Science.gov

Sample records for phosphorus enhances al

  1. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  2. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew Amis; Liu, Yan-Hua

    2002-08-01

    Eighteen anaerobic/aerobic batch experiments were conducted with a variety of volatile fatty acids (VFAs) on a sequencing batch reactor (SBR) population displaying enhanced biological phosphorus removal (EBPR). A statistically significant (P < 0.01 for all variables) correlation between aerobic phosphorus uptake and polyhydroxyalkanoates (PHAs) quantity and form was observed. The results suggest that poly-3-hydroxy-butyrate (3HB) results in significantly higher aerobic phosphorus (P) uptake per unit mmoles as carbon (mmoles-C) than poly-3-hydroxy-valerate (3HV). The results showed that acetic and isovaleric acids resulted in higher P removals (relative to propionic and valeric acids) during EBPR batch experiments not because of higher PHAs quantity, but largely because the predominant type was 3HB rather than 3HV. In contrast propionic and valeric acids resulted in 3HV, and showed much lower aerobic P uptake per unit PHAs. PMID:12230192

  3. Microbial endemism: does phosphorus limitation enhance speciation?

    PubMed

    Souza, Valeria; Eguiarte, Luis E; Siefert, Janet; Elser, James J

    2008-07-01

    There is increasing evidence for the existence of unique ecosystems that are dominated by locally adapted microbiota which harbour distinct lineages and biological capabilities, much like the macrobiota of Darwin's Galapagos Islands. As a primary example of such a system, we highlight key discoveries from the Cuatro Ciénegas basin in Mexico. We argue that high microbial endemism requires a combination of geographical isolation, long-term continuity and mechanisms for reducing the intensity of horizontal gene transfer (HGT). We also propose that strong phosphorus limitation has an important role in microbial diversification by reducing the intensity of HGT. PMID:18521074

  4. Enhanced biological phosphorus removal employing EDTA disodium

    SciTech Connect

    Bojinova, D.; Velkova, R.

    1996-12-31

    The biological phosphorus removal is a promising alternative to the conventional chemical technologies for processing of phosphate raw materials. The object of this study was the effect of EDTA disodium on the biotreatment of tunisian phosphorite with the strain of Aspergillus niger. The incubation was carried out in two nutritive mediums, with different phosphate content. The experimental results showed that the additives of EDTA disodium in the nutritive medium increased the rate of extraction of P{sub 2}O{sub 5} and shortened significantly the time for biological leaching. 5 refs., 3 figs., 2 tabs.

  5. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  6. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal. PMID:24122666

  7. Thermodynamics calculation of reactions between phosphorus and main elements in Al-Si-Cu alloys

    NASA Astrophysics Data System (ADS)

    Li, Wangxing; Zhang, Ying; Yi, Danqing; Kong, Fanxiao; Chen, Xingyu

    2011-05-01

    The Gibbs free energy was calculated between phosphorus and the main elements in Al-Si-Cu alloys sampled as A390 to study the reaction process and give theoretical directions for the adding of phosphorus in industry. The results show that the elements such as aluminum, silicon, and copper have the capabilities to react with phosphorus according to the preference of Al, Cu, Si. As temperature increases, the reactions between phosphorus and the elements become more difficult. If aluminum is in existence, the phosphides of other elements will transform to aluminum phosphide.

  8. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  9. Effect of Cooling Rate on Phosphorus Removal During Al-Si Solvent Refining

    NASA Astrophysics Data System (ADS)

    Li, Yanlei; Ban, Boyuan; Li, Jingwei; Zhang, Taotao; Bai, Xiaolong; Chen, Jian; Dai, Songyuan

    2015-04-01

    The effect of cooling rate on phosphorus removal during Al-Si solvent refining is studied during solar grade silicon purification. It is found that the phosphorus removal rate is controlled by kinetic factors. When the cooling rate decreases, the phosphorus removal rate increases. A concept of apparent segregation coefficient of phosphorus is introduced to characterize the phosphorous removal ability. It increases with the decrease in the average solidification temperature between 910.5 K and 1050.5 K (637.5 °C and 777.5 °C).

  10. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration.

    PubMed

    Arnaldos, Marina; Pagilla, Krishna

    2010-10-01

    Plants aiming to achieve very low effluent nutrient levels (<3 mg N/L for N, and <0.1 mg P/L for P) need to consider removal of effluent fractions hitherto not taken into account. Two of these fractions are dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) (mainly composed of organic phosphorus). In this research, enhanced coagulation using alum (at doses commonly employed in tertiary phosphorus removal) followed by microfiltration (using 0.22 μm pore size filters) was investigated for simultaneous effluent DON and dissolved phosphorus (DP) fractions removal. At an approximate dose of 3.2 mg Al(III)/L, corresponding to 1.5 Al(III)/initial DON-N and 3.8 Al(III)/initial DP-P molar ratios, maximum simultaneous removal of DON and DP was achieved (69% for DON and 72% for DP). At this dose, residual DON and DP concentrations were found to be 0.3 mg N/L and 0.25 mg P/L, respectively. Analysis of the trends of removal revealed that the DNRP removal pattern was similar to that commonly reported for dissolved reactive phosphorus. Since this study involved intensive analytical work, a secondary objective was to develop a simple and accurate measurement protocol for determining dissolved N and P species at very low levels in wastewater effluents. The protocol developed in this study, involving simultaneous digestion for DON and DNRP species, was found to be very reliable and accurate based on the results. PMID:20643469

  11. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared. PMID:27087523

  12. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. PMID:26144019

  13. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    PubMed

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  14. Phosphorus mobilizing consortium Mammoth P(™) enhances plant growth.

    PubMed

    Baas, Peter; Bell, Colin; Mancini, Lauren M; Lee, Melanie N; Conant, Richard T; Wallenstein, Matthew D

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound-P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth P(TM), could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth P(TM) increased productivity up to twofold compared to the fertilizer treatments without the Mammoth P(TM) inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth P(TM) by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth P(TM) to enhance plant growth and crop productivity. PMID:27326379

  15. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    PubMed Central

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  16. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite. PMID:23771179

  17. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  18. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus

    NASA Astrophysics Data System (ADS)

    Martin, Patrick; Dyhrman, Sonya T.; Lomas, Michael W.; Poulton, Nicole J.; Van Mooy, Benjamin A. S.

    2014-06-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles.

  19. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus.

    PubMed

    Martin, Patrick; Dyhrman, Sonya T; Lomas, Michael W; Poulton, Nicole J; Van Mooy, Benjamin A S

    2014-06-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles. PMID:24753593

  20. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus

    PubMed Central

    Martin, Patrick; Dyhrman, Sonya T.; Lomas, Michael W.; Poulton, Nicole J.; Van Mooy, Benjamin A. S.

    2014-01-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles. PMID:24753593

  1. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across

  2. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters

    SciTech Connect

    Ingall, E.; Jahnki, R.

    1994-06-01

    Phosphorus regeneration and burial fluxes determined from in situ benthic flux chamber and solid phase measurements at sites on the Californian continental margin, Peruvian continental slope, North Carolina continental slope, and from the Santa Monica basin, California are reported. Comparison of these sites indicates that O{sub 2}-depleted bottomwaters enhance P regeneration from sediments, diminishing overall phosphorus burial efficiency. Based on these observations, a positive feedback, linking ocean anoxia, enhanced benthic phosphorus regeneration, and marine productivity is proposed. On shorter timescales, these results also suggest that O{sub 2} depletion in coastal regions caused by eutrophication may enhance P regeneration from sediments, thereby providing additional P necessary for increased biological productivity. 42 refs., 2 figs., 2 tabs.

  3. Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils1[C][W][OPEN

    PubMed Central

    Hufnagel, Barbara; de Sousa, Sylvia M.; Assis, Lidianne; Guimaraes, Claudia T.; Leiser, Willmar; Azevedo, Gabriel C.; Negri, Barbara; Larson, Brandon G.; Shaff, Jon E.; Pastina, Maria Marta; Barros, Beatriz A.; Weltzien, Eva; Rattunde, Henry Frederick W.; Viana, Joao H.; Clark, Randy T.; Falcão, Alexandre; Gazaffi, Rodrigo; Garcia, Antonio Augusto F.; Schaffert, Robert E.; Kochian, Leon V.; Magalhaes, Jurandir V.

    2014-01-01

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil. PMID:25189534

  4. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process. PMID:25735007

  5. Optimisation of sludge line management to enhance phosphorus recovery in WWTP.

    PubMed

    Marti, N; Ferrer, J; Seco, A; Bouzas, A

    2008-11-01

    The management of the sludge treatment line can be optimized to reduce uncontrolled phosphorus precipitation in the anaerobic digester and to enhance phosphorus recovery in WWTP. In this paper, four operational strategies, which are based on the handling of the prefermented primary sludge and the secondary sludge from an EBPR process, have been tested in a pilot plant. The separated or mixed sludge thickening, the use of a stirred contact tank and the elutriation of the thickened sludge are the main strategies studied. Both the reduction of phosphorus precipitation in the digester and the supernatant suitability for a struvite crystallization process were assessed in each configuration. The mixed sludge thickening combined with a high flowrate elutriation stream reduced the phosphorus precipitation in the digester by 46%, with respect to the separate sludge thickening configuration (common practice in WWTP). Moreover, in this configuration, 68% of the soluble phosphorus in the system is available for a possible phosphorus recovery process by crystallization (not studied in this work). However, a high Ca/P molar ratio was detected in the resultant supernatant which is pointed out as a problem for the efficiency of struvite crystallization. PMID:18786693

  6. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. PMID:25014564

  7. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    PubMed

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed. PMID:24984512

  8. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    SciTech Connect

    Li, Weibing; Yue, Jiguang; Hua, Fangxia; Feng, Chang; Bu, Yuyu; Chen, Zhuoyuan

    2015-10-15

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co{sup 2+} catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l{sup −1} in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained.

  9. Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system.

    PubMed

    Yang, Qinzheng; Zhao, Huazhang; Zhao, Nannan; Ni, Jinren; Gu, Xuejing

    2016-09-01

    This report proposed a novel technique for the regulation of phosphorus flux based on a bioelectrochemical system. In the simulated water system, a simple in situ sediment microbial fuel cell (SMFC) was constructed. SMFC voltage was increased with time until it was 0.23V. The redox potential of the sediment was increased from -220mV to -178mV during the process. Phosphorus concentration in the water system was decreased from 0.1mg/L to 0.01mg/L, compared with 0.09mg/L in the control. The installation of a SMFC produced an external current and internal circuit, which promoted the transfer of phosphate in overlying water to the sediment, enhanced the microbial oxidation of Fe(2+), and increased the formation of stable phosphorus in sediment. In conclusion, phosphorus flux from the overlying water to sediment was enhanced by SMFC, which has the potential to be used for eutrophication control of water bodies. PMID:27240233

  10. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. PMID:25776916

  11. Phosphorus Retention by Stormwater Detention Areas: Estimation, Enhancement, and Economics

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Hodges, A.

    2015-12-01

    Stormwater detention areas (SDAs) are considered an important best management practice (BMP) both in agricultural and urban areas. In sub-tropical Florida where sandy soils and shallow water table make the nutrient leaching losses from agricultural areas inevitable, the SDAs are relied upon as a last point of treatment. Field-measured water and phosphorus (P) fluxes from an agricultural SDA showed that contrary to generally held view, the SDA was a source of P for the first year (retention efficiency = -12%). For the next year, the SDA served as a sink (54%). The source function of the SDA was a combined effect of high rainfall, dilution of agricultural drainage with rainfall from a tropical storm, and legacy-based soil P saturation. Volume reduction was the main reason for P retention because of no remaining P sorption capacity in the soil in most of the SDA area. Although a net sink of P for Year 2, an event-wise analysis showed the SDA to be a source of P for three out of seven outflow events in Year 2 indicating P release from soil. Because surface P treatment efficiency during both years was either less than or approximately the same as surface water retention efficiency, volume reduction and not sorption or biological assimilation controlled P retention. Hydraulic (e.g. increased storage), managerial (biomass harvesting) and chemical (alum treatment) modifications were evaluated by using a stormwater treatment model and field data. The model was successfully field-verified using well accepted performance measures (e.g. Nash-Sutcliffe efficiency). Maximum additional P retention was shown to be achieved by biomass harvesting (>100%) followed by chemical treatment (71%), and increased spillage level (29%). Economic feasibility of the aforementioned modifications and development of a payment for environmental services (PES) program was identified through a cost-benefit analysis for maintaining these SDAs as sink of P in the long-term.

  12. Phosphatase Hydrolysis of Soil Organic Phosphorus Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant available inorganic phosphorus (Pi) is usually limited in highly weathered Ultisols. The high Fe, Al, and Mn contents in these soils enhance Pi retention and fixation. The metals are also known to form complexes with organic phosphorus (Po) compounds. Hydrolysis of Po compounds is needed for P...

  13. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    SciTech Connect

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-09-01

    Graphical abstract: - Highlights: • P-doped g-C{sub 3}N{sub 4} has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C{sub 3}N{sub 4}. • A postannealing treatment further enhanced the activity of P-doped g-C{sub 3}N{sub 4}. • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C{sub 3}N{sub 4}, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry.

  14. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.

    PubMed

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou

    2009-08-01

    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively. PMID:19555991

  15. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes.

    PubMed

    Sun, Jie; Zheng, Guangyuan; Lee, Hyun-Wook; Liu, Nian; Wang, Haotian; Yao, Hongbin; Yang, Wensheng; Cui, Yi

    2014-08-13

    High specific capacity battery electrode materials have attracted great research attention. Phosphorus as a low-cost abundant material has a high theoretical specific capacity of 2596 mAh/g with most of its capacity at the discharge potential range of 0.4-1.2 V, suitable as anodes. Although numerous research progress have shown other high capacity anodes such as Si, Ge, Sn, and SnO2, there are only a few studies on phosphorus anodes despite its high theoretical capacity. Successful applications of phosphorus anodes have been impeded by rapid capacity fading, mainly caused by large volume change (around 300%) upon lithiation and thus loss of electrical contact. Using the conducting allotrope of phosphorus, "black phosphorus" as starting materials, here we fabricated composites of black phosphorus nanoparticle-graphite by mechanochemical reaction in a high energy mechanical milling process. This process produces phosphorus-carbon bonds, which are stable during lithium insertion/extraction, maintaining excellent electrical connection between phosphorus and carbon. We demonstrated high initial discharge capacity of 2786 mAh·g(-1) at 0.2 C and an excellent cycle life of 100 cycles with 80% capacity retention. High specific discharge capacities are maintained at fast C rates (2270, 1750, 1500, and 1240 mAh·g(-1) at C/5, 1, 2, and 4.5 C, respectively). PMID:25019417

  16. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Xiong, Dehua; Li, Wei; Wang, Xiaoguang; Liu, Lifeng

    2016-09-01

    Hematite (i.e., α-Fe2O3) nanorod photoanodes passivated with a phosphorus overlayer have been fabricated by decomposing sodium hypophosphite (NaH2PO2) at a low temperature over the hematite nanorod surface. Extensive scanning electron microscopy, transmission electron microscopy, x-ray diffractometry and UV–vis spectroscopy characterizations confirm that conformal deposition of an amorphous phosphorus overlayer does not change the crystal structure, morphology, and optical absorption properties of hematite photoanodes. X-ray photoelectron spectroscopy reveals that phosphorus in the deposited overlayer exists in an oxidized state. Comprehensive steady-state polarization, transient photocurrent response, and impedance spectroscopy measurements as well as Mott–Schottky analysis manifest that the phosphorus overlayer is able to effectively passivate surface states and suppress electron–hole recombination, substantially enhancing the photocurrent for water oxidation. Combining the phosphorization treatment with two-step thermal activation, a photocurrent density of 1.1 mA cm‑2 is achieved at 1.23 V versus reversible hydrogen electrode under illumination of 100 mW cm‑2, ca 55 times higher than that of the non-activated pristine hematite photoanode measured under the same conditions. The simple and fast phosphorization strategy we present here can be readily applied to passivate surfaces of other semiconductor photoelectrodes to improve their photoelectrochemical performance.

  17. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor.

    PubMed

    Liu, Zhigang; Zhao, Qingliang; Lee, Duu-Jong; Yang, Nan

    2008-09-01

    Phosphorus is a depleting resource that needs recovery from wastewater streams. The magnesium ammonium phosphate (MAP) crystallization process could simultaneously recover ammonium nitrogen and phosphorus at equal molar basis to yield slow-release MAP fertilizer. However, the present MAP processes are not efficient in recovering phosphorus at low P concentrations. This work presented and tested the performance of a newly proposed MAP reactor, the internal recycle seeding reactor (IRSR) that comprised of a reaction zone and a settling zone connecting with an internal recirculation loop. Owing to the enhanced secondary nucleation rates of MAP crystals in reaction zone under controlled circumstance, the proposed IRSR recovered 78% of phosphorus from wastewater at a low level of 21.7 mg-PL(-1). The optimal operation parameters for the IRSR were investigated with synthetic wastewater and determined as that the Mg/PO(4)(3-)-P molar ratio was 1.3-1.5:1, THRT was up to or longer than 1.14 h, the seed concentration of reaction zone was 0.40-1.0 gL(-1). Further needs for the proposed IRSR strategies were also discussed. PMID:18187321

  18. Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-P soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice protein kinase, OsPSTOL1, was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum performance und...

  19. Observable Proxies For 26 Al Enhancement

    SciTech Connect

    Fryer, Christopher L; Young, Patrick A; Ellinger, Carola I; Arnett, William D

    2008-01-01

    We consider the cospatial production of elements in supernova explosions to find observationally detectable proxies for enhancement of {sup 26}Al in supernova ejecta and stellar systems. Using four progenitors we explore a range of 1D explosions at different energies and an asymmetric 3D explosion. We find that the most reliable indicator of the presence of {sup 26}Al in unmixed ejecta is a very low S/Si ratio ({approx} 0.05). Production of N in O/S/Si-rich regions is also indicative. The biologically important element P is produced at its highest abundance in the same regions. Proxies should be detectable in supernova ejecta with high spatial resolution multi wavelength observations, but the small absolute abundance of material injected into a proto-planetary disk makes detection unlikely in existing or forming stellar/planetary systems.

  20. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge. PMID:24964811

  1. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    PubMed

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. PMID:26143588

  2. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  3. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

    PubMed

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B H

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  4. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  5. Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Yang, Lingming; Zhou, Hong; Ye, Peide D.

    2016-04-01

    In this letter, a new approach to chemically dope black phosphorus (BP) is presented, which significantly enhances the device performance of BP field-effect transistors for an initial period of 18 h, before degrading to previously reported levels. By applying 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), low ON-state resistance of 3.2 ohm.mm and high field-effect mobility of 229 cm2/Vs are achieved with a record high drain current of 532 mA/mm at a moderate channel length of 1.5 {\\mu}m.

  6. Imaging human teeth by phosphorus magnetic resonance with nuclear Overhauser enhancement

    PubMed Central

    Sun, Yi; Brauckmann, Ole; Nixdorf, Donald R.; Kentgens, Arno; Garwood, Michael; Idiyatullin, Djaudat; Heerschap, Arend

    2016-01-01

    Three-dimensional phosphorus MR images (31P MRI) of teeth are obtained at a nominal resolution of 0.5 mm in less than 15 minutes using acquisition pulse sequences sensitive to ultra-short transversal relaxation times. The images directly reflect the spatially resolved phosphorus content of mineral tissue in dentin and enamel; they show a lack of signal from pulp tissue and reduced signal from de-mineralized carious lesions. We demonstrate for the first time that the signal in 31P MR images of mineralized tissue is enhanced by a 1H-31P nuclear Overhauser effect (NOE). Using teeth as a model for imaging mineralized human tissue, graded differences in signal enhancement are observed that correlate well with known mineral content. From solid-state NMR experiments we conclude that the NOE is facilitated by spin diffusion and that the NOE difference can be assigned to a higher water content and a different micro-structure of dentin. Thus, a novel method for imaging mineral content without ionizing radiation is proposed. This method has potential use in the assessment of de-mineralization states in humans, such as caries of teeth and osteoporosis of bones. PMID:27498919

  7. Imaging human teeth by phosphorus magnetic resonance with nuclear Overhauser enhancement.

    PubMed

    Sun, Yi; Brauckmann, Ole; Nixdorf, Donald R; Kentgens, Arno; Garwood, Michael; Idiyatullin, Djaudat; Heerschap, Arend

    2016-01-01

    Three-dimensional phosphorus MR images ((31)P MRI) of teeth are obtained at a nominal resolution of 0.5 mm in less than 15 minutes using acquisition pulse sequences sensitive to ultra-short transversal relaxation times. The images directly reflect the spatially resolved phosphorus content of mineral tissue in dentin and enamel; they show a lack of signal from pulp tissue and reduced signal from de-mineralized carious lesions. We demonstrate for the first time that the signal in (31)P MR images of mineralized tissue is enhanced by a (1)H-(31)P nuclear Overhauser effect (NOE). Using teeth as a model for imaging mineralized human tissue, graded differences in signal enhancement are observed that correlate well with known mineral content. From solid-state NMR experiments we conclude that the NOE is facilitated by spin diffusion and that the NOE difference can be assigned to a higher water content and a different micro-structure of dentin. Thus, a novel method for imaging mineral content without ionizing radiation is proposed. This method has potential use in the assessment of de-mineralization states in humans, such as caries of teeth and osteoporosis of bones. PMID:27498919

  8. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation

    NASA Astrophysics Data System (ADS)

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-01

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability.

  9. Enhanced stability of black phosphorus field-effect transistors with SiO₂ passivation.

    PubMed

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-30

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability. PMID:26436439

  10. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    PubMed Central

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity. PMID:22170425

  11. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    PubMed

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis. PMID:18751532

  12. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". PMID:23317522

  13. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  14. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems.

    PubMed

    Lawson, Christopher E; Strachan, Blake J; Hanson, Niels W; Hahn, Aria S; Hall, Eric R; Rabinowitz, Barry; Mavinic, Donald S; Ramey, William D; Hallam, Steven J

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems. PMID:25857222

  15. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    PubMed

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid. PMID:25063972

  16. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems. PMID:24210547

  17. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency.

    PubMed

    Chu, Fei-Fei; Chu, Pei-Na; Cai, Pei-Jie; Li, Wen-Wei; Lam, Paul K S; Zeng, Raymond J

    2013-04-01

    To investigate the role of phosphorus in lipid production under nitrogen starvation conditions, five types of media possessing different nitrogen and phosphorus concentrations or their combination were prepared to culture Chlorella vulgaris. It was found that biomass production under nitrogen deficient condition with sufficient phosphorus supply was similar to that of the control (with sufficient nutrition), resulting in a maximum lipid productivity of 58.39 mg/L/day. Meanwhile, 31P NMR showed that phosphorus in the medium was transformed and accumulated as polyphosphate in cells. The uptake rate of phosphorus in cells was 3.8 times higher than the uptake rate of the control. This study demonstrates that phosphorus plays an important role in lipid production of C. vulgaris under nitrogen deficient conditions and implies a potential to combine phosphorus removal from wastewater with biodiesel production via microalgae. PMID:23517904

  18. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR).

    PubMed

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S; Goel, Ramesh

    2015-09-15

    Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems. PMID:26024959

  19. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses.

    PubMed

    Yan, Zhengjuan; Chen, Shuo; Li, Junliang; Alva, Ashok; Chen, Qing

    2016-10-01

    Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile. PMID:27300290

  20. Effect of Sludge Type on Enhanced Biological Phosphorus Removal in Sequencing Batch Reactors

    NASA Astrophysics Data System (ADS)

    Li, Xing; Gao, Dawen; Zhang, Baihui

    2010-11-01

    Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the study of distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in EBPR. Two SBRs were concurrently operated to investigate the different phosphorus removal characteristics between granules (R1) and flocculate sludge (R2). Results indicated that R2 had a faster progress for enriching phosphorus-accumulating organisms compared with R1, and the phosphorus removal reached the steady state after 40 days in R1 but only 30 days in R2. The moisture content of granules (85.63%) was smaller than that (91.36%) in R2, and the granules had a higher removal efficiency of NH4+-N. However, flocculent sludge could release and take up more phosphorus. The special phosphorus release rate (SPRR) and special phosphorus uptake rate (SPUR) were 8.818 mg/gVSSṡh and 9.921 mg/gVSSṡh in R2 which were consistently larger than that (0.999 mg/gVSSṡh and 0.754 mg/gVSSṡh) in R1. The results of DGGE of PCR-amplified 16SrDNA fragments revealed that the diversity and the amount of phosphorus accumulating microbial of bacteria in flocculent sludge were much more than that in the granules. It can be concluded that the flocculent sludge showed a better phosphorus removal.

  1. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants. PMID:25880602

  2. Assessment of Preparation Methods for Organic Phosphorus Analysis in Phosphorus-Polluted Fe/Al-Rich Haihe River Sediments Using Solution 31P-NMR

    PubMed Central

    Zhang, Wenqiang; Shan, Baoqing; Zhang, Hong; Tang, Wenzhong

    2013-01-01

    Fe/Al-rich river sediments that were highly polluted with phosphorus (P) were used in tests to determine the optimum preparation techniques for measuring organic P (Po) using solution 31P nuclear magnetic resonance spectroscopy (31P-NMR). The optimum pre-treatment, extraction time, sediment to solution ratio and sodium hydroxide-ethylenediaminetetraacetic acid (NaOH-EDTA) extractant solution composition were determined. The total P and Po recovery rates were higher from freeze- and air-dried samples than from fresh samples. An extraction time of 16 h was adequate for extracting Po, and a shorter or longer extraction time led to lower recoveries of total P and Po, or led to the degradation of Po. An ideal P recovery rate and good-quality NMR spectra were obtained at a sediment:solution ratio of 1∶10, showing that this ratio is ideal for extracting Po. An extractant solution of 0.25 M NaOH and 50 mM EDTA was found to be more appropriate than either NaOH on its own, or a more concentrated NaOH-EDTA mixture for 31P-NMR analysis, as this combination minimized interference from paramagnetic ions and was appropriate for the detected range of Po concentrations. The most appropriate preparation method for Po analysis, therefore, was to extract the freeze-dried and ground sediment sample with a 0.25 M NaOH and 50 mM EDTA solution at a sediment:solution ratio of 1∶10, for 16 h, by shaking. As lyophilization of the NaOH-EDTA extracts proved to be an optimal pre-concentration method for Po analysis in the river sediment, the extract was lyophilized as soon as possible, and analyzed by 31P-NMR. PMID:24143192

  3. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.

    PubMed

    Tian, Qing; Ong, Say Kee; Xie, Xuehui; Li, Fang; Zhu, Yanbin; Wang, Feng Rui; Yang, Bo

    2016-02-01

    The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs. PMID:26524149

  4. Monitoring intracellular polyphosphate accumulation in enhanced biological phosphorus removal systems by quantitative image analysis.

    PubMed

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Carvalheira, Mónica; Cunha, Jorge R; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2014-01-01

    A rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy. Due to contradictory literature regarding DAPI concentrations used for poly-P detection, the present work assessed the optimal DAPI concentration for samples acquired at the end of the EBPR aerobic stage when the accumulation occurred. Digital images were then acquired and processed by means of image processing and analysis. A correlation was found between average poly-P intensity values and the analytical determination. The proposed methodology can be seen as a promising alternative procedure for quantifying intracellular poly-P accumulation in a faster and less labour-intensive way. PMID:24901627

  5. Irradiation-enhanced reactivity of multilayer Al/Ni nanomaterials.

    PubMed

    Manukyan, Khachatur V; Tan, Wanpeng; deBoer, Richard J; Stech, Edward J; Aprahamian, Ani; Wiescher, Michael; Rouvimov, Sergei; Overdeep, Kyle R; Shuck, Christopher E; Weihs, Timothy P; Mukasyan, Alexander S

    2015-06-01

    We have investigated the effect of accelerated ion beam irradiation on the structure and reactivity of multilayer sputter deposited Al/Ni nanomaterials. Carbon and aluminum ion beams with different charge states and intensities were used to irradiate the multilayer materials. The conditions for the irradiation-assisted self-ignition of the reactive materials and corresponding ignition thresholds for the beam intensities were determined. We discovered that relatively short (40 min or less) ion irradiations enhance the reactivity of the Al/Ni nanomaterials, that is, significantly decrease the thermal ignition temperatures (Tig) and ignition delay times (τig). We also show that irradiation leads to atomic mixing at the Al/Ni interfaces with the formation of an amorphous interlayer, in addition to the nucleation of small (2-3 nm) Al3Ni crystals within the amorphous regions. The amorphous interlayer is thought to enhance the reactivity of the multilayer energetic nanomaterial by increasing the heat of the reaction and by speeding the intermixing of the Ni and the Al. The small Al3Ni crystals may also enhance reactivity by facilitating the growth of this Al-Ni intermetallic phase. In contrast, longer irradiations decrease reactivity with higher ignition temperatures and longer ignition delay times. Such changes are also associated with growth of the Al3Ni intermetallic and decreases in the heat of reaction. Drawing on this data set, we suggest that ion irradiation can be used to fine-tune the structure and reactivity of energetic nanomaterials. PMID:25915560

  6. Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel (S1)

    NASA Astrophysics Data System (ADS)

    Slomp, Caroline P.; Thomson, John; de Lange, Gert J.

    2002-04-01

    Phosphorus regeneration and burial fluxes during and after formation of the most recent sapropel S1 were determined for two deep-basin, low-sedimentation sites in the eastern Mediterranean Sea. Organic C/P ratios and burial fluxes indicate enhanced regeneration of P relative to C during deposition of sapropel S1. This is largely due to the enhanced release of P from organic matter during sulfate reduction. Release of P from Fe-bound P also increased, but this was only a relatively minor source of dissolved P. Pore-water HPO 42- concentrations remained too low for carbonate fluorapatite formation. An increased burial of biogenic Ca-P (i.e., fish debris) was observed for one site. Estimated benthic fluxes of P during sapropel formation were elevated relative to the present day (˜900 to 2800 vs. ˜70 to 120 μmol m -2 yr -1). The present-day sedimentary P cycle in the deep-basin sediments is characterized by two major zones of reaction: (1) the zone near the sediment-water interface where substantial release of HPO 42- from organic matter takes place, and (2) the oxidation front at the top of the S1 where upward-diffusing HPO 42- from below the sapropel is sorbed to Fe-oxides. The efficiency of aerobic organisms in retaining P is reflected in the low organic C/P ratios in the oxidized part of the sapropel. Burial efficiencies for reactive P were significantly lower during S1 times compared with the present day (˜7 to 15% vs. 64 to 77%). Budget calculations for the eastern Mediterranean Sea demonstrate that the weakening of the antiestuarine circulation and the enhanced regeneration of P both contributed to a significant increase in deep-water HPO 42- concentrations during sapropel S1 times. Provided that sufficient vertical mixing occurred, enhanced regeneration of P at the seafloor may have played a key role in maintaining increased productivity during sapropel S1 formation.

  7. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    PubMed

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation. PMID:26204227

  8. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. PMID:27295254

  9. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. PMID:27085149

  10. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems. PMID:25222332

  11. First-principles study of hydrogen-enhanced phosphorus diffusion in silicon

    NASA Astrophysics Data System (ADS)

    The Anh, Le; Tien Cuong, Nguyen; Lam, Pham Tien; Manoharan, Muruganathan; Mizuta, Hiroshi; Matsumura, Hideki; Otsuka, Nobuo; Hieu Chi, Dam

    2016-01-01

    We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs with P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies.

  12. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling.

    PubMed

    Bucci, Vanni; Majed, Nehreen; Hellweger, Ferdi L; Gu, April Z

    2012-03-20

    A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect

  13. Contrast of volatile fatty acid driven and inorganic acid or base driven phosphorus release and uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew A

    2012-04-01

    Addition of an inorganic acid or base was detrimental to net phosphorus removals in short-term batch experiments, suggesting there might be system upset when pH changes. In contrast, addition of volatile fatty acids (VFAs) increased anaerobic phosphorus release and aerobic phosphorus uptake while maintaining or improving net phosphorus removals. The effect of pH change differed if the acid or base added was inorganic versus organic. Volatile fatty acids that resulted in poly-3-hydroxy-butyrate rather than poly-3-hydroxy-valerate resulted in greater net phosphorus removals, and this corresponded to differences in consumption of reducing equivalents. Acetic acid resulted in improved net phosphorus removal compared to sodium acetate, suggesting that acid forms of VFAs might be superior as supplemental VFAs. It is hypothesized that anaerobic phosphorus release following addition of inorganic acid is primarily a result of phosphorus and proton (H+) symport (excretion from the cell) for pH homeostasis, whereas addition of VFAs results in phosphorus and H+ release to maintain the proton motive force. PMID:22834218

  14. Enhancing the hardness of Al/W nanostructured coatings.

    PubMed

    Burgmann, F A; McCulloch, D G; Ryves, L; Lim, S H N; McKenzie, D R; Bilek, M M M

    2009-02-01

    Two-component multilayer thin films frequently show hardness enhancements at specific repeat periods above that of the constituent layers. This study of hardness enhancements in W/Al nanostructured coatings provides strong new evidence that hardness enhancements in this system arise not only from the presence of a layered structure, but also from the presence of defects introduced by changing the deposition conditions. Samples with well defined layers of W and Al were produced by sputtering to cover a wide range of periods from 10 to 200 nm. No evidence of enhanced hardness in these films was found by nanoindentation. On the other hand, samples deposited from cathodic arc sources showed strong hardness enhancement above that of pure W. However, the samples of highest hardness did not contain Al layers for much of their thickness. The hardening mechanism therefore could not be attributed to the presence of a multilayer structure. Examination of the microstructure showed that the interruptions to the W deposition caused by operation of the Al source introduced defects which acted as pinning sites for dislocations. The nanoindentation hardness data were well described using a modified Hall-Petch relation. PMID:21817290

  15. Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater.

    PubMed

    Zhou, Yunan; Xing, Xin-Hui; Liu, Zehua; Cui, Liwen; Yu, Anfeng; Feng, Quan; Yang, Haijun

    2008-05-01

    Phosphorus removal from wastewater is of great importance. In the present study, ferric chloride was selected as the coagulant, and tannic acid (TA), a natural polymer, as the coagulant aid to develop an effective coagulation process with the emphasis of phosphorus recovery from different types of wastewater. The results showed that TA can accelerate the settling speed by forming flocs with large size, reduce the residual Fe(III) to eliminate the yellow color caused by Fe(III), and slightly increase the phosphorus removal efficiency. The precipitate formed by TA-aided coagulation showed the advantage of releasing phosphorus faster than ferric phosphate, indicating the possibility of phosphorus recovery from wastewater as slow release fertilizer. To further understand the structural characteristics of the precipitate, analytical techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry were employed. The analytical results indicated that TA-Fe-P complex was formed during the coagulation/flocculation processes. Solid phase in the precipitate consisted of TA-Fe-P complex, Fe-TA complex and/or ferric hydroxyphosphate. PMID:18395769

  16. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants.

    PubMed

    Albertsen, Mads; McIlroy, Simon J; Stokholm-Bjerregaard, Mikkel; Karst, Søren M; Nielsen, Per H

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial "Candidatus Accumulibacter phosphatis" (Accumulibacter) and the model GAO being the gammaproteobacterial "Candidatus Competibacter phosphatis". Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  17. “Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants

    PubMed Central

    Albertsen, Mads; McIlroy, Simon J.; Stokholm-Bjerregaard, Mikkel; Karst, Søren M.; Nielsen, Per H.

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  18. Enhanced adsorption and regeneration with lignocellulose-based phosphorus removal media using molecular coating nanotechnology.

    PubMed

    Kim, Juyoung; Mann, Justin D; Kwon, Soonjo

    2006-01-01

    The removal of phosphorus in point and non-point-source pollution has become one of the leading problems in water quality since the beginning of the 21st century. Several natural, domestic, and industrial treatment systems already exist, but with very limited efficiencies and serious procedural defects. Lignocellulose-based Anion Removal Media (LAM) was developed in association with iron nanocoating technology as means of phosphorus adsorption from various concentrations of contaminated water. Results revealed that trivalent iron coated lignocellulose pellets can be used to effectively remove phosphorus contaminants from point and non-point-source polluted water. Removal capacities of pelletized cotton media surpass existing materials for phosphorus removal by at least 22 times, while remaining both efficient and cost effective. The materials were also investigated for regeneration, yielding high removal capacities even after the fifth regeneration. Treatment methodology and outlines are proposed, and procedural mechanisms are explored in this study. An economic evaluation of this technology is also assessed for a practical application of LAM to point/non-point-source polluted water. PMID:16401573

  19. Adhesion enhancement of ion beam mixed Cu/Al/polyimide

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Jung, S. M.; Lee, Y. S.; Choi, I. S.; Whang, C. N.; Woo, J. J.; Lee, Y. P.

    1997-01-01

    Cu (400 Å)/polyimide was mixed with 80 keV Ar+ and N2+ from 1.0×1015 to 2.0×1016 ions/cm2. The same processes were repeated for the Cu (400 Å)/Al (50 Å)/polyimide system which has Al as a buffer layer. The quantitative adhesion strength was measured by a standard scratch test. X-ray photoelectron spectroscopy was employed to investigate the change in the chemical bonds of the ion beam mixed polyimide substrate and the intermediate effects for the adhesion enhancement in Cu/Al/polyimide. Two distinct tendencies are observed in the adhesion strength: Cu/Al/polyimide is more adhesive than Cu/polyimide after ion beam mixing, and N2+ ions are more effective in the adhesion enhancement than Ar+. The formation of an interlayer compound of CuAl2O4 accounts for the former, while the latter is understood by the fact that N2+ ions produce more pyridinelike moiety, amide group and tertiary amine moiety which are known as adhesion promoters.

  20. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation.

    PubMed

    Zhang, Yuanjian; Mori, Toshiyuki; Ye, Jinhua; Antonietti, Markus

    2010-05-12

    As a new kind of polymeric semiconductors, graphitic carbon nitride (g-C(3)N(4)) and its incompletely condensed precursors are stable up to 550 degrees C in air and have shown promising photovoltaic applications. However, for practical applications, their efficiency, limited e.g. by band gap absorption, needs further improvement. Here we report a "structural doping" strategy, in which phosphorus heteroatoms were doped into g-C(3)N(4) via carbon sites by polycondensation of the mixture of the carbon nitride precursors and phosphorus source (specifically from 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid). Most of the structural features of g-C(3)N(4) were well retained after doping, but electronic features had been seriously altered, which provided not only a much better electrical (dark) conductivity up to 4 orders of magnitude but also an improvement in photocurrent generation by a factor of up to 5. In addition to being active layers in solar cells, such phosphorus-containing scaffolds and materials are also interesting for polymeric batteries as well as for catalysis and as catalytic supports. PMID:20397632

  1. Enhanced TC in granular and thin film Al-Al2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Higgins, J. S.; Greene, R. L.

    It is known since the 1970s that the superconducting transition temperature of granular aluminum films can be as high as two to three times the transition temperature of bulk aluminum, depending on the grain size and how strongly the nanometer size grains are connected1,2. As the strength of the grain connectivity becomes increasingly weak, the enhanced TC is suppressed. The mechanism behind this enhancement is still under debate. Recently, work on larger aluminum nanoparticles (18nm) embedded in an insulating Al2O3 matrix showed an onset of the superconducting transition as high as three times that of bulk aluminum3. In this situation, the Al grains are electrically disconnected and in a regime far removed from that of the granular films. Here we compare the two situations through electronic and thermal measurements in order to help elucidate the mechanism behind the enhancements. 1S. Pracht, et al., arXiv:1508.04270v1 [cond-mat.supr-con] (2015). 2G. Deutscher, New Superconductors From Granular to High TC, New Jersey: World Scientific, 2006, p. 72-74. 3V. N. Smolyaninova, et al., Sci. Rep. 5, 15777 (2015). Funding by NSF DMR # 1410665.

  2. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater. PMID:26937943

  3. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation.

    PubMed

    Li, Miao; Wu, Yue-Jin; Yu, Zeng-Liang; Sheng, Guo-Ping; Yu, Han-Qing

    2009-03-01

    Ipomoea aquatica with low-energy N+ ion implantation was used for the removal of both nitrogen and phosphorus from the eutrophic Chaohu Lake, China. The biomass growth, nitrate reductase and peroxidase activities of the implanted I. aquatica were found to be higher than those of I. aquatica without ion implantation. Higher NO3-N and PO4-P removal efficiencies were obtained for the I. aquatica irradiation at 25 keV, 3.9 x 10(16) N+ ions/cm(2) and 20 keV 5.2 x 10(16) N+ ions/cm(2), respectively (p < 0.05). Moreover, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those of the controls. I. aquatica with ion implantation was directly responsible for 51-68% N removal and 54-71% P removal in the three experiments. The results further confirm that the ion implantation could enhance the growth potential of I. aquatica in real eutrophic water and increase its nutrient removal efficiency. Thus, the low-energy ion implantation for aquatic plants could be considered as an approach for in situ phytoremediation and bioremediation of eutrophic waters. PMID:19147171

  4. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution.

    PubMed

    Guo, Shien; Deng, Zhaopeng; Li, Mingxia; Jiang, Baojiang; Tian, Chungui; Pan, Qingjiang; Fu, Honggang

    2016-01-26

    Phosphorus-doped hexagonal tubular carbon nitride (P-TCN) with the layered stacking structure was obtained from a hexagonal rod-like single crystal supramolecular precursor (monoclinic, C2/m). The production process of P-TCN involves two steps: 1) the precursor was prepared by self-assembly of melamine with cyanuric acid from in situ hydrolysis of melamine under phosphorous acid-assisted hydrothermal conditions; 2) the pyrolysis was initiated at the center of precursor under heating, thus giving the hexagonal P-TCN. The tubular structure favors the enhancement of light scattering and active sites. Meanwhile, the introduction of phosphorus leads to a narrow band gap and increased electric conductivity. Thus, the P-TCN exhibited a high hydrogen evolution rate of 67 μmol h(-1) (0.1 g catalyst, λ >420 nm) in the presence of sacrificial agents, and an apparent quantum efficiency of 5.68 % at 420 nm, which is better than most of bulk g-C3 N4 reported. PMID:26692105

  5. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  6. Microalloying ultrafine grained Al alloys with enhanced ductility.

    PubMed

    Jiang, L; Li, J K; Cheng, P M; Liu, G; Wang, R H; Chen, B A; Zhang, J Y; Sun, J; Yang, M X; Yang, G

    2014-01-01

    Bulk ultrafine grained (UFG)/nanocrystal metals possess exceptional strength but normally poor ductility and thermal stability, which hinder their practical applications especially in high-temperature environments. Through microalloying strategy that enables the control of grains and precipitations in nanostructured regime, here we design and successfully produce a highly microstructure-stable UFG Al-Cu-Sc alloy with ~275% increment in ductility and simultaneously ~50% enhancement in yield strength compared with its Sc-free counterpart. Although the precipitations in UFG alloys are usually preferentially occurred at grain boundaries even at room temperature, minor Sc addition into the UFG Al-Cu alloys is found to effectively stabilize the as-processed microstructure, strongly suppress the θ-Al2Cu phase precipitation at grain boundary, and remarkably promote the θ'-Al2Cu nanoparticles dispersed in the grain interior in artificial aging. A similar microalloying strategy is expected to be equally effective for other UFG heat-treatable alloys. PMID:24398915

  7. Microalloying Ultrafine Grained Al Alloys with Enhanced Ductility

    PubMed Central

    Jiang, L.; Li, J. K.; Cheng, P. M.; Liu, G.; Wang, R. H.; Chen, B. A.; Zhang, J. Y.; Sun, J.; Yang, M. X.; Yang, G.

    2014-01-01

    Bulk ultrafine grained (UFG)/nanocrystal metals possess exceptional strength but normally poor ductility and thermal stability, which hinder their practical applications especially in high-temperature environments. Through microalloying strategy that enables the control of grains and precipitations in nanostructured regime, here we design and successfully produce a highly microstructure-stable UFG Al-Cu-Sc alloy with ~275% increment in ductility and simultaneously ~50% enhancement in yield strength compared with its Sc-free counterpart. Although the precipitations in UFG alloys are usually preferentially occurred at grain boundaries even at room temperature, minor Sc addition into the UFG Al-Cu alloys is found to effectively stabilize the as-processed microstructure, strongly suppress the θ-Al2Cu phase precipitation at grain boundary, and remarkably promote the θ′-Al2Cu nanoparticles dispersed in the grain interior in artificial aging. A similar microalloying strategy is expected to be equally effective for other UFG heat-treatable alloys. PMID:24398915

  8. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.

    PubMed

    Yaghi, Nader; Hartikainen, Helinä

    2013-11-01

    Phosphorus (P) loading from non-point or point sources increases the eutrophication risk of natural waters. The functioning of constructed wetlands (CWs) used as natural water treatment systems can be improved by means of additional materials adsorbing soluble P. In this study, light expanded clay aggregates (LECA) and LECA coated with aluminum (Al) oxide (Al-LECA) or iron (Fe) oxide (Fe-LECA) were tested for their efficiency as P sorbents in the pH range 3-8. The oxide coatings duplicated the actual sorption capacity calculated from the sorption isotherms at the P concentration in the equilibrium solution of 20 μg L(-1), assumed to be the allowable P level in purified water. In the oxide-coated LECAs the sorption was fast and followed both the first- and second-order Lagergren kinetic models, suggesting that the formation of a binuclear surface complex was feasible. In LECA, sorption was markedly slower and followed the first-order kinetic model, indicating that retention occurred through a monodentate attachment. These findings were in harmony with the degree of P saturation (DPS) of the sorbent surfaces at the highest P addition level (200 μg L(-1)), DPS being decisively higher for LECA than for the oxide-coated sorbents. Accordingly, at higher pH values the competition by hydroxyl ions diminished the sorption in LECA relatively more than that in the coated sorbents. In agreement with the acidity of Al(3+) being 100 times lower than that of Fe(3+), at elevated pH the sorption by Al-LECA proved to be less reversible than that by Fe-LECA. The results provide evidence that in CWs Al-coated sorbents are superior to Fe-coated ones that are also redox-sensitive and may lose their sorption properties in anoxic conditions. PMID:23866174

  9. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge. PMID:26092200

  10. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). PMID:25189512

  11. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. PMID:27472749

  12. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal.

    SciTech Connect

    Wilmes, P; Andersson, Anders F.; Lefsrud, Mark G; Wexler, Margaret; Shah, Manesh B; Zhang, B; Hettich, Robert {Bob} L; Bond, P. L.; Verberkmoes, Nathan C; Banfield, Jillian F.

    2008-01-01

    Enhanced biological phosphorus removal (EBPR) selects for polyphosphate accumulating organisms to achieve phosphate removal from wastewater. We used highresolution community proteomics to identify key metabolic pathways in "Candidatus Accumulibacter phosphatis"-mediated EBPR and to evaluate the contributions of co- 5 existing strains within the dominant population. Results highlight the importance of denitrification, fatty acid cycling and the glyoxylate bypass in EBPR. Despite overall strong similarity in protein profiles under anaerobic and aerobic conditions, fatty acid degradation proteins were more abundant during the anaerobic phase. By comprehensive genome-wide alignment of orthologous proteins, we uncovered strong 10 functional partitioning for enzyme variants involved in both core-metabolism and EBPR-specific pathways among the dominant strains. These findings emphasize the importance of genetic diversity in maintaining the stable performance of EBPR systems and demonstrate the power of integrated cultivation-independent genomics and proteomics for analysis of complex biotechnological systems.

  13. The potential role of 'Candidatus Microthrix parvicella' in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants.

    PubMed

    Wang, Juan; Qi, Rong; Liu, Miaomiao; Li, Qian; Bao, Haipeng; Li, Yaming; Wang, Shen; Tandoi, Valter; Yang, Min

    2014-01-01

    We investigated the bacterial community compositions and phosphorus removal performance under sludge bulking and non-bulking conditions in two biological wastewater treatment systems (conventional A²/O (anaerobic/anoxic/aerobic) and inverted A²/O (anoxic/anaerobic/aerobic) processes) receiving the same raw wastewater. Sludge bulking resulted in significant shift in bacterial compositions from Proteobacteria dominance to Actinobacteria dominance, characterized by the significant presence of filamentous 'Candidatus Microthrix parvicella'. Quantitative real-time polymerase chain reaction (PCR) analysis revealed that the relative abundance of 'Candidatus Accumulibacter phosphatis', a key polyphosphate-accumulating organism responsible for phosphorus removal, with respect to 16s rRNA genes of total bacteria was 0.8 and 0.7%, respectively, for the conventional and inverted A²/O systems when sludge bulking occurred, which increased to 8.2 and 12.3% during the non-bulking period. However, the total phosphorus removal performance during the bulking period (2-week average: 97 ± 1 and 96 ± 1%, respectively) was not adversely affected comparable to that during the non-bulking period (2-week average: 96 ± 1 and 96 ± 1%, respectively). Neisser staining revealed the presence of large polyphosphate granules in 'Candidatus Microthrix parvicella', suggesting that this microbial group might have been responsible for phosphorus removal during the sludge bulking period when 'Candidatus Accumulibacter phosphatis' was excluded from the systems. PMID:25051486

  14. Microstructural and Fracture Behavior of Phosphorus-Containing Fe-30Mn-9Al-1Si-0.9C-0.5Mo Alloy Steel

    NASA Astrophysics Data System (ADS)

    Howell, Ryan A.; Van Aken, David C.

    2015-08-01

    Five different phosphorus (P)-containing heat-treated Fe-Mn-Al-C alloys were tested in accordance with ASTM E 23 Charpy V-notch Energy (CVNE) standards. Room temperature CVNE of solution treated and quenched specimens revealed ductile fracture for 0.001 and 0.006 wt pct (pct P-containing alloys). Brittle cleavage fracture dominated the 0.043 and 0.07 pct P-containing alloys. A hard brittle P eutectic phase was observed in the 0.07 pct P-containing alloy.

  15. Enhanced fibroblast cell adhesion on Al/Al2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Aktas, O. C.; Sander, M.; Miró, M. M.; Lee, J.; Akkan, C. K.; Smail, H.; Ott, A.; Veith, M.

    2011-02-01

    Biological cells stick together via transmembrane proteins, which are linked to receptor molecules of the extracellular matrix (ECM). This specific biochemical adhesion plays a leading role in many cellular processes, among them cell differentiation, morphogenesis, and wound healing. Various medical applications require endogen cells to bind to an exogene substrate as in the case of an implant. Coatings with proteins that naturally belong to the ECM are known to enhance the cell adhesion. However, the choice of inorganic materials, which promote cell adhesion, is limited. Here, we report on a new engineered surface composed of Al/Al2O3 bi-phasic nanowires (NWs), which promotes the adhesion of fibroblast cells. Fibroblasts grow well on this inorganic layer and keep proliferating. Using the cell monolayer rheology (CMR) technique, we show that the adhesion of fibroblasts on Al/Al2O3 NWs is comparable to fibronectin coated surfaces. To our knowledge, this is one of the strongest cell adhesions on an inorganic surface, which has been reported on so far, since it compares to bio-organic layers such as fibronectin.

  16. Analysis of poly-β-hydroxyalkonates (PHA) during the enhanced biological phosphorus removal process using FTIR spectroscopy.

    PubMed

    Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing

    2014-06-01

    Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge. PMID:25358156

  17. Arbuscular Mycorrhizal Fungi Promote the Growth of Ceratocarpus arenarius (Chenopodiaceae) with No Enhancement of Phosphorus Nutrition

    PubMed Central

    Bai, Dengsha; Chen, Yinglong; Feng, Gu

    2012-01-01

    The mycorrhizal status of plants in the Chenopodiaceae is not well studied with a few controversial reports. This study examined arbuscular mycorrhizal (AM) colonization and growth response of Ceratocarpus arenarius in the field and a greenhouse inoculation trial. The colonization rate of AM fungi in C. arenarius in in-growth field cores was low (around 15%). Vesicles and intraradical hyphae were present during all growth stages, but no arbuscules were observed. Sequencing analysis of the large ribosomal rDNA subunit detected four culturable Glomus species, G. intraradices, G. mosseae, G. etunicatum and G. microaggregatum together with eight unculturable species belong to the Glomeromycota in the root system of C. arenarius collected from the field. These results establish the mycotrophic status of C. arenarius. Both in the field and in the greenhouse inoculation trial, the growth of C. arenarius was stimulated by the indigenous AM fungal community and the inoculated AM fungal isolates, respectively, but the P uptake and concentration of the mycorrhizal plants did not increase significantly over the controls in both experiments. Furthermore, the AM fungi significantly increased seed production. Our results suggest that an alternative reciprocal benefit to carbon-phosphorus trade-off between AM fungi and the chenopod plant might exist in the extremely arid environment. PMID:22957011

  18. Phosphorus-doped tin oxides/carbon nanofibers webs as lithium-ion battery anodes with enhanced reversible capacity

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Teng, Donghua; Li, Ting; Yu, Yunhua; Shao, Xiaohong; Yang, Xiaoping

    2014-12-01

    Phosphorus-doped tin oxides/carbon nanofibers (P-SnOx/CNFs) composite materials are prepared via electrospinning of a mixed solution composed of polyacrylonitrile (PAN), N,N-dimethyl formamide (DMF), tin tetrachloride, ethylene glycol and phosphoric acid as well as subsequent thermal treatments. The P-SnOx/CNFs samples with tunable P-doping contents are directly used as anodes for lithium-ion batteries without any binders and conductors, exhibiting enhanced reversible capacities and cycling stabilities in comparison with pristine undoped SnOx/CNFs (0P-SnOx/CNFs). In a controlled experiment, the 0.25P-SnOx/CNFs anode with the atomic ratio of P:Sn = 0.25:1 shows the highest specific reversible capacity of 676 mA h g-1 at 200 mA g-1 after 100 cycles. Even at a higher current density of 2000 mA g-1, it still maintains a superior specific reversible capacity of 288 mA h g-1. The improved electrochemical performances are attributed to the P-doping effects such as inducement of a stable structural protection for tin particles, and enhancement of lithium ion diffusion coefficient and electron kinetics of electrode materials.

  19. Role of extracellular polymeric substances in enhancement of phosphorus release from waste activated sludge by rhamnolipid addition.

    PubMed

    He, Zhang-Wei; Liu, Wen-Zong; Wang, Ling; Yang, Chun-Xue; Guo, Ze-Chong; Zhou, Ai-Juan; Liu, Jian-Yong; Wang, Ai-Jie

    2016-02-01

    This study investigated the role of extracellular polymeric substances (EPSs) in enhanced performance of phosphorus (P) release from waste activated sludge (WAS) by adding rhamnolipid (RL). Results showed that compared to WAS without pretreatment, the released PO4(3-)-P increased with RL addition from 0 to 0.2 g/gTSS (total suspended solid), and increased by 208% under the optimal condition (0.1 g RL/g TSS and 72-h fermentation time). The cumulative PO4(3-)-P was better fitted with pseudo-first-order kinetic model. Moreover, the contents of metal ions increased in liquid but decreased in EPSs linearly with RL addition increasing, and WAS solubilizations were positively correlated with the released metal ions. The enhanced total dissolved P mainly came from cells and others (69.39%, 2.27-fold higher than that from EPSs), and PO4(3-)-P was the main species in both liquid and loosely bound EPSs, but organic P should be non-negligible in tightly bound EPSs. PMID:26700759

  20. Phosphorus Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Phosphorus Share this page: Was this page helpful? Also ... else I should know? How is it used? Phosphorus tests are most often ordered along with other ...

  1. Effects of injection of acetic acid and propionic acid for total phosphorus removal at high temperature in enhanced biological phosphorus removal process.

    PubMed

    Ki, C Y; Kwon, K H; Kim, S W; Min, K S; Lee, T U; Park, D J

    2014-01-01

    In summer, wastewater treatment plant total phosphorus (TP) removal efficiency is low in South Korea. The reason is because of high temperatures or significant fluctuation of inflow characteristics caused by frequent rainfall. Hence, this study tried to raise TP removal efficiency by injecting fixed external carbon sources in real sewage. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) compete to occupy microorganisms at high temperature. Propionate is known to restrain GAOs. Thus, acetate and propionate were chosen as the external carbon source in this study to find out the suitable volume and ratio of carbon source which ensured the dominance of PAOs. An external carbon source was supplied in the anaerobic reactor of the biological phosphorus removal process at high temperature (above 25 °C). TP removal efficiency was improved by injecting an external carbon source compared to that without an external carbon source. Also, it remained relatively stable when injecting an external carbon source, despite the variation in temperature. TP removal efficiency was the highest when injecting acetate and propionate in the proportion of 2:1 (total concentration as chemical oxygen demand (COD) is 12 mg/L in influent). PMID:24845316

  2. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration.

    PubMed

    Vera, I; Araya, F; Andrés, E; Sáez, K; Vidal, G

    2014-08-01

    Phosphorus (P) contained in sewage maybe removed by mesocosm-scale constructed wetlands (MCW), although removal efficiency is only between 20% and 60%. P removal can be enhanced by increasing wetland adsorption capacity using special media, like natural zeolite, operating under aerobic conditions (oxidation-reduction potential (ORP) above +300 mV). The objective of this study was to evaluate P removal in sewage treated by MCW with artificial aeration and natural zeolite as support medium for the plants. The study compared two parallel lines of MCW: gravel and zeolite. Each line consisted in two MCW in series, where the first MCW of each line has artificial aeration. Additionally, four aeration strategies were evaluated. During the operation, the following parameters were measured in each MCW: pH, temperature, dissolved oxygen and ORP. Phosphate (PO4(-3) - P) and chemical oxygen demand (COD), five-day biological oxygen demand (BOD5), total suspended solids (TSS) and ammonium. (NH4(+) - N) were evaluated in influents and effluents. Plant growth (biomass) and proximate analysis for P content into Schoenoplectus californicus were also performed. The results showed that PO4(-3) - P removal efficiency was 70% in the zeolite medium, presenting significant differences (p < .05) with the results obtained by the gravel medium. Additionally, aeration was found to have a significant effect (p < .05) only in the gravel medium with an increase in up to 30% for PO43 - P removal. Thus, S. californicus contributed to 10-20% of P removal efficiency. PMID:24956754

  3. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi.

    PubMed

    Raliya, Ramesh; Tarafdar, Jagadish Chandra; Biswas, Pratim

    2016-04-27

    Phosphorus (P) is a limiting factor to plant growth and productivity in almost half of the world's arable soil, and its uptake in plants is often constrained because of its low solubility in the soil. To avoid repeated and large quantity application of rock phosphate as a P fertilizer and enhance the availability of native P acquisition by the plant root surface, in this study a biosynthesized ZnO nanoparticle was used. Zn acts as a cofactor for P-solubilizing enzymes such as phosphatase and phytase, and nano ZnO increased their activity between 84 and 108%. The level of resultant P uptake in mung bean increased by 10.8%. In addition, biosynthesized ZnO also improves plant phenology such as stem height, root volume, and biochemical indicators such as leaf protein and chlorophyll contents. In the rhizosphere, increased chlorophyll content and root volume attract microbial populations that maintain soil biological health. ICP-MS results showed ZnO nanoparticles were distributed in all plant parts, including seeds. However, the concentration of Zn was within the limit of the dietary recommendation. To the best of our knowledge, this is the first holistic study focusing on native P mobilization using ZnO nanoparticles in the life cycle of mung bean plants. PMID:27054413

  4. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge.

    PubMed

    Zhou, Yan; Pijuan, Maite; Zeng, Raymond J; Yuan, Zhiguo

    2008-11-15

    Nitrite has generally been recognized as an inhibitor of N2O reduction during denitrification. This inhibitory effect is investigated under various pH conditions using a denitrifying-enhanced biological phosphorus removal (EBPR) sludge. The degree of inhibition was observed to correlate much more strongly with the free nitrous acid (FNA) concentration than with the nitrite concentration, suggesting that FNA, rather than nitrite, is likely the true inhibitor on N2O reduction. Fifty percent inhibition was observed at an FNA concentration of 0.0007-0.001 mg HNO2-N/L (equivalent to approximately 3-4 mg NO2(-) -N/L at pH 7), while complete inhibition occurred when the FNA concentration was greater than 0.004 mg HNO2-N/L. The results also suggest that the inhibition on N2O reduction was not due to the electron competition between N2O and NO2- reductases. The inhibition was found to be reversible, with the rate of recovery independent of the duration of the inhibition, but dependent on the concentration of FNAthe biomass was exposed to during the inhibition period. A higher FNA concentration caused slower recovery. PMID:19068803

  5. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure. PMID:23477409

  6. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  7. Investigation into cyclic utilization of carbon source in an advanced sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER) wastewater treatment process.

    PubMed

    Yan, Peng; Ji, Fang-Ying; Wang, Jing; Chen, You-Peng; Shen, Yu; Fang, Fang; Guo, Jin-Song

    2015-01-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously reduce sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The ability to recover organic substance from excess sludge to enhance nutrient removal (especially nitrogen) and its performance as a C-source were evaluated in this study. The chemical oxygen demand/total nitrogen (COD/TN) and volatile fatty acids/total phosphorus (VFA/TP) ratios for the supernatant of the alkaline-treated sludge were 3.1 times and 2.7 times those of the influent, respectively. The biodegradability of the supernatant was much better than that of the influent. The system COD was increased by 91 mg/L, and nitrogen removal was improved by 19.6% (the removal rate for TN reached 80.4%) after the return of the alkaline-treated sludge as an internal C-source. The C-source recovered from the excess sludge was successfully used to enhance nitrogen removal. The internal C-source contributed 24.1% of the total C-source, and the cyclic utilization of the system C-source was achieved by recirculation of alkaline-treated sludge in the sludge reduction, inorganic solids separation, phosphorus recovery (SIPER) process. PMID:26524455

  8. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs. PMID:19470091

  9. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. PMID:27058131

  10. MCrAlY bond coat with enhanced Yttrium layer

    DOEpatents

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  11. A Substance Flow Model for Global Phosphorus

    NASA Astrophysics Data System (ADS)

    Vaccari, D. A.

    2015-12-01

    A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.

  12. [sup 31]P and [sup 27]Al NMR investigations of highly acidic, aqueous solutions containing aluminum and phosphorus

    SciTech Connect

    Mortlock, R.F.; Bell, A.T.; Radke, C.J. Univ. of California, Berkeley )

    1993-01-21

    [sup 31]P and [sup 27]Al NMR spectroscopies have been used to characterize acidic, aqueous solutions of orthophosphoric acid, aluminum chloride, and tetramethylammonium (TMA) hydroxide. The final compositions of the solutions range from 0.1 to 1 mol % P, 0.0 to 20 mol % HCl, P/Al = 0.1 to 20, and P/(TMA)[sub 2]O = 2 to 20. Soluble aluminophosphate cations form reactions of hexaaqua Al monomeric cations, [Al(H[sub 2]O)[sub 6

  13. Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon

    NASA Astrophysics Data System (ADS)

    Cai, Feiyang; Dong, Yuanwei; Tan, Yew Heng; Tan, Chuan Seng; (Maggie Xia, Guangrui

    2015-10-01

    Si-Ge interdiffusion with different P doping configurations was investigated. Significant interdiffusion happened when the Ge layers were doped with P in high 1018 cm-3 range, which resulted in a SiGe alloy region thicker than 150 nm after defect annealing cycles. With high P doped Ge, Si-Ge interdiffusivity is enhanced by 10-20 times in the xGe > 0.7 region compared with the control sample without P doping. We attribute this phenomenon to the much faster P transport towards the Ge seeding layers from the Ge side during the Ge layer growth, which increases the negatively charged vacancy concentrations and thus the interdiffusivity due to the Fermi effect in Si-Ge interdiffusion. This work is relevant to Ge-on-Si type device design, especially Ge-on-Si lasers.

  14. Implications of phosphorus redox geochemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew

    2015-04-01

    Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.

  15. MCrAlY bond coat with enhanced yttrium

    DOEpatents

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2016-08-30

    One or more embodiments relates to a method of producing an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. The method comprises depositing an MCrAlY material on a substrate, applying an Y.sub.2O.sub.3 paste, and heating the substrate in a non-oxidizing atmosphere at a temperature between 400-1300.degree. C. for a time sufficient to generate the Y--Al.sub.2O.sub.3 layer. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y.sub.2O.sub.3, YAG, and YAP phases.

  16. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    SciTech Connect

    Richter, Armin Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  17. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review.

    PubMed

    Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M

    2015-08-18

    The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered. PMID:25950504

  18. Enhanced solubility and ecological impact of atmospheric phosphorus deposition upon extended seawater exposure.

    PubMed

    Mackey, Katherine R M; Roberts, Kathryn; Lomas, Michael W; Saito, Mak A; Post, Anton F; Paytan, Adina

    2012-10-01

    Atmospheric P solubility affects the amount of P available for phytoplankton in the surface ocean, yet our understanding of the timing and extent of atmospheric P solubility is based on short-term leaching experiments where conditions may differ substantially from the surface ocean. We conducted longer- term dissolution experiments of atmospheric aerosols in filtered seawater, and found up to 9-fold greater dissolution of P after 72 h compared to instantaneous leaching. Samples rich in anthropogenic materials released dissolved inorganic P (DIP) faster than mineral dust. To gauge the effect of biota on the fate of atmospheric P, we conducted field incubations with aerosol samples collected in the Sargasso Sea and Red Sea. In the Sargasso Sea phytoplankton were not P limited, and biological activity enhanced DIP release from aerosols, and aerosols induced biological mineralization of dissolved organic P in seawater, leading to DIP accumulation. However, in the Red Sea where phytoplankton were colimited by P and N, soluble P was rapidly consumed by phytoplankton following aerosol enrichment. Our results suggest that atmospheric P dissolution could continue over multiple days once reaching the surface ocean, and that previous estimates of atmospheric P deposition may underestimate the contribution from this source. PMID:22574853

  19. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas. PMID:26092358

  20. Performance and metabolic aspects of a novel enhanced biological phosphorus removal system with intermittent feeding and alternate aeration.

    PubMed

    Melidis, Paraschos; Kapagiannidis, Anastasios G; Ntougias, Spyridon; Davididou, Konstantina; Aivasidis, Alexander

    2014-01-01

    A novel enhanced biological phosphorus removal (EBPR) system, which combined the intermittent feeding design with an anaerobic selector, was examined using on-line oxidation reduction potential (ORP), nitrate and ammonium probes. Two experimental periods were investigated: the aerobic and anoxic phases were set at 40 and 20 minutes respectively for period I, and set at 30 and 30 minutes for period II. Chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and P removal were measured as high as 87%, 96% and 93% respectively, while total Kjeldahl nitrogen (TKN) and NH4(+) removal averaged 85% and 91%. Two specific denitrification rates (SDNRs), which corresponded to the consumption of the readily biodegradable and slowly biodegradable COD, were determined. SDNR-1 and SDNR-2 during period I were 0.235 and 0.059 g N g(-1) volatile suspended solids (VSS) d(-1) respectively, while the respective rates during period II were 0.105 and 0.042 g N g(-1) VSS d(-1). The specific nitrate formation and ammonium oxidizing rates were 0.076 and 0.064 g N g(-1) VSS d(-1) for period I and 0.065 and 0.081 g N g(-1) VSS d(-1) for period II respectively. The specific P release rates were 2.79 and 4.02 mg P g(-1) VSS h(-1) during period I and II, while the respective anoxic/aerobic uptake rates were 0.42 and 0.55 mg P g(-1) VSS h(-1). This is the first report on an EBPR scheme using the intermittent feeding strategy. PMID:24759519

  1. Dynamics of Microbial Community Structure of and Enhanced Biological Phosphorus Removal by Aerobic Granules Cultivated on Propionate or Acetate▿

    PubMed Central

    Gonzalez-Gil, Graciela; Holliger, Christof

    2011-01-01

    Aerobic granules are dense microbial aggregates with the potential to replace floccular sludge for the treatment of wastewaters. In bubble-column sequencing batch reactors, distinct microbial populations dominated propionate- and acetate-cultivated aerobic granules after 50 days of reactor operation when only carbon removal was detected. Propionate granules were dominated by Zoogloea (40%), Acidovorax, and Thiothrix, whereas acetate granules were mainly dominated by Thiothrix (60%). Thereafter, an exponential increase in enhanced biological phosphorus removal (EBPR) activity was observed in the propionate granules, but a linear and erratic increase was detected in the acetate ones. Besides Accumulibacter and Competibacter, other bacterial populations found in both granules were associated with Chloroflexus and Acidovorax. The EBPR activity in the propionate granules was high and stable, whereas EBPR in the acetate granules was erratic throughout the study and suffered from a deterioration period that could be readily reversed by inducing hydrolysis of polyphosphate in presumably saturated Accumulibacter cells. Using a new ppk1 gene-based dual terminal-restriction fragment length polymorphism (T-RFLP) approach revealed that Accumulibacter diversity was highest in the floccular sludge inoculum but that when granules were formed, propionate readily favored the dominance of Accumulibacter type IIA. In contrast, acetate granules exhibited transient shifts between type I and type II before the granules were dominated by Accumulibacter type IIA. However, ppk1 gene sequences from acetate granules clustered separately from those of propionate granules. Our data indicate that the mere presence of Accumulibacter is not enough to have consistently high EBPR but that the type of Accumulibacter determines the robustness of the phosphate removal process. PMID:21926195

  2. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants.

    PubMed

    Kong, Yunhong; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2004-09-01

    The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants. PMID:15345424

  3. Spectra of surface plasmon polariton enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

    SciTech Connect

    Hickmott, T. W.

    2015-03-07

    Narrow band-pass filters have been used to measure the spectral distribution of electroluminescent photons with energies between 1.8 eV and 3.0 eV from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. Electroforming of metal-insulator-metal (MIM) diodes is a non-destructive dielectric breakdown that results in a conducting channel in the insulator and changes the initial high resistance of the MIM diode to a low resistance state. It is a critical step in the development of resistive-switching memories that utilize MIM diodes as the active element. Electroforming of Al-Al{sub 2}O{sub 3}-Ag diodes in vacuum results in voltage-controlled negative resistance (VCNR) in the current-voltage (I-V) characteristics. Electroluminescence (EL) and electron emission into vacuum (EM) develop simultaneously with the current increase that results in VCNR in the I-V characteristics. EL is due to recombination of electrons injected at the Al-Al{sub 2}O{sub 3} interface with radiative defect centers in Al{sub 2}O{sub 3}. Measurements of EL photons between 1.8 eV and 3.0 eV using a wide band-pass filter showed that EL intensity is exponentially dependent on Al{sub 2}O{sub 3} thickness for Al-Al{sub 2}O{sub 3}-Ag diodes between 12 nm and 20 nm thick. Enhanced El intensity in the thinnest diodes is attributed to an increase in the spontaneous emission rate of recombination centers due to high electromagnetic fields generated in Al{sub 2}O{sub 3} when EL photons interact with electrons in Ag or Al to form surface plasmon polaritons at the Al{sub 2}O{sub 3}-Ag or Al{sub 2}O{sub 3}-Al interface. El intensity is a maximum at 2.0–2.2 eV for Al-Al{sub 2}O{sub 3}-Ag diodes with Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. EL in diodes with 12 nm or 14 nm of Al{sub 2}O{sub 3} is enhanced by factors of 8–10 over EL from a diode with 18 nm of Al{sub 2}O{sub 3}. The extent of EL enhancement in

  4. Future directions for agricultural phosphorus research

    SciTech Connect

    Sikora, F.J.

    1992-03-01

    Future Directions for Agricultural Phosphorus Research is a collection of papers presented at a workshop in Muscle Shoals, Alabama, on July 18 and 19, 1990. The objective of the workshop was to gather representatives of academia, government, and industry to discuss and debate research needs with phosphorus in agriculture, ranging from basic to applied research. The enclosed papers present information on current knowledge in the areas of (1) identifying phosphorus solid phases in soil, (ii) enhanced phosphorus bioavailability through microbial activity, (iii) phosphorus rock quality, (iv) environmental issues regarding phosphorus in agriculture, (v) predicting phosphorus bioavailability in soil, and (vi) fertilizer management effects on phosphorus availability. Within each paper, the authors suggest future research needs in their area. With the discussion of current knowledge and future research needs, this publication was designed to benefit organizations formulating and developing research plans concerning phosphorus in agricultural systems.

  5. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-05-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V‑1s‑1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering.

  6. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    PubMed Central

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V−1s−1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  7. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric.

    PubMed

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm(2)V(-1)s(-1) coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  8. Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag.

    PubMed

    Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong

    2016-08-01

    As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. PMID:27179297

  9. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro.

    PubMed

    Ward, Brian C; Webster, Thomas Jay

    2006-06-01

    To date, long-term functions of osteoblasts leading to calcium and phosphorus mineral deposition on nanometals have not been determined. Nanometals are metals with constituent metal particles and/or surface features less than 100 nm in at least one dimension. For this reason, the objective of this in vitro study was to determine the amount of calcium and phosphorus mineral formation on microphase compared to nanophase Ti, Ti6Al4V, and CoCrMo cultured with and without osteoblasts (bone-forming cells). The results of this study provided the first evidence of significantly greater calcium and phosphorus deposition by osteoblasts and precipitation from culture media without osteoblasts on nanophase compared to respective microphase Ti6Al4V and CoCrMo after 21 days; the greatest calcium and phosphorus mineral deposition occurred on nanophase CoCrMo while the greatest calcium and phosphorus mineral precipitation without osteoblasts occurred on nanophase Ti6Al4V. No differences were found for any type of Ti: wrought, microphase, or nanophase. Moreover, increased calcium and phosphorus mineral content correlated to greater amounts of underlying aluminum content on Ti6Al4V surfaces. Since, compared to microphase Ti6Al4V, nanophase Ti6Al4V contained a higher amount of aluminum at the surface (due to greater surface area), this may provide a reason for enhanced calcium and phosphorus mineral content on nanophase Ti6Al4V. Regardless of the mechanism, this study continues to support the further investigation of nanometals for improved orthopedic applications. PMID:16476478

  10. Efficiency enhancement of organic photovoltaic devices using a Sm:Al compound electrode

    NASA Astrophysics Data System (ADS)

    Yang, Bin-Bin; Zhang, Dan-Dan; Lee, Shuit-Tong; Li, Yan-Qing; Tang, Jian-Xin

    2013-02-01

    An effective cathode consisting of samarium (Sm) doped aluminum (Al) layer and a pure Al layer is reported for application in organic photovoltaic cells (OPVs). Standard copper phthalocyanine (CuPc)/C60 OPVs using this bilayer cathode show dramatically increased short-circuit current density and power conversion efficiency, which are 64% increased by employing a appropriate ratio of 1:3 of Sm:Al layer as compared with that of control devices with pure Al cathode. The photoelectric properties reveal that the improved efficiency is mainly related to the balance of the enhanced electron collection ability and the optimized optical reflection of a Sm doped Al layer.

  11. Optical microcavities and enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

    SciTech Connect

    Hickmott, T. W.

    2013-12-21

    Electroluminescence (EL) and electron emission into vacuum (EM) occur when a non-destructive dielectric breakdown of Al-Al{sub 2}O{sub 3}-Ag diodes, electroforming, results in the development of a filamentary region in which current-voltage (I-V) characteristics exhibit voltage-controlled negative resistance. The temperature dependence of I-V curves, EM, and, particularly, EL of Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 30 nm, has been studied. Two filters, a long-pass (LP) filter with transmission of photons with energies less than 3.0 eV and a short-pass (SP) filter with photon transmission between 3.0 and 4.0 eV, have been used to characterize EL. The voltage threshold for EL with the LP filter, V{sub LP}, is ∼1.5 V. V{sub LP} is nearly independent of Al{sub 2}O{sub 3} thickness and of temperature and is 0.3–0.6 V less than the threshold voltage for EL for the SP filter, V{sub SP}. EL intensity is primarily between 1.8 and 3.0 eV when the bias voltage, V{sub S} ≲ 7 V. EL in the thinnest diodes is enhanced compared to EL in thicker diodes. For increasing V{sub S}, for diodes with the smallest Al{sub 2}O{sub 3} thicknesses, there is a maximum EL intensity, L{sub MX}, at a voltage, V{sub LMX}, followed by a decrease to a plateau. L{sub MX} and EL intensity at 4.0 V in the plateau region depend exponentially on Al{sub 2}O{sub 3} thickness. The ratio of L{sub MX} at 295 K for a diode with 12 nm of Al{sub 2}O{sub 3} to L{sub MX} for a diode with 25 nm of Al{sub 2}O{sub 3} is ∼140. The ratio of EL intensity with the LP filter to EL intensity with the SP filter, LP/SP, varies between ∼3 and ∼35; it depends on Al{sub 2}O{sub 3} thickness and V{sub S}. Enhanced EL is attributed to the increase of the spontaneous emission rate of a dipole in a non-resonant optical microcavity. EL photons interact with the Ag and Al films to create surface plasmon polaritons (SPPs) at the metal-Al{sub 2}O

  12. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    NASA Astrophysics Data System (ADS)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  13. The potential for ductility enhancement from surface and interface dislocation sources in NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Bowman, R. R.; Kim, J. T.; Larsen, M.; Gibala, R.

    1990-01-01

    Limited ductility and toughness of NiAl and related aluminides near room temperature pose major problems in their potential application as structural materials. An analysis of these problems is presented as part of a review of the flow and fracture behavior of binary NiAl. Following this discussion is a demonstration that conditions of elastic and plastic constraint associated with phase boundaries afforded by surface films, internal lamellae, or precipitates may introduce sufficient densities of mobile dislocations to enhance the ductility of NiAl-based materials by significant amounts. Examples of this behavior are presented for several model materials, including 001- and 123-oriented single crystals of oxide-coated NiAl, directionally solidified beta-gamma-prime (Ni70Al30) and beta-gamma (Ni50Fe30Al20) in situ composites, and several NiAl/precipitate systems. The nature of the resulting dislocation substructures and the effects of several materials variables are described.

  14. Enhanced diffusion in shock activated Be-Al interfaces

    SciTech Connect

    Staudhammer, K.P.

    1997-05-01

    Enhanced diffusion of aluminum in shock activated beryllium has been observed. Cylindrical samples of aluminum coated beryllium rods were axisymetrically loaded up to 40 GPa and a total residual strain of up to 6.7%. The defect microstructure produced by both the shock wave and strain enabled the transport of aluminum in beryllium to exceed its equilibrium solid state saturation. This {open_quotes}super saturated{close_quotes} aluminum, upon heating exsolves out at relatively low temperatures and forms very strong interfaces with pressure mated components.

  15. High pressure synthesis and crystal structure of a ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} containing layer structured calcium sub-network isomorphous with black phosphorus

    SciTech Connect

    Tanaka, Masashi; Zhang, Shuai; Tanaka, Yuki; Inumaru, Kei; Yamanaka, Shoji

    2013-02-15

    The Zintl compound CaAl{sub 2}Si{sub 2} is peritectically decomposed to a mixture of Ca{sub 2}Al{sub 3}Si{sub 4} and aluminum metal at temperatures above 600 Degree-Sign C under a pressure of 5 GPa. The new ternary compound Ca{sub 2}Al{sub 3}Sl{sub 4} crystalizes with the space group Cmc2{sub 1} and the lattice parameters a=5.8846(8), b=14.973(1), and c=7.7966(5) A. The structure is composed of aluminum silicide framework [Al{sub 3}Si{sub 4}] and layer structured [Ca{sub 2}] network interpenetrating with each other. The electron probe microanalysis (EPMA) shows the formation of solid solutions Ca{sub 2}Al{sub 3-x}Si{sub 4+x} (x<0.6). The layer structured [Ca{sub 2}] sub-network is isomorphous with black phosphorus. The new ternary compound shows superconductivity with a transition temperature (T{sub c}) of 6.4 K. The band structure calculation suggests that the superconductivity should occur through the conduction bands mainly composed of 3p orbitals of the aluminum silicide framework. - Graphical abstract: A new ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} has been prepared under high pressure and high temperature conditions, which includes layer structured calcium sub-network isomorphous with black phosphorus. Highlights: Black-Right-Pointing-Pointer A typical Zintl compound CaAl{sub 2}Si{sub 2} melts congruently at ambient pressure. Black-Right-Pointing-Pointer Under high pressure CaAl{sub 2}Si{sub 2} decomposes to Ca{sub 2}Al{sub 3}Si{sub 4} and Al at {approx}600 Degree-Sign C. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} contains Ca sub-network isomorphous with black phosphorus. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} shows superconductivity with a transition temperature of 6.4 K.

  16. Enhanced Fluoride Over-Coated Al Mirrors for FUV Astronomy

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; DelHoyo, Javier; Rice, Steve; Threat, Felix

    2014-01-01

    Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+MgF2 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the MgF2 overcoat at elevated substrate temperatures. We will also present optical characterization of little studied rare-earth fluorides such as GdF3 and LuF3 that exhibit low-absorption over a wide wavelength range and could therefore be used as high refractive index alternatives for dielectric coatings at FUV wavelengths.

  17. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-01

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs. PMID:27505782

  18. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  19. Enhancement of nitrogen and phosphorus removal from eutrophic water by economic plant annual ryegrass (Lolium multiflorum) with ion implantation.

    PubMed

    Li, Miao; Sheng, Guo-ping; Wu, Yue-jin; Yu, Zeng-liang; Bañuelos, Gary S; Yu, Han-qing

    2014-01-01

    Severe eutrophication of surface water has been a major problem of increasing environmental concern worldwide. In the present study, economic plant annual ryegrass (Lolium multiflorum) was grown in floating mats as an economic plant-based treatment system to evaluate its potential after ion implantation for removing nutrients in simulated eutrophic water. The specific weight growth rate of L. multiflorum with ion implantation was significantly greater than that of the control, and the peroxidase, nitrate reductase, and acid phosphatase activities of the irradiated L. multiflorum were found to be greater than those plants without ion implantation. Higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies were obtained for the L. multiflorum irradiated with 25 keV 5.2 × 10(16) N(+) ions/cm(2) and 30 keV 4.16 × 10(16) N(+) ions/cm(2), respectively (p < 0.05). Furthermore, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those in the control and were positively correlated with TN and TP supplied. L. multiflorum itself was directly responsible for 39-49 and 47-58 % of the overall N and P removal in the experiment, respectively. The research results suggested that ion implantation could become a promising approach for increasing phytoremediation efficiency of nutrients from eutrophic water by L. multiflorum. PMID:24809498

  20. Iron limitation in the Western Interior Seaway during the Late Cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation

    NASA Astrophysics Data System (ADS)

    Tessin, Allyson; Sheldon, Nathan D.; Hendy, Ingrid; Chappaz, Anthony

    2016-09-01

    The sedimentary record of the Coniacian-Santonian Oceanic Anoxic Event 3 (OAE 3) in the North American Western Interior Seaway is characterized by a prolonged period of enhanced organic carbon (OC) burial. This study investigates the role of Fe in enhancing organic matter preservation and maintaining elevated primary productivity to sustain black shale deposition within the Coniacian-Santonian-aged Niobrara Formation in the USGS #1 Portland core. Iron speciation results indicate the development of a reactive Fe limitation coeval with reduced bioturbation and increased organic matter preservation, suggesting that decreased sulfide buffering by reactive Fe may have promoted enhanced organic matter preservation at the onset of OAE 3. An Fe limitation would also provide a feedback mechanism to sustain elevated primary productivity through enhanced phosphorus recycling. Additionally our results demonstrate inconsistencies between Fe-based and trace metal redox reconstructions. Iron indices from the Portland core indicate a single stepwise change, whereas the trace metal redox proxies indicate fluctuating redox conditions during and after OAE 3. Using Fe speciation to reconstruct past redox conditions may be complicated by a number of factors, including Fe sequestration in diagenetic carbonate phases and efficient sedimentary pyrite formation in a system with limited Fe supply and high levels of export production.

  1. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    PubMed

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  2. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  3. Band engineering for surface emission enhancement in Al-rich AlGaN-based deep-ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Huimin; Yu, Tongjun; Chen, Xinjuan; Wang, Jianping; Zhang, Guoyi

    2016-05-01

    The optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) with different structure parameters were analyzed using the modified theoretical model based on the effective mass equation. It is demonstrated that the optical polarization properties of AlGaN-based QWs are determined by the valence subband structure, including the energy level order and the valence subband coupling. The results show that the TE-polarized emission is enhanced in Al-rich AlGaN/AlN QWs with smaller well width, a buffer layer inducing compressive stress, and a staggered well layer owing to the change in the valence subband structure. Hence, the enhancement of surface emission from deep-ultraviolet (DUV) AlGaN-based light-emitting diodes (LEDs) can be realized by adjusting the QW structure parameters to induce a valence subband change.

  4. Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Zheng, Hairong; Yan, Xiaoqing; Sun, Yu; Zhang, Zhenglong

    2012-01-01

    Surface-enhanced fluorescence (SEF) substrates consisting of flower-like nanostructure of electromagnetically coupled silver dendrites on Al surface were manufactured by modified galvanic displacement process between Ag ion and Al at room temperature. Substrate enhancement efficiency, which was evaluated from SEF intensities of the adsorbed Rhodamine 6 G(Rh6G), was found to increase rapidly with reaction time. The observation highlights the importance of strong coupling effects between nanobranches in SEF. The variation of SEF efficiency can be qualitatively explained with local surface plasmon resonance model of coupled silver nanostructures.

  5. Enhanced spin signal in nonlocal devices based on a ferromagnetic CoFeAl alloy

    NASA Astrophysics Data System (ADS)

    Bridoux, G.; Costache, M. V.; Van de Vondel, J.; Neumann, I.; Valenzuela, S. O.

    2011-09-01

    We systematically study the nonlocal spin signal in lateral spin valves based on CoFeAl injectors and detectors and compare the results with identically fabricated devices based on CoFe. The devices are fabricated by electron beam evaporation at room temperature. We observe a > 10-fold enhancement of the spin signal in the CoFeAl devices. We explain this increase as due to the formation of a highly spin-polarized Co2FeAl Heusler compound with large resistivity. These results suggest that Heusler compounds are promising candidates as spin polarized electrodes in lateral spin devices for future spintronic applications.

  6. Enhancing the Reactivity of Al/CuO Nanolaminates by Cu Incorporation at the Interfaces.

    PubMed

    Marín, Lorena; Nanayakkara, Charith E; Veyan, Jean-Francois; Warot-Fonrose, Bénédicte; Joulie, Sébastien; Estève, Alain; Tenailleau, Christophe; Chabal, Yves J; Rossi, Carole

    2015-06-10

    In situ deposition of a thin (∼5 nm) layer of copper between Al and CuO layers is shown to increase the overall nanolaminate material reactivity. A combination of transmission electron microscopy imaging, in situ infrared spectroscopy, low energy ion scattering measurements, and first-principles calculations reveals that copper spontaneously diffuses into aluminum layers (substantially less in CuO layers). The formation of an interfacial Al:Cu alloy with melting temperature lower than pure Al metal is responsible for the enhanced reactivity, opening a route to controlling the stochiometry of the aluminum layer and increasing the reactivity of the nanoenergetic multilayer systems in general. PMID:25988997

  7. (Ti,Al,Si,C)N nanocomposite coatings synthesized by plasma-enhanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Zhengxian, Li; Jihong, Du; Yunfeng, Hua; Baoyun, Wang

    2011-10-01

    Materials' surface service property could be enhanced by transition metal nitride hard coatings due to their high hardness, wear and high temperature oxidation resistance, but the higher friction coefficient (0.4-0.9) of which aroused terrible abrasion. In this work, quinternary (Ti,Al,Si,C)N hard coating 3-4 μm was synthesized at 300 °C using plasma enhanced magnetron sputtering system. It was found that the coating's columnar crystals structure was restrained obviously with the increase of C content and a non-columnar crystals growth mode was indicated at the C content of 33.5 at.%. Both the XRD and TEM showed that the (Ti,Al,Si,C)N hard coatings had unique nanocomposite structures composed of nanocrystalline and amorphous nc-(Ti,Al)(C,N)/nc-AlN/a-Si 3N 4/a-Si/a-C. However, the coatings were still super hard with the highest hardness of 41 GPa in spite of the carbon incorporation. That a-C could facilitate the graphitization process during the friction process which could improve the coating's tribological performance. Therefore, that nanocomposite (Ti,Al,Si,C)N coatings with higher hardness (>36 GPa) and a lower friction coefficient (<0.2) could be synthesized and enhance the tribological performance and surface properties profoundly.

  8. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding

    PubMed Central

    Rose, T. J.; Impa, S. M.; Rose, M. T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S. E.; Wissuwa, M.

    2013-01-01

    Background Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. Scope This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Conclusions Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars. PMID:23071218

  9. Influence of nitrite accumulation on "Candidatus Accumulibacter" population structure and enhanced biological phosphorus removal from municipal wastewater.

    PubMed

    Zeng, Wei; Li, Boxiao; Wang, Xiangdong; Bai, Xinlong; Peng, Yongzhen

    2016-02-01

    A modified University of Cape Town (MUCT) process was used to treat real municipal wastewater with low carbon to nitrogen ratio (C/N). To our knowledge, this is the first study where the influence of nitrite accumulation on "Candidatus Accumulibacter" clade-level population structure was investigated during nitritation establishment and destruction. Real time quantitative PCR assays were conducted using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. Abundances of total "Candidatus Accumulibacter", the relative distributions and population structure of the five "Candidatus Accumulibacter" clades were characterized. Under complete nitrification, clade I using nitrate as electron acceptor was below 5% of total "Candidatus Accumulibacter". When the reactor was transformed into nitritation, clade I gradually disappeared. Clade IID using nitrite as electron acceptor for denitrifying phosphorus (P) removal was always the dominant "Candidatus Accumulibacter" throughout the operational period. This clade was above 90% on average in total "Candidatus Accumulibacter", even up to nearly 100%, which was associated with good performance of denitrifying P removal via nitrite pathway. The nitrite concentrations affected the abundance of clade IID. The P removal was mainly completed by anoxic P uptake of about 88%. The P removal efficiency clearly had a positive correlation with the nitrite accumulation ratio. Under nitritation, the P removal efficiency was 30% higher than that under complete nitrification, suggesting that nitrite was appropriate as electron acceptor for denitrifying P removal when treating carbon-limited wastewater. PMID:26439519

  10. Photostability enhancement of azoic dyes adsorbed and intercalated into Mg-Al-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Pei; Zhao, Kongcao; Li, Lei

    2015-11-01

    Two azoic dyes 4-aminoazobenzene-4-sulfonic (AS) and ethyl orange (EO) were adsorbed on or intercalated into Mg-Al-CO3 layered double hydroxide (LDH) for photostability enhancement. Fluorescence analysis results showed that the photostability of two dyes could be greatly improved after being adsorbed on the surface of Mg-Al-CO3-LDH matrix. Furthermore, photostability of adsorbed dyes was superior to that of intercalated dyes. It was suggested that AS or EO was adsorbed on LDHs surface through a strong chemisorption interaction, resulting in the enhancement of photostability. After the UV irradiation under N2 atmosphere, the absorbed dyes not only show great increase of fluorescence intensity but also exhibited high stability against UV irradiation. This work provides a feasible approach to enhance the photostability of azoic dye confined in an inorganic two-dimensional (2D) matrix via changing the microenvironment, which may be considered to be a promising method of improving photostability of solid fluorescent materials.

  11. DESIGN MANUAL: PHOSPHORUS REMOVAL

    EPA Science Inventory

    This manual summarizes process design information for the best developed methods for removing phosphorus from wastewater. his manual discusses several proven phosphorus removal methods, including phosphorus removal obtainable through biological activity as well as chemical precip...

  12. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  13. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  14. A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids-liquid separation.

    PubMed

    Hall, Eric R; Monti, Alessandro; Mohn, William W

    2010-05-01

    In an earlier phase of this study, we compared the performances of pilot scale treatment systems operated in either a conventional enhanced biological phosphorus removal (CEBPR) mode, or a membrane enhanced biological phosphorus removal (MEBPR) mode. In the present investigation, we characterized the bacterial community populations in these processes during parallel operation with the same municipal wastewater feed. The objectives of the study were (1) to assess the similarity of the bacterial communities supported in the two systems over time, (2) to determine if distinct bacterial populations are associated with the MEBPR and CEBPR processes, and (3) to relate the dynamics of the community composition to changes in treatment process configuration and to treatment process performance. The characteristics of the bacterial populations were first investigated with ribosomal intergenic spacer analysis, or RISA. To further understand the bacterial population dynamics, important RISA phylotypes were isolated and identified through 16S RNA gene sequencing. The parallel MEBPR and CEBPR systems developed bacterial communities that were distinct. The CEBPR community appeared to exhibit greater diversity, and this may have been the primary reason why the CEBPR treatment train demonstrated superior functional stability relative to the MEBPR counterpart. Moreover, the more diverse bacterial population apparent in the CEBPR system was observed to be more dynamic than that of the MEBPR process. Several RISA bands were found to be characteristic of either the membrane or conventional biological system. In particular, the MEBPR configuration appeared to be selective for the slow-growing organism Magnospira bakii and for the foam-associated Microthrix parvicella and Gordonia sp., while gravity separation led to the washout of M. parvicella. In both pilot trains, sequence analysis confirmed the presence of EBPR-related organisms such as Accumulibacter phosphatis. The survey of the

  15. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.

    PubMed

    Wang, Zhen; Meng, Yuan; Fan, Ting; Du, Yuneng; Tang, Jie; Fan, Shisuo

    2015-03-01

    This study was conducted to investigate the long-term impact of influent phosphorus concentration on denitrifying phosphorus removal and N2O production during denitrifying phosphorous removal process. The results showed that, denitrifying phosphate accumulating organisms (DPAOs) could become dominant populations quickly in anaerobic/anoxic SBR by providing optimum cultivating conditions, and the reactor performed well for denitrifying phosphorus removal. The influent phosphorus concentration significantly affected anaerobic poly-β-hydroxyalkanoates (PHA) synthesis, denitrifying phosphorus removal, and N2O production during the denitrifying phosphorus removal process. As the influent phosphorus concentration was more than 20 mg L(-1), the activity of DPAOs began to be inhibited due to the transformation of the available carbon source type. Meanwhile, N2O production was inhibited with the mitigation of anoxic NO2(-)-N accumulation. Adoption of a modified feeding could enhance denitrifying phosphorus removal and inhibit N2O production during denitrifying phosphorous removal processes. PMID:25541320

  16. Chemical lake restoration products: sediment stability and phosphorus dynamics.

    PubMed

    Egemose, Sara; Reitzel, Kasper; Andersen, Frede Ø; Flindt, Mogens R

    2010-02-01

    Laboratory experiments with sediments from three shallow Danish lakes were conducted to evaluate the effects of chemical lake restoration products during resuspension. Phosphorus (P) removal, sediment stability, sediment consolidation and color reduction were studied over time. The investigated products were aluminum (Al), Phoslock (a commercial bentonite product coated with lanthanum) and a combination of Al covered with bentonite (Al/Ben). All treatments effectively reduced the P concentration in the water. However, the treatments containing Al reduced the P concentration immediately after resuspension, whereas Phoslock required several days after resuspension to reduce the P concentration. Especially Phoslock, but also Al/Ben, increased the sediment stability threshold by 265% and 101%, respectively, whereas Al had no stabilizing effect. The fresh Al floc was resuspended 5x easier than untreated sediment. The largest consolidation of the sediment occurred with addition of Phoslock, followed by Al/Ben, while Al alone had no effect. Enhanced consolidation may be of importance for macrophyte colonisation of organic sediment. Phoslock improved the light climate moderately by removing color, whereas Al was very effective in removing color. Ben/Al showed intermediate effects on color reduction. These findings are important when decisions are made on restoration method for a specific lake, which may be more or less wind exposed. PMID:20055487

  17. Ductility enhancement in NiAl (B2)-base alloys by microstructural control

    NASA Astrophysics Data System (ADS)

    Ishida, K.; Kainuma, R.; Ueno, N.; Nishizawa, T.

    1991-02-01

    An attempt to improve ductility of NiAl (B2)-base alloys has been made by the addition of alloying elements and the control of microstructure. It has been found that a small amount of fcc γ phase formed by the addition of Fe, Co, and Cr has a drastic effect not only on the hot workability but also on the tensile ductility at room temperature. The enhancement in ductility is mainly due to the modification of Β-phase grains by the coexistence of γ phase. The effect of alloying elements on the hot forming ability is strongly related to the phase equilibria and partition behavior among γ, γ' (L12 structure), and Β phases in the Ni-Al-X alloy systems. The ductility-enhancement method shows promise for expanding the practical application of nickel aluminide.

  18. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Lu, Shen; Hirahara, Sota; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro

    2016-08-01

    We investigated the effect of a combined AlN/Al0.03Ga0.97N barrier on InGaN-based amber light-emitting diodes (LEDs) grown by metalorganic vapor-phase epitaxy. InGaN-based multiple quantum wells with a combined AlN/Al0.03Ga0.97N barrier showed intense photoluminescence with a narrow full-width at half-maximum. The amber LEDs with a combined AlN/Al0.03Ga0.97N barrier achieved a light output power enhanced approximately 2.5-fold at 20 mA compared to that of the LED with a combined AlN/GaN barrier, owing to the reduction of defects in InGaN active layers. Thus, the efficiency of high-In-content InGaN-based LEDs can be improved in the spectrum range of amber.

  19. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications.

    PubMed

    Li, Fuping; Li, Jinshan; Kou, Hongchao; Zhou, Lian

    2016-03-01

    In this paper, porous Ti6Al4V alloys for biomedical applications were fabricated by diffusion bonding of alloy meshes. The compression-compression fatigue behavior was studied. It results that porous Ti6Al4V alloys show enhanced normalized fatigue strength which is in the range of 0.5-0.55 at 10(6)cycles. The porosity has some effect on the absolute S-N curves but minor effect on the normalized S-N curves. The relationship between strain per cycle and number of cycles shows three distinct stages and the value of strain per cycle is constant in stage II. The reasons for the higher normalized fatigue strength of porous Ti6Al4V alloys are discussed based on the fatigue crack initiation and propagation. PMID:26706555

  20. Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Vinod, V. T. P.; Černík, Miroslav; Kamat, S. V.

    2015-11-01

    We herein report the achievement of exceptionally high coercivity (Hc) values: 9.92 and 5.86 kOe at 5 and 300 K, respectively, for Mn55Al43Cu2 flakes produced by surfactant-assisted milling process without employing any heat-treatment. The use of surfactants such as oleic acid and oleylamine during milling yielded high-aspect ratio flakes for the Mn-Al-Cu alloy. Structural studies confirmed the presence of τ- and β-phases as the major constituents in the Mn-Al-Cu flakes. The observed Hc enhancement is due to the increase in anisotropy field and structural defects, which is hypothesized to originate from the domain-wall pinning as a consequence of precipitation of fine Cu-particles present at the grain boundaries.

  1. Carriers-mediated ferromagnetic enhancement in Al-doped ZnMnO dilute magnetic semiconductors

    SciTech Connect

    Saleem, Murtaza; Siddiqi, Saadat A.; Atiq, Shahid; Anwar, M. Sabieh; Hussain, Irshad; Alam, Shahzad

    2011-11-15

    Nano-crystalline Zn{sub 0.95-x}Mn{sub 0.05}Al{sub x}O (x = 0, 0.05, 0.10) dilute magnetic semiconductors (DMS) were synthesized by sol-gel derived auto-combustion. X-ray diffraction (XRD) analysis shows that the samples have pure wurtzite structure typical of ZnO without the formation of secondary phases or impurity. Crystallite sizes were approximated by Scherrer formula while surface morphology and grain sizes were measured by field emission scanning electron microscopy. Incorporation of Mn and Al into the ZnO structure was confirmed by energy-dispersive X-ray analysis. Temperature dependent electrical resistivity measurements showed a decreasing trend with the doping of Al in ZnMnO, which is attributable to the enhancement of free carriers. Vibrating sample magnetometer studies confirmed the presence of ferromagnetic behavior at room temperature. The results indicate that Al doping results in significant variation in the concentration of free carriers and correspondingly the carrier-mediated magnetization and room temperature ferromagnetic behavior, showing promise for practical applications. We attribute the enhanced saturation magnetization and electrical conductivity to the exchange interaction mediated by free electrons.

  2. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions

    PubMed Central

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A.; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S.

    2014-01-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils. PMID:24723407

  3. A simple and rapid method for direct determination of Al(III) based on the enhanced resonance Rayleigh scattering of hemin-functionalized graphene-Al(III) system

    NASA Astrophysics Data System (ADS)

    Ling, Yu; Chen, Ling Xiao; Dong, Jiang Xue; Li, Nian Bing; Luo, Hong Qun

    2016-03-01

    A novel method for direct determination of Al(III) by using hemin-functionalized graphene (H-GO) has been established based on the enhancement of resonance Rayleigh scattering (RRS) intensity. The characteristics of RRS spectra, the optimum reaction conditions, and the reaction mechanism have been investigated. In this experiment, the Al(III) would exist in sol-gel Al(OH)3 species under the condition of pH 5.9 in aqueous solutions. When H-GO existed in the solution, the sol-gel Al(OH)3 would react with H-GO and result in enhancement of RRS intensity, owing to the enhanced hydrophobicity of H-GO surface. Therefore, a simple and rapid sensor for Al(III) was developed. The increased intensity of RRS is directly proportional to the concentration of Al(III) in the range of 10 nM-6 μM, along with a detection limit of 0.87 nM. Moreover, the sensor has been applied to determination of Al(III) concentration in real water and aspirin tablet samples with satisfactory results. Therefore, the proposed method is promising as an effective means for selective and sensitive determination of Al(III).

  4. Estimation of phosphorus flux in rivers during flooding.

    PubMed

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in

  5. SEMICONDUCTOR DEVICES: A high-performance enhancement-mode AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Zhihong, Feng; Shengyin, Xie; Rui, Zhou; Jiayun, Yin; Wei, Zhou; Shujun, Cai

    2010-08-01

    An enhancement-mode AlGaN/GaN HEMT with a threshold voltage of 0.35 V was fabricated by fluorine plasma treatment. The enhancement-mode device demonstrates high-performance DC characteristics with a saturation current density of 667 mA/mm at a gate bias of 4 V and a peak transconductance of 201 mS/mm at a gate bias of 0.8 V. The current-gain cut-off frequency and the maximum oscillation frequency of the enhancement-mode device with a gate length of 1 μm are 10.3 GHz and 12.5 GHz, respectively, which is comparable with the depletion-mode device. A numerical simulation supported by SIMS results was employed to give a reasonable explanation that the fluorine ions act as an acceptor trap center in the barrier layer.

  6. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells

    PubMed Central

    Gao, Na; Huang, Kai; Li, Jinchai; Li, Shuping; Yang, Xu; Kang, Junyong

    2012-01-01

    We report the development of complete structural AlGaN-based deep-ultraviolet light-emitting diodes with an aluminum thin layer for increasing light extraction efficiency. A 217% enhancement in peak photoluminescence intensity at 294 nm is observed. Cathodoluminescence measurement demonstrates that the internal quantum efficiency of the deep-UV LEDs coated with Al layer is not enhanced. The emission enhancement of deep-UV LEDs is attributed to the higher LEE by the surface plasmon-transverse magnetic wave coupling. When the proportion of the TM wave to the Al layer increases with the Al content in the AlxGa1-xN multiple quantum wells, i.e., the band edge emission energy, the enhancement ratio of the Al-coated deep-UV LEDs increases. PMID:23150780

  7. Enhancement of photoluminescence properties in ZnO/AlN bilayer heterostructures grown by atomic layer deposition

    SciTech Connect

    Zhu, Shang-Bin; Lu, Hong-Liang Zhang, Yuan; Sun, Qing-Qing; Zhou, Peng; Ding, Shi-Jin; Zhang, David Wei; Zhang, Qiu-Xiang

    2015-01-15

    The AlN/ZnO bilayer heterostructures were deposited on Si (100) substrate by thermal atomic layer deposition. X-ray diffraction results show that the crystallinity of polycrystalline ZnO layer is enhanced by amorphous AlN capping layer. Compared with ZnO thin film, ZnO/AlN bilayer with 10.7 nm AlN capping layer exhibits three times enhanced near band edge (NBE) emission from the photoluminescence measurements. In addition, the near band edge emission from the ZnO can be further increased by ∼10 times through rapid thermal annealing at 600 °C. The underlying mechanisms for the enhancement of the NBE emission after coating AlN capping layer and thermal treatment are discussed. These results suggest that coating of a thin AlN layer and sequential thermal treatments can effectively tailor the luminescence properties of ZnO film.

  8. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    SciTech Connect

    Saha, Bivas; Lawrence, Samantha K.; Bahr, David F.; Schroeder, Jeremy L.; Birch, Jens; Sands, Timothy D.

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  9. Growth of AlGaN alloys exhibiting enhanced luminescence efficiency

    NASA Astrophysics Data System (ADS)

    Sampath, A. V.; Garrett, G. A.; Collins, C. J.; Sarney, W. L.; Readinger, E. D.; Newman, P. G.; Shen, H.; Wraback, M.

    2006-04-01

    Interest in developing ultraviolet emitters using the III-Nitride family of semiconductors has sparked considerable effort in fabricating AlGaN alloys that exhibit enhanced luminescence based on strong carrier localization, similar to their InGaN brethren. In this paper, we report on the growth of such alloys by plasma-assisted molecular beam epitaxy (PA-MBE) without the use of indium. This enhancement is attributed to the presence of nanoscale compositional inhomogeneities (NCIs) in these materials. The emission wavelength in these materials has been tuned between 275 nm and 340 nm by varying growth conditions. The effects of dislocations on double heterostructures (DHs) that employ an NCI AlGaN active region has been investigated, with an internal quantum efficiency as high as 32% obtained for the lowest dislocation density samples (3×1010 cm-2). Prototype DH-ultraviolet light emitting diodes (DH-UVLEDs) emitting at 324 nm were fabricated employing an NCI AlGaN alloy as the active region.

  10. The role of poly-hydroxy-alkanoate form in determining the response of enhanced biological phosphorus removal biomass to volatile fatty acids.

    PubMed

    Liu, Yan-Hua; Geiger, Cherie; Randall, Andrew Amis

    2002-01-01

    Anaerobic-aerobic batch experiments indicated that poly-hydroxy-alkanoate (PHA) form was important in determining the net phosphorus removal resulting from different volatile fatty acids (VFAs). Poly-3-hydroxy-butyrate (3HB) content was found to correlate fairly well with higher observed aerobic phosphorus uptake per unit PHA carbon degraded. Poly-3-hydroxy-valerate (3HV) correlated with lower aerobic phosphorus uptakes per unit PHA carbon degraded. These experiments, conducted with synthetic wastewater, imply that VFA speciation might have a significant effect on aerobic phosphorus uptakes and net phosphorus removal. In addition, the model parameter fP.UPT (Barker and Dold, 1997) could vary with the proportion of acetic to propionic acid received (i.e., the acetic/propionic acid ratio may be an important parameter for these systems). Carbohydrate data implied that the lower aerobic phosphorus uptake resulting from 3HV might have been caused by a greater fraction of PHA carbon shunting to carbohydrate biosynthesis during aerobiosis. PMID:11995868

  11. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus

    NASA Astrophysics Data System (ADS)

    Hu, Shaozheng; Ma, Lin; You, Jiguang; Li, Fayun; Fan, Zhiping; Lu, Guang; Liu, Dan; Gui, Jianzhou

    2014-08-01

    Preparation of Fe and P co-doped g-C3N4 was described, using dicyandiamide monomer, ferric nitrate, and diammonium hydrogen phosphate as precursor. X-ray diffraction (XRD), N2 adsorption, UV-vis spectroscopy, Fourier transform infrared spectra (FT-IR), photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and photocurrent measurement were used to characterize the prepared catalysts. The results indicated that the addition of dopants inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, decreased the band gap energy, and restrained the recombination of photogenerated electrons and holes. Fe and P co-doped g-C3N4 exhibited much higher Rhodamine B (RhB) photodegradation rate and H2 production ability than that of single doped and neat g-C3N4 catalysts. The possible mechanism and doping sites of P and Fe were proposed.

  12. Supplemental Escherichia coli phytase and strontium enhance bone strength of young pigs fed a phosphorus-adequate diet.

    PubMed

    Pagano, Angela R; Yasuda, Koji; Roneker, Karl R; Crenshaw, Thomas D; Lei, Xin Gen

    2007-07-01

    Young pigs represent an excellent model of youth to assess potentials of dietary factors for improving bone structure and function. We conducted 2 experiments to determine whether adding microbial phytase (2,000 U/kg, OptiPhos, JBS United) and Sr (50 mg/kg, SrCO3 Alfa Aesar) into a P-adequate diet further improved bone strength of young pigs. In Expt. 1, 24 gilts (8.6 +/- 0.1 kg body wt) were divided into 2 groups (n = 12), and fed a corn-soybean-meal basal diet (BD, 0.33% available P) or BD + phytase for 6 wk. In Expt. 2, 32 pigs (11.4 +/- 0.2 kg) were divided into 4 groups (n = 8), and fed BD, BD + phytase, BD + Sr, or BD + phytase and Sr for 5 wk. Both supplemental phytase and Sr enhanced (P < 0.05) breaking strengths (11-20%), mineral content (6-15%), and mineral density (6-11%) of metatarsals and femurs. Supplemental phytase also resulted in larger total bone areas (P < 0.05) and a larger cross-sectional area of femur (P = 0.06). Concentrations of Sr were elevated 4-fold (P < 0.001) in both bones by Sr, and moderately increased (P = 0.05-0.07) in metatarsal by phytase. In conclusion, supplemental phytase at 2000 U/kg of P-adequate diets enhanced bone mechanical function of weanling pigs by modulating both geometrical and chemical properties of bone. The similar benefit of supplemental Sr was mainly due to an effect on bone chemical properties. PMID:17585033

  13. Detection of Phosphorus, Sulphur, and Zinc in the Carbon-enhanced Metal-poor Star BD+44 493

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C.

    2016-06-01

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = ‑3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe] = ‑0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = ‑0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22. The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M ⊙ of 56Ni, characteristic of a faint SN. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. These observations are associated with program GO-14231.

  14. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.

    PubMed

    Choi, Chang Hyuck; Park, Sung Hyeon; Woo, Seong Ihl

    2012-08-28

    N-doped carbon, a promising alternative to Pt catalyst for oxygen reduction reactions (ORRs) in acidic media, is modified in order to increase its catalytic activity through the additional doping of B and P at the carbon growth step. This additional doping alters the electrical, physical, and morphological properties of the carbon. The B-doping reinforces the sp(2)-structure of graphite and increases the portion of pyridinic-N sites in the carbon lattice, whereas P-doping enhances the charge delocalization of the carbon atoms and produces carbon structures with many edge sites. These electrical and physical alternations of the N-doped carbon are more favorable for the reduction of the oxygen on the carbon surface. Compared with N-doped carbon, B,N-doped or P,N-doped carbon shows 1.2 or 2.1 times higher ORR activity at 0.6 V (vs RHE) in acidic media. The most active catalyst in the reaction is the ternary-doped carbon (B,P,N-doped carbon), which records -6.0 mA/mg of mass activity at 0.6 V (vs RHE), and it is 2.3 times higher than that of the N-doped carbon. These results imply that the binary or ternary doping of B and P with N into carbon induces remarkable performance enhancements, and the charge delocalization of the carbon atoms or number of edge sites of the carbon is a significant factor in deciding the oxygen reduction activity in carbon-based catalysts. PMID:22769428

  15. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability. PMID:27165172

  16. Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Taro; Reusch, Markus; Holc, Katarzyna; Iankov, Dimitre; Zuerbig, Verena; Zukauskaite, Agne; Nebel, Christoph E.; Ambacher, Oliver; Lebedev, Vadim

    2016-04-01

    A great potential of the use of aluminum nitride (AlN) to enhance the actuation of nanocrystalline diamond (NCD) microelectromechanical system disk resonators is revealed. A disk resonator with a unimorph (AlN/NCD) structure is fabricated by depositing a c-axis oriented AlN on a capacitive NCD disk resonator. The unimorph resonator is piezoelectrically actuated with flexural whispering gallery modes with a relatively large electrode gap spacing, i.e., the spacing which is greater than 1 μm, although this is not possible for the capacitive NCD disk resonator. This result is explained by a finite element method simulation where the piezoelectric actuation turns out to be more effective than the capacitive actuation when the electrode gap spacing is >0.8 μm. The simulation also shows that the electrode gap spacing required for the capacitive actuation to be more effective than the piezoelectric actuation exponentially decreases when the resonator dimension is scaled down for higher frequency operations. Our study indicates that the use of AlN is promising to decrease impedance levels of NCD disk resonators especially for their higher frequency operations.

  17. Oxide Charge Engineering of Atomic Layer Deposited AlOxNy/Al2O3 Gate Dielectrics: A Path to Enhancement Mode GaN Devices.

    PubMed

    Negara, M A; Kitano, M; Long, R D; McIntyre, P C

    2016-08-17

    Nitrogen incorporation to produce negative fixed charge in Al2O3 gate insulator layers is investigated as a path to achieve enhancement mode GaN device operation. A uniform distribution of nitrogen across the resulting AlOxNy films is obtained using N2 plasma enhanced atomic layer deposition (ALD). The flat band voltage (Vfb) increases to a significantly more positive value with increasing nitrogen concentration. Insertion of a 2 nm thick Al2O3 interlayer greatly decreases the trap density of the insulator/GaN interface, and reduces the voltage hysteresis and frequency dispersion of gate capacitance compared to single-layer AlOxNy gate insulators in GaN MOSCAPs. PMID:27459343

  18. Diamond growth on Fe-Cr-Al alloy by H2-plasma enhanced graphite etching

    NASA Astrophysics Data System (ADS)

    Li, Y. S.; Hirose, A.

    2007-04-01

    Without intermediate layer and surface pretreatment, adherent diamond films with high initial nucleation density have been deposited on Fe-15Cr-5Al (wt. %) alloy substrate. The deposition was performed using microwave hydrogen plasma enhanced graphite etching in a wide temperature range from 370to740°C. The high nucleation density and growth rate of diamond are primarily attributed to the unique precursors used (hydrogen plasma etched graphite) and the chemical nature of the substrate. The improvement in diamond adhesion to steel alloys is ascribed to the important role played by Al, mitigation of the catalytic function of iron by suppressing the preferential formation of loose graphite intermediate phase on steel surface.

  19. Photosignal enhancement in Al-GaAs diodes due to surface plasmons and guided wave modes

    NASA Astrophysics Data System (ADS)

    Tamm, I. R.; Dawson, P.; Pate, M. A.; Grey, R.; Hill, G.

    1993-12-01

    In the study, Al-GaAs diodes have been examined in the Otto configuration or prism-air gap sample geometry with a view to producing surface plasmon polaritons (SPP) enhanced photosignals. The investigation is of relevance to polarization selective photodetection and the fabrication of simple polarization sensors. The geometry and the results yielded from it are closely related to SPP mediated spatial light modulators, in which a liquid crystal layer forms the coupling gap between a high index prism and the semiconductor based substrate on which the addressing pixels are fabricated.

  20. Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants.

    PubMed

    Kong, Yunhong; Xia, Yun; Nielsen, Jeppe L; Nielsen, Per H

    2006-03-01

    The presence of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) plants can seriously deteriorate the biological P-removal by out-competing the polyphosphate-accumulating organisms (PAOs). In this study, uncultured putative GAOs (the GB group, belonging to the Gammaproteobacteria) were investigated in detail in 12 full-scale EBPR plants. Fluorescence in situ hybridization (FISH) revealed that the biovolume of the GB bacteria constituted 2-6% of total bacterial biovolume. At least six different subgroups of the GB bacteria were found, and the number of dominant subgroups present in each plant varied between one and five. Ecophysiological investigations using microautoradiography in combination with FISH showed that, under aerobic or anaerobic conditions, all subgroups of the GB bacteria could take up acetate, pyruvate, propionate and some amino acids, while some subgroups in addition could take up formate and thymidine. Glucose, ethanol, butyrate and several other organic substrates were not taken up. Glycolysis was essential for the anaerobic uptake of organic substrates. Polyhydroxyalkanoates (PHA) but not polyphosphate (polyP) granules were detected in all GB bacterial cells. Polyhydroxyalkanoate formation after anaerobic uptake of acetate was confirmed by measuring the increase in fluorescence intensity of PHA granules inside GB bacterial cells after Nile blue staining. One GB subgroup was possibly able to denitrify, and several others were able to reduce nitrate to nitrite. PAOs were also enumerated by FISH in the same treatment plants. Rhodocyclus-related PAOs and Actinobacteria-related PAOs constituted up to 7% and 29% of total bacterial biovolume respectively. Rhodocyclus-related PAOs always coexisted with the GB bacteria and showed many physiological similarities. Factors of importance for the competition between the three groups of important bacteria in EBPR plants are discussed. PMID:16478454

  1. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xue, JunShuai; Zhang, JinCheng; Hao, Yue

    2016-01-01

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm2/V s along with a sheet carrier density of 1.88 × 1013 cm-2 were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  2. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y.; Gaska, R.; Shur, M. S.

    2008-08-01

    We report on the growth of low-defect thick films of AlN and AlGaN on trenched AlGaN/sapphire templates using migration enhanced lateral epitaxial overgrowth. Incoherent coalescence-related defects were alleviated by controlling the tilt angle of growth fronts and by allowing Al adatoms sufficient residence time to incorporate at the most energetically favorable lattice sites. Deep ultraviolet light emitting diode structures (310nm) deposited over fully coalesced thick AlN films exhibited cw output power of 1.6mW at 50mA current with extrapolated lifetime in excess of 5000hours. The results demonstrate substantial improvement in the device lifetime, primarily due to the reduced density of growth defects.

  3. Electrically biased GaAs/AlGaAs heterostructures for enhanced detection of bacteria

    NASA Astrophysics Data System (ADS)

    Aziziyan, Mohammad R.; Hassen, Walid M.; Dubowski, Jan J.

    2016-03-01

    We have examined the influence of electrical bias on immobilization of bacteria on the surface of GaAs/AlGaAs heterostructures, functionalized with an alkanethiol based architecture. A mixture of biotinylated polyethylene glycol (PEG) thiol and hexadecanethiol was applied to attach neutravidin and antibodies targeting specific immobilization of Legionella pneumophila. An electrochemical setup was designed to bias biofunctionalized samples with the potential measured versus silver/silver chloride reference electrode in a three electrode configuration system. The immobilization efficiency has been examined with fluorescence microscopy after tagging captured bacteria with fluorescein labeled antibodies. We demonstrate more than 2 times enhanced capture of Legionella pneumophila, suggesting the potential of electrically biased biochips to deliver enhanced sensitivity in detecting these bacteria.

  4. Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes

    SciTech Connect

    Lee, Hsin-Ying; Chou, Ying-Hung; Lee, Ching-Ting

    2010-01-15

    Aluminum (Al)-doped ZnO (AZO) films with embedded Al nanoclusters were proposed and utilized to enhance the light output power and maximum operation current of GaN-based light-emitting diodes (LEDs). The AZO films were sputtered using ZnO and Al targets in a magnetron cosputtering system. With Al dc power of 7 W and ZnO 100 W ac power, the electron concentration of 4.1x10{sup 20} cm{sup -3}, electron mobility of 16.2 cm{sup 2}/V s, and resistivity of 7.2x10{sup -4} {Omega} cm were obtained for the deposited AZO film annealed at 600 deg. C for 1 min in a N{sub 2} ambient. As verified by a high resolution transmission electron microscopy, the deposited AZO films with embedded Al nanoclusters were clearly observed. A 35% increase in light output power of the GaN-based LEDs with Al nanoclusters-embedded AZO films was realized compared with the conventional LEDs operated at 500 mA. It was verified experimentally that the various characteristics of GaN-based LEDs including the antireflection, light scattering, current spreading, and the light extraction efficiency in light emission could be significantly enhanced with the use of Al nanoclusters-embedded AZO films.

  5. Kinetic Spraying Deposition of Reactive-Enhanced Al-Ni Composite for Shaped Charge Liner Applications

    NASA Astrophysics Data System (ADS)

    Byun, Gyeongjun; Kim, Jaeick; Lee, Changhee; Kim, See Jo; Lee, Seong

    2016-02-01

    Liners used in shaped charges (SC) must possess good penetration ability and explosive power. Producing the reactive layer (i.e., the Al-Ni composite) on a well-penetrating liner (i.e., Cu) via spray coating is a novel method; the exothermic reaction of this reactive layer can be enhanced by controlling the structure of the feedstock material. However, preceding studies have been unable to completely succeed in achieving this goal. There is still an opportunity to improve the performance of reactive layers in SC liner applications. In order to address this problem, a reactive Al-Ni composite powder was produced via arrested reactive milling (ARM) and deposited by a kinetic spray process. Afterward, the deposition state and self-propagating high-temperature synthesis (SHS) reaction behavior of the ARMed Al-Ni deposit were investigated. The deposition state was degraded by the ARM process due to the remaining solid lubricant and the strain-hardening effect, but the practically estimated bond strength was not poor (~40 MPa). No SHS reactions were induced by the ARM and kinetic spray process, which resulted in the quantitative maximization of the exothermic reaction. It is noteworthy that the initiation temperature of the SHS reaction was highly advanced (~300 °C) relative to preceding studies (~500 °C); this change is due to the additional mechanical activation initiated by the kinetic spray deposition.

  6. Liquid Phase Chemical Enhanced Oxidation on AlGaAs and Its Application

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Wei; Wang, Yeong-Her; Houng, Mau-Phon

    2004-07-01

    A new method named the liquid phase chemical enhanced oxidation (LPCEO) technique has been proposed for the oxidation of aluminum gallium arsenide (AlGaAs) near room temperature. The initial stage of AlGaAs oxidation by this method has been investigated. The native oxide film composition is determined on the basis of the results of Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Based on current-voltage (I-V) characteristics of the metal-oxide-semiconductor (MOS) structure, the leakage current density is approximately 5× 10-9 A/cm2 at the electric field of 1 MV/cm, and the breakdown field is at least 10 MV/cm after rapid temperature annealing. In addition, the oxide film properties can be improved after thermal annealing based on capacitance-voltage (C-V) measurements. Finally, the application of the new method to the AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electronic-mobility transistor (MOS-PHEMT) is demonstrated.

  7. Phosphorus: Riverine system transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport and transformation of phosphorus (P) in riverine systems fundamentally affects the outcome of watershed mitigation strategies aimed at curbing downstream eutrophication. Phosphorus transport and transformations in streams and rivers are mediated by physical (sediment deposition and res...

  8. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  9. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  10. Effect of enhanced convection on the microstructure of Al-Cu-Li welds

    SciTech Connect

    Aidun, D.K.; Dean, J.P.

    1999-10-01

    The effects of enhanced convection induced by a high-gravity environment on the resulting weld microstructure of a 2195-T8 (Al-Cu-Li) alloy have been investigated. Stationary (spot) bead-on-plate gas tungsten arc welds were performed at 1, 5, and 10 g (1 g = 9.8 m/s{sup 2}) using the multigravity research welding system (MGRWS). Of particular interest was the gradual disappearance of a narrow band of fine equiaxed grains (EQ) located along the fusion boundary of the weld as g level increased. The presence of this equiaxed zone (EQZ) may affect weld mechanical properties and therefore compromise structures incorporating welds of Al-Cu-Li alloys. The qualitative verification of a proposed mechanism for equiaxed grain formation along the fusion boundary of Al-Cu-Li alloy welds by Gutierrez and Lippold is also presented. The high-g environment causing enhanced convection is believed to alter the thermal and fluid flow conditions within the weld pool, thereby creating an environment in which there is neither a stagnant boundary layer nor an unmixed zone. Furthermore, the precipitates aiding in the precipitation of the fine, equiaxed grains are believed to be swept into the weld pool at high-g and completely dissolved. As a result, the environment for equiaxed grain formation has been eliminated. The analysis of the microstructural evolution from 1 to 5 to 10 g qualitatively verifies this proposed mechanism. At 1 g, a prominent EQZ formed; at 5 g, the EQZ was scattered in location along the fusion boundary and of reduced width; at 10 g, the EQZ had completely disappeared leaving a near perfect line separating the large grains of the heat-affected zone from the fine dendrites of the fusion zone.

  11. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-04-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope.

  12. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    PubMed

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  13. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    PubMed Central

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  14. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level.

    PubMed

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-01

    This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria. PMID:27498011

  15. Strong enhancement of piezoelectric constants in ScxAl1-xN: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Teshigahara, Akihiko; Oguchi, Tamio

    2016-06-01

    We theoretically investigate the piezoelectricity of ScxAl1-xN in the entire range of x by first-principles calculations. We find that the piezoelectric constants of wurtzite-type ScxAl1-xN significantly enhance as x increases from 0 to 0.75. However, the energy stability analyses between structure phases show that the cubic-type phases become more stable than the wurtzite-type phases at x of approximately 0.5 and higher, interfering with the ability of wurtzite-type ScxAl1-xN to realize the maximum piezoelectricity. Moreover, our study on element combination dependences on piezoelectricity in A0.5B0.5N (A = Sc, Y, La and B = Al, Ga, In) indicates that Sc, Y, and La have the strongest effect on the enhancement of piezoelectric constants in AlN, GaN, and InN, respectively.

  16. Enhanced room-temperature mid-ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots

    SciTech Connect

    Himwas, C. Hertog, M. den; Songmuang, R.; Donatini, F.; Si Dang, Le; Bellet-Amalric, E.; Monroy, E.

    2014-07-14

    We report on the identification of an optimum deposited amount of AlGaN in AlGaN/AlN quantum dot (QD) superlattices grown by molecular-beam epitaxy, which grants maximum luminescence at room temperature by finding a compromise between the designs providing maximum internal quantum efficiency (60%) and maximum QD density (9.0 × 10{sup 11 }cm{sup −2}). The average Al composition in the QDs is estimated at 10.6% ± 0.8% by combining x-ray diffraction measurements with three-dimensional calculations of the strain distribution. The effect of the variation of the QD height/base-diameter ratio on the interband and intraband optical properties was explored by fitting the experimental data with three-dimensional calculations of the band diagram and quantum confined states.

  17. Efficient photo-enhancement of GaP and AlGaP growth in chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshimoto, M.; Ozasa, K.; Matsunami, H.

    1991-11-01

    The growth rate of GaP and AlGaP epitaxial layers was efficiently enhanced by N2-laser irradiation at low substrate temperatures in chemical beam epitaxy. The photo-enhancement efficiency, defined as the ratio of the number of deposited Ga atoms to the number of irradiating photons per unit area per unit time, is estimated to be 7×10-4. The decomposition of triethylaluminum was also enhanced by the irradiation, but less efficiently.

  18. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    SciTech Connect

    Faita, F. L.; Silva, J. P. B.; Pereira, M.; Gomes, M. J. M.

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  19. High temperature stability, interface bonding, and mechanical behavior in (beta)-NiAl and Ni3Al matrix composites with reinforcements modified by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.

    1993-01-01

    Diffusion-bonded NiAl-Al2O3 and Ni3Al-Al2O3 couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al2O3 was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni3Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle-matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N(+)-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  20. Enhancement-mode InAlN/GaN MISHEMT with low gate leakage current

    NASA Astrophysics Data System (ADS)

    Guodong, Gu; Yong, Cai; Zhihong, Feng; Bo, Liu; Chunhong, Zeng; Guohao, Yu; Zhihua, Dong; Baoshun, Zhang

    2012-06-01

    We report an enhancement-mode InAlN/GaN MISHEMT with a low gate leakage current by a thermal oxidation technique under gate. The off-state source-drain current density is as low as ~10-7 A/mm at VGS = 0 V and VDS = 5 V. The threshold voltage is measured to be +0.8 V by linear extrapolation from the transfer characteristics. The E-mode device exhibits a peak transconductance of 179 mS/mm at a gate bias of 3.4 V. A low reverse gate leakage current density of 4.9 × 10-7 A/mm is measured at VGS = -15 V.

  1. Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure

    NASA Astrophysics Data System (ADS)

    Shen, H. X.; Xing, D. W.; Sánchez Llamazares, J. L.; Sánchez-Valdés, C. F.; Belliveau, H.; Wang, H.; Qin, F. X.; Liu, Y. F.; Sun, J. F.; Srikanth, H.; Phan, M. H.

    2016-02-01

    A class of biphase nanocrystalline/amorphous Gd(50+5x)Al(30-5x)Co20 (x = 0, 1, 2) microwires fabricated directly by melt-extraction is reported. High resolution transmission electron microscopy and Fourier function transform based analysis indicate the presence of a volume fraction (˜20%) of ˜10 nm sized nanocrystallities uniformly embedded in an amorphous matrix. The microwires possess excellent magnetocaloric properties, with large values of the isothermal entropy change (-ΔSM ˜ 9.7 J kg-1 K-1), the adiabatic temperature change (ΔTad ˜ 5.2 K), and the refrigerant capacity (RC ˜ 654 J kg-1) for a field change of 5 T. The addition of Gd significantly alters TC while preserving large values of the ΔSM and RC. The nanocrystallites allow for enhanced RC as well as a broader operating temperature span of a magnetic bed for energy-efficient magnetic refrigeration.

  2. Dramatic enhancement of near-infrared intersubband absorption in c-plane AlInN/GaN superlattices

    NASA Astrophysics Data System (ADS)

    Shirazi-HD, M.; Turkmeneli, K.; Liu, S.; Dai, S.; Edmunds, C.; Shao, J.; Gardner, G.; Zakharov, D. N.; Manfra, M. J.; Malis, O.

    2016-03-01

    We report substantial improvement of near-infrared (2-2.6 μm) intersubband absorption in c-plane AlInN/GaN superlattices grown by molecular beam epitaxy. Progress was obtained through optimization of AlInN growth conditions using an AlInN growth rate of 0.9-nm/min at substrate temperature of 550 °C, as well as by judiciously placing the charge into two delta-doping sheets. Structural characterization suggests that AlInN crystal quality is enhanced and interface roughness is reduced. Importantly, near-infrared absorption data indicate that the optical quality of the AlInN/GaN superlattices is now comparable with that of AlN/GaN superlattices designed to exploit near-infrared intersubband transitions.

  3. The Galactic evolution of phosphorus

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.

    2011-08-01

    Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

  4. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models

    PubMed Central

    Barmada, Sami J.; Serio, Andrea; Arjun, Arpana; Bilican, Bilada; Daub, Aaron; Ando, D. Michael; Tsvetkov, Andrey; Pleiss, Michael; Li, Xingli; Peisach, Daniel; Shaw, Christopher; Chandran, Siddharthan; Finkbeiner, Steven

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology—cytoplasmic inclusions rich in TDP43. Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we showed that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity, and discovered that pathogenic mutations significantly shorten TDP43 half-life. Novel compounds that stimulate autophagy improved TDP43 clearance and localization, and enhanced survival in primary murine neurons and in human stem cell–derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance. PMID:24974230

  5. Enhanced spin Hall ratios by Al and Hf impurities in Pt thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Zhao, Mengnan; Ralph, Daniel C.; Buhrman, Robert A.

    The spin Hall effect (SHE) in Pt has been reported to be strong and hence promising for spintronic applications. In the intrinsic SHE mechanism, which has been shown to be dominant in Pt, the spin Hall conductivity σSH is constant, dependent only on the band structure of the spin Hall material. The spin Hall ratio θSH =σSH . ρ , on the other hand, should be proportional to the electrical resistivity ρ of the spin Hall layer. This suggests the possibility of enhancing the spin Hall ratio by introducing additional diffusive scattering to increase the electrical resistivity of the spin Hall layer. Our previous work has shown that this could be done by increasing the surface scattering by growing thinner Pt films in contact with higher resistivity materials such as Ta. In this talk, we discuss another approach: to introduce impurities of metals with negligible spin orbit torque into the Pt film. Our PtAl and PtHf alloy samples exhibit strong enhancement of the spin Hall torque efficiency with impurity concentration due to increased electrical resistivity. Supported in part by Samsung Electronics.

  6. [sup 31]P and [sup 27]Al NMR investigations of the effects of pH on aqueous solutions containing aluminum and phosphorus

    SciTech Connect

    Mortlock, R.F.; Bell, A.T.; Radke, C.J. Univ. of California, Berkeley )

    1993-01-21

    [sup 31]P and [sup 27]Al NMR spectroscopies are used to characterize the distribution of soluble aluminophosphate species in aqueous solutions of tetramethylammonium (TMA) hydroxide, phosphoric acid, and aluminum chloride. Solution compositions range from 0.1 to 1 mol % P, P/Al = 0.1-5, P/(TMA)[sub 2]O = 0.37-10. For solutions of 1 mol % P, a phase diagram is constructed for various concentrations of TMAOH and Al. The phase diagram is divided into three regions: a high-pH region (pH [ge] 6), a medium-pH range (2 [le] pH [le] 10) in which stable solid phases exist, and a low-pH region (pH [le] 2). In the low-pH region, soluble aluminophosphate complexes form between P species (H[sub 3]PO[sub 4] acid dimers, H[sub 3]PO[sub 4] molecules, and H[sub 2]PO[sub 4][sup [minus

  7. Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property

    SciTech Connect

    Fan Guoli; Wang Hui; Xiang Xu; Li Feng

    2013-01-15

    The present work reported the synthesis of Co-Al mixed metal oxides/carbon nanotubes (CoAl-MMO/CNT) nanocomposite from Co-Al layered double hydroxide/CNTs composite precursor (CoAl-LDH/CNT). The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption experiments, thermogravimetric and differential thermal analyses (TG-DTA), Raman spectra and X-ray photoelectron spectroscopy (XPS). The results revealed that in CoAl-MMO/CNT nanocomposite, the nanoparticles of cobalt oxide (CoO) and Co-containing spinel-type complex metal oxides could be well-dispersed on the surface of CNTs, thus forming the heterostructure of CoAl-MMO and CNTs. Furthermore, as-synthesized CoAl-MMO/CNT nanocomposite was utilized as additives for catalytic thermal decomposition of ammonium perchlorate (AP). Compared to those for pure AP and CoAl-MMO, the peak temperature of AP decomposition for CoAl-MMO/CNT was significantly decreased, which is attributed to the novel heterostructure and synergistic effect of multi-component metal oxides of nanocomposite. - Graphical abstract: Hybrid Co-Al mixed metal oxides/carbon nanotubes nanocomposite showed the enhanced catalytic activity in the thermal decomposition of ammonium perchlorate, as compared to carbon nanotubes and pure Co-Al mixed metal oxides. Highlights: Black-Right-Pointing-Pointer Co-Al mixed metal oxides/carbon nanotubes nanocomposite was synthesized. Black-Right-Pointing-Pointer Co-Al mixed metal oxides consisted of cobalt oxide and Co-containing spinels. Black-Right-Pointing-Pointer Nanocomposite exhibited excellent catalytic activity for the decomposition of AP. Black-Right-Pointing-Pointer The superior catalytic property is related to novel heterostructure and composition.

  8. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties

    SciTech Connect

    Sztein, Alexander; Bowers, John E.; DenBaars, Steven P.; Nakamura, Shuji

    2014-01-27

    A novel polarization field engineering based strategy to simultaneously achieve high electrical conductivity and low thermal conductivity in thermoelectric materials is demonstrated. Polarization based electric fields are used to confine electrons into two-dimensional electron gases in GaN/AlN/Al{sub 0.2}Ga{sub 0.8}N superlattices, resulting in improved electron mobilities as high as 1176 cm{sup 2}/Vs and in-plane thermal conductivity as low as 8.9 W/mK. The resulting room temperature ZT values reach 0.08, a factor of four higher than InGaN and twelve higher than GaN, demonstrating the potential benefits of this polarization based engineering strategy for improving the ZT and efficiencies of thermoelectric materials.

  9. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    SciTech Connect

    Ding, Fei; Xu, Wu; Choi, Daiwon; Wang, Wei; Li, Xiaolin; Engelhard, Mark H.; Chen, Xilin; Yang, Zhenguo; Zhang, Jiguang

    2012-04-27

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life. After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.

  10. Management of natural and added dietary phosphorus burden in kidney disease.

    PubMed

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2013-03-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (∼60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular, low-cost foods. In a nonenhanced mixed diet, digestible phosphorus correlates closely with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is limited more appropriately in predialysis patients who are on a low-protein diet (∼0.6 g/kg/d), whereas dialysis patients who require higher protein intake (∼1.2 g/kg/d) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Phosphorus rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking-induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counseling to address the emerging aspects of dietary phosphorus management is instrumental for achieving a reduction of phosphorus load. PMID:23465504

  11. Strain-induced stabilization of Al functionalization in graphene oxide nanosheet for enhanced NH{sub 3} storage

    SciTech Connect

    Li, Yunguo; De Sarkar, Abir; Pathak, Biswarup; Ahuja, Rajeev

    2013-06-17

    Strain effects on the stabilization of Al ad-atom on graphene oxide (GO) nanosheet as well as its implications for NH{sub 3} storage have been investigated using first-principles calculations. Tensile strain is found to be very effective in stabilizing the Al ad-atom on GO. It strengthens the C-O bonds through an enhanced charge transfer from C to O atoms. Interestingly, Al's stability is governed by the bond strength of C-O rather than that of Al-O. Optimally strained Al-functionalized GO binds up to 6 NH{sub 3} molecules, while it binds no NH{sub 3} molecule in unstrained condition.

  12. Characteristics of nanocomposite ZrO2/Al2O3 films deposited by plasma-enhanced atomic layer deposition.

    PubMed

    Yun, Sun Jin; Lim, Jung Wook; Kim, Hyun-Tak

    2007-11-01

    Nanocomposite ZrO2/Al2O3 (ZAO) films were deposited on Si by plasma-enhanced atomic layer deposition and the film characteristics including interfacial oxide formation, dielectric constant (k), and electrical breakdown strength were investigated without post-annealing process. In both the mixed and nano-laminated ZAO films, the thickness of the interfacial oxide layer (T(IL)) was considerably reduced compared to ZrO2 and Al2O3 films. The T(IL) was 0.8 nm in nano-composite films prepared at a mixing ratio (ZrO2:Al2O3) of 1:1. The breakdown strength and the leakage current level were greatly improved by adding Al2O3 as little as 7.9% compared to that of ZrO2 and were enhanced more with increasing content of Al2O3. The k of ZrO2 and mixed ZAO (Al2O3 7.9%) films were 20.0 and 16.5, respectively. These results indicate that the addition of Al2O3 to ZrO2 greatly improves the electrical properties with less cost of k compared to the addition of SiO2. PMID:18047146

  13. Structural and electrical properties of ternary Ru-AlN thin films prepared by plasma-enhanced atomic layer deposition

    SciTech Connect

    Shin, Yu-Ri; Kwack, Won-Sub; Park, Yun Chang; Kim, Jin-Hyock; Shin, Seung-Yong; Moon, Kyoung Il; Lee, Hyung-Woo; Kwon, Se-Hun

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Ru-AlN thin films were grown by plasma-enhanced atomic layer deposition (PEALD). Black-Right-Pointing-Pointer Structural properties were systematically investigated by XRD, BF-STEM and EDX. Black-Right-Pointing-Pointer A drastic decrease in resistivity was due to the microstructural change of the films. -- Abstract: Ruthenium-aluminum-nitride (Ru-AlN) thin films were grown by plasma-enhanced atomic layer deposition (PEALD) at 300 Degree-Sign C. The Ru intermixing ratio of Ru-AlN thin films was controlled by the number of Ru unit cycles, while the number of AlN unit cycles was fixed to one cycle. The electrical resistivity of Ru-AlN thin film decreased with increasing the Ru intermixing ratio, but a drastic decrease in electrical resistivity was observed when the Ru intermixing ratio was around 0.58-0.78. Bright-field scanning transmission electron microscope (BF-STEM) and energy-dispersive X-ray spectroscopy (EDX) element mapping analysis revealed that the electrical resistivity of Ru-AlN thin film was strongly dependent on the microstructures as well as on the Ru intermixing ratio. Although the electrical resistivity of Ru-AlN thin films decreased with increasing the Ru intermixing ratio, a drastic decrease in electrical resistivity occurred where the electrical paths formed as a result of the coalescence of Ru nanocrystals.

  14. Phosphorus poisoning in waterfowl

    USGS Publications Warehouse

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V., Jr.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  15. Impact of sulfate and chloride on sediment phosphorus release in the Yangtze Estuary Reservoir, China.

    PubMed

    Jin, Xiaodan; He, Yiliang; Zhang, Bo; Hassan, Younas; George, Kirumba

    2013-01-01

    The impact of sulfate (SO4(2-)) and chloride (Cl(-)) on phosphorus (P) release from sediment in the drinking water reservoir of Yangtze River Estuary was studied systematically. A significant correlation between sodium (Na(+)), Cl(-), SO4(2-) and total P was found, suggesting that P was directly or indirectly associated with these ions. SO4(2-) and Cl(-) were important factors that had an impact on P release from the sediment. The results showed that both sulfate and chloride enhanced phosphorus release from sediment. In the sulfate treatment, the decrease of organic phosphorus (OP) suggested that the mineralization of OP enhanced P release from sediment. Phosphonate was the main factor affecting the P release under sulfate condition. In chloride treatment, the sediment composition of iron (Fe), aluminum (Al), calcium (Ca) and magnesium (Mg) increased. The P fractions of Fe/Al-P, Ca-P and OP in sediment also increased. However, the increase of P was unstable after chloride treatment and was easy to release under disturbance. In this study, it was observed that sulfate and chloride could increase the risk of eutrophication in the Yangtze River Estuary drinking water reservoir. PMID:23579829

  16. Biogeochemistry: The fate of phosphorus

    NASA Astrophysics Data System (ADS)

    Némery, Julien; Garnier, Josette

    2016-05-01

    Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.

  17. Phosphorus Migration During Direct Reduction of Coal Composite High-Phosphorus Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Xue, Qingguo; Wang, Guang; Zhang, Yuanyuan; Wang, Jingsong

    2016-02-01

    This study investigated the direct reduction process and phosphorus migration features of high-phosphorus iron ores using simulated experiments. Results show that iron oxide was successfully reduced, and a Fe-Si-Al slag formed in carbon-bearing pellets at 1473 K (1200 °C). Fluorapatite then began to decompose into Ca3(PO4)2 and CaF2. As the reaction continued, Ca3(PO4)2 and Fe-Si-Al slag reacted quickly with each other to generate CaAl2Si2O8 and P2, while CaF2 turned into SiF4 gas in the presence of high SiO2. A small amount remained in the slag phase and formed CaAl2Si2O8. Further analysis detailed the migration process of the phosphorus into iron phases, as well as the relationship between carburization and phosphorus absorption in the iron phases. As carbon content in the iron phase increased, the austenite grain boundary melted and formed a large quantity of liquid iron which quickly absorbed the phosphorus. Based on the results of simulation and analysis, this paper proposed a method which reduced the absorption of P by the metallic iron formed and reduced P content in metallic iron during direct reduction.

  18. Effects of phosphorus, silicon and sulphur on microstructural evolution in austenitic stainless steels during electron irradiation

    NASA Astrophysics Data System (ADS)

    Fukuya, K.; Nakahigashi, S.; Ozaki, S.; Shima, S.

    1991-03-01

    Fe-18Cr-9Ni-1.5Mn austenitic alloys containing phosphorus, silicon and sulphur were irradiated by 1 MeV electrons at 573-773 K. Phosphorus increased the intersitial loop nucleation and decreased the void swelling by increasing void number density and suppressing void growth. Silicon had a similar effect to phosphorus but its effect was weaker than phosphorus. Sulphur enhanced void swelling through increasing the void density. Nickel enrichment at grain boundaries was suppressed only in the alloy containing phosphorus. These phosphorus effects may be explained by a strong interaction with interstitials resulting in a high density of sinks for point defects.

  19. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study.

    PubMed Central

    Sheikh, M S; Maguire, J A; Emmett, M; Santa Ana, C A; Nicar, M J; Schiller, L R; Fordtran, J S

    1989-01-01

    Antacids used to decrease phosphorus absorption in patients with renal failure may be toxic. To find more efficient or less toxic binders, a three-part study was conducted. First, theoretical calculations showed that phosphorus binding occurs in the following order of avidity: Al3+ greater than H+ greater than Ca2+ greater than Mg2+. In the presence of acid (as in the stomach), aluminum can therefore bind phosphorus better than calcium or magnesium. Second, in vitro studies showed that the time required to reach equilibrium varied from 10 min to 3 wk among different compounds, depending upon solubility in acid and neutral solutions. Third, the relative order of effectiveness of binders in vivo was accurately predicted from theoretical and in vitro results; specifically, calcium acetate and aluminum carbonate gel were superior to calcium carbonate or calcium citrate in inhibiting dietary phosphorus absorption in normal subjects. We concluded that: (a) inhibition of phosphorus absorption by binders involves a complex interplay between chemical reactions and ion transport processes in the stomach and small intestine; (b) theoretical and in vitro studies can identify potentially better in vivo phosphorus binders; and (c) calcium acetate, not previously used for medical purposes, is approximately as efficient as aluminum carbonate gel and more efficient as a phosphorus binder than other currently used calcium salts. PMID:2910921

  20. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    NASA Astrophysics Data System (ADS)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  1. Enhanced efficiency of AlGaInP disk laser by in-well pumping.

    PubMed

    Mateo, C M N; Brauch, U; Schwarzbäck, T; Kahle, H; Jetter, M; Abdou Ahmed, M; Michler, P; Graf, T

    2015-02-01

    The performance of a 665-nm GaInP disk laser operated continuous-wave at 15°C both in-well-pumped at 640 nm and barrier pumped at 532 nm is reported. The efficiency with respect to the absorbed power was enhanced by 3.5 times when using a 640-nm pump instead of a 532-nm pump. In-well pumping which is based on the absorption of the pump photons within the quantum-well heterostructures of the gain region instead of short-wavelength absorption in the barrier and spacer regions reduces the quantum defect between pump and laser photon and hence the heat generation. A slope efficiency of 60% with respect to the absorbed pump power was obtained by in-well pumping at 15°C. Continuous-wave laser operation was further demonstrated at heat sink temperatures of up to 55°C. Both the measurement of photoluminescence and COMSOL simulation show that the overall heat load in the in-well pumped laser is smaller than in the barrier-pumped laser. These results demonstrate the potential of optical in-well pumping for the operation of red AlGaInP disk lasers if combined with means for efficient pump-light absorption. PMID:25836115

  2. Enhancement in soft magnetic and ferromagnetic ordering behaviour through nanocrystallisation in Al substituted CoFeSiBNb alloys

    NASA Astrophysics Data System (ADS)

    Mohanta, Ojaswini; Basumallick, A.; Mitra, A.; Panda, A. K.

    2010-01-01

    The effect of substituting Al for Si in Co 36Fe 36Si 4-xAl xB 20Nb 4, ( X=0, 0.5, 1.0, 1.5, 2.0 at%) alloys prepared in the form of melt-spun ribbons have been investigated. All the alloys were amorphous in their as-cast state. The onset of crystallization as observed using differential scanning calorimetry (DSC) was found to rise at low Al content up to X=1 at% beyond which there was a decreasing trend. The alloys also exhibited glass transition at ' Tg'. Microstructural studies of optimally annealed samples indicated finer dispersions of nanoparticles in amorphous matrix which were identified as bcc-(FeCo)Si and bcc-(FeCo)SiAl nanophases by X-ray diffraction technique. Alloy with optimum content of Al around X=1 at% exhibited stability in coercivity at elevated temperatures. Though Al addition is known to lower magnetostriction, such consistency in coercivity may also be attributed towards lowering in the nanoparticle size compared to X=0 alloy. In the nanostructured state, the alloy containing optimum Al content ( X=1) exhibited further enhancement in ferromagnetic ordering or the Curie temperature by 100 K compared to alloy without Al. Such addition also attributed to better frequency response of coercivity and low core losses.

  3. Photoluminescence enhancement in quaternary III-nitrides alloys grown by molecular beam epitaxy with increasing Al content

    SciTech Connect

    Fernandez-Garrido, S.; Pereiro, J.; Gonzalez-Posada, F.; Munoz, E.; Calleja, E.

    2008-02-15

    Room temperature photoluminescence and optical absorption spectra have been measured in wurtzite In{sub x}Al{sub y}Ga{sub 1-x-y}N (x{approx}0.06, 0.02enhancement of the integrated intensity and an increasing Stokes shift with the Al content. Both effects arise from an Al-enhanced exciton localization revealed by the S- and W-shaped temperature dependences of the photoluminescence emission energy and bandwidth, respectively. Present results point to these materials as a promising choice for the active region in efficient light emitters. An In-related bowing parameter of 1.6 eV was derived from optical absorption data.

  4. Effect of Tool Offset and Tool Rotational Speed on Enhancing Mechanical Property of Al/Mg Dissimilar FSW Joints

    NASA Astrophysics Data System (ADS)

    Liang, Zhiyuan; Chen, Ke; Wang, Xiaona; Yao, Junshan; Yang, Qi; Zhang, Lanting; Shan, Aidang

    2013-08-01

    Friction stir welding (FSW) is a promising solid-state joining technique for producing effective welds between Al alloy and Mg alloy. However, previously reported Al/Mg dissimilar FSW joints generally have limited strength or barely any ductility with relatively high strength, which was blamed on the brittle intermetallics formed during welding. In this study, effective joints with comparably high strength (163 MPa) and large elongation (~6 pct) were obtained. Three crucial/weak zones were identified in the welds: (1) Al/Mg bottom interface (BI) zone that resulted from the insufficient materials' intermixing and interdiffusion; (2) banded structure (BS) zone which contains intermetallic particles possibly formed by constitutional liquation; and (3) softened Al alloy to the retreating side (SAA-RS) zone due to the dissolution and coarsening of the strengthening precipitates. Three fracture modes observed in the tensile specimens perpendicular to the weld seam were found closely related to these zones. Their microstructure evolution with the change of tool rotational speed and tool offset was characterized and the consequent effect on the fracture mode alteration was studied. It turned out that enhancing the strengths of all these zones, but keeping the strength of the SAA lowest, is an effective way for enhancing ductility while keeping comparatively high strength in Al/Mg FSW joints. Also, suggestions for further improving the mechanical property of the Al/Mg dissimilar FSW joints were made accordingly for practical applications.

  5. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton.

    PubMed

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-01-01

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition. PMID:26179843

  6. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton

    PubMed Central

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-01-01

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition. PMID:26179843

  7. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films

    SciTech Connect

    Kumar, Manish Wen, Long; Sahu, Bibhuti B.; Han, Jeon Geon

    2015-06-15

    Simultaneously achieving higher carriers concentration and mobility is a technical challenge against up-scaling the transparent-conductive performances of transparent-conductive oxides. Utilizing one order higher dense (∼1 × 10{sup 11} cm{sup −3}) plasmas (in comparison to the conventional direct current plasmas), highly c-axis oriented Al-doped ZnO films have been prepared with precise control over relative composition and chemical states of constituting elements. Tailoring of intrinsic (O vacancies) and extrinsic (ionic Al and zero-valent Al) dopants provide simultaneous enhancement in mobility and concentration of charge carriers. Room-temperature resistivity as low as 4.89 × 10{sup −4} Ω cm along the carrier concentration 5.6 × 10{sup 20} cm{sup −3} is obtained in 200 nm thick transparent films. Here, the control of atomic Al reduces the charge trapping at grain boundaries and subdues the effects of grain boundary scattering. A mechanism based on the correlation between electron-hole interaction and carrier mobility is proposed for degenerately doped wide band-gap semiconductors.

  8. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Wen, Long; Sahu, Bibhuti B.; Han, Jeon Geon

    2015-06-01

    Simultaneously achieving higher carriers concentration and mobility is a technical challenge against up-scaling the transparent-conductive performances of transparent-conductive oxides. Utilizing one order higher dense (˜1 × 1011 cm-3) plasmas (in comparison to the conventional direct current plasmas), highly c-axis oriented Al-doped ZnO films have been prepared with precise control over relative composition and chemical states of constituting elements. Tailoring of intrinsic (O vacancies) and extrinsic (ionic Al and zero-valent Al) dopants provide simultaneous enhancement in mobility and concentration of charge carriers. Room-temperature resistivity as low as 4.89 × 10-4 Ω cm along the carrier concentration 5.6 × 1020 cm-3 is obtained in 200 nm thick transparent films. Here, the control of atomic Al reduces the charge trapping at grain boundaries and subdues the effects of grain boundary scattering. A mechanism based on the correlation between electron-hole interaction and carrier mobility is proposed for degenerately doped wide band-gap semiconductors.

  9. Phosphorus recovery from wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  10. Phosphorus in diet

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002424.htm Phosphorus in diet To use the sharing features on this page, please enable ... the body make ATP, a molecule the body uses to store energy. Phosphorus works with the B vitamins. It also helps ...

  11. PHOSPHORUS RECOVERY FROM SEWAGE

    EPA Science Inventory

    Phosphorus is a growth limiting nutrient that is mined from rock ore, refined, used in fertilizers, and discharged to the environment through municipal sewage. The impacts of phosphorus discharge include severe eutrophication of fresh water bodies. The future sustainable use of...

  12. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-01

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described. PMID:26270791

  13. GdAlO3:Eu3+:Bi3+ nanophosphor: Synthesis and enhancement of red emission for WLEDs

    NASA Astrophysics Data System (ADS)

    Shilpa, C. J.; Jayaram, Akila Kadgathur; Dhananjaya, N.; Nagabhushana, H.; Prashantha, S. C.; Sunitha, D. V.; Sharma, S. C.; Shivakumara, C.; Nagabhushana, B. M.

    2014-12-01

    GdAlO3, GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ nanophosphors were synthesised by solution combustion technique. Pure orthorhombic phase was obtained from powder X-ray diffraction (PXRD) studies. Scanning electron microscopy (SEM) micrographs showed the porous, agglomerated and irregular shaped particles. The particle size obtained by transmission electron microscopy (TEM) measurement was in good agreement with the values obtained by Debye Scherrer's and W-H plots. The selected area electron diffraction (SAED) pattern show single crystalline nature of the sample. Photoluminescence (PL) measurements were carried out for GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ phosphors excited at a wavelength of 274 nm. The characteristic emission peaks of Eu3+ ions were recorded at 590, 614, 655 and 695 nm corresponding to 5D0 → 7FJ (J = 1, 2, 3, 4) transitions respectively. However, with addition of Bi3+ ions in GdAlO3:Eu3+, PL intensity drastically enhanced. Orange red color was tuned to deep red color with the addition of Bi3+ ions in GdAlO3:Eu3+ phosphor. Therefore, the phosphor was highly useful as red component in WLEDs. A single well resoled glow peak at 225 °C was recorded in GdAlO3 and GdAlO3:Eu3+. Further, with addition of Bi3+ ions, an additional peak at 300 °C was recorded. TL glow curves of different UV-exposed GdAlO3:Eu3+:Bi3+ show two TL peaks at 207 and 300 °C respectively. The 207 °C peak show simple glow peak structure and its intensity increases linearly up to 25 min and after that it decrease.

  14. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Ma, Ruguang; Candelaria, Stephanie L.; Wang, Jiacheng; Liu, Qian; Uchaker, Evan; Li, Pengxi; Chen, Yongfang; Cao, Guozhong

    2016-05-01

    Phosphorus (P)/sulfur (S) co-doped porous carbon derived from resorcinol and furaldehyde are synthesized through one-step sol-gel processing with the addition of phosphorus pentasulfide as P and S source followed with freeze-drying and pyrolysis in nitrogen. The P/S co-doping strategy facilitates the pore size widening both in micropore and mesopore regions, together with the positive effect on the degree of graphitization of porous carbon through elimination of amorphous carbon through the formation and evaporation of carbon disulfide. As an electrode for supercapacitor application, P/S co-doped porous carbon demonstrates 43.5% improvement on specific capacitance of the single electrode compared to pristine porous carbon in organic electrolyte at a current of 0.5 mA due to the P-induced pseudocapacitive reactions. As for electrocatalytic use, promoted electrocatalytic activity and high resistance to crossover effects of oxygen reduction reaction (ORR) in alkaline media are observed after the introduction of P and S into porous carbon. After air activation, the specific capacitance of the single electrode of sample PS-pC reaches up to 103.5 F g-1 and an improved oxygen reduction current density.

  15. Fixed film phosphorus removal--flexible enough?

    PubMed

    Rogalla, F; Johnson, T L; McQuarrie, J

    2006-01-01

    While biological phosphorus removal (BPR) has been practised for 30 years, up to recently it has been restricted mainly to activated sludge processes, with the corresponding need for large basin volumes. Yet, research with biofilm reactors showed that the principle of alternate anaerobic and aerated conditions was applicable to fixed bacteria by changing the conditions in time rather than in space. Attached growth enhanced biological phosphorus removal (EBPR) systems are attractive because of their compactness and capability to retain high biomass levels. However, the phosphorus extraction depends on backwashes to enhance the phosphorus-rich attached biomass, and correct control of unsteady effluent quality created by frequently modified process conditions. Accordingly, EBPR remains a challenging task in terms of combining nitrogen and phosphorus removal using attached growth systems. Nevertheless, a combination of activated sludge and biofilm carriers, in the integrated fixed-film activated sludge system, provides treatment opportunities not readily available using suspended growth systems. Current practice is only at the beginning of exploiting the full potential of this combination, but the first full-scale results show that compact tankage and low nutrient results based on biological principles are possible. PMID:16889243

  16. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Fu, Y. Q.; Chen, J. J.; Xuan, W. P.; Chen, J. K.; Wang, X. Z.; Mayrhofer, P.; Duan, P. F.; Bittner, A.; Schmid, U.; Luo, J. K.

    2016-07-01

    This paper reports the characterization of scandium aluminum nitride (Al1‑x Sc x N, x  =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients (K 2, ~2%) compared with pure AlN films (<0.5%). The performance of the two types of devices was also investigated and compared, using acoustofluidics as an example. The AlScN/Si SAW devices achieved much lower threshold powers for the acoustic streaming and pumping of liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices.

  17. High Technique for T-Peel Strength Enhancement of Al/AFRP Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woong; Oh, Dong-Joon

    The interlaminar peel strength of Al/AFRP (Aluminum alloy/Aramid Fiber Reinforced Plastic) hybrid composite is affected by the adhesive strength between the Al alloy layer and the aramid fiber layer. The study of the tensile strength and the T-peel strength of the Al/AFRP should be accomplished first. Therefore, this study focused on the effect of the resin mixture ratio as the Al/AFRP on the tensile strength and T-peel strength. In conclusions, the resin mixture ratio by equivalence ratio of equal to <1:1> of Al/AFRP-I and the resin mixture ratio by equivalence ratio of equal to <1:1:0.2> of Al/AFRP-II showed the highest ultimate tensile strength. After the T-peel test, it is found that the T-peel strength of Al/AFRP-II is approximately 1.5 times higher than that of Al/AFRP-I. Reviewing the characteristics of the tensile and T-peel strengths, the resin mixture ratio <1:1:0.2> of Al/AFRP-II showed the highest tensile strength and T-peel strength.

  18. Evolution of biogeochemical cycling of phosphorus during 45~50 Ma revealed by sequential extraction analysis of IODP Expedition 302 cores from the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Yamaguchi, K. E.; Takahashi, K.

    2012-12-01

    The modern Arctic Ocean plays crucial roles in controlling global climate system with the driving force of global thermohaline circulation through the formation of dense deep water and high albedo due to the presence of perennial sea-ice. However, the Arctic sea-ice has not always existed in the past. Integrated Ocean Drilling Program (IODP) Expedition 302 Arctic Coring Expedition (ACEX) has clarified that global warming (water temperature: ca. 14~16○C) during 48~49 Ma Azolla Event induced the loss of sea-ice and desalination of surface ocean, and that sea-ice formed again some million years later (45 Ma). In the Arctic Ocean, warming and cooling events repeated over and over (e.g., Brinkhuis et al., 2006; Moran et al., 2006; März et al., 2010). Large variations in the extent of thermohaline circulation through time often caused stagnation of seawater and appearance of anaerobic environment where hydrogen sulfide was produced by bacterial sulfate reduction. Ogawa et al. (2009) confirmed occurrence of framboidal pyrite in the ACEX sediments, and suggested that the Arctic Ocean at the time was anoxic, analogous to the modern Black Sea, mainly based on sulfur isotope analysis. To further clarify the variations in the nutrient status of the Arctic Ocean, we focus on the geochemical cycle of phosphorus. We performed sequential extraction analysis of sedimentary phosphorus in the ACEX sediments, using the method that we improvped based on the original SEDEX method by Ruttenberg (1992) and Schenau et al. (2000). In our method, phosphorus fractions are divided into five forms; (1) absorbed P, (2) Feoxide-P, (4) carbonate fluorapatite (CFAP) + CaCO3-P + hydroxylapatite (HAP), (4) detrital P, and (5) organic P. Schenau et al. (2000) divided the (3) fraction into non-biological CFAP and biological HAP and CaCO3-P. When the Arctic Ocean was closed and in its warming period, the water mass was most likely stratified and an anaerobic condition would have prevailed where

  19. Investigation of the phosphorus removal capacities of basic oxygen furnace slag under variable conditions.

    PubMed

    Han, Chong; Wang, Zhen; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin

    2016-05-01

    Effects of reaction time, initial phosphorus concentration, basic oxygen furnace slag (BOF-slag) dosage and size, and temperature on the phosphorus removal capacities (PRCs) of BOF-slag have been investigated in detail through batch tests. Weakly bound phosphorus, Fe- and Al-associated phosphorus, and Ca-associated phosphorus from fresh and reacted BOF-slag were analysed using sequential chemical extraction processes. It was determined that the PRCs of BOF-slag increased with the increase of initial phosphorus concentration and temperature while it decreased with the increase of BOF-slag dosage and size. The phosphorus removed by BOF-slag was primarily assigned to weakly bound phosphorus and Ca-associated phosphorus. Weakly bound phosphorus showed a significant decrease with the increase in all experimental parameter values. However, Ca-associated phosphorus exhibited a prominent increase with increasing reaction time, initial phosphorus concentration, and temperature. These demonstrate that experimental parameters can simultaneously affect the PRCs of BOF-slag and the ways of phosphorus removal by BOF-slag. PMID:26507932

  20. Identifying increased inputs of terrestrial phosphorus to sediments of the southwestern Everglades and Florida Bay

    NASA Astrophysics Data System (ADS)

    Kang, Woo-Jun; Trefry, John H.

    2013-09-01

    Increased inputs of terrestrial phosphorus are a key factor in enhanced coastal eutrophication. Yet, precise determination of increases in terrestrial phosphorus in the sedimentary record is complicated by a variety of post-depositional processes. A method that takes these complications into consideration and produces a better record is needed. In this study, spatial and temporal patterns of terrestrial total phosphorus (TP) were determined for both pre-development (1900-1920s) and post-development (>1990s) sediments from the southwestern (SW) Everglades and Florida Bay. A two-component model for sediment sources [(Al + TOC) and CaCO3], coupled with the TOC/TOP ratios for TOP sources, was used to identify sediments containing mainly terrestrial TP. A strong spatial and temporal relationship between terrestrial TP and (Al + TOC) in pre- and post-development sediments from the more terrestrial sites suggests that aluminosilicates and organic matter play major roles in delivering terrestrial TP to area sediments. Terrestrial TP has been the predominant source of phosphorus to the sediments at the mouth of Shark River Slough (SRS), the west coast of the SW Everglades and western Florida Bay over the past century. Anthropogenic inputs of terrestrial TP, based on an enrichment factor calculated using [Terrestrial TP/(Al + TOC)] for pre- and post-development sediments, showed a 2- to 3-fold increase for sediments from the west coast of the SW Everglades and northwestern Florida Bay during the past century. In contrast, no such increases were found for the mouth of SRS. These findings suggest that anthropogenic inputs of terrestrial TP were most likely derived from freshwater runoff along the southwest coast of Florida. Our approach and results support and help focus current management efforts for the Everglades-Florida Bay as well as other coastal systems.

  1. Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Duan, Xiao-Ling; Zhang, Jin-Cheng; Xiao, Ming; Zhao, Yi; Ning, Jing; Hao, Yue

    2016-08-01

    A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage (V B) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits. Project supported by the National Science and Technology Major Project, China (Grant No. 2013ZX02308-002) and the National Natural Science Foundation of China (Grant Nos. 11435010, 61474086, and 61404099).

  2. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  3. Study on the enhanced fluorescent spectrum of ciprofloxacin + Al(III) + La(III) + cetyltrimethylammonium bromide system and its application

    NASA Astrophysics Data System (ADS)

    Wei, Leilei; Li, Guirong; Li, Haipeng

    2010-05-01

    The fluorescence of ciprofloxacin (CIP) in HAc-NaAc buffer solution and the presence of cetyltrimethylammonium bromide (CTMAB) enhanced visibly with adding Al(III) and La(III). This enhanced fluorescence spectra were studied, and a new co-luminescence system of CIP + Al(III) + La(III) + CTMAB was discovered. There was a linear relationship between the enhanced fluorescence intensity and the concentration of CIP in the range of 0.50-80.2 μg l -1 under the optimized condition. A novel enhanced fluorescence method for the determination of trace CIP was established by using this co-luminescence system. The detection limit of the proposed method was 0.17 μg l -1 for CIP. This method is simple, rapid and sensitive. The CIP in milk samples were analyzed by the proposed method with satisfactory results. The relative standard deviation and the recovery were in ranges of 3.21-4.34% and 97.1-100.1%, respectively. The mechanism of the co-luminescence reaction and the reasons for fluorescence enhancement has been discussed.

  4. Enhancement of Spin-Polarized Electron Emission from Strain-Compensated AlInGaAs-GaAsP Superlattices

    SciTech Connect

    Roberts, J.S.; Yashin, Yu.P.; Mamaev, Yu.A.; Gerchikov, L.G.; Maruyama, T.; Luh, D.-A.; Clendenin, J.E.; /SLAC

    2006-12-08

    Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strain-compensated AlInGaAs/GaAsP superlattice structure is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by up to a factor 10 in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

  5. Bipolar resistive switching properties of AlN films deposited by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Qilong; Yang, Hui; Wu, Huayu; Zhou, Juehui; Hu, Liang

    2014-10-01

    AlN thin films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate the resistive switching (RS) behavior. The bipolar RS properties were observed in the Cu/PEALD-AlN/Pt devices, which are induced upon the formation/disruption of Cu conducting filaments, as confirmed by the temperature dependent resistances relationships at different resistance states. The resistance ratio of the high and low resistance states (HRS/LRS) is 102-105. The dominant conduction mechanisms at HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. This study demonstrated that the PEALD-AlN films have a great potential for the applications in high-density resistance random access memory.

  6. Tribological behavior of Ti-Al-Si-C-N hard coatings deposited by hybrid arc-enhanced magnetron sputtering

    SciTech Connect

    Wu Guizhi; Ma Shengli; Xu Kewei; Chu, Paul K

    2012-03-15

    Ti-Al-Si-C-N hard coatings are deposited on high speed steel by hybrid arc-enhanced magnetron sputtering, and the hardness, adhesion, and tribological behavior are studied. On account of the nanocomposite structure, the coatings possess hardness of more than 30 GPa. Failure of the coating during the scratch test is due to the buckling and wedge spallation failure mechanism. Compared to Ti-Al-Si-N, the presence of C in the Ti-Al-Si-C-N coatings leads to reduced friction coefficient and wear rate, indicating effective lubrication rendered by amorphous C. According to the wear tracks examined by scanning electron microscopy, the wear mechanism can be explained by plowing abrasion.

  7. Reactivity enhancement of oxide skins in reversible Ti-doped NaAlH{sub 4}

    SciTech Connect

    Delmelle, Renaud; Borgschulte, Andreas; Gehrig, Jeffrey C.; Züttel, Andreas

    2014-12-15

    The reversibility of hydrogen sorption in complex hydrides has only been shown unambiguously for NaAlH{sub 4} doped with transition metal compounds. Despite a multitude of investigations of the effect of the added catalyst on the hydrogen sorption kinetics of NaAlH{sub 4}, the mechanism of catalysis remains elusive so far. Following the decomposition of TiCl{sub 3}-doped NaAlH{sub 4} by in-situ X-ray photoelectron spectroscopy (XPS), we link the chemical state of the dopant with those of the hydride and decomposition products. Titanium and aluminium change their oxidation states during cycling. The change of the formal oxidation state of Al from III to zero is partly due to the chemical reaction from NaAlH{sub 4} to Al. Furthermore, aluminium oxide is formed (Al{sub 2}O{sub 3}), which coexists with titanium oxide (Ti{sub 2}O{sub 3}). The interplay of metallic and oxidized Ti with the oxide skin might explain the effectiveness of Ti and similar dopants (Ce, Zr…)

  8. Particulate and dissolved phosphorus chemical separation and phosphorus release from treated dairy manure.

    PubMed

    Dao, Thanh H; Daniel, Tommy C

    2002-01-01

    In confined animal feeding operations, liquid manure systems present special handling and storage challenges because of the large volume of diluted wastes. Water treatment polymers and mineral phosphorus (P) immobilizing chemicals [AI2(SO4)3 x 18H2O, FeCl3-6H2O, and Class C fly ash] were used to determine particulate and dissolved reactive phosphorus (DRP) reduction mechanisms in high total suspended solid (TSS) dairy manure and the P release from treated manure and amended soils. Co-application exceeded the aggregation level achieved with individual manure amendments and resulted in 80 and 90% reduction in metal salt and polymer rates, respectively. At marginally effective polymer rates between 0.01 and 0.25 g L(-1), maximal aggregation was attained in combination with 1 and 10 g L(-1) of aluminum sulfate (3 and 30 mmol Al3+ L(-1)) and iron chloride (3.7 and 37 mmol Fe3+ L(-1)) in 30 g L(-1) (TSS30) and 100 g L(-1) TSS (TSS100) suspensions, respectively. Fly ash induced particulate destabilization at rates > or = 50 g L(-1) and reduced solution-phase DRP at all rates > or = 1 g L(-1) by 52 and 71% in TSS30 and TSS100 suspensions, respectively. Aluminum and Fe salts also lowered DRP at rates < or = 10 g L(-1) and higher concentrations redispersed particulates and increased DRP due to increased suspension acidity and electrical conductivity. The DRP release from treated manure solids and a Typic Paleudult amended with treated manure was reduced, although the amendments increased Mehlich 3-extractable P. Therefore, the synergism of flocculant types allowed input reduction in aggregation aid chemicals, enhancing particulate and dissolved P separation and immobilization in high TSS liquid manure. PMID:12175060

  9. Impact of fish farming on the distribution of phosphorus in sediments in the middle Adriatic area.

    PubMed

    Matijević, Slavica; Kuspilić, Grozdan; Kljaković-Gaspić, Zorana; Bogner, Danijela

    2008-03-01

    During the last decade, intensive fish farming developed along the central Croatian coast, creating a need to study and evaluate its potential influence on unaffected sites. We considered phosphorus as an indicator of the influence of fish farming and investigated the distribution of phosphorus forms in sediment from several fish farms and marine areas of different trophic status in the middle Adriatic. Analyses of samples were performed with modified SEDEX techniques. Our results indicated that authigenic apatite phosphorus showed no significant differences among the investigated stations, while organic phosphorus concentrations reflected the trophic status of the station area. Below-cage sediment was characterized by enhanced fish debris phosphorus and low detrital apatite phosphorus concentrations, while sediment from an anthropogenically influenced bay showed the highest values of iron bound phosphorus species. Among the different P fractions, fish debris phosphorus proved to be the most sensitive indicator of the influence of fish farming on marine sediment. PMID:18187162

  10. Characterization of plasma-enhanced atomic layer deposition of Al{sub 2}O{sub 3} using dimethylaluminum isopropoxide

    SciTech Connect

    Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.; Kaur, Manpuneet

    2014-03-15

    In this research, Al{sub 2}O{sub 3} films were grown by remote plasma-enhanced atomic layer deposition using a nonpyrophoric precursor, dimethylaluminum isopropoxide (DMAI), and oxygen plasma. After optimization, the growth rate was determined to be ∼1.5 Å/cycle within a growth window of 25–220 °C; the higher growth rate than reported for thermal atomic layer deposition was ascribed to the higher reactivity of the plasma species compared with H{sub 2}O and the adsorption of active oxygen at the surface, which was residual from the oxygen plasma exposure. Both effects enhance DMAI chemisorption and increase the saturation density. In addition, a longer oxygen plasma time was required at room temperature to complete the reaction and decrease the carbon contamination below the detection limit of x-ray photoemission spectroscopy. The properties of the subsequent Al{sub 2}O{sub 3} films were measured for different temperatures. When deposited at 25 °C and 200 °C, the Al{sub 2}O{sub 3} films demonstrated a single Al-O bonding state as measured by x-ray photoemission spectroscopy, a similar band gap of 6.8±0.2 eV as determined by energy loss spectroscopy, a similar index of refraction of 1.62±0.02 as determined by spectroscopic ellipsometry, and uniform growth with a similar surface roughness before and after growth as confirmed by atomic force microscopy. However, the room temperature deposited Al{sub 2}O{sub 3} films had a lower mass density (2.7 g/cm{sup 3} compared with 3.0 g/cm{sup 3}) and a higher atomic ratio of O to Al (2.1 compared with 1.6) as indicated by x-ray reflectivity and Rutherford backscattering spectroscopy, respectively.