; Demland, Jeffery A; Spaulding, Deborah T; Deepe, George S

    2007-11-01

    The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.

  1. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    PubMed

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.

  2. [Transformation of Chlamydomonas reinhardtii CW-15 with the hygromycin phosphotransferase gene as a selective marker].

    PubMed

    Ladygin, V G; Butanaev, A M

    2002-09-01

    To transform Chlamydomonas reinhardtii Dang. Cells, plasmid pCTVHyg was constructed with the use of the Escherichia coli hygromycin phosphotransferase gene (hpt) controlled by the SV40 early promoter. Cells of the CW-15 mutant strain were transformed by electroporation, with the yield reaching 10(3) hygromycin-resistant (HygR) clones per 10(6) recipient cells. The exogenous DNA integrated in the Ch. reinhardtii nuclear genome showed stable transmission for approximately 350 cell generations, while hygromycin resistance was expressed as an unstable character. Codon usage was compared for the hpt gene and Ch. reinhardtii nuclear genes. The results testified that codon usage bias, which is characteristic of Ch. reinhardtii, is not the major factor affecting foreign gene expression. The advantages of the selective system for studying Ch. reinhardtii transformation with heterologous genes are discussed.

  3. Measurement of hygromycin B phosphotransferase activity in crude mammalian cell extracts by a simple dot-blot assay.

    PubMed

    Sørensen, M S; Duch, M; Paludan, K; Jørgensen, P; Pedersen, F S

    1992-03-15

    Hygromycin B (Hy) resistance, encoded by the prokaryotic gene hph, is commonly used as a dominant selectable marker for gene transfer experiments in mammalian cells. We describe a simple, quantitative dot-blot assay for measuring the activity in crude mammalian cell extracts of Hy phosphotransferase, the product of the hph gene. The assay shows no cross interference with substrates for neomycin phosphotransferase II, the product of the commonly used marker gene neo; hph and neo may thus be useful as a set of two non-interfering selectable marker and reporter genes for gene transfer experiments in mammalian cells.

  4. Phosphoenolpyruvate metabolism in Jerusalem artichoke mitochondria.

    PubMed

    de Bari, Lidia; Valenti, Daniela; Pizzuto, Roberto; Atlante, Anna; Passarella, Salvatore

    2007-04-01

    We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.

  5. [Use of the hygromycin phosphotransferase gene as the dominant selective marker for Chlamydomonas reinhardtii transformation].

    PubMed

    Butanaev, A M

    1994-01-01

    The hygromycin phosphotransferase gene (hpt) from E. coli under the control of the SV40 early promoter was used as a dominant selectable marker for transformation of Chlamydomonas reinhardtii. Cells were transformed by electroporation (pulse length, 2 ms, field strength, 1 kV/cm). The culture growth phase was a crucial parameter for transformation (optimal density approximately 10(6) cells/ml). It was possible to obtain approximately 10(3) Hyg-resistant colonies under these conditions. Foreign DNA integrated into the Chlamydomonas genome was maintained for at least 8 months but the Hyg-resistant phenotype of the transformed clones was unstable. The frequency of codon usage in the hpt gene was compared with the one in Chlamydomonas nuclear genes. It is supposed that highly biased codon usage in Chlamydomonas does not preclude expression. Advantages of this selection system for studying Chlamydomonas transformation by heterologous genes are discussed.

  6. Structure, dynamics and biophysics of the cytoplasmic protein–protein complexes of the bacterial phosphoenolpyruvate: Sugar phosphotransferase system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clore, G. Marius; Venditti, Vincenzo

    2013-10-01

    The bacterial phosphotransferase system (PTS) couples phosphoryl transfer, via a series of bimolecular protein–protein interactions, to sugar transport across the membrane. The multitude of complexes in the PTS provides a paradigm for studying protein interactions, and for understanding how the same binding surface can specifically recognize a diverse array of targets. Fifteen years of work aimed at solving the solution structures of all soluble protein–protein complexes of the PTS has served as a test bed for developing NMR and integrated hybrid approaches to study larger complexes in solution and to probe transient, spectroscopically invisible states, including encounter complexes. We reviewmore » these approaches, highlighting the problems that can be tackled with these methods, and summarize the current findings on protein interactions.« less

  7. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  8. Temperature-Dependent Expression of phzM and Its Regulatory Genes lasI and ptsP in Rhizosphere Isolate Pseudomonas sp. Strain M18▿

    PubMed Central

    Huang, Jiaofang; Xu, Yuquan; Zhang, Hongyan; Li, Yaqian; Huang, Xianqing; Ren, Bin; Zhang, Xuehong

    2009-01-01

    Pseudomonas sp. strain M18, an effective biological control agent isolated from the melon rhizosphere, has a genetic background similar to that of the opportunistic human pathogen Pseudomonas aeruginosa PAO1. However, the predominant phenazine produced by strain M18 is phenazine-1-carboxylic acid (PCA) rather than pyocyanin (PYO); the quantitative ratio of PCA to PYO is 105 to 1 at 28°C in strain M18, while the ratio is 1 to 2 at 37°C in strain PAO1. We first provided evidence that the differential production of the two phenazines in strains M18 and PAO1 is related to the temperature-dependent and strain-specific expression patterns of phzM, a gene involved in the conversion of PCA to PYO. Transcriptional levels of phzM were measured by quantitative real-time PCR, and the activities of both transcriptional and translational phzM′-′lacZ fusions were determined in strains M18 and PAO1, respectively. Using lasI::Gm and ptsP::Gm inactivation M18 mutants, we further show that expression of the phzM gene is positively regulated by the quorum-sensing protein LasI and negatively regulated by the phosphoenolpyruvate phosphotransferase protein PtsP. Surprisingly, the lasI and ptsP regulatory genes were also expressed in a temperature-dependent and strain-specific manner. The differential production of the phenazines PCA and PYO by strains M18 and PAO1 may be a consequence of selective pressure imposed on P. aeruginosa PAO1 and its relative M18 in the two different niches over a long evolutionary process. PMID:19717631

  9. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Gritz, L; Davies, J

    1983-11-01

    The plasmid-borne gene hph coding for hygromycin B phosphotransferase (HPH) in Escherichia coli has been identified and its nucleotide sequence determined. The hph gene is 1026 nucleotides long, coding for a protein with a predicted Mr of 39 000. The hph gene was placed in a shuttle plasmid vector, downstream from the promoter region of the cyc 1 gene of Saccharomyces cerevisiae, and an hph construction containing a single AUG in the 5' noncoding region allowed direct selection following transformation in yeast and in E. coli. Thus the hph gene can be used in cloning vectors for both pro- and eukaryotes.

  10. Identification and functional analysis of the L-ascorbate-specific enzyme II complex of the phosphotransferase system in Streptococcus mutans.

    PubMed

    Wu, Xinyu; Hou, Jin; Chen, Xiaodan; Chen, Xuan; Zhao, Wanghong

    2016-03-22

    Streptococcus mutans is the primary etiological agent of human dental caries. It can metabolize a wide variety of carbohydrates and produce large amounts of organic acids that cause enamel demineralization. Phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays an important role in carbohydrates uptake of S. mutans. The ptxA and ptxB genes in S. mutans encode putative enzyme IIA and enzyme IIB of the L-ascorbate-specific PTS. The aim of this study was to analyze the function of these proteins and understand the transcriptional regulatory mechanism. ptxA (-), ptxB (-), as well as ptxA (-) , ptxB (-) double-deletion mutants all had more extended lag phase and lower growth yield than wild-type strain UA159 when grown in the medium using L-ascorbate as the sole carbon source. Acid production and acid killing assays showed that the absence of the ptxA and ptxB genes resulted in a reduction in the capacity for acidogenesis, and all three mutant strains did not survive an acid shock. According to biofilm and extracellular polysaccharides (EPS) formation analysis, all the mutant strains formed much less prolific biofilms with small amounts of EPS than wild-type UA159 when using L-ascorbate as the sole carbon source. Moreover, PCR analysis and quantitative real-time PCR revealed that sgaT, ptxA, ptxB, SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon. The transcription levels of these genes were all elevated in the presence of L-ascorbate, and the expression of ptxA gene decreased significantly once ptxB gene was knockout. The ptxA and ptxB genes are involved in the growth, aciduricity, acidogenesis, and formation of biofilms and EPS of S. mutans when L-ascorbate is the sole carbon source. In addition, the expression of ptxA is regulated by ptxB. ptxA, ptxB, and the upstream gene sgaT, the downstream genes SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon, and L-ascorbate is a potential inducer of the operon.

  11. Characterization of suppressible mutations in the viomycin phosphotransferase gene of the Streptomyces enteric plasmid pVE138.

    PubMed Central

    Paradiso, M J; Roberts, G; Streicher, S L; Goldberg, R B

    1987-01-01

    The viomycin phosphotransferase gene (vph) is expressed and confers resistance to viomycin in both Streptomyces spp. and members of the family Enterobacteriaceae. We report the isolation of UGA (opal) and UAG (amber) mutations in the vph gene of shuttle plasmid pVE138. We found that the five UGA mutations in vph resulted in a temperature-sensitive phenotype in Salmonella typhimurium. Su- strains are Vior at 28 degrees C and Vios at 37 degrees C, whereas Su+UGA strains are Vior at both 28 and 37 degrees C. The single amber mutation isolated was not temperature sensitive and resulted in the expected Vios phenotype in Su- strains and Vior in Su+UAG strains. PMID:3029035

  12. Pyrophosphate-Dependent Fructose-6-Phosphate 1-Phosphotransferase Induction and Attenuation of Hsp Gene Expression during Endosperm Modification in Quality Protein Maize1[C][W][OA

    PubMed Central

    Guo, Xiaomei; Ronhovde, Kyla; Yuan, Lingling; Yao, Bo; Soundararajan, Madhavan P.; Elthon, Thomas; Zhang, Chi; Holding, David R.

    2012-01-01

    Quality Protein Maize (QPM) is a hard-endosperm version of the high-lysine opaque2 (o2) maize (Zea mays) mutant, but the genes involved in modification of the soft o2 endosperm are largely unknown. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the ATP-independent conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. We found a large increase in transcript and protein levels of the α-regulatory subunit of PFP (PFPα) in QPM endosperm. In vitro enzyme assays showed a significant increase in forward PFP activity in developing endosperm extracts of QPM relative to the wild type and o2. An expressed retrogene version of PFPα of unknown function that was not up-regulated in QPM was also identified. The elevated expression levels of a number of ATP-requiring heat shock proteins (Hsps) in o2 endosperm are ameliorated in QPM. PFPα is also coinduced with Hsps in maize roots in response to heat, cold, and the unfolded protein response stresses. We propose that reduced ATP availability resulting from the generalized Hsp response in addition to the reduction of pyruvate, orthophosphate dikinase activity in o2 endosperm is compensated in part by increased PFP activity in QPM. PMID:22158678

  13. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  14. Molecular cloning and expression in streptomyces lividans of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J

    1983-11-30

    The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.

  15. [Retroviral-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human bladder carcinoma cell].

    PubMed

    Ye, C; Chen, S; Pei, X; Li, L; Feng, K

    1999-08-01

    To evaluate the therapeutic efficacy of retroviral-mediated hygromycin phosphotransferase-thymidine kinase fusion gene (HyTK)/GCV on human bladder carcinoma cell. A retroviral expression vector pL (HyTK) SN was constructed. By using FuGENE 6-mediated transfection and "ping-pong effect" technique, high-titer of retroviral supernatant was obtained and HyTK gene was transferred into EJ cells. A retroviral vector encoding, enhanced green fluorescent protein, EGFP was used to rapidly detect the transduction efficiency. Antitumor effects were observed after GCV treatment. In vitro experiments demonstrated the EJ cells transferred by HyTK gene were killed in the GCV treatment. Non-transduced parental cells were not sensitive to GCV, but they were dead by the bystander killing of neighboring cells when mixed with EJ/HyTK cells at various ratios. In addition, this not only affect wild-type EJ cells but also cells from different bladder carcinoma cell lines. Retroviral-mediated HyTK/GCV systems were a promising suicide gene therapy for bladder carcinoma. EGFP may act as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in bladder carcinoma cells.

  16. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    PubMed

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  17. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by sup 15 N NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Dijk, A.A.; de Lange, L.C.M.; Robillard, G.T.

    1990-09-04

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with {sup 15}N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with {sup 15}N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N{delta}1 and N{epsilon}2 positions or at only the N{delta}1 position. {sup 15}N NMR spectra of two synthesized model compound, phosphoimidazole and phosphomethylimidazole, were also recorded. Themore » authors show that, prior to phosphorylation, the protonated His15 N{epsilon}2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N{delta}1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N{delta}1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed.« less

  18. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum

    PubMed Central

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder

    2011-01-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment. PMID:21948044

  19. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum.

    PubMed

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L

    2011-12-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.

  20. CcpA-Dependent Carbon Catabolite Repression in Bacteria

    PubMed Central

    Warner, Jessica B.; Lolkema, Juke S.

    2003-01-01

    Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a serine residue at the expense of ATP. The reaction is catalyzed by HPr kinase, which is activated by glycolytic intermediates. In this review, the distribution of CcpA-dependent CCR among bacteria is investigated by searching the public databases for homologues of HPr kinase and HPr-like proteins throughout the bacterial kingdom and by analyzing their properties. Homologues of HPr kinase are commonly observed in the phylum Firmicutes but are also found in the phyla Proteobacteria, Fusobacteria, Spirochaetes, and Chlorobi, suggesting that CcpA-dependent CCR is not restricted to gram-positive bacteria. In the α and β subdivisions of the Proteobacteria, the presence of HPr kinase appears to be common, while in the γ subdivision it is more of an exception. The genes coding for the HPr kinase homologues of the Proteobacteria are in a gene cluster together with an HPr-like protein, termed XPr, suggesting a functional relationship. Moreover, the XPr proteins contain the serine phosphorylation sequence motif. Remarkably, the analysis suggests a possible relation between CcpA-dependent gene regulation and the nitrogen regulation system (Ntr) found in the γ subdivision of the Proteobacteria. The relation is suggested by the clustering of CCR and Ntr components on the genome of members of the Proteobacteria and by the close phylogenetic relationship between XPr and NPr, the HPr-like protein in the Ntr system. In bacteria in the phylum Proteobacteria that contain HPr kinase and XPr, the latter may be at the center of a complex regulatory network involving both CCR and the Ntr system. PMID:14665673

  1. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, L.J.; /SLAC, SSRL; Badarau, A.

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HClmore » pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  2. Genetic Engineering of the Phosphocarrier Protein NPr of the Escherichia coli Phosphotransferase System Selectively Improves Sugar Uptake Activity*

    PubMed Central

    Lopez-de los Santos, Yossef; Chan, Henry; Cantu, Vito A.; Rettner, Rachael; Sanchez, Filiberto; Zhang, Zhongge; Saier, Milton H.; Soberon, Xavier

    2012-01-01

    The Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS) in prokaryotes mediates the uptake and phosphorylation of its numerous substrates through a phosphoryl transfer chain where a phosphoryl transfer protein, HPr, transfers its phosphoryl group to any of several sugar-specific Enzyme IIA proteins in preparation for sugar transport. A phosphoryl transfer protein of the PTS, NPr, homologous to HPr, functions to regulate nitrogen metabolism and shows virtually no enzymatic cross-reactivity with HPr. Here we describe the genetic engineering of a “chimeric” HPr/NPr protein, termed CPr14 because 14 amino acid residues of the interface were replaced. CPr14 shows decreased activity with most PTS permeases relative to HPr, but increases activity with the broad specificity mannose permease. The results lead to the proposal that HPr is not optimal for most PTS permeases but instead represents a compromise with suboptimal activity for most PTS permeases. The evolutionary implications are discussed. PMID:22767600

  3. Light Moderates the Induction of Phosphoenolpyruvate Carboxylase by NaCl and Abscisic Acid in Mesembryanthemum crystallinum 1

    PubMed Central

    McElwain, Elizabeth F.; Bohnert, Hans J.; Thomas, John C.

    1992-01-01

    In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C3-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte. ImagesFigure 1Figure 2 PMID:16668999

  4. Silencing of hygromycin phosphotransferase (hph) gene during sexual cycle and its reversible inactivation in heterokaryon of Neurospora crassa.

    PubMed

    Dev, Kamal; Maheshwari, Ramesh

    2003-09-01

    We transformed wild-type Neurospora crassa with hph gene encoding hygromycin phosphotransferase to obtain hygromycin-resistant (HygR) transformants and studied their behavior in the vegetative and sexual phases of growth. During vegetative growth in the absence of hygromycin, the hph gene was stable for at least three successive transfers with conidia. On the other hand, the behavior of the transformants in the sexual phase was different. The segregation of hph gene in the meiotic progeny was in accordance with the Mendelian ratio as inferred from PCR analysis. However, in spite of inheriting the hph gene, a proportion of the meiotic progeny failed to grow in the presence of hygromycin. This suggested that the hph gene is silenced in some progeny. The silencing effect was not confined to hph gene expression, since one-half of the meiotic progeny also showed poor conidiation. Genomic Southern analysis indicated deletions/rearrangements of the transgene in the progeny. A heterokaryon between silenced and non-silenced strains was able to grow on hygromycin-containing medium, showing that silencing was recessive. Silencing was reversed in homokaryotic nuclei extracted from such heterokaryon.

  5. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms.

    PubMed

    Cook, G M; Kearns, D B; Russell, J B; Reizer, J; Saier, M H

    1995-09-01

    Streptococcus bovis had a diauxic pattern of glucose and lactose utilization, and both of these sugars were transported by the sugar phosphotransferase system (PTS). Lactose catabolism was inducible, and S. bovis used the tagatose pathway to ferment lactose. Since a mutant that was deficient in glucose PTS activity transported lactose as fast as the wild-type, it appeared that S. bovis has separate enzyme IIs for glucose and lactose. The nonmetabolizable glucose analogue 2-deoxyglucose (2-DG) was a noncompetitive inhibitor of methyl beta-D-thiogalactopyranoside (TMG) transport, and cells that were provided with either glucose or 2-DG were unable to transport TMG or lactose. Because the glucose-PTS-deficient mutant could ferment glucose, but could not exclude TMG, it appeared that enzyme IIGlc rather than glucose catabolism per se was the critical feature of inducer exclusion. Cells that had accumulated TMG as TMG 6-phosphate expelled free TMG when glucose was added, but 2-DG was unable to cause TMG expulsion. The glucose-PTS-deficient mutant could still expel TMG in the presence of exogenous glucose. Membrane vesicles also exhibited glucose-dependent TMG exclusion and TMG expulsion. Membrane vesicles that were electroporated with phosphoenolpyruvate (PEP) and HPr retained TMG for more than 3 min, but vesicles that were electroporated with PEP plus HPr and fructose 1,6-diphosphate (FDP) (or glycerate 2-phosphate) lost their ability to retain TMG. Because FDP was able to trigger the ATP-dependent phosphorylation of HPr, it appeared that inducer expulsion was mediated by an FDP-activated protein kinase.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.

    PubMed

    Su, Buli; Wu, Mianbin; Zhang, Zhe; Lin, Jianping; Yang, Lirong

    2015-09-01

    A metabolically engineered Escherichia coli has been constructed for the production of xylitol, one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost no inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. coli allowed production of 172.4 g L(-1) xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L(-1) h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L(-1) xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L(-1) h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System.

    PubMed

    McCloskey, Douglas; Xu, Sibei; Sandberg, Troy E; Brunk, Elizabeth; Hefner, Ying; Szubin, Richard; Feist, Adam M; Palsson, Bernhard O

    2018-06-15

    Aromatic metabolites provide the backbone for numerous industrial and pharmaceutical compounds of high value. The Phosphotransferase System (PTS) is common to many bacteria, and is the primary mechanism for glucose uptake by Escherichia coli. The PTS was removed to conserve phosphoenolpyruvate (pep), which is a precursor for aromatic metabolites and consumed by the PTS, for aromatic metabolite production. Replicate adaptive laboratory evolution (ALE) of PTS and detailed omics data sets collected revealed that the PTS bridged the gap between respiration and fermentation, leading to distinct high fermentative and high respiratory rate phenotypes. It was also found that while all strains retained high levels of aromatic amino acid (AAA) biosynthetic precursors, only one replicate from the high glycolytic clade retained high levels of intracellular AAAs. The fast growth and high AAA precursor phenotypes could provide a starting host for cell factories targeting the overproduction aromatic metabolites. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Retrovirus-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human CD34+ bone marrow cells.

    PubMed

    Akatsuka, Y; Emi, N; Kato, H; Abe, A; Tanimoto, M; Lupton, S D; Saito, H

    1994-12-01

    Retrovirus-mediated gene transfer into human hematopoietic stem cells has been proposed as a means of therapy for various inherited diseases and as a method of gene marking. The transduction efficiency of an amphotropic retroviral vector (PA317/HyTK) containing a hygromycin phosphotransferase-thymidine kinase fusion gene was examined with human CD34+ bone marrow cells in the presence of interleukin-3 (IL-3), interleukin-6 (IL-6), and stem cell factor. Transduction efficiencies determined from the ability of transduced granulocyte-macrophage colony forming units (CFU-GM) to grow in hygromycin B and from polymerase chain reaction analysis of individual transduced CFU-GM growing in the presence of hygromycin B were 0.3-3.0% (mean +/- S.D., 1.1 +/- 0.9%) and 0.1-1.2% (mean +/- S.D., 0.5 +/- 0.4%), respectively. Ganciclovir at a dose of approximately 1 microM reduced the number of CFU-GM derived from vector-infected CD34+ cells by 50%. These findings demonstrate that human hematopoietic stem cells infected with this retroviral vector are susceptible to ganciclovir, offering the potential to control transduced gene expression in vivo.

  9. Utilization of d-Ribitol by Lactobacillus casei BL23 Requires a Mannose-Type Phosphotransferase System and Three Catabolic Enzymes

    PubMed Central

    Bourand, A.; Yebra, M. J.; Boël, G.; Mazé, A.

    2013-01-01

    Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation. PMID:23564164

  10. Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean

    PubMed Central

    Wang, Ning; Zhong, Xiujuan; Cong, Yahui; Wang, Tingting; Yang, Songnan; Li, Yan; Gai, Junyi

    2016-01-01

    Phosphoenolpyruvate carboxylase (PEPC) plays an important role in assimilating atmospheric CO2 during C4 and crassulacean acid metabolism photosynthesis, and also participates in various non-photosynthetic processes, including fruit ripening, stomatal opening, supporting carbon–nitrogen interactions, seed formation and germination, and regulation of plant tolerance to stresses. However, a comprehensive analysis of PEPC family in Glycine max has not been reported. Here, a total of ten PEPC genes were identified in soybean and denominated as GmPEPC1-GmPEPC10. Based on the phylogenetic analysis of the PEPC proteins from 13 higher plant species including soybean, PEPC family could be classified into two subfamilies, which was further supported by analyses of their conserved motifs and gene structures. Nineteen cis-regulatory elements related to phytohormones, abiotic and biotic stresses were identified in the promoter regions of GmPEPC genes, indicating their roles in soybean development and stress responses. GmPEPC genes were expressed in various soybean tissues and most of them responded to the exogenously applied phytohormones. GmPEPC6, GmPEPC8 and GmPEPC9 were significantly induced by aluminum toxicity, cold, osmotic and salt stresses. In addition, the enzyme activities of soybean PEPCs were also up-regulated by these treatments, suggesting their potential roles in soybean response to abiotic stresses. PMID:27924923

  11. New enzymes from environmental cassette arrays: Functional attributes of a phosphotransferase and an RNA-methyltransferase

    PubMed Central

    Nield, Blair S.; Willows, Robert D.; Torda, Andrew E.; Gillings, Michael R.; Holmes, Andrew J.; Nevalainen, K.M. Helena; Stokes, H.W.; Mabbutt, Bridget C.

    2004-01-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7″) from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%–28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg2+-binding residues. Unlike related APH(4) or APH(7″) enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins. PMID:15152095

  12. New enzymes from environmental cassette arrays: functional attributes of a phosphotransferase and an RNA-methyltransferase.

    PubMed

    Nield, Blair S; Willows, Robert D; Torda, Andrew E; Gillings, Michael R; Holmes, Andrew J; Nevalainen, K M Helena; Stokes, H W; Mabbutt, Bridget C

    2004-06-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7") from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%-28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg(2+)-binding residues. Unlike related APH(4) or APH(7") enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins.

  13. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells.

    PubMed

    Blochlinger, K; Diggelmann, H

    1984-12-01

    The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells.

  14. Changes in the quaternary structure of phosphoenolpyruvate carboxylase induced by ionic strength affect its catalytic activity.

    PubMed

    Wagner, R; Gonzalez, D H; Podesta, F E; Andreo, C S

    1987-05-04

    Phosphoenolpyruvate carboxylase from maize leaves dissociated into dimers and/or monomers when exposed to increasing ionic strength (e.g. 200-400 mM NaCl) as indicated by gel filtration experiments. Changes in the oligomerization state were dependent on pH, time of preincubation with salt and protein concentration. A dissociation into dimers and monomers was observed at pH 8, while at pH 7 dissociation into the dimeric form only was observed. Exposure of the enzyme to higher ionic strength decreased the activity in a time-dependent manner. Turnover conditions and glucose 6-phosphate protected the carboxylase from the decay in activity, which was faster at pH 7 than at pH 8. The results suggest that changes in activity of the enzyme, following exposure to high ionic strength, are the consequence of dissociation. Tetrameric and dimeric forms of the phosphoenolpyruvate carboxylase seemingly reveal different catalytic properties. We suggest that the distinct catalytic properties of the different oligomeric species of phosphoenolpyruvate carboxylase and changes in the equilibrium between them could be the molecular basis for an effective regulation of metabolite levels by this key enzyme of C4 plants.

  15. Gene-nutrient interactions on the phosphoenolpyruvate carboxykinase influence insulin sensitivity in metabolic syndrome subjects.

    PubMed

    Perez-Martinez, Pablo; Garcia-Rios, Antonio; Delgado-Lista, Javier; Gjelstad, Ingrid M F; Gibney, James; Kieć-Wilk, Beata; Camargo, Antonio; Helal, Olfa; Karlström, Brita; Blaak, Ellen E; Hall, Wendy; Risérus, Ulf; Dembińska-Kieć, Aldona; Defoort, Catherine; Saris, Wim H M; Lovegrove, Julie A; Drevon, Christian A; Roche, Helen M; Lopez-Miranda, Jose

    2013-08-01

    Genetic background may interact with habitual dietary fat composition, and affect development of the metabolic syndrome (MetS). The phosphoenolpyruvate carboxykinase gene (PCK1) plays a significant role regulating glucose metabolism, and fatty acids are key metabolic regulators, which interact with transcription factors and influence glucose metabolism. We explored genetic variability at the PCK1 gene locus in relation to degree of insulin resistance and plasma fatty acid levels in MetS subjects. Moreover, we analyzed the PCK1 gene expression in the adipose tissue of a subgroup of MetS subjects according to the PCK1 genetic variants. Insulin sensitivity, insulin secretion, glucose effectiveness, plasma concentrations of C-peptide, fatty acid composition and three PCK1 tag-single nucleotide polymorphisms (SNPs) were determined in 443 MetS participants in the LIPGENE cohort. The rs2179706 SNP interacted with plasma concentration of n - 3 polyunsaturated fatty acids (n - 3 PUFA), which were significantly associated with plasma concentrations of fasting insulin, peptide C, and HOMA-IR. Among subjects with n - 3 PUFA levels above the population median, carriers of the C/C genotype exhibited lower plasma concentrations of fasting insulin (P = 0.036) and HOMA-IR (P = 0.019) as compared with C/C carriers with n - 3 PUFA below the median. Moreover, homozygous C/C subjects with n - 3 PUFA levels above the median showed lower plasma concentrations of peptide C as compared to individuals with the T-allele (P = 0.006). Subjects carrying the T-allele showed a lower gene PCK1 expression as compared with carriers of the C/C genotype (P = 0.015). The PCK1 rs2179706 polymorphism interacts with plasma concentration of n - 3 PUFA levels modulating insulin resistance in MetS subjects. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation.

    PubMed

    Tabatabaei, Iman; Ruf, Stephanie; Bock, Ralph

    2017-02-01

    A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.

  17. Expression of codon-optmized phosphoenolpyruvate carboxylase gene from Glaciecola sp. HTCC2999 in Escherichia coli and its application for C4 chemical production.

    PubMed

    Park, Soohyun; Pack, Seung Pil; Lee, Jinwon

    2012-08-01

    We examined the expression of the phosphoenolpyruvate carboxylase (PEPC) gene from marine bacteria in Escherichia coli using codon optimization. The codon-optimized PEPC gene was expressed in the E. coli K-12 strain W3110. SDS-PAGE analysis revealed that the codon-optimized PEPC gene was only expressed in E. coli, and measurement of enzyme activity indicated the highest PEPC activity in the E. coli SGJS112 strain that contained the codon-optimized PEPC gene. In fermentation assays, the E. coli SGJS112 produced the highest yield of oxaloacetate using glucose as the source and produced a 20-times increase in the yield of malate compared to the control. We concluded that the codon optimization enabled E. coli to express the PEPC gene derived from the Glaciecola sp. HTCC2999. Also, the expressed protein exhibited an enzymatic activity similar to that of E. coli PEPC and increased the yield of oxaloacetate and malate in an E. coli system.

  18. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells.

    PubMed Central

    Blochlinger, K; Diggelmann, H

    1984-01-01

    The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells. Images PMID:6098829

  19. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment.

    PubMed

    Piveteau, Pascal; Depret, Géraldine; Pivato, Barbara; Garmyn, Dominique; Hartmann, Alain

    2011-01-01

    Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for listeriosis. In order to study the processes underlying its ability to adapt to the soil environment, whole-genome arrays were used to analyse transcriptome modifications 15 minutes, 30 minutes and 18 h after inoculation of L. monocytogenes EGD-e in soil extracts. Growth was observed within the first day of incubation and large numbers were still detected in soil extract and soil microcosms one year after the start of the experiment. Major transcriptional reprofiling was observed. Nutrient acquisition mechanisms (phosphoenolpyruvate-dependent phosphotransferase systems and ABC transporters) and enzymes involved in catabolism of specific carbohydrates (β-glucosidases; chitinases) were prevalent. This is consistent with the overrepresentation of the CodY regulon that suggests that in a nutrient depleted environment, L. monocytogenes recruits its extensive repertoire of transporters to acquire a range of substrates for energy production.

  20. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway.

    PubMed Central

    Hamilton, I R; Lebtag, H

    1979-01-01

    Growth on lactose by strains of Streptococcus mutans resulted in the induction of the lactose-phosphoenolpyruvate-phosphotransferase system, phospho-beta-galactosidase, and the enzymes of the tagatose 6-phosphate pathway. PMID:230175

  1. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  2. The HPr(Ser) Kinase of Streptococcus salivarius: Purification, Properties, and Cloning of the hprK Gene

    PubMed Central

    Brochu, Denis; Vadeboncoeur, Christian

    1999-01-01

    In gram-positive bacteria, HPr, a protein of the phosphoenolpyruvate:sugar phosphotransferase system, is phosphorylated on a serine residue at position 46 by an ATP-dependent protein kinase. The HPr(Ser) kinase of Streptococcus salivarius ATCC 25975 was purified, and the encoding gene (hprK) was cloned by using a nucleotide probe designed from the N-terminal amino acid sequence. The predicted amino acid sequence of the S. salivarius enzyme showed 45% identity with the Bacillus subtilis enzyme, the conserved residues being located mainly in the C-terminal half of the protein. The predicted hprK gene product has a molecular mass of 34,440 Da and a pI of 5.6. These values agree well with those found experimentally by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, molecular sieve chromatography in the presence of guanidine hydrochloride, and chromatofocusing using the purified protein. The native protein migrates on a Superdex 200 HR column as a 330,000-Da protein, suggesting that the HPr(Ser) kinase is a decamer. The enzyme requires Mg2+ for activity and functions optimally at pH 7.5. Unlike the enzyme from other gram-positive bacteria, the HPr(Ser) kinase from S. salivarius is not stimulated by FDP or other glycolytic intermediates. The enzyme is inhibited by inorganic phosphate, and its Kms for HPr and ATP are 31 μM and 1 mM, respectively. PMID:9922231

  3. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    PubMed

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  4. Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14.

    PubMed

    Telke, Amar A; Rolain, Jean-Marc

    2015-12-01

    Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant

    PubMed Central

    Park, Miseon; Mitchell, Wilfrid J.

    2016-01-01

    Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose. PMID:28058047

  6. Physiological and Transcriptional Characterization of Escherichia Coli Strains Lacking Interconversion of Phosphoenolpyruvate and Pyruvate When Glucose and Acetate are Coutilized

    PubMed Central

    Sabido, Andrea; Sigala, Juan Carlos; Hernández-Chávez, Georgina; Flores, Noemí; Gosset, Guillermo; Bolívar, Francisco

    2013-01-01

    Phosphoenolpyruvate (PEP) is a precursor involved in the biosynthesis of aromatics and other valuable compounds in Escherichia coli. The PEP:carbohydrate phosphotransferase system (PTS) is the major glucose transport system and the largest PEP consumer. To increase intracellular PEP availability for aromatics production purposes, mutant strains of E. coli JM101 devoid of the ptsHIcrr operon (PB11 strain) have been previously generated. In this derivative, transport and growth rate on glucose decreased significantly. A laboratory evolved strain derived from PB11 that partially recovered its growth capacity on glucose was named PB12. In the present study, we blocked carbon skeletons interchange between PEP and pyruvate (PYR) in these ptsHIcrr− strains by deleting the pykA, pykF, and ppsA genes. The PB11 pykAF− ppsA− strain exhibited no growth on glucose or acetate alone, but it was viable when both substrates were consumed simultaneously. In contrast, the PB12 pykAF− ppsA− strain displayed a low growth rate on glucose or acetate alone, but in the mixture, growth was significantly improved. RT-qPCR expression analysis of PB11 pykAF− ppsA− growing with both carbon sources showed a downregulation of all central metabolic pathways compared with its parental PB11 strain. Under the same conditions, transcription of most of the genes in PB12 pykAF− ppsA− did not change, and few like aceBAK, sfcA, and poxB were overexpressed compared with PB12. We explored the aromatics production capabilities of both ptsHIcrr− pykAF− ppsA− strains and the engineered PB12 pykAF− ppsA− tyrR− pheAev2+/pJLBaroGfbrtktA enhanced the yield of aromatic compounds when coutilizing glucose and acetate compared with the control strain PB12 tyrR− pheAev2+/pJLBaroGfbrtktA. Biotechnol. Bioeng. 2014;111: 1150–1160. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:24375081

  7. Screen for leukotoxin mutants in Aggregatibacter actinomycetemcomitans: genes of the phosphotransferase system are required for leukotoxin biosynthesis.

    PubMed

    Isaza, Maria P; Duncan, Matthew S; Kaplan, Jeffrey B; Kachlany, Scott C

    2008-08-01

    Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture.

  8. Functional Analysis of the N-Acetylglucosamine Metabolic Genes of Streptomyces coelicolor and Role in Control of Development and Antibiotic Production

    PubMed Central

    Świątek, Magdalena A.; Tenconi, Elodie; Rigali, Sébastien

    2012-01-01

    N-Acetylglucosamine, the monomer of chitin, is a favored carbon and nitrogen source for streptomycetes. Its intracellular catabolism requires the combined actions of the N-acetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase NagA and the glucosamine-6-phosphate (GlcN-6P) deaminase/isomerase NagB. GlcNAc acts as a signaling molecule in the DasR-mediated nutrient sensing system, activating development and antibiotic production under poor growth conditions (famine) and blocking these processes under rich conditions (feast). In order to understand how a single nutrient can deliver opposite information according to the nutritional context, we carried out a mutational analysis of the nag metabolic genes nagA, nagB, and nagK. Here we show that the nag genes are part of the DasR regulon in Streptomyces coelicolor, which explains their transcriptional induction by GlcNAc. Most likely as the result of the intracellular accumulation of GlcN-6P, nagB deletion mutants fail to grow in the presence of GlcNAc. This toxicity can be alleviated by the additional deletion of nagA. We recently showed that in S. coelicolor, GlcNAc is internalized as GlcNAc-6P via the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS). Considering the relevance of GlcNAc for the control of antibiotic production, improved insight into GlcNAc metabolism in Streptomyces may provide new leads toward biotechnological applications. PMID:22194457

  9. Role of Secondary Transporters and Phosphotransferase Systems in Glucose Transport by Oenococcus oeni ▿

    PubMed Central

    Kim, Ok Bin; Richter, Hanno; Zaunmüller, Tanja; Graf, Sabrina; Unden, Gottfried

    2011-01-01

    Glucose uptake by the heterofermentative lactic acid bacterium Oenococcus oeni B1 was studied at the physiological and gene expression levels. Glucose- or fructose-grown bacteria catalyzed uptake of [14C]glucose over a pH range from pH 4 to 9, with maxima at pHs 5.5 and 7. Uptake occurred in two-step kinetics in a high- and low-affinity reaction. The high-affinity uptake followed Michaelis-Menten kinetics and required energization. It accumulated the radioactivity of glucose by a factor of 55 within the bacteria. A large portion (about 80%) of the uptake of glucose was inhibited by protonophores and ionophores. Uptake of the glucose at neutral pH was not sensitive to degradation of the proton potential, Δp. Expression of the genes OEOE_0819 and OEOE_1574 (here referred to as 0819 and 1574), coding for secondary transporters, was induced by glucose as identified by quantitative real-time (RT)-PCR. The genes 1574 and 0819 were able to complement growth of a Bacillus subtilis hexose transport-deficient mutant on glucose but not on fructose. The genes 1574 and 0819 therefore encode secondary transporters for glucose, and the transports are presumably Δp dependent. O. oeni codes, in addition, for a phosphotransferase transport system (PTS) (gene OEOE_0464 [0464] for the permease) with similarity to the fructose- and mannose-specific PTS of lactic acid bacteria. Quantitative RT-PCR showed induction of the gene 0464 by glucose and by fructose. The data suggest that the PTS is responsible for Δp-independent hexose transport at neutral pH and for the residual Δp-independent transport of hexoses at acidic pH. PMID:22020640

  10. Purification and characterization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus.

    PubMed

    Zalacain, M; Pardo, J M; Jiménez, A

    1987-01-15

    A hygromycin B phosphotransferase activity from Streptomyces hygroscopicus has been highly purified by ammonium sulphate fractionation followed by affinity column chromatography through Sepharose-6B-hygromycin-B. The combined active fractions showed a single protein band (41 kDa) when subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. When gel electrophoresis was performed under non-denaturing conditions, the single protein band promoted in situ phosphorylation of hygromycin B, indicating that this protein corresponded to the purified hygromycin B phosphotransferase. The enzyme has been purified 236-fold and approximate Km values of 0.56 microM for hygromycin B and ATP, respectively, were deduced.

  11. Screen for Leukotoxin Mutants in Aggregatibacter actinomycetemcomitans: Genes of the Phosphotransferase System Are Required for Leukotoxin Biosynthesis▿

    PubMed Central

    Isaza, Maria P.; Duncan, Matthew S.; Kaplan, Jeffrey B.; Kachlany, Scott C.

    2008-01-01

    Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture. PMID:18541661

  12. High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate.

    PubMed

    Park, Soohyun; Hong, Soohye; Pack, Seung Pil; Lee, Jinwon

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5-30 °C) and weakly basic conditions (pH 8.5-10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.

  13. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    NASA Astrophysics Data System (ADS)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  14. Kinetics of the phosphotransferase reaction of the catalytic subunit of the tick salivary gland cAMP-dependent protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, S.D.; Essenberg, R.C.; Sauer, J.R.

    1986-05-01

    The catalytic subunit of the cAMP dependent protein kinase was purified 100-fold from tick salivary glands. The enzyme mechanism of the phosphotransferase reaction catalyzed by this subunit was investigated. Highly purified enzyme did not show ATP-ase activity in the absence of protein substrates. Initial velocities were measured using histone H-1 or a synthetic heptapeptide, Kemptide, as P/sub i/ acceptors and (..gamma..-/sup 32/P) ATP as a phosphodonor. Patterns were consistent with a sequential, but not a ping pong mechanism. At high concentration (>2Km), histone showed substrate inhibition which was noncompetitive versus ATP. Product inhibition by Mg.ADP was competitive versus ATP andmore » noncompetitive with respect to H-1. Phosphohistone on the other hand was noncompetitive with respect to H-1, but gave parabolic competitive inhibition against ATP. Dead-end inhibition by AMP-PNP, an analogue of ATP, was competitive and noncompetitive against ATP and H-1, respectively. The inhibitory of cAMP dependent protein kinase was noncompetitive with ATP and competitive with histone. These studies strongly suggest that the tick salivary gland protein kinase has a sequential mechanism with primarily ordered addition of ATP followed by protein substrate and ordered release of phosphoprotein and ADP, but some random character.« less

  15. Cytosolic phosphoenolpyruvate carboxykinase is a response gene involved in porcine adipocyte adaptation to heat stress.

    PubMed

    Qu, Huan; Ajuwon, Kolapo M

    2018-05-04

    Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P < 0.05) triacylglycerol accumulation compared with control (37.0 °C). HS increased (P < 0.05) reactive oxygen species level and 3MPA further upregulated (P < 0.05) its level. Heat shock protein 70 (HSP70) gene expression was induced (P < 0.05) by HS compared to control, and PCK1 inhibition with 3MPA attenuated (P < 0.05) its induction by HS. The endoplasmic reticulum (ER) stress markers, C/EBP homologous protein (CHOP) was also upregulated by HS and 3MPA further upregulated (P < 0.05) CHOP mRNA level. These results suggest that with inhibition of PCK1 during HS, in vitro cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.

  16. Synthesis of citrate from phosphoenolpyruvate and acetylcarnitine by mitochondria from rabbit, pigeon and rat liver: implications for lipogenesis.

    PubMed

    Wiese, T J; Wuensch, S A; Ray, P D

    1996-08-01

    Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3-, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricarboxylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate carboxykinase in vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA carboxylase, a carbon source via ATP:citrate lyase and NADPH via NADP:malate dehydrogenase or NADP:isocitrate dehydrogenase.

  17. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Hygromycin B phosphotransferase (APH4... the Hygromycin B phosphotransferase (APH4) enzyme in all plants are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.526 Hygromycin B...

  18. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Hygromycin B phosphotransferase (APH4... the Hygromycin B phosphotransferase (APH4) enzyme in all plants are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.526 Hygromycin B...

  19. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Hygromycin B phosphotransferase (APH4... the Hygromycin B phosphotransferase (APH4) enzyme in all plants are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.526 Hygromycin B...

  20. Directed evolution for thermostabilization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus.

    PubMed

    Sugimoto, Naohisa; Takakura, Yasuaki; Shiraki, Kentaro; Honda, Shinya; Takaya, Naoki; Hoshino, Takayuki; Nakamura, Akira

    2013-01-01

    To obtain a selection marker gene functional in a thermophilic bacterium, Thermus thermophilus, an in vivo-directed evolutionary strategy was conducted on a hygromycin B phosphotransferase gene (hyg) from Streptomyces hygroscopicus. The expression of wild-type hyg in T. thermophilus provided hygromycin B (HygB) resistance up to 60 °C. Through selection of mutants showing HygB resistance at higher temperatures, eight amino acid substitutions and the duplication of three amino acids were identified. A variant containing seven substitutions and the duplication (HYG10) showed HygB resistance at a highest temperature of 74 °C. Biochemical and biophysical analyses of recombinant HYG and HYG10 revealed that HYG10 was in fact thermostabilized. Modeling of the three-dimensional structure of HYG10 suggests the possible roles of the various substitutions and the duplication on thermostabilization, of which three substitutions and the duplication located at the enzyme surface suggested that these mutations made the enzyme more hydrophilic and provided increased stability in aqueous solution.

  1. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues of...

  2. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues of...

  3. Identification of Salmonella typhimurium Genes Required for Colonization of the Chicken Alimentary Tract and for Virulence in Newly Hatched Chicks

    PubMed Central

    Turner, Arthur K.; Lovell, Margaret A.; Hulme, Scott D.; Zhang-Barber, Li; Barrow, Paul A.

    1998-01-01

    From a collection of 2,800 Tn5-TC1 transposon mutants of Salmonella typhimurium F98, 18 that showed reduced intestinal colonization of 3-week-old chicks were identified. The sites of transposon insertion were determined for most of the mutants and included insertions in the lipopolysaccharide biosynthesis genes rfaK, rfaY, rfbK, and rfbB and the genes dksA, clpB, hupA, and sipC. In addition, identification was made of an insertion into a novel gene that encodes a protein showing similarity to the IIC component of the mannose class of phosphoenolpyruvate-carbohydrate phosphotransferase systems, which we putatively called ptsC. Transduction of most of the transposon mutations to a fresh S. typhimurium F98 genetic background and construction of defined mutations in the rfbK, dksA, hupA, sipC, and ptsC genes of S. typhimurium F98 supported the role in colonization of all but the pts locus. The virulence of the rfbK, dksA, hupA, sipC, and ptsC defined mutants and clpB and rfaY transductants in 1-day-old chicks was tested. All but the ptsC and rfaY mutants were attenuated for virulence. A number of other phenotypes associated with some of the mutations are described. PMID:9573095

  4. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity.

    PubMed

    Monreal, José A; Arias-Baldrich, Cirenia; Tossi, Vanesa; Feria, Ana B; Rubio-Casal, Alfredo; García-Mata, Carlos; Lamattina, Lorenzo; García-Mauriño, Sofía

    2013-11-01

    Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C₄ phosphoenolpyruvate carboxylase (C₄ PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.

  5. Overexpression and Initial Characterization of the Chromosomal Aminoglycoside 3′-O-Phosphotransferase APH(3′)-IIb from Pseudomonas aeruginosa▿†

    PubMed Central

    Hainrichson, Mariana; Yaniv, Orit; Cherniavsky, Marina; Nudelman, Igor; Shallom-Shezifi, Dalia; Yaron, Sima; Baasov, Timor

    2007-01-01

    The chromosomal gene aph(3′)-IIb, encoding an aminoglycoside 3′-phosphotransferase in Pseudomonas aeruginosa, was cloned and overexpressed in Escherichia coli. The APH(3′)-IIb enzyme was purified as a monomer in a two-step procedure and was shown to phosphorylate its substrates at the C-3′-OH position, with kcat/Km values of 0.4 × 104 to 36 × 104 M−1 s−1. PMID:17088479

  6. An O-phosphotransferase catalyzes phosphorylation of hygromycin A in the antibiotic-producing organism Streptomyces hygroscopicus.

    PubMed

    Dhote, Vidya; Gupta, Shuchi; Reynolds, Kevin A

    2008-10-01

    The antibiotic hygromycin A (HA) binds to the 50S ribosomal subunit and inhibits protein synthesis in gram-positive and gram-negative bacteria. The HA biosynthetic gene cluster in Streptomyces hygroscopicus NRRL 2388 contains 29 open reading frames, which have been assigned putative roles in biosynthesis, pathway regulation, and self-resistance. The hyg21 gene encodes an O-phosphotransferase with a proposed role in self-resistance. We observed that insertional inactivation of hyg21 in S. hygroscopicus leads to a greater than 90% decrease in HA production. The wild type and the hyg21 mutant were comparably resistant to HA. Using Escherichia coli as a heterologous host, we expressed and purified Hyg21. Kinetic analyses revealed that the recombinant protein catalyzes phosphorylation of HA (K(m) = 30 +/- 4 microM) at the C-2''' position of the fucofuranose ring in the presence of ATP (K(m) = 200 +/- 20 microM) or GTP (K(m) = 350 +/- 60 microM) with a k(cat) of 2.2 +/- 0.1 min(-1). The phosphorylated HA is inactive against HA-sensitive Delta tolC E. coli and Streptomyces lividans. Hyg21 also phosphorylates methoxyhygromycin A and desmethylenehygromycin A with k(cat) and K(m) values similar to those observed with HA. Phosphorylation of the naturally occurring isomers of 5'''-dihydrohygromycin A and 5'''-dihydromethoxyhygromycin A was about 12 times slower than for the corresponding non-natural isomers. These studies demonstrate that Hyg21 is an O-phosphotransferase with broad substrate specificity, tolerating changes in the aminocyclitol moiety more than in the fucofuranose moiety, and that phosphorylation by Hyg21 is one of several possible mechanisms of self-resistance in S. hygroscopicus NRRL 2388.

  7. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    PubMed Central

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  8. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) and serine biosynthetic pathway genes are co-ordinately increased during anabolic agent-induced skeletal muscle growth.

    PubMed

    Brown, D M; Williams, H; Ryan, K J P; Wilson, T L; Daniel, Z C T R; Mareko, M H D; Emes, R D; Harris, D W; Jones, S; Wattis, J A D; Dryden, I L; Hodgman, T C; Brameld, J M; Parr, T

    2016-06-28

    We aimed to identify novel molecular mechanisms for muscle growth during administration of anabolic agents. Growing pigs (Duroc/(Landrace/Large-White)) were administered Ractopamine (a beta-adrenergic agonist; BA; 20 ppm in feed) or Reporcin (recombinant growth hormone; GH; 10 mg/48 hours injected) and compared to a control cohort (feed only; no injections) over a 27-day time course (1, 3, 7, 13 or 27-days). Longissimus Dorsi muscle gene expression was analyzed using Agilent porcine transcriptome microarrays and clusters of genes displaying similar expression profiles were identified using a modified maSigPro clustering algorithm. Anabolic agents increased carcass (p = 0.002) and muscle weights (Vastus Lateralis: p < 0.001; Semitendinosus: p = 0.075). Skeletal muscle mRNA expression of serine/one-carbon/glycine biosynthesis pathway genes (Phgdh, Psat1 and Psph) and the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase-M (Pck2/PEPCK-M), increased during treatment with BA, and to a lesser extent GH (p < 0.001, treatment x time interaction). Treatment with BA, but not GH, caused a 2-fold increase in phosphoglycerate dehydrogenase (PHGDH) protein expression at days 3 (p < 0.05) and 7 (p < 0.01), and a 2-fold increase in PEPCK-M protein expression at day 7 (p < 0.01). BA treated pigs exhibit a profound increase in expression of PHGDH and PEPCK-M in skeletal muscle, implicating a role for biosynthetic metabolic pathways in muscle growth.

  9. An O-Phosphotransferase Catalyzes Phosphorylation of Hygromycin A in the Antibiotic-Producing Organism Streptomyces hygroscopicus▿

    PubMed Central

    Dhote, Vidya; Gupta, Shuchi; Reynolds, Kevin A.

    2008-01-01

    The antibiotic hygromycin A (HA) binds to the 50S ribosomal subunit and inhibits protein synthesis in gram-positive and gram-negative bacteria. The HA biosynthetic gene cluster in Streptomyces hygroscopicus NRRL 2388 contains 29 open reading frames, which have been assigned putative roles in biosynthesis, pathway regulation, and self-resistance. The hyg21 gene encodes an O-phosphotransferase with a proposed role in self-resistance. We observed that insertional inactivation of hyg21 in S. hygroscopicus leads to a greater than 90% decrease in HA production. The wild type and the hyg21 mutant were comparably resistant to HA. Using Escherichia coli as a heterologous host, we expressed and purified Hyg21. Kinetic analyses revealed that the recombinant protein catalyzes phosphorylation of HA (Km = 30 ± 4 μM) at the C-2‴ position of the fucofuranose ring in the presence of ATP (Km = 200 ± 20 μM) or GTP (Km = 350 ± 60 μM) with a kcat of 2.2 ± 0.1 min−1. The phosphorylated HA is inactive against HA-sensitive ΔtolC E. coli and Streptomyces lividans. Hyg21 also phosphorylates methoxyhygromycin A and desmethylenehygromycin A with kcat and Km values similar to those observed with HA. Phosphorylation of the naturally occurring isomers of 5‴-dihydrohygromycin A and 5‴-dihydromethoxyhygromycin A was about 12 times slower than for the corresponding non-natural isomers. These studies demonstrate that Hyg21 is an O-phosphotransferase with broad substrate specificity, tolerating changes in the aminocyclitol moiety more than in the fucofuranose moiety, and that phosphorylation by Hyg21 is one of several possible mechanisms of self-resistance in S. hygroscopicus NRRL 2388. PMID:18644964

  10. Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene.

    PubMed

    Qin, Na; Xu, Weigang; Hu, Lin; Li, Yan; Wang, Huiwei; Qi, Xueli; Fang, Yuhui; Hua, Xia

    2016-11-01

    Enhancing drought tolerance of crops has been a great challenge in crop improvement. Here, we report the maize phosphoenolpyruvate carboxylase (PEPC) gene was able to confer drought tolerance and increase grain yield in transgenic wheat (Triticum aestivum L.) plants. The improved of drought tolerance was associated with higher levels of proline, soluble sugar, soluble protein, and higher water use efficiency. The transgenic wheat plants had also a more extensive root system as well as increased photosynthetic capacity during stress treatments. The increased grain yield of the transgenic wheat was contributed by improved biomass, larger spike and grain numbers, and heavier 1000-grain weight under drought-stress conditions. Under non-stressed conditions, there were no significant increases in these of the measured traits except for photosynthetic rate when compared with parental wheat. Proteomic research showed that the expression levels of some proteins, including chlorophyll A-B binding protein and pyruvate, phosphate dikinase, which are related to photosynthesis, PAP fibrillin, which is involved in cytoskeleton synthesis, S-adenosylmethionine synthetase, which catalyzes methionine synthesis, were induced in the transgenic wheat under drought stress. Additionally, the expression of glutamine synthetase, which is involved in ammonia assimilation, was induced by drought stress in the wheat. Our study shows that PEPC can improve both stress tolerance and grain yield in wheat, demonstrating the efficacy of PEPC in crop improvement.

  11. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyko, Konstantin M., E-mail: kmb@inbi.ras.ru; National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182; Gorbacheva, Marina A.

    2016-09-02

    Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3′-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop withmore » unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding. - Highlights: • 3D structure of the novel aminoglycoside phosphotransferase AphVIII was obtained. • AphVIII activation loop is clearly identified in the electron density. • AphVIII has some unique structural features in its substrate C-ring binding pocket.« less

  12. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli

    PubMed Central

    Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki

    2008-01-01

    The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177

  13. Aminoglycoside acetyltransferase 3-IV (aacC4) and hygromycin B 4-I phosphotransferase (hphB) in bacteria isolated from human and animal sources.

    PubMed

    Salauze, D; Otal, I; Gomez-Lus, R; Davies, J

    1990-10-01

    Members of the family Enterobacteriaceae harboring an enzyme of the aminoglycoside acetyltransferase 3 class (AAC-3-IV) (apramycin and gentamicin resistance) and hygromycin B phosphotransferase 4 (HPH-4-I) (hygromycin B resistance) have been isolated from human clinical sources in Europe. A cluster of genes containing IS140, aacC4, and hphB was found in these strains. We demonstrate by Southern hybridization that this cluster is identical to the operon found in animals that also contains insertion sequences belonging to the ISO family. This provides another example of presumptive transfer of antibiotic resistance genes between bacteria of animal and human origin.

  14. New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers.

    PubMed

    Gehrig, H; Heute, V; Kluge, M

    2001-08-01

    To better understand the evolution of the enzyme phosphoenolpyruvate carboxylase (PEPC) and to test its versatility as a molecular character in phylogenetic and taxonomic studies, we have characterized and compared 70 new partial PEPC nucleotide and amino acid sequences (about 1100 bp of the 3' side of the gene) from 50 plant species (24 species of Bryophyta, 1 of Pteridophyta, and 25 of Spermatophyta). Together with previously published data, the new set of sequences allowed us to construct the up to now most complete phylogenetic tree of PEPC, where the PEPC sequences cluster according to both the taxonomic positions of the donor plants and the assumed specific function of the PEPC isoforms. Altogether, the study further strengthens the view that PEPC sequences can provide interesting information for the reconstruction of phylogenetic relations between organisms and metabolic pathways. To avoid confusion in future discussion, we propose a new nomenclature for the denotation of PEPC isoforms. Copyright 2001 Academic Press.

  15. Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp.1[W][OPEN

    PubMed Central

    Aldous, Sophia H.; Weise, Sean E.; Sharkey, Thomas D.; Waldera-Lupa, Daniel M.; Stühler, Kai; Mallmann, Julia; Groth, Georg; Gowik, Udo; Westhoff, Peter; Arsova, Borjana

    2014-01-01

    The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode. PMID:24850859

  16. Prokaryotic expression and allergenicity assessment of hygromycin B phosphotransferase protein derived from genetically modified plants.

    PubMed

    Lu, Y; Xu, W; Kang, A; Luo, Y; Guo, F; Yang, R; Zhang, J; Huang, K

    2007-09-01

    The hygromycin B phosphotransferase gene (hpt) has been widely used in the process of plant genetic engineering to produce plants that can secrete the HPT protein. As part of a safety assessment, sufficient quantities of the protein were produced in Escherichia coli to conduct in vitro digestibility and animal studies. Western blotting analysis showed that the HPT protein was digested by simulated gastric fluid within 40 s. ELISA demonstrated that the protein did not induce detectable levels of specific IgE antibodies or histamine in test animals. Alignment of the amino acid sequence of HPT with those of known allergens did not produce evidence of sequence similarities between these allergens and the HPT protein. We conclude that HPT has a low probability to induce allergenicity.

  17. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika

    2007-08-01

    The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported. Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3{submore » 2}21, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.« less

  18. In vivo directed evolution for thermostabilization of Escherichia coli hygromycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus.

    PubMed

    Nakamura, Akira; Takakura, Yasuaki; Kobayashi, Hideo; Hoshino, Takayuki

    2005-08-01

    An in vivo-directed evolutionary strategy was used to obtain a thermostabilized Escherichia coli hygromycin B phosphotransferase, using a host-vector system of Thermus thermophilus. Introduction of the mutant gene containing two amino acid substitutions, S52T and W238C, which was previously reported by Cannio et al. [J. Bacteriol., 180, 3237-3240 (1998)], did not confer hygromycin resistance on T. thermophilus cells at 55 degrees C; however, five spontaneously-generated independent mutants were obtained by selection of the transformants at this temperature. Each mutant gene contained one amino acid substitution of either A118V or T246A. Further selection with increasing temperature, at 58 degrees C and then 61 degrees C, led to acquisition of three more substitutions: D20G, S225P and Q226L. These mutations cumulatively influenced the maximum growth temperature of the T. thermophilus transformants in the presence of hygromycin; T. thermophilus carrying a mutant gene containing all the five substitutions was able to grow at up to 67 degrees C. This mutant gene, hph5, proved useful as a selection marker in the T. thermophilus host-vector system, either on the plasmid or by genome integration, at temperatures up to 65 degrees C.

  19. Ceramide Phosphoethanolamine Biosynthesis in Drosophila Is Mediated by a Unique Ethanolamine Phosphotransferase in the Golgi Lumen♦

    PubMed Central

    Vacaru, Ana M.; van den Dikkenberg, Joep; Ternes, Philipp; Holthuis, Joost C. M.

    2013-01-01

    Sphingomyelin (SM) is a vital component of mammalian membranes, providing mechanical stability and a structural framework for plasma membrane organization. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase in the Golgi lumen. Drosophila lacks SM and instead synthesizes the SM analogue ceramide phosphoethanolamine (CPE) as the principal membrane sphingolipid. The corresponding CPE synthase shares mechanistic features with enzymes mediating phospholipid biosynthesis via the Kennedy pathway. Using a functional cloning strategy, we here identified a CDP-ethanolamine:ceramide ethanolamine phosphotransferase as the enzyme responsible for CPE production in Drosophila. CPE synthase constitutes a new branch within the CDP-alcohol phosphotransferase superfamily with homologues in Arthropoda (insects, spiders, mites, scorpions), Cnidaria (Hydra, sea anemones), and Mollusca (oysters) but not in most other animal phyla. The enzyme resides in the Golgi complex with its active site facing the lumen, contrary to the membrane topology of other CDP-alcohol phosphotransferases. Our findings open up an important new avenue to address the biological role of CPE, an enigmatic membrane constituent of a wide variety of invertebrate and marine organisms. PMID:23449981

  20. A study of lactose metabolism in Lactococcus garvieae reveals a genetic marker for distinguishing between dairy and fish biotypes.

    PubMed

    Fortina, Maria Grazia; Ricci, Giovanni; Borgo, Francesca

    2009-06-01

    Dairy and fish isolates of Lactococcus garvieae were tested for their ability to utilize lactose and to grow in milk. Fish isolates were unable to assimilate lactose, but unexpectedly, they possessed the ability to grow in milk. Genetic studies, carried out constructing different vectorette libraries, provided evidence that in fish isolates, no genes involved in lactose utilization were present. For L. garvieae dairy isolates, a single system for the catabolism of lactose was found. It consists of a lactose transport and hydrolysis depending on a phosphoenolpyruvate-dependent phosphotransferase system combined with a phospho-beta-galactosidase. The genes involved were highly similar at the nucleotide sequence level to their counterparts in Lactococcus lactis; however, while in many L. lactis strains these genes are plasmid encoded, in L. garvieae they are chromosomally located. Thus, in the species L. garvieae, the phospho-beta-galactosidase gene, detectable in all strains of dairy origin but lacking in fish isolates, can be considered a reliable genetic marker for distinguishing biotypes in the two diverse ecological niches. Moreover, we obtained information regarding the complete nucleotide sequence of the gal operon in L. garvieae, consisting of a galactose permease and the Leloir pathway enzymes. This is one of the first reports concerning the determination of the nucleotide sequences of genes (other than the 16S rDNA gene) in L. garvieae and should be considered a step in a continuous effort to explore the genome of this species, with the aim of determining the real relationship between the presence of L. garvieae in dairy products and food safety.

  1. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat.

    PubMed

    Zhang, HuiFang; Xu, WeiGang; Wang, HuiWei; Hu, Lin; Li, Yan; Qi, XueLi; Zhang, Lei; Li, ChunXin; Hua, Xia

    2014-09-01

    Using particle bombardment transformation, we introduced maize pepc cDNA encoding phosphoenolpyruvate carboxylase (PEPC) and ppdk cDNA encoding pyruvate orthophosphate dikinase (PPDK) into the C3 crop wheat to generate transgenic wheat lines carrying cDNA of pepc (PC lines), ppdk (PK lines) or both (PKC lines). The integration, transcription, and expression of the foreign genes were confirmed by Southern blot, Real-time quantitative reverse transcription PCR (Q-RT-PCR), and Western blot analysis. Q-RT-PCR results indicated that the average relative expression levels of pepc and ppdk in the PKC lines reached 10 and 4.6, respectively, compared to their expressions in untransformed plants (set to 1). The enzyme activities of PEPC and PPDK in the PKC lines were 4.3- and 2.1-fold higher, respectively, than in the untransformed control. The maximum daily net photosynthetic rates of the PKC, PC, and PK lines were enhanced by 26.4, 13.3, and 4.5%, respectively, whereas the diurnal accumulations of photosynthesis were 21.3, 13.9, and 6.9%, respectively, higher than in the control. The Fv/Fm of the transgenic plants decreased less than in the control under high temperature and high light conditions (2 weeks after anthesis), suggesting that the transgenic wheat transports more absorbed light energy into a photochemical reaction. The exogenous maize C4-specific pepc gene was more effective than ppdk at improving the photosynthetic performance and yield characteristics of transgenic wheat, while the two genes showed a synergistic effect when they were transformed into the same genetic background, because the PKC lines exhibited improved photosynthetic and physiological traits.

  2. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.

    PubMed Central

    Lengeler, J

    1975-01-01

    Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity

  3. Molecular biology of C4 phosphoenolpyruvate carboxylase: Structure, regulation and genetic engineering.

    PubMed

    Rajagopalan, A V; Devi, M T; Raghavendra, A S

    1994-02-01

    Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 (-)-dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His(138), His(579) and Arg(587) in catalysis and/or substrate-binding by the E. coli enzyme, Ser(8) in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during

  4. Dominant selectable markers for Penicillium spp. transformation and gene function studies

    USDA-ARS?s Scientific Manuscript database

    Penicillium spp. has been genetically manipulated and gene function studies have utilized single gene deletion strains for phenotypic analysis. Fungal transformation experiments have relied on hygromycin and hygromycin phosphotransferase (hph) as the main dominant selectable marker (DSM) system in P...

  5. The sim Operon Facilitates the Transport and Metabolism of Sucrose Isomers in Lactobacillus casei ATCC 334▿

    PubMed Central

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-01-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with Mrs of ∼50,000 and ∼17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the ∼50-kDa protein as an NAD+- and metal ion-dependent phospho-α-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-α-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to ∼1.5- and ∼1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  6. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  7. Mechanisms of Resistance to Bacteriocins Targeting the Mannose Phosphotransferase System ▿

    PubMed Central

    Kjos, Morten; Nes, Ingolf F.; Diep, Dzung B.

    2011-01-01

    The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed. PMID:21421780

  8. Overcoming diabetes-induced hyperglycemia through inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP) with RNAi.

    PubMed

    Gómez-Valadés, Alicia G; Vidal-Alabró, Anna; Molas, Maria; Boada, Jordi; Bermúdez, Jordi; Bartrons, Ramon; Perales, José C

    2006-02-01

    Phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) is the rate-controlling enzyme in gluconeogenesis. In diabetic individuals, altered rates of gluconeogenesis are responsible for increased hepatic glucose output and sustained hyperglycemia. Liver-specific inhibition of PEPCK has not been assessed to date as a treatment for diabetes. We have designed a therapeutic, vector-based RNAi approach to induce posttranscriptional gene silencing of hepatic PEPCK using nonviral gene delivery. A transient reduction of PEPCK enzymatic activity (7.6 +/- 0.6 vs 9.7 +/- 1.1 mU/mg, P < 0.05) that correlated with decreased protein content of up to 50% was achieved using this strategy in diabetic mice. PEPCK partial silencing was sufficient to demonstrate lowered blood glucose (218 +/- 26 vs 364 +/- 33 mg/dl, P < 0.001) and improved glucose tolerance together with decreased circulating FFA (0.89 +/- 0.10 vs 1.44 +/- 0.11 mEq/dl, P < 0.001) and TAG (65 +/- 11 vs 102 +/- 16 mg/dl, P < 0.01), in the absence of liver steatosis or lactic acidosis. SREBP1c was down-regulated in PEPCK-silenced animals, suggesting a role for this pathway in the alterations of lipid metabolism. These data reinforce the significance of PEPCK in sustaining diabetes-induced hyperglycemia and validate liver-specific intervention at the level of PEPCK for diabetes gene therapy.

  9. Revisiting the Nucleotide and Aminoglycoside Substrate Specificity of the Bifunctional Aminoglycoside Acetyltransferase(6′)-Ie/Aminoglycoside Phosphotransferase(2″)-Ia Enzyme*

    PubMed Central

    Frase, Hilary; Toth, Marta; Vakulenko, Sergei B.

    2012-01-01

    The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6′)-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in Gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6′)-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (kcat/Km = 105-107 m−1 s−1). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides. PMID:23115238

  10. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    PubMed Central

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  11. Phosphoenolpyruvate carboxykinase 1 gene (Pck1) displays parallel evolution between Old World and New World fruit bats.

    PubMed

    Zhu, Lei; Yin, Qiuyuan; Irwin, David M; Zhang, Shuyi

    2015-01-01

    Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.

  12. Phosphoenolpyruvate Carboxykinase 1 Gene (Pck1) Displays Parallel Evolution between Old World and New World Fruit Bats

    PubMed Central

    Irwin, David M.; Zhang, Shuyi

    2015-01-01

    Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle. PMID:25807515

  13. Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod bathynomus sp.

    PubMed

    Wang, Yong; Huang, Jiao-Mei; Wang, Shao-Lu; Gao, Zhao-Ming; Zhang, Ai-Qun; Danchin, Antoine; He, Li-Sheng

    2016-09-01

    Deep-sea isopod scavengers such as Bathynomus sp. are able to live in nutrient-poor environments, which is likely attributable to the presence of symbiotic microbes in their stomach. In this study we recovered two draft genomes of mycoplasmas, Bg1 and Bg2, from the metagenomes of the stomach contents and stomach sac of a Bathynomus sp. sample from the South China Sea (depth of 898 m). Phylogenetic trees revealed a considerable genetic distance to other mycoplasma species for Bg1 and Bg2. Compared with terrestrial symbiotic mycoplasmas, the Bg1 and Bg2 genomes were enriched with genes encoding phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) and sodium-driven symporters responsible for the uptake of sugars, amino acids and other carbohydrates. The genome of mycoplasma Bg1 contained sialic acid lyase and transporter genes, potentially enabling the bacteria to attach to the stomach sac and obtain organic carbons from various cell walls. Both of the mycoplasma genomes contained multiple copies of genes related to proteolysis and oligosaccharide degradation, which may help the host survive in low-nutrient conditions. The discovery of the different types of mycoplasma bacteria in the stomach of this deep-sea isopod affords insights into symbiotic model of deep-sea animals and genomic plasticity of mycoplasma bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    PubMed

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  15. Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases.

    PubMed

    Matsumura, Hiroyoshi; Xie, Yong; Shirakata, Shunsuke; Inoue, Tsuyoshi; Yoshinaga, Takeo; Ueno, Yoshihisa; Izui, Katsura; Kai, Yasushi

    2002-12-01

    Phosphoenolpyruvate carboxylase (PEPC) catalyzes the first step in the fixation of atmospheric CO(2) during C(4) photosynthesis. The crystal structure of C(4) form maize PEPC (ZmPEPC), the first structure of the plant PEPCs, has been determined at 3.0 A resolution. The structure includes a sulfate ion at the plausible binding site of an allosteric activator, glucose 6-phosphate. The crystal structure of E. coli PEPC (EcPEPC) complexed with Mn(2+), phosphoenolpyruvate analog (3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate), and an allosteric inhibitor, aspartate, has also been determined at 2.35 A resolution. Dynamic movements were found in the ZmPEPC structure, compared with the EcPEPC structure, around two loops near the active site. On the basis of these molecular structures, the mechanisms for the carboxylation reaction and for the allosteric regulation of PEPC are proposed.

  16. QUANTIFICATION OF TRANSGENIC PLANT MARKER GENE PERSISTENCE IN THE FIELD

    EPA Science Inventory

    Methods were developed to monitor persistence of genomic DNA in decaying plants in the field. As a model, we used recombinant neomycin phosphotransferase II (rNPT-II) marker genes present in genetically engineered plants. Polymerase chain reaction (PCR) primers were designed, com...

  17. Light-dependent activation of phosphoenolpyruvate carboxylase by reversible phosphorylation in cluster roots of white lupin plants: diurnal control in response to photosynthate supply

    PubMed Central

    Feil, Regina; Lunn, John E.; Plaxton, William C.

    2016-01-01

    Background and Aims Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme that controls carbohydrate partitioning to organic acid anions (malate, citrate) excreted in copious amounts by cluster roots of inorganic phosphate (Pi)-deprived white lupin plants. Excreted malate and citrate solubilize otherwise inaccessible sources of mineralized soil Pi for plant uptake. The aim of this study was to test the hypotheses that (1) PEPC is post-translationally activated by reversible phosphorylation in cluster roots of illuminated white lupin plants, and (2) light-dependent phosphorylation of cluster root PEPC is associated with elevated intracellular levels of sucrose and its signalling metabolite, trehalose-6-phosphate. Methods White lupin plants were cultivated hydroponically at low Pi levels (≤1 µm) and subjected to various light/dark pretreatments. Cluster root PEPC activity and in vivo phosphorylation status were analysed to assess the enzyme’s diurnal, post-translational control in response to light and dark. Levels of various metabolites, including sucrose and trehalose-6-phosphate, were also quantified in cluster root extracts using enzymatic and spectrometric methods. Key Results During the daytime the cluster root PEPC was activated by phosphorylation at its conserved N-terminal seryl residue. Darkness triggered a progressive reduction in PEPC phosphorylation to undetectable levels, and this was correlated with 75–80 % decreases in concentrations of sucrose and trehalose-6- phosphate. Conclusions Reversible, light-dependent regulatory PEPC phosphorylation occurs in cluster roots of Pi-deprived white lupin plants. This likely facilitates the well-documented light- and sucrose-dependent exudation of Pi-solubilizing organic acid anions by the cluster roots. PEPC’s in vivo phosphorylation status appears to be modulated by sucrose translocated from CO2-fixing leaves into the non-photosynthetic cluster roots. PMID:27063365

  18. Influence of NaCl on Growth, Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures 1

    PubMed Central

    Thomas, John C.; De Armond, Richard L.; Bohnert, Hans J.

    1992-01-01

    The facultative halophyte Mesembryanthemum crystallinum responds to salt stress by increasing the levels of phosphoenolpyruvate carboxylase (PEPCase) and other enzymes associated with Crassulacean acid metabolism. A more common response to salt stress in sensitive and tolerant species, including M. crystallinum, is the accumulation of proline. We have established M. crystallinum suspension cultures to investigate whether both these salt-induced responses occur at the cellular level. Leaf-and root-derived cultures maintain 5% of the total soluble amino acids as proline. Cell culture growth slows upon addition of 400 millimolar NaCl, and proline levels increase to 40% of the total soluble amino acids. These results suggest a functional salt-stress and response program in Mesembryanthemum cells. Suspension cultures grown with or without 400 millimolar NaCl have PEPCase levels that compare with those from roots and unstressed leaves. The predominant protein cross-reacting with an anti-PEPCase antibody corresponds to 105 kilodaltons (apparent molecular mass), whereas a second species of approximately 110 kilodaltons is present at low levels. In salt-stressed leaves, the 110 kilodalton protein is more prevalent. Levels of mRNA for both ppc1 (salt stress induced in leaves) and ppc2 (constitutive) genes in salt-treated suspensions cultures are equal to unstressed leaves, and only twice the levels found in untreated suspension cultures. Whereas cells accumulate proline in response to NaCl, PEPCase protein amounts remain similar in salt-treated and untreated cultures. The induction upon salt stress of the 110 kilodalton PEPCase protein and other Crassulacean acid metabolism enzymes in organized tissues is not observed in cell culture and may depend on tissue-dependent or photoautotrophy-dependent programs. ImagesFigure 4Figure 5 PMID:16668687

  19. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  20. Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase.

    PubMed

    Rivero, Luz Amira; Concepción, Juan Luis; Quintero-Troconis, Ender; Quiñones, Wilfredo; Michels, Paul A M; Acosta, Héctor

    2016-06-01

    Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp.

    PubMed

    Walker, Robert P; Battistelli, Alberto; Moscatello, Stefano; Técsi, László; Leegood, Richard C; Famiani, Franco

    2015-12-01

    Glycolysis from sugars is necessary at all stages of development of grape pericarp, and this raises the question as to why gluconeogenesis from malate occurs. Phosphoenolpyruvate carboxykinase (PEPCK) is required for gluconeogenesis in grape pericarp. In this study we determined the abundance of PEPCK protein and activity in different parts of grape pericarp during its development. Both PEPCK protein and activity were present throughout development, however, in both the skin and the flesh their abundance increased greatly at the start of ripening. This coincided with the onset of the decrease in the malate content of the berry. The location of PEPCK in the pericarp at different stages of development was determined using both immunohistochemistry and dissection. We provide a possible explanation for the occurrence of gluconeogenesis in grape pericarp. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.

    PubMed

    Francl, Alyssa L; Hoeflinger, Jennifer L; Miller, Michael J

    2012-04-01

    Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an EI knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that L. gasseri requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, L. gasseri ATCC 33323 PTS 6CB, PTS 8C had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of L. gasseri ATCC 33323 PTS 6CB, PTS 8C in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

  3. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    PubMed

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K.; Borovilos, M.; Zhou, M

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representingmore » a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.« less

  5. Increased Phosphoenolpyruvate Carboxykinase (PEPCK) Gene Expression and Steatosis During Hepatitis C Virus (HCV) Subgenome Replication: Role of Nonstructural Component-5A (NS5A) and CCAAT/Enhancer Binding Protein ß (C/EBPß)

    USDA-ARS?s Scientific Manuscript database

    Chronic hepatitis C virus (HCV) infection greatly increases the risk for type 2 diabetes and nonalcoholic steatohepatitis; however, the pathogenic mechanisms remain incompletely understood. Here we report gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) transcription and associated tra...

  6. Action of nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and nicotinamide mononucleotide.

    PubMed Central

    Brunngraber, E F; Chargaff, E

    1977-01-01

    The action of the nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and on its 5'-phosphate results in the addition of one phosphate moiety to each of the substrates. Although the proof is not conclusive, it is likely that the phosphate group is transferred to the 3'-hydroxyl of the ribose. This is in contrast to the behavior of the enzyme toward NAD in which only the adenylic acid portion is phosphorylated enzymically. PMID:144913

  7. Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens.

    PubMed

    Krzymińska, Sylwia; Szczuka, Ewa; Dudzińska, Kinga; Kaznowski, Adam

    2015-04-01

    We examined thirty methicillin-resistant Staphylococcus haemolyticus isolates cultured from clinical specimens for antibiotic resistance, various important interactions of the bacteria with epithelial cells and putative virulence determinants. All strains were resistant to oxacillin and carried the mecA gene. Aminocyclitol-3'-phosphotransferase (aph(3')-IIIa) gene encoding nucleotidyltransferases was detected in 43 %, aminocyclitol-6'-acetyltransferase-aminocyclitol-2″-phosphotransferase (aac(6')/aph(2″)) gene encoding bifunctional acetyltransferases/phosphotransferases in 33 %, aminocyclitol-4'-adenylyltransferase (ant(4')-Ia) gene encoding phosphotransferases in 20 %. The coexistence of resistance to methicillin and aminoglycosides was investigated in multi-resistant strains. Coexisting (aac(6')/aph(2″)) and (aph(3')-IIIa) genes were detected in 33 % of isolates, whereas 63 % of isolates had at least one of these genes. All strains revealed adherence ability and most of them (63 %) were invasive to epithelial cells. Electron microscopy revealed that the bacteria were found in vacuoles inside the cells. We observed that the contact of the bacteria with host epithelial cells is a prerequisite to their cytotoxicity at 5 h-incubation. Culture supernatant of the strains induced a low effect of cytotoxicity at the same time of incubation. Cell-free supernatant of all isolates expressed cytotoxic activity which caused destruction of HEp-2 cells at 24 h. None of the strains was cytotonic towards CHO cells. Among thirty strains, 27 % revealed lipolytic activity, 43 % produced lecithinase and 20 % were positive for proteinase activity. Analyses of cellular morphology and DNA fragmentation exhibited typical characteristic features of those undergoing apoptosis. The Pearson linear test revealed positive correlations between the apoptotic index at 24 h and percentage of cytotoxicity. Our results provided new insights into the mechanisms contributing to the

  8. Conditional silencing of the Escherichia coli pykF gene results from artificial convergent transcription protected from Rho-dependent termination.

    PubMed

    Krylov, Alexander A; Airich, Larisa G; Kiseleva, Evgeniya M; Minaeva, Natalia I; Biryukova, Irina V; Mashko, Sergey V

    2010-01-01

    PykF is one of two pyruvate kinases in Escherichia coli K-12. lambdaP(L) was convergently integrated into the chromosome of the MG1655 strain, downstream of pykF, face-to-face with its native promoter. In the presence of lambdacIts857, efficient pykF ts-silencing was achieved when the 5'-terminus of the P(L)-originated antisense RNA (asRNA), consisting of the rrnG-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination. pykF silencing was detected by the following features: (a) impaired growth of the strain when pykA was also disrupted and when using ribose as a non-phosphotransferase system-transporting carbon source; (b) a pattern of reduced synthesis of the full-sized pykF mRNA, mediated by reverse transcription PCR, and (c) a significant decrease in PykF activity. The advantages of anti-terminated convergent transcription were clearly manifested in the strains where the rho_a-terminator was inserted specifically to interrupt asRNA synthesis. Most likely, the target gene was silenced by transcriptional interference due to collisions between converging RNA polymerases, although, strictly, the role of cis-asRNA effects could not be excluded. While details of the mechanisms have yet to be determined, anti-terminated convergent transcription is a promising new technique for silencing other target genes. Copyright 2010 S. Karger AG, Basel.

  9. Deregulation of Feedback Inhibition of Phosphoenolpyruvate Carboxylase for Improved Lysine Production in Corynebacterium glutamicum

    PubMed Central

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima

    2014-01-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and 13C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products. PMID:24334667

  10. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.

    PubMed

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima; Zeng, An-Ping

    2014-02-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and (13)C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products.

  11. Rifampin phosphotransferase is an unusual antibiotic resistance kinase

    PubMed Central

    Stogios, Peter J.; Cox, Georgina; Spanogiannopoulos, Peter; Pillon, Monica C.; Waglechner, Nicholas; Skarina, Tatiana; Koteva, Kalinka; Guarné, Alba; Savchenko, Alexei; Wright, Gerard D.

    2016-01-01

    Rifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis. RPHs are previously uncharacterized dikinases that are widespread in environmental and pathogenic bacteria. These enzymes are members of a large unexplored group of bacterial enzymes with substrate affinities that have yet to be fully explored. Such an enzymatically complex mechanism of antibiotic resistance augments the spectrum of strategies used by bacteria to evade antimicrobial compounds. PMID:27103605

  12. A novel reference plasmid for the qualitative detection of genetically modified rice in food and feed.

    PubMed

    Li, Liang; Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong; Jin, Wujun

    2015-01-01

    Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice.

  13. Establishment of an Arbitrary PCR for Rapid Identification of Tn917 Insertion Sites in Staphylococcus epidermidis: Characterization of Biofilm-Negative and Nonmucoid Mutants

    PubMed Central

    Knobloch, Johannes K.-M.; Nedelmann, Max; Kiel, Kathrin; Bartscht, Katrin; Horstkotte, Matthias A.; Dobinsky, Sabine; Rohde, Holger; Mack, Dietrich

    2003-01-01

    Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis. PMID:14532029

  14. A Novel Reference Plasmid for the Qualitative Detection of Genetically Modified Rice in Food and Feed

    PubMed Central

    Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong

    2015-01-01

    Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice. PMID:26495318

  15. Structural studies of ROK fructokinase YdhR from Bacillus subtilis : insights into substrate binding and fructose specificity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocek, B.; Stein, A.; Jedrzejczak, R.

    2011-02-18

    The main pathway of bacterial sugar phosphorylation utilizes specific phosphoenolpyruvate phosphotransferase system (PTS) enzymes. In addition to the classic PTS system, a PTS-independent secondary system has been described in which nucleotide-dependent sugar kinases are used for monosaccharide phosphorylation. Fructokinase (FK), which phosphorylates d-fructose with ATP as a cofactor, has been shown to be a member of this secondary system. Bioinformatic analysis has shown that FK is a member of the 'ROK' (bacterial Repressors, uncharacterized Open reading frames, and sugar Kinases) sequence family. In this study, we report the crystal structures of ROK FK from Bacillus subtilis (YdhR) (a) apo andmore » in the presence of (b) ADP and (c) ADP/d-fructose. All structures show that YdhR is a homodimer with a monomer composed of two similar {alpha}/{beta} domains forming a large cleft between domains that bind ADP and d-fructose. Enzymatic activity assays support YdhR function as an ATP-dependent fructose kinase.« less

  16. Transport of Phosphoenolpyruvate by Chloroplasts from Mesembryanthemum crystallinum L. Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Neuhaus, H. Ekkehard; Holtum, Joseph A. M.; Latzko, Erwin

    1988-01-01

    Chloroplasts from CAM-Mesembryanthemum crystallinum can transport phosphoenolpyruvate (PEP) across the envelope. The initial velocities of PEP uptake in the dark at 4°C exhibited saturation kinetics with increasing external PEP concentration. PEP uptake had a Vmax of 6.46 (±0.05) micromoles per milligram chlorophyll per hour and an apparent Kmpep of 0.148 (±0.004) millimolar. The uptake was competitively inhibited by Pi (apparent Ki = 0.19 millimolar), by glycerate 3-phosphate (apparent Ki = 0.13 millimolar), and by dihydroxyacetone phosphate, but malate and pyruvate were without effect. The chloroplasts were able to synthesize PEP when presented with pyruvate. PEP synthesis was light dependent. The prolonged synthesis and export of PEP from the chloroplasts required the presence of Pi or glycerate 3-phosphate in the external medium. It is suggested that the transport of pyruvate and PEP across the chloroplasts envelope is required during the gluconeogenic conversion of carbon from malate to storage carbohydrate in the light. PMID:16666128

  17. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation

    PubMed Central

    Guy, Robert D.; Vanlerberghe, Greg C.; Turpin, David H.

    1989-01-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO2 fixation and respiratory CO2 release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and α-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C3 organism. Images Figure 6 PMID:16666678

  18. Mannitol and the Mannitol-Specific Enzyme IIB Subunit Activate Vibrio cholerae Biofilm Formation

    PubMed Central

    Ymele-Leki, Patrick; Houot, Laetitia

    2013-01-01

    Vibrio cholerae is a halophilic, Gram-negative rod found in marine environments. Strains that produce cholera toxin cause the diarrheal disease cholera. V. cholerae use a highly conserved, multicomponent signal transduction cascade known as the phosphoenolpyruvate phosphotransferase system (PTS) to regulate carbohydrate uptake and biofilm formation. Regulation of biofilm formation by the PTS is complex, involving many different regulatory pathways that incorporate distinct PTS components. The PTS consists of the general components enzyme I (EI) and histidine protein (HPr) and carbohydrate-specific enzymes II. Mannitol transport by V. cholerae requires the mannitol-specific EII (EIIMtl), which is expressed only in the presence of mannitol. Here we show that mannitol activates V. cholerae biofilm formation and transcription of the vps biofilm matrix exopolysaccharide synthesis genes. This regulation is dependent on mannitol transport. However, we show that, in the absence of mannitol, ectopic expression of the B subunit of EIIMtl is sufficient to activate biofilm accumulation. Mannitol, a common compatible solute and osmoprotectant of marine organisms, is a main photosynthetic product of many algae and is secreted by algal mats. We propose that the ability of V. cholerae to respond to environmental mannitol by forming a biofilm may play an important role in habitat selection. PMID:23728818

  19. Gene doping: of mice and men.

    PubMed

    Azzazy, Hassan M E; Mansour, Mai M H; Christenson, Robert H

    2009-04-01

    Gene doping is the newest threat to the spirit of fair play in sports. Its concept stemmed out from legitimate gene therapy trials, but anti-doping authorities fear that they now may be facing a form of doping that is virtually undetectable and extremely appealing to athletes. This paper presents studies that generated mouse models with outstanding physical performance, by manipulating genes such as insulin-like growth factor 1 (IGF-1) or phosphoenolpyruvate carboxykinase (PEPCK), which are likely to be targeted for gene doping. The potential transition from super mice to super athletes will also be discussed, in addition to possible strategies for detection of gene doping.

  20. Thermoadaptation of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic Archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus.

    PubMed

    Cannio, R; Contursi, P; Rossi, M; Bartolucci, S

    2001-06-01

    A mutated version of the hygromycin B phosphotransferase (hph(mut)) gene from Escherichia coli, isolated by directed evolution at 75 degrees C in transformants of a thermophilic strain of Sulfolobus solfataricus, was characterized with respect to its genetic stability in both the original mesophilic and the new thermophilic hosts. This gene was demonstrated to be able to express the hygromycin B resistance phenotype and to be steadily maintained and propagated also in other, more thermophilic strains of S. solfataricus, i.e., up to 82 degrees C. Furthermore, it may be transferred to S. solfataricus cells by cotransformation with pKMSD48, another extrachromosomal element derived from the virus SSV1 of Sulfolobus shibatae, without any loss of stability and without affecting the replication and infectivity of this viral DNA. The hph(mut) and the wild-type gene products were expressed at higher levels in E. coli and purified by specific affinity chromatography on immobilized hygromycin B. Comparative characterization revealed that the mutant enzyme had acquired significant thermoresistance and displayed higher thermal activity with augmented catalytic efficiency.

  1. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli.

    PubMed

    Lee, Jae-Woo; Park, Young-Ha; Seok, Yeong-Jae

    2018-06-18

    Bacteria respond to nutritional stresses by changing the cellular concentration of the alarmone (p)ppGpp. This control mechanism, called the stringent response, depends on two enzymes, the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT in Escherichia coli and related bacteria. Because SpoT is the only enzyme responsible for (p)ppGpp hydrolysis in these bacteria, SpoT activity needs to be tightly regulated to prevent the uncontrolled accumulation of (p)ppGpp, which is lethal. To date, however, no such regulation of SpoT (p)ppGpp hydrolase activity has been documented in E. coli In this study, we show that Rsd directly interacts with SpoT and stimulates its (p)ppGpp hydrolase activity. Dephosphorylated HPr, but not phosphorylated HPr, of the phosphoenolpyruvate-dependent sugar phosphotransferase system could antagonize the stimulatory effect of Rsd on SpoT (p)ppGpp hydrolase activity. Thus, we suggest that Rsd is a carbon source-dependent regulator of the stringent response in E. coli . Copyright © 2018 the Author(s). Published by PNAS.

  2. Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli.

    PubMed

    Westermayer, Sonja A; Fritz, Georg; Gutiérrez, Joaquín; Megerle, Judith A; Weißl, Mira P S; Schnetz, Karin; Gerland, Ulrich; Rädler, Joachim O

    2016-05-01

    The utilization of several sugars in Escherichia coli is regulated by the Phosphotransferase System (PTS), in which diverse sugar utilization modules compete for phosphoryl flux from the general PTS proteins. Existing theoretical work predicts a winner-take-all outcome when this flux limits carbon uptake. To date, no experimental work has interrogated competing PTS uptake modules with single-cell resolution. Using time-lapse microscopy in perfused microchannels, we analyzed the competition between N-acetyl-glucosamine and sorbitol, as representative PTS sugars, by measuring both the expression of their utilization systems and the concomitant impact of sugar utilization on growth rates. We find two distinct regimes: hierarchical usage of the carbohydrates, and co-expression of the genes for both systems. Simulations of a mathematical model incorporating asymmetric sugar quality reproduce our metabolic phase diagram, indicating that under conditions of nonlimiting phosphate flux, co-expression is due to uncoupling of both sugar utilization systems. Our model reproduces hierarchical winner-take-all behaviour and stochastic co-expression, and predicts the switching between both strategies as a function of available phosphate flux. Hence, experiments and theory both suggest that PTS sugar utilization involves not only switching between the sugars utilized but also switching of utilization strategies to accommodate prevailing environmental conditions. © 2016 John Wiley & Sons Ltd.

  3. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and threemore » mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  4. Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination.

    PubMed

    Nishizawa-Yokoi, Ayako; Saika, Hiroaki; Toki, Seiichi

    2016-01-01

    Positive-negative selection using hygromycin phosphotransferase (hpt) and diphtheria toxin A-fragment (DT-A) as positive and negative selection markers, respectively, allows enrichment of cells harboring target genes modified via gene targeting (GT). We have developed a successful GT system employing positive-negative selection and subsequent precise marker excision via the piggyBac transposon derived from the cabbage looper moth to introduce desired modifications into target genes in the rice genome. This approach could be applied to the precision genome editing of almost all endogenous genes throughout the genome, at least in rice.

  5. AglH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7.

    PubMed

    Meyer, Benjamin H; Shams-Eldin, Hosam; Albers, Sonja-Verena

    2017-01-01

    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D 100 ), IV (F 220 ) and V (F 264 ) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.

  6. High-frequency transformation of Lobelia erinus L. by Agrobacterium-mediated gene transfer.

    PubMed

    Tsugawa, H; Kagami, T; Suzuki, M

    2004-05-01

    A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a beta-glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3-4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high--45% per inoculated disc. Copyright 2004 Springer-Verlag

  7. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation.

    PubMed

    Paganelli, Fernanda L; Huebner, Johannes; Singh, Kavindra V; Zhang, Xinglin; van Schaik, Willem; Wobser, Dominique; Braat, Johanna C; Murray, Barbara E; Bonten, Marc J M; Willems, Rob J L; Leavis, Helen L

    2016-07-15

    Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. A Role for Mitochondrial Phosphoenolpyruvate Carboxykinase (PEPCK-M) in the Regulation of Hepatic Gluconeogenesis*

    PubMed Central

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C.; Ioja, Simona; Pongratz, Rebecca L.; Bhanot, Sanjay; Roden, Michael; Cline, Gary W.; Shulman, Gerald I.; Kibbey, Richard G.

    2014-01-01

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism. PMID:24497630

  9. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.

    PubMed

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C; Ioja, Simona; Pongratz, Rebecca L; Bhanot, Sanjay; Roden, Michael; Cline, Gary W; Shulman, Gerald I; Kibbey, Richard G

    2014-03-14

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.

  10. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.

    PubMed

    Romero-Rodríguez, Alba; Rocha, Diana; Ruiz-Villafán, Beatriz; Guzmán-Trampe, Silvia; Maldonado-Carmona, Nidia; Vázquez-Hernández, Melissa; Zelarayán, Augusto; Rodríguez-Sanoja, Romina; Sánchez, Sergio

    2017-09-01

    One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.

  11. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination.

    PubMed

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-05-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV-V when coleoptiles initiate the formation of the photosynthetic tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose by Escherichia coli

    PubMed Central

    Chatterjee, Ranjini; Millard, Cynthia Sanville; Champion, Kathleen; Clark, David P.; Donnelly, Mark I.

    2001-01-01

    Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B. PMID:11133439

  13. Regulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin 1

    PubMed Central

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    Phosphoenolpyruvate carboxylase (PEPCase), the key enzyme of Crassulacean acid metabolism, is induced by water stress in leaves of Mesembryanthemum crystallinum. In water-stressed plants or excised leaves, exogenous cytokinin suppresses PEPCase transcript accumulation in the leaves. Cytokinin (6-benzylaminopurine) used in concentrations from 5 to 500 micromolar (a) inhibits the upregulation of PEPCase transcripts, enzyme activity, and Crassulacean acid metabolism induction in salt-stressed intact plants when sprayed once daily during the stress period, (b) inhibits the accumulation of PEPCase mRNA in leaves from well-watered plants, (c) down-regulates PEPCase transcripts within 8 hours in prestressed, intact plants after a single spraying of an individual leaf, (d) inhibits accumulation of PEPCase transcripts in excised, wilting leaves, and (e) accelerates the net decrease of PEPCase transcripts in excised leaves from prestressed plants under rehydration conditions. When roots, the main site of cytokinin biosynthesis, are excised, PEPCase induction under drought stress is intensified. We propose that roots, acting as sensors of soil water status, may regulate PEPCase gene expression in the leaves with cytokinin as a signal transducer. ImagesFigure 2Figure 7 PMID:16669088

  14. Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, W.J.; Shaw, J.E.; Andrews, L.

    1991-09-01

    Acetone-butanol-ethanol fermentation by Clostridium acetobutylicum has been exploited on an industrial scale in the past, but for economic reasons the process has declined. However, with an increased understanding of solvent formation and the potential for genetic manipulation of the organism, this fermentation is once again receiving attention. An economical process would be founded on the use of cheap, renewable substrates, ideally carbohydrate-based waste materials. However, little is known about the mechanism and regulation of carbohydrate accumulation by C. acetobutylicum. The glucose phosphotransferase system (PTS) of C. acetobutylicum was studied by using cell extracts. The system exhibited a K{sub m} formore » glucose of 34 {mu}M, and glucose phosphorylation was inhibited competitively by mannose and 2-deoxyglucose. The analogs 3-O-methylglucoside and methyl {alpha}-glucoside did not inhibit glucose phosphorylation significantly. Activity showed no dependence on Mg{sup 2+} ions or on pH in the range 6.0 to 8.0. The PTS comprised both soluble and membrane-bound proteins, which interacted functionally with the PTSs of Clostridium pasteurianum, Bacillus subtilis, and Escherichia coli. In addition to a membrane-bound enzyme II{sup Glc}, sugar phosphorylation assays in heterologous systems incorporating extracts of pts mutants of other organisms provided evidence for enzyme I, HPr, and III{sup Glc} components. The HPr was found in the soluble fraction of C. acetobutylicum extracts, whereas enzyme I, and probably also III{sup Glc}, was present in both the soluble and membrane fractions, suggesting a membrane location in the intact cell.« less

  15. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Cao; X Jin; E Levin

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which ismore » occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.« less

  16. Large-scale purification and acute toxicity of hygromycin B phosphotransferase.

    PubMed

    Zhuo, Qin; Piao, Jian-Hua; Tian, Yuan; Xu, Jie; Yang, Xiao-Guang

    2009-02-01

    To provide the acute toxicity data of hygromycin B phosphotransferase (HPT) using recombinant protein purified from E. coli. Recombinant HPT protein was expressed and purified from E. coli. To exclude the potential adverse effect of bacteria protein in recombinant HPT protein, bacterial control plasmid was constructed, and bacteria control protein was extracted and prepared as recombinant HPT protein. One hundred mice, randomly assigned to 5 groups, were administrated 10 g/kg, 5 g/kg, or 1 g/kg body weight of HPT or 5 g/kg body weight of bacterial control protein or phosphate-buffered saline (PBS) respectively by oral gavage. All animals survived with no significant change in body weight gain throughout the study. Macroscopic necropsy examination on day 15 revealed no gross pathological lesions in any of the animals. The maximum tolerated dose (MTD) of HPT was 10 g/kg body weight in mice and could be regarded as nontoxic. HPT protein does not have any safety problems to human health.

  17. From Cytosol to the Apoplast: The Hygromycin Phosphotransferase (HYG(R)) Model in Arabidopsis.

    PubMed

    Zhang, Haiyan; Li, Jinjin

    2016-01-01

    The process by which proteins are secreted via endoplasmic reticulum (ER)/Golgi-independent mechanism is conveniently called unconventional protein secretion. Recent studies have revealed that unconventional protein secretion operates in plants, but little is known about its underlying mechanism and function. This chapter provides methods we have used to analyze unconventional character of hygromycin phosphotransferase (HYG(R)) secretion in plant cells. Following isolation of protoplasts from HYG (R) -GFP-transgenic plants and incubation with brefeldin A (BFA), an inhibitor of conventional secretory pathway, we easily obtain protein extracts from protoplasts and culture medium separately. These proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by Western blot analysis with anti-GFP antibodies.

  18. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.

    PubMed

    Gottlieb, Katrin; Albermann, Christoph; Sprenger, Georg A

    2014-07-11

    For the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported. L-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM C(Phe)/C(Glucose) and a maximal space-time-yield (STY) of 0.13 g l(-1) h(-1) was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM C(Phe)/C(Glycerol)), but the maximal STY was higher (0.21 g l(-1) h(-1)). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpK(G232D)) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM C(Phe)/C(Glycerol); 0.25 g l(-1) h(-1) and 0.21 mM C(Phe)/C(Glycerol); 0.23 g l(-1) h(-1), respectively), the combination of extra genes of glpX and tktA together led to an increase in

  19. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: The role of extra copies of glpK, glpX, and tktA genes

    PubMed Central

    2014-01-01

    Background For the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported. Results L-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM CPhe/CGlucose and a maximal space-time-yield (STY) of 0.13 g l−1 h−1 was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM CPhe/CGlycerol), but the maximal STY was higher (0.21 g l−1 h−1). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpKG232D) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM CPhe/CGlycerol; 0.25 g l−1 h−1 and 0.21 mM CPhe/CGlycerol; 0.23 g l−1 h−1, respectively), the combination of extra genes of glpX and tktA together led

  20. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli.

    PubMed

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2007-08-01

    Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7''-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 A and belongs to space group P3(2)21, with unit-cell parameters a = b = 71.0, c = 125.0 A. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.

  1. Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence.

    PubMed

    Randesi, Matthew; van den Brink, Wim; Levran, Orna; Blanken, Peter; Butelman, Eduardo R; Yuferov, Vadim; da Rosa, Joel Correa; Ott, Jurg; van Ree, Jan M; Kreek, Mary Jeanne

    2016-11-01

    Heroin addiction is a chronic, relapsing brain disease. Genetic factors are involved in the development of drug addiction. The aim of this study was to determine whether specific variants in genes of the opioid system are associated with non-dependent opioid use and heroin dependence. Genetic information from four subject groups was collected: non-dependent opioid users (NOD) [n=163]; opioid-dependent (OD) patients in methadone maintenance treatment (MMT) [n=143]; opioid-dependent MMT-resistant patients in heroin-assisted treatment (HAT) [n=138]; and healthy controls with no history of opioid use (HC) [n=153]. Eighty-two variants in eight opioid system genes were studied. To establish the role of these genes in (a) non-dependent opioid use, and (b) heroin dependence, the following groups were compared: HC vs. NOD; HC vs. OD (MMT+HAT); and NOD vs. OD (MMT+HAT). Five unique SNPs in four genes showed nominally significant associations with non-dependent opioid use and heroin dependence. The association of the delta opioid receptor (OPRD1) intronic SNP rs2236861 with non-dependent opioid use (HC vs. NOD) remained significant after correction for multiple testing (OR=0.032; p corrected =0.015). This SNP exhibited a significant gene-gene interaction with prepronociceptin (PNOC) SNP rs2722897 (OR=5.24; p corrected =0.041) (HC vs. NOD). This study identifies several new and some previously reported associations of variants with heroin dependence and with non-dependent opioid use, an important and difficult to obtain group not extensively studied previously. Further studies are warranted to confirm and elucidate the potential roles of these variants in the vulnerability to illicit drug use and drug addiction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Nutrient Dependence of RNase E Essentiality in Escherichia coli

    PubMed Central

    Tamura, Masaru; Moore, Christopher J.

    2013-01-01

    Escherichia coli cells normally require RNase E activity to form colonies (colony-forming ability [CFA]). The CFA-defective phenotype of cells lacking RNase E is partly reversed by overexpression of the related endoribonuclease RNase G or by mutation of the gene encoding the RNA helicase DeaD. We found that the carbon source utilization by rne deaD doubly mutant bacteria differs from that of rne+ cells and from that of cells mutated in deaD alone and that the loss of rne function in these bacteria limits conversion of the glycolytic pathway product phosphoenolpyruvate to the tricarboxylic acid (TCA) cycle intermediate oxaloacetic acid. We show that the mechanism underlying this effect is reduced production of the enzyme phosphoenolpyruvate carboxylase (PPC) and that adventitious overexpression of PPC, which facilitates phosphoenolpyruvate utilization and connects the glycolytic pathway with the TCA cycle, restored CFA to rne deaD mutant bacteria cultured on carbon sources that otherwise were unable to sustain growth. We further show that bacteria producing full-length RNase E, which allows formation of degradosomes, have nutritional requirements different from those of cells supplied with only the N-terminal catalytic region of RNase E and that mitigation of RNase E deficiency by overexpression of a related RNase, RNase G, is also affected by carbon source. Our results reveal previously unsuspected effects of RNase E deficiency and degradosome formation on nutrient utilization by E. coli cells. PMID:23275245

  3. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Induction of mRNA for Phosphoenolpyruvate Carboxylase Is Correlated with a Decrease in Shoot Water Content in Well-Irrigated Mesembryanthemum crystallinum 1

    PubMed Central

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    The abundance of mRNA specific for phosphoenolpyruvate carboxylase (PEPCase) was measured in leaves from well-watered plants of Mesembryanthemum crystallinum. Plants grown side by side in pots of four different volumes (0.16, 0.74, 2.6, 6.5 liters) were compared. The time of increase in the steady-state level of PEPCase mRNA in well-watered plants was dependent on soil volume. The larger the pot, the later PEPCase transcripts were increased. PEPCase mRNA induction started when shoot water content decreased to well below 4000% of dry weight. No positive correlation with the developmental status of the plants could be found. The data indicate that PEPCase mRNA induction in well-watered plants up to 10 weeks of age is controlled environmentally rather than developmentally. ImagesFigure 2 PMID:16668951

  5. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli

    PubMed Central

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2007-01-01

    Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3221, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein. PMID:17671368

  6. Detection of the High-Level Aminoglycoside Resistance Gene aph(2")-Ib in Enterococcus faecium

    PubMed Central

    Kao, Susan J.; You, Il; Clewell, Don B.; Donabedian, Susan M.; Zervos, Marcus J.; Petrin, Joanne; Shaw, Karen J.; Chow, Joseph W.

    2000-01-01

    A new high-level gentamicin resistance gene, designated aph(2")-Ib, was cloned from Enterococcus faecium SF11770. The deduced amino acid sequence of the 897-bp open reading frame of aph(2")-Ib shares homology with the aminoglycoside-modifying enzymes AAC(6′)-APH(2"), APH(2")-Ic, and APH(2")-Id. The observed phosphotransferase activity is designated APH(2")-Ib. PMID:10991878

  7. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?

    PubMed Central

    Stark, Romana; Kibbey, Richard G.

    2013-01-01

    Background Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. Scope of review A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be more important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. Major conclusions PEPCK

  8. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  9. Streptococcus pneumoniae Can Utilize Multiple Sources of Hyaluronic Acid for Growth

    PubMed Central

    Marion, Carolyn; Stewart, Jason M.; Tazi, Mia F.; Burnaugh, Amanda M.; Linke, Caroline M.; Woodiga, Shireen A.

    2012-01-01

    The mechanisms by which Streptococcus pneumoniae obtains carbohydrates for growth during airway colonization remain to be elucidated. The low concentration of free carbohydrates in the normal human airway suggests that pneumococci must utilize complex glycan structures for growth. The glycosaminoglycan hyaluronic acid is present on the apical surface of airway epithelial cells. As pneumococci express a hyaluronate lyase (Hyl) that cleaves hyaluronic acid into disaccharides, we hypothesized that during colonization pneumococci utilize the released carbohydrates for growth. Hyaluronic acid supported significant pneumococcal growth in an hyl-dependent manner. A phosphoenolpyruvate-dependent phosphotransferase system (PTS) and an unsaturated glucuronyl hydrolase (Ugl) encoded downstream of hyl are also essential for growth on hyaluronic acid. This genomic arrangement is present in several other organisms, suggesting conservation of the utilization mechanism between species. In vivo experiments support the hypothesis that S. pneumoniae utilizes hyaluronic acid as a carbon source during colonization. We also demonstrate that pneumococci can utilize the hyaluronic acid capsule of other bacterial species for growth, suggesting an alternative carbohydrate source for pneumococcal growth. Together, these data support a novel function for pneumococcal degradation of hyaluronic acid in vivo and provide mechanistic details of growth on this glycosaminoglycan. PMID:22311922

  10. Induction of Phosphoenolpyruvate Carboxykinase (PEPCK) during Acute Acidosis and Its Role in Acid Secretion by V-ATPase-Expressing Ionocytes.

    PubMed

    Furukawa, Fumiya; Tseng, Yung-Che; Liu, Sian-Tai; Chou, Yi-Ling; Lin, Ching-Chun; Sung, Po-Hsuan; Uchida, Katsuhisa; Lin, Li-Yih; Hwang, Pung-Pung

    2015-01-01

    Vacuolar-Type H(+)-ATPase (V-ATPase) takes the central role in pumping H(+) through cell membranes of diverse organisms, which is essential for surviving acid-base fluctuating lifestyles or environments. In mammals, although glucose is believed to be an important energy source to drive V-ATPase, and phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme for gluconeogenesis, is known to be activated in response to acidosis, the link between acid secretion and PEPCK activation remains unclear. In the present study, we used zebrafish larva as an in vivo model to show the role of acid-inducible PEPCK activity in glucose production to support higher rate of H(+) secretion via V-ATPase, by utilizing gene knockdown, glucose supplementation, and non-invasive scanning ion-selective electrode technique (SIET). Zebrafish larvae increased V-ATPase-mediated acid secretion and transiently expression of Pck1, a zebrafish homolog of PEPCK, in response to acid stress. When pck1 gene was knocked down by specific morpholino, the H(+) secretion via V-ATPase decreased, but this effect was rescued by supplementation of glucose into the yolk. By assessing changes in amino acid content and gene expression of respective enzymes, glutamine and glutamate appeared to be the major source for replenishment of Krebs cycle intermediates, which are subtracted by Pck1 activity. Unexpectedly, pck1 knockdown did not affect glutamine/glutamate catalysis, which implies that Pck1 does not necessarily drive this process. The present study provides the first in vivo evidence that acid-induced PEPCK provides glucose for acid-base homeostasis at an individual level, which is supported by rapid pumping of H(+) via V-ATPase at the cellular level.

  11. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    PubMed

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  12. Activation of Escherichia coli antiterminator BglG requires its phosphorylation

    PubMed Central

    Rothe, Fabian M.; Bahr, Thomas; Stülke, Jörg; Rak, Bodo; Görke, Boris

    2012-01-01

    Transcriptional antiterminator proteins of the BglG family control the expression of enzyme II (EII) carbohydrate transporters of the bacterial phosphotransferase system (PTS). In the PTS, phosphoryl groups are transferred from phosphoenolpyruvate (PEP) via the phosphotransferases enzyme I (EI) and HPr to the EIIs, which phosphorylate their substrates during transport. Activity of the antiterminators is negatively controlled by reversible phosphorylation catalyzed by the cognate EIIs in response to substrate availability and positively controlled by the PTS. For the Escherichia coli BglG antiterminator, two different mechanisms for activation by the PTS were proposed. According to the first model, BglG is activated by HPr-catalyzed phosphorylation at a site distinct from the EII-dependent phosphorylation site. According to the second model, BglG is not activated by phosphorylation, but solely through interaction with EI and HPr, which are localized at the cell pole. Subsequently BglG is released from the cell pole to the cytoplasm as an active dimer. Here we addressed this discrepancy and found that activation of BglG requires phosphorylatable HPr or the HPr homolog FruB in vivo. Further, we uniquely demonstrate that purified BglG protein becomes phosphorylated by FruB as well as by HPr in vitro. Histidine residue 208 in BglG is essential for this phosphorylation. These data suggest that BglG is in fact activated by phosphorylation and that there is no principal difference between the PTS-exerted mechanisms controlling the activities of BglG family proteins in Gram-positive and Gram-negative bacteria. PMID:22984181

  13. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species.

    PubMed

    Santos, André S; Ramos, Rommel T; Silva, Artur; Hirata, Raphael; Mattos-Guaraldi, Ana L; Meyer, Roberto; Azevedo, Vasco; Felicori, Liza; Pacheco, Luis G C

    2018-05-11

    Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy

  14. Effect of biotin on activity and gene expression of biotin-dependent carboxylases in the liver of dairy cows.

    PubMed

    Ferreira, G; Weiss, W P

    2007-03-01

    Biotin is a cofactor of the gluconeogenic enzymes pyruvate carboxylase (PC) and propionyl-coenzyme A carboxylase (PCC). We hypothesized that biotin supplementation increases the activity and gene expression of PC and PCC and the gene expression of phosphoenol-pyruvate carboxykinase (PEPCK) in the liver of lactating dairy cows. Eight multiparous Holstein cows (40 +/- 2 kg/d of milk yield and 162 +/- 35 d in milk) were randomly assigned to 1 of 2 diet sequences in a crossover design with two 22-d periods. Treatments consisted of a basal diet (60% concentrate) containing 0 or 0.96 mg/kg of supplemental biotin. On d 21 of each period, liver tissue was collected by percutaneous liver biopsy. Activities of PC and PCC were determined by measuring the fixation of [14C]O2 in liver homogenates. Abundance of mRNA for PCC, PC, and PEPCK was determined by quantitative reverse-transcription PCR. Biotin supplementation did not affect milk production or composition. Biotin supplementation increased the activity of PC but had no effect on PCC activity. Biotin supplementation did not affect the gene expression of PC, PCC, and PEPCK. The increased activity of PC without changes in mRNA abundance may have been caused by increased activation of the apoenzymes by holocarboxylase synthetase. In conclusion, biotin supplementation affected the activity of PC in the liver of lactating dairy cows, but whether biotin supplementation increases glucose production in the liver remains to be determined.

  15. Locus ceruleus control of state-dependent gene expression.

    PubMed

    Cirelli, Chiara; Tononi, Giulio

    2004-06-09

    Wakefulness and sleep are accompanied by changes in behavior and neural activity, as well as by the upregulation of different functional categories of genes. However, the mechanisms responsible for such state-dependent changes in gene expression are unknown. Here we investigate to what extent state-dependent changes in gene expression depend on the central noradrenergic (NA) system, which is active in wakefulness and reduces its firing during sleep. We measured the levels of approximately 5000 transcripts expressed in the cerebral cortex of control rats and in rats pretreated with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], a neurotoxin that removes the noradrenergic innervation of the cortex. We found that NA depletion reduces the expression of approximately 20% of known wakefulness-related transcripts. Most of these transcripts are involved in synaptic plasticity and in the cellular response to stress. In contrast, NA depletion increased the expression of the sleep-related gene encoding the translation elongation factor 2. These results indicate that the activity of the central NA system during wakefulness modulates neuronal transcription to favor synaptic potentiation and counteract cellular stress, whereas its inactivity during sleep may play a permissive role to enhance brain protein synthesis.

  16. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars.

    PubMed

    Wu, Yifei; Wang, Jian; Shen, Xiaolin; Wang, Jia; Chen, Zhenya; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2018-03-01

    Trehalose, a multi-functional and value-added disaccharide, can be efficiently biosynthesized from glucose by using a synergetic carbon utilization mechanism (SynCar) which coupled phosphoenolpyruvate (PEP) generation from the second carbon source with PEP-dependent phosphotransferase system (PTS) to promote non-catabolic use of glucose. Considering glucose and xylose present in large amounts in lignocellulosic sugars, we explored new strategies for conversion of both sugars into trehalose. Herein, we first attempted trehalose production from xylose directly, based on which, synergetic utilization of glucose, and xylose prompted by SynCar was implemented in engineered Escherichia coli. As the results, the final titer of trehalose reached 5.55 g/L in shake flask experiments. The conversion ratio or utilization efficiency of glucose or xylose to trehalose was around fourfold higher than that of the original strain (YW-3). This work not only demonstrated the possibility of directly converting xylose (C5 sugar) into trehalose (C12 disaccharide), but also suggested a promising strategy for trehalose production from lignocellulosic sugars for the first time. © 2017 Wiley Periodicals, Inc.

  17. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    PubMed

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  18. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability

    PubMed Central

    Nijland, Mark J; Mitsuya, Kozoh; Li, Cun; Ford, Stephen; McDonald, Thomas J; Nathanielsz, Peter W; Cox, Laura A

    2010-01-01

    Decreased maternal nutrient availability during pregnancy induces compensatory fetal metabolic and endocrine responses. Knowledge of cellular changes involved is critical to understanding normal and abnormal development. Several studies in rodents and sheep report increased fetal plasma cortisol and associated increased gluconeogenesis in response to maternal nutrient reduction (MNR) but observations in primates are lacking. We determined MNR effects on fetal liver phosphoenolpyruvate carboxykinase 1 (protein, PEPCK1; gene, PCK1 orthologous/homologous human chromosomal region 20q13.31) at 0.9 gestation (G). Female baboon social groups were fed ad libitum (control, CTR) or 70% CTR (MNR) from 0.16 to 0.9G when fetuses were delivered by caesarean section under general anaesthesia. Plasma cortisol was elevated in fetuses of MNR mothers (P < 0.05). Immunoreactive PEPCK1 protein was located around the liver lobule central vein and was low in CTR fetuses but rose to 63% of adult levels in MNR fetuses. PCK1 mRNA measured by QRT-PCR increased in MNR (2.3-fold; P < 0.05) while the 25% rise in protein by Western blot analysis was not significant. PCK1 promoter methylation analysis using bisulfite sequencing was significantly reduced in six out of nine CpG-dinucleotides evaluated in MNR compared with CTR liver samples. In conclusion, these are the first data from a fetal non-human primate indicating hypomethylation of the PCK1 promoter in the liver following moderate maternal nutrient reduction. PMID:20176628

  19. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.

    PubMed

    Boyd, Ryan A; Gandin, Anthony; Cousins, Asaph B

    2015-11-01

    The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3 (-), and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3 (-) limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. PPi-dependent phosphofructotransferase (phosphofructokinase) activity in the mollicutes (mycoplasma) Acholeplasma laidlawii.

    PubMed Central

    Pollack, J D; Williams, M V

    1986-01-01

    A PPi-dependent phosphofructotransferase (PPi-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.90) which catalyzes the conversion of fructose 6 phosphate (F-6-P) to fructose 1,6-bisphosphate (F-1, 6-P2) was isolated from a cytoplasmic fraction of Acholeplasma laidlawii B-PG9 and partially purified (430-fold). PPi was required as the phosphate donor. ATP, dATP, CTP, dCTP, GTP, dGTP, UTP, dUTP, ITP, TTP, ADP, or Pi could not substitute for PPi. The PPi-dependent reaction (2.0 mM PPi) was not altered in the presence of any of these nucleotides (2.0 mM) or in the presence of smaller (less than or equal to 300 microM) amounts of fructose 2,6-bisphosphate, (NH4)2SO4, AMP, citrate, GDP, or phosphoenolpyruvate. Mg2+ and a pH of 7.4 were required for maximum activity. The partially purified enzyme in sucrose density gradient experiments had an approximate molecular weight of 74,000 and a sedimentation coefficient of 6.7. A second form of the enzyme (molecular weight, 37,000) was detected, although in relatively smaller amounts, by using Blue Sepharose matrix when performing electrophoresis experiments. The back reaction, F-1, 6-P2 to F-6-P, required Pi; arsenate could substitute for Pi, but not PPi or any other nucleotide tested. The computer-derived kinetic constants (+/- standard deviation) for the reaction in the PPi-driven direction of F-1, 6-P2 were as follows: v, 38.9 +/- 0.48 mM min-1; Ka(PPi), 0.11 +/- 0.04 mM; Kb(F-6-P), 0.65 +/- 0.15 mM; and Kia(PPi), 0.39 +/- 0.11 mM. A. laidlawii B-PG9 required PPi not only for the PPi-phosphofructotransferase reaction which we describe but also for purine nucleoside kinase activity. a dependency unknown in any other organism. In A. laidlawii B-PG9, the PPi requirement may be met by reactions in this organism already known to synthesize PPi (e.g., dUTPase and purine nucleobase phosphoribosyltransferases). In almost all other cells, the conversion of F-6-P to F-1,6-P2 is ATP dependent, and the reaction is generally considered

  1. Analysis of regulatory mechanisms of an insulin-inducible SHARP-2 gene by (S)-Equol.

    PubMed

    Haneishi, Ayumi; Takagi, Katsuhiro; Asano, Kosuke; Yamamoto, Taichi; Tanaka, Takashi; Nakamura, Soichiro; Noguchi, Tamio; Yamada, Kazuya

    2012-09-01

    Small compounds that activate the insulin-dependent signaling pathway have potential therapeutic applications in controlling type 2 diabetes mellitus. The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor that decreases expression of the phosphoenolpyruvate carboxykinase gene, a gluconeogenic enzyme gene. In this study, we screened for soybean isoflavones that can induce the rat SHARP-2 gene expression and analyzed their mechanism(s). Genistein and (S)-Equol, a metabolite of daidzein, induced rat SHARP-2 gene expression in H4IIE rat hepatoma cells. The (S)-Equol induction was mediated by both the phosphoinositide 3-kinase- and protein kinase C (PKC)-pathways. When a dominant negative form of atypical PKC lambda (aPKCλ) was expressed, the induction of SHARP-2 mRNA level by (S)-Equol was inhibited. In addition, Western blot analyses showed that (S)-Equol rapidly activated both aPKCλ and classical PKC alpha. Furthermore, the (S)-Equol induction was inhibited by treatment with a RNA polymerase inhibitor or a protein synthesis inhibitor. Finally, a reporter gene assay revealed that the transcriptional stimulation by (S)-Equol was mediated by nucleotide sequences located between -4687 and -4133 of the rat SHARP-2 gene. Thus, we conclude that (S)-Equol is an useful dietary supplement to control type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12.

    PubMed

    Colbere-Garapin, F; Chousterman, S; Horodniceanu, F; Kourilsky, P; Garapin, A C

    1979-08-01

    A herpes simplex virus DNA fragment that is produced by digestion with BamHI endonuclease and carries the thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) gene has been cloned in Escherichia coli. A recombinat plasmid, pFG5, has been analyzed extensively and a detailed restriction map is presented. pFG5 DNA efficiently transforms TK- mouse L cells. The TK coding sequence in the cloned fragment has been localized and a smaller recombinant plasmid, pAG0, also carrying an active TK gene, has been constructed to serve as a more convenient vector for transfer, into TK- cells, of genes previously cloned in E. coli.

  3. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walanj, Rupa; Young, Paul; Baker, Heather M.

    2005-04-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong tomore » the monoclinic space group P2{sub 1}, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding.« less

  4. In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds.

    PubMed

    Ruiz-Ballesta, Isabel; Feria, Ana-Belén; Ni, Hong; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110 kDa and 107 kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460 kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme's feedback inhibition by L-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell's immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon-nitrogen interactions.

  5. In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds

    PubMed Central

    Echevarría, Cristina

    2014-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110kDa and 107kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme’s feedback inhibition by l-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell’s immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon–nitrogen interactions. PMID:24288181

  6. Structural basis of rifampin inactivation by rifampin phosphotransferase

    PubMed Central

    Qi, Xiaofeng; Lin, Wei; Ma, Miaolian; Wang, Chengyuan; He, Yang; He, Nisha; Gao, Jing; Zhou, Hu; Xiao, Youli; Wang, Yong

    2016-01-01

    Rifampin (RIF) is a first-line drug used for the treatment of tuberculosis and other bacterial infections. Various RIF resistance mechanisms have been reported, and recently an RIF-inactivation enzyme, RIF phosphotransferase (RPH), was reported to phosphorylate RIF at its C21 hydroxyl at the cost of ATP. However, the underlying molecular mechanism remained unknown. Here, we solve the structures of RPH from Listeria monocytogenes (LmRPH) in different conformations. LmRPH comprises three domains: an ATP-binding domain (AD), an RIF-binding domain (RD), and a catalytic His-containing domain (HD). Structural analyses reveal that the C-terminal HD can swing between the AD and RD, like a toggle switch, to transfer phosphate. In addition to its catalytic role, the HD can bind to the AD and induce conformational changes that stabilize ATP binding, and the binding of the HD to the RD is required for the formation of the RIF-binding pocket. A line of hydrophobic residues forms the RIF-binding pocket and interacts with the 1-amino, 2-naphthol, 4-sulfonic acid and naphthol moieties of RIF. The R group of RIF points toward the outside of the pocket, explaining the low substrate selectivity of RPH. Four residues near the C21 hydroxyl of RIF, His825, Arg666, Lys670, and Gln337, were found to play essential roles in the phosphorylation of RIF; among these the His825 residue may function as the phosphate acceptor and donor. Our study reveals the molecular mechanism of RIF phosphorylation catalyzed by RPH and will guide the development of a new generation of rifamycins. PMID:27001859

  7. Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli

    PubMed Central

    Somavanshi, Rahul; Ghosh, Bhaswar; Sourjik, Victor

    2016-01-01

    The phosphotransferase system (PTS) plays a pivotal role in the uptake of multiple sugars in Escherichia coli and many other bacteria. In the cell, individual sugar-specific PTS branches are interconnected through a series of phosphotransfer reactions, thus creating a global network that not only phosphorylates incoming sugars but also regulates a number of cellular processes. Despite the apparent importance of the PTS network in bacterial physiology, the holistic function of the network in the cell remains unclear. Here we used Förster resonance energy transfer (FRET) to investigate the PTS network in E. coli, including the dynamics of protein interactions and the processing of different stimuli and their transmission to the chemotaxis pathway. Our results demonstrate that despite the seeming complexity of the cellular PTS network, its core part operates in a strikingly simple way, sensing the overall influx of PTS sugars irrespective of the sugar identity and distributing this information equally through all studied branches of the network. Moreover, it also integrates several other specific metabolic inputs. The integrated output of the PTS network is then transmitted linearly to the chemotaxis pathway, in stark contrast to the amplification of conventional chemotactic stimuli. Finally, we observe that default uptake through the uninduced PTS network correlates well with the quality of the carbon source, apparently representing an optimal regulatory strategy. PMID:27557415

  8. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).

    PubMed

    Koh, Ji Hoon; Choi, Seung Hye; Park, Seung Won; Choi, Nag-Jin; Kim, Younghoon; Kim, Sae Hun

    2013-10-01

    Synbiotics, the combination of prebiotics and probiotics, has been shown to produce synergistic effects that promote gastrointestinal well-being of host. Tagatose is a low calorie food ingredient with putative health-promoting benefits. Herein, we investigated its synbiotic impact on the viability of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and the potential mechanism involved. Tagatose, as a synbiotic substrate, enhanced the growth of L. casei 01 and L. rhamnosus strain GG compared to other prebiotics. Other gut-indigenous such as Clostridium spp. readily utilized fructooligosaccharide (FOS), the most widely used functional prebiotics, but not tagatose. Additionally, tagatose enhanced probiotic functions of L. casei 01 and L. rhamnosus strain GG by reinforcing their attachment on HT-29 intestine epithelial cells and enhancing their cholesterol-lowering activities. Whole transcriptome study and quantitative real-time polymerase chain reaction (qRT-PCR) test showed that the presence of tagatose in L. rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system (PTS). Collectively, these results indicate the tagatose enhanced the growth of L. casei 01 and L. rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks. Importantly, this study highlights the potential application of tagatose and L. casei 01 and/or L. rhamnosus strain GG as a synbiotic partner in functional dairy foods (i.e. yogurt and cheese) and therapeutic dietary supplements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa.

    PubMed

    Aivalakis, Georgios; Dimou, Maria; Flemetakis, Emmanouil; Plati, Fotini; Katinakis, Panagiotis; Drossopoulos, J B

    2004-03-01

    To investigate the role of carbonic anhydrase (CA; EC 4.2.1.1) and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) during Medicago sativa seed development, the distribution of both proteins was examined using an immunohistological approach. Both enzymes are co-localized in most ovular and embryonic tissues. In early stages of seed development, both proteins were abundant in embryo and integuments, while at subsequent stages both proteins are accumulated in endosperm, nucellus and integuments. At late stages of seed development when both endosperm and nucellus are degraded, significant accumulation of both proteins was observed in the embryo proper. Chlorophyll was found to accumulate in embryos after the heart stage and reached a maximum at mature stage. It is suggested that CA and PEPC play a role in respiratory carbon dioxide refixation while generating malate to support amino acid and/or fatty acids biosynthesis.

  10. Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks

    PubMed Central

    Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.

    2012-01-01

    While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213

  11. Improved short-term drought response of transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase via calcium signal cascade.

    PubMed

    Liu, Xiaolong; Li, Xia; Dai, Chuanchao; Zhou, Jiayu; Yan, Ting; Zhang, Jinfei

    2017-11-01

    To understand the link between long-term drought tolerance and short-term drought responses in plants, transgenic rice (Oryza sativa L.) plants over-expressing the maize C 4- pepc gene encoding phosphoenolpyruvate carboxylase (PC) and wild-type (WT) rice plants were subjected to PEG 6000 treatments to simulate drought stress. Compared with WT, PC had the higher survival rate and net photosynthetic rate after 16days of drought treatment, and had higher relative water content in leaves after 2h of drought treatment as well, conferring drought tolerance. WT accumulated higher amounts of malondialdehyde, superoxide radicals, and H 2 O 2 than PC under the 2-h PEG 6000 treatment, indicating greater damages in WT. Results from pretreatments with a Ca 2+ chelator and/or antagonist showed that the regulation of the early drought response in PC was Ca 2+ -dependent. The NO and H 2 O 2 levels in PC lines were also up-regulated via Ca 2+ signals, indicating that Ca 2+ in PC lines also reacted upstream of NO and H 2 O 2 . 2-h drought treatment increased the transcripts of CPK9 and CPK4 in PC via positive up-regulation of Ca 2+ . The transcripts of NAC6 [NACs (NAM, ATAF1, ATAF2, and CUC2)] and bZIP60 (basic leucine zipper, bZIP) were up-regulated, but those of DREB2B (dehydration-responsive element-binding protein, DREB) were down-regulated, both via Ca 2+ signals in PC. PEPC activity, expressions of C 4 -pepc, and the antioxidant enzyme activities in PC lines were up-regulated via Ca 2+ . These results indicated that Ca 2+ signals in PC lines can up-regulate the NAC6 and bZIP60 and the downstream targets for early drought responses, conferring drought tolerance for the long term. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. The Lcn972 Bacteriocin-Encoding Plasmid pBL1 Impairs Cellobiose Metabolism in Lactococcus lactis▿

    PubMed Central

    Campelo, Ana B.; Gaspar, Paula; Roces, Clara; Rodríguez, Ana; Kok, Jan; Kuipers, Oscar P.; Neves, Ana Rute; Martínez, Beatriz

    2011-01-01

    pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes showing significantly changed expression. Upregulation of the lactococcal oligopeptide uptake (opp) system was observed, which was likely linked to a higher nitrogen demand required for Lcn972 biosynthesis. Strikingly, celB, coding for the membrane porter IIC of the cellobiose phosphoenolpyruvate-dependent phosphotransferase system (PTS), and the upstream gene llmg0186 were downregulated. Growth profiles for L. lactis strains MG1363, MG1363/pBL1, and MG1363 ΔcelB grown in chemically defined medium (CDM) containing cellobiose confirmed slower growth of MG1363/pBL1 and MG1363 ΔcelB, while no differences were observed with growth on glucose. The presence of pBL1 shifted the fermentation products toward a mixed acid profile and promoted substantial changes in intracellular pool sizes for glycolytic intermediates in cells growing on cellobiose as determined by high-pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Overall, these data support the genetic evidence of a constriction in cellobiose uptake. Notably, several cell wall precursors accumulated, while other UDP-activated sugar pools were lower, which could reflect rerouting of precursors toward the production of structural or storage polysaccharides. Moreover, cells growing slowly on cellobiose and those lacking celB were more tolerant to Lcn972 than cellobiose-adapted cells. Thus, downregulation of celB could help to build up a response against the antimicrobial activity of Lcn972, enhancing self-immunity of the producer cells. PMID:21890668

  13. A system for the measurement of gene targeting efficiency in human cell lines using an antibiotic resistance-GFP fusion gene.

    PubMed

    Konishi, Yuko; Karnan, Sivasundaram; Takahashi, Miyuki; Ota, Akinobu; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-09-01

    Gene targeting in a broad range of human somatic cell lines has been hampered by inefficient homologous recombination. To improve this technology and facilitate its widespread application, it is critical to first have a robust and efficient research system for measuring gene targeting efficiency. Here, using a fusion gene consisting of hygromycin B phosphotransferase and 3'-truncated enhanced GFP (HygR-5' EGFP) as a reporter gene, we created a molecular system monitoring the ratio of homologous to random integration (H/R ratio) of targeting vectors into the genome. Cell clones transduced with a reporter vector containing HygR-5' EGFP were efficiently established from two human somatic cell lines. Established HygR-5' EGFP reporter clones retained their capacity to monitor gene targeting efficiency for a longer duration than a conventional reporter system using an unfused 5' EGFP gene. With the HygR-5' EGFP reporter system, we reproduced previous findings of gene targeting frequency being up-regulated by the use of an adeno-associated viral (AAV) backbone, a promoter-trap system, or a longer homology arm in a targeting vector, suggesting that this system accurately monitors H/R ratio. Thus, our HygR-5' EGFP reporter system will assist in the development of an efficient AAV-based gene targeting technology.

  14. Enzymatic analysis of a thermostabilized mutant of an Escherichia coli hygromycin B phosphotransferase.

    PubMed

    Nakamura, Akira; Takakura, Yasuaki; Sugimoto, Naohisa; Takaya, Naoki; Shiraki, Kentaro; Hoshino, Takayuki

    2008-09-01

    An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158-163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 degrees C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 degrees C of HPH to 53 and 58.8 degrees C respectively. Specific activities and steady-state kinetics measured at 25 degrees C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.

  15. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons

    PubMed Central

    Banday, Abdul Rouf; Baumgartner, Marybeth; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Venkatesh, Aditya; Congdon, Sean; Lemoine, Christopher; Kilcollins, Ashley M; Mandoiu, Ion; Punzo, Claudio; Kanadia, Rahul N

    2014-01-01

    In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as “replication-dependent.” Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons. PMID:25486194

  16. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation

    PubMed Central

    Masumoto, Chisato; Miyazawa, Shin-Ichi; Ohkawa, Hiroshi; Fukuda, Takuya; Taniguchi, Yojiro; Murayama, Seiji; Kusano, Miyako; Saito, Kazuki; Fukayama, Hiroshi; Miyao, Mitsue

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary metabolism in bacteria, algae, and vascular plants, and is believed to be cytosolic. Here we show that rice (Oryza sativa L.) has a plant-type PEPC, Osppc4, that is targeted to the chloroplast. Osppc4 was expressed in all organs tested and showed high expression in the leaves. Its expression in the leaves was confined to mesophyll cells, and Osppc4 accounted for approximately one-third of total PEPC protein in the leaf blade. Recombinant Osppc4 was active in the PEPC reaction, showing Vmax comparable to cytosolic isozymes. Knockdown of Osppc4 expression by the RNAi technique resulted in stunting at the vegetative stage, which was much more marked when rice plants were grown with ammonium than with nitrate as the nitrogen source. Comparison of leaf metabolomes of ammonium-grown plants suggested that the knockdown suppressed ammonium assimilation and subsequent amino acid synthesis by reducing levels of organic acids, which are carbon skeleton donors for these processes. We also identified the chloroplastic PEPC gene in other Oryza species, all of which are adapted to waterlogged soil where the major nitrogen source is ammonium. This suggests that, in addition to glycolysis, the genus Oryza has a unique route to provide organic acids for ammonium assimilation that involves a chloroplastic PEPC, and that this route is crucial for growth with ammonium. This work provides evidence for diversity of primary ammonium assimilation in the leaves of vascular plants. PMID:20194759

  17. Cdk5 Regulates Activity-Dependent Gene Expression and Dendrite Development.

    PubMed

    Liang, Zhuoyi; Ye, Tao; Zhou, Xiaopu; Lai, Kwok-On; Fu, Amy K Y; Ip, Nancy Y

    2015-11-11

    The proper growth and arborization of dendrites in response to sensory experience are essential for neural connectivity and information processing in the brain. Although neuronal activity is important for sculpting dendrite morphology, the underlying molecular mechanisms are not well understood. Here, we report that cyclin-dependent kinase 5 (Cdk5)-mediated transcriptional regulation is a key mechanism that controls activity-dependent dendrite development in cultured rat neurons. During membrane depolarization, Cdk5 accumulates in the nucleus to regulate the expression of a subset of genes, including that of the neurotrophin brain-derived neurotrophic factor, for subsequent dendritic growth. Furthermore, Cdk5 function is mediated through the phosphorylation of methyl-CpG-binding protein 2, a key transcriptional repressor that is mutated in the mental disorder Rett syndrome. These findings collectively suggest that the nuclear import of Cdk5 is crucial for activity-dependent dendrite development by regulating neuronal gene transcription during neural development. Neural activity directs dendrite development through the regulation of gene transcription. However, how molecular signals link extracellular stimuli to the transcriptional program in the nucleus remains unclear. Here, we demonstrate that neuronal activity stimulates the translocation of the kinase Cdk5 from the cytoplasmic compartment into the nucleus; furthermore, the nuclear localization of Cdk5 is required for dendrite development in cultured neurons. Genome-wide transcriptome analysis shows that Cdk5 deficiency specifically disrupts activity-dependent gene transcription of bdnf. The action of Cdk5 is mediated through the modulation of the transcriptional repressor methyl-CpG-binding protein 2. Therefore, this study elucidates the role of nuclear Cdk5 in the regulation of activity-dependent gene transcription and dendritic growth. Copyright © 2015 the authors 0270-6474/15/3515127-08$15.00/0.

  18. Phosphoenolpyruvate carboxykinase of Trypanosoma brucei is targeted to the glycosomes by a C-terminal sequence.

    PubMed

    Sommer, J M; Nguyen, T T; Wang, C C

    1994-08-15

    Import of proteins into the glycosomes of T. brucei resembles the peroxisomal protein import in that C-terminal SKL-like tripeptide sequences can function as targeting signals. Many of the glycosomal proteins do not, however, possess such C-terminal tripeptide signals. Among these, phosphoenolpyruvate carboxykinase (PEPCK (ATP)) was thought to be targeted to the glycosomes by an N-terminal or an internal targeting signal. A limited similarity to the N-terminal targeting signal of rat peroxisomal thiolase exists at the N-terminus of T. brucei PEPCK. However, we found that this peroxisomal targeting signal does not function for glycosomal protein import in T. brucei. Further studies of the PEPCK gene revealed that the C-terminus of the predicted protein does not correspond to the previously deduced protein sequence of 472 amino acids due to a -1 frame shift error in the original DNA sequence. Readjusting the reading frame of the sequence results in a predicted protein of 525 amino acids in length ending in a tripeptide serine-arginine-leucine (SRL), which is a potential targeting signal for import into the glycosomes. A fusion protein of firefly luciferase, without its own C-terminal SKL targeting signal, and T. brucei PEPCK is efficiently imported into the glycosomes when expressed in procyclic trypanosomes. Deletion of the C-terminal SRL tripeptide or the last 29 amino acids of PEPCK reduced the import only by about 50%, while a deletion of the last 47 amino acids completely abolished the import. These results suggest that T. brucei PEPCK may contain a second, internal glycosomal targeting signal upstream of the C-terminal SRL sequence.

  19. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGES

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of AP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits. he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes. he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. he β -subunit determined preference for adenine or guanine nucleotides. he GP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GP for GP-dependent phosphoenolpyruvate carboxykinase and for other GP-dependent processes. ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both AP and GP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the hermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  20. The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes.

    PubMed

    Shao, Jun-Li; Long, Yue-Sheng; Chen, Gu; Xie, Jun; Xu, Zeng-Fu

    2010-06-01

    Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.

  1. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashidhar, M.S.; Kuppe, A.; Volwerk, J.J.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that themore » phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.« less

  2. NHR-23 dependent collagen and hedgehog-related genes required for molting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek

    2011-10-07

    Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparativemore » expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.« less

  3. Heat inactivation of leaf phosphoenolpyruvate carboxylase: Protection by aspartate and malate in C4 plants.

    PubMed

    Rathnam, C K

    1978-01-01

    The activity of phosphoenolpyruvate (PEP) carboxylase EC 4.1.1.31 in leaf extracts of Eleusine indica L. Gaertn., a C4 plant, exhibited a temperature optimum of 35-37° C with a complete loss of activity at 50° C. However, the enzyme was protected effectively from heat inactivation up to 55° C by L-aspartate. Activation energies (Ea) for the enzyme in the presence of aspartate were 2.5 times lower than that of the control enzyme. Arrhenius plots of PEP carboxylase activity (±aspartate) showed a break in the slope around 17-20° C with a 3-fold increase in the Ea below the break. The discontinuity in the slopes was abolished by treating the enzyme extracts with Triton X-100, suggesting that PEP carboxylase in C4 plants is associated with lipid and may be a membrane bound enzyme. Depending upon the species, the major C4 acid formed during photosynthesis (malate or aspartate) was found to be more protective than the minor C4 acid against the heat inactivation of their PEP carboxylase. Oxaloacetate, the reaction product, was less effective compared to malate or aspartate. Several allosteric inhibitors of PEP carboxylase were found to be moderately to highly effective in protecting the C4 enzyme while its activators showed no significant effect. PEP carboxylase from C3 species was not protected from thermal inactivation by the C4 acids. The physiological significance of these results is discussed in relation to the high temperature tolerance of C4 plants.

  4. Inactivation of the PTS as a Strategy to Engineer the Production of Aromatic Metabolites in Escherichia coli.

    PubMed

    Carmona, Susy Beatriz; Moreno, Fabián; Bolívar, Francisco; Gosset, Guillermo; Escalante, Adelfo

    2015-01-01

    Laboratory and industrial cultures of Escherichia coli employ media containing glucose which is mainly transported and phosphorylated by the phosphotransferase system (PTS). In these strains, 50% of the phosphoenolpyruvate (PEP), which results from the catabolism of transported glucose, is used as a phosphate donor for its phosphorylation and translocation by the PTS. This characteristic of the PTS limits the production of industrial biocommodities that have PEP as a precursor. Furthermore, when E. coli is exposed to carbohydrate mixtures, the PTS prevents expression of catabolic and non-PTS transport genes by carbon catabolite repression and inducer exclusion. In this contribution, we discuss the main strategies developed to overcome these potentially limiting effects in production strains. These strategies include adaptive laboratory evolution selection of PTS(-) Glc(+) mutants, followed by the generation of strains that recover their ability to grow with glucose as a carbon source while allowing the simultaneous consumption of more than one carbon source. We discuss the benefits of using alternative glucose transport systems and describe the application of these strategies to E. coli strains with specific genetic modifications in target pathways. These efforts have resulted in significant improvements in the production of diverse biocommodities, including aromatic metabolites, biofuels and organic acids. © 2015 S. Karger AG, Basel.

  5. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica.

    PubMed

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-08-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  6. Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6’-phosphate phosphatase (MapP)

    PubMed Central

    Mokhtari, Abdelhamid; Blancato, Víctor S.; Repizo, Guillermo; Henry, Céline; Pikis, Andreas; Bourand, Alexa; de Fátima Álvarez, María; Immel, Stefan; Mechakra-Maza, Aicha; Hartke, Axel; Thompson, John; Magni, Christian; Deutscher, Josef

    2013-01-01

    Summary Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase which in B. subtilis hydrolyses maltose-6’-P into glucose and glucose-6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose-6-P into glucose-1-P and glucose-6-P. However, purified MalP phosphorolyses maltose but not maltose-6’-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose-6’-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose-1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose-6’-P restored growth on maltose. MapP catalyzes the dephosphorylation of intracellular maltose-6’-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose-1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalyzed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage. PMID:23490043

  7. Characterization of the Drosophila Methoprene -tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation.

    PubMed

    Miura, Ken; Oda, Masahito; Makita, Sumiko; Chinzei, Yasuo

    2005-03-01

    Juvenile hormones (JHs) of insects are sesquiterpenoids that regulate a great diversity of processes in development and reproduction. As yet the molecular modes of action of JH are poorly understood. The Methoprene-tolerant (Met) gene of Drosophila melanogaster has been found to be responsible for resistance to a JH analogue (JHA) insecticide, methoprene. Previous studies on Met have implicated its involvement in JH signaling, although direct evidence is lacking. We have now examined the product of Met (MET) in terms of its binding to JH and ligand-dependent gene regulation. In vitro synthesized MET directly bound to JH III with high affinity (Kd = 5.3 +/- 1.5 nm, mean +/- SD), consistent with the physiological JH concentration. In transient transfection assays using Drosophila S2 cells the yeast GAL4-DNA binding domain fused to MET exerted JH- or JHA-dependent activation of a reporter gene. Activation of the reporter gene was highly JH- or JHA-specific with the order of effectiveness: JH III > JH II > JH I > methoprene; compounds which are only structurally related to JH or JHA did not induce any activation. Localization of MET in the S2 cells was nuclear irrespective of the presence or absence of JH. These results suggest that MET may function as a JH-dependent transcription factor.

  8. 6-mercaptopurine influences TPMT gene transcription in a TPMT gene promoter variable number of tandem repeats-dependent manner.

    PubMed

    Kotur, Nikola; Stankovic, Biljana; Kassela, Katerina; Georgitsi, Marianthi; Vicha, Anna; Leontari, Iliana; Dokmanovic, Lidija; Janic, Dragana; Krstovski, Nada; Klaassen, Kristel; Radmilovic, Milena; Stojiljkovic, Maja; Nikcevic, Gordana; Simeonidis, Argiris; Sivolapenko, Gregory; Pavlovic, Sonja; Patrinos, George P; Zukic, Branka

    2012-02-01

    TPMT activity is characterized by a trimodal distribution, namely low, intermediate and high methylator. TPMT gene promoter contains a variable number of GC-rich tandem repeats (VNTRs), namely A, B and C, ranging from three to nine repeats in length in an A(n)B(m)C architecture. We have previously shown that the VNTR architecture in the TPMT gene promoter affects TPMT gene transcription. MATERIALS, METHODS & RESULTS: Here we demonstrate, using reporter assays, that 6-mercaptopurine (6-MP) treatment results in a VNTR architecture-dependent decrease of TPMT gene transcription, mediated by the binding of newly recruited protein complexes to the TPMT gene promoter, upon 6-MP treatment. We also show that acute lymphoblastic leukemia patients undergoing 6-MP treatment display a VNTR architecture-dependent response to 6-MP. These data suggest that the TPMT gene promoter VNTR architecture can be potentially used as a pharmacogenomic marker to predict toxicity due to 6-MP treatment in acute lymphoblastic leukemia patients.

  9. Characterization of the Sorbitol Utilization Cluster of the Probiotic Pediococcus parvulus 2.6: Genetic, Functional and Complementation Studies in Heterologous Hosts

    PubMed Central

    Pérez-Ramos, Adrian; Werning, Maria L.; Prieto, Alicia; Russo, Pasquale; Spano, Giuseppe; Mohedano, Mari L.; López, Paloma

    2017-01-01

    Pediococcus parvulus 2.6 secretes a 2-substituted (1,3)-β-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA), whose products should be involved in sorbitol utilization and could generate substrates for UDP-glucose synthesis. Southern blot hybridization analysis showed that the cluster is located in a plasmid. Analysis of metabolic fluxes and production of the exopolysaccharide revealed that: (i) P. parvulus 2.6 is able to metabolize sorbitol, (ii) sorbitol utilization is repressed in the presence of glucose and (iii) sorbitol supports the synthesis of 2-substituted (1,3)-β-D-glucan. The sorbitol cluster encodes two putative regulators, GutR and GutM, in addition to a phosphoenolpyruvate-dependent phosphotransferase transport system and sorbitol-6-phosphate dehydrogenase. Therefore, we investigated the involvement of GutR and GutM in the expression of gutFRMCBA. The promoter-probe vector pRCR based on the mrfp gene, which encodes the fluorescence protein mCherry, was used to test the potential promoter of the cluster (Pgut) and the genes encoding the regulators. This was performed by transferring by electrotransformation the recombinant plasmids into two hosts, which metabolize sorbitol: Lactobacillus plantarum and Lactobacillus casei. Upon growth in the presence of sorbitol, but not of glucose, only the presence of Pgut was required to support expression of mrfp in L. plantarum. In L. casei the presence of sorbitol in the growth medium and the pediococcal gutR or gutR plus gutM in the genome was required for Pgut functionality. This demonstrates that: (i) Pgut is required for expression of the gut cluster, (ii) Pgut is subjected to catabolic repression in lactobacilli, (iii) GutR is an activator, and (iv) in the presence of sorbitol, trans

  10. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    PubMed

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  11. Cloning and expression of phosphoenolpyruvate carboxykinase from a cestode parasite and its solubilization from inclusion bodies using l-arginine.

    PubMed

    Dutta, Asim K; Ramnath; Dkhar, Barilin; Tandon, Veena; Das, Bidyadhar

    2016-09-01

    Phosphoenolpyruvate carboxykinase is an essential regulatory enzyme of glycolysis in the cestode parasite, Raillietina echinobothrida, and is considered a potential target for anthelmintic action because of its differential activity from that of its avian host. However, due to the unavailability of its structure, the mechanism of regulation of PEPCK from R. echinobothrida (rePEPCK) and its interaction with possible modulators remain unclear. Hence, in this study, the rePEPCK gene was cloned into pGEX-4T-3 and overexpressed for its characterization. On being induced by IPTG, the recombinant rePEPCK was expressed as inclusion bodies (IBs); hence, various agents, like different inducer concentrations, temperature, time, host cell types, culture media, pH, and additives, were used to bring the protein to soluble form. Finally, a significant amount (∼46%) of rePEPCK was solubilized from IBs by adding 2M l-arginine. Near-UV circular dichroism spectra analysis indicated that l-arginine (2M) had no effect on the conformation of the protein. In this study, we have reported a yield of ∼73mg of purified rePEPCK per 1L of culture. The purified rePEPCK retained its biological activity, and Km of the enzyme for its substrate was determined and discussed. The availability of recombinant rePEPCK may help in biochemical- and biophysical-studies to explore its molecular mechanisms and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauen, Thomas; Frye, Bjoern C.; Pneumology, University Medical Center, University of Freiburg, Freiburg

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPOmore » production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.« less

  13. Woodward's reagent K reacts with histidine and cysteine residues in Escherichia coli and Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases.

    PubMed

    Bustos, P; Gajardo, M I; Gómez, C; Goldie, H; Cardemil, E; Jabalquinto, A M

    1996-07-01

    The reaction of Woordward's reagent K (WRK) with model amino acids and proteins has been analyzed. Our results indicate that WRK forms 340-nm-absorbing adducts with sulfhydryl- and imidazol-containing compounds, but not with carboxylic acid derivatives, in agreement with Liamas et al. [(1986), J. Am. Chem. Soc. 108, 5543-5548], but not with Sinha and Brewer [(1985), Anal. Biochem. 151, 327-333]. The chemical modification of Escherichia coli and Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases with WRK leads to an increase in the absorption at 340 nm, and we have demonstrated its reaction with His and Cys residues in these proteins. These results caution against claims of glutamic or aspartic acid modification by WRK based on the absorption at 340 nm of protein- WRK adducts.

  14. Light-dependent expression of flg22-induced defense genes in Arabidopsis.

    PubMed

    Sano, Satoshi; Aoyama, Mayu; Nakai, Kana; Shimotani, Koji; Yamasaki, Kanako; Sato, Masa H; Tojo, Daisuke; Suwastika, I Nengah; Nomura, Hironari; Shiina, Takashi

    2014-01-01

    Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30%) genes strongly induced by flg22 (>4.0) require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid (SA), indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB). Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controlling the light-dependent expression of flg22-inducible defense genes.

  15. Peroxisome proliferator-activated receptor subtype-specific regulation of hepatic and peripheral gene expression in the Zucker diabetic fatty rat.

    PubMed

    Dana, S L; Hoener, P A; Bilakovics, J M; Crombie, D L; Ogilvie, K M; Kauffman, R F; Mukherjee, R; Paterniti, J R

    2001-08-01

    Fibrates and thiazolidinediones are used clinically to treat hypertriglyceridemia and hyperglycemia, respectively. Fibrates bind to the peroxisome proliferator-activated receptor (PPAR)-alpha, and thiazolidinediones are ligands of PPAR-gamma. These intracellular receptors form heterodimers with retinoid X receptor to modulate gene transcription. To elucidate the target genes regulated by these compounds, we treated Zucker diabetic fatty rats (ZDF) for 15 days with a PPAR-alpha-specific compound, fenofibrate, a PPAR-gamma-specific ligand, rosiglitazone, and a PPAR-alpha/-gamma coagonist, GW2331, and measured the levels of several messenger RNAs (mRNAs) in liver by real-time polymerase chain reaction. All 3 compounds decreased serum glucose and triglyceride levels. Fenofibrate and GW2331 induced expression of acyl-coenzyme A (CoA) oxidase and enoyl-CoA hydratase and reduced apolipoprotein C-III and phosphoenolpyruvate carboxykinase mRNAs. Rosiglitazone modestly increased apolipoprotein C-III mRNA and had no effect on expression of the other 2 genes in the liver but increased the expression of glucose transporter 4 and phosphoenolpyruvate carboxykinase in adipose tissue. We identified a novel target in liver, mitogen-activated phosphokinase phosphatase 1, whose down-regulation by PPAR-alpha agonists may improve insulin sensitivity in that tissue by prolonging insulin responses. The results of these studies suggest that activation of PPAR-alpha as well as PPAR-gamma in therapy for type 2 diabetes will enhance glucose and triglyceride control by combining actions in hepatic and peripheral tissues. Copyright 2001 by W.B. Saunders Company

  16. Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core Clock Gene Expression in the Cactus Opuntia ficus-indica1[C][W

    PubMed Central

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-01-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  17. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    PubMed

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica.

    PubMed

    Teets, Nicholas M; Kawarasaki, Yuta; Lee, Richard E; Denlinger, David L

    2013-02-01

    The Antarctic midge, Belgica antarctica, experiences sub-zero temperatures and desiccating conditions for much of the year, and in response to these environmental insults, larvae undergo rapid shifts in metabolism, mobilizing carbohydrate energy reserves to promote synthesis of low-molecular-mass osmoprotectants. In this study, we measured the expression of 11 metabolic genes in response to thermal and dehydration stress. During both heat and cold stress, we observed upregulation of phosphoenolpyruvate carboxykinase (pepck) and glycogen phosphorylase (gp) to support rapid glucose mobilization. In contrast, there was a general downregulation of pathways related to polyol, trehalose, and proline synthesis during both high- and low-temperature stress. Pepck was likewise upregulated in response to different types of dehydration stress; however, for many of the other genes, expression patterns depended on the nature of dehydration stress. Following fast dehydration, expression patterns were similar to those observed during thermal stress, i.e., upregulation of gp accompanied by downregulation of trehalose and proline synthetic genes. In contrast, gradual, prolonged dehydration (both at a constant temperature and in conjunction with chilling) promoted marked upregulation of genes responsible for trehalose and proline synthesis. On the whole, our data agree with known metabolic adaptations to stress in B. antarctica, although a few discrepancies between gene expression patterns and downstream metabolite contents point to fluxes that are not controlled at the level of transcription.

  19. Galpha13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis.

    PubMed

    Liu, Guoquan; Han, Jingyan; Profirovic, Jasmina; Strekalova, Elena; Voyno-Yasenetskaya, Tatyana A

    2009-01-01

    The alpha subunit of heterotrimeric G13 protein is required for the embryonic angiogenesis (Offermanns et al., Science 275:533-536, 1997). However, the molecular mechanism of Galpha13-dependent angiogenesis is not understood. Here, we show that myocyte-specific enhancer factor-2 (MEF2) mediates Galpha13-dependent angiogenesis. Our data showed that constitutively activated Galpha13Q226L stimulated MEF2-dependent gene transcription. In addition, downregulation of endogenous Galpha13 inhibited thrombin-stimulated MEF2-dependent gene transcription in endothelial cells. Both Ca(2+)/calmodulin-dependent kinase IV (CaMKIV) and histone deacetylase 5 (HDAC5) were involved in Galpha13-mediated MEF2-dependent gene transcription. Galpha13Q226L also increased Ca(2+)/calmodulin-independent CaMKIV activity, while dominant negative mutant of CaMKIV inhibited MEF2-dependent gene transcription induced by Galpha13Q226L. Furthermore, Galpha13Q226L was able to derepress HDAC5-mediated repression of gene transcription and induce the translocation of HDAC5 from nucleus to cytoplasm. Finally, downregulation of endogenous Galpha13 and MEF2 proteins in endothelial cells reduced cell proliferation and capillary tube formation. Decrease of endothelial cell proliferation that was caused by the Galpha13 downregulation was partially restored by the constitutively active MEF2-VP16. Our studies suggest that MEF2 proteins are an important component in Galpha13-mediated angiogenesis.

  20. Structure and function of the mannitol permease of the Escherichia coli phosphotransferase sugar transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, M.M.

    1988-01-01

    The mannitol permease, or mannitol enzyme II, is responsible for the phosphorylation and transmembrane transport of the hexitol mannitol via the phosphotransferase sugar transport system (PTS) in Escherichia coli. Neither the detailed molecular mechanisms by which this protein carries out these functions nor its three dimensional structure in the membrane are known. An in vivo selective radiolabeling system was used to study the enzyme's subunits interactions as they related to function, as well as its membrane topography, by polyacrylamide gel electrophoresis. The intramembrane topography of the mannitol enzyme II was investigated using proteases as probes of enzyme structure in themore » membrane. The enzyme was found to have two distinct domains, a very hydrophobic, membrane-bound, N-terminal domain, and a relatively hyprophilic C-terminal domain which protrudes into the cytoplasm. The membrane-bound domain was further dissected, and an extra-membrane loop region was identified using peptide-specific antibodies. The cytoplasmic domain was found to contain a site of covalent phosphorylation using (/sup 32/p)-labeled PEP, as well as the binding site for the phosphodonor HPr.« less

  1. Helper-dependent adenoviral vectors for liver-directed gene therapy

    PubMed Central

    Brunetti-Pierri, Nicola; Ng, Philip

    2011-01-01

    Helper-dependent adenoviral (HDAd) vectors devoid of all viral-coding sequences are promising non-integrating vectors for liver-directed gene therapy because they have a large cloning capacity, can efficiently transduce a wide variety of cell types from various species independent of the cell cycle and can result in long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd for liver-directed gene therapy is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration resulting in acute toxicity, the severity of which is dependent on vector dose. Intense efforts have been focused on elucidating the factors involved in this acute response and various strategies have been investigated to improve the therapeutic index of HDAd vectors. These strategies have yielded encouraging results with the potential for clinical translation. PMID:21470977

  2. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks.

    PubMed

    Radchuk, Ruslana; Radchuk, Volodymyr; Götz, Klaus-Peter; Weichert, Heiko; Richter, Andreas; Emery, R J Neil; Weschke, Winfriede; Weber, Hans

    2007-09-01

    Seed maturation responds to endogenous and exogenous signals like nutrient status, energy and hormones. We recently showed that phosphoenolpyruvate carboxylase (PEPC) overexpression in Vicia narbonensis seeds alters seed metabolism and channels carbon into organic acids, resulting in greater seed storage capacity and increased protein content. Thus, these lines represent models with altered sink strength and improved nutrient status. Here we analyse seed developmental and metabolic parameters, and C/N partitioning in these seeds. Transgenic embryos take up more carbon and nitrogen. Changes in dry to FW ratio, seed fill duration and major seed components indicate altered seed development. Array-based gene expression analysis of embryos reveals upregulation of seed metabolism, especially during the transition phase and at late maturation, in terms of protein storage and processing, amino acid metabolism, primary metabolism and transport, energy and mitochondrial activity, transcriptional and translational activity, stress tolerance, photosynthesis, cell proliferation and elongation, signalling and hormone action and regulated protein degradation. Stimulated cell elongation is in accordance with upregulated signalling pathways related to gibberellic acid/brassinosteroids. We discuss that activated organic and amino acid production leads to a wide-range activation of nitrogen metabolism, including the machinery of storage protein synthesis, amino acid synthesis, protein processing and deposition, translational activity and the methylation cycle. We suggest that alpha-ketoglutarate (alpha-KG) and/or oxalacetate provide signals for coordinate upregulation of amino acid biosynthesis. Activation of stress tolerance genes indicates partial overlap between nutrient, stress and abscisic acid (ABA) signals, indicating a common interacting or regulatory mechanism between nutrients, stress and ABA. In conclusion, analysis of PEPC overexpressing seeds identified pathways

  3. Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance.

    PubMed

    Zhang, Chen; Li, Xia; He, Yafei; Zhang, Jinfei; Yan, Ting; Liu, Xiaolong

    2017-06-01

    We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C 4 PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C 4 -PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C 4 photosynthesis can be used to increase the yield of rice under drought conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    PubMed

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  5. Exact time-dependent solutions for a self-regulating gene.

    PubMed

    Ramos, A F; Innocentini, G C P; Hornos, J E M

    2011-06-01

    The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.

  6. Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase1

    PubMed Central

    Shane, Michael W.; Cramer, Michael D.; Funayama-Noguchi, Sachiko; Cawthray, Gregory R.; Millar, A. Harvey; Day, David A.; Lambers, Hans

    2004-01-01

    Harsh hakea (Hakea prostrata R.Br.) is a member of the Proteaceae family, which is highly represented on the extremely nutrient-impoverished soils in southwest Australia. When phosphorus is limiting, harsh hakea develops proteoid or cluster roots that release carboxylates that mobilize sparingly soluble phosphate in the rhizosphere. To investigate the physiology underlying the synthesis and exudation of carboxylates from cluster roots in Proteaceae, we measured O2 consumption, CO2 release, internal carboxylate concentrations and carboxylate exudation, and the abundance of the enzymes phosphoenolpyruvate carboxylase and alternative oxidase (AOX) over a 3-week time course of cluster-root development. Peak rates of citrate and malate exudation were observed from 12- to 13-d-old cluster roots, preceded by a reduction in cluster-root total protein levels and a reduced rate of O2 consumption. In harsh hakea, phosphoenolpyruvate carboxylase expression was relatively constant in cluster roots, regardless of developmental stage. During cluster-root maturation, however, the expression of AOX protein increased prior to the time when citrate and malate exudation peaked. This increase in AOX protein levels is presumably needed to allow a greater flow of electrons through the mitochondrial electron transport chain in the absence of rapid ATP turnover. Citrate and isocitrate synthesis and accumulation contributed in a major way to the subsequent burst of citrate and malate exudation. Phosphorus accumulated by harsh hakea cluster roots was remobilized during senescence as part of their efficient P cycling strategy for growth on nutrient impoverished soils. PMID:15122030

  7. Construction of two vectors for gene expression in Trichoderma reesei.

    PubMed

    Lv, Dandan; Wang, Wei; Wei, Dongzhi

    2012-01-01

    We report the construction of two filamentous fungi Trichoderma reesei expression vectors, pWEF31 and pWEF32. Both vectors possess the hygromycin phosphotransferase B gene expression cassette and the strong promoter and terminator of the cellobiohydrolase 1 gene (cbh1) from T. reesei. The two newly constructed vectors can be efficiently transformed into T. reesei with Agrobacterium-mediated transformation. The difference between pWEF31 and pWEF32 is that pWEF32 has two longer homologous arms. As a result, pWEF32 easily undergoes homologous recombination. On the other hand, pWEF31 undergoes random recombination. The applicability of both vectors was tested by first generating the expression vectors pWEF31-red and pWEF32-red and then detecting the expression of the DsRed2 gene in T. reesei Rut C30. Additionally, we measured the exo-1,4-β-glucanase activity of the recombinant cells. Our work provides an effective transformation system for homologous and heterologous gene expression and gene knockout in T. reesei. It also provides a method for recombination at a specific chromosomal location. Finally, both vectors will be useful for the large-scale gene expression industry. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    PubMed

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  9. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  10. Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine.

    PubMed

    Cabezas-Cruz, Alejandro; Espinosa, Pedro J; Obregón, Dasiel A; Alberdi, Pilar; de la Fuente, José

    2017-01-01

    The obligate intracellular pathogen, Anaplasma phagocytophilum , is the causative agent of life-threatening diseases in humans and animals. A. phagocytophilum is an emerging tick-borne pathogen in the United States, Europe, Africa and Asia, with increasing numbers of infected people and animals every year. It is increasingly recognized that intracellular pathogens modify host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. Recent reports have shown that amino acids are central to the host-pathogen metabolic interaction. In this study, a genome-wide search for components of amino acid metabolic pathways was performed in Ixodes scapularis , the main tick vector of A. phagocytophilum in the United States, for which the genome was recently published. The enzymes involved in the synthesis and degradation pathways of the twenty amino acids were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis amino acid metabolic pathway components in response to A. phagocytophilum infection of tick tissues and ISE6 tick cells. Our analysis was focused on the interplay between carbohydrate and amino acid metabolism during A. phagocytophilum infection in ISE6 cells. The results showed that tick cells increase the synthesis of phosphoenolpyruvate (PEP) from tyrosine to control A. phagocytophilum infection. Metabolic pathway analysis suggested that this is achieved by (i) increasing the transcript and protein levels of mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), (ii) shunting tyrosine into the tricarboxylic acid (TCA) cycle to increase fumarate and oxaloacetate which will be converted into PEP by PEPCK-M, and (iii) blocking all the pathways that use PEP downstream gluconeogenesis (i.e., de novo serine synthesis pathway (SSP), glyceroneogenesis and gluconeogenesis). While sequestering host PEP may be critical for this bacterium

  11. Structure of the Antibiotic Resistance Factor Spectinomycin Phosphotransferase from Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, D.; Lemke, C; Huang, J

    2010-01-01

    Aminoglycoside phosphotransferases (APHs) constitute a diverse group of enzymes that are often the underlying cause of aminoglycoside resistance in the clinical setting. Several APHs have been extensively characterized, including the elucidation of the three-dimensional structure of two APH(3{prime}) isozymes and an APH(2{double_prime}) enzyme. Although many APHs are plasmid-encoded and are capable of inactivating numerous 2-deoxystreptmaine aminoglycosides with multiple regiospecificity, APH(9)-Ia, isolated from Legionella pneumophila, is an unusual enzyme among the APH family for its chromosomal origin and its specificity for a single non-2-deoxystreptamine aminoglycoside substrate, spectinomycin. We describe here the crystal structures of APH(9)-Ia in its apo form, its binarymore » complex with the nucleotide, AMP, and its ternary complex bound with ADP and spectinomycin. The structures reveal that APH(9)-Ia adopts the bilobal protein kinase-fold, analogous to the APH(3{prime}) and APH(2{double_prime}) enzymes. However, APH(9)-Ia differs significantly from the other two types of APH enzymes in its substrate binding area and that it undergoes a conformation change upon ligand binding. Moreover, kinetic assay experiments indicate that APH(9)-Ia has stringent substrate specificity as it is unable to phosphorylate substrates of choline kinase or methylthioribose kinase despite high structural resemblance. The crystal structures of APH(9)-Ia demonstrate and expand our understanding of the diversity of the APH family, which in turn will facilitate the development of new antibiotics and inhibitors.« less

  12. The Impact of Gene-Environment Dependence and Misclassification in Genetic Association Studies Incorporating Gene-Environment Interactions

    PubMed Central

    Lindström, Sara; Yen, Yu-Chun; Spiegelman, Donna; Kraft, Peter

    2009-01-01

    The possibility of gene-environment interaction can be exploited to identify genetic variants associated with disease using a joint test of genetic main effect and gene-environment interaction. We consider how exposure misclassification and dependence between the true exposure E and the tested genetic variant G affect this joint test in absolute terms and relative to three other tests: the marginal test (G), the standard test for multiplicative gene-environment interaction (GE), and the case-only test for interaction (GE-CO). All tests can have inflated Type I error rate when E and G are correlated in the underlying population. For the GE and G-GE tests this inflation is only noticeable when the gene-environment dependence is unusually strong; the inflation can be large for the GE-CO test even for modest correlation. The joint G-GE test has greater power than the GE test generally, and greater power than the G test when there is no genetic main effect and the measurement error is small to moderate. The joint G-GE test is an attractive test for assessing genetic association when there is limited knowledge about casual mechanisms a priori, even in the presence of misclassification in environmental exposure measurement and correlation between exposure and genetic variants. PMID:19521099

  13. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock.

    PubMed

    Abe, Kenji; Kuroda, Akio; Takeshita, Ryo

    2017-03-01

    Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an L-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to L-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.

  14. Electron crystallography reveals that substrate release from the PTS IIC glucose transporter is coupled to a subtle conformational change.

    PubMed

    Kalbermatter, David; Chiu, Po-Lin; Jeckelmann, Jean-Marc; Ucurum, Zöhre; Walz, Thomas; Fotiadis, Dimitrios

    2017-07-01

    The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) is a structurally and functionally complex system that mediates sugar uptake in bacteria. Besides several soluble subunits, the glucose-specific PTS includes the integral membrane protein IICB that couples the transmembrane transport of glucose to its phosphorylation. Here, we used electron crystallography of sugar-embedded tubular crystals of the glucose-specific IIC transport domain from Escherichia coli (ecIIC glc ) to visualize the structure of the transporter in the presence and absence of its substrate. Using an in vivo transport assay and binding competition experiments, we first established that, while it transports d-glucose, ecIIC glc does not bind l-glucose. We then determined the projection structure of ecIIC glc from tubular crystals embedded in d- and l-glucose and found a subtle conformational change. From comparison of the ecIIC glc projection maps with crystal structures of other IIC transporters, we can deduce that the transporter adopts an inward-facing conformation, and that the maps in the presence and absence of the substrate reflect the transporter before and after release of the transported glucose into the cytoplasm. The transition associated with substrate release appears to require a subtle structural rearrangement in the region that includes hairpin 1. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Local Adaptation of Sun-Exposure-Dependent Gene Expression Regulation in Human Skin.

    PubMed

    Kita, Ryosuke; Fraser, Hunter B

    2016-10-01

    Sun-exposure is a key environmental variable in the study of human evolution. Several skin-pigmentation genes serve as classical examples of positive selection, suggesting that sun-exposure has significantly shaped worldwide genomic variation. Here we investigate the interaction between genetic variation and sun-exposure, and how this impacts gene expression regulation. Using RNA-Seq data from 607 human skin samples, we identified thousands of transcripts that are differentially expressed between sun-exposed skin and non-sun-exposed skin. We then tested whether genetic variants may influence each individual's gene expression response to sun-exposure. Our analysis revealed 10 sun-exposure-dependent gene expression quantitative trait loci (se-eQTLs), including genes involved in skin pigmentation (SLC45A2) and epidermal differentiation (RASSF9). The allele frequencies of the RASSF9 se-eQTL across diverse populations correlate with the magnitude of solar radiation experienced by these populations, suggesting local adaptation to varying levels of sunlight. These results provide the first examples of sun-exposure-dependent regulatory variation and suggest that this variation has contributed to recent human adaptation.

  16. Timescales and bottlenecks in miRNA-dependent gene regulation.

    PubMed

    Hausser, Jean; Syed, Afzal Pasha; Selevsek, Nathalie; van Nimwegen, Erik; Jaskiewicz, Lukasz; Aebersold, Ruedi; Zavolan, Mihaela

    2013-12-03

    MiRNAs are post-transcriptional regulators that contribute to the establishment and maintenance of gene expression patterns. Although their biogenesis and decay appear to be under complex control, the implications of miRNA expression dynamics for the processes that they regulate are not well understood. We derived a mathematical model of miRNA-mediated gene regulation, inferred its parameters from experimental data sets, and found that the model describes well time-dependent changes in mRNA, protein and ribosome density levels measured upon miRNA transfection and induction. The inferred parameters indicate that the timescale of miRNA-dependent regulation is slower than initially thought. Delays in miRNA loading into Argonaute proteins and the slow decay of proteins relative to mRNAs can explain the typically small changes in protein levels observed upon miRNA transfection. For miRNAs to regulate protein expression on the timescale of a day, as miRNAs involved in cell-cycle regulation do, accelerated miRNA turnover is necessary.

  17. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs.

    PubMed

    O'Leary, Brendan; Park, Joonho; Plaxton, William C

    2011-05-15

    PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO(2) during C(4) and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C(4)-C(6) carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO(2)-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.

  18. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  19. Polymorphisms in genes encoding dopamine signalling pathway and risk of alcohol dependence: a systematic review.

    PubMed

    Bhaskar, Lakkakula V K S; Kumar, Shanmugasundaram Arun

    2014-04-01

    Alcohol dependence (AD) is one of the major elements that significantly influence drinking pattern that provoke the alcohol-induced organ damage. The structural and neurophysiologic abnormalities in the frontal lobes of chronic alcoholics were revealed by magnetic resonance imaging scans. It is well known that candidate genes involved in dopaminergic pathway are of immense interest to the researchers engaged in a wide range of addictive disorders. Dopaminergic pathway gene polymorphisms are being extensively studied with respect to addictive and behavioral disorders. From the broad literature available, the current review summarizes the specific polymorphisms of dopaminergic genes that play a role in alcohol dependence. No evidence indicating any strong association between AD and polymorphisms of dopamine pathway genes has emerged from the literature. Further studies are warranted, considering a range of alcohol-related traits to determine the genes that influence alcohol dependence.

  20. Electrotransformation and expression of bacterial genes encoding hygromycin phosphotransferase and beta-galactosidase in the pathogenic fungus Histoplasma capsulatum.

    PubMed

    Woods, J P; Heinecke, E L; Goldman, W E

    1998-04-01

    We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption

  1. Gene doping: an overview and current implications for athletes.

    PubMed

    van der Gronde, Toon; de Hon, Olivier; Haisma, Hidde J; Pieters, Toine

    2013-07-01

    The possibility of gene doping, defined as the transfer of nucleic acid sequences and/or the use of normal or genetically modified cells to enhance sport performance, is a real concern in sports medicine. The abuse of knowledge and techniques gained in the area of gene therapy is a form of doping, and is prohibited for competitive athletes. As yet there is no conclusive evidence that that gene doping has been practiced in sport. However, given that gene therapy techniques improve continuously, the likelihood of abuse will increase. A literature search was conducted to identify the most relevant proteins based on their current gene doping potential using articles from Pubmed, Scopus and Embase published between 2006 and 2011. The final list of selected proteins were erythropoietin, insulin-like growth factor, growth hormone, myostatin, vascular endothelial growth factor, fibroblast growth factor, endorphin and enkephalin, α actinin 3, peroxisome proliferator-activated receptor-delta (PPARδ) and cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C). We discuss these proteins with respect to their potential benefits, existing gene therapy experience in humans, potential risks, and chances of detection in current and future anti-doping controls. We have identified PPARδ and PEPCK-C as having high potential for abuse. But we expect that for efficiency reasons, there will be a preference for inserting gene target combinations rather than single gene doping products. This will also further complicate detection.

  2. NHR-23 dependent collagen and hedgehog-related genes required for molting.

    PubMed

    Kouns, Nathaniel A; Nakielna, Johana; Behensky, Frantisek; Krause, Michael W; Kostrouch, Zdenek; Kostrouchova, Marta

    2011-10-07

    NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Structural basis for the sequestration of the anti-σ(70) factor Rsd from σ(70) by the histidine-containing phosphocarrier protein HPr.

    PubMed

    Park, Young Ha; Um, Si Hyeon; Song, Saemee; Seok, Yeong Jae; Ha, Nam Chul

    2015-10-01

    Histidine-containing phosphocarrier protein (HPr) is a general component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) involved in the phosphorylation-coupled transport of numerous sugars called PTS sugars. HPr mainly exists in a dephosphorylated form in the presence of PTS sugars in the medium, while its phosphorylation increases in the absence of PTS sugars. A recent study revealed that the dephosphorylated form of HPr binds and antagonizes the function of the antisigma factor Rsd. This anti-sigma factor sequesters the housekeeping sigma factor σ(70) to facilitate switching of the sigma subunit on RNA polymerase from σ(70) to the stress-responsive sigma factor σ(S) in stationary-phase cells. In this study, the structure of the complex of Rsd and HPr was determined at 2.1 Å resolution and revealed that the binding site for HPr on the surface of Rsd partly overlaps with that for σ(70). The localization of the phosphorylation site on HPr at the binding interface for Rsd explains why phosphorylation of HPr abolishes its binding to Rsd. The mutation of crucial residues involved in the HPr-Rsd interaction significantly influenced the competition between HPr and σ(70) for binding to Rsd both in vitro and in vivo. The results provide a structural basis for the linkage of global gene regulation to nutrient availability in the external environment.

  4. Association and family studies of DRD2 gene polymorphisms in alcohol dependence syndrome.

    PubMed

    Małecka, Iwona; Jasiewicz, Andrzej; Suchanecka, Aleksandra; Samochowiec, Jerzy; Grzywacz, Anna

    2014-11-06

    The human dopamine receptor 2 gene DRD2 plays a central role in susceptibility to Alcohol Dependence Syndrome (ADS). The aim of this study was to evaluate 3 single nucleotide polymorphisms: D2 (rs1076560), Tag1D (rs1800498), Tag1B (rs1079597) located in dopamine receptor 2 DRD2 gene and its role in alcohol dependence. DNA was provided from alcohol dependent (AD) patients (n=171) and healthy control subjects (n=160) all of Polish descent. The history of alcoholism was obtained using the Polish version of the SSAGA (Semi-Structured Assessment for the Genetics of Alcoholism). We conducted case-control association study and transmission disequilibrium test (TDT). Samples were genotyped using real-time PCR method. We did not confirm the association between studied polymorphisms and alcohol dependence syndrome. TDT reveled an adequate transmission of both alleles in the group of alcohol families. The lack of association of studied polymorphisms and ADS does not preclude its participation in the pathogenesis. Further research is needed to determine the actual contribution of DRD2 gene in the pathogenesis of alcoholism.

  5. Both IIC and IID Components of Mannose Phosphotransferase System Are Involved in the Specific Recognition between Immunity Protein PedB and Bacteriocin-Receptor Complex.

    PubMed

    Zhou, Wanli; Wang, Guohong; Wang, Chunmei; Ren, Fazheng; Hao, Yanling

    2016-01-01

    Upon exposure to exogenous pediocin-like bacteriocins, immunity proteins specifically bind to the target receptor of the mannose phosphotransferase system components (man-PTS IIC and IID), therefore preventing bacterial cell death. However, the specific recognition of immunity proteins and its associated target receptors remains poorly understood. In this study, we constructed hybrid receptors to identify the domains of IIC and/or IID recognized by the immunity protein PedB, which confers immunity to pediocin PA-1. Using Lactobacillus plantarum man-PTS EII mutant W903, the IICD components of four pediocin PA-1-sensitive strains (L. plantarum WQ0815, Leuconostoc mesenteroides 05-43, Lactobacillus salivarius REN and Lactobacillus acidophilus 05-172) were respectively co-expressed with the immunity protein PedB. Well-diffusions assays showed that only the complex formed by LpIICD from L. plantarum WQ0815 with pediocin PA-1 could be recognized by PedB. In addition, a two-step PCR approach was used to construct hybrid receptors by combining LpIIC or LpIID recognized by PedB with the other three heterologous IID or IIC compounds unrecognized by PedB, respectively. The results showed that all six hybrid receptors were recognized by pediocin PA-1. However, when IIC or IID of L. plantarum WQ0815 was replaced with any corresponding IIC or IID component from L. mesenteroides 05-43, L. salivarius REN and L. acidophilus 05-172, all the hybrid receptors could not be recognized by PedB. Taken altogether, we concluded that both IIC and IID components of the mannose phosphotransferase system play an important role in the specific recognition between the bacteriocin-receptor complex and the immunity protein PedB.

  6. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    PubMed

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.

  7. Fyn-Dependent Gene Networks in Acute Ethanol Sensitivity

    PubMed Central

    Farris, Sean P.; Miles, Michael F.

    2013-01-01

    Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design

  8. Disruption of DNA methylation-dependent long gene repression in Rett syndrome

    PubMed Central

    Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.

    2015-01-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136

  9. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans.

    PubMed

    Saccone, N L; Schwantes-An, T-H; Wang, J C; Grucza, R A; Breslau, N; Hatsukami, D; Johnson, E O; Rice, J P; Goate, A M; Bierut, L J

    2010-10-01

    Several independent studies show that the chromosome 15q25.1 region, which contains the CHRNA5-CHRNA3-CHRNB4 gene cluster, harbors variants strongly associated with nicotine dependence, other smoking behaviors, lung cancer and chronic obstructive pulmonary disease. We investigated whether variants in other cholinergic nicotinic receptor subunit (CHRN) genes affect the risk of nicotine dependence in a new sample of African Americans (AAs) (N = 710). We also analyzed this AA sample together with a European American (EA) sample (N = 2062, 1608 of which have been previously studied), allowing for differing effects in the two populations. Cases are current nicotine-dependent smokers and controls are non-dependent smokers. Variants in or near CHRND-CHRNG, CHRNA7 and CHRNA10 show modest association with nicotine dependence risk in the AA sample. In addition, CHRNA4, CHRNB3-CHRNA6 and CHRNB1 show association in at least one population. CHRNG and CHRNA4 harbor single nucleotide polymorphisms (SNPs) that have opposite directions of effect in the two populations. In each of the population samples, these loci substantially increase the trait variation explained, although no loci meet Bonferroni-corrected significance in the AA sample alone. The trait variation explained by three key associated SNPs in CHRNA5-CHRNA3-CHRNB4 is 1.9% in EAs and also 1.9% in AAs; this increases to 4.5% in EAs and 7.3% in AAs when we add six variants representing associations at other CHRN genes. Multiple nicotinic receptor subunit genes outside chromosome 15q25 are likely to be important in the biological processes and development of nicotine dependence, and some of these risks may be shared across diverse populations. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  10. Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers.

    PubMed

    Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa

    2010-03-01

    Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.

  11. ERK Oscillation-Dependent Gene Expression Patterns and Deregulation by Stress-Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Cummings, Brian S.; Shankaran, Harish

    2014-09-15

    Studies were undertaken to determine whether ERK oscillations regulate a unique subset of genes in human keratinocytes and subsequently, whether the p38 stress response inhibits ERK oscillations. A DNA microarray identified many genes that were unique to ERK oscillations, and network reconstruction predicted an important role for the mediator complex subunit 1 (MED1) node in mediating ERK oscillation-dependent gene expression. Increased ERK-dependent phosphorylation of MED1 was observed in oscillating cells compared to non-oscillating counterparts as validation. Treatment of keratinocytes with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes and MED1 and phospho-MED1 protein levels. Bromate is a probable human carcinogenmore » that activates p38. Bromate inhibited ERK oscillations in human keratinocytes and JB6 cells and induced an increase in phospho-p38 and decrease in phospho-MED1 protein levels. Treatment of normal rat kidney cells and primary salivary gland epithelial cells with bromate decreased phospho-MED1 levels in a reversible fashion upon treatment with p38 inhibitors (SB202190; SB203580). Our results indicate that oscillatory behavior in the ERK pathway alters homeostatic gene regulation patterns and that the cellular response to perturbation may manifest differently in oscillating vs non-oscillating cells.« less

  12. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells

    NASA Technical Reports Server (NTRS)

    Swarthout, John T.; D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Partridge, Nicola C.

    2002-01-01

    Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific

  13. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli.

    PubMed

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-12-24

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIA(Glc) in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ(70) in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ(70). Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ(70)-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ(70) and σ(S) for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ(70) activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd.

  14. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli

    PubMed Central

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-01-01

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIAGlc (EIIAGlc) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIAGlc in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ70 in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ70. Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ70-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ70 and σS for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ70 activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd. PMID:24324139

  15. Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers

    PubMed Central

    Tsytsykova, Alla V.; Rajsbaum, Ricardo; Falvo, James V.; Ligeiro, Filipa; Neely, Simon R.; Goldfeld, Anne E.

    2007-01-01

    Here we provide a mechanism for specific, efficient transcription of the TNF gene and, potentially, other genes residing within multigene loci. We identify and characterize highly conserved noncoding elements flanking the TNF gene, which undergo activation-dependent intrachromosomal interactions. These elements, hypersensitive site (HSS)−9 and HSS+3 (9 kb upstream and 3 kb downstream of the TNF gene, respectively), contain DNase I hypersensitive sites in naive, T helper 1, and T helper 2 primary T cells. Both HSS-9 and HSS+3 inducibly associate with acetylated histones, indicative of chromatin remodeling, bind the transcription factor nuclear factor of activated T cells (NFAT)p in vitro and in vivo, and function as enhancers of NFAT-dependent transactivation mediated by the TNF promoter. Using the chromosome conformation capture assay, we demonstrate that upon T cell activation intrachromosomal looping occurs in the TNF locus. HSS-9 and HSS+3 each associate with the TNF promoter and with each other, circularizing the TNF gene and bringing NFAT-containing nucleoprotein complexes into close proximity. TNF gene regulation thus reveals a mode of intrachromosomal interaction that combines a looped gene topology with interactions between enhancers and a gene promoter. PMID:17940009

  16. Betaine Supplementation in Maternal Diet Modulates the Epigenetic Regulation of Hepatic Gluconeogenic Genes in Neonatal Piglets

    PubMed Central

    Cai, Demin; Jia, Yimin; Song, Haogang; Sui, Shiyan; Lu, Jingyu; Jiang, Zheng; Zhao, Ruqian

    2014-01-01

    In this study, gestational sows were fed control or betaine-supplemented diets (3 g/kg) throughout the pregnancy, and the newborn piglets were used to elucidate whether maternal dietary betaine affected offspring hepatic gluconeogenic genes through epigenetic mechanisms. Neonatal piglets born to betaine-supplemented sows had significantly higher serum and hepatic betaine contents, together with significantly greater expression of methionine metabolic enzymes in the liver. Interestingly, significantly higher serum concentrations of lactic acid and glucogenic amino acids, including serine, glutamate, methionine and histidine, were detected in the piglets born to betaine-supplemented sows, which were coincident with higher hepatic glycogen content and PEPCK1 enzyme activity, as well as greater protein expression of gluconeogenic enzymes, pyruvate carboxylase (PC), cytoplasmic phosphoenolpyruvate carboxykinase (PEPCK1), mitochondrional phosphoenolpyruvate carboxykinase (PEPCK2) and fructose-1, 6-bisphosphatase (FBP1). Moreover, maternal betaine significantly changed the methylation status of both CpGs and histones on the promoter of gluconeogenic genes. The lower PEPCK1 mRNA was associated with DNA hypermethylation and more enriched repression histone mark H3K27me3, while the up-regulated PEPCK2 and FBP1 mRNA was associated with DNA hypomethylation and more enriched activation histone mark H3K4me3. Furthermore, the expression of two miRNAs predicted to target PC and 6 miRNAs predicted to target PEPCK1 was dramatically suppressed in the liver of piglets born to betaine-supplemented sows. Our results provide the first evidence that maternal betaine supplementation affects hepatic gluconeogenic genes expression in newborn piglets through enhanced hepatic methionine metabolism and epigenetic regulations, which involve DNA and histone methylations, and possibly miRNAs-mediated post-transcriptional mechanism. PMID:25153319

  17. Chronic Ethanol Exposure Produces Time- and Brain Region-Dependent Changes in Gene Coexpression Networks

    PubMed Central

    Osterndorff-Kahanek, Elizabeth A.; Becker, Howard C.; Lopez, Marcelo F.; Farris, Sean P.; Tiwari, Gayatri R.; Nunez, Yury O.; Harris, R. Adron; Mayfield, R. Dayne

    2015-01-01

    Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global ‘rewiring‘ of coexpression systems involving glial and immune signaling as well as neuronal genes. PMID:25803291

  18. Alpha-lipoic acid blocks HIV-1 LTR-dependent expression of hygromycin resistance in THP-1 stable transformants.

    PubMed

    Merin, J P; Matsuyama, M; Kira, T; Baba, M; Okamoto, T

    1996-09-23

    Gene expression of human immunodeficiency virus (HIV) depends on a host cellular transcription factors including nuclear factor-kappaB (NF-kappaB). The involvement of reactive oxygen intermediates (ROI) has been implicated as intracellular messengers in the inducible activation of NF-kappaB. In this study, we compared the efficacy of two antioxidants, alpha-lipoic acid (LA) and N-acetylcysteine (NAC), which are widely recognized NF-kappaB inhibitors. Here, we demonstrate that LA has a more potent activity in inhibiting NF-KappaB-mediated gene expression in THP-1 cells that have been stably transfected with a plasmid bearing a hygromycin B resistance gene under the control of HIV-1 long terminal repeat (LTR) promoter. The spontaneous activation of NF-kappaB in this cell culture system leads to expression of the hygromycin phosphotransferase gene hence rendering the cells resistance to hygromycin B. In this study, the effect of the test compounds against transcriptional activity of HIV-1 LTR was evaluated based on the degree of cellular toxicity due to the inhibitory activity on the expression of hygromycin B resistance gene in the presence of hygromycin B. We also found that 0.2 mM LA could cause 40% reduction in the HIV-1 expression from the TNF-alpha-stimulated OM 10.1, a cell line latently infected with HIV-1. On the other hand, 10 mM NAC was required to elicit the same effect. Furthermore, the initiation of HIV-1 induction by TNF-alpha was completely abolished by 1 mM LA. These findings confirm the involvement of ROI in NF-kappaB-mediated HIV gene expression as well as the efficacy of LA as a therapeutic regimen for HIV infection and acquired immunodeficiency syndrome (AIDS). Moreover, this study validates the applicability of our present assay system which we primarily designed for the screening of candidate drugs against HIV-1 gene expression.

  19. Detection of Specific Solvent Rearrangement Regions of an Enzyme: NMR and ITC Studies with Aminoglycoside Phosphotransferase(3??)-IIIa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozen, C.; Norris, Adrianne; Land, Miriam L

    2008-01-01

    This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3¢)-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative ¢H in H2O relative to D2O (¢¢H(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative ¢Cp values were observed for binding of aminoglycosides to APH. ¢Cp for the APHneomycin complex was -1.6 kcalâmol-1âdeg-1. A break at 30 C was observed in the APH-kanamycin complex yielding ¢Cp values of -0.7 kcalâmol-1âdeg-1 and -3.8 kcalâmol-1âdeg-1 below andmore » above 30 C, respectively. Neither the change in accessible surface area (¢ASA) nor contributions from heats of ionization were sufficient to explain the large negative ¢Cp values. Most significantly, 15N-1H HSQC experiments showed that temperature-dependent shifts of the backbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 C only in the APH-kanamycin complex in spectra collected between 21 C and 38 C. These amino acids represent solVent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect ¢Cp and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site.« less

  20. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.].

    PubMed

    Ellul, P; Ríos, G; Atarés, A; Roig, L A; Serrano, R; Moreno, V

    2003-08-01

    An optimised Agrobacterium-mediated gene transfer protocol was developed in order to obtain watermelon transgenic plants [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Transformation efficiencies ranged from 2.8% to 5.3%, depending on the cultivar. The method was applied to obtain genetically engineered watermelon plants expressing the Saccharomyces cerevisiae HAL1 gene related to salt tolerance. In order to enhance its constitutive expression in plants, the HAL1 gene was cloned in a pBiN19 plasmid under control of the 35S promoter with a double enhancer sequence from the cauliflower mosaic virus and the RNA4 leader sequence of the alfalfa mosaic virus. This vector was introduced into Agrobacterium tumefaciens strain LBA4404 for further inoculation of watermelon half-cotyledon explants. The introduction of both the neomycin phosphotransferase II and HAL1 genes was assessed in primary transformants (TG1) by polymerase chain reaction analysis and Southern hybridisation. The expression of the HAL1 gene was determined by Northern analysis, and the diploid level of transgenic plants was confirmed by flow cytometry. The presence of the selectable marker gene in the expected Mendelian ratios was demonstrated in TG2 progenies. The TG2 kanamycin-resistant plantlets elongated better and produced new roots and leaves in culture media supplemented with NaCl compared with the control. Salt tolerance was confirmed in a semi-hydroponic system (EC=6 dS m(-1)) on the basis of the higher growth performance of homozygous TG3 lines with respect to their respective azygous control lines without the transgene. The halotolerance observed confirmed the inheritance of the trait and supports the potential usefulness of the HAL1 gene of S. cerevisiae as a molecular tool for genetic engineering of salt-stress protection in other crop species.

  1. Hybrid origin of Asian aspermic Fasciola flukes is confirmed by analyzing two single-copy genes, pepck and pold

    PubMed Central

    HAYASHI, Kei; ICHIKAWA-SEKI, Madoka; MOHANTA, Uday Kumar; SHORIKI, Takuya; CHAICHANASAK, Pannigan; ITAGAKI, Tadashi

    2017-01-01

    Nuclear gene markers, phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold), have been developed for precise discrimination of Fasciola flukes instead of internal transcribed spacer 1. In this study, these two genes of 730 Fasciola flukes from eight Asian countries were analyzed. The results were compared with their mitochondrial NADH dehydrogenase subunit 1 (nad1) lineages for obtaining a definitive evidence of the hybrid origin of aspermic Fasciola flukes. All the flukes categorized into the aspermic nad1 lineages possessed both the fragment patterns of F. hepatica and F. gigantica (mixed types) in pepck and/or pold. These findings provide clear evidence for the hybrid origin of aspermic Fasciola lineages and suggest that “aspermic Fasciola flukes” should hereafter be called “hybrid Fasciola flukes”. PMID:29187710

  2. Succinic acid production from cellobiose by Actinobacillus succinogenes.

    PubMed

    Jiang, Min; Xu, Rong; Xi, Yong-Lan; Zhang, Jiu-Hua; Dai, Wen-Yu; Wan, Yue-Jia; Chen, Ke-Quan; Wei, Ping

    2013-05-01

    In this study, cellobiose, a reducing disaccharide was used to produce succinic acid by Actinobacillus succinogenes NJ113. A final succinic acid concentration of 30.3g/l with a yield of 67.8% was achieved from an initial cellobiose concentration of 50 g/l via batch fermentation in anaerobic bottles. The cellobiose uptake mechanism was investigated and the results of enzyme assays revealed that the phosphoenolpyruvate phosphotransferase system (PEP-PTS) played an important role in the cellobiose uptake process. In batch fermentation with 18 g/l of cellobiose and 17 g/l of other sugars from sugarcane bagasse cellulose hydrolysates, a succinic acid concentration of 20.0 g/l was obtained, with a corresponding yield of 64.7%. This study found that cellobiose from incomplete hydrolysis of cellulose could be a potential carbon source for economical and efficient succinic acid production by A. succinogenes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Phosphatidylglycerol directs binding and inhibitory action of EIIAGlc protein on the maltose transporter.

    PubMed

    Bao, Huan; Duong, Franck

    2013-08-16

    The signal-transducing protein EIIA(Glc) belongs to the phosphoenolpyruvate carbohydrate phosphotransferase system. In its dephosphorylated state, EIIA(Glc) is a negative regulator for several permeases, including the maltose transporter MalFGK2. How EIIA(Glc) is targeted to the membrane, how it interacts with the transporter, and how it inhibits sugar uptake remain obscure. We show here that acidic phospholipids together with the N-terminal tail of EIIA(Glc) are essential for the high affinity binding of the protein to the transporter. Using protein docking prediction and chemical cross-linking, we demonstrate that EIIA(Glc) binds to the MalK dimer, interacting with both the nucleotide-binding and the C-terminal regulatory domains. Dissection of the ATPase cycle reveals that EIIA(Glc) does not affect the binding of ATP but rather inhibits the capacity of MalK to cleave ATP. We propose a mechanism of maltose transport inhibition by this central amphitropic regulatory protein.

  4. Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia.

    PubMed

    Thompson, Alexis A; Walters, Mark C; Kwiatkowski, Janet; Rasko, John E J; Ribeil, Jean-Antoine; Hongeng, Suradej; Magrin, Elisa; Schiller, Gary J; Payen, Emmanuel; Semeraro, Michaela; Moshous, Despina; Lefrere, Francois; Puy, Hervé; Bourget, Philippe; Magnani, Alessandra; Caccavelli, Laure; Diana, Jean-Sébastien; Suarez, Felipe; Monpoux, Fabrice; Brousse, Valentine; Poirot, Catherine; Brouzes, Chantal; Meritet, Jean-François; Pondarré, Corinne; Beuzard, Yves; Chrétien, Stany; Lefebvre, Thibaud; Teachey, David T; Anurathapan, Usanarat; Ho, P Joy; von Kalle, Christof; Kletzel, Morris; Vichinsky, Elliott; Soni, Sandeep; Veres, Gabor; Negre, Olivier; Ross, Robert W; Davidson, David; Petrusich, Alexandria; Sandler, Laura; Asmal, Mohammed; Hermine, Olivier; De Montalembert, Mariane; Hacein-Bey-Abina, Salima; Blanche, Stéphane; Leboulch, Philippe; Cavazzana, Marina

    2018-04-19

    Donor availability and transplantation-related risks limit the broad use of allogeneic hematopoietic-cell transplantation in patients with transfusion-dependent β-thalassemia. After previously establishing that lentiviral transfer of a marked β-globin (β A-T87Q ) gene could substitute for long-term red-cell transfusions in a patient with β-thalassemia, we wanted to evaluate the safety and efficacy of such gene therapy in patients with transfusion-dependent β-thalassemia. In two phase 1-2 studies, we obtained mobilized autologous CD34+ cells from 22 patients (12 to 35 years of age) with transfusion-dependent β-thalassemia and transduced the cells ex vivo with LentiGlobin BB305 vector, which encodes adult hemoglobin (HbA) with a T87Q amino acid substitution (HbA T87Q ). The cells were then reinfused after the patients had undergone myeloablative busulfan conditioning. We subsequently monitored adverse events, vector integration, and levels of replication-competent lentivirus. Efficacy assessments included levels of total hemoglobin and HbA T87Q , transfusion requirements, and average vector copy number. At a median of 26 months (range, 15 to 42) after infusion of the gene-modified cells, all but 1 of the 13 patients who had a non-β 0 /β 0 genotype had stopped receiving red-cell transfusions; the levels of HbA T87Q ranged from 3.4 to 10.0 g per deciliter, and the levels of total hemoglobin ranged from 8.2 to 13.7 g per deciliter. Correction of biologic markers of dyserythropoiesis was achieved in evaluated patients with hemoglobin levels near normal ranges. In 9 patients with a β 0 /β 0 genotype or two copies of the IVS1-110 mutation, the median annualized transfusion volume was decreased by 73%, and red-cell transfusions were discontinued in 3 patients. Treatment-related adverse events were typical of those associated with autologous stem-cell transplantation. No clonal dominance related to vector integration was observed. Gene therapy with autologous CD34

  5. Phosphomannose isomerase and phosphomannomutase gene disruptions in Streptomyces nodosus: impact on amphotericin biosynthesis and implications for glycosylation engineering.

    PubMed

    Nic Lochlainn, Laura; Caffrey, Patrick

    2009-01-01

    Streptomycetes synthesise several bioactive natural products that are modified with sugar residues derived from GDP-mannose. These include the antifungal polyenes, the antibacterial antibiotics hygromycin A and mannopeptimycins, and the anticancer agent bleomycin. Three enzymes function in biosynthesis of GDP-mannose from the glycolytic intermediate fructose 6-phosphate: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMPP). Synthesis of GDP-mannose from exogenous mannose requires hexokinase or phosphotransferase enzymes together with PMM and GMPP. In this study, a region containing genes for PMI, PMM and GMPP was cloned from Streptomyces nodosus, producer of the polyenes amphotericins A and B. Inactivation of the manA gene for PMI resulted in production of amphotericins and their aglycones, 8-deoxyamphoteronolides. A double mutant lacking the PMI and PMM genes produced 8-deoxyamphoteronolides in good yields along with trace levels of glycosylated amphotericins. With further genetic engineering these mutants may activate alternative hexoses as GDP-sugars for transfer to aglycones in vivo.

  6. IKK{epsilon} modulates RSV-induced NF-{kappa}B-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao Xiaoyong; Indukuri, Hemalatha; Liu Tianshuang

    2010-12-20

    Respiratory syncytial virus (RSV), a negative-strand RNA virus, is the most common cause of epidemic respiratory disease in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B). In this study we have investigated the role of the non canonical I{kappa}B kinase (IKK){epsilon} in modulating RSV-induced NF-{kappa}B activation. Our results show that inhibition of IKK{epsilon} activation results in significant impairment of viral-induced NF-{kappa}B-dependent gene expression, through a reduction in NF-{kappa}B transcriptional activity, without changes in nuclear translocation or DNA-binding activity. Absencemore » of IKK{epsilon} results in a significant decrease of RSV-induced NF-{kappa}B phosphorylation on serine 536, a post-translational modification important for RSV-induced NF-{kappa}B-dependent gene expression, known to regulate NF-{kappa}B transcriptional activity without affecting nuclear translocation. This study identifies a novel mechanism by which IKK{epsilon} regulates viral-induced cellular signaling.« less

  7. Isolation and Identification of Genes Activating Uas2-Dependent Adh2 Expression in Saccharomyces Cerevisiae

    PubMed Central

    Donoviel, M. S.; Young, E. T.

    1996-01-01

    Two cis-acting elements have been identified that act synergistically to regulate expression of the glucose-repressed alcohol dehydrogenase 2 (ADH2) gene. UAS1 is bound by the trans-activator Adr1p. UAS2 is thought to be the binding site for an unidentified regulatory protein. A genetic selection based on a UAS2-dependent ADH2 reporter was devised to isolate genes capable of activating UAS2-dependent transcription. One set of UAS2-dependent genes contained SPT6/CRE2/SSN20. Multicopy SPT6 caused improper expression of chromosomal ADH2. A second set of UAS2-dependent clones contained a previously uncharacterized open reading frame designated MEU1 (Multicopy Enhancer of UAS2). A frame shift mutation in MEU1 abolished its ability to activate UAS2-dependent gene expression. Multicopy MEU1 expression suppressed the constitutive ADH2 expression caused by cre2-1. Disruption of MEU1 reduced endogenous ADH2 expression about twofold but had no effect on cell viability or growth. No homologues of MEU1 were identified by low-stringency Southern hybridization of yeast genomic DNA, and no significant homologues were found in the sequence data bases. A MEU1/β-gal fusion protein was not localized to a particular region of the cell. MEU1 is linked to PPR1 on chromosome XII. PMID:8807288

  8. Genome-Wide Gene Set Analysis for Identification of Pathways Associated with Alcohol Dependence

    PubMed Central

    Biernacka, Joanna M.; Geske, Jennifer; Jenkins, Gregory D.; Colby, Colin; Rider, David N.; Karpyak, Victor M.; Choi, Doo-Sup; Fridley, Brooke L.

    2013-01-01

    It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence. PMID:22717047

  9. Identification of FGF-dependent genes in the Drosophila tracheal system.

    PubMed

    Stahl, Markus; Schuh, Reinhard; Adryan, Boris

    2007-01-01

    The embryonic development of the tracheal system of the fruit fly Drosophila provides a paradigm for genetic studies of branching morphogenesis. Efforts of many laboratories have identified Branchless (Bnl, a fibroblast growth factor homologue) and Breathless (Btl, the receptor homologue) as crucial factors at many stages of tracheal system development. The downstream targets of the Bnl/Btl signalling cascade, however, remain mostly unknown. Misexpression of the bnl gene results in specific tracheal phenotypes that lead to larval death. We characterised the transcriptional profiles of targeted over-expression of bnl in the embryonic trachea and of loss-of-function bnl(P1) mutant embryos. Gene expression data was mapped to high-throughput in situ hybridisation based ImaGO-annotation. Thus, we identified and confirmed by quantitative PCR 13 Bnl-dependent genes that are expressed in cells within and outside of the tracheal system.

  10. Heat-inducible hygromycin resistance in transgenic tobacco.

    PubMed

    Severin, K; Schöffl, F

    1990-12-01

    We have constructed a chimaeric gene consisting of the promoter of the soybean heat shock (hs) gene Gmhsp17, 6-L, the coding region of a hygromycin phosphotransferase (hpt) gene, and the termination sequence of the nopaline synthase (nos) gene. This gene fusion was introduced into tobacco by Agrobacterium-mediated gene transfer. Heat-inducible synthesis of mRNA was shown by northern hybridization, and translation of this RNA into a functional protein was indicated by plant growth on hygromycin-containing media in a temperature-dependent fashion. One hour incubation at 40 degrees C per day, applied for several weeks, was sufficient to express the resistant phenotype in transgenic plants containing the chimaeric hs-hpt gene. These data suggest that the hygromycin resistance gene is functional and faithfully controlled by the soybean hs promoter. The suitability of these transgenic plants for selection of mutations that alter the hs response is discussed.

  11. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity.

    PubMed

    Chao, Qing; Liu, Xiao-Yu; Mei, Ying-Chang; Gao, Zhi-Fang; Chen, Yi-Bo; Qian, Chun-Rong; Hao, Yu-Bo; Wang, Bai-Chen

    2014-05-01

    Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.

  12. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    PubMed

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression

    PubMed Central

    Tsang, Jennifer; Smith, Todd G.; Pereira, Lara E.

    2013-01-01

    Flagellar biogenesis in the gastric pathogen Helicobacter pylori involves a transcriptional hierarchy that utilizes all three sigma factors found in this bacterium (RpoD, RpoN and FliA). Transcription of the RpoN-dependent genes requires the sensor kinase FlgS and response regulator FlgR. It is thought that FlgS senses some cellular cue to regulate transcription of the RpoN-dependent flagellar genes, but this signal has yet to be identified. Previous studies showed that transcription of the RpoN-dependent genes is inhibited by mutations in flhA, which encodes a membrane-bound component of the flagellar protein export apparatus. We found that depending on the H. pylori strain used, insertion mutations in flhA had different effects on expression of RpoN-dependent genes. Mutations in flhA in H. pylori strains B128 and ATCC 43504 (the type strain) were generated by inserting a chloramphenicol resistance cassette so as to effectively eliminate expression of the gene (ΔflhA), or within the gene following codon 77 (designated flhA77) or codon 454 (designated flhA454), which could allow expression of truncated FlhA proteins. All three flhA mutations severely inhibited transcription of the RpoN-dependent genes flaB and flgE in H. pylori B128. In contrast, levels of flaB and flgE transcripts in H. pylori ATCC 43504 bearing either flhA77 or flhA454, but not ΔflhA, were ~60 % of wild-type levels. The FlhA454 variant was detected in membrane fractions prepared from H. pylori ATCC 43504 but not H. pylori B128, which may account for the phenotypic differences in the flhA mutations of the two strains. Taken together, these findings suggest that only the N-terminal region of FlhA is needed for transcription of the RpoN regulon. Interestingly, expression of an flaB′-′xylE reporter gene in H. pylori ATCC 43504 bearing the flhA77 allele was about eightfold higher than that of a strain with the wild-type allele, suggesting that expression of flaB is not only regulated at the

  14. Solution structure of the phosphoryl transfer complex between the cytoplasmic A domain of the mannitol transporter IIMannitol and HPr of the Escherichia coli phosphotransferase system.

    PubMed

    Cornilescu, Gabriel; Lee, Byeong Ryong; Cornilescu, Claudia C; Wang, Guangshun; Peterkofsky, Alan; Clore, G Marius

    2002-11-01

    The solution structure of the complex between the cytoplasmic A domain (IIA(Mtl)) of the mannitol transporter II(Mannitol) and the histidine-containing phosphocarrier protein (HPr) of the Escherichia coli phosphotransferase system has been solved by NMR, including the use of conjoined rigid body/torsion angle dynamics, and residual dipolar couplings, coupled with cross-validation, to permit accurate orientation of the two proteins. A convex surface on HPr, formed by helices 1 and 2, interacts with a complementary concave depression on the surface of IIA(Mtl) formed by helix 3, portions of helices 2 and 4, and beta-strands 2 and 3. The majority of intermolecular contacts are hydrophobic, with a small number of electrostatic interactions at the periphery of the interface. The active site histidines, His-15 of HPr and His-65 of IIA(Mtl), are in close spatial proximity, and a pentacoordinate phosphoryl transition state can be readily accommodated with no change in protein-protein orientation and only minimal perturbations of the backbone immediately adjacent to the histidines. Comparison with two previously solved structures of complexes of HPr with partner proteins of the phosphotransferase system, the N-terminal domain of enzyme I (EIN) and enzyme IIA(Glucose) (IIA(Glc)), reveals a number of common features despite the fact that EIN, IIA(Glc), and IIA(Mtl) bear no structural resemblance to one another. Thus, entirely different underlying structural elements can form binding surfaces for HPr that are similar in terms of both shape and residue composition. These structural comparisons illustrate the roles of surface and residue complementarity, redundancy, incremental build-up of specificity and conformational side chain plasticity in the formation of transient specific protein-protein complexes in signal transduction pathways.

  15. Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnlA.

    PubMed

    Bowen, J K; Templeton, M D; Sharrock, K R; Crowhurst, R N; Rikkerink, E H

    1995-01-20

    The feasibility of performing routine transformation-mediated mutagenesis in Glomerella cingulata was analysed by adopting three one-step gene disruption strategies targeted at the pectin lyase gene pnlA. The efficiencies of disruption following transformation with gene replacement- or gene truncation-disruption vectors were compared. To effect replacement-disruption, G. cingulata was transformed with a vector carrying DNA from the pnlA locus in which the majority of the coding sequence had been replaced by the gene for hygromycin B resistance. Two of the five transformants investigated contained an inactivated pnlA gene (pnlA-); both also contained ectopically integrated vector sequences. The efficacy of gene disruption by transformation with two gene truncation-disruption vectors was also assessed. Both vectors carried at 5' and 3' truncated copy of the pnlA coding sequence, adjacent to the gene for hygromycin B resistance. The promoter sequences controlling the selectable marker differed in the two vectors. In one vector the homologous G. cingulata gpdA promoter controlled hygromycin B phosphotransferase expression (homologous truncation vector), whereas in the second vector promoter elements were from the Aspergillus nidulans gpdA gene (heterologous truncation vector). Following transformation with the homologous truncation vector, nine transformants were analysed by Southern hybridisation; no transformants contained a disrupted pnlA gene. Of nineteen heterologous truncation vector transformants, three contained a disrupted pnlA gene; Southern analysis revealed single integrations of vector sequence at pnlA in two of these transformants. pnlA mRNA was not detected by Northern hybridisation in pnlA- transformants. pnlA- transformants failed to produce a PNLA protein with a pI identical to one normally detected in wild-type isolates by silver and activity staining of isoelectric focussing gels. Pathogenesis on Capsicum and apple was unaffected by disruption of

  16. Differential expression of genes in the alate and apterous morphs of the brown citrus aphid, Toxoptera citricida

    PubMed Central

    Shang, Feng; Ding, Bi-Yue; Xiong, Ying; Dou, Wei; Wei, Dong; Jiang, Hong-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2016-01-01

    Winged and wingless morphs in insects represent a trade-off between dispersal ability and reproduction. We studied key genes associated with apterous and alate morphs in Toxoptera citricida (Kirkaldy) using RNAseq, digital gene expression (DGE) profiling, and RNA interference. The de novo assembly of the transcriptome was obtained through Illumina short-read sequencing technology. A total of 44,199 unigenes were generated and 27,640 were annotated. The transcriptomic differences between alate and apterous adults indicated that 279 unigenes were highly expressed in alate adults, whereas 5,470 were expressed at low levels. Expression patterns of the top 10 highly expressed genes in alate adults agreed with wing bud development trends. Silencing of the lipid synthesis and degradation gene (3-ketoacyl-CoA thiolase, mitochondrial-like) and glycogen genes (Phosphoenolpyruvate carboxykinase [GTP]-like and Glycogen phosphorylase-like isoform 2) resulted in underdeveloped wings. This suggests that both lipid and glycogen metabolism provide energy for aphid wing development. The large number of sequences and expression data produced from the transcriptome and DGE sequencing, respectively, increases our understanding of wing development mechanisms. PMID:27577531

  17. The Zinc Finger Proteins Mxr1p and Repressor of Phosphoenolpyruvate Carboxykinase (ROP) Have the Same DNA Binding Specificity but Regulate Methanol Metabolism Antagonistically in Pichia pastoris*

    PubMed Central

    Kumar, Nallani Vijay; Rangarajan, Pundi N.

    2012-01-01

    The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5′ CYCCNY 3′ motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species. PMID:22888024

  18. A VEGF-dependent gene signature enriched in mesenchymal ovarian cancer predicts patient prognosis.

    PubMed

    Yin, Xia; Wang, Xiaojie; Shen, Boqiang; Jing, Ying; Li, Qing; Cai, Mei-Chun; Gu, Zhuowei; Yang, Qi; Zhang, Zhenfeng; Liu, Jin; Li, Hongxia; Di, Wen; Zhuang, Guanglei

    2016-08-08

    We have previously reported surrogate biomarkers of VEGF pathway activities with the potential to provide predictive information for anti-VEGF therapies. The aim of this study was to systematically evaluate a new VEGF-dependent gene signature (VDGs) in relation to molecular subtypes of ovarian cancer and patient prognosis. Using microarray profiling and cross-species analysis, we identified 140-gene mouse VDGs and corresponding 139-gene human VDGs, which displayed enrichment of vasculature and basement membrane genes. In patients who received bevacizumab therapy and showed partial response, the expressions of VDGs (summarized to yield VDGs scores) were markedly decreased in post-treatment biopsies compared with pre-treatment baselines. In contrast, VDGs scores were not significantly altered following bevacizumab treatment in patients with stable or progressive disease. Analysis of VDGs in ovarian cancer showed that VDGs as a prognostic signature was able to predict patient outcome. Correlation estimation of VDGs scores and molecular features revealed that VDGs was overrepresented in mesenchymal subtype and BRCA mutation carriers. These findings highlighted the prognostic role of VEGF-mediated angiogenesis in ovarian cancer, and proposed a VEGF-dependent gene signature as a molecular basis for developing novel diagnostic strategies to aid patient selection for VEGF-targeted agents.

  19. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss.

    PubMed

    Morris, J Jeffrey; Lenski, Richard E; Zinser, Erik R

    2012-01-01

    Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and "Candidatus Pelagibacter," and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organisms may leave them dependent on cooccurring microbes for lost metabolic functions. We present the Black Queen Hypothesis (BQH), a novel theory of reductive evolution that explains how selection leads to such dependencies; its name refers to the queen of spades in the game Hearts, where the usual strategy is to avoid taking this card. Gene loss can provide a selective advantage by conserving an organism's limiting resources, provided the gene's function is dispensable. Many vital genetic functions are leaky, thereby unavoidably producing public goods that are available to the entire community. Such leaky functions are thus dispensable for individuals, provided they are not lost entirely from the community. The BQH predicts that the loss of a costly, leaky function is selectively favored at the individual level and will proceed until the production of public goods is just sufficient to support the equilibrium community; at that point, the benefit of any further loss would be offset by the cost. Evolution in accordance with the BQH thus generates "beneficiaries" of reduced genomic content that are dependent on leaky "helpers," and it may explain the observed nonuniversality of prototrophy, stress resistance, and other cellular functions in the microbial world.

  20. Human X-Linked genes regionally mapped utilizing X-autosome translocations and somatic cell hybrids.

    PubMed Central

    Shows, T B; Brown, J A

    1975-01-01

    Human genes coding for hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8; IMP:pyrophosphate phosphoribosyltransferase), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49; D-glucose-6-phosphate:NADP+ 1-oxidoreductase), and phosphoglycerate kinase (PGK, EC 2.7.2.3; ATP:3-phospho-D-glycerate 1-phosphotransferase) have been assigned to specific regions on the long arm of the X chromosome by somatic cell gentic techniques. Gene assignment and linear order were determined by employing human somatic cells possessing an X/9 translocation or an X/22 translocation in man-mouse cell hybridization studies. The X/9 translocation involved the majority of the X long arm translocated to chromosome 9 and the X/22 translocation involved the distal half of the X long arm translocated to 22. In each case these rearrangements appeared to be reciprocal. Concordant segregation of X-linked enzymes and segments of the X chromosome generated by the translocations indicated assignment of the PGK gene to a proximal long arm region (q12-q22) and the HPRT and G6PD genes to the distal half (q22-qter) of the X long arm. Further evidence suggests a gene order on the X long arm of centromere-PGK-HPRT-G6PD. Images PMID:1056018

  1. Homology-dependent Gene Silencing in Paramecium

    PubMed Central

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  2. Structural basis for gene regulation by a B12-dependent photoreceptor

    PubMed Central

    Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; Ortiz-Guerrero, Juan Manuel; Chen, Percival Yang-Ting; Kang, Gyunghoon; Padmanabhan, S.; Elías-Arnanz, Montserrat; Drennan, Catherine L.

    2015-01-01

    Summary Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide a visualization of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter −35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation. PMID:26416754

  3. MAOA interacts with the ALDH2 gene in anxiety-depression alcohol dependence.

    PubMed

    Lee, Sheng-Yu; Hahn, Cheng-Yi; Lee, Jia-Fu; Huang, San-Yuan; Chen, Shiou-Lan; Kuo, Po-Hsiu; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Chen, Shih-Heng; Ko, Huei-Chen; Lu, Ru-Band

    2010-07-01

    Alcohol dependence is usually comorbid with anxiety disorder, depressive disorder, or both; this comorbidity may increase drinking behavior. We previously hypothesized that anxiety-depressive alcohol dependence (ANX/DEP ALC) was a genetically specific subtype of alcohol dependence. ANX/DEP ALC may be related to dopamine and serotonin, which are catalyzed by monoamine oxidase A (MAOA) and acetaldehyde dehydrogenase 2 (ALDH2). The aim of this study was to determine whether the interaction between the MAOA and the ALDH2 genes is associated with ANX/DEP ALC. We recruited 383 Han Chinese men in Taiwan: 143 ANX/DEP ALC and 240 healthy controls. The diagnosis of ANX/DEP ALC (alcohol dependence with a past or current history of anxiety, depressive disorder, or both) was made using DSM-IV criteria. Genotypes of ALDH2 and MAOA-uVNTR (variable number of tandem repeat located upstream) were determined using PCR-RFLP. The ALDH2, but not the MAOA-uVNTR, polymorphism was associated with ANX/DEP ALC. After stratifying the MAOA-uVNTR polymorphism, we found a stronger association between the ALDH2*1/*2 and *2/*2 genotypes and the controls in the MAOA-uVNTR 4-repeat subgroup. Logistic regression significantly associated the interaction between ALDH2 and MAOA variants with ANX/DEP ALC. We conclude that the MAOA and ALDH2 genes interact in ANX/DEP ALC. Although the MAOA gene alone is not associated with ANX/DEP ALC, we hypothesize that different variants of MAOA-uVNTR polymorphisms modify the protective effects of the ALDH2*2 allele on ANX/DEP ALC in Han Chinese in Taiwan.

  4. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton

    PubMed Central

    Bajwa, Kamran S.; Shahid, Ahmad A.; Rao, Abdul Q.; Bashir, Aftab; Aftab, Asia; Husnain, Tayyab

    2015-01-01

    Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification. PMID:26583018

  5. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE PAGES

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; ...

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  6. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  7. Crystal structure of B acillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity: AtxA multimerization, phosphorylation and activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activitymore » in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  8. Glucokinase contributes to glucose phosphorylation in D-lactic acid production by Sporolactobacillus inulinus Y2-8.

    PubMed

    Zheng, Lu; Bai, Zhongzhong; Xu, Tingting; He, Bingfang

    2012-11-01

    Sporolactobacillus inulinus, a homofermentative lactic acid bacterium, is a species capable of efficient industrial D-lactic acid production from glucose. Glucose phosphorylation is the key step of glucose metabolism, and fine-tuned expression of which can improve D-lactic acid production. During growth on high-concentration glucose, a fast induction of high glucokinase (GLK) activity was observed, and paralleled the patterns of glucose consumption and D-lactic acid accumulation, while phosphoenolpyruvate phosphotransferase system (PTS) activity was completely repressed. The transmembrane proton gradient of 1.3-1.5 units was expected to generate a large proton motive force to the uptake of glucose. This suggests that the GLK pathway is the major route for glucose utilization, with the uptake of glucose through PTS-independent transport systems and phosphorylation of glucose by GLK in S. inulinus D-lactic acid production. The gene encoding GLK was cloned from S. inulinus and expressed in Escherichia coli. The amino acid sequence revealed significant similarity to GLK sequences from Bacillaceae. The recombinant GLK was purified and shown to be a homodimer with a subunit molecular mass of 34.5 kDa. Strikingly, it demonstrated an unusual broad substrate specificity, catalyzing phosphorylation of 2-deoxyglucose, mannitol, maltose, galactose and glucosamine, in addition to glucose. This report documented the key step concerning glucose phosphorylation of S. inulinus, which will help to understand the regulation of glucose metabolism and D-lactic acid production.

  9. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    PubMed Central

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2015-01-01

    Summary The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. PMID:25402841

  10. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity.

    PubMed

    Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M

    2015-02-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. © 2014 John Wiley & Sons Ltd.

  11. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  12. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  13. Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo

    PubMed Central

    Walduck, Anna K; Weber, Matthias; Wunder, Christian; Juettner, Stefan; Stolte, Manfred; Vieth, Michael; Wiedenmann, Bertram; Meyer, Thomas F; Naumann, Michael; Hoecker, Michael

    2009-01-01

    Background Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. Results Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1), epithelial barrier function (Tjp1, connexin45, Aqp5), inflammation (Icam1), apoptosis (Clu) and proliferation (Gdf3, Igf2). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. Conclusion This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity. PMID:19317916

  14. Relationship between NH+4 Assimilation Rate and in Vivo Phosphoenolpyruvate Carboxylase Activity 1

    PubMed Central

    Vanlerberghe, Greg C.; Schuller, Kathryn A.; Smith, Ronald G.; Feil, Regina; Plaxton, William C.; Turpin, David H.

    1990-01-01

    The rate of NH4+ assimilation by N-limited Selenastrum minutum (Naeg.) Collins cells in the dark was set as an independent variable and the relationship between NH4+ assimilation rate and in vivo activity of phosphoenolpyruvate carboxylase (PEPC) was determined. In vivo activity of PEPC was measured by following the incorporation of H14CO−3 into acid stable products. A linear relationship of 0.3 moles C fixed via PEPC per mole N assimilated was observed. This value agrees extremely well with the PEPC requirement for the synthesis of the amino acids found in total cellular protein. Determinations of metabolite levels in vivo at different rates of N assimilation indicated that the known metabolite effectors of S. minutum PEPC in vitro (KA Schuller, WC Plaxton, DH Turpin, [1990] Plant Physiol 93: 1303-1311) are important regulators of this enzyme during N assimilation. As PEPC activity increased in response to increasing rates of N assimilation, there was a corresponding decline in the level of PEPC inhibitors (2-oxoglutarate, malate), an increase in the level of PEPC activators (glutamine, dihydroxyacetone phosphate), and an increase in the Gln/Glu ratio. Treatment of N-limited cells with azaserine caused an increase in the Gln/Glu ratio resulting in increased PEPC activity in the absence of N assimilation. We suggest glutamate and glutamine play a key role in regulating the anaplerotic function of PEPC in this C3 organism. PMID:16667699

  15. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    PubMed

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  16. Binding of TFIIIC to SINE Elements Controls the Relocation of Activity-Dependent Neuronal Genes to Transcription Factories

    PubMed Central

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T.; Jongbloets, Bart C.; Down, Thomas A.; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. PMID:23966877

  17. Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats

    PubMed Central

    Westfall, Susan; Aguilar-Valles, Argel; Mongrain, Valérie; Luheshi, Giamal N.; Cermakian, Nicolas

    2013-01-01

    Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever. PMID:23527270

  18. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    PubMed

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  19. Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), larvae.

    PubMed

    Fraser, Jordie D; Bonnett, Tiffany R; Keeling, Christopher I; Huber, Dezene P W

    2017-01-01

    Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.

  20. Transformation of Candida albicans with a synthetic hygromycin B resistance gene.

    PubMed

    Basso, Luiz R; Bartiss, Ann; Mao, Yuxin; Gast, Charles E; Coelho, Paulo S R; Snyder, Michael; Wong, Brian

    2010-12-01

    Synthetic genes that confer resistance to the antibiotic nourseothricin in the pathogenic fungus Candida albicans are available, but genes conferring resistance to other antibiotics are not. We found that multiple C. albicans strains were inhibited by hygromycin B, so we designed a 1026 bp gene (CaHygB) that encodes Escherichia coli hygromycin B phosphotransferase with C. albicans codons. CaHygB conferred hygromycin B resistance in C. albicans transformed with ars2-containing plasmids or single-copy integrating vectors. Since CaHygB did not confer nourseothricin resistance and since the nourseothricin resistance marker SAT-1 did not confer hygromycin B resistance, we reasoned that these two markers could be used for homologous gene disruptions in wild-type C. albicans. We used PCR to fuse CaHygB or SAT-1 to approximately 1 kb of 5' and 3' noncoding DNA from C. albicans ARG4, HIS1 and LEU2, and introduced the resulting amplicons into six wild-type C. albicans strains. Homologous targeting frequencies were approximately 50-70%, and disruption of ARG4, HIS1 and LEU2 alleles was verified by the respective transformants' inabilities to grow without arginine, histidine and leucine. CaHygB should be a useful tool for genetic manipulation of different C. albicans strains, including clinical isolates. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes

    PubMed Central

    Yang, Jing; Wang, Chao; Wu, Jinyu; Liu, Li; Zhang, Gang

    2014-01-01

    The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. PMID:24362420

  2. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    The bifunctional acetyltransferase(6′)-Ie-phosphotransfer­ase(2′′)-Ia [AAC(6′)-Ie-APH(2′′)-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2′′)-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2′′)-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2′′)-IIa and APH(2′′)-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2′′)-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2′′)-IIIa enzyme. In APH(2′′)-Ia this GTP selectivity is governed by the presence of a ‘gatekeeper’ residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2′′)-Ia into a dual-specificity enzyme. PMID:24914967

  3. Estimation of Dynamic Systems for Gene Regulatory Networks from Dependent Time-Course Data.

    PubMed

    Kim, Yoonji; Kim, Jaejik

    2018-06-15

    Dynamic system consisting of ordinary differential equations (ODEs) is a well-known tool for describing dynamic nature of gene regulatory networks (GRNs), and the dynamic features of GRNs are usually captured through time-course gene expression data. Owing to high-throughput technologies, time-course gene expression data have complex structures such as heteroscedasticity, correlations between genes, and time dependence. Since gene experiments typically yield highly noisy data with small sample size, for a more accurate prediction of the dynamics, the complex structures should be taken into account in ODE models. Hence, this study proposes an ODE model considering such data structures and a fast and stable estimation method for the ODE parameters based on the generalized profiling approach with data smoothing techniques. The proposed method also provides statistical inference for the ODE estimator and it is applied to a zebrafish retina cell network.

  4. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  5. Glucocorticoid Repression of Inflammatory Gene Expression Shows Differential Responsiveness by Transactivation- and Transrepression-Dependent Mechanisms

    PubMed Central

    King, Elizabeth M.; Chivers, Joanna E.; Rider, Christopher F.; Minnich, Anne; Giembycz, Mark A.; Newton, Robert

    2013-01-01

    Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent

  6. CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisman, Scott A.; Buckley, David B.; Tanaka, Yuji

    CDDO-Im is a synthetic triterpenoid recently shown to induce cytoprotective genes through the Nrf2-Keap1 pathway, an important mechanism for the induction of cytoprotective genes in response to oxidative stress. Upon oxidative or electrophilic insult, the transcription factor Nrf2 translocates to the nucleus, heterodimerizes with small Maf proteins, and binds to antioxidant response elements (AREs) in the upstream promoter regions of various cytoprotective genes. To further elucidate the hepatoprotective effects of CDDO-Im, wild-type and Nrf2-null mice were pretreated with CDDO-Im (1 mg/kg, i.p.) or vehicle (DMSO), and then administered acetaminophen (500 mg/kg, i.p.). Pretreatment of wild-type mice with CDDO-Im reduced livermore » injury caused by acetaminophen. In contrast, hepatoprotection by CDDO-Im was not observed in Nrf2-null mice. CDDO-Im increased Nrf2 protein expression and Nrf2-ARE binding in wild-type, but not Nrf2-null mice. Furthermore, CDDO-Im increased the mRNA expression of the Nrf2 target genes NAD(P)H: quinone oxidoreductase-1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); and heme-oxygenase-1 (Ho-1), in both a dose- and time-dependent manner. Conversely, CDDO-Im did not induce Nqo1, Gclc, and Ho-1 mRNA expression in Nrf2-null mice. Collectively, the present study shows that CDDO-Im pretreatment induces Nrf2-dependent cytoprotective genes and protects the liver from acetaminophen-induced hepatic injury.« less

  7. Reward-related genes and personality traits in alcohol-dependent individuals: a pilot case control study.

    PubMed

    Landgren, Sara; Berglund, Kristina; Jerlhag, Elisabet; Fahlke, Claudia; Balldin, Jan; Berggren, Ulf; Zetterberg, Henrik; Blennow, Kaj; Engel, Jörgen A

    2011-01-01

    Components of the brain reward system, i.e. the mesolimbic dopamine, laterodorsal cholinergic and ghrelin signaling systems, have been implicated in alcohol reward in preclinical studies. Genetic variants of these systems have previously been linked to alcohol dependence. Here, we genotyped 31 single nucleotide polymorphisms (SNPs): 1 SNP in the dopamine D₂ receptor (DRD2) gene, 20 SNPs in 5 different nicotinic acetylcholine receptor subunit (CHRN*) genes, and 10 SNPs in the genes encoding pro-ghrelin (GHRL) and its receptor (GHSR), in a pilot study of type 1 alcoholics (n = 84) and healthy controls (n = 32). These individuals were characterized using the Temperament and Character Inventory. None of the SNPs were associated with risk of alcohol dependence in this population. The GG genotype of SNP rs13261190 in the CHRNB3 was associated with increased novelty seeking, while SNPs of the ghrelin signaling system were associated with decreased self-directedness (AA of rs495225, GHSR) and alterations in self-transcendence (AA of both rs42451 and rs35680, GHRL). In conclusion, this pilot study suggests that reward-related genes are associated with altered personality scores in type 1 alcohol dependence, which warrants future studies of these associations in larger study samples. Copyright © 2011 S. Karger AG, Basel.

  8. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.

    PubMed

    Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C

    2016-12-01

    Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.

  9. Structural basis for gene regulation by a B 12-dependent photoreceptor

    DOE PAGES

    Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; ...

    2015-09-28

    Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B 12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here in this paper, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activatesmore » transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. Finally, these results expand the biological role of vitamin B 12 and provide fundamental insight into a new mode of light-dependent gene regulation.« less

  10. Novel genes identified in a high-density genome wide association study for nicotine dependence.

    PubMed

    Bierut, Laura Jean; Madden, Pamela A F; Breslau, Naomi; Johnson, Eric O; Hatsukami, Dorothy; Pomerleau, Ovide F; Swan, Gary E; Rutter, Joni; Bertelsen, Sarah; Fox, Louis; Fugman, Douglas; Goate, Alison M; Hinrichs, Anthony L; Konvicka, Karel; Martin, Nicholas G; Montgomery, Grant W; Saccone, Nancy L; Saccone, Scott F; Wang, Jen C; Chase, Gary A; Rice, John P; Ballinger, Dennis G

    2007-01-01

    Tobacco use is a leading contributor to disability and death worldwide, and genetic factors contribute in part to the development of nicotine dependence. To identify novel genes for which natural variation contributes to the development of nicotine dependence, we performed a comprehensive genome wide association study using nicotine dependent smokers as cases and non-dependent smokers as controls. To allow the efficient, rapid, and cost effective screen of the genome, the study was carried out using a two-stage design. In the first stage, genotyping of over 2.4 million single nucleotide polymorphisms (SNPs) was completed in case and control pools. In the second stage, we selected SNPs for individual genotyping based on the most significant allele frequency differences between cases and controls from the pooled results. Individual genotyping was performed in 1050 cases and 879 controls using 31 960 selected SNPs. The primary analysis, a logistic regression model with covariates of age, gender, genotype and gender by genotype interaction, identified 35 SNPs with P-values less than 10(-4) (minimum P-value 1.53 x 10(-6)). Although none of the individual findings is statistically significant after correcting for multiple tests, additional statistical analyses support the existence of true findings in this group. Our study nominates several novel genes, such as Neurexin 1 (NRXN1), in the development of nicotine dependence while also identifying a known candidate gene, the beta3 nicotinic cholinergic receptor. This work anticipates the future directions of large-scale genome wide association studies with state-of-the-art methodological approaches and sharing of data with the scientific community.

  11. D{sub 2} dopamine receptor gene and behavioral characteristics in nicotine dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, E.P.; Fitch, R.J.; Syndulko, K.

    1994-09-01

    The D{sub 2} dopamine receptor (DRD2) A1 allele has been recently associated with nicotine dependence. In the present study, TaqI A alleles (the minor A1 and the major A2 allele) of the DRD2 were determined in medically-ill subjects. The sample was composed of 41 non-smokers (N), 69 ex-smokers (X) and 63 active smokers (A). The relationships of DRD2 alleles to personality (Eysenick`s Addictive Personality [AP]), depression and nicotine dependence (Fagerstroem) scores were ascertained. A significant (P = 0.002) group effect prevailed in the AP scores, with the A group having the highest scores. Moreover, a significant (P = 0.025) allelemore » by group interaction was found, with A1 allelic subjects in group A showing the highest AP scores. Significant group effects were also found in both the depression (P = 0.0004) and the nicotine dependence (P = 0.0003) scores, with the A group again showing the highest scores. However, in contrast to the AP scores, no significant allele by group interaction was found either in the depression or the nicotine dependence scores. In conclusion, the present findings suggest a role for the DRD2 gene in personality of smokers. However, relationship of the DRD2 gene to the degree of depression or nicotine dependence was not found. The data indicate the importance of using behavioral and genetic variables in dissecting the complex set of variables associated with the smoking habit, and thus in achieving a better understanding of the biobehavioral bases of this addiction.« less

  12. Sweet preference, sugar addiction and the familial history of alcohol dependence: shared neural pathways and genes.

    PubMed

    Fortuna, Jeffrey L

    2010-06-01

    Contemporary research has shown that a high number of alcohol-dependent and other drug-dependent individuals have a sweet preference, specifically for foods with a high sucrose concentration. Moreover, both human and animal studies have demonstrated that in some brains the consumption of sugar-rich foods or drinks primes the release of euphoric endorphins and dopamine within the nucleus accumbens, in a manner similar to some drugs of abuse. The neurobiological pathways of drug and "sugar addiction" involve similar neural receptors, neurotransmitters, and hedonic regions in the brain. Craving, tolerance, withdrawal and sensitization have been documented in both human and animal studies. In addition, there appears to be cross sensitization between sugar addiction and narcotic dependence in some individuals. It has also been observed that the biological children of alcoholic parents, particularly alcoholic fathers, are at greater risk to have a strong sweet preference, and this may manifest in some with an eating disorder. In the last two decades research has noted that specific genes may underlie the sweet preference in alcohol- and drug-dependent individuals, as well as in biological children of paternal alcoholics. There also appears to be some common genetic markers between alcohol dependence, bulimia, and obesity, such as the A1 allele gene and the dopamine 2 receptor gene.

  13. The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function

    PubMed Central

    Johnson, Troy A.; Holyoak, Todd

    2012-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that transitions between an open/disorded conformation to a closed/ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies show that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. In order to more fully investigate the roles of the lid domain in PEPCK function we created three mutations that replaced the 11-residue lid domain with one, two or three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity resulting in a decrease in the catalytic parameters by at least 106. Structural characterization of the mutants in complexes representing the catalytic cycle suggest that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all elements required for chemical conversion of substrates to products remaining intact. PMID:23127136

  14. C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism.

    PubMed

    Brown, Naomi J; Palmer, Ben G; Stanley, Susan; Hajaji, Hana; Janacek, Sophie H; Astley, Holly M; Parsley, Kate; Kajala, Kaisa; Quick, W Paul; Trenkamp, Sandra; Fernie, Alisdair R; Maurino, Veronica G; Hibberd, Julian M

    2010-01-01

    Cells associated with veins of petioles of C(3) tobacco possess high activities of the decarboxylase enzymes required in C(4) photosynthesis. It is not clear whether this is the case in other C(3) species, nor whether these enzymes provide precursors for specific biosynthetic pathways. Here, we investigate the activity of C(4) acid decarboxylases in the mid-vein of Arabidopsis, identify regulatory regions sufficient for this activity, and determine the impact of removing individual isoforms of each protein on mid-vein metabolite profiles. This showed that radiolabelled malate and bicarbonate fed to the xylem stream were incorporated into soluble and insoluble material in the mid-vein of Arabidopsis leaves. Compared with the leaf lamina, mid-veins possessed high activities of NADP-dependent malic enzyme (NADP-ME), NAD-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK). Transcripts derived from both NAD-ME, one PCK and two of the four NADP-ME genes were detectable in these veinal cells. The promoters of each decarboxylase gene were sufficient for expression in mid-veins. Analysis of insertional mutants revealed that cytosolic NADP-ME2 is responsible for 80% of NADP-ME activity in mid-veins. Removing individual decarboxylases affected the abundance of amino acids derived from pyruvate and phosphoenolpyruvate. Reducing cytosolic NADP-ME activity preferentially affected the sugar content, whereas abolishing NAD-ME affected both the amino acid and the glucosamine content of mid-veins.

  15. Plasticity-related genes in brain development and amygdala-dependent learning.

    PubMed

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Monoamine oxidase-A polymorphisms might modify the association between the dopamine D2 receptor gene and alcohol dependence.

    PubMed

    Huang, San-Yuan; Lin, Wei-Wen; Wan, Fang-Jung; Chang, Ai-Ju; Ko, Huei-Chen; Wang, Tso-Jen; Wu, Pei-Lin; Lu, Ru-Band

    2007-05-01

    Low monoamine oxidase (MAO) activity and the neurotransmitter dopamine are 2 important factors in the development of alcohol dependence. MAO is an important enzyme associated with the metabolism of biogenic amines. Therefore, the present study investigates whether the association between the dopamine D2 receptor (DRD2) gene and alcoholism is affected by different polymorphisms of the MAO type A (MAOA) gene. A total of 427 Han Chinese men in Taiwan (201 control subjects and 226 with alcoholism) were recruited for the study. Of the subjects with alcoholism, 108 had pure alcohol dependence (ALC) and 118 had both alcohol dependence and anxiety, depression or both (ANX/DEP ALC). All subjects were assessed with the Chinese Version of the Modified Schedule of Affective Disorders and Schizophrenia-Lifetime. Alcohol dependence, anxiety and major depressive disorders were diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, fourth edition criteria. The genetic variant of the DRD2 gene was only associated with the ANX/DEP ALC phenotype, and the genetic variant of the MAOA gene was associated with pure ALC. Subjects carrying the MAOA 3-repeat allele and genotype A1/A1 of the DRD2 were 3.48 times (95% confidence interval = 1.47-8.25) more likely to be ANX/DEP ALC than the subjects carrying the MAOA 3-repeat allele and DRD2 A2/A2 genotype. The MAOA gene may modify the association between the DRD2 gene and ANX/DEP ALC phenotype.

  17. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase.

    PubMed

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-11-21

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    PubMed Central

    2010-01-01

    Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days) or 29 days later (35 days) attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on denervated muscle. Marked

  19. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy.

    PubMed

    Qin, Weiping; Pan, Jiangping; Bauman, William A; Cardozo, Christopher P

    2010-10-22

    Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days) or 29 days later (35 days) attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on denervated muscle. Marked changes in the expression of

  20. [Correlation between succinate-dependent Ca2+ accumulation and transamination in the heart and the liver mitochondria of experimental animals].

    PubMed

    Saakian, I R; Saakian, G G

    2006-01-01

    Glutamate (GLU) and alpha-ketoglutarate (KGL), the substrates involved in transamination, have reciprocal effects on succinate-dependent respiration, NADH reduction, as well as on the accumulation and stable retention of Ca2+ in heart and liver mitochondria and homogenates from experimental animals. The succinate-dependent Ca2+ accumulation was shown to be highly sensitive to changes of the concentration ratios of GLU and KGL within the range 1:10 mM. GLU activated this process by transamination of oxalacetate (OAA) to aspartate. The predomination of KGL blocked the activating effect of GLU. The predomination of GLU eliminated the block produced by KGL or phosphoenolpyruvate (sources of OAA and GTP) but did not eliminate the Ca2+ accumulation-suppressing effect of aminoacetate, inhibitor of transaminases.

  1. Silencing is noisy: population and cell level noise in telomere-adjacent genes is dependent on telomere position and sir2.

    PubMed

    Anderson, Matthew Z; Gerstein, Aleeza C; Wigen, Lauren; Baller, Joshua A; Berman, Judith

    2014-07-01

    Cell-to-cell gene expression noise is thought to be an important mechanism for generating phenotypic diversity. Furthermore, telomeric regions are major sites for gene amplification, which is thought to drive genetic diversity. Here we found that individual subtelomeric TLO genes exhibit increased variation in transcript and protein levels at both the cell-to-cell level as well as at the population-level. The cell-to-cell variation, termed Telomere-Adjacent Gene Expression Noise (TAGEN) was largely intrinsic noise and was dependent upon genome position: noise was reduced when a TLO gene was expressed at an ectopic internal locus and noise was elevated when a non-telomeric gene was expressed at a telomere-adjacent locus. This position-dependent TAGEN also was dependent on Sir2p, an NAD+-dependent histone deacetylase. Finally, we found that telomere silencing and TAGEN are tightly linked and regulated in cis: selection for either silencing or activation of a TLO-adjacent URA3 gene resulted in reduced noise at the neighboring TLO but not at other TLO genes. This provides experimental support to computational predictions that the ability to shift between silent and active chromatin states has a major effect on cell-to-cell noise. Furthermore, it demonstrates that these shifts affect the degree of expression variation at each telomere individually.

  2. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    PubMed

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  3. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsalves, C.; Xue, B.; Yepes, M.

    1994-03-01

    A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500more » mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.« less

  4. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance.

    PubMed

    Ghanem, S

    2011-01-01

    In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains.

  5. Phosphoenolpyruvate Transporter Enables Targeted Perturbation During Metabolic Analysis of L-Phenylalanine Production With Escherichia coli.

    PubMed

    Tröndle, Julia; Albermann, Christoph; Weiner, Michael; Sprenger, Georg A; Weuster-Botz, Dirk

    2018-05-01

    Usually perturbation of the metabolism of cells by addition of substrates is applied for metabolic analysis of production organisms, but perturbation studies are restricted to the endogenous substrates of the cells under study. The goal of this study is to overcome this limitation by making phosphoenolpyruvate (PEP) available for perturbation studies with Escherichia coli producing L-phenylalanine. A production strain overexpressing a PEP-transporter variant (UhpT-D388C) is applied in a standardized fed-batch production-process on a 42 L-scale. Four parallel short-term perturbation experiments of 20 min are performed with glucose and glycerol as fed-batch carbon sources after rapid media transition of cells from the production-process. PEP is added after 9 min and is immediately consumed by the cells with up to 1.5 mmol g CDW -1  h -1 . L-phenylalanine production rates increased by up to 200% after addition of PEP. This clearly indicates an intracellular PEP-limitation in the L-phenylalanine production strain under study. Thus, it is shown that overexpressing specific transporters for analytical reasons makes exogenous substrates available as perturbation substrates for metabolic analyses of cells sampled from production-processes and thereby allows a very targeted perturbation of whole-cell metabolism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Environmental Control of Phosphoenolpyruvate Carboxylase Induction in Mature Mesembryanthemum crystallinum L. 1

    PubMed Central

    Piepenbrock, Mechtild; Schmitt, Jürgen M.

    1991-01-01

    Mesembryanthemum crystallinum L. plants shift the mode of carbon assimilation from C3 to Crassulacean acid metabolism when stressed by high salinity. A prerequisite for Crassulacean acid metabolism induction is the synthesis of phosphoenolpyruvate carboxylase (PEPCase). A moderate increase in the abundance of PEPCase transcripts and activity is observed in 7-week-old, well-watered plants. This increase in PEPCase coincides in time with a decrease in the growth rate of the shoots. The steady-state level of PEPCase activity is uniform along the leaves of well-watered plants, as can be shown by comparing leaves of different age from individual 7-week-old plants. In contrast, the rate of induction in response to salt stress varies with the age of plants and to a lesser extent with the age of the leaves. Two-week-old seedlings induce PEPCase slowly under a moderate salt stress regimen, whereas older plants induce faster. When individual leaves from a seven-week-old plant are compared with respect to induction velocity, no clear-cut correlation with leaf age is apparent. The highest induction rate is observed in leaves from node five that are about 2 weeks old at the beginning of the experiment. PEPCase transcripts are readily down-regulated to minute levels when detached leaves are hydrated. The levels reached after 8 hours of rehydration are very similar, regardless of whether the leaves were cut from young or old plants or whether the plants were previously salt-stressed or well-watered. It is concluded that environmental rather than developmental factors are predominant in determining abundance of PEPCase activity and transcripts in leaves of mature M. crystallinum plants. ImagesFigure 1Figure 3Figure 5 PMID:16668542

  7. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    PubMed

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. CORNAS: coverage-dependent RNA-Seq analysis of gene expression data without biological replicates.

    PubMed

    Low, Joel Z B; Khang, Tsung Fei; Tammi, Martti T

    2017-12-28

    In current statistical methods for calling differentially expressed genes in RNA-Seq experiments, the assumption is that an adjusted observed gene count represents an unknown true gene count. This adjustment usually consists of a normalization step to account for heterogeneous sample library sizes, and then the resulting normalized gene counts are used as input for parametric or non-parametric differential gene expression tests. A distribution of true gene counts, each with a different probability, can result in the same observed gene count. Importantly, sequencing coverage information is currently not explicitly incorporated into any of the statistical models used for RNA-Seq analysis. We developed a fast Bayesian method which uses the sequencing coverage information determined from the concentration of an RNA sample to estimate the posterior distribution of a true gene count. Our method has better or comparable performance compared to NOISeq and GFOLD, according to the results from simulations and experiments with real unreplicated data. We incorporated a previously unused sequencing coverage parameter into a procedure for differential gene expression analysis with RNA-Seq data. Our results suggest that our method can be used to overcome analytical bottlenecks in experiments with limited number of replicates and low sequencing coverage. The method is implemented in CORNAS (Coverage-dependent RNA-Seq), and is available at https://github.com/joel-lzb/CORNAS .

  9. Sibling genes as environment: Sibling dopamine genotypes and adolescent health support frequency dependent selection.

    PubMed

    Rauscher, Emily; Conley, Dalton; Siegal, Mark L

    2015-11-01

    While research consistently suggests siblings matter for individual outcomes, it remains unclear why. At the same time, studies of genetic effects on health typically correlate variants of a gene with the average level of behavioral or health measures, ignoring more complicated genetic dynamics. Using National Longitudinal Study of Adolescent Health data, we investigate whether sibling genes moderate individual genetic expression. We compare twin variation in health-related absences and self-rated health by genetic differences at three locations related to dopamine regulation and transport to test sibship-level cross-person gene-gene interactions. Results suggest effects of variation at these genetic locations are moderated by sibling genes. Although the mechanism remains unclear, this evidence is consistent with frequency dependent selection and suggests much genetic research may violate the stable unit treatment value assumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Calorimetric and spectroscopic investigation of the interaction between the C-terminal domain of Enzyme I and its ligands

    PubMed Central

    Yun, Young-Joo; Suh, Jeong-Yong

    2012-01-01

    Enzyme I initiates a series of phosphotransfer reactions during sugar uptake in the bacterial phosphotransferase system. Here, we have isolated a stable recombinant C-terminal domain of Enzyme I (EIC) of Escherichia coli and characterized its interaction with the N-terminal domain of Enzyme I (EIN) and also with various ligands. EIC can phosphorylate EIN, but their binding is transient regardless of the presence of phosphoenolpyruvate (PEP). Circular dichroism and NMR indicate that ligand binding to EIC induces changes near aromatic groups but not in the secondary structure of EIC. Binding of PEP to EIC is an endothermic reaction with the equilibrium dissociation constant (KD) of 0.28 mM, whereas binding of the inhibitor oxalate is an exothermic reaction with KD of 0.66 mM from calorimetry. The binding thermodynamics of EIC and PEP compared to that of Enzyme I (EI) and PEP reveals that domain–domain motion in EI can contribute as large as ∼−3.2 kcal/mol toward PEP binding. PMID:22936614

  11. Expression of hygromycin B resistance in oyster culinary-medicinal mushroom, Pleurotus ostreatus (Jacq.:Fr.)P. Kumm. (higher Basidiomycetes) using three gene expression systems.

    PubMed

    Dong, Xiaoya; Zhang, Ke; Gao, Yuqian; Qi, Yuancheng; Shen, Jinwen; Qiu, Liyou

    2012-01-01

    Three hygromycin B phosphotransferase (hph) gene expression systems for culinary-medicinal Oyster mushroom, Pleurotus ostreatus, plasmid pSHC, pAN7-1, and pBHt1 were evaluated through PEG/CaCl(2)-mediated protoplast transformation. Plasmid pSHC is a newly constructed hph gene expression system, composed of Escherichia coli hph gene, the P. ostreatus sdi promoter, and the CaMV35S terminator. The vector pAN7-1 was commonly used for integrative transformation in filamentous fungi. Plasmid pBHtl is a T-DNA binary vector, usually introduced into fungi by Agrobacterium-mediated transformation. The results showed that plasmids pSHC, pAN7-1, and pBHt1 were all integrated into the host chromosomes and expressed hygromycin B resistance in P. ostreatus. pAN7-1 had the highest transformation efficiency and hph gene expression level, pSHC the second, and pBHt1 the lowest. Growth rates of the transformants on plates containing hygromycin B were in correspondence with their hph gene expression levels. To our knowledge, this is the first report on integrated transformation of plasmid pAN7-1 and pBHt1 in P. ostreatus.

  12. A novel light-dependent selection marker system in plants.

    PubMed

    Koh, Serry; Kim, Hongsup; Kim, Jinwoo; Goo, Eunhye; Kim, Yun-Jung; Choi, Okhee; Jwa, Nam-Soo; Ma, Jun; Nagamatsu, Tomohisa; Moon, Jae Sun; Hwang, Ingyu

    2011-04-01

    Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H₂O₂ during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin-degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring-cleavage extradiol dioxygenase in the Exiguobacterium sp. 255-15; however, unlike other extradiol dioxygenases, Mn(2+) and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light-dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high-density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. Analysis of hepatic gene transcription in mice expressing insulin-insensitive GSK3

    PubMed Central

    2005-01-01

    GSK3 (glycogen synthase kinase-3) regulation is proposed to play a key role in the hormonal control of many cellular processes. Inhibition of GSK3 in animal models of diabetes leads to normalization of blood glucose levels, while high GSK3 activity has been reported in Type II diabetes. Insulin inhibits GSK3 by promoting phosphorylation of a serine residue (Ser-21 in GSK3α, Ser-9 in GSK3β), thereby relieving GSK3 inhibition of glycogen synthesis in muscle. GSK3 inhibition in liver reduces expression of the gluconeogenic genes PEPCK (phosphoenolpyruvate carboxykinase), G6Pase (glucose-6-phosphatase), as well as IGFBP1 (insulin-like growth factor binding protein-1). Overexpression of GSK3 in cells antagonizes insulin regulation of these genes. In the present study we demonstrate that regulation of these three genes by feeding is normal in mice that express insulin-insensitive GSK3. Therefore inactivation of GSK3 is not a prerequisite for insulin repression of these genes, despite the previous finding that GSK3 activity is absolutely required for maintaining their expression. Interestingly, insulin injection of wild-type mice, which activates PKB (protein kinase B) and inhibits GSK3 to a greater degree than feeding (50% versus 25%), does not repress these genes. We suggest for the first time that although pharmacological inhibition of GSK3 reduces hepatic glucose production even in insulin-resistant states, feeding can repress the gluconeogenic genes without inhibiting GSK3. PMID:16176184

  14. Transgene Expression and Repression in Transgenic Rats Bearing the Phosphoenolpyruvate Carboxykinase-Simian Virus 40 T Antigen or the Phosphoenolpyruvate Carboxykinase-Transforming Growth Factor-α Constructs

    PubMed Central

    Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.

    1999-01-01

    Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression

  15. Microarray and functional analysis of growth-phase dependent gene regulation in Bordetella bronchiseptica

    USDA-ARS?s Scientific Manuscript database

    Growth-phase dependent gene regulation has recently been demonstrated to occur in B. pertussis, with many transcripts, including known virulence factors, significantly decreasing during the transition from logarithmic to stationary-phase growth. Given that B. pertussis is thought to have derived fro...

  16. Endogenous enzyme activities and polyamine levels in diverse rice cultivars depend on the genetic background and are not affected by the presence of the hygromycin phosphotransferase selectable marker.

    PubMed

    Lepri, O.; Bassie, L.; Thu-Hang, P.; Christou, P.; Capell, T.

    2002-09-01

    We used the polyamine biosynthetic pathway and rice as a relevant model to understand the genetic basis of variation in endogenous levels of metabolites and key enzymes involved in the pathway. Wild-type tissues and also tissues containing a commonly used selectable marker gene were employed. We detected a wide variation in levels of arginine decarboxylase activity and in the three polyamines, putrescine, spermidine and spermine, in different tissues and varieties, but this was not dependent on the presence of the selectable marker. A more-extensive profile of enzyme activities (ADC, ODC, SAMDC, DAO and PAO) and polyamine levels in different tissues was generated in two different varieties. Our results indicate that genetic background is important in terms of the basal levels of metabolites and enzyme activity, particularly in situations in which we aim to engineer metabolic pathways that are also encoded by homologous endogenous genes. We did not find any evidence that the presence of a selectable marker in any way influences enzyme activity or metabolite levels.

  17. Schizophrenia: A Pathogenetic Autoimmune Disease Caused by Viruses and Pathogens and Dependent on Genes

    PubMed Central

    Carter, C. J.

    2011-01-01

    Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens. PMID:22567321

  18. A majority of mice show long-term expression of a human. beta. -globin gene after retrovirus transfer into hematopoietic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, M.A.; Gelinas, R.E.; Miller

    1989-04-01

    Murine bone marrow was infected with a high-titer retrovirus vector containing the human {beta}-globin and neomycin phosphotransferase genes. Anemic W/W/sup v/ mice were transplanted with infected marrow which in some cases had been exposed to the selective agent G418. Human {beta}-globin expression was monitored in transplanted animals by using a monoclonal antibody specific for human {beta}-globin polypeptide, and hematopoietic reconstitution was monitored by using donor and recipient mice which differed in hemoglobin type. In some experiments all transplanted mice expressed the human {beta}-globin polypeptide for over 4 months, and up to 50% of peripheral erythrocytes contained detectable levels of polypeptide.more » DNA analysis of transplanted animals revealed that virtually every myeloid cell contained a provirus. Integration site analysis and reconstitution of secondary marrow recipients suggested that every mouse was reconstituted with at least one infected stem cell which had extensive repopulation capability. The ability to consistently transfer an active {beta}-globin gene into mouse hematopoietic cells improves the feasibility of using these techniques for somatic cell gene therapy in humans.« less

  19. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.

    PubMed

    Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo

    2016-01-15

    With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    PubMed

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  1. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei.

    PubMed

    Worm, Petra; Stams, Alfons J M; Cheng, Xu; Plugge, Caroline M

    2011-01-01

    Transcription of genes coding for formate dehydrogenases (fdh genes) and hydrogenases (hyd genes) in Syntrophobacter fumaroxidans and Methanospirillum hungatei was studied following growth under different conditions. Under all conditions tested, all fdh and hyd genes were transcribed. However, transcription levels of the individual genes varied depending on the substrate and growth conditions. Our results strongly suggest that in syntrophically grown S. fumaroxidans cells, the [FeFe]-hydrogenase (encoded by Sfum_844-46), FDH1 (Sfum_2703-06) and Hox (Sfum_2713-16) may confurcate electrons from NADH and ferredoxin to protons and carbon dioxide to produce hydrogen and formate, respectively. Based on bioinformatic analysis, a membrane-integrated energy-converting [NiFe]-hydrogenase (Mhun_1741-46) of M. hungatei might be involved in the energy-dependent reduction of CO(2) to formylmethanofuran. The best candidates for F(420)-dependent N(5),N(10)-methyl-H(4) MPT and N(5),N(10),-methylene-H(4)MPT reduction are the cytoplasmic [NiFe]-hydrogenase and FDH1. 16S rRNA ratios indicate that in one of the triplicate co-cultures of S. fumaroxidans and M. hungatei, less energy was available for S. fumaroxidans. This led to enhanced transcription of genes coding for the Rnf-complex (Sfum_2694-99) and of several fdh and hyd genes. The Rnf-complex probably reoxidized NADH with ferredoxin reduction, followed by ferredoxin oxidation by the induced formate dehydrogenases and hydrogenases.

  2. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei

    2013-10-11

    Highlights: •MED1 is a bona fide T3-dependent coactivator on TSHB promoter. •Mice with LxxLL-mutant MED1 have attenuated TSHβ mRNA and thyroid hormone levels. •MED1 activates TSHB promoter T3-dependently in cultured cells. •T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. •MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor β (TRβ) on the TSHβmore » gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSHβ gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSHβ gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSHβ gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSHβ gene promoter.« less

  3. A plant/fungal-type phosphoenolpyruvate carboxykinase located in the parasite mitochondrion ensures glucose-independent survival of Toxoplasma gondii.

    PubMed

    Nitzsche, Richard; Günay-Esiyok, Özlem; Tischer, Maximilian; Zagoriy, Vyacheslav; Gupta, Nishith

    2017-09-15

    Toxoplasma gondii is considered to be one of the most successful intracellular pathogens, because it can reproduce in varied nutritional milieus, encountered in diverse host cell types of essentially any warm-blooded organism. Our earlier work demonstrated that the acute (tachyzoite) stage of T. gondii depends on cooperativity of glucose and glutamine catabolism to meet biosynthetic demands. Either of these two nutrients can sustain the parasite survival; however, what determines the metabolic plasticity has not yet been resolved. Here, we reveal two discrete phosphoenolpyruvate carboxykinase (PEPCK) enzymes in the parasite, one of which resides in the m i t ochondrion ( Tg PEPCK mt ), whereas the other protein is n ot e xpressed in t achyzoites ( Tg PEPCK net ). Parasites with an intact glycolysis can tolerate genetic deletions of Tg PEPCK mt as well as of Tg PEPCK net , indicating their nonessential roles for tachyzoite survival. Tg PEPCK net can also be ablated in a glycolysis-deficient mutant, while Tg PEPCK mt is refractory to deletion. Consistent with this, the lytic cycle of a conditional mutant of Tg PEPCK mt in the glycolysis-impaired strain was aborted upon induced repression of the mitochondrial isoform, demonstrating its essential role for the glucose-independent survival of parasites. Isotope-resolved metabolomics of the conditional mutant revealed defective flux of glutamine-derived carbon into RNA-bound ribose sugar as well as metabolites associated with gluconeogenesis, entailing a critical nodal role of PEPCK mt in linking catabolism of glucose and glutamine with anabolic pathways. Our data also suggest a homeostatic function of Tg PEPCK mt in cohesive operation of glycolysis and the tricarboxylic acid cycle in a normal glucose-replete milieu. Conversely, we found that the otherwise integrative enzyme pyruvate carboxylase ( Tg PyC) is dispensable not only in glycolysis-competent but also in glycolysis-deficient tachyzoites despite a mitochondrial

  4. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress.

    PubMed

    Qi, Xueli; Xu, Weigang; Zhang, Jianzhou; Guo, Rui; Zhao, Mingzhong; Hu, Lin; Wang, Huiwei; Dong, Haibin; Li, Yan

    2017-03-01

    In this paper, two transgenic wheat lines, PC27 and PC51, containing the maize PEPC gene and its wild-type (WT) were used as experimental material to study the effects of high temperature on their photosynthetic physiological characteristics and metabolome. The results showed that transgenic wheat lines had higher photosynthetic rate (P n ) than WT under non-stress treatment (NT) and high temperature stress treatment (HT), and more significantly under HT. The change trends of F v /F m , Ф PSII , and q P were similar to P n , whereas that of non-photochemical quenching (NPQ) was the opposite. Compared with WT, no differences in chlorophyll content between the transgenic wheat and WT were observed under NT, but two transgenic lines had relatively higher contents than WT under HT. The change trends of Chlorophyll a/b radio, the decreased values of F m , W k , and V j , and the activity of the antioxidant enzyme were consistent with the chlorophyll content. Compared with WT, transgenic wheat lines exhibited lower rate of superoxide anion production, H 2 O 2 and malondialdehyde content under HT, and no significant differences were observed under NT. The expression pattern of the ZmPEPC gene and wheat endogenous photosynthesis-related genes were in agreement with that of P n . Compared with WT, about 13 different metabolites including one organic acid, six amino acids, four sugars, and two polyols were identified under NT; 25 different metabolites including six organic acids, 12 amino acids, four sugars, and three polyols were identified under HT. Collectively, our results indicate that ZmPEPC gene can enhance photochemical and antioxidant enzyme activity, upregulate the expression of photosynthesis-related genes, delay degradation of chlorophyll, change contents of proline and other metabolites in wheat, and ultimately improves its heat tolerance.

  5. Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii

    PubMed Central

    Zeng, Lin; Martino, Nicole C.

    2012-01-01

    Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715

  6. Candidate genes for alcohol dependence: A genetic association study from India.

    PubMed

    Malhotra, Savita; Basu, Debasish; Khullar, Madhu; Ghosh, Abhishek; Chugh, Neera

    2016-11-01

    Search for candidate genes for alcohol dependence (AD) has been inconsistent and inconclusive. Moreover, most of the research has been confined to a few specific ethnic groups. Hence, the aim of our study was to explore specific candidate genes for AD in north Indian male population. In this clinic-based genetic association study, 210 males with AD and 200 controls matched for age, gender and ethnicity were recruited from the clinic and the general population, respectively. Cases were diagnosed with Semi-structured Assessment for Genetics of Alcoholism-II (SSAGA-II). Single-nucleotide polymorphism genotyping was done by real-time quantitative-polymerase chain reaction (PCR) using Taq Man assay (ABI 7500) fast real-time PCR system. Both at the genotypic level and at allelic frequency, Met158 variant of catechol-O-methyl transferase (COMT) showed significant increase in cases as compared to controls. The frequency of heterozygous genotype (A/G) of gamma-aminobutyric acid receptor A1 (GABRA1) was significantly lower in cases as compared to controls. Likewise, for GABRA2, the frequency of homozygous recessive genotype (G/G) was significantly higher in the control group. With respect to the 5-hydroxytryptamine (5HT) transporter long promoter region (5HTTLPR), cholinergic receptor muscarinic (CHRM2) and alcohol dehydrogenase 1B (ADH1B) genes, there was no significant difference between the cases and the controls. Aldehyde dehydrogenase (ALDH2) gene was found to be monomorphic in our study population. Our study findings showed COMT polymorphism conferring risk and GABRA polymorphism as a protective genotype for Indian male with AD. Genes for alcohol metabolism, serotonin transporter and cholinergic receptor gene polymorphism were perhaps not contributory to AD for Indian population.

  7. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways.

    PubMed

    Kily, Layla J M; Cowe, Yuka C M; Hussain, Osman; Patel, Salma; McElwaine, Suzanne; Cotter, Finbarr E; Brennan, Caroline H

    2008-05-01

    Addiction is a complex psychiatric disorder considered to be a disease of the brain's natural reward reinforcement system. Repeated stimulation of the 'reward' pathway leads to adaptive changes in gene expression and synaptic organization that reinforce drug taking and underlie long-term changes in behaviour. The primitive nature of reward reinforcement pathways and the near universal ability of abused drugs to target the same system allow drug-associated reward and reinforcement to be studied in non-mammalian species. Zebrafish have proved to be a valuable model system for the study of vertebrate development and disease. Here we demonstrate that adult zebrafish show a dose-dependent acute conditioned place preference (CPP) reinforcement response to ethanol or nicotine. Repeated exposure of adult zebrafish to either nicotine or ethanol leads to a robust CPP response that persists following 3 weeks of abstinence and in the face of adverse stimuli, a behavioural indicator of the establishment of dependence. Microarray analysis using whole brain samples from drug-treated and control zebrafish identified 1362 genes that show a significant change in expression between control and treated individuals. Of these genes, 153 are common to both ethanol- and nicotine-treated animals. These genes include members of pathways and processes implicated in drug dependence in mammalian models, revealing conservation of neuro-adaptation pathways between zebrafish and mammals.

  8. Potential Virulence Role of the Legionella pneumophila ptsP Ortholog

    PubMed Central

    Higa, Futoshi; Edelstein, Paul H.

    2001-01-01

    We previously identified the Legionella pneumophila ptsP (phosphoenolpyruvate phosphotransferase) ortholog gene as a putative virulence factor in a study of signature-tagged mutagenesis using a guinea pig pneumonia model. In this study, we further defined the phenotypic properties of L. pneumophila ptsP and its complete sequence. The L. pneumophila ptsP was 2,295 bases in length. Its deduced amino acid sequence had high similarity with ptsP orthologs of Pseudomonas aeruginosa, Azotobacter vinelandii, and Escherichia coli, with nearly identical lengths. Here we show that while the mutant grew well in laboratory media, it was defective in both lung and spleen multiplication in guinea pigs. It grew slowly in guinea pig alveolar macrophages despite good uptake into the cells. Furthermore, there was minimal growth in a human alveolar epithelial cell line (A549). Transcomplementation of the L. pneumophila ptsP mutant almost completely rescued its growth in alveolar macrophages, in A549 cells, and in guinea pig lung and spleen. The L. pneumophila ptsP mutant was capable of evasion of phagosome-lysosome fusion and resided in ribosome-studded phagosomes. Pore formation activity of the mutant was normal. The L. pneumophila ptsP mutant expressed DotA and IcmX in apparently normal amounts, suggesting that the ptsP mutation did not affect dotA and icmX regulation. In addition, the mutant was resistant to serum and neutrophil killing. Taken together, these findings show that L. pneumophila ptsP is required for full in vivo virulence of L. pneumophila, most probably by affecting intracellular growth. PMID:11447151

  9. Relationship between NH sub 4 sup + assimilation rate and in vivo phosphoenolpyruvate carboxylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanlerberghe, G.C.; Schuller, K.A.; Smith, R.G.

    The rate of NH{sub 4}{sup +} assimilation by N-limited Selenastrum minutum (Naeg.) Collins cells in the dark was set as an independent variable and the relationship between NH{sub 4}{sup +} assimilation rate and in vivo activity of phosphoenolpyruvate carboxylase (PEPC) was determined. In vivo activity of PEPC was measured by following the incorporation of H{sup 14}CO{sub 3}{sup {minus}} into acid stable products. A linear relationship of 0.3 moles C fixed via PEPC per mole N assimilated was observed. This value agrees extremely well with the PEPC requirement for the synthesis of the amino acids found in total cellular protein. Determinationsmore » of metabolite levels in vivo at different rates of N assimilation indicated that the known metabolite effectors of S. minutum PEPC in vitro (KA Schuller, WC Plaxton, DH Turpin, (1990) Plant Physiol 93: 1303-1311) are important regulators of this enzyme during N assimilation. As PEPC activity increased in response to increasing rates of N assimilation, there was a corresponding decline in the level of PEPC inhibitors (2-oxoglutarate, malate), an increase in the level of PEPC activators (glutamine, dihydroxyacetone phosphate), and an increase in the Gln/Glu ratio. Treatment of N-limited cells with azaserine caused an increase in the Gln/Glu ratio resulting in increased PEPC activity in the absence of N assimilation. We suggest glutamate and glutamine play a key role in regulating the anaplerotic function of PEPC in this C{sub 3} organism.« less

  10. Construction and properties of a cell line constitutively expressing the herpes simplex virus glycoprotein B dependent on functional alpha 4 protein synthesis.

    PubMed Central

    Arsenakis, M; Hubenthal-Voss, J; Campadelli-Fiume, G; Pereira, L; Roizman, B

    1986-01-01

    We report the construction of a cell line constitutively expressing the glycoprotein B (gB) of herpes simplex virus (HSV) 1. The cell line was constructed in two steps. In the first, a baby hamster kidney cell line was transfected with the DNA of a plasmid containing the neomycin phosphotransferase gene that confers resistance to the antibiotic G418 and the gene specifying a temperature-sensitive (ts-) alpha 4 protein of HSV-1, the major viral regulatory protein. A clonal cell line, alpha 4/c113, selected for resistance to the antibiotic G418, expressed high levels of alpha 4 protein constitutively. Superinfection of these cells with HSV-2 resulted in twofold induction of the resident HSV-1 alpha 4 gene. In the second step, alpha 4/c113 cells were transfected with the DNA of a plasmid carrying the gB gene and the mouse methotrexate resistance dihydrofolate reductase gene. A clonal cell line, alpha 4/c113/gB, selected for methotrexate resistance expressed gB constitutively. Expression of both gB and alpha 4 continued unabated for at least 32 serial passages. Cells passaged serially in medium containing both methotrexate and G418 after passage 10 contained a higher copy number of the alpha 4 gene and produced larger amounts of both gB and alpha 4 proteins than did cells maintained in medium containing methotrexate alone. Expression of gB was dependent on the presence of functional alpha 4 protein inasmuch as expression of gB ceased on shift up to nonpermissive temperatures, when shifted to permissive temperatures, the cell line reinitiated expression of gB after a delay commensurate with the length of incubation at the nonpermissive temperature, and the cell-resident HSV-1 gB gene was expressed at the nonpermissive temperature in cells infected with a recombinant expressing a ts+ alpha 4 protein and an HSV-2 gB. The properties of the alpha 4/c113 cell line suggest that it may express other viral genes induced by alpha 4 protein constitutively, provided that the

  11. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.

    PubMed

    Tsuge, Yota; Uematsu, Kimio; Yamamoto, Shogo; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki

    2015-07-01

    Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation.

  12. Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver.

    PubMed

    Soyalan, Bülent; Minn, Jutta; Schmitz, Hans J; Schrenk, Dieter; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine

    2011-03-01

    The risk of cancer and other degenerative diseases is inversely correlated with consumption of fruits and vegetables. This beneficial effect is mainly attributed to secondary plant constituents such as polyphenols, supposed to play a major role in protection against ROS (reactive oxygen species)-associated toxicity. To elucidate the potential of differently manufactured apple juices (clear AJ/cloudy AJ/smoothie, in comparison with a polyphenol-free control juice) to modulate expression of ARE-dependent genes. In male Sprague-Dawley rats (n = 8/group; 10d juice intervention, 4d wash-out; 4 treatment cycles), expression of target genes (superoxide dismutase, SOD1/SOD2; glutathione peroxidase, GPX1/GPX2; γ-glutamylcysteine ligase, GCLC/GCLM; glutathione reductase, GSR; catalase, CAT; NAD(P)H:quinone oxidoreductase-1, NQO1 and transcription factor erythroid-derived 2-like-2, Nrf2) was quantified with duplex RT-PCR, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as control. In colon and liver of rats consuming polyphenol-free control juice, rather similar basic expressions were observed (relative GAPDH ratios ranging from 2 to 0.7 and 2.5-0.3, respectively). In the distal colon, apple juice intervention slightly but significantly induced most genes (e.g. GPX2, GSR, CAT, Nrf2; p < 0.001), whereas in the liver only GPX1 and NQO1 mRNA were up-regulated; other hepatic target genes were not affected or down-regulated (SOD1, SOD2, GCLC/M, GSR), concomitant with the absence of Nrf2 induction. Induction of antioxidant gene expression differed with juice type (cloudy AJ > clear AJ ~ smoothie). Taken together, the results underline the potential of polyphenol-rich apple juice to increase the expression of ARE-dependent antioxidant genes.

  13. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

    PubMed Central

    Fassah, Dilla Mareistia; Jeong, Jin Young

    2018-01-01

    Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p< 0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Conclusion Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat

  14. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls.

    PubMed

    Fassah, Dilla Mareistia; Jeong, Jin Young; Baik, Myunggi

    2018-04-01

    This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p< 0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.

  15. GATA-dependent regulation of TPO-induced c-mpl gene expression during megakaryopoiesis.

    PubMed

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2014-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role during megakaryocytopoiesis. Previously, we have shown that the promoter activity of c-mpl induced by TPO is modulated by transcription through a PKC-dependent pathway and that GATA(-77) is involved as a positive regulatory element in TPO-induced c-mpl gene expression in the megakaryoblastic CMK cells. In this research, to examine participating possibility of GATA promoter element in TPO- induced c-mpl gene expression through a PKC-independent pathway, the promoter activity of site-directed mutagenesis and the effect of potein kinase C modulator were measured by a transient transfection assay system. Together with our previous results on the TPO-induced c-mpl promoter, this study indicates destruction of -77GATA in c-mpl promoter decreased the activity by 47.3% under existence of GF109203. These results suggest that GATA promoter element plays significant role in TPO-induced c-mpl gene expression through a PKC-independent pathway.

  16. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Cancer.gov

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  17. Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease.

    PubMed

    Novati, Arianna; Hentrich, Thomas; Wassouf, Zinah; Weber, Jonasz J; Yu-Taeger, Libo; Déglon, Nicole; Nguyen, Huu Phuc; Schulze-Hentrich, Julia M

    2018-04-11

    Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene which results in progressive neurodegeneration in the striatum, cortex, and eventually most brain areas. Despite being a monogenic disorder, environmental factors influence HD characteristics. Both human and mouse studies suggest that mutant HTT (mHTT) leads to gene expression changes that harbor potential to be modulated by the environment. Yet, the underlying mechanisms integrating environmental cues into the gene regulatory program have remained largely unclear. To better understand gene-environment interactions in the context of mHTT, we employed RNA-seq to examine effects of maternal separation (MS) and environmental enrichment (EE) on striatal gene expression during development of BACHD rats. We integrated our results with striatal consensus modules defined on HTT-CAG length and age-dependent co-expression gene networks to relate the environmental factors with disease progression. While mHTT was the main determinant of expression changes, both MS and EE were capable of modulating these disturbances, resulting in distinctive and in several cases opposing effects of MS and EE on consensus modules. This bivalent response to maternal separation and environmental enrichment may aid in explaining their distinct effects observed on disease phenotypes in animal models of HD and related neurodegenerative disorders.

  18. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.

    PubMed

    Lyyra, Satu; Meagher, Richard B; Kim, Tehryung; Heaton, Andrew; Montello, Paul; Balish, Rebecca S; Merkle, Scott A

    2007-03-01

    Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees were engineered to express merA (mercuric ion reductase) and merB (organomercury lyase) transgenes in order to be used for the phytoremediation of mercury-contaminated soils. Earlier studies with Arabidopsis thaliana and Nicotiana tabacum showed that this gene combination resulted in more efficient detoxification of organomercurial compounds than did merB alone, but neither species is optimal for long-term field applications. Leaf discs from in vitro-grown merA, nptII (neomycin phosphotransferase) transgenic cottonwood plantlets were inoculated with Agrobacterium tumefaciens strain C58 carrying the merB and hygromycin resistance (hptII) genes. Polymerase chain reaction of shoots regenerated from the leaf discs under selection indicated an overall transformation frequency of 20%. Western blotting of leaves showed that MerA and MerB proteins were produced. In vitro-grown merA/merB plants were highly resistant to phenylmercuric acetate, and detoxified organic mercury compounds two to three times more rapidly than did controls, as shown by mercury volatilization assay. This indicates that these cottonwood trees are reasonable candidates for the remediation of organomercury-contaminated sites.

  19. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum1

    PubMed Central

    Ostrem, James A.; Olson, Steve W.; Schmitt, Jürgen M.; Bohnert, Hans J.

    1987-01-01

    Mesembryanthemum crystallinum responds to salt stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). During this transition the activity of phosphoenolpyruvate carboxylase (PEPCase) increases in soluble protein extracts from leaf tissue. We monitored CAM induction in plants irrigated with 0.5 molar NaCl for 5 days during the fourth, fifth, and sixth week after germination. Our results indicate that the age of the plant influenced the response to salt stress. There was no increase in PEPCase protein or PEPCase enzyme activity when plants were irrigated with 0.5 molar NaCl during the fourth and fifth week after germination. However, PEPCase activity increased within 2 to 3 days when plants were salt stressed during the sixth week after germination. Immunoblot analysis with anti-PEPCase antibodies showed that PEPCase synthesis was induced in both expanded leaves and in newly developing axillary shoot tissue. The increase in PEPCase protein was paralleled by an increase in PEPCase mRNA as assayed by immunoprecipitation of PEPCase from the in vitro translation products of RNA from salt-stressed plants. These results demonstrate that salinity increased the level of PEPCase in leaf and shoot tissue via a stress-induced increase in the steady-state level of translatable mRNA for this enzyme. Images Fig. 2 Fig. 3 Fig. 4 PMID:16665596

  20. Reduced tumorigenicity of rat glioma cells in the brain when mediated by hygromycin phosphotransferase.

    PubMed

    Hormigo, A; Friedlander, D R; Brittis, P A; Zagzag, D; Grumet, M

    2001-04-01

    A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain. Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin. The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly. hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.

  1. Hormonal induction of transfected genes depends on DNA topology.

    PubMed Central

    Piña, B; Haché, R J; Arnemann, J; Chalepakis, G; Slater, E P; Beato, M

    1990-01-01

    Plasmids containing the hormone regulatory element of mouse mammary tumor virus linked to the thymidine kinase promoter of herpes simplex virus and the reporter gene chloramphenicol acetyltransferase of Escherichia coli respond to glucocorticoids and progestins when transfected into appropriate cells. In the human mammary tumor cell line T47D, the response to progestins, but not to glucocorticoids, is highly dependent on the topology of the transfected DNA. Although negatively supercoiled plasmids respond optimally to the synthetic progestin R5020, their linearized counterparts exhibit markedly reduced progestin inducibility. This is not due to changes in the efficiency of DNA transfection, since the amount of DNA incorporated into the cell nucleus is not significantly dependent on the initial topology of the plasmids. In contrast, cotransfection experiments with glucocorticoid receptor cDNA in the same cell line show no significant influence of DNA topology on induction by dexamethasone. A similar result was obtained with fibroblasts that contain endogenous glucocorticoid receptors. When the distance between receptor-binding sites or between the binding sites and the promoter was increased, the dependence of progestin induction on DNA topology was more pronounced. In contrast to the original plasmid, these constructs also revealed a similar topological dependence for induction by glucocorticoids. The differential influence of DNA topology is not due to differences in the affinity of the two hormone receptors for DNA of various topologies, but probably reflects an influence of DNA topology on the interaction between different DNA-bound receptor molecules and between receptors and other transcription factors. Images PMID:2153920

  2. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    PubMed Central

    Báez-Viveros, José Luis; Flores, Noemí; Juárez, Katy; Castillo-España, Patricia; Bolivar, Francisco; Gosset, Guillermo

    2007-01-01

    Background The rational design of L-phenylalanine (L-Phe) overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS) and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase), reaching yields of 0.33 (g-Phe/g-Glc), which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA) of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB), gluconeogenic (ppsA, pckA) and fermentative enzymes (ldhA) were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt) in the best PTS- L-Phe overproducing strain (PB12-ev2). Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to both PTS inactivation

  3. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    PubMed

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  4. Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering.

    PubMed

    Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan

    2017-03-01

    Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2016, The International Biometric Society.

  5. P19-dependent and P19-independent reversion of F1-V gene silencing in tomato.

    PubMed

    Alvarez, M Lucrecia; Pinyerd, Heidi L; Topal, Emel; Cardineau, Guy A

    2008-09-01

    As a part of a project to develop a plant-made plague vaccine, we expressed the Yersinia pestis F1-V antigen fusion protein in tomato. We discovered that in some of these plants the expression of the f1-v gene was undetectable in leaves and fruit by ELISA, even though they had multiple copies of f1-v according to Southern-blot analysis. A likely explanation of these results is the phenomenon of RNA silencing, a group of RNA-based processes that produces sequence-specific inhibition of gene expression and may result in transgene silencing in plants. Here we report the reversion of the f1-v gene silencing in transgenic tomato plants through two different mechanisms. In the P19-dependent Reversion or Type I, the viral suppressor of gene silencing, P19, induces the reversion of gene silencing. In the P19-independent Reversion or Type II, the f1-v gene expression is restored after the substantial loss of gene copies as a consequence of transgene segregation in the progeny. The transient and stable expression of the p19 gene driven by a constitutive promoter as well as an ethanol inducible promoter induced a P19-dependent reversion of f1-v gene silencing. In particular, the second generation plant 3D1.6 had the highest P19 protein levels and correlated with the highest F1-V protein accumulation, almost a three-fold increase of F1-V protein levels in fruit than that previously reported for the non-silenced F1-V elite tomato lines. These results confirm the potential exploitation of P19 to substantially increase the expression of value-added proteins in plants.

  6. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds.

    PubMed

    O'Leary, Brendan; Rao, Srinath K; Plaxton, William C

    2011-01-01

    PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate metabolism. Two distinct oligomeric PEPC classes were discovered in developing COS (castor oil seeds). Class-1 PEPC is a typical homotetramer of 107 kDa PTPC (plant-type PEPC) subunits, whereas the novel 910-kDa Class-2 PEPC hetero-octamer arises from a tight interaction between Class-1 PEPC and 118 kDa BTPC (bacterial-type PEPC) subunits. Mass spectrometric analysis of immunopurified COS BTPC indicated that it is subject to in vivo proline-directed phosphorylation at Ser425. We show that immunoblots probed with phosphorylation site-specific antibodies demonstrated that Ser425 phosphorylation is promoted during COS development, becoming maximal at stage IX (maturation phase) or in response to depodding. Kinetic analyses of a recombinant, chimaeric Class-2 PEPC containing phosphomimetic BTPC mutant subunits (S425D) indicated that Ser425 phosphorylation results in significant BTPC inhibition by: (i) increasing its Km(PEP) 3-fold, (ii) reducing its I50 (L-malate and L-aspartate) values by 4.5- and 2.5-fold respectively, while (iii) decreasing its activity within the physiological pH range. The developmental pattern and kinetic influence of Ser425 BTPC phosphorylation is very distinct from the in vivo phosphorylation/activation of COS Class-1 PEPC's PTPC subunits at Ser11. Collectively, the results establish that BTPC's phospho-Ser425 content depends upon COS developmental and physiological status and that Ser425 phosphorylation attenuates the catalytic activity of BTPC subunits within a Class-2 PEPC complex. To the best of our knowledge, this study provides the first evidence for protein phosphorylation as a mechanism for the in vivo control of vascular plant BTPC activity.

  7. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    PubMed

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Tax-dependent stimulation of G1 phase-specific cyclin-dependent kinases and increased expression of signal transduction genes characterize HTLV type 1-transformed T cells.

    PubMed

    Haller, K; Ruckes, T; Schmitt, I; Saul, D; Derow, E; Grassmann, R

    2000-11-01

    Human T cell leukemia virus protein induces T cells to permanent IL-2-dependent growth. These cells occasionally convert to factor independence. The viral oncoprotein Tax acts as an essential growth factor of transformed lymphocytes and stimulates the cell cycle in the G(1) phase. In T cells and fibroblasts Tax enhances the activity of the cyclin-dependent kinases (CDK) CDK4 and CDK6. These kinases, which require binding to cyclin D isotypes for their activity, control the G(1) phase. Coimmunoprecipitation from these cells revealed that Tax associates with cyclin D3/CDK6, suggesting a direct activation of this kinase. The CDK stimulation may account in part for the mitogenic Tax effect, which causes IL-2-dependent T cell growth by Tax. To address the conversion to IL-2-independent proliferation and to identify overexpressed genes, which contribute to the transformed growth, the gene expression patterns of HTLV-1-transformed T cells were compared with that of peripheral blood lymphocytes. Potentially overexpressed cDNAs were cloned, sequenced, and used to determine the RNA expression. Genes found to be up-regulated are involved in signal transduction (STAT5a, cyclin G(1), c-fgr, hPGT) and also glycoprotein synthesis (LDLC, ribophorin). Many of these are also activated during T cell activation and implicated in the regulation of growth and apoptosis. The transcription factor STAT5a, which is involved in IL-2 signaling, was strongly up-regulated only in IL-2-independent cells, thus suggesting that it contributes to factor-independent growth. Thus, the differentially expressed genes could cooperate with the Tax-induced cell cycle stimulation in the maintenance of IL-2-dependent and IL-2-independent growth of HTLV-transformed lymphocytes.

  9. Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity

    PubMed Central

    Chen, Chen; Zhao, Guozhong

    2015-01-01

    Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum. PMID:26319882

  10. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015

    PubMed Central

    Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-01-01

    Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803

  11. Lactobacillus casei Ferments the N-Acetylglucosamine Moiety of Fucosyl-α-1,3-N-Acetylglucosamine and Excretes l-Fucose

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio

    2012-01-01

    We have previously characterized from Lactobacillus casei BL23 three α-l-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the l-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-l-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-l-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria. PMID:22544237

  12. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE.

    PubMed

    Cai, Wenlong; Goswami, Anwesha; Yang, Zhaoyong; Liu, Xiaodong; Green, Keith D; Barnard-Britson, Sandra; Baba, Satoshi; Funabashi, Masanori; Nonaka, Koichi; Sunkara, Manjula; Morris, Andrew J; Spork, Anatol P; Ducho, Christian; Garneau-Tsodikova, Sylvie; Thorson, Jon S; Van Lanen, Steven G

    2015-05-29

    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in Listeria monocytogenes

    PubMed Central

    Ondrusch, Nicolai; Kreft, Jürgen

    2011-01-01

    Background In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat. PMID:21264304

  14. An ant-plant mutualism through the lens of cGMP-dependent kinase genes.

    PubMed

    Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E

    2017-09-13

    In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).

  15. Hepatic Subcellular Compartmentation of Cytoplasmic Phosphoenolpyruvate Carboxykinase Determined by Immunogold Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Kuixiong; Cardell, Emma Lou; Morris, Randal E.; Giffin, Bruce F.; Cardell, Robert R.

    1995-08-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting gluconeogenic enzyme and in liver occurs in a lobular gradient from periportal to pericentral regions. The subcellular distribution of cytoplasmic PEPCK molecules within hepatocytes and its relationship to organelles have not been determined previously. In this study, we have used immunogold electron microscopy to evaluate the subcellar distribution of the enzyme, in addition to brightfield and epipolarized light microscopy. Cryosections (10 [mu]m) of perfusion-fixed rat liver were collected on silanated slides and immunostained using goat anti-rat PEPCK followed by 5-nm gold-labeled secondary and tertiary antibodies. Additionally, free-floating vibratome sections (25, 50, and 100 [mu]m) of perfusion-immersion-fixed rat liver were immunogold stained using goat anti-rat PEPCK and 5-nm gold-labeled secondary antibody, with and without silver enhancement. The immunogold labeled sections from both procedures were embedded in epoxy resin for the preparation of thin sections for electron microscopy. The results showed that the gold-labeled antibodies penetrated the entire thickness of cryosections, resulting in a high signal for PEPCK, but membranes in general, the smooth endoplasmic reticulum in particular, were not identifiable as electron dense unit membranes. On the other hand, the vibratome sections of well-fixed tissue allowed good visualization of the ultrastructure of cellular organelles, with the smooth endoplasmic reticulum appearing as vesicles and tubules with electron dense unit membranes; however, the penetration of the gold-labeled antibody was limited to cells at the surface of the vibratome sections. In both procedures, PEPCK, as indicated by gold particles, is predominantly in the glycogen areas of the cytosome and not in mitochondria, nuclei, Golgi apparatus, or other cell organelles. Hepatocytes in periportal regions have a compact subcellular distribution of PEPCK shown by gold particles

  16. Crystallographic Studies of Two Bacterial AntibioticResistance Enzymes: Aminoglycoside Phosphotransferase (2')-Ic and GES-1\\beta-lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynes, Laura; /Rensselaer Poly.

    2007-10-31

    Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, butmore » its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.« less

  17. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation: Carbon Isotope Discrimination in Photosynthesis and Respiration by the N-Limited Green Alga Selenastrum minutum.

    PubMed

    Guy, R D; Vanlerberghe, G C; Turpin, D H

    1989-04-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO(2) fixation and respiratory CO(2) release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and alpha-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C(3) organism.

  18. Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes

    PubMed Central

    Dong, Tao; He, Jing; Wang, Shiqing; Wang, Lianzhang; Cheng, Yuqi; Zhong, Yi

    2016-01-01

    The etiology of autism is so complicated because it involves the effects of variants of several hundred risk genes along with the contribution of environmental factors. Therefore, it has been challenging to identify the causal paths that lead to the core autistic symptoms such as social deficit, repetitive behaviors, and behavioral inflexibility. As an alternative approach, extensive efforts have been devoted to identifying the convergence of the targets and functions of the autism-risk genes to facilitate mapping out causal paths. In this study, we used a reversal-learning task to measure behavioral flexibility in Drosophila and determined the effects of loss-of-function mutations in multiple autism-risk gene homologs in flies. Mutations of five autism-risk genes with diversified molecular functions all led to a similar phenotype of behavioral inflexibility indicated by impaired reversal-learning. These reversal-learning defects resulted from the inability to forget or rather, specifically, to activate Rac1 (Ras-related C3 botulinum toxin substrate 1)-dependent forgetting. Thus, behavior-evoked activation of Rac1-dependent forgetting has a converging function for autism-risk genes. PMID:27335463

  19. An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii.

    PubMed

    Berthold, Peter; Schmitt, Rüdiger; Mages, Wolfgang

    2002-12-01

    We have developed a positively selectable marker for the green alga Chlamydomonas reinhardtii using the Streptomyces hygroscopicus aminoglycoside phosphotransferase gene (aph7"). Its expression is controlled by C. reinhardtii regulatory elements, namely, the beta2-tubulin gene promoter in combination with the first intron and the 3' untranslated region of the small subunit of ribulose bisphosphate carboxylase, rbcS2. C. reinhardtii cell-wall deficient and wild-type strains were transformed at rates up to 5 x 10(-5) with two constructs, pHyg3 and pHyg4 (intron-less). Transformants selected on plates with 10 microg/ml hygromycin B exhibited diverse levels of resistance of up to 200 microg/ml that were stably maintained for at least seven months; they contained two to five copies of the construct integrated in their genomes. Transcription of the chimeric aph7" gene, correct splicing of the rbcS2 intron, and polyadenylation of the transcripts have been verified by sequencing of RT-PCR products. Average co-transformation rates using pHyg3 and a second selectable plasmid were about 11%. This advocates the hygromycin-resistance plasmid, pHyg3, as a new versatile tool for the transformation of a broad range of C. reinhardtii strains without the sustained need for using auxotrophic mutants as recipients.

  20. Reciprocal Control of Anaplerotic Phosphoenolpyruvate Carboxylase by in Vivo Monoubiquitination and Phosphorylation in Developing Proteoid Roots of Phosphate-Deficient Harsh Hakea1[W][OA

    PubMed Central

    Shane, Michael W.; Fedosejevs, Eric T.; Plaxton, William C.

    2013-01-01

    Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al3+, Fe3+, and Ca2+ phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme’s activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots. PMID:23407057

  1. Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts.

    PubMed

    Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J

    2012-03-27

    The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Analysis of the putative regulatory region of the gastric inhibitory polypeptide receptor gene in food-dependent Cushing's syndrome.

    PubMed

    Antonini, S R; N'Diaye, N; Baldacchino, V; Hamet, P; Tremblay, J; Lacroix, A

    2004-07-01

    Gastric inhibitory polypeptide (GIP)-dependent Cushing's syndrome (CS) results from the ectopic expression of non-mutated GIP receptor (hGIPR) in the adrenal cortex. We evaluated whether mutations or polymorphisms in the regulatory region of the GIPR gene could lead to this aberrant expression. We studied 9.0kb upstream and 1.3kb downstream of the GIPR gene putative promoter (pProm) by sequencing leukocyte DNA from controls and from adrenal tissues of GIP- and non-GIP-dependent CS patients. The putative proximal promoter region (800 bp) and the first exon and intron of the hGIPR gene were sequenced on adrenal DNA from nine GIP-dependent CS, as well as on leukocyte DNA of nine normal controls. Three variations found in this region were found in all patients and controls; at position -4/-5, an insertion of a T was seen in four out of nine patients and in five out of nine controls. Transient transfection studies conducted in rat GC and mouse Y1 cells showed that the TT allele confers loss of 40% in the promoter activity. The analysis of the 8-kb distal pProm region revealed eight distal single nucleotide polymorphisms (SNPs) without probable association with the disease, since frequencies in patients and controls were very similar. In conclusion, mutations or SNPs in the regulatory region of the GIPR gene are unlikely to underlie GIP-dependent CS. Copyright 2004 Elsevier Ltd.

  3. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    NASA Technical Reports Server (NTRS)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  4. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene.

    PubMed

    Anderson, Hope D I; Wang, Feng; Gardner, David G

    2004-03-05

    The epidermal growth factor receptor (EGFR) and ectoshedding of heparin-binding epidermal growth factor (HBEGF), an EGFR ligand, have been linked to the development of cardiac myocyte hypertrophy. However, the precise role that the liganded EGFR plays in the transcriptional activation of the gene program that accompanies hypertrophy remains undefined. Utilizing the human (h) BNP gene as a model of hypertrophy-dependent gene activation, we show that activation of the EGFR plays an important role in mediating mechanical strain-dependent stimulation of the hBNP promoter. Strain promotes endothelin (ET) generation through NAD(P)H oxidase-dependent production of reactive oxygen species. ET in turn induces metalloproteinase-mediated cleavage of pro-HBEGF and ectoshedding of HBEGF, which activates the EGFR and stimulates hBNP promoter activity. HBEGF also stimulates other phenotypic markers of hypertrophy including protein synthesis and sarcomeric assembly. The antioxidant N-acetylcysteine or the NAD(P)H oxidase inhibitor, apocynin, inhibited strain-dependent activation of the ET-1 promoter, HBEGF shedding, and hBNP promoter activation. The metalloproteinase inhibitor, GM-6001, prevented the induction of HBEGF ectoshedding and the hBNP promoter response to strain, suggesting a critical role for the metalloproteinase-dependent cleavage event in signaling the strain response. These findings suggest that metalloproteinase activity as an essential step in this pathway may prove to be a relevant therapeutic target in the management of cardiac hypertrophy.

  5. Sulfate-Dependent Repression of Genes That Function in Organosulfur Metabolism in Bacillus subtilis Requires Spx

    PubMed Central

    Erwin, Kyle N.; Nakano, Shunji; Zuber, Peter

    2005-01-01

    Oxidative stress in Bacillus subtilis results in the accumulation of Spx protein, which exerts both positive and negative transcriptional control over a genome-wide scale through its interaction with the RNA polymerase α subunit. Previous microarray transcriptome studies uncovered a unique class of genes that are controlled by Spx-RNA polymerase interaction under normal growth conditions that do not promote Spx overproduction. These genes were repressed by Spx when sulfate was present as a sole sulfur source. The genes include those of the ytmI, yxeI, and ssu operons, which encode products resembling proteins that function in the uptake and desulfurization of organic sulfur compounds. Primer extension and analysis of operon-lacZ fusion expression revealed that the operons are repressed by sulfate and cysteine; however, Spx functioned only in sulfate-dependent repression. Both the ytmI operon and the divergently transcribed ytlI, encoding a LysR-type regulator that positively controls ytmI operon transcription, are repressed by Spx in sulfate-containing media. The CXXC motif of Spx, which is necessary for redox sensitive control of Spx activity in response to oxidative stress, is not required for sulfate-dependent repression. The yxeL-lacZ and ssu-lacZ fusions were also repressed in an Spx-dependent manner in media containing sulfate as the sole sulfur source. This work uncovers a new role for Spx in the control of sulfur metabolism in a gram-positive bacterium under nonstressful growth conditions. PMID:15937167

  6. Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice.

    PubMed

    Grant, Marianne K O; Seelig, Davis M; Sharkey, Leslie C; Zordoky, Beshay N

    2017-01-01

    There is inconclusive evidence about the role of sex as a risk factor for doxorubicin (DOX)-induced cardiotoxicity. Recent experimental studies have shown that adult female rats are protected against DOX-induced cardiotoxicity. However, the mechanisms of this sexual dimorphism are not fully elucidated. We have previously demonstrated that DOX alters the expression of several cytochrome P450 (CYP) enzymes in the hearts of male rats. Nevertheless, the sex-dependent effect of DOX on the expression of CYP enzymes is still not known. Therefore, in the present study, we determined the effect of acute DOX exposure on the expression of CYP genes in the hearts of both male and female C57Bl/6 mice. Acute DOX cardiotoxicity was induced by a single intraperitoneal injection of 20 mg/kg DOX in male and female adult C57Bl/6 mice. Cardiac function was assessed 5 days after DOX exposure by trans-thoracic echocardiography. Mice were euthanized 1 day or 6 days after DOX or saline injection. Thereafter, the hearts were harvested and weighed. Heart sections were evaluated for pathological lesions. Total RNA was extracted and expression of natriuretic peptides, inflammatory and apoptotic markers, and CYP genes was measured by real-time PCR. Adult female C57Bl/6 mice were protected from acute DOX-induced cardiotoxicity as they show milder pathological lesions, less inflammation, and faster recovery from DOX-induced apoptosis and DOX-mediated inhibition of beta-type natriuretic peptide. Acute DOX exposure altered the gene expression of multiple CYP genes in a sex-dependent manner. In 24 h, DOX exposure caused male-specific induction of Cyp1b1 and female-specific induction of Cyp2c29 and Cyp2e1. Acute DOX exposure causes sex-dependent alteration of cardiac CYP gene expression. Since cardiac CYP enzymes metabolize several endogenous compounds to biologically active metabolites, sex-dependent alteration of CYP genes may play a role in the sexual dimorphism of acute DOX

  7. Space experiment "Rad Gene"-report 1; p53-Dependent gene expression in human cultured cells exposed to space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki

    The space environment contains two major biologically significant influences: space radiations and microgravity. A p53 tumor suppressor protein plays a role as a guardian of the genome through the activity of p53-centered signal transduction pathways. The aim of this study was to clarify the biological effects of space radiations, microgravity and a space environment on the gene and protein expression of p53-dependent regulated genes. Space experiments were performed with two human cultured lymphoblastoid cell lines: one cells line (TSCE5) bears a wild-type p53 gene status, and another cells line (WTK1) bears a mutated p53 gene status. Un-der one gravity or microgravity condition, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station (ISS) for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples also were cultured for 8 days in the CBEF on the ground during the same periods as space flight. Gene and protein expression was analyzed by using DNA chip (a 44k whole human genome microarray, Agilent Technologies Inc.) and protein chip (PanoramaTM Ab MicroArray, Sigma-Aldrich Co.), respectively. In addition, we analyzed the gene expression in cultured cells after space flight during 133 days with frozen condition. We report the results and discussion from the viewpoint of the functions of the up-regulated and down-regulated genes after an exposure to space radiations and/or microgravity. The initial goal of this space experiment was completely achieved. It is expected that data from this type of work will be helpful in designing physical protection from the deleterious effects of space radiations during long term stays in space.

  8. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    PubMed

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  9. Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy.

    PubMed

    Cao, Huibi; Ouyang, Hong; Grasemann, Hartmut; Bartlett, Claire; Du, Kai; Duan, Rongqi; Shi, Fushan; Estrada, Marvin; Seigel, Kyle E; Coates, Allan L; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Moraes, Theo J; Hu, Jim

    2018-06-01

    A major challenge in developing gene-based therapies for airway diseases such as cystic fibrosis (CF) is sustaining therapeutic levels of transgene expression over time. This is largely due to airway epithelial cell turnover and the host immunogenicity to gene delivery vectors. Modern gene editing tools and delivery vehicles hold great potential for overcoming this challenge. There is currently not much known about how to deliver genes into airway stem cells, of which basal cells are the major type in human airways. In this study, helper-dependent adenoviral (HD-Ad) vectors were delivered to mouse and pig airways via intranasal delivery, and direct bronchoscopic instillation, respectively. Vector transduction was assessed by immunostaining of lung tissue sections, which revealed that airway basal cells of mice and pigs can be targeted in vivo. In addition, efficient transduction of primary human airway basal cells was verified with an HD-Ad vector expressing green fluorescent protein. Furthermore, we successfully delivered the human CFTR gene to airway basal cells from CF patients, and demonstrated restoration of CFTR channel activity following cell differentiation in air-liquid interface culture. Our results provide a strong rationale for utilizing HD-Ad vectors to target airway basal cells for permanent gene correction of genetic airway diseases.

  10. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    PubMed Central

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  11. Similarities in temperature-dependent gene expression plasticity across timescales in threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Metzger, David C H; Schulte, Patricia M

    2018-04-14

    Phenotypic plasticity occurs at a variety of timescales, but little is known about the degree to which plastic responses at different timescales are associated with similar underlying molecular processes, which is critical for assessing the effects of plasticity on evolutionary trajectories. To address this issue, we identified differential gene expression in response to developmental temperature in the muscle transcriptome of adult threespine stickleback (Gasterosteus aculeatus) exposed to 12, 18 and 24°C until hatch and then held at 18°C for 9 months and compared these results to differential gene expression in response to adult thermal acclimation in stickleback developed at 18°C and then acclimated to 5 and 25°C as adults. Adult thermal acclimation affected the expression of 7,940 and 7,015 genes in response to cold and warm acclimation, respectively, and 4,851 of these genes responded in both treatments. In contrast, the expression of only 33 and 29 genes was affected by cold and warm development, respectively. The majority of the genes affected by developmental temperature were also affected by adult acclimation temperature. Many genes that were differentially expressed as a result of adult acclimation were associated with previously identified temperature-dependent effects on DNA methylation patterns, suggesting a role of epigenetic mechanisms in regulating gene expression plasticity during acclimation. Taken together, these results demonstrate similarities between the persistent effects of developmental plasticity on gene expression and the effects of adult thermal acclimation, emphasizing the potential for mechanistic links between plasticity acting at these different life stages. © 2018 John Wiley & Sons Ltd.

  12. ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii.

    PubMed

    Robinson, J C; Rostami, N; Casement, J; Vollmer, W; Rickard, A H; Jakubovics, N S

    2018-04-01

    Biofilm formation and cell-cell sensing by the pioneer dental plaque colonizer Streptococcus gordonii are dependent upon arginine. This study aimed to identify genetic factors linking arginine-dependent responses and biofilm formation in S. gordonii. Isogenic mutants disrupted in genes required for the biosynthesis or catabolism of arginine, or for arginine-dependent gene regulation, were screened for their ability to form biofilms in a static culture model. Biofilm formation by a knockout mutant of arcR, encoding an arginine-dependent regulator of transcription, was reduced to < 50% that of the wild-type whereas other strains were unaffected. Complementation of S. gordonii ∆arcR with a plasmid-borne copy of arcR restored the ability to develop biofilms. By DNA microarray analysis, 25 genes were differentially regulated in S. gordonii ∆arcR compared with wild-type under arginine-replete conditions including eight genes encoding components of phosphotransferase systems for sugar uptake. By contrast, disruption of argR or ahrC genes, which encode paralogous arginine-dependent regulators, each resulted in significant changes in the expression of more than 100 genes. Disruption of a gene encoding a putative extracellular protein that was strongly regulated in S. gordonii ∆arcR had a minor impact on biofilm formation. We hypothesize that genes regulated by ArcR form a critical pathway linking arginine sensing to biofilm formation in S. gordonii. Further elucidation of this pathway may provide new targets for the control of dental plaque formation by inhibiting biofilm formation by a key pioneer colonizer of tooth surfaces. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus.

    PubMed

    Geisinger, Edward; Chen, John; Novick, Richard P

    2012-06-01

    Agr is an autoinducing, quorum-sensing system that functions in many Gram-positive species and is best characterized in the pathogen Staphylococcus aureus, in which it is a global regulator of virulence gene expression. Allelic variations in the agr genes have resulted in the emergence of four quorum-sensing specificity groups in S. aureus, which correlate with different strain pathotypes. The basis for these predilections is unclear but is hypothesized to involve the phenomenon of quorum-sensing interference between strains of different agr groups, which may drive S. aureus strain isolation and divergence. Whether properties intrinsic to each agr allele directly influence virulence phenotypes within S. aureus is unknown. In this study, we examined group-specific differences in agr autoinduction and virulence gene regulation by utilizing congenic strains, each harboring a unique S. aureus agr allele, enabling a dissection of agr locus-dependent versus genotype-dependent effects on quorum-sensing dynamics and virulence factor production. Employing a reporter fusion to the principal agr promoter, P3, we observed allele-dependent differences in the timing and magnitude of agr activation. These differences were mediated by polymorphisms within the agrBDCA genes and translated to significant variations in the expression of a key transcriptional regulator, Rot, and of several important exoproteins and surface factors involved in pathogenesis. This work uncovers the contribution of divergent quorum-sensing alleles to variant expression of virulence determinants within a bacterial species.

  14. GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain.

    PubMed

    Shimada, Nao; Kanno-Tanabe, Naoko; Minemura, Kakeru; Kawata, Takefumi

    2008-02-01

    Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.

  15. Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm

    USDA-ARS?s Scientific Manuscript database

    Pyruvate phosphate dikinase reversibly converts AMP, pyrophosphate and phosphoenolpyruvate (PEP) to ATP, orthophosphate and pyruvate. Maize PPDK functions in mesophyll in C4 photosynthesis, yet also is highly abundant in starchy endosperm during grain fill where its function is unknown. To investiga...

  16. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction.

    PubMed

    Sucharov, Carmen C; Mariner, Peter D; Nunley, Karin R; Long, Carlin; Leinwand, Leslie; Bristow, Michael R

    2006-09-01

    Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.

  17. Innate Functions of Immunoglobulin M Lessen Liver Gene Transfer with Helper-Dependent Adenovirus

    PubMed Central

    Unzu, Carmen; Morales-Kastresana, Aizea; Sampedro, Ana; Serrano-Mendioroz, Irantzu; Azpilikueta, Arantza; Ochoa, María Carmen; Dubrot, Juan; Martínez-Ansó, Eduardo

    2014-01-01

    The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors. PMID:24465560

  18. Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane.

    PubMed

    Joyce, Priya; Kuwahata, Melissa; Turner, Nicole; Lakshmanan, Prakash

    2010-02-01

    A reproducible method for transformation of sugarcane using various strains of Agrobacterium tumefaciens (A. tumefaciens) (AGL0, AGL1, EHA105 and LBA4404) has been developed. The selection system and co-cultivation medium were the most important factors determining the success of transformation and transgenic plant regeneration. Plant regeneration at a frequency of 0.8-4.8% occurred only when callus was transformed with A. tumefaciens carrying a newly constructed superbinary plasmid containing neomycin phosphotransferase (nptII) and beta-glucuronidase (gusA) genes, both driven by the maize ubiquitin (ubi-1) promoter. Regeneration was successful in plants carrying the nptII gene but not the hygromycin phosphotransferase (hph) gene. NptII gene selection was imposed at a concentration of 150 mg/l paromomycin sulphate and applied either immediately or 4 days after the co-cultivation period. Co-cultivation on Murashige and Skoog (MS)-based medium for a period of 4 days produced the highest number of transgenic plants. Over 200 independent transgenic lines were created using this protocol. Regenerated plants appeared phenotypically normal and contained both gusA and nptII genes. Southern blot analysis revealed 1-3 transgene insertion events that were randomly integrated in the majority of the plants produced.

  19. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Li, Zhen; Shelton, Anthony M.; Luo, Junyu; Cui, Jinjie; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-01

    With the large-scale release of genetically modified (GM) crops, there are ecological concerns on transgene movement from GM crops to non-GM counterparts and wild relatives. In this research, we conducted greenhouse experiments to measure pollen-mediated gene flow (PGF) in the absence and presence of pollinators (Bombus ignitus, Apis mellifera and Pieris rapae) in one GM cotton (resistant to the insect Helicoverpa armigera and the herbicide glyphosate) and two non-GM lines (Shiyuan321 and Hai7124) during 2012 and 2013. Our results revealed that: (1) PGF varied depending on the pollinator species, and was highest with B. ignitus (10.83%) and lowest with P. rapae (2.71%); (2) PGF with B. ignitus depended on the distance between GM and non-GM cottons; (3) total PGF to Shiyuan321 (8.61%) was higher than to Hai7124 (4.10%). To confirm gene flow, we tested hybrids carrying transgenes for their resistance to glyphosate and H. armigera, and most hybrids showed strong resistance to the herbicide and insect. Our research confirmed that PGF depended on pollinator species, distance between plants and the receptor plant. PMID:26525573

  20. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii.

    PubMed

    Li, Jianwei; Handler, Alfred M

    2017-09-28

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.

  1. Uterine Development and Fertility Are Dependent on Gene Dosage of the Nuclear Receptor Coregulator REA

    PubMed Central

    Park, Sunghee; Yoon, Sangyeon; Zhao, Yuechao; Park, Seong-Eun; Liao, Lan; Xu, Jianming; Lydon, John P.; DeMayo, Francesco J.; O'Malley, Bert W.; Bagchi, Milan K.

    2012-01-01

    Although the effectiveness of nuclear hormone-receptor complexes is known to depend on coregulator partner proteins, relatively little is known about the roles of coregulators in uterine development and early stages of pregnancy and implantation. Because conventional genetic deletion of the coregulator, repressor of estrogen receptor activity (REA), was embryonic lethal, we here study REA conditional knockout mice generated by cre-loxP recombination, in which REA function was abrogated only in progesterone receptor-expressing tissues, to define the roles of REA in postembryonic stages and in a tissue-specific manner. We find that REA has gene dose-dependent activity impacting uterine development and fertility. Conditional homozygous mutant (REAd/d) mice developed to adulthood and showed normal ovarian function, but females were infertile with severely compromised uterine development and function characterized by cell cycle arrest, apoptosis, and altered adenogenesis (endometrial gland morphogenesis), resulting in failure of implantation and decidualization. By contrast, mice heterozygous for REA (REAf/d) had a very different phenotype, with estradiol treatment resulting in hyperstimulated, large uteri showing increased proliferation of luminal epithelial cells, and enhanced fluid imbibition associated with altered regulation of aquaporins. These REAf/d female mice showed a subfertility phenotype with reduced numbers and sizes of litters. These findings highlight that uterine development and regulation of estrogen receptor activities show a bimodal dependence on the gene dosage of REA. Optimal uterine development and functional activities require the normal gene dosage of REA, with partial or complete deletion resulting in hyperresponsiveness or underresponsiveness to hormone and subfertility or infertility, respectively. PMID:22585830

  2. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    PubMed

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.; Chassy, B.M.; Egan, W.

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same.more » During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.« less

  4. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  5. Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila.

    PubMed

    Kuuluvainen, Emilia; Hakala, Heini; Havula, Essi; Sahal Estimé, Michelle; Rämet, Mika; Hietakangas, Ville; Mäkelä, Tomi P

    2014-06-06

    The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Organization of tcp, acf, and toxT genes within a ToxT-dependent operon.

    PubMed

    Brown, R C; Taylor, R K

    1995-05-01

    The toxin coregulated pilus (TCP) is required for Vibrio cholerae to colonize the human intestine. The expression of the pilin gene, tcpA, is dependent upon ToxR and upon ToxT. The toxT gene was recently mapped within the TCP biogenesis gene cluster and shown to be capable of activating a tcpA::TnphoA fusion when cloned in Escherichia coli. In this study, we determined that ToxR/ToxT activation occurs at the level of tcpA transcription. ToxT expressed in E. coli could activate a tcp operon fusion, while ToxR, ToxR with ToxS, or a ToxR-PhoA fusion failed to activate the tcp operon fusion and we could not demonstrate binding of a ToxR extract to the tcpA promoter region in DNA mobility-shift assays. The start site for the regulated promoter was shown by primer extension to lie 75 bp upstream of the first codon of tcpA. An 800-base tcpA message was identified, by Northern analysis, that correlates by size to the distance between the transcriptional start and a hairpin-loop sequence between tcpA and tcpB. The more-sensitive assay of RNase protection analysis demonstrated that a regulated transcript probably extends through the rest of the downstream tcp genes, including toxT and the adjacent accessory colonization factor (acf) genes. An in-frame tcpA deletion, but not a polar tcpA::TnphoA fusion, could be complemented for pilus surface expression by providing tcpA in trans. This evidence suggests that the tcp genes, including toxT, are organized in an operon directly activated by ToxT in a ToxR-dependent manner. Most of the toxT expression under induced conditions requires transcription of the tcpA promoter. Further investigation of how tcp::TnphoA insertions that are polar on toxT expression retain regulation showed that a low basal level of toxT expression is present in toxR and tcp::TnphoA strains. Overall, these observations support the ToxR/ToxT cascade of regulation for tcp. Once induced, toxT expression becomes autoregulatory via the tcp promoter, linking tcp

  7. Key role of hydrazine to the interaction between oxaloacetic against phosphoenolpyruvic carboxykinase (PEPCK): ONIOM calculations.

    PubMed

    Prajongtat, Pongthep; Phromyothin, Darinee Sae-Tang; Hannongbua, Supa

    2013-08-01

    The interactions between oxaloacetic (OAA) and phosphoenolpyruvic carboxykinase (PEPCK) binding pocket in the presence and absence of hydrazine were carried out using quantum chemical calculations, based on the two-layered ONIOM (ONIOM2) approach. The complexes were partially optimized by ONIOM2 (B3LYP/6-31G(d):PM6) method while the interaction energies between OAA and individual residues surrounding the pocket were performed at the MP2/6-31G(d,p) level of theory. The calculated interaction energies (INT) indicated that Arg87, Gly237, Ser286, and Arg405 are key residues for binding to OAA with the INT values of -1.93, -2.06, -2.47, and -3.16 kcal mol(-1), respectively. The interactions are mainly due to the formation of hydrogen bonding interactions with OAA. Moreover, using ONIOM2 (B3LYP/6-31G(d):PM6) applied on the PEPCKHS complex, two proton transfers were observed; first, the proton was transferred from the carboxylic group of OAA to hydrazine while the second one was from Asp311 to Lys244. Such reactions cause the generation of binding strength of OAA to the pocket via electrostatic interaction. The orientations of Lys243, Lys244, His264, Asp311, Phe333, and Arg405 were greatly deviated after hydrazine incorporation. These indicate that hydrazine plays an important role in terms of not only changing the conformation of the binding pocket, but is also tightly bound to OAA resulting in its conformation change in the pocket. The understanding of such interaction can be useful for the design of hydrazine-based inhibitor for antichachexia agents.

  8. The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood

    PubMed Central

    Valdes, Kayla M.; Sundar, Ganesh S.; Vega, Luis A.; Belew, Ashton T.; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M.

    2016-01-01

    Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the fru locus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fru operon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-d-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. PMID:26787724

  9. Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior.

    PubMed

    Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro

    2017-01-24

    The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an Apc Min/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion.

  10. Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior

    PubMed Central

    Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro

    2017-01-01

    The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an ApcMin/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion. PMID:28057861

  11. Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster

    PubMed Central

    Cary, J. W.; Han, Z.; Yin, Y.; Lohmar, J. M.; Shantappa, S.; Harris-Coward, P. Y.; Mack, B.; Ehrlich, K. C.; Wei, Q.; Arroyo-Manzanares, N.; Uka, V.; Vanhaecke, L.; Bhatnagar, D.; Yu, J.; Nierman, W. C.; Johns, M. A.; Sorensen, D.; Shen, H.; De Saeger, S.; Diana Di Mavungu, J.

    2015-01-01

    The global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin. PMID:26209694

  12. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers

    PubMed Central

    Field, Amanda; Xiang, Jie; Anderson, W. Ray; Graham, Patricia; Pick, Leslie

    2016-01-01

    The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern. PMID:27723822

  13. Dietary Polyphenols Increase Paraoxonase 1 Gene Expression by an Aryl Hydrocarbon Receptor-Dependent Mechanism

    PubMed Central

    Gouédard, Cédric; Barouki, Robert; Morel, Yannick

    2004-01-01

    Human paraoxonase 1 (PON-1) is a serum high-density lipoprotein-associated enzyme mainly secreted by the liver. It has endogenous and exogenous substrates and displays protective properties with respect to cardiovascular disease and organophosphate intoxication. In the HuH7 human hepatoma cell line, PON-1 activity and mRNA levels were increased by dietary polyphenolic compounds such as quercetin but also by toxic ligands of the aryl hydrocarbon receptor (AhR) such as 3-methylcholanthrene (3-MC). However, the 2,3,7,8-tetrachlorobenzo(p)dioxin (TCDD) was a poor inducer. Transient and stable transfection assays indicated that these compounds increased the PON-1 gene promoter activity in an AhR-dependent manner, since their effect was inhibited by 7-keto-cholesterol and AhR-directed short interfering RNA. Deletions and mutations studies showed that a xenobiotic responsive element (XRE)-like sequence within the PON-1 promoter mediated the effect of 3-MC and quercetin. In contrast with consensus XREs from the cytochrome P450 1A1 gene, the PON-1 XRE-like element mediated preferentially the effect of quercetin compared to the results seen with TCDD. Furthermore, AhR binding to this element was preferentially activated by quercetin. These observations provide a molecular mechanism for the regulation of the cardioprotective enzyme PON-1 by polyphenols. They suggest also that AhR ligands may differentially regulate gene expression depending on the DNA target sequence. PMID:15169886

  14. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.

    PubMed

    Nikolova, Olga; Moser, Russell; Kemp, Christopher; Gönen, Mehmet; Margolin, Adam A

    2017-05-01

    In recent years, vast advances in biomedical technologies and comprehensive sequencing have revealed the genomic landscape of common forms of human cancer in unprecedented detail. The broad heterogeneity of the disease calls for rapid development of personalized therapies. Translating the readily available genomic data into useful knowledge that can be applied in the clinic remains a challenge. Computational methods are needed to aid these efforts by robustly analyzing genome-scale data from distinct experimental platforms for prioritization of targets and treatments. We propose a novel, biologically motivated, Bayesian multitask approach, which explicitly models gene-centric dependencies across multiple and distinct genomic platforms. We introduce a gene-wise prior and present a fully Bayesian formulation of a group factor analysis model. In supervised prediction applications, our multitask approach leverages similarities in response profiles of groups of drugs that are more likely to be related to true biological signal, which leads to more robust performance and improved generalization ability. We evaluate the performance of our method on molecularly characterized collections of cell lines profiled against two compound panels, namely the Cancer Cell Line Encyclopedia and the Cancer Therapeutics Response Portal. We demonstrate that accounting for the gene-centric dependencies enables leveraging information from multi-omic input data and improves prediction and feature selection performance. We further demonstrate the applicability of our method in an unsupervised dimensionality reduction application by inferring genes essential to tumorigenesis in the pancreatic ductal adenocarcinoma and lung adenocarcinoma patient cohorts from The Cancer Genome Atlas. : The code for this work is available at https://github.com/olganikolova/gbgfa. : nikolova@ohsu.edu or margolin@ohsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by

  15. Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.

    PubMed

    Merchant-Larios, H; Díaz-Hernández, V; Marmolejo-Valencia, A

    2010-01-01

    In reptiles with temperature-dependent sexual determination, the thermosensitive period (TSP) is the interval in which the sex is defined during gonadal morphogenesis. One-shift experiments in a group of eggs define the onset and the end of the TSP as all and none responses, respectively. Timing for sex-undetermined (UG) and -determined gonads (DG) differs at male- (MPT) or female-producing temperatures (FPT). During the TSP a decreasing number of embryos respond to temperature shifts indicating that in this period embryos with both UG and DG exist. Although most UG correspond to undifferentiated gonads, some embryos extend UG after the onset of histological differentiation. Thus, temperature affects gonadal cells during the process of morphogenesis, but timing of commitment depends on individual embryos. A correlation between gonadal morphogenesis, TSP, and gene expression suggests that determination of the molecular pathways modulated by temperature in epithelial cells (surface epithelium and medullary cords) holds the key for a unifying hypothesis on temperature-dependent sex determination. (c) 2010 S. Karger AG, Basel.

  16. Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).

    PubMed

    Herzog, Katja; Flachowsky, Henryk; Deising, Holger B; Hanke, Magda-Viola

    2012-04-25

    Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. MIG1-dependent and MIG1-independent regulation of GAL gene expression in Saccharomyces cerevisiae: role of Imp2p.

    PubMed

    Alberti, Adriana; Lodi, Tiziana; Ferrero, Iliana; Donnini, Claudia

    2003-10-15

    Imp2p (Yil154c) is a transcriptional activator involved in glucose derepression of the maltose, galactose and raffinose utilization pathways and in resistance to thermal, oxidative or osmotic stress. We analysed the role of Imp2 in the regulation of GAL genes. Imp2 was shown to have a positive effect on glucose derepression of Leloir pathway genes and their activator gene GAL4. The effect of Imp2 on galactose metabolism was shown to be partially dependent on Mig1p. The Mig1-independent role depends on Nrg1p. However, disruption of both MIG1 and NRG1 only partially relieves the glucose repression of GAL genes in the Deltaimp2 mutant, indicating that Imp2 must also have other function(s). Moreover, the interaction between IMP2 and GAL6/BLH1, a recently isolated gene involved in the regulation of GAL genes that shares with Imp2 the ability to protect cells from the glycopeptide bleomycin, was also analysed. The results suggest a major role of Imp2 in a GAL6-independent pathway. Copyright 2003 John Wiley & Sons, Ltd.

  18. Prolonged treatment of porcine pulmonary artery with nitric oxide decreases cGMP sensitivity and cGMP-dependent protein kinase specific activity

    PubMed Central

    Perkins, William J.; Warner, David O.; Jones, Keith A.

    2009-01-01

    A cultured porcine pulmonary artery (PA) model was used to examine the effects of prolonged nitric oxide (NO) treatment on the response to acutely applied NO, cGMP analog, or atrial natriuretic peptide (ANP). Twenty-four-hour treatment with the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) resulted in >10-fold decrease in the response to acutely applied DETA-NO. In parallel with this, the relaxant response to acutely applied cGMP analog, β-phenyl-1,N2-etheno-8-bromoguanosine-3′,5′-cyclic monophosphorothioate, Sp isomer (Sp-8-Br-PET-cGMPS), and ANP decreased. The reduction in ANP responsiveness in PA was not associated with a reduction in cGMP levels evoked by 10−6 M ANP. Twenty-four hours in culture and treatment with DETA-NO decreased total cGMP-dependent protein kinase (cGKI) mRNA level compared with that in freshly prepared PA (1.05 ± 0.12, 0.42 ± 0.08, and 0.11 ± 0.01 amol/μg, respectively). Total cGKI protein levels were decreased to a lesser extent by 24 h in culture and further decreased by 24-h DETA-NO treatment compared with that in freshly prepared PA (361 ± 33, 272 ± 20, and 238 ± 25 ng/mg total protein, respectively). Maximal cGMP-stimulated phosphotransferase activity was reduced in 24-h cultured and DETA-NO-treated PA (986 ± 84, 815 ± 81, and 549 ± 78 pmol Pi·min−1·mg soluble protein−1), but the cGMP concentration resulting in 50% of maximal phosphotransferase activity was not. cGKI specific activity (maximal cGMP-activated phosphotransferase activity/ng cGKI) was significantly reduced in PA treated with DETA-NO for 24 h compared with freshly prepared and 24-h cultured PA (1.95 ± 0.22, 2.64 ± 0.25, and 2.85 ± 0.28 pmol Pi·min−1·ng cGKI−1, respectively). We conclude that prolonged NO treatment induces decreased acute NO responsiveness in PA in part by decreasing cGMP sensitivity. It does so by decreasing both cGKI expression and cGKI specific activity. PMID:18952758

  19. Speciation has a spatial scale that depends on levels of gene flow.

    PubMed

    Kisel, Yael; Barraclough, Timothy G

    2010-03-01

    Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.

  20. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    PubMed Central

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  1. Tracking gene expression and oxidative damage of O2-stressed Clostridioides difficile by a multi-omics approach.

    PubMed

    Neumann-Schaal, Meina; Metzendorf, Nicole G; Troitzsch, Daniel; Nuss, Aaron Mischa; Hofmann, Julia Danielle; Beckstette, Michael; Dersch, Petra; Otto, Andreas; Sievers, Susanne

    2018-05-31

    Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O 2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype. Copyright © 2018. Published by Elsevier Ltd.

  2. Thylakoid redox signals are integrated into organellar-gene-expression-dependent retrograde signaling in the prors1-1 mutant

    PubMed Central

    Tadini, Luca; Romani, Isidora; Pribil, Mathias; Jahns, Peter; Leister, Dario; Pesaresi, Paolo

    2012-01-01

    Perturbations in organellar gene expression (OGE) and the thylakoid redox state (TRS) activate retrograde signaling pathways that adaptively modify nuclear gene expression (NGE), according to developmental and metabolic needs. The prors1-1 mutation in Arabidopsis down-regulates the expression of the nuclear gene Prolyl-tRNA Synthetase1 (PRORS1) which acts in both plastids and mitochondria, thereby impairing protein synthesis in both organelles and triggering OGE-dependent retrograde signaling. Because the mutation also affects thylakoid electron transport, TRS-dependent signals may likewise have an impact on the changes in NGE observed in this genotype. In this study, we have investigated whether signals related to TRS are actually integrated into the OGE-dependent retrograde signaling pathway. To this end, the chaos mutation (for chlorophyll a/b binding protein harvesting-organelle specific), which shows a partial loss of PSII antennae proteins and thus a reduction in PSII light absorption capability, was introduced into the prors1-1 mutant background. The resulting double mutant displayed a prors1-1-like reduction in plastid translation rate and a chaos-like decrease in PSII antenna size, whereas the hyper-reduction of the thylakoid electron transport chain, caused by the prors1-1 mutation, was alleviated, as determined by monitoring chlorophyll (Chl) fluorescence and thylakoid phosphorylation. Interestingly, a substantial fraction of the nucleus-encoded photosynthesis genes down-regulated in the prors1-1 mutant are expressed at nearly wild-type rates in prors1-1 chaos leaves, and this recovery is reflected in the steady-state levels of their protein products in the chloroplast. We therefore conclude that signals related to photosynthetic electron transport and TRS, and indirectly to carbohydrate metabolism and energy balance, are indeed fed into the OGE-dependent retrograde pathway to modulate NGE and adjust the abundance of chloroplast proteins. PMID:23293642

  3. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight.

    PubMed

    Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

  4. Identification of the Aryl Hydrocarbon Receptor Target Gene TiPARP as a Mediator of Suppression of Hepatic Gluconeogenesis by 2,3,7,8-Tetrachlorodibenzo-p-dioxin and of Nicotinamide as a Corrective Agent for This Effect*

    PubMed Central

    Diani-Moore, Silvia; Ram, Payal; Li, Xintian; Mondal, Prosenjit; Youn, Dou Yeon; Sauve, Anthony A.; Rifkind, Arleen B.

    2010-01-01

    The environmental toxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, dioxin) produces diverse toxic effects including a lethal wasting syndrome whose hallmark is suppressed hepatic gluconeogenesis. All TCDD toxicities require activation of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor. Whereas the mechanism for AHR induction of target genes is well understood, it is not known how AHR activation produces any TCDD toxicity. This report identifies for the first time an AHR target gene, TiPARP (TCDD-inducible poly(ADP-ribose) polymerase, PARP7) that can mediate a TCDD toxicity, i.e. suppression of hepatic gluconeogenesis. TCDD suppressed hepatic glucose production, expression of key gluconeogenic genes, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase), and NAD+ levels, and increased PARP activity and TiPARP expression. TCDD also increased acetylation and ubiquitin-dependent proteosomal degradation of the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α), a coactivator of PEPCK and G6Pase transcription. TiPARP overexpression reproduced TCDD effects on glucose output and NAD+ levels whereas TiPARP silencing diminished them. TiPARP overexpression also increased PGC1α acetylation and decreased PGC1α levels. In contrast, silencing of cytochromes P450 (CYP) 1A, main AHR-induced genes, did not alter TCDD suppression of gluconeogenesis. The vitamin B3 constituent, nicotinamide (NAM), prevented TCDD suppression of glucose output, NAD+, and gluconeogenic genes and stabilized PGC1α. The corrective effects of NAM could be attributed to increased NAD+ levels and suppression of AHR target gene induction. The results reveal that TiPARP can mediate a TCDD effect, that the AHR is linked to PGC1α function and stability and that NAM has novel AHR antagonist activity. PMID:20876576

  5. Association between DRD2, 5-HTTLPR, and ALDH2 genes and specific personality traits in alcohol- and opiate-dependent patients.

    PubMed

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Huang, San-Yuan; Chang, Yun-Hsuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Hui Lee, I; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band

    2013-08-01

    The vulnerability of developing addictions is associated with genetic factors and personality traits. The predisposing genetic variants and personality traits may be common to all addictions or specific to a particular class of addiction. To investigate the relationship between genetic variances, personality traits, and their interactions in addiction are important. We recruited 175 opiate-dependent patients, 102 alcohol-dependent patients, and 111 healthy controls. All participants were diagnosed using DSM-IV criteria and assessed with Tridimensional Personality Questionnaire (TPQ). The dopamine D2 receptor (DRD2), 5-HTT-linked promoter region (5-HTTLPR), and aldehyde dehydrogenase 2 (ALDH2) genes were genotyped using PCR. The genotype frequency of the 5-HTTLPR and ALDH2 was significantly different between the patients and controls (P=0.013, P<0.001, respectively), and borderline significant (P=0.05) for DRD2 polymorphism. Both Novelty Seeking (NS) and Harm Avoidance (HA) scores were higher for patients (P<0.001). After stratification by candidate genes, addicts with ALDH2 *1/*1 interacting with the low-functional group of DRD2 and 5-HTTLPR genes have higher HA traits, whereas addicts with ALDH2 *1/*2 or *2/*2 and low-functional group of DRD2 and 5-HTTLPR genes have higher NS traits. We concluded that addicts, both alcohol- and opiate-dependent patients, have common genetic variants in DRD2 and 5-HTTLPR but specific for ALDH2. Higher NS and HA traits were found in both patient groups with the interaction with DRD2, 5-HTTLPR, and ALDH2 genes. The ALDH2 gene variants had different effect in the NS and HA dimension while the DRD2 and 5-HTTLPR genes did not. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Novel methods for the molecular discrimination of Fasciola spp. on the basis of nuclear protein-coding genes.

    PubMed

    Shoriki, Takuya; Ichikawa-Seki, Madoka; Suganuma, Keisuke; Naito, Ikunori; Hayashi, Kei; Nakao, Minoru; Aita, Junya; Mohanta, Uday Kumar; Inoue, Noboru; Murakami, Kenji; Itagaki, Tadashi

    2016-06-01

    Fasciolosis is an economically important disease of livestock caused by Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola flukes. The aspermic Fasciola flukes have been discriminated morphologically from the two other species by the absence of sperm in their seminal vesicles. To date, the molecular discrimination of F. hepatica and F. gigantica has relied on the nucleotide sequences of the internal transcribed spacer 1 (ITS1) region. However, ITS1 genotypes of aspermic Fasciola flukes cannot be clearly differentiated from those of F. hepatica and F. gigantica. Therefore, more precise and robust methods are required to discriminate Fasciola spp. In this study, we developed PCR restriction fragment length polymorphism and multiplex PCR methods to discriminate F. hepatica, F. gigantica, and aspermic Fasciola flukes on the basis of the nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and DNA polymerase delta, which are single locus genes in most eukaryotes. All aspermic Fasciola flukes used in this study had mixed fragment pattern of F. hepatica and F. gigantica for both of these genes, suggesting that the flukes are descended through hybridization between the two species. These molecular methods will facilitate the identification of F. hepatica, F. gigantica, and aspermic Fasciola flukes, and will also prove useful in etiological studies of fasciolosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Comparative analysis of growth-phase-dependent gene expression in virulent and avirulent Streptococcus pneumoniae using a high-density DNA microarray.

    PubMed

    Ko, Kwan Soo; Park, Sulhee; Oh, Won Sup; Suh, Ji-Yoeun; Oh, Taejeong; Ahn, Sungwhan; Chun, Jongsik; Song, Jae-Hoon

    2006-02-28

    The global pattern of growth-dependent gene expres-sion in Streptococcus pneumoniae strains was evalu-ated using a high-density DNA microarray. Total RNAs obtained from an avirulent S. pneumoniae strain R6 and a virulent strain AMC96-6 were used to compare the expression patterns at seven time points (2.5, 3.5, 4.5, 5.5, 6.0, 6.5, and 8.0 h). The expression profile of strain R6 changed between log and station-ary growth (the Log-Stat switch). There were clear differences between the growth-dependent gene ex-pression profiles of the virulent and avirulent pneumo-coccal strains in 367 of 1,112 genes. Transcripts of genes associated with bacterial competence and capsular polysaccharide formation, as well as clpP and cbpA, were higher in the virulent strain. Our data suggest that late log or early stationary phase may be the most virulent phase of S. pneumoniae.

  8. Agrobacterium tumefaciens-mediated transformation for investigating pathogenicity genes of the phytopathogenic fungus Colletotrichum sansevieriae.

    PubMed

    Nakamura, Masayuki; Kuwahara, Hideto; Onoyama, Keisuke; Iwai, Hisashi

    2012-08-01

    Agrobacterium tumefaciens-mediated transformation (AtMT) has become a common technique for DNA transformation of yeast and filamentous fungi. In this study, we first established a protocol of AtMT for the phytopathogenic fungus Colletotrichum sansevieriae. Binary T-DNA vector containing the hygromycin B phosphotransferase gene controlled by the Aspergillus nidulans gpdA promoter and the trpC terminator was constructed with pCAMBIA0380 and used with three different strains LBA4404, GV3101, and GV2260 of A. tumefaciens. Transformants were most effectively obtained when GV2260 and C. sansevieriae Sa-1-2 were co-cultivated; there were about 320 transformants per 10(6) spores. When 1,048 transformants were inoculated on Sansevieria trifasciata, three transformants were found to have completely lost their pathogenicity and two transformants displayed reduced pathogenicity. All of the five transformants had a single copy of T-DNA in their genomes. The three pathogenicity-deficient transformants were subjected to thermal asymmetric interlaced polymerase chain reaction and the reaction allowed us to amplify the sequences flanking the left and/or right borders. The flanking sequences of the two transformants, M154 and M875, showed no homology to any sequences in databases, but the sequences of M678 contained motifs of alpha-1,3-glucan synthase, suggesting that the gene might contribute to the pathogenicity of C. sansevieriae. This study describes a useful method for investigating pathogenicity genes in C. sansevieriae.

  9. Gene expression of regulatory enzymes of glycolysis/gluconeogenesis in regenerating rat liver.

    PubMed Central

    Rosa, J L; Bartrons, R; Tauler, A

    1992-01-01

    Levels of mRNA for glucokinase, L-pyruvate kinase, fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase were analysed during liver regeneration. Levels of mRNA for glycolytic enzymes (glucokinase and L-pyruvate kinase) decreased rapidly after partial hepatectomy. Glucokinase mRNA increased at 16-24 h, returning to normal values after this time. L-pyruvate kinase mRNA recovered control levels at 168 h. In contrast, phosphoenolpyruvate carboxykinase mRNA increased rapidly after liver resection and remained high during the regenerative process. However, the levels of fructose-1,6-bisphosphatase mRNA were not modified significantly. These results correlate with the reported increased rate of gluconeogenesis and changes in enzyme levels after partial hepatectomy. The effect of stress on the mRNA levels was also studied. All enzymes showed variations in their mRNA levels after the surgical stress. In general, the differences were more pronounced in regenerating liver than in sham-operated animals, being practically normalized at 24 h. Images Fig. 2. Fig. 3. PMID:1329724

  10. A role for NF-κB–dependent gene transactivation in sunburn

    PubMed Central

    Abeyama, Kazuhiro; Eng, William; Jester, James V.; Vink, Arie A.; Edelbaum, Dale; Cockerell, Clay J.; Bergstresser, Paul R.; Takashima, Akira

    2000-01-01

    Exposure of skin to ultraviolet (UV) radiation is known to induce NF-κB activation, but the functional role for this pathway in UV-induced cutaneous inflammation remains uncertain. In this study, we examined whether experimentally induced sunburn reactions in mice could be prevented by blocking UV-induced, NF-κB–dependent gene transactivation with oligodeoxynucleotides (ODNs) containing the NF-κB cis element (NF-κB decoy ODNs). UV-induced secretion of IL-1, IL-6, TNF-α, and VEGF by skin-derived cell lines was inhibited by the decoy ODNs, but not by the scrambled control ODNs. Systemic or local injection of NF-κB decoy ODNs also inhibited cutaneous swelling responses to UV irradiation. Moreover, local UV-induced inflammatory changes (swelling, leukocyte infiltration, epidermal hyperplasia, and accumulation of proinflammatory cytokines) were all inhibited specifically by topically applied decoy ODNs. Importantly, these ODNs had no effect on alternative types of cutaneous inflammation caused by irritant or allergic chemicals. These results indicate that sunburn reactions culminate from inflammatory events that are triggered by UV-activated transcription of NF-κB target genes, rather than from nonspecific changes associated with tissue damage. PMID:10862790

  11. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  12. Pheromone-Regulated Expression of Sex Pheromone Plasmid pAD1-Encoded Aggregation Substance Depends on at Least Six Upstream Genes and a cis-Acting, Orientation-Dependent Factor

    PubMed Central

    Muscholl-Silberhorn, Albrecht B.

    2000-01-01

    Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an α-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated α-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of α-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P0, and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed. PMID:10850999

  13. Post-translational regulation of gene expression using the ATF4 oxygen-dependent degradation domain for hypoxia-specific gene therapy.

    PubMed

    Cho, Su Hee; Oh, Binna; Kim, Hyun Ah; Park, Jeong Hyun; Lee, Minhyung

    2013-11-01

    Solid tumors have hypoxic regions in their cores, due to low blood supply levels. Therefore, hypoxia-specific gene regulation systems have been developed for tumor-specific gene therapy. In this study, the oxygen-dependent degradation (ODD) domain on activating transcription factor-4 (ATF4) was evaluated for post-translational regulation of proteins. The ATF4 ODD cDNA was amplified by RT-PCR, and a luciferase plasmid containing the ATF4 ODD domain, pSV-Luc-ATF4-ODD, was constructed. Luciferase expression was induced under hypoxia by the ATF4 ODD domain in transfection assays into N2A neuroblastoma cells, C6 glioblastoma cells, and U87 glioblastoma cells. In the transfection assay with pSV-Luc-ATF4-ODD, RT-PCR results showed that the mRNA level did not change under hypoxia. This suggests that the induction of luciferase under hypoxia was mediated by post-translational regulation. A plasmid expressing thymidine kinase from herpes simplex virus (HSV-tk), pSV-HSVtk-ATF4-ODD, was constructed with the ATF4 ODD cDNA. The transfection assay with pSV-TK-ATF4-ODD showed that the ATF4 ODD domain induced HSV-tk expression under hypoxia and facilitated the death of C6 cells in the presence of ganciclovir (GCV). Furthermore, pSV-HSVtk-ATF4-ODD induced caspase-3 activity in the hypoxic cells. In conclusion, the ATF4 ODD may be useful for hypoxia-specific gene therapy by post-translational regulation of gene expression.

  14. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes.

    PubMed

    Chi, Shan; Wu, Shuangxiu; Yu, Jun; Wang, Xumin; Tang, Xuexi; Liu, Tao

    2014-01-01

    Both Calvin-Benson-Bassham (C3) and Hatch-Slack (C4) cycles are most important autotrophic CO2 fixation pathways on today's Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK) and aspartate aminotransferase (AST) with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK) genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme) and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme) subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes.

  15. Targeted sequencing identifies genetic polymorphisms of flavin-containing monooxygenase genes contributing to susceptibility of nicotine dependence in European American and African American.

    PubMed

    Zhang, Tian-Xiao; Saccone, Nancy L; Bierut, Laura J; Rice, John P

    2017-04-01

    Smoking is a leading cause of preventable death. Early studies based on samples of twins have linked the lifetime smoking practices to genetic predisposition. The flavin-containing monooxygenase (FMO) protein family consists of a group of enzymes that metabolize drugs and xenobiotics. Both FMO1 and FMO3 were potentially susceptible genes for nicotine metabolism process. In this study, we investigated the potential of FMO genes to confer risk of nicotine dependence via deep targeted sequencing in 2,820 study subjects comprising 1,583 nicotine dependents and 1,237 controls from European American and African American. Specifically, we focused on the two genomic segments including FMO1 , FMO3 , and pseudo gene FMO6P , and aimed to investigate the potential association between FMO genes and nicotine dependence. Both common and low-frequency/rare variants were analyzed using different algorithms. The potential functional significance of SNPs with association signal was investigated with relevant bioinformatics tools. We identified different clusters of significant common variants in European (with most significant SNP rs6674596, p  =   .0004, OR = 0.67, MAF_EA = 0.14, FMO1 ) and African Americans (with the most significant SNP rs6608453, p  =   .001, OR = 0.64, MAF_AA = 0.1, FMO6P ). No significant signals were identified through haplotype-based analyses. Gene network investigation indicated that both FMO1 and FMO3 have a strong relation with a variety of genes belonging to CYP gene families (with combined score greater than 0.9). Most of the significant variants identified were SNPs located within intron regions or with unknown functional significance, indicating a need for future work to understand the underlying functional significance of these signals. Our findings indicated significant association between FMO genes and nicotine dependence. Replications of our findings in other ethnic groups were needed in the future. Most of the significant variants

  16. Reward dependence is related to norepinephrine transporter T-182C gene polymorphism in a Korean population.

    PubMed

    Ham, Byung-Joo; Choi, Myoung-Jin; Lee, Heon-Jeong; Kang, Rhee-Hun; Lee, Min-Soo

    2005-06-01

    It is well established that approximately 50% of the variance in personality traits is genetic. The goal of this study was to investigate a relationship between personality traits and the T-182C polymorphism in the norepinephrine transporter gene. The participants included 115 healthy adults with no history of psychiatric disorders and other physical illness during the past 6 months. All participants were tested with the Temperament and Character Inventory and genotyped norepinephrine transporter gene polymorphism. Differences on the Temperament and Character Inventory dimensions among three groups were examined with one-way analysis of variance. Our study suggests that the norepinephrine transporter T-182C gene polymorphism is associated with reward dependence in Koreans, but the small number of study participants and their sex and age heterogeneity limits generalization of our results. Further studies are necessary with a larger number of homogeneous participants to confirm whether the norepinephrine transporter gene is related to personality traits.

  17. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A humidity shock leads to rapid, temperature dependent changes in coffee leaf physiology and gene expression.

    PubMed

    Thioune, El-Hadji; McCarthy, James; Gallagher, Thomas; Osborne, Bruce

    2017-03-01

    Climate change is expected to increase the frequency of above-normal atmospheric water deficits contemporaneous with periods of high temperatures. Here we explore alterations in physiology and gene expression in leaves of Coffea canephora Pierre ex A. Froehner caused by a sharp drop in relative humidity (RH) at three different temperatures. Both stomatal conductance (gs) and CO2 assimilation (A) measurements showed that gs and A values fell quickly at all temperatures after the transfer to low RH.  However, leaf relative water content measurements indicated that leaves nonetheless experienced substantial water losses, implying that stomatal closure and/or resupply of water was not fast enough to stop excessive evaporative losses.  At 27 and 35 °C, upper leaves showed significant decreases in Fv/Fm compared with lower leaves, suggesting a stronger impact on photosystem II for upper leaves, while at 42 °C, both upper and lower leaves were equally affected. Quantitative gene expression analysis of transcription factors associated with conventional dehydration stress, and genes involved with abscisic acid signalling, such as CcNCED3, indicated temperature-dependent, transcriptional changes during the Humidity Shock ('HuS') treatments.  No expression was seen at 27 °C for the heat-shock gene CcHSP90-7, but it was strongly induced during the 42 °C 'HuS' treatment. Consistent with a proposal that important cellular damage occurred during the 42 °C 'HuS' treatment, two genes implicated in senescence were induced by this treatment. Overall, the data show that C. canephora plants subjected to a sharp drop in RH exhibit major, temperature-dependent alterations in leaf physiology and important changes in the expression of genes associated with abiotic stress and senescence. The results presented suggest that more detailed studies on the combined effects of low RH and high temperature are warranted. © The Author 2017. Published by Oxford University Press. All rights

  19. Light-dependent gene regulation by a coenzyme B12-based photoreceptor

    PubMed Central

    Ortiz-Guerrero, Juan Manuel; Polanco, María Carmen; Murillo, Francisco J.; Padmanabhan, S.; Elías-Arnanz, Montserrat

    2011-01-01

    Cobalamin (B12) typically functions as an enzyme cofactor but can also regulate gene expression via RNA-based riboswitches. B12-directed gene regulatory mechanisms via protein factors have, however, remained elusive. Recently, we reported down-regulation of a light-inducible promoter in the bacterium Myxococcus xanthus by two paralogous transcriptional repressors, of which one, CarH, but not the other, CarA, absolutely requires B12 for activity even though both have a canonical B12-binding motif. Unanswered were what underlies this striking difference, what is the specific cobalamin used, and how it acts. Here, we show that coenzyme B12 (5′-deoxyadenosylcobalamin, AdoB12), specifically dictates CarH function in the dark and on exposure to light. In the dark, AdoB12-binding to the autonomous domain containing the B12-binding motif foments repressor oligomerization, enhances operator binding, and blocks transcription. Light, at various wavelengths at which AdoB12 absorbs, dismantles active repressor oligomers by photolysing the bound AdoB12 and weakens repressor–operator binding to allow transcription. By contrast, AdoB12 alters neither CarA oligomerization nor operator binding, thus accounting for its B12-independent activity. Our findings unveil a functional facet of AdoB12 whereby it serves as the chromophore of a unique photoreceptor protein class acting in light-dependent gene regulation. The prevalence of similar proteins of unknown function in microbial genomes suggests that this distinct B12-based molecular mechanism for photoregulation may be widespread in bacteria. PMID:21502508

  20. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis.

    PubMed

    Denou, Emmanuel; Pridmore, Raymond David; Berger, Bernard; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald

    2008-05-01

    Lactobacillus johnsonii strains NCC533 and ATCC 33200 (the type strain of this species) differed significantly in gut residence time (12 versus 5 days) after oral feeding to mice. Genes affecting the long gut residence time of the probiotic strain NCC533 were targeted for analysis. We hypothesized that genes specific for this strain, which are expressed during passage of the bacterium through the gut, affect the phenotype. When the DNA of the type strain was hybridized against a microarray of the sequenced NCC533 strain, we identified 233 genes that were specific for the long-gut-persistence isolate. Whole-genome transcription analysis of the NCC533 strain using the microarray format identified 174 genes that were strongly and consistently expressed in the jejunum of mice monocolonized with this strain. Fusion of the two microarray data sets identified three gene loci that were both expressed in vivo and specific to the long-gut-persistence isolate. The identified genes included LJ1027 and LJ1028, two glycosyltransferase genes in the exopolysaccharide synthesis operon; LJ1654 to LJ1656, encoding a sugar phosphotransferase system (PTS) transporter annotated as mannose PTS; and LJ1680, whose product shares 30% amino acid identity with immunoglobulin A proteases from pathogenic bacteria. Knockout mutants were tested in vivo. The experiments revealed that deletion of LJ1654 to LJ1656 and LJ1680 decreased the gut residence time, while a mutant with a deleted exopolysaccharide biosynthesis cluster had a slightly increased residence time.

  1. High frequency of ribosomal protein gene deletions in Italian Diamond-Blackfan anemia patients detected by multiplex ligation-dependent probe amplification assay

    PubMed Central

    Quarello, Paola; Garelli, Emanuela; Brusco, Alfredo; Carando, Adriana; Mancini, Cecilia; Pappi, Patrizia; Vinti, Luciana; Svahn, Johanna; Dianzani, Irma; Ramenghi, Ugo

    2012-01-01

    Diamond-Blackfan anemia is an autosomal dominant disease due to mutations in nine ribosomal protein encoding genes. Because most mutations are loss of function and detected by direct sequencing of coding exons, we reasoned that part of the approximately 50% mutation negative patients may have carried a copy number variant of ribosomal protein genes. As a proof of concept, we designed a multiplex ligation-dependent probe amplification assay targeted to screen the six genes that are most frequently mutated in Diamond-Blackfan anemia patients: RPS17, RPS19, RPS26, RPL5, RPL11, and RPL35A. Using this assay we showed that deletions represent approximately 20% of all mutations. The combination of sequencing and multiplex ligation-dependent probe amplification analysis of these six genes allows the genetic characterization of approximately 65% of patients, showing that Diamond-Blackfan anemia is indisputably a ribosomopathy. PMID:22689679

  2. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda

    2006-07-07

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtainedmore » from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.« less

  3. Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae.

    PubMed

    Sinha, Sunita; Mell, Joshua C; Redfield, Rosemary J

    2012-10-01

    Natural competence is the ability of bacteria to actively take up extracellular DNA. This DNA can recombine with the host chromosome, transforming the host cell and altering its genotype. In Haemophilus influenzae, natural competence is induced by energy starvation and the depletion of nucleotide pools. This induces a 26-gene competence regulon (Sxy-dependent cyclic AMP receptor protein [CRP-S] regulon) whose expression is controlled by two regulators, CRP and Sxy. The role of most of the CRP-S genes in DNA uptake and transformation is not known. We have therefore created in-frame deletions of each CRP-S gene and studied their competence phenotypes. All but one gene (ssb) could be deleted. Although none of the remaining CRP-S genes were required for growth in rich medium or survival under starvation conditions, DNA uptake and transformation were abolished or reduced in most of the mutants. Seventeen genes were absolutely required for transformation, with 14 of these genes being specifically required for the assembly and function of the type IV pilus DNA uptake machinery. Only five genes were dispensable for both competence and transformation. This is the first competence regulon for which all genes have been mutationally characterized.

  4. Multiplex ligation-dependent probe amplification analysis on capillary electrophoresis instruments for a rapid gene copy number study.

    PubMed

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-09-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies.

  5. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Cancer.gov

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  6. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification

    PubMed Central

    Bunyan, D J; Eccles, D M; Sillibourne, J; Wilkins, E; Thomas, N Simon; Shea-Simonds, J; Duncan, P J; Curtis, C E; Robinson, D O; Harvey, J F; Cross, N C P

    2004-01-01

    Multiplex ligation-dependent probe amplification (MLPA) is a recently described method for detecting gross deletions or duplications of DNA sequences, aberrations which are commonly overlooked by standard diagnostic analysis. To determine the incidence of copy number variants in cancer predisposition genes from families in the Wessex region, we have analysed the hMLH1 and hMSH2 genes in patients with hereditary nonpolyposis colorectal cancer (HNPCC), BRCA1 and BRCA2 in families with hereditary breast/ovarian cancer (BRCA) and APC in patients with familial adenomatous polyposis coli (FAP). Hereditary nonpolyposis colorectal cancer (n=162) and FAP (n=74) probands were fully screened for small mutations, and cases for which no causative abnormality were found (HNPCC, n=122; FAP, n=24) were screened by MLPA. Complete or partial gene deletions were identified in seven cases for hMSH2 (5.7% of mutation-negative HNPCC; 4.3% of all HNPCC), no cases for hMLH1 and six cases for APC (25% of mutation negative FAP; 8% of all FAP). For BRCA1 and BRCA2, a partial mutation screen was performed and 136 mutation-negative cases were selected for MLPA. Five deletions and one duplication were found for BRCA1 (4.4% of mutation-negative BRCA cases) and one deletion for BRCA2 (0.7% of mutation-negative BRCA cases). Cost analysis indicates it is marginally more cost effective to perform MLPA prior to point mutation screening, but the main advantage gained by prescreening is a greatly reduced reporting time for the patients who are positive. These data demonstrate that dosage analysis is an essential component of genetic screening for cancer predisposition genes. PMID:15475941

  7. Interactions Between Alcohol Metabolism Genes and Religious Involvement in Association With Maximum Drinks and Alcohol Dependence Symptoms

    PubMed Central

    Chartier, Karen G.; Dick, Danielle M.; Almasy, Laura; Chan, Grace; Aliev, Fazil; Schuckit, Marc A.; Scott, Denise M.; Kramer, John; Bucholz, Kathleen K.; Bierut, Laura J.; Nurnberger, John; Porjesz, Bernice; Hesselbrock, Victor M.

    2016-01-01

    Objective: Variations in the genes encoding alcohol dehydrogenase (ADH) enzymes are associated with both alcohol consumption and dependence in multiple populations. Additionally, some environmental factors have been recognized as modifiers of these relationships. This study examined the modifying effect of religious involvement on relationships between ADH gene variants and alcohol consumption–related phenotypes. Method: Subjects were African American, European American, and Hispanic American adults with lifetime exposure to alcohol (N = 7,716; 53% female) from the Collaborative Study on the Genetics of Alcoholism. Genetic markers included ADH1B-rs1229984, ADH1B-rs2066702, ADH1C-rs698, ADH4-rs1042364, and ADH4-rs1800759. Phenotypes were maximum drinks consumed in a 24-hour period and total number of alcohol dependence symptoms according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Religious involvement was defined by self-reported religious services attendance. Results: Both religious involvement and ADH1B-rs1229984 were negatively associated with the number of maximum drinks consumed and the number of lifetime alcohol dependence symptoms endorsed. The interactions of religious involvement with ADH1B-rs2066702, ADH1C-rs698, and ADH4-rs1042364 were significantly associated with maximum drinks and alcohol dependence symptoms. Risk variants had weaker associations with maximum drinks and alcohol dependence symptoms as a function of increasing religious involvement. Conclusions: This study provided initial evidence of a modifying effect for religious involvement on relationships between ADH variants and maximum drinks and alcohol dependence symptoms. PMID:27172571

  8. Effect of amiodarone and dronedarone administration in rats on thyroid hormone-dependent gene expression in different cardiac components.

    PubMed

    Stoykov, I; van Beeren, H C; Moorman, A F M; Christoffels, V M; Wiersinga, W M; Bakker, O

    2007-06-01

    In view of their different actions on thyroid hormone receptor (TR) isoforms we set out to investigate whether amiodarone (AM) and dronedarone (Dron) have different and/or component-specific effects on cardiac gene expression. Rats were treated with AM or Dron and the expression of TRalpha 1, TRalpha 2, TRbeta 1 and several tri-iodothyronine (T3)-regulated genes was studied in different parts of the heart, namely the right atrium (RA), left ventricular wall (LVW) and apex. Rats were treated for 14 days with 100 mg/kg body weight AM or Dron. The expression of TRalpha 1, TRalpha 2, TRbeta 1 and T3-regulated genes was studied using real-time PCR and non-radioactive in situ hybridisation. AM and Dron affected TR expression in the RA similarly by decreasing TRalpha 1 and beta 1 expression by about 50%. In the LVW, AM and Dron decreased TRbeta 1 and, interestingly, AM increased TRalpha 1. In the apex, AM also increased TRalpha 2. The changes seen in T3-dependent gene expression are reminiscent of foetal reprogramming. Taken together, our results indicate that AM and Dron have similar effects on the expression of TR isoforms in the RA, which could partly contribute to their ability to decrease heart rate. On the other hand, the more profound effect of AM appears on TR- and T3-dependent gene expression in the left ventricle suggests foetal reprogramming.

  9. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  11. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.

    PubMed

    Kitagaki, Hiroshi; Cowart, L Ashley; Matmati, Nabil; Montefusco, David; Gandy, Jason; de Avalos, Silvia Vaena; Novgorodov, Sergei A; Zheng, Jim; Obeid, Lina M; Hannun, Yusuf A

    2009-04-17

    Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.

  12. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  13. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver.

    PubMed

    Ehara, Tatsuya; Kamei, Yasutomi; Yuan, Xunmei; Takahashi, Mayumi; Kanai, Sayaka; Tamura, Erina; Tsujimoto, Kazutaka; Tamiya, Takashi; Nakagawa, Yoshimi; Shimano, Hitoshi; Takai-Igarashi, Takako; Hatada, Izuho; Suganami, Takayoshi; Hashimoto, Koshi; Ogawa, Yoshihiro

    2015-03-01

    The metabolic function of the liver changes sequentially during early life in mammals to adapt to the marked changes in nutritional environment. Accordingly, hepatic fatty acid β-oxidation is activated after birth to produce energy from breast milk lipids. However, how it is induced during the neonatal period is poorly understood. Here we show DNA demethylation and increased mRNA expression of the fatty acid β-oxidation genes in the postnatal mouse liver. The DNA demethylation does not occur in the fetal mouse liver under the physiologic condition, suggesting that it is specific to the neonatal period. Analysis of mice deficient in the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and maternal administration of a PPARα ligand during the gestation and lactation periods reveal that the DNA demethylation is PPARα dependent. We also find that DNA methylation of the fatty acid β-oxidation genes are reduced in the adult human liver relative to the fetal liver. This study represents the first demonstration that the ligand-activated PPARα-dependent DNA demethylation regulates the hepatic fatty acid β-oxidation genes during the neonatal period, thereby highlighting the role of a lipid-sensing nuclear receptor in the gene- and life-stage-specific DNA demethylation of a particular metabolic pathway. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    PubMed Central

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs

  15. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments.

    PubMed

    Kenkel, C D; Meyer, E; Matz, M V

    2013-08-01

    Recent evidence suggests that corals can acclimatize or adapt to local stress factors through differential regulation of their gene expression. Profiling gene expression in corals from diverse environments can elucidate the physiological processes that may be responsible for maximizing coral fitness in their natural habitat and lead to a better understanding of the coral's capacity to survive the effects of global climate change. In an accompanying paper, we show that Porites astreoides from thermally different reef habitats exhibit distinct physiological responses when exposed to 6 weeks of chronic temperature stress in a common garden experiment. Here, we describe expression profiles obtained from the same corals for a panel of 9 previously reported and 10 novel candidate stress response genes identified in a pilot RNA-Seq experiment. The strongest expression change was observed in a novel candidate gene potentially involved in calcification, SLC26, a member of the solute carrier family 26 anion exchangers, which was down-regulated by 92-fold in bleached corals relative to controls. The most notable signature of divergence between coral populations was constitutive up-regulation of metabolic genes in corals from the warmer inshore location, including the gluconeogenesis enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase and the lipid beta-oxidation enzyme acyl-CoA dehydrogenase. Our observations highlight several molecular pathways that were not previously implicated in the coral stress response and suggest that host management of energy budgets might play an adaptive role in holobiont thermotolerance. © 2013 John Wiley & Sons Ltd.

  16. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans.

    PubMed

    Hsieh, J; Liu, J; Kostas, S A; Chang, C; Sternberg, P W; Fire, A

    1999-11-15

    Context-dependent gene silencing is used by many organisms to stably modulate gene activity for large chromosomal regions. We have used tandem array transgenes as a model substrate in a screen for Caenorhabditis elegans mutants that affect context-dependent gene silencing in somatic tissues. This screen yielded multiple alleles of a previously uncharacterized gene, designated tam-1 (for tandem-array-modifier). Loss-of-function mutations in tam-1 led to a dramatic reduction in the activity of numerous highly repeated transgenes. These effects were apparently context dependent, as nonrepetitive transgenes retained activity in a tam-1 mutant background. In addition to the dramatic alterations in transgene activity, tam-1 mutants showed modest alterations in expression of a subset of endogenous cellular genes. These effects include genetic interactions that place tam-1 into a group called the class B synMuv genes (for a Synthetic Multivulva phenotype); this family plays a negative role in the regulation of RAS pathway activity in C. elegans. Loss-of-function mutants in other members of the class-B synMuv family, including lin-35, which encodes a protein similar to the tumor suppressor Rb, exhibit a hypersilencing in somatic transgenes similar to that of tam-1 mutants. Molecular analysis reveals that tam-1 encodes a broadly expressed nuclear protein with RING finger and B-box motifs.

  17. Stannous Fluoride Effects on Gene Expression of Streptococcus mutans and Actinomyces viscosus.

    PubMed

    Shi, Y; Li, R; White, D J; Biesbrock, A R

    2018-02-01

    A genome-wide transcriptional analysis was performed to elucidate the bacterial cellular response of Streptococcus mutans and Actinomyces viscosus to NaF and SnF 2 . The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SnF 2 were predetermined before microarray study. Gene expression profiling microarray experiments were carried out in the absence (control) and presence (experimental) of 10 ppm and 100 ppm Sn 2+ (in the form of SnF 2 ) and fluoride controls for 10-min exposures (4 biological replicates/treatment). These Sn 2+ levels and treatment time were chosen because they have been shown to slow bacterial growth of S. mutans (10 ppm) and A. viscosus (100 ppm) without affecting cell viability. All data generated by microarray experiments were analyzed with bioinformatics tools by applying the following criteria: 1) a q value should be ≤0.05, and 2) an absolute fold change in transcript level should be ≥1.5. Microarray results showed SnF 2 significantly inhibited several genes encoding enzymes of the galactose pathway upon a 10-min exposure versus a negative control: lacA and lacB (A and B subunits of the galactose-6-P isomerase), lacC (tagatose-6-P kinase), lacD (tagatose-1,6-bP adolase), galK (galactokinase), galT (galactose-1-phosphate uridylyltransferase), and galE (UDP-glucose 4-epimerase). A gene fruK encoding fructose-1-phosphate kinase in the fructose pathway was also significantly inhibited. Several genes encoding fructose/mannose-specific enzyme IIABC components in the phosphotransferase system (PTS) were also downregulated, as was ldh encoding lactate dehydrogenase, a key enzyme involved in lactic acid synthesis. SnF 2 downregulated the transcription of most key enzyme genes involved in the galactose pathway and also suppressed several key genes involved in the PTS, which transports sugars into the cell in the first step of glycolysis.

  18. Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export

    PubMed Central

    Mesak, Lili R; Mesak, Felix M; Dahl, Michael K

    2004-01-01

    Background The Bacillus subtilis glucokinase operon was predicted to be comprised of the genes, yqgP (now named gluP), yqgQ, and glcK. We have previously established a role for glcK in glucose metabolism. In the absence of enzymes that phosphorylate glucose, such as GlcK and/or enzyme IIGlc, accumulated cytoplasmic glucose can be transported out of the cell. Genes within the glucokinase operon were not previously known to play a role in glucose transport. Here we describe the expression of gluP and its function in glucose transport. Results We found that transcription of the glucokinase operon was regulated, putatively, by two promoters: σA and σH. Putative σA and σH-recognition sites were located upstream of and within gluP, respectively. Transcriptional glucokinase operon – lacZ fusions and Northern blotting were used to analyze the expression of gluP. GluP was predicted to be an integral membrane protein. Moreover, the prediction of GluP structure revealed interesting signatures: a rhomboid domain and two tetracopeptide repeat (TPR) motifs. Microscopic analysis showed that GluP minus cells were unable to divide completely, resulting in a filamentous phenotype. The cells were grown in either rich or minimal medium. We found GluP may be involved in glucose transport. [14C]-glucose uptake by the GluP minus strain was slightly less than in the wild type. On the other hand, trehalose-derived glucose in the growth medium of the GluP minus strain was detected in very low amounts. Experimental controls comprised of single or multiple genes mutations within the glucose transporting phosphotransferase system. Conclusions gluP seems to be regulated only by a putative σA-dependent promoter. The glucose uptake and export assays suggest that GluP is important for glucose export and may act as an exporter. This also supports the role of the glucokinase operon in glucose utilization. PMID:15050034

  19. Multiplex Ligation-Dependent Probe Amplification Analysis on Capillary Electrophoresis Instruments for a Rapid Gene Copy Number Study

    PubMed Central

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-01-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies. PMID:19137113

  20. Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass.

    PubMed

    Edwards, Meredith C; Henriksen, Emily Decrescenzo; Yomano, Lorraine P; Gardner, Brian C; Sharma, Lekh N; Ingram, Lonnie O; Doran Peterson, Joy

    2011-08-01

    Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C. Finally, oligogalacturonide lyase (ogl) from E. chrysanthemi was added to produce strain JP08C. E. coli strains LY40A, JP07, JP07C, and JP08C possessed significant cellobiase activity in cell lysates, while only strains JP07C and JP08C demonstrated extracellular pectate lyase activity. Fermentations conducted by using a mixture of pure sugars representative of the composition of sugar beet pulp (SBP) showed that strains LY40A, JP07, JP07C, and JP08C were able to ferment cellobiose, resulting in increased ethanol production from 15 to 45% in comparison to that of KO11. Fermentations with SBP at very low fungal enzyme loads during saccharification revealed significantly higher levels of ethanol production for LY40A, JP07C, and JP08C than for KO11. JP07C ethanol yields were not considerably higher than those of LY40A; however, oligogalacturonide polymerization studies showed an increased breakdown of biomass to small-chain (degree of polymerization, ≤6) oligogalacturonides. JP08C achieved a further breakdown of polygalacturonate to monomeric sugars, resulting in a 164% increase in ethanol yields compared to those of KO11. The addition of commercial pectin methylesterase (PME) further increased JP08C ethanol production compared to that of LY40A by demethylating the pectin for enzymatic attack by pectin-degrading enzymes.

  1. Addition of Genes for Cellobiase and Pectinolytic Activity in Escherichia coli for Fuel Ethanol Production from Pectin-Rich Lignocellulosic Biomass▿

    PubMed Central

    Edwards, Meredith C.; Henriksen, Emily DeCrescenzo; Yomano, Lorraine P.; Gardner, Brian C.; Sharma, Lekh N.; Ingram, Lonnie O.; Doran Peterson, Joy

    2011-01-01

    Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C. Finally, oligogalacturonide lyase (ogl) from E. chrysanthemi was added to produce strain JP08C. E. coli strains LY40A, JP07, JP07C, and JP08C possessed significant cellobiase activity in cell lysates, while only strains JP07C and JP08C demonstrated extracellular pectate lyase activity. Fermentations conducted by using a mixture of pure sugars representative of the composition of sugar beet pulp (SBP) showed that strains LY40A, JP07, JP07C, and JP08C were able to ferment cellobiose, resulting in increased ethanol production from 15 to 45% in comparison to that of KO11. Fermentations with SBP at very low fungal enzyme loads during saccharification revealed significantly higher levels of ethanol production for LY40A, JP07C, and JP08C than for KO11. JP07C ethanol yields were not considerably higher than those of LY40A; however, oligogalacturonide polymerization studies showed an increased breakdown of biomass to small-chain (degree of polymerization, ≤6) oligogalacturonides. JP08C achieved a further breakdown of polygalacturonate to monomeric sugars, resulting in a 164% increase in ethanol yields compared to those of KO11. The addition of commercial pectin methylesterase (PME) further increased JP08C ethanol production compared to that of LY40A by demethylating the pectin for enzymatic attack by pectin-degrading enzymes. PMID:21666025

  2. Hypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways

    PubMed Central

    Castillejo, Cristina; Sartor, Ryan; Bialy, Agniezska; Sun, Tai-ping; Estelle, Mark

    2012-01-01

    Many processes critical to plant growth and development are regulated by the hormone auxin. Auxin responses are initiated through activation of a transcriptional response mediated by the TIR1/AFB family of F-box protein auxin receptors as well as the AUX/IAA and ARF families of transcriptional regulators. However, there is little information on how auxin regulates a specific cellular response. To begin to address this question, we have focused on auxin regulation of cell expansion in the Arabidopsis hypocotyl. We show that auxin-mediated hypocotyl elongation is dependent upon the TIR1/AFB family of auxin receptors and degradation of AUX/IAA repressors. We also use microarray studies of elongating hypocotyls to show that a number of growth-associated processes are activated by auxin including gibberellin biosynthesis, cell wall reorganization and biogenesis, and others. Our studies indicate that GA biosynthesis is required for normal response to auxin in the hypocotyl but that the overall transcriptional auxin output consists of PIF-dependent and -independent genes. We propose that auxin acts independently from and interdependently with PIF and GA pathways to regulate expression of growth-associated genes in cell expansion. PMID:22590525

  3. Deep Sequencing of 71 Candidate Genes to Characterize Variation Associated with Alcohol Dependence.

    PubMed

    Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Kumar, Gaurav; Aberg, Karolina A; Nerella, Srilaxmi; Xie, Linying; Collins, Ann L; Crowley, James J; Quackenbush, Corey R; Hilliard, Christopher E; Shabalin, Andrey A; Vrieze, Scott I; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; McGue, Matt; Maes, Hermine; Iacono, William G; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J

    2017-04-01

    Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies. We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate. No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10 -5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10 -5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family. To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD. Copyright © 2017 by the Research Society on

  4. Seventeen Sxy-Dependent Cyclic AMP Receptor Protein Site-Regulated Genes Are Needed for Natural Transformation in Haemophilus influenzae

    PubMed Central

    Mell, Joshua C.; Redfield, Rosemary J.

    2012-01-01

    Natural competence is the ability of bacteria to actively take up extracellular DNA. This DNA can recombine with the host chromosome, transforming the host cell and altering its genotype. In Haemophilus influenzae, natural competence is induced by energy starvation and the depletion of nucleotide pools. This induces a 26-gene competence regulon (Sxy-dependent cyclic AMP receptor protein [CRP-S] regulon) whose expression is controlled by two regulators, CRP and Sxy. The role of most of the CRP-S genes in DNA uptake and transformation is not known. We have therefore created in-frame deletions of each CRP-S gene and studied their competence phenotypes. All but one gene (ssb) could be deleted. Although none of the remaining CRP-S genes were required for growth in rich medium or survival under starvation conditions, DNA uptake and transformation were abolished or reduced in most of the mutants. Seventeen genes were absolutely required for transformation, with 14 of these genes being specifically required for the assembly and function of the type IV pilus DNA uptake machinery. Only five genes were dispensable for both competence and transformation. This is the first competence regulon for which all genes have been mutationally characterized. PMID:22821979

  5. Molecular Determinants of Antiestrogen and Drug Sensitivity in Breast Carcinoma Cells

    DTIC Science & Technology

    1996-08-01

    00 ~cd -olC CC) 00, COq -6 0 00d C5 kr0) C~U, 23l Effects of infection rate and selection pressure on gene expression from an internal promoter of a...Hybridization probes were prepared by restriction enzyme digestion of the LNCIuc plasmid, followed by the isolation of the desired fragments by...sensitivity to this drug. The bacterial neo gene encodes neomycin phosphotransferase, an enzyme that metabolically inactivates G418, with the extent of

  6. Evolutionary history of PEPC genes in green plants: Implications for the evolution of CAM in orchids.

    PubMed

    Deng, Hua; Zhang, Liang-Sheng; Zhang, Guo-Qiang; Zheng, Bao-Qiang; Liu, Zhong-Jian; Wang, Yan

    2016-01-01

    The phosphoenolpyruvate carboxylase (PEPC) gene is the key enzyme in CAM and C4 photosynthesis. A detailed phylogenetic analysis of the PEPC family was performed using sequences from 60 available published plant genomes, the Phalaenopsis equestris genome and RNA-Seq of 15 additional orchid species. The PEPC family consists of three distinct subfamilies, PPC-1, PPC-2, and PPC-3, all of which share a recent common ancestor in chlorophyte algae. The eudicot PPC-1 lineage separated into two clades due to whole genome duplication (WGD). Similarly, the monocot PPC-1 lineage also divided into PPC-1M1 and PPC-1M2 through an ancient duplication event. The monocot CAM- or C4-related PEPC originated from the clade PPC-1M1. WGD may not be the major driver for the performance of CAM function by PEPC, although it increased the number of copies of the PEPC gene. CAM may have evolved early in monocots, as the CAM-related PEPC of orchids originated from the monocot ancient duplication, and the earliest CAM-related PEPC may have evolved immediately after the diversification of monocots, with CAM developing prior to C4. Our results represent the most complete evolutionary history of PEPC genes in green plants to date and particularly elucidate the origin of PEPC in orchids. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.

  8. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner.

    PubMed

    Amorós, M; Estruch, F

    2001-03-01

    Saccharomyces cerevisiae possesses several transcription factors involved in the transcriptional activation of stress-induced genes. Among them, the heat shock factor (Hsf1p) and the zinc finger proteins of the general stress response (Msn2p and Msn4p) have been shown to play a major role in stress protection. Some heat shock protein (HSP) genes contain both heat shock elements (HSEs) and stress response elements (STREs), suggesting the involvement of both transcription factors in their regulation. Analysis of the stress-induced expression of two of these genes, HSP26 and HSP104, reveals that the contribution of Hsf1p and Msn2/4p is different depending on the gene and the stress condition.

  9. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS.

    PubMed

    Deochand, Dinesh K; Meariman, Jacob K; Grove, Anne

    2016-07-15

    Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.

  10. Regulation of glucose-dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae.

    PubMed

    Beck, Zachary T; Cloutier, Sara C; Schipma, Matthew J; Petell, Christopher J; Ma, Wai Kit; Tran, Elizabeth J

    2014-11-01

    Cellular homeostasis requires a fine balance between energy uptake, utilization, and growth. Dbp2 is a member of the DEAD-box protein family in Saccharomyces cerevisiae with characterized ATPase and helicase activity in vitro. DEAD-box RNA helicases are a class of enzymes that utilize ATP hydrolysis to remodel RNA and/or RNA-protein (RNP) composition. Dbp2 has been proposed to utilize its helicase activity in vivo to promote RNA-protein complex assembly of both messenger (m)RNAs and long noncoding (lnc)RNAs. Previous work from our laboratory demonstrated that loss of DBP2 enhances the lncRNA-dependent transcriptional induction of the GAL genes by abolishing glucose-dependent repression. Herein, we report that either a carbon source switch or glucose deprivation results in rapid export of Dbp2 to the cytoplasm. Genome-wide RNA sequencing identified a new class of antisense hexose transporter transcripts that are specifically upregulated upon loss of DBP2. Further investigation revealed that both sense and antisense hexose transporter (HXT) transcripts are aberrantly expressed in DBP2-deficient cells and that this expression pathway can be partially mimicked in wild-type cells by glucose depletion. We also find that Dbp2 promotes ribosome biogenesis and represses alternative ATP-producing pathways, as loss of DBP2 alters the transcript levels of ribosome biosynthesis (snoRNAs and associated proteins) and respiration gene products. This suggests that Dbp2 is a key integrator of nutritional status and gene expression programs required for energy homeostasis. Copyright © 2014 by the Genetics Society of America.

  11. Promoter- and RNA polymerase II–dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans

    PubMed Central

    Rohner, Sabine; Kalck, Veronique; Wang, Xuefei; Ikegami, Kohta; Lieb, Jason D.; Meister, Peter

    2013-01-01

    Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts. PMID:23460676

  12. Genes Involved in Anaerobic Metabolism of Phenol in the Bacterium Thauera aromatica

    PubMed Central

    Breinig, Sabine; Schiltz, Emile; Fuchs, Georg

    2000-01-01

    Genes involved in the anaerobic metabolism of phenol in the denitrifying bacterium Thauera aromatica have been studied. The first two committed steps in this metabolism appear to be phosphorylation of phenol to phenylphosphate by an unknown phosphoryl donor (“phenylphosphate synthase”) and subsequent carboxylation of phenylphosphate to 4-hydroxybenzoate under release of phosphate (“phenylphosphate carboxylase”). Both enzyme activities are strictly phenol induced. Two-dimensional gel electrophoresis allowed identification of several phenol-induced proteins. Based on N-terminal and internal amino acid sequences of such proteins, degenerate oligonucleotides were designed to identify the corresponding genes. A chromosomal DNA segment of about 14 kbp was sequenced which contained 10 genes transcribed in the same direction. These are organized in two adjacent gene clusters and include the genes coding for five identified phenol-induced proteins. Comparison with sequences in the databases revealed the following similarities: the gene products of two open reading frames (ORFs) are each similar to either the central part and N-terminal part of phosphoenolpyruvate synthases. We propose that these ORFs are components of the phenylphosphate synthase system. Three ORFs showed similarity to the ubiD gene product, 3-octaprenyl-4-hydroxybenzoate carboxy lyase; UbiD catalyzes the decarboxylation of a 4-hydroxybenzoate analogue in ubiquinone biosynthesis. Another ORF was similar to the ubiX gene product, an isoenzyme of UbiD. We propose that (some of) these four proteins are involved in the carboxylation of phenylphosphate. A 700-bp PCR product derived from one of these ORFs cross-hybridized with DNA from different Thauera and Azoarcus strains, even from those which have not been reported to grow with phenol. One ORF showed similarity to the mutT gene product, and three ORFs showed no strong similarities to sequences in the databases. Upstream of the first gene cluster, an

  13. Actinomyces spp. gene expression in root caries lesions

    PubMed Central

    Dame-Teixeira, Naile; Parolo, Clarissa Cavalcanti Fatturi; Maltz, Marisa; Tugnait, Aradhna; Devine, Deirdre; Do, Thuy

    2016-01-01

    Background The studies of the distribution of Actinomyces spp. on carious and non-carious root surfaces have not been able to confirm the association of these bacteria with root caries, although they were extensively implicated as a prime suspect in root caries. Objective The aim of this study was to observe the gene expression of Actinomyces spp. in the microbiota of root surfaces with and without caries. Design The oral biofilms from exposed sound root surface (SRS; n=10) and active root caries (RC; n=30) samples were collected. The total bacterial RNA was extracted, and the mRNA was isolated. Samples with low RNA concentration were pooled, yielding a final sample size of SRS=10 and RC=9. Complementary DNA (cDNA) libraries were prepared and sequenced on an Illumina® HiSeq 2500 system. Sequence reads were mapped to eight Actinomyces genomes. Count data were normalized using DESeq2 to analyse differential gene expression applying the Benjamini-Hochberg correction (false discovery rate [FDR]<0.001). Results Actinomyces spp. had similar numbers of reads (Mann-Whitney U-test; p>0.05), except for Actinomyces OT178 (p=0.001) and Actinomyces gerencseriae (p=0.004), which had higher read counts in the SRS. Genes that code for stress proteins (clp, dnaK, and groEL), enzymes of glycolysis pathways (including enolase and phosphoenolpyruvate carboxykinase), adhesion (Type-2 fimbrial and collagen-binding protein), and cell growth (EF-Tu) were highly – but not differentially (p>0.001) – expressed in both groups. Genes with the most significant upregulation in RC were those coding for hypothetical proteins and uracil DNA glycosylase (p=2.61E-17). The gene with the most significant upregulation in SRS was a peptide ABC transporter substrate-binding protein (log2FC=−6.00, FDR=2.37E-05). Conclusion There were similar levels of Actinomyces gene expression in both sound and carious root biofilms. These bacteria can be commensal in root surface sites but may be cariogenic

  14. Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression

    PubMed Central

    Fujita, Katsuhide; Fukuda, Makiko; Fukui, Hiroko; Horie, Masanori; Endoh, Shigehisa; Uchida, Kunio; Shichiri, Mototada; Morimoto, Yasuo; Ogami, Akira; Iwahashi, Hitoshi

    2015-01-01

    Abstract The use of carbon nanotubes in the industry has grown; however, little is known about their toxicological mechanism of action. Single-wall carbon nanotube (SWCNT) suspensions were administered by single intratracheal instillation in rats. Persistence of alveolar macrophage-containing granuloma was observed around the sites of SWCNT aggregation at 90 days post-instillation in 0.2-mg- or 0.4-mg-injected doses per rat. Meanwhile, gene expression profiling revealed that a large number of genes involved in the inflammatory response were markedly upregulated until 90 days or 180 days post-instillation. Subsequently, gene expression patterns were dramatically altered at 365 days post-instillation, and the number of upregulated genes involved in the inflammatory response was reduced. These results suggested that alveolar macrophage-containing granuloma reflected a characteristic of the histopathological transition period from the acute-phase to the subchronic-phase of inflammation, as well as pulmonary acute phase response persistence up to 90 or 180 days after intratracheal instillation in this experimental setting. The expression levels of the genes Ctsk, Gcgr, Gpnmb, Lilrb4, Marco, Mreg, Mt3, Padi1, Slc26a4, Spp1, Tnfsf4 and Trem2 were persistently upregulated in a dose-dependent manner until 365 days post-instillation. In addition, the expression levels of Atp6v0d2, Lpo, Mmp7, Mmp12 and Rnase9 were significantly upregulated until 754 days post-instillation. We propose that these persistently upregulated genes in the chronic-phase response following the acute-phase response act as potential biomarkers in lung tissue after SWCNT instillation. This study provides further insight into the time-dependent changes in genomic expression associated with the pulmonary toxicity of SWCNTs. PMID:24911292

  15. [Aldose reductase gene polymorphism and rate of appearance of retinopathy in non insulin dependent diabetics].

    PubMed

    Olmos, P; Acosta, A M; Schiaffino, R; Díaz, R; Alvarado, D; O'Brien, A; Muñoz, X; Arriagada, P; Claro, J C; Vega, R; Vollrath, V; Velasco, S; Emmerich, M; Maiz, A

    1999-04-01

    Recent studies suggest that polymorphisms associated to the aldose reductase gene could be related to early retinopathy in noninsulin dependent diabetics (NIDDM). There is also new interest on the genetic modulation of coagulation factors in relation to this complication. To look for a possible relationship between the rate of appearance of retinopathy and the genotype of (AC)n polymorphic marker associated to aldose reductase gene. A random sample of 27 NIDDM, aged 68.1 +/- 10.6 years, with a mean diabetes duration of 20.7 +/- 4.8 years and a mean glycosilated hemoglobin of 10.6 +/- 1.6%, was studied. The genotype of the (AC)n, polymorphic marker associated to the 5' end of the aldose reductase (ALR2) gene was determined by 32P-PCR plus sequenciation. Mutations of the factor XIII-A gene were studied by single stranded conformational polymorphism, sequenciation and restriction fragment length polymorphism. Four patients lacked the (AC)24 and had a higher rate of appearance of retinopathy than patients with the (AC)24 allele (0.0167 and 0.0907 score points per year respectively, p = 0.047). Both groups had similar glycosilated hemoglobin (11.7 +/- 0.2 and 10.5 +/- 1.6% respectively). Factor XIII gene mutations were not related to the rate of appearance of retinopathy. Our data suggest that the absence of the (AC)24 allele of the (AC)n polymorphic marker associated to the 5' end of the aldose reductase gene, is associated to a five fold reduction of retinopathy appearance rate.

  16. Dose and Time Dependencies in Stress Pathway Responses during Chemical Exposure: Novel Insights from Gene Regulatory Networks.

    PubMed

    Souza, Terezinha M; Kleinjans, Jos C S; Jennen, Danyel G J

    2017-01-01

    Perturbation of biological networks is often observed during exposure to xenobiotics, and the identification of disturbed processes, their dynamic traits, and dose-response relationships are some of the current challenges for elucidating the mechanisms determining adverse outcomes. In this scenario, reverse engineering of gene regulatory networks (GRNs) from expression data may provide a system-level snapshot embedded within accurate molecular events. Here, we investigate the composition of GRNs inferred from groups of chemicals with two distinct outcomes, namely carcinogenicity [azathioprine (AZA) and cyclophosphamide (CYC)] and drug-induced liver injury (DILI; diclofenac, nitrofurantoin, and propylthiouracil), and a non-carcinogenic/non-DILI group (aspirin, diazepam, and omeprazole). For this, we analyzed publicly available exposed in vitro human data, taking into account dose and time dependencies. Dose-Time Network Identification (DTNI) was applied to gene sets from exposed primary human hepatocytes using four stress pathways, namely endoplasmic reticulum (ER), NF-κB, NRF2, and TP53. Inferred GRNs suggested case specificity, varying in interactions, starting nodes, and target genes across groups. DILI and carcinogenic compounds were shown to directly affect all pathway-based GRNs, while non-DILI/non-carcinogenic chemicals only affected NF-κB. NF-κB-based GRNs clearly illustrated group-specific disturbances, with the cancer-related casein kinase CSNK2A1 being a target gene only in the carcinogenic group, and opposite regulation of NF-κB subunits being observed in DILI and non-DILI/non-carcinogenic groups. Target genes in NRF2-based GRNs shared by DILI and carcinogenic compounds suggested markers of hepatotoxicity. Finally, we indicate several of these group-specific interactions as potentially novel. In summary, our reversed-engineered GRNs are capable of revealing dose dependent, chemical-specific mechanisms of action in stress-related biological networks.

  17. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    PubMed Central

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  18. Glycerol-3-phosphate-induced catabolite repression in Escherichia coli.

    PubMed

    Eppler, Tanja; Postma, Pieter; Schütz, Alexandra; Völker, Uwe; Boos, Winfried

    2002-06-01

    The formation of glycerol-3-phosphate (G3P) in cells growing on TB causes catabolite repression, as shown by the reduction in malT expression. For this repression to occur, the general proteins of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular EIIA(Glc), as well as the adenylate cyclase and the cyclic AMP-catabolite activator protein system, have to be present. We followed the level of EIIA(Glc) phosphorylation after the addition of glycerol or G3P. In contrast to glucose, which causes a dramatic shift to the dephosphorylated form, glycerol or G3P only slightly increased the amount of dephosphorylated EIIA(Glc). Isopropyl-beta-D-thiogalactopyranoside-induced overexpression of EIIA(Glc) did not prevent repression by G3P, excluding the possibility that G3P-mediated catabolite repression is due to the formation of unphosphorylated EIIA(Glc). A mutant carrying a C-terminally truncated adenylate cyclase was no longer subject to G3P-mediated repression. We conclude that the stimulation of adenylate cyclase by phosphorylated EIIA(Glc) is controlled by G3P and other phosphorylated sugars such as D-glucose-6-phosphate and is the basis for catabolite repression by non-PTS compounds. Further metabolism of these compounds is not necessary for repression. Two-dimensional polyacrylamide gel electrophoresis was used to obtain an overview of proteins that are subject to catabolite repression by glycerol. Some of the prominently repressed proteins were identified by peptide mass fingerprinting. Among these were periplasmic binding proteins (glutamine and oligopeptide binding protein, for example), enzymes of the tricarboxylic acid cycle, aldehyde dehydrogenase, Dps (a stress-induced DNA binding protein), and D-tagatose-1,6-bisphosphate aldolase.

  19. Ethanol concentration-dependent alterations in gene expression during acute binge drinking in the HIV-1 transgenic rat.

    PubMed

    Sarkar, Sraboni; Chang, Sulie L

    2013-07-01

    Binge drinking of high ethanol (EtOH) concentration beverages is common among young adults and can be a risk factor for exposure to sexually transmitted diseases, including HIV-1. We used a novel noninfectious HIV-1 transgenic (HIV-1Tg) rat model that mimics HIV-1 patients in terms of altered immune responses and deficits in cognitive learning and memory to investigate EtOH concentration-dependent effects on 48 alcohol-modulated genes during binge EtOH administration. HIV-1Tg and control F344 rats were administered water, 8% EtOH, or 52% EtOH by gavage (i.g.) for 3 days (2.0 g/kg/d). Two hours after final treatment, blood, liver, and spleen were collected from each animal. Serum blood EtOH concentration (BEC) was measured, and gene expression in the liver and spleen was determined using a specifically designed PCR array. The BEC was significantly higher in the 52% EtOH-treated HIV-1Tg rats compared with the 8% EtOH group; however, the BEC was higher in the 8% EtOH-treated control rats compared with the 52% EtOH group. There was no change in expression of the EtOH metabolism-related genes, Adh1, Adh4, and Cyp2e1, in either the 8 or 52% EtOH-treated HIV-1Tg rats, whereas expression of those genes was significantly higher in the liver of the 52% EtOH control rats, but not in the 8% EtOH group. In the HIV-1Tg rats, expression of the GABAA , metabotropic glutamate, and dopamine neurotransmitter receptor genes was significantly increased in the spleen of the 52% EtOH group, but not in the 8% EtOH group, whereas no change was observed in those genes in either of the control groups. Our data indicate that, in the presence of HIV-1 infection, EtOH concentration-dependent binge drinking can have significantly different molecular effects. Copyright © 2013 by the Research Society on Alcoholism.

  20. Localization and hormonal control of serine dehydratase during metabolic acidosis differ markedly from those of phosphoenolpyruvate carboxykinase in rat kidney.

    PubMed

    Masuda, Tohru; Ogawa, Hirofumi; Matsushima, Takako; Kawamata, Seiichi; Sasahara, Masakiyo; Kuroda, Kazunari; Suzuki, Yasuhiro; Takata, Yoshimi; Yamazaki, Mitsuaki; Takusagawa, Fusao; Pitot, Henry C

    2003-08-01

    Serine dehydratase (SDH) is abundant in the rat liver but scarce in the kidney. When administrated with dexamethasone, the renal SDH activity was augmented 20-fold, whereas the hepatic SDH activity was affected little. In situ hybridization and immunohistochemistry revealed that SDH was localized to the proximal straight tubule of the nephron. To address the role of this hormone, rats were made acidotic by gavage of NH(4)Cl. Twenty-two hours later, the SDH activity was increased three-fold along with a six-fold increment in the phosphoenolpyruvate carboxykinase (PEPCK) activity, a rate-limiting enzyme of gluconeogenesis. PEPCK, which is localized to the proximal tubules under the normal condition, spreads throughout the entire cortex to the outer medullary rays by acidosis, whereas SDH does not change regardless of treatment with dexamethasone or NH(4)Cl. When NH(4)Cl was given to adrenalectomized rats, in contrast to the SDH activity no longer increasing, the PEPCK activity responded to acidosis to the same extent as in the intact rats. A simultaneous administration of dexamethasone and NH(4)Cl into the adrenalectomized rats fully restored the SDH activity, demonstrating that the rise in the SDH activity during acidosis is primarily controlled by glucocorticoids. The present findings clearly indicate that the localization of SDH and its hormonal regulation during acidosis are strikingly different from those of PEPCK.