Science.gov

Sample records for phosphorus potassium calcium

  1. Nitrogen, phosphorus, potassium, calcium, magnesium, and zinc in southeastern USA harvested flax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flax (Linum usitatissimum L.) is a winter crop in the Southeast USA that has potential in double cropping systems. This research was conducted to provide estimates of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and zinc (Zn) removal in the harvested portions of the cro...

  2. Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women.

    PubMed

    Nielsen, Forrest H; Milne, David B; Gallagher, Sandra; Johnson, LuAnn; Hoverson, Bonita

    2007-03-01

    Enzyme and or hormone actions have not been shown to be consistently changed by consuming a low-magnesium diet similar to one that may occur in the general population. Thus, a human metabolic study was performed to determine whether deficient intakes of magnesium similar to those that occur naturally have pathophysiological effects through altering calcium retention and the metabolism of other minerals (sodium, potassium, phosphorus) involved in cellular ionic balance. Fifteen postmenopausal Caucasian women were recruited by advertisement throughout the United States. Eleven women (ages 49 to 71 years) completed the study as designed. The women resided in a metabolic research unit and consumed a basal Western-type diet that resulted in a mean intake of 4.40 mmol (107 mg) magnesium/d. The women were fed the basal diet supplemented with 9.05 mmol (220 mg) magnesium/d for 18 d (equilibration) before being assigned to one of two groups in an experiment with a double blind, crossover design. One group was fed the basal diet and supplemented with a lactose placebo while the other group continued consuming the basal diet supplemented with 9.05 mmol magnesium/d for 72 d, then each group switched to the other's diet, which they consumed for 72 d. Magnesium was supplemented as magnesium gluconate. Magnesium deprivation resulted in a non-positive magnesium balance (-0.21 mmol or -5 mg/d) that was highly positive during magnesium supplementation (+2.22 mmol or +54 mg/d). Magnesium deprivation decreased red blood cell membrane magnesium (2.5 versus 2.7 nmol or 0.061 versus 0.065 microg/mg protein; p < or = 0.05). Magnesium deprivation increased calcium balance (+0.82 mmol or +35 mg/d versus -0.02 or -1 mg/d; p < or = 0.009); decreased the fecal excretion of phosphorus (28.9% versus 32.3% of intake; p < or =0.0001); increased the urinary excretion of phosphorus (73.4% versus 71.0%; p < 0.003); and decreased the urinary excretion of potassium (40.4 mmol or 1.58 g/d versus 41

  3. Genetic control and transgressive segregation of zinc, iron, potassium, phosphorus, calcium, and sodium accumulation in cowpea (Vigna unguiculata) seeds.

    PubMed

    Fernandes Santos, C A; Boiteux, L S

    2015-01-01

    Cowpea crop, through combining a range of essential minerals with high quality proteins, plays an important role in providing nutritional security to human population living in semi-arid regions. Studies on genetics of biofortification with essential minerals are still quite scarce, and the major objective of the present study was to provide genetic information on development of cowpea cultivars with high seed mineral contents. Genetic parameters heritability and minimum number of genes were estimated for seed accumulation of zinc (Zn), iron (Fe), calcium (Ca), phosphorus (P), potassium (K), and sodium (Na). Generation mean and variance analyses were conducted using contrasting parental lines, F₁, F₂, and backcross populations derived from IT97K-1042-3 x BRS Tapaihum and IT97K-1042-3 x Canapu crosses. High narrow-sense heritability (h²) values were found for accumulation of Fe (65-86%), P (74-77%), and K (77-88%), whereas moderate h(2) values were observed for accumulation of Ca (41-56%), Zn (51-83%), and Na (50-55%) in seeds. Significant additive genetic effects as well as parental mean effects were detected in both crosses for all minerals, whereas epistasis was important genetic component in Zn content. The minimum number of genes controlling the accumulation of minerals ranged from two (K) to 11 (P). Transgressive segregation was observed in F2 populations of both crosses for all minerals analyzed. The results suggest that, although under either oligogenic or polygenic control, the seed content of these six minerals in cowpea can be improved via standard breeding methods largely used for self-pollinated crops. PMID:25729958

  4. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-12-01

    The objective of this work was to study nutrients release from two compressed nitrogen-potassium-phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0-20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg-1.

  5. Major Minerals - Calcium, Magnesium, Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  6. Genetic parameters of calcium, phosphorus, magnesium, and potassium serum concentrations during the first 8 days after calving in Holstein cows.

    PubMed

    Tsiamadis, V; Banos, G; Panousis, N; Kritsepi-Konstantinou, M; Arsenos, G; Valergakis, G E

    2016-07-01

    Calcium, Mg, P, and K are of great importance for the health and productivity of dairy cows after calving. So far genetic studies have focused on clinical hypocalcemia, leaving the genetic parameters of these macroelements unstudied. Our objective was to estimate the genetic parameters of Ca, Mg, P, and K serum concentrations and their changes during the first 8d after calving. The study was conducted in 9 herds located in northern Greece, with 1,021 Holstein cows enrolled from November 2010 until November 2012. No herd used any kind of preventive measures for hypocalcemia. Pedigree information for all cows was available. A total of 35 cows were diagnosed and treated for periparturient paresis and, therefore, excluded from the study. The remaining 986 cows were included in genetic analysis. The distribution of cows across parities was 459 (parity 1), 234 (parity 2), 158 (parity 3), and 135 (parity ≥4). A sample of blood was taken from each cow on d1, 2, 4, and 8 after calving and serum concentrations of Ca, P, Mg, and K were measured in each sample. A final data set of 15,390 biochemical records was created consisting of 3,903 Ca, 3,902 P, 3,903Mg, and 3,682K measurements. Moreover, changes of these concentrations between d1 and 4 as well as 1 and 8 after calving were calculated and treated as different traits. Random regression models were used to analyze the data. Results showed that daily heritabilities of Ca, P, and Mg concentrations traits were moderate to high (0.20-0.43), whereas those of K were low to moderate (0.12-0.23). Regarding concentration changes, only Mg change between d1 and 8 after calving had a significant heritability of 0.18. Genetic correlations between Ca, P, Mg, and K concentrations and their concentration changes from d1 to 4 and 1 to 8 after calving were not significantly different from zero. Most phenotypic correlations among Ca, P, Mg, and K concentrations were positive and low (0.09-0.16), whereas the correlation between P and Mg was

  7. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. PMID:26830585

  8. Calcium and phosphorus fluxes during hemodialysis with low calcium dialysate.

    PubMed

    Hou, S H; Zhao, J; Ellman, C F; Hu, J; Griffin, Z; Spiegel, D M; Bourdeau, J E

    1991-08-01

    We evaluated the acute effects of varying dialysate calcium concentration on plasma concentrations and dialyzer fluxes of calcium and phosphorus in adult hemodialysis patients. Seven individuals with stable end-stage renal failure were dialyzed 4 hours, three times weekly. The effects of dialysates containing 1.75, 1.25, or 0.75 mmol/L (70.1, 50.1, or 30.1 mg/L) of calcium were compared. Each patient was studied once at each bath calcium concentration. Compared with the predialysis mean value of 2.27 mmol/L (9.1 mg/dL), plasma total calcium concentration increased, remained constant, or decreased with the 1.75-, 1.25-, or 0.75-mmol/L calcium dialysates, respectively. The 0.75-mmol/L calcium dialysate did not cause signs or symptoms of hypocalcemia (and the plasma calcium concentration did not fall below 1.80 mmol/L [7.2 mg/dL]). Plasma phosphorus concentrations decreased equally from a predialysis mean value of 2.16 mmol/L (6.7 mg/dL), regardless of the dialysate calcium concentration. After 4 hours of treatment with the three different dialysates, the cumulative calcium fluxes were significantly different. With 1.75 mmol/L calcium, mean bodily calcium accumulation was 21.9 mmol (879 mg). With 1.25 mmol/L, there was no net calcium flux. With 0.75 mmol/L, mean patient calcium loss was 5.8 mmol (231 mg). Mean phosphorus removal after 4 hours was 32.5 mmol (1,006 mg) and was unaffected by dialysate calcium concentration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1867178

  9. Calcium, magnesium, and potassium in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical and physiological functions and consequences of deficient intakes, which show the nutritional importance of calcium, magnesium and potassium for humans, are reviewed. The dietary recommendations and food sources for these essential mineral elements for humans are presented. Factors t...

  10. Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric

    2012-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula. PMID:22468357

  11. [Intravenous drop of calcium gluconate for phosphorus burns].

    PubMed

    Hu, A J

    1993-07-01

    20 patients with phosphor burn (TBSA 2%-75%) were cured by i.v. drop of calcium gluconate combined with other therapies including eschar conservation. Our experimental data showed that dogs with burn by spreading 85% phosphoric acid and napalm locally increased the level of plasma phosphorus and pathological damages to the heart, lung, kidney and etc were similar to those previously reported phosphorus burns. Intravenous drop of calcium gluconate after phosphate burn reduced the level of plasma phosphorus to normal rapidly and lessened the visceral damages. We consider that i.v. drop of calcium gluconate can accelerate the elimination of phosphorus, and prevent phosphorus poisoning after phosphorus burns. PMID:8313772

  12. Energy-dispersive x-Ray Analysis of Phosphorus, Potassium, Magnesium, and Calcium in Globoid Crystals in Protein Bodies from Different Regions of Cucurbita maxima Embryos 1

    PubMed Central

    Lott, John N. A.; Greenwood, John S.; Vollmer, Catherine M.; Buttrose, Mark S.

    1978-01-01

    The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis. PMID:16660439

  13. Energy-dispersive x-Ray Analysis of Phosphorus, Potassium, Magnesium, and Calcium in Globoid Crystals in Protein Bodies from Different Regions of Cucurbita maxima Embryos.

    PubMed

    Lott, J N; Greenwood, J S; Vollmer, C M

    1978-06-01

    The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis. PMID:16660439

  14. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  15. Soil phosphorus and potassium estimation by reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible and near infrared (VNIR) diffuse reflectance spectroscopy has potential in site-specific measurement of soil properties. However, previous studies have reported VNIR estimates of plant available soil phosphorus (P) and potassium (K) to be of variable accuracy. In this study, we used a databa...

  16. Disorders Involving Calcium, Phosphorus, and Magnesium

    PubMed Central

    Moe, Sharon M.

    2008-01-01

    Abnormalities of calcium, phosphorus and magnesium homeostasis are common, and collectively are called disorders of mineral metabolism. Normal homeostatic regulation maintains serum levels, intracellular levels, and optimal mineral content in bone. This regulation occurs at three major target organs, the intestine, kidney and bone, principally via the complex integration of two hormones, parathyroid hormone and vitamin D. An understanding of normal physiology is necessary to accurately diagnose and treat disorders of mineral metabolism and will be briefly reviewed before discussing the differential diagnosis and treatment of specific disorders. PMID:18486714

  17. Both barium and calcium activate neuronal potassium currents.

    PubMed Central

    Ribera, A B; Spitzer, N C

    1987-01-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium (100-500 microM) from the currents produced without cadmium but in the presence of permeant divalent cations (50-100 microM). These concentrations of permeant ions were low enough to avoid contamination by macroscopic inward currents through calcium channels. Calcium-dependent potassium currents were reduced by 1 microM tetraethylammonium. These currents can also be activated by barium or strontium. Barium as well as calcium activated outward currents in young neurons (6-8 hr) and in relatively mature neurons (19-26 hr in vitro). However, barium influx appeared to suppress the sustained voltage-dependent potassium current in most cells. Barium also activated at least one class of potassium channels observed in excised membrane patches, while blocking others. The blocking action may have masked and hindered detection of the stimulatory action of barium in other systems. PMID:2442762

  18. Calcium and phosphorus requirements of bobwhite quail chicks

    USGS Publications Warehouse

    Nestler, R.B.; DeWitt, J.B.; Derby, J.V.; Moschler, M.

    1948-01-01

    Four experiments involving 873 bob-white quail (Colinus virginianus) chicks were conducted at the Patuxent Research Refuge, Laurel, Maryland. A comparison was made of calcium: phosphorus ratios of 1:1, 15:1, 1%: 1, 2:1, 2+:1,and 2%: 1in diets with phosphorus levels of 0.52, 0.75, 1.00, and 1.25 percent. The results indicate that the optimum level of phosphorus for growth is in the neighborhood of 0.75 per cent, and that of calcium is about 1.00 per cent, making a ratio of 1 1/3: 1....Although the greatest efficiency of feed utilization occurred on the phosphorus level of 0.52 per cent, the liveweight and bone-ash of the birds at the end of ten weeks were significantly lower than they were on the levels of 0.75 and 1.00 per cent, phosphorus. Bone-ash of birds on a Ca: P ratio of 1:1was significantly lower than that on any of the other five ratios, regardless of phosphorus level....There was a significant reverse correlation between the Ca: P ratio of the diet and the storage of vitamin A in the liver. Storage was especially low on the ratio of 2 2/3: 1....The low and high levels of calcium and phosphorus considered in these studies are abnormal, the low level especially being hard to obtain with common feedstuffs, if the protein requirements of the birds are met. Nevertheless, even on such levels, results were not disastrous. The growth of quail in the wild happens during a season when the birds have access to the minerals of the soil and in the abundant animal matter (mostly insects), as well as to minerals in plant material. Therefore, seemingly, calcium and phosphorus need not be critical nutrients for growing quail in the wild.

  19. Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis.

    PubMed

    Song, Yan; Hernandez, Natalia; Shoag, Jonathan; Goldfarb, David S; Eisner, Brian H

    2016-04-01

    Two previous studies (<10 patients each) have demonstrated that alkali therapy may reduce urine calcium excretion in patients with calcium oxalate nephrolithiasis. The hypothesized mechanisms are (1) a decrease in bone turnover due to systemic alkalinization by the medications; (2) binding of calcium by citrate in the gastrointestinal tract; (3) direct effects on TRPV5 activity in the distal tubule. We performed a retrospective review of patients on potassium citrate therapy to evaluate the effects of this medication on urinary calcium excretion. A retrospective review was performed of a metabolic stone database at a tertiary care academic hospital. Patients were identified with a history of calcium oxalate nephrolithiasis and hypocitraturia who were on potassium citrate therapy for a minimum of 3 months. 24-h urine composition was assessed prior to the initiation of potassium citrate therapy and after 3 months of therapy. Patients received 30-60 mEq potassium citrate by mouth daily. Inclusion criterion was a change in urine potassium of 20 mEq/day or greater, which suggests compliance with potassium citrate therapy. Paired t test was used to compare therapeutic effect. Twenty-two patients were evaluated. Mean age was 58.8 years (SD 14.0), mean BMI was 29.6 kg/m(2) (SD 5.9), and gender prevalence was 36.4% female:63.6% male. Mean pre-treatment 24-h urine values were as follows: citrate 280.0 mg/day, potassium 58.7 mEq/day, calcium 216.0 mg/day, pH 5.87. Potassium citrate therapy was associated with statistically significant changes in each of these parameters-citrate increased to 548.4 mg/day (p < 0.0001), potassium increased to 94.1 mEq/day (p < 0.0001), calcium decreased to 156.5 mg/day (p = 0.04), pH increased to 6.47 (p = 0.001). Urine sodium excretion was not different pre- and post-therapy (175 mEq/day pre-therapy versus 201 mEq/day post-therapy, p = NS). Urinary calcium excretion decreased by a mean of 60 mg/day on potassium citrate therapy-a nearly 30

  20. Calcium and phosphorus requirements of breeding bobwhite quail

    USGS Publications Warehouse

    DeWitt, J.B.; Nestler, R.B.; Derby, J.V., Jr.

    1949-01-01

    In the course of studies designed to determine the calcium and phosphorus requirements of breeding bobwhite quail, it was found that best results were obtained when the Ca/P ratio in the diet was approximately 2.3:1. Variations in the Ca/P ratio produced significant differences in results when the level of phosphorus in the diet was 0.75%, but the differences were less marked when the level of phosphorus was increased to 1.00%. Although diets containing 0.75% phosphorus and 1.8% calcium appeared adequate for reproduction, as judged by the criteria of the maintenance of satisfactory condition in the breeders, egg production, fertility, hatchability and survival of offspring during the first 5 days after hatching, it was found that the winter mortality of the offspring of birds fed such a diet was much greater than that occurring in the offspring of birds fed on diets containing 1.00 or 1.25% phosphorus. It is concluded that breeding bobwhite quail require diets furnishing approximately 1.00% phosphorus and 2.3% calcium.

  1. Disorders of calcium, phosphorus, and magnesium metabolism in the neonate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 98% of the calcium, 80% of the phosphorus, and 65% of the magnesium in the body are in the skeleton. These elements, often referred to as the "bone minerals" are also constituents of the intracellular and extracellular spaces. The metabolism of these bone minerals and mineralization of...

  2. Calcium, phosphorus, and bone metabolism in the fetus and newborn.

    PubMed

    Kovacs, Christopher S

    2015-11-01

    The placenta actively transports minerals whereas the intestines and kidneys may be nonessential for fetal mineral homeostasis. Mineral concentrations are higher in fetal blood than in adults in order for the developing skeleton to accrete adequate mineral content. Fetal bone development and serum mineral regulation are dependent upon parathyroid hormone (PTH) and PTH-related protein (PTHrP), but not calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, a switch from fetal to neonatal regulatory mechanisms is triggered by loss of the placental calcium infusion, onset of a breathing, and a postnatal fall in serum calcium and rise in phosphorus. This is followed by an increase in PTH, then a rise in calcitriol, and developmental changes in kidneys and intestines. Serum calcium increases and phosphorus declines over days. The intestines become the main source of mineral, while kidneys reabsorb mineral, and bone turnover contributes additional mineral to the circulation. PMID:26363942

  3. WHAT CONTROLS WATER SOLUBLE PHOSPHORUS IN BROILER LITTER: AVAILABLE PHOSPHORUS, PHYTASE OR CALCIUM?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soluble phosphorus (P) in litter and manure is important from an environmental perspective as it is related to potential off site P losses following land application. The effects of amending dietary P, calcium (Ca), and phytase on manure and litter P excretion in broilers were investigated. A 3 x 3 ...

  4. Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...

  5. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  6. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria.

    PubMed

    Krieger, Nancy S; Asplin, John R; Frick, Kevin K; Granja, Ignacio; Culbertson, Christopher D; Ng, Adeline; Grynpas, Marc D; Bushinsky, David A

    2015-12-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. PMID:25855777

  7. [Phosphorus-calcium metabolism in patients with malabsorption syndrome on diets with various ratios of calcium and phosphorus].

    PubMed

    Shvedova, E B; Shakhovskaia, A K; Dubtsov, G G; Konoplenko, E I; Isaeva, V A

    1988-01-01

    Phosphorus-calcium metabolism was studied in 74 patients with malabsorption syndrome that had developed as a result of chronic enteritis or after resection of the small intestine. The results of the treatment of 21 patients who received diets with Ca/P ratio--1:1.5 (bread enriched with Ca was included into the ration) have shown that dietotherapy led to the correction of the initial hypocalcemia and hyperphosphatemia. PMID:3232347

  8. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?

    PubMed Central

    Félétou, Michel

    2009-01-01

    The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. PMID:19187341

  9. Nitrogen, phosphorus, and potassium effects on biomass yield and flavonoid content of American Skullcap (Scutellaria Lateriflora)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on optimum dosage of nitrogen (N), phosphorus (P) and potassium (K) fertilizer for high dry matter yield and flavonoid yield of American Skullcap is lacking. Greenhouse experiments were conducted to determine the effects of N, P and K fertilizer on biomass yield and flavonoid content of...

  10. Stability and broad-sense heritability of mineral content in potato: potassium and phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the study of nutritional variability in potato it is desirable to know the present range of expression and genetic potential for increase. Potato breeding lines and varieties in two separate trials were evaluated for potassium and phosphorus content by wet ashing and Inductively Coupled Argon Pl...

  11. Influence of Nitrogen, Phosphorus, and Potassium on the Severity of Strawberry Anthracnose Crown Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of nitrogen, phosphorus, and potassium on the severity of anthracnose crown rot (causal fungus, Colletotrichum fragariae) was evaluated in three greenhouse studies. Strawberry plants were maintained under standard greenhouse conditions with one plant per 10 cm pot fertilized three tim...

  12. Effect of Phosphorus, Potassium, and Chloride Nutrition on Cold Tolerance of Winter Canola (Brassica napus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to determine whether fertility treatments improve cold hardiness of canola (Brassica napus L.). Measurements of chlorophyll fluorescence and overwinter survival of field-grown canola were used to evaluate the effect of chloride (Cl), potassium (K), and phosphorus (P)...

  13. Evaluating topsoil depth effects on phosphorus and potassium nutrient dynamics of grain and switchgrass production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the effects of fertilizer addition and crop removal on long-term change in soil test phosphorus (STP) and soil test potassium (STK) is crucial for maximizing the use of grower inputs on claypan soils. Due to variable nutrient supply from subsoils and variable crop removal across fields...

  14. Potassium and phosphorus effects on disease severity of charcoal rot of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  15. Potassium and Phosphorus effects on disease severity of charcoal rot of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  16. Distribution of Phosphorus and Potassium Following Surface Banding of Fertilizer in Conservation Tillage Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Band application of liquid or granular fertilizers is a common practice in maize (Zea mays L.) production systems in some areas of the USA. Our objective in this field study was to determine the relative soil profile distribution of phosphorus (P) and potassium (K) applied as a liquid fertilizer in ...

  17. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  18. Study of Cold Potassium Atom - Calcium Ion Reactions

    NASA Astrophysics Data System (ADS)

    Egodapitiya, Kisra; Gang, Shu; Clark, Robert; Brown, Kenneth

    2016-05-01

    We report on our progress towards constructing a hybrid system for studying reactions between cold Potassium (K) atoms and cold Calcium (Ca+) ions. Ca+ ions will be trapped and Doppler-cooled inside a linear quadrupole ion trap. Cold K atoms will be created inside a magneto optical trap, such that the ion and the atoms are in an overlapping volume. Trapping and re-pumping beams for the Potassium MOT are derived from the same laser with wavelength 766 nm using two acousto optic modulators. The reaction products will be detected using a time-of- flight mass spectrometer that is designed to detect radially ejected ions. The main objective of this experiment is to study the rate coefficients, and identification of reaction channels between cold K atoms and Ca+ ions. Subsequently this setup will be used to study reactions between cold K atoms and sympathetically cooled molecular ions such as CaO+, and to study internal state quenching of molecular ions.

  19. Characteristics and biodiversity of endophytic phosphorus- and potassium-solubilizing bacteria in Moso Bamboo (Phyllostachys edulis).

    PubMed

    Yuan, Zong-Sheng; Liu, Fang; Zhang, Guo-Fang

    2015-12-01

    Endophytic phosphorus- and potassium-solubilizing bacteria were screened from the root, rhizome, stem, and leaves of Moso Bamboo, and their diversity was analyzed using their 16S rDNA sequences. Twenty endophytic phosphorus and potassium-solubilizing bacteria were screened from 82 bamboo plants, among which the CT-B09-2, WYS-A01-1 and JL-B06 had higher activities in decomposing organophosphates. The three species showed a decomposition diameter/colony diameter (D/d) of 5.05, 4.19 and 2.95, respectively, and a solubilizing activity of 81.77 mg/L, 77.85 mg/L and 63.69 mg/L, respectively. JL-B06, WYS-A01-1 and CT-B09-2 had higher activities in decomposing inorganic phosphorus, with a decomposition diameter/colony diameter (D/d) of 2.34, 2.12 and 1.82, respectively, and a solubilizing activity of 30.58 mg/L, 38.89 mg/L and 48.35 mg/L, respectively. CT-B21, WYS-A03-1 and JL-B06 had higher activities in decomposing potassium, with a decomposition diameter/colony diameter (D/d) of 3.37, 4.84 and 4.33, respectively, and a solubilizing activity of 2.81 mg/L, 2.54 mg/L and 2.46 mg/L, respectively. The 16S rDNA sequence analysis showed that the 20 phosphorus- and potassium-solubilizing bacteria belong to 14 species from 10 genera, and mainly consist of Alcaligenes spp., Enterobacter spp. and Bacillus spp. Our results demonstrate the abundant diversity of endophytic phosphorus- and potassiumsolubilizing bacteria in Moso Bamboo. PMID:26616376

  20. Determination of potassium, calcium and chlorine in some vegetables by EDXRF

    NASA Astrophysics Data System (ADS)

    Dogan, O.; Tırasoglu, E.

    2006-09-01

    Total concentration of potassium, calcium and chlorine was determined in the presence of each other and irrespective of the nature of their compounds, in the leaves of Urticae dioico L. and Spinacia oleracea L. (spinach) plants by EDXRF. The enhancement of potassium K X-rays due to calcium K X-rays and enhancement of chlorine K X-rays due to potassium and calcium K X-rays present in the samples were avoided by selective secondary excitation method of the samples. Our results were compared with other experimental results.

  1. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    NASA Astrophysics Data System (ADS)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  2. [Dynamics of nitrogen, phosphorus, and potassium content in shoots of plants in urban plantations].

    PubMed

    Bukharina, I L

    2014-01-01

    The characteristics of dynamics of total nitrogen, potassium, and phosphorus content in the shoots of plants growing in plantations of different environmental categories in a large industrial center were studied. In the urban environment, an increased nitrogen content in plant shoots, the disturbance of the balance of the basic mineral elements and change in their distribution pattern in structural parts of plant shoots, and the disturbance of autumnal physiological efflux of elements from leaves to dormant shoots were detected. PMID:25735185

  3. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    NASA Astrophysics Data System (ADS)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  4. Time course of ouabain uptake in isolated myocardial cells: dependence on extracellular potassium and calcium concentration.

    PubMed Central

    Meldgaard, L.; Steiness, E.; Waldorff, S.

    1981-01-01

    1 Spontaneously beating myocardial cells isolated from newborn rats have been used to evaluate the time course of cellular ouabain uptake. 2 The rate of cellular uptake and the amount of ouabain bound at equilibrium were computed by fitting the experimental data to the conventional exponential equation for receptor binding of drugs. 3 At normal extracellular potassium and calcium concentrations a biexponential equation was the best fit to the experimental data, indicating two receptor sites of ouabain with different rates of uptake. 4 Increasing extracellular potassium or calcium concentrations decreased the amounts of ouabain bound at equilibrium. 5 High and low extracellular concentrations of potassium or calcium decreased the rate of ouabain uptake. 6 It is well known that ouabain changes ionic fluxes. Changes in the extracellular potassium and calcium concentrations also influence the amount of ouabain taken up by myocardial cells, as demonstrated in the present study. PMID:7236989

  5. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery.

    PubMed

    Tervahauta, Taina; van der Weijden, Renata D; Flemming, Roberta L; Hernández Leal, Lucía; Zeeman, Grietje; Buisman, Cees J N

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed in the Upflow Anaerobic Sludge Blanket (UASB) reactor at lab- and demonstration-scale were analyzed for chemical composition and mineralogy by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Electron microprobe (EMP), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and micro X-ray Diffraction (XRD). The granules had a diameter of 1-2 mm, organic content of 33 wt%, and phosphorus content of 11-13 wt%. Three calcium phosphate phases were identified in the granules: hydroxyapatite, calcium phosphate hydrate and carbonated hydroxyapatite. Without any addition of chemicals, 7 gP/person/year can be recovered with the calcium phosphate granules, representing 2% of the incoming phosphorus in the UASB reactor. As the heavy metal content was lower compared to other phosphorus recovery products, phosphate rock and phosphorus fertilizer, the calcium phosphate granules could be considered as a new phosphorus product. PMID:24183558

  6. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-03-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  7. Factors affecting the calcium, magnesium and phosphorus content of beef cow milk.

    PubMed

    Hidiroglou, M; Proulx, J G

    1982-04-01

    This paper reports the calcium, magnesium and phosphorus content of milk from Shorthorn cattle during the five month calf nursing period as well as the effect of prepartum administration of a single intramuscular dose of vitamin D3 or of 25-hydroxyvitamin D3 on the milk mineral constituents. The colostrum of the group which received 25-hydroxyvitamin D3 was found to contain a higher percentage of calcium on the second and third day than the colostrum of control cows or those receiving D3. No differences occurred in colostrum magnesium or phosphorus contents due to prepartum treatment. Calcium, magnesium and phosphorus concentrations were all high in the first day of lactation, but declined until the third day after parturition. Milk calcium, magnesium and phosphorus content of individual cows was not uniform throughout the lactation and the variation was different for different cows. PMID:7093815

  8. [Magnesium, calcium and potassium: "no one was born alone"].

    PubMed

    Rapisarda, Francesco; Portale, Grazia; Ferrario, Silvia; Sessa, Concetto; Aliotta, Roberta; Zanoli, Luca; Fatuzzo, Pasquale

    2016-01-01

    In contrast to other ions, magnesium is treated as an orphan by the body: there are no hormones that have a substantial role in regulating urinary magnesium excretion, and bone, the principal reservoir of magnesium, does not readily exchange with circulating magnesium.The Mg ++ is often overlooked by physicians in the differential diagnosis because it is considered insignificant, but its role is crucial for cells function, first of all neurons and cardiomyocytes. A condition of hypocalcemia associated with hypokalemia, especially in the presence of chronic renal failure, should raise suspicion of a lack of Mg ++.We report the case of an old man of 77 year with kidney transplant for 13 years, treated with cyclosporine, and sodium mycophenolate and steroid who, for about a month, accused impaired balance and walking instability, who fell accidentally down with wrist fracture.Blood tests showed hypocalcemia and hypokalemia, and so we required dosage of serum and urinary magnesium. A significant reduction in the ion plasma concentration was seen, associated to a fraction of excretion inappropriately high in relation to the degree of hypomagnesemia.The cause of this important renal loss is likely attributable to cyclosporine, a drug that has as a side effect the inhibition of the reabsorption of Mg ++ in the distal convoluted tubule. then, oral supplementation was started (244 mg of Mg ++ ion / day), with subsequent normalization, after a few days, not only of magnesiemia, but also in serum calcium and potassium levels, and improvement of neurological symptoms.Hypomagnesaemia is common in patients with renal transplantation in therapy with calcineurin inhibitors ICN, due to the effects of such drugs on the TRPM6 transporter present in the kidney distal convoluted tubule. To prevent complications caused by chronic and severe depletion of magnesium in this particular population, we recommend periodic monitoring of magnesium plasma levels. PMID:26913745

  9. Calcium and phosphorus intake and prostate cancer risk: a 24-y follow-up study123

    PubMed Central

    Shui, Irene M; Mucci, Lorelei A; Giovannucci, Edward

    2015-01-01

    Background: High calcium intake has been associated with an increased risk of advanced-stage and high-grade prostate cancer. Several studies have found a positive association between phosphorus intake and prostate cancer risk. Objective: We investigated the joint association between calcium and phosphorus and risk of prostate cancer in the Health Professionals Follow-Up Study, with a focus on lethal and high-grade disease. Design: In total, 47,885 men in the cohort reported diet data in 1986 and every 4 y thereafter. From 1986 to 2010, 5861 cases of prostate cancer were identified, including 789 lethal cancers (fatal or metastatic). We used Cox proportional hazards models to assess the association between calcium and phosphorus intake and prostate cancer, with adjustment for potential confounding. Results: Calcium intakes >2000 mg/d were associated with greater risk of total prostate cancer and lethal and high-grade cancers. These associations were attenuated and no longer statistically significant when phosphorus intake was adjusted for. Phosphorus intake was associated with greater risk of total, lethal, and high-grade cancers, independent of calcium and intakes of red meat, white meat, dairy, and fish. In latency analysis, calcium and phosphorus had independent effects for different time periods between exposure and diagnosis. Calcium intake was associated with an increased risk of advanced-stage and high-grade disease 12–16 y after exposure, whereas high phosphorus was associated with increased risk of advanced-stage and high-grade disease 0–8 y after exposure. Conclusions: Phosphorus is independently associated with risk of lethal and high-grade prostate cancer. Calcium may not have a strong independent effect on prostate cancer risk except with long latency periods. PMID:25527761

  10. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent.

    PubMed

    Zhang, Tianxi; Bowers, Keith E; Harrison, Joseph H; Chen, Shulin

    2010-01-01

    Being a non-renewable resource and a source of potential water pollution, phosphorus could be recovered from animal manure in the form of struvite (MgNH4PO4.6H2O) to be used as a slow-release fertilizer. It was found recently that the majority of phosphorus in anaerobically digested dairy effluent is tied up in a fine suspended calcium-phosphate solid, thus becoming unavailable for struvite formation. Acidification and use of a chelating agent were investigated for converting the calcium-associated phosphorus in the digested effluent to dissolved phosphate ions, so that struvite can be produced. The results demonstrated that the phosphorus in the effluent was released into the solution by lowering the pH. In addition, the phosphorus concentration in the solution increased significantly with increased ethylenediaminetetraacetic acid (EDTA) concentration, as EDTA has a high stability constant with calcium. Most of the phosphorus (91%) was released into the solution after adding EDTA. Further, the freed phosphorus ion precipitated out as struvite provided that sufficient magnesium ions (Mg2+) were present in the solution. Furthermore, the phase structure of the solid precipitate obtained from the EDTA treatment matched well with standard struvite, based on the data from X-ray diffraction analysis. These results provide methods for altering the forms of phosphorus for the design and application of phosphorus-removal technologies for dairy wastewater management. PMID:20112536

  11. Intakes of Calcium and Phosphorus and Calculated Calcium-to-Phosphorus Ratios of Older Adults: NHANES 2005–2006 Data

    PubMed Central

    Adatorwovor, Reuben; Roggenkamp, Kathy; Anderson, John J. B.

    2015-01-01

    Background: High intakes of dietary phosphorus (P), relative to calcium (Ca) intake, are associated with a lower calcium:phosphorus ratio (Ca:P) ratio which potentially has adverse health effects, including arterial calcification, bone loss, and death. A substantial percentage of older adults (50 to 70 and 71 plus years) who have a higher risk of fracture rate than younger adults typically have low intakes of dietary Ca that are dominated by higher intakes of dietary P from natural and fortified foods, and lower Ca:P ratios than desirable. Objective: This investigation was undertaken to examine Ca and P intakes and the resulting Ca:P ratios (by mass) across gender and older adult age groups, using data from the National Health and Nutrition Examination Survey (NHANES) 2005–2006. Design: NHANES data are based on a cross-sectional sample of the non-institutionalized United States (US) population within various regions. This sample is selected to be representative of the entire US population at all ages. National Cancer Institute (NCI) methods and SAS survey procedures were used for analyses. Ca:P ratios were calculated using total Ca from both foods and supplements, whereas P intakes were calculated from food composition values and supplements. The amounts of P additives in processed foods are not available. Results: Mean Ca and P intakes demonstrated lower intakes of Ca and higher intakes of P compared to current Recommended Dietary Allowances (RDAs). The Ca:P ratios in older male and female adults were influenced by both low-Ca and high-P dietary consumption patterns. Conclusions: Both low total Ca intakes and high P amounts contribute to lower Ca:P ratios, i.e., ~0.7:1.0, in the consumption patterns of older adults than is recommended by the RDAs, i.e., ~1.5:1.0. Whether Ca:P ratios lower than recommended contribute to increased risk of bone loss, arterial calcification, and all-cause mortality cannot be inferred from these data. Additional amounts of chemical P

  12. Treatment of cows with milk fever using intravenous and oral calcium and phosphorus.

    PubMed

    Braun, U; Blatter, M; Büchi, R; Hässig, M

    2012-09-01

    Fifteen cows with milk fever were treated with 500ml of 40 % calcium borogluconate (group A) administered intravenously. Fifteen other cows with milk fever received the same treatment, supplemented with 500ml of 10 % sodium phosphate administered intravenously, and 80g calcium as calcium lactate and 70g inorganic phosphorus as sodium phosphate administered orally in drinking water. The cows were monitored and blood samples collected for 3 days to measure the concentrations of total and ionized calcium, inorganic phosphorus and magnesium and the activity of creatine kinase. The two groups did not differ significantly with respect to the course of the disease. In each group 14 cows were cured. A rapid and significant increase in serum calcium concentration from the hypo- to the hypercalcaemic range occurred in both groups within 10min of the start of treatment, followed by a slow and steady decrease to the hypocalcaemic range. Calcium lactate did not prevent the calcium concentration from returning to the hypocalcaemic range, and the calcium profiles of the two groups did not differ significantly. As expected, treatment had little effect on the concentration of inorganic phosphorus in group A. In group B, treatment caused a rapid increase in the concentration of inorganic phosphorus to a maximum 20min after the start of treatment. This was followed by a slow decrease in the phosphorus concentration to the normophosphataemic range. Our findings confirmed that combined intravenous and oral administration of sodium phosphate in cows with periparturient paresis attributable to hypocalcaemia and hypophosphataemia results in a rapid and sustained increase in serum phosphorus, but not in serum calcium concentration. This modified therapy did not improve the success rate of milk fever treatment and further studies are needed to improve treatment of periparturient paresis. PMID:22923322

  13. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo

    PubMed Central

    Quinn, Stephen J.; Thomsen, Alex R. B.; Pang, Jian L.; Kantham, Lakshmi; Bräuner-Osborne, Hans; Pollak, Martin; Goltzman, David

    2013-01-01

    Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite no change in FGF23, suggesting direct regulation of 1,25(OH)2D3 synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range. PMID:23233539

  14. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro.

    PubMed

    Ward, Brian C; Webster, Thomas Jay

    2006-06-01

    To date, long-term functions of osteoblasts leading to calcium and phosphorus mineral deposition on nanometals have not been determined. Nanometals are metals with constituent metal particles and/or surface features less than 100 nm in at least one dimension. For this reason, the objective of this in vitro study was to determine the amount of calcium and phosphorus mineral formation on microphase compared to nanophase Ti, Ti6Al4V, and CoCrMo cultured with and without osteoblasts (bone-forming cells). The results of this study provided the first evidence of significantly greater calcium and phosphorus deposition by osteoblasts and precipitation from culture media without osteoblasts on nanophase compared to respective microphase Ti6Al4V and CoCrMo after 21 days; the greatest calcium and phosphorus mineral deposition occurred on nanophase CoCrMo while the greatest calcium and phosphorus mineral precipitation without osteoblasts occurred on nanophase Ti6Al4V. No differences were found for any type of Ti: wrought, microphase, or nanophase. Moreover, increased calcium and phosphorus mineral content correlated to greater amounts of underlying aluminum content on Ti6Al4V surfaces. Since, compared to microphase Ti6Al4V, nanophase Ti6Al4V contained a higher amount of aluminum at the surface (due to greater surface area), this may provide a reason for enhanced calcium and phosphorus mineral content on nanophase Ti6Al4V. Regardless of the mechanism, this study continues to support the further investigation of nanometals for improved orthopedic applications. PMID:16476478

  15. The effect of fluoride on bone of rats fed diets deficient in calcium or phosphorus.

    PubMed

    Guggenheim, K; Simkin, A; Wolinsky, I

    1976-11-24

    Four groups of weanling rats were fed for 2 weeks on a diet sufficient or insufficient in calcium and/or phosphorus. Each group was divided into four subgroups which were offered distilled water supplemented with 0, 50, 75, or 150 ppm fluoride. High levels of fluoride in drinking water inhibited weight gain. This inhibition was less in rats deficient in phosphorus than when normal-phosphorus diets were offered. At a low level, fluoride was without any effect on bone ash, thickness of femoral cortical bone, and mechanical strength, as measured by maximal load, ultimate stress to breaking, and limit of elasticity. Modulus of elasticity was decreased. At higher levels fluoride tended to decrease most of these parameters, except in rats deprived of both calcium and phosphorus. The effect of fluoride was modified by lack of dietary calcium and/or phosphorus and appeared to be weaker in rats deficient in these nutrients. Lack of dietary calcium and/or phosphorus decreased bone strength more than did fluoride content of water and of bone mineral. Concentration of bone ash and thickness of femoral cortical bone were closely correlated with parameters of mechanical strength. PMID:1000346

  16. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    SciTech Connect

    Wendling, W.W.; Harakal, C.

    1987-05-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium (/sup 45/Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased /sup 45/Ca uptake into cerebral artery strips during 5 minutes of /sup 45/Ca loading; for potassium /sup 45/Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal /sup 45/Ca uptake but significantly blocked the increase in /sup 45/Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of /sup 45/Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated /sup 45/Ca efflux. The results demonstrate that verapamil and nifedipine block /sup 45/Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries.

  17. Does Potassium Citrate Medical Therapy Increase the Risk of Calcium Phosphate Stone Formation?

    NASA Astrophysics Data System (ADS)

    Leitao, Victor; Haleblian, George E.; Robinson, Marnie R.; Pierre, Sean A.; Sur, Roger L.; Preminger, Glenn M.

    2007-04-01

    Potassium citrate has been extensively used in the treatment of recurrent nephrolithiasis. Recent evidence suggests that it may contribute to increasing urinary pH and, as such, increase the risk of calcium phosphate stone formation. We performed a retrospective review of our patients to further investigate this phenomenon.

  18. Treatment with Potassium Bicarbonate Lowers Calcium Excretion and Bone Resorption in Older Men and Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bicarbonate has been implicated in bone health in older subjects on acid-producing diets in short-term studies. The objective of this study was to determine the effects of potassium bicarbonate and its components on changes in bone resorption and calcium excretion over 3 months in older men and wom...

  19. [Sodium, potassium and calcium content in regional dishes consumed in Sonora, Mexico].

    PubMed

    Grijalva Haro, M I; Valencia, M E; Wyatt, J

    1990-06-01

    The content of sodium, potassium and calcium was determined in 15 regional dishes, by atomic absorption spectrophotometry. The Na:K ratio was high in most of the dishes due to the high sodium content and low content of potassium found. The higher sources of the studied minerals were "tortilla de harina" with 1,372.8 mg/100 g of sodium; "chorizo con papas" with 466 mg/100 g of potassium, and "calabacitas con queso" with 244.1 mg/100 g of calcium. Two of the dishes considered as desserts, "capirotada" and "arroz con leche" showed the lowest Na:K ratio (0.66 and 0.81, respectively). PMID:2133188

  20. Release of nitrogen, phosphorus, and potassium during the decomposition of apple (Malus domestica) leaf litter under different fertilization regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The decomposition of apple (Malus domestica) leaf litters has a pivotal role in nutrient release in orchard ecosystems. We have studied the decomposition rate and subsequent release of nitrogen (N), phosphorus (P), and potassium (K) nutrients over 24-months using litterbags method. From three types ...

  1. Metabolomic profiling from leaves and roots of tomato (Solanumlycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N), phosphorus (P) and potassium (K) are essential macronutrients that are required in large quantities by growing plants. Deficiency of N, P or K can strongly affect metabolites in plant tissues. However, specific metabolic network responses to nutrient deficiencies are not well-defined. ...

  2. Potassium and calcium conductance in slow muscle fibres of the toad.

    PubMed Central

    Stefani, E; Uchitel, O D

    1976-01-01

    Slow muscle fibres in isotonic potassium sulphate saline could be easily repolarized to -90 mV. From this membrane potential a regenerative response could be elicited with short depolarizing pulses. 2. This response is blocked by TEA, suggesting that potassium is the main ion involved. 3. In the presence of TEA, a transient depolarization is recorded when the steady hyperpolarization is withdrawn. This anode break response is dependent upon the external calcium and is blocked by cobalt, suggesting that it is due to a calcium conductance. 4. The membrane conductance change was continuously recorded with short pulses at the end of the hyperpolarization. The membrane conductance decayed with at least two components with an average t1/2 of 1-2 and 6-8 sec. TEA blocked the slow component, and the fast one was dependent upon calcium and was blocked by cobalt. PMID:815545

  3. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    PubMed

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments. PMID:25464692

  4. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    PubMed

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments. PMID:25508323

  5. The management of phosphorus in poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter provides an important source of plant nutrients including nitrogen, phosphorus, potassium, calcium, magnesium and sulphur. The potential for phosphorus (P) surplus at the farm scale can increase when farming systems change from cropping to intensive poultry and animal production, as P...

  6. Effects of dietary calcium, phosphorus and magnesium on intranephronic calculosis in rats.

    PubMed

    Woodward, J C; Jee, W S

    1984-12-01

    The effects of varying dietary levels of calcium, phosphorus and magnesium on the incidence and severity of intranephronic calculosis were studied. Renal calculi were induced by feeding female rats the AIN-76TM semipurified diet for 4 weeks. During this time period, dietary levels of 350, 450 or 550 mg calcium per 100 g diet did not influence the occurrence of urolithiasis. Increasing dietary magnesium levels from 50 to 350 mg was beneficial in preventing the occurrence of calculi if the diet contained 400 mg or less phosphorus. The protective effects of dietary magnesium were counteracted when dietary phosphorus levels were increased from 400 mg to 550 or 700 mg. If the dietary content of phosphorus and magnesium permitted the formation of renal calculi, the severity of the condition was also influenced by the dietary level of calcium. Some animal groups fed semipurified diets did not have microscopic or radiographic evidence of renal calculi but were found to have significantly elevated renal calcium values. It was suggested that these animals might be in a precalculus-forming state. PMID:6502276

  7. THE EFFECT OF SOLANUM GLAUCOPHYLLUM ON CALCIUM AND PHOSPHORUS UTILIZATION IN LACTATING COWS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of the study was to determine if Solanum glaucophyllum (Sg) could serve as a source of 1,25(OH)2D3 to increase calcium (Ca) and phosphorus (P) utilization and, therefore, decrease fecal Ca and P excretion in lactating cows. Ten primiparous, lactating Holstein cows were used. Four cows ...

  8. Interaction of calcium and phytate in broiler diets: 2. Effects on total and soluble phosphorus excretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary calcium (Ca) can influence the amount of phytate excreted from broilers and therefore change the solubility of phosphorus (P) in manures. We investigate the effects of dietary Ca and phytate on P excretion in broilers by feeding 12 dietary treatments to broilers from 16 to 20 days of age. T...

  9. Total phosphorus content of river sediments in relationship to calcium, iron and organic matter concentrations.

    PubMed

    House, William A; Denison, Frank H

    2002-01-23

    Data on the total concentrations of phosphorus, calcium, iron and organic matter in surface bed-sediments taken from rivers in the Thames catchment (Wey, Blackwater, Thame and Kennet), the River Swale in Yorkshire (data excludes the organic matter content) as well as the headwaters of the Great Ouse, are collated and compared. Total concentrations of phosphorus, iron and calcium range from 1.7-649, 12-8,333 and 9-4,605 micromol g(-1) (dry weight), respectively, with organic matter in the range of 0.6-19% by dry weight. For the Wey, Blackwater and Great Ouse, sewage inflows had no detectable effect on the sediment concentrations of total calcium, iron and organic matter whereas for the Blackwater and Great Ouse, the total phosphorus contents of the sediment were higher downstream of the effluent input in comparison with a less impacted upstream location. Relationships between the total phosphorus content of the sediments and contents of iron, calcium and organic matter indicated marked differences between the rivers. Although the organic matter content of the sediments was found to be a significant predictor for the total phosphorus concentration for the Blackwater and Great Ouse, the total iron content was also useful for the Blackwater and total calcium for the Great Ouse. It is postulated that this difference is a result of the sediment processes that are known to occur in these two systems, i.e. co-precipitation of phosphate with calcite in the Great Ouse and the formation of vivianite in anoxic sediments of the Blackwater. PMID:11846078

  10. Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells.

    PubMed

    Yuhas, W A; Fuchs, P A

    1999-11-01

    Acetylcholine released from efferent neurons in the cochlea causes inhibition of mechanosensory hair cells due to the activation of calcium-dependent potassium channels. Hair cells are known to have large-conductance, "BK"-type potassium channels associated with the afferent synapse, but these channels have different properties than those activated by acetylcholine. Whole-cell (tight-seal) and cell-attached patch-clamp recordings were made from short (outer) hair cells isolated from the chicken basilar papilla (cochlea equivalent). The peptides apamin and charybdotoxin were used to distinguish the calcium-activated potassium channels involved in the acetylcholine response from the BK-type channels associated with the afferent synapse. Differential toxin blockade of these potassium currents provides definitive evidence that ACh activates apamin-sensitive, "SK"-type potassium channels, but does not activate carybdotoxin-sensitive BK channels. This conclusion is supported by tentative identification of small-conductance, calcium-sensitive but voltage-insensitive potassium channels in cell-attached patches. The distinction between these channel types is important for understanding the segregation of opposing afferent and efferent synaptic activity in the hair cell, both of which depend on calcium influx. These different calcium-activated potassium channels serve as sensitive indicators for functionally significant calcium influx in the hair cell. PMID:10573868

  11. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  12. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.

    PubMed

    Gründemann, Jan; Clark, Beverley A

    2015-09-22

    Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, K(Ca)3.1) by local, activity-dependent calcium (Ca(2+)) influx at nodes of Ranvier via a T-type voltage-gated Ca(2+) current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  13. Effect of potassium and calcium loading on healthy subjects under hypokinesia and physical exercise with fluid and salt supplements

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Naexu, Konstantin A.; Federenko, Youri F.

    1995-08-01

    The objective of this investigation was to determine the acute responses to the electrolyte challenges under hypokinesia and physical exercise (PE) of different intensities with fluid and salt supplementation (FSS). The studies were performed on 12 physically healthy male volunteers aged 19-24 years under 364 days of hypokinesia (decreased number of steps per day) with a set of PE with FSS. The volunteers were divided into two equal groups. The first group was subjected to a set of intensive PE and the second group was submitted to a set of moderate PE. Both groups of subjects consumed daily water and salt supplements that aimed to increase the body hydration level. For simulation of the hypokinetic effect all subjects were kept under an average of 3000 steps per day. Functional tests with a potassium chloride (KCl) and calcium lactate (Cal) load were performed during the hypokinetic period of 364 days and the 60-day prehypokinetic period that served as control, while both groups of subjects consumed daily calcium and potassium supplements. The concentration of electrolyte and hormone levels in the blood and their excretion rate in urine were determined. Renal excretion of calcium and potassium and the blood concentration thereof increased markedly in both groups of subjects. With the potassium chloride load tests the increased potassium excretion was accompanied by higher aldosterone and insulin blood levels, and with the calcium lactate load tests the increased calcium excretion was accompanied by a decreased parathyroid content in the blood. FSS and PE, regardless of intensity, failed to attenuate calcium and potassium losses. Additional intake of KCl and Cal also failed to normalize potassium and calcium abnormalities. It was concluded that during the KCl and Cal loading tests, the increased losses of potassium and calcium in the hypokinetic subjects were due to the inability of their bodies to retain these electrolytes, and that electrolyte abnormalities could

  14. Effect of Vermicompost Alone and Its Combination with Recommended Dose of Fertilizers on Available Nitrogen, Phosphorus, Potassium in Rice Field.

    PubMed

    Shwetha, S; Narayana, J

    2014-01-01

    Rice variety KMP101 was treated with both organic and inorganic manure. The field and experimental studies were conducted, before applying organic and inorganic manures.The values obtained for available nitrogen, phosphorous and potassium were 360 kg/ha, 12 kg/ha and 166 kg/ha respectively. After treatment and harvest there was a gradual increase in available nitrogen, phosphorus and potassium ranging between 335-415, 14 -23 and 173- 235 kg/ha respectively among the treatments. Applying 15 t of vermicompost /ha and 10 t of vermicompost /ha and recommended dose of fertilizer showed a greater availability of nitrogen and phosphorus. It is revealed that after addition of organics into the soil year-wise, the soil became more stable. Also, the biological activity increased in the soil and was influenced to maintain the available nitrogen in the soil. Therefore, it is evident that vermicompost significantly increases the availability of available nutrients. PMID:26445754

  15. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  16. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  17. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  18. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence.

    PubMed

    Kalcsits, Lee A

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  19. Potassium

    MedlinePlus

    Potassium is a mineral that the body needs to work normally. It helps nerves and muscles communicate. ... products out of cells. A diet rich in potassium helps to offset some of sodium's harmful effects ...

  20. Carbon, nitrogen, phosphorus and potassium stoichiometry of plants and litter in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.

    2013-12-01

    Ecological stoichiometry, dealing with the balance of multiple elements during ecological processes and interactions, provides an integrative framework linking the biogeochemical patterns at a global scale to physiological constraints that operate at cellular or organismal levels. Unlike the well-explained and constrained carbon:nitrogen:phosphorus (C:N:P) ratios in marine plankton (e.g. Redfield ratio), terrestrial ecosystems have evoked less attention. We examined the leaf-level C:N:P:potassium (K) stoichiometry of the dominant vascular plants (deciduous, evergreen, forb and graminoid) and Sphagnum mosses from four boreal bogs in eastern Canada. A generally convergent C:N:P:K stoichiometric ratio (632:14:1:9, mass ratio) in current year's leaves (or capitula of Sphagnum mosses) was observed in the fast growing season (June to July), indicating N and P co-limitation. With ~50% of N, P and K being resorbed during leaf senescence, the C:nutrients ratios in the matures leaves (C:N:P:K = 826:17:1:6) of two dominant evergreen species (Chamaedaphne calyculata and Rhododendron groenlandicum) were increased in senesced leaves (C:N:P:K = 964:15:1:5) whereas no substantial changes were observed in N:P:K ratios. The dramatic imbalance between litter and soil microbes stoichiometry (C:N:P = 31:3:1) governs the overall nutrient cycling and C sequestration in peatland ecosystems. Overall, N and P seem to co-limit both plant growth and microbial activity in ombrotrophic bogs.

  1. Quasi-particle band structure of potassium-doped few-layer black phosphorus with GW approximation

    NASA Astrophysics Data System (ADS)

    Kim, Han-Gyu; Baik, Seung Su; Choi, Hyoung Joon

    We calculate the quasi-particle band structure of pristine and potassium-doped black phosphorus (BP) by using the GW approximation. We obtain band gaps of pristine bulk and few-layer BP and compare them with the result of the density functional calculations and experimental measurements. For potassium-doped cases, we calculate the electronic band structure of potassium-doped few-layer BPs with various doping densities. We obtain the critical doping density for the band-gap closing, and the energy-band dispersions when the band gap is inverted. We discuss Dirac semimetal properties of doped few-layer BPs obtained by the GW approximation. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2015-C3-039).

  2. Accumulation of calcium and loss of potassium in the hippocampus following transient cerebral ischemia: a proton microprobe study

    SciTech Connect

    Martins, E.; Inamura, K.; Themner, K.; Malmqvist, K.G.; Siesjoe, B.K.

    1988-08-01

    This study explored (a) whether postischemic accumulation of calcium in hippocampal neurons precedes or occurs pari passu with light microscopical signs of delayed neuronal necrosis, and (b) whether calcium initially accumulates in dendritic domains, presumed to have a high density of agonist-operated calcium channels. Transient ischemia of 10-min duration was induced in rats, and the animals were studied after 1, 2, 3, and 4 days of recovery. We measured total calcium and potassium contents in the stratum oriens, pyramidale, radiatum, and moleculare of the CA1 and CA3 sectors, using particle induced x-ray emission (PIXE) in the proton microprobe mode. The results showed significant accumulation of calcium and loss of potassium after 3 and 4 days of recovery in the CA1 sector, which developed neuronal necrosis, but not in the CA3 sector, which showed only occasional damage. In a few animals, calcium accumulation (and loss of potassium) was observed with no or only mild visible damage, but in the majority of animals the accumulation of calcium correlated to signs of neuronal necrosis. Since calcium accumulation was similar in all strata examined, the results failed to reveal preferential accumulation in dendritic or somal regions. Based on our results and those of Dux et al., we emphasize the possibility that delayed neuronal death is, at least in part, caused by increased calcium cycling of plasma membranes and gradual calcium overload of mitochondria.

  3. [Food analysis for balance studies, especially calcium, magnesium, phosphorus and nitrogen].

    PubMed

    Lentner, C; Haas, H G

    1975-01-01

    The calcium-, magnesium-, phosphorus-, nitrogen- and water-contents have been estimated in raw and processed foods (bread and sausages). These results were then compared with the data in food tables. Surprisingly small differences were recorded, since content-deviations of processed foods are equalized in a whole day menu. Thus, food tables proved to be reliable for the calculation of balance and test diets. PMID:1140902

  4. Grain boundary diffusion of oxygen, potassium and calcium in natural and hot-pressed feldspar aggregates

    NASA Astrophysics Data System (ADS)

    Farver, John R.; Yund, Richard A.

    1995-01-01

    Grain boundary diffusion rates of oxygen, potassium and calcium in fine-grained feldspar aggregates were determined experimentally. The starting materials were a natural albite rock from the Tanco pegmatite and aggregates hot-pressed from fragments of Amelia albite or Ab, Or and An composition glasses. The technique employed isotopic tracers (18O, 41K, 42Ca) either evaporated onto the surface or in an aqueous solution surrounding the sample, and depth profiling using an ion microprobe (SIMS). From the depth profiles, the product of the grain boundary diffusion coefficient (D') and effective boundary width (δ) was calculated using numerical solutions to the appropriate diffusion equation. The experimental reproducibility of D'δ is a factor of 3. A separate determination of D' independent of δ yields an effective grain boundary width of ˜3 nm, consistent with high resolution TEM observations of a physical grain boundary width <5 nm. Oxygen (as molecular water) grain boundary diffusion rates were determined in the Ab and Or aggregates at 450°-800°C and 100 MPa (hydrothermal), potassium rates in Or aggregates at 450°-700°C both at 0.1 MPa (in air) and at 100 MPa (hydrothermal), and calcium rates in An aggregates at 700°-1100°C and 0.1 MPa (in air). Oxygen grain boundary diffusion rates are similar in all three of the Ab aggregates and in the Or aggregate. Potassium and oxygen depth profiles measured in the same samples yield different D'δ values, confirming a diffusional transport mechanism. Potassium diffusion in the Or aggregate has a greater activation energy (216 vs 78 kJ/mol) than oxygen, and the Arrhenius relations cross at ˜625°C. Potassium D'δ values in Or aggregates are about a factor of five greater in hydrothermal experiments at 100 MPa than in experiments at 0.1 MPa in air. Calcium grain boundary diffusion rates in An aggregates are 4 to 5 orders of magnitude slower than potassium in Or and have a greater (291 kJ/mol) activation energy. This

  5. Assay of calcium borogluconate veterinary medicines for calcium gluconate, boric acid, phosphorus, and magnesium by using inductively coupled plasma emission spectrometry

    SciTech Connect

    Lyons, D.J.; Spann, K.P.

    1985-03-01

    An inductively coupled plasma spectrometric method is described for the determination of 4 elements (Ca, B, P, and Mg) in calcium borogluconate veterinary medicines. Samples are diluted, acidified, and sprayed directly into the plasma. Reproducibility relative confidence intervals for a single sample assay are +/- 1.4% (calcium), +/- 1.8% (boron), +/- 2.6% (phosphorus), and +/- 1.4% (magnesium). The total element concentrations for each of 4 elements compared favorably with concentrations determined by alternative methods. Formulation estimates of levels of calcium gluconate, boric acid, phosphorus, and magnesium salts can be made from the analytical data.

  6. Long-term correlation in single calcium-activated potassium channel kinetics

    NASA Astrophysics Data System (ADS)

    Campos de Oliveira, R. A.; Barbosa, C. T. F.; Consoni, L. H. A.; Rodrigues, A. R. A.; Varanda, W. A.; Nogueira, R. A.

    2006-05-01

    Ion channels are protein molecules found in biological membranes, which can assume distinct open and closed conformational states, a phenomenon called ion channel kinetics. The transitions from one state to another are dependent on the potential energy barrier that separates them and can be controlled by the electrical field, ions and/or drugs. Both Markovian and fractal models have been used for modeling the ion channel kinetics. Ion single channel records are characterized by successive openings and closings, which are correlated in time. Here the rescaled range analysis ( R/S Hurst analysis) is used to test for the occurrence of long-term correlation in the kinetics of a calcium-activated potassium channel of Leydig cells. A Hurst coefficient H=0.640±0.064 ( n=5) was found for the single calcium-activated potassium channel clamped at -80 mV and exposed to a free Ca 2+ concentration equal to 10 nM. This numerical value indicates the presence of long-term correlation (memory) in this kinetic process. However, when the R/ S analysis was applied to ion channel data simulated using Markovian and fractal models, it could not account for the long-term correlation previously found in the experimental data. In summary, in this work we show that: (i) opening and closing dwell times for the single calcium-activated potassium channel of Leydig cells present long-term correlation and (ii) Markovian and fractal models, which describe well the dwell time distributions, are not adequate to describe the memory found in the kinetics of this channel.

  7. Phytoextraction of Soil Phosphorus by Potassium-Fertilized Grass-Clover Swards.

    PubMed

    Timmermans, Bart G H; van Eekeren, Nick

    2016-03-01

    In the development of the Dutch National Ecological Network, many hectares of arable land are converted to nature areas to protect plant and animal species. This encompasses development of species-rich grasslands. On former agricultural land on sandy soils, this development is often hampered by relatively high phosphorus (P) levels, which also cause eutrophication. Standard practices to decrease the amount of P are either topsoil removal or long-term mowing of low-yielding established grassland. Both methods have disadvantages, and there is a need for additional techniques. As an alternative, phytoextraction ("mining") of soil P has been proposed. We tested a new technique of mining without mineral N fertilizer by cropping an intensively mown grass-clover with potassium (K) fertilization that could potentially be used as cattle feed. A long-term field experiment was conducted, comparing soil P removal by grass-clover swards with and without supplementary K fertilization on a sandy soil. During the experiment, which ran from 2002 to 2009, soil P levels and nutrient contents of grass-clover were measured, and P and K balances were calculated. Our results show that grass-clover with K fertilization removed excess soil P (also at lower P levels) at a relatively high rate (34 kg P ha yr, significantly higher than without K fertilization; < 0.05) and produced reasonable yields of grass-clover. Our P balance suggested reduced leaching from the topsoil during this experiment. For nature restoration in agricultural areas, this tool opens many possibilities. PMID:27065418

  8. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests.

    PubMed

    Rosenstock, Nicholas P; Berner, Christoffer; Smits, Mark M; Krám, Pavel; Wallander, Håkan

    2016-07-01

    We investigated fungal growth and community composition in buried meshbags, amended with apatite, biotite or hornblende, in Norway spruce (Picea abies) forests of varying nutrient status. Norway spruce needles and soil collected from forests overlying serpentinite had low levels of potassium and phosphorus, those from granite had low levels of magnesium, whereas those from amphibolite had comparably high levels of these nutrients. We assayed the fungal colonization of meshbags by measuring ergosterol content and fungal community with 454 sequencing of the internal transcribed spacer region. In addition, we measured fine root density. Fungal biomass was increased by apatite amendment across all plots and particularly on the K- and P-deficient serpentinite plots, whereas hornblende and biotite had no effect on fungal biomass on any plots. Fungal community (total fungal and ectomycorrhizal) composition was affected strongly by sampling location and soil depth, whereas mineral amendments had no effect on community composition. Fine root biomass was significantly correlated with fungal biomass. Ectomycorrhizal communities may respond to increased host-tree phosphorus demand by increased colonization of phosphorus-containing minerals, but this does not appear to translate to a shift in ectomycorrhizal community composition. This growth response to nutrient demand does not appear to exist for potassium or magnesium limitation. PMID:26996085

  9. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease.

    PubMed

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca(2+), possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  10. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease

    PubMed Central

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus.

  11. Calcium-activated potassium channels mask vascular dysfunction associated with oxidized LDL exposure in rabbit aorta.

    PubMed

    Bocker, J M; Miller, F J; Oltman, C L; Chappell, D A; Gutterman, D D

    2001-05-01

    Endothelium-dependent vasodilation is impaired in atherosclerosis. Oxidized low density lipoprotein (ox-LDL) plays an important role, possibly through alterations in G-protein activation. We examined the effect of acute exposure to ox-LDL on the dilator responses of isolated rabbit aorta segments. We sought also to evaluate the specificity of this dysfunction for dilator stimuli that traditionally operate through a Gi-protein mechanism. Aortic segments were prepared for measurement of isometric tension. After contraction with prostaglandin F2alpha, relaxation to thrombin, adenosine diphosphate (ADP), or the endothelium-independent agonists, sodium nitroprusside (SNP) or papaverine was examined. Maximal relaxation to thrombin was impaired in the presence of ox-LDL (17.7+/-3.7% p<0.05) compared to control (no LDL) (52.6+/-4.0%). Ox-LDL did not affect maximal relaxation to ADP or SNP. However, in the presence of charybdotoxin (CHTX: calcium-activated potassium channel inhibitor) ox-LDL impaired relaxation to ADP (17.4+/-3.2%). CHTX did not affect control (no LDL) responses to ADP (69.6+/-5.0%) or relaxation to thrombin or papaverine. In conclusion, ox-LDL impairs relaxation to thrombin, but in the case of ADP, calcium-activated potassium channels compensate to maintain this relaxation. PMID:11605770

  12. Potassium

    MedlinePlus

    ... Sources of potassium in the diet include Leafy greens, such as spinach and collards Fruit from vines, such as grapes and blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit

  13. On the effect of the injection of potassium phosphate in vivo inducing the precipitation of serum calcium with inorganic phosphate

    PubMed Central

    Soares, Alcimar B; Ticianeli, José G; Soares, Letícia B M; Amaro, George

    2013-01-01

    High concentrations of inorganic phosphate (Pi) resulted from the hydrolysis of ATP is strongly associated to the weakness of the contractile mechanism of muscles due to its attractiveness to calcium. The majority of the experiments to study such effect are conducted in vitro. This work investigates the effects of different concentrations of Pi, induced by the injection of potassium phosphate in live animals, in the precipitation with serum calcium and the generation of calcium phosphate composites. The experiments were also designed to find out the ideal amount of potassium phosphate to induce an effective reaction. Potassium phosphate was injected in Wistar rats, randomly separated and distributed into seven groups. Group I was injected with 0.5 ml of saline solution (control) and groups II through VII were injected with 0.5, 1.5, 2.5, 5.0, 7.5 and 10.0 mg/kg of potassium phosphate, respectively. Blood collected from the inferior vena cava was submitted to biochemical analyses to measure the concentrations of calcium, Pi, urea and creatinine. The results showed that Pi, induced by the injection of potassium phosphate in live animals, causes precipitation with serum calcium, with statistically significant differences between the control and the treatment groups for doses up to 5.0 mg/kg. No statistically significant differences were found between the different doses and the concentration of urea and creatinine in the plasma. We conclude that potassium phosphate can be used to induce serum calcium precipitation in-vivo, with minor effects on other physiological variables, and the ideal dose to do so is 5.0 mg/kg. PMID:24379908

  14. Modeling of the Calcium/Phosphorus Mass ratio for Breast Imaging

    NASA Astrophysics Data System (ADS)

    Martini, N.; Koukou, V.; Michail, C.; Sotiropoulou, P.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-09-01

    Breast microcalcifications are mainly composed of calcite (CaCO3), calcium oxalate (CaC2O4) and apatite (a calcium-phosphate mineral form). Any pathologic alteration (carcinogenesis) of the breast may produce apatite. In the present simulation study, an analytical model was implemented in order to distinguish malignant and non-malignant lesions. The Calcium/Phosphorus (Ca/P) mass ratio and the standard deviation (SD) of the calcifications were calculated. The size of the calcifications ranged from 100 to 1000 μm, in 50 μm increments. The simulation was performed for hydroxyapatite, calcite and calcium oxalate calcifications. The optimum pair of energies for all calcifications was 22keV and 50keV. Hydroxyapatite and calcite calcifications were sufficiently characterized through their distinct confidence interval (99.7%, 3SD) values for calcifications sizes above 500 μm, while the corresponding sizes for hydroxyapatite and calcium oxalate characterization were found above 250 μm. Initial computer simulation results indicate that the proposed method can be used in breast cancer diagnosis, reducing the need for invasive methods, such as biopsies.

  15. Evaporation Behavior of Phosphorus from Metallurgical Grade Silicon via Calcium-Based Slag Treatment and Hydrochloric Acid Leaching

    NASA Astrophysics Data System (ADS)

    Huang, Liuqing; Lai, Huixian; Lu, Chenghao; Fang, Ming; Ma, Wenhui; Xing, Pengfei; Luo, Xuetao; Li, Jintang

    2016-01-01

    Phosphorus removal from metallurgical grade silicon by CaO-SiO2-CaCl2 slag treatment, HCl leaching, and vacuum refining was investigated. The effect of different compositions of slag was evaluated. The calcium concentration in slag-treated silicon increased with increasing CaO/SiO2 mass ratio of slag, decreasing the evaporation efficiency of phosphorus in molten silicon. The total phosphorus removal efficiency changed from 93.0% to 98.3% when the slag-treated silicon was treated with HCl before vacuum refining. The final concentration of phosphorus in silicon was 0.43 ppmw. This is because phosphorus was removed from metallurgical-grade silicon as follows: Phosphorus reacts with slag at the silicon/slag interface and forms Ca3(PO4)2 and Ca3P2, most of which diffuse from the interface to the slag phase. The remaining Ca3(PO4)2 and Ca3P2 reduce the phosphorus removal efficiency by altering the activity coefficient of phosphorus in molten silicon. HCl leaching enhanced the phosphorus removal efficiency by removing the remaining Ca3(PO4)2 and Ca3P2. Therefore, the mass transfer of phosphorus from metallurgical-grade silicon was accelerated.

  16. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    PubMed

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216

  17. Calcium waves and closure of potassium channels in response to GABA stimulation in Hermissenda type B photoreceptors.

    PubMed

    Blackwell, K T

    2002-02-01

    Classical conditioning of Hermissenda crassicornis requires the paired presentation of a conditioned stimulus (light) and an unconditioned stimulus (turbulence). Light stimulation of photoreceptors leads to production of diacylglycerol, an activator of protein kinase C, and inositol triphosphate (IP(3)), which releases calcium from intracellular stores. Turbulence causes hair cells to release GABA onto the terminal branches of the type B photoreceptor. One prior study has shown that GABA stimulation produces a wave of calcium that propagates from the terminal branches to the soma and raises the possibility that two sources of calcium are required for memory storage. GABA stimulation also causes an inhibitory postsynaptic potential (IPSP) followed by a late depolarization and increase in input resistance, whose cause has not been identified. A model was developed of the effect of GABA stimulation on the Hermissenda type B photoreceptor to evaluate the currents underlying the late depolarization and to evaluate whether a calcium wave could propagate from the terminal branches to the soma. The model included GABA(A), GABA(B), and calcium-sensitive potassium leak channels; calcium dynamics including release of calcium from intracellular stores; and the biochemical reactions leading from GABA(B) receptor activation to IP(3) production. Simulations show that it is possible for a wave of calcium to propagate from the terminal branches to the soma. The wave is initiated by IP(3)-induced calcium release but propagation requires release through the ryanodine receptor channel where IP(3) concentration is small. Wave speed is proportional to peak calcium concentration at the crest of the wave, with a minimum speed of 9 microM/s in the absence of IP(3). Propagation ceases when peak concentration drops below 1.2 microM; this occurs if the rate of calcium pumping into the endoplasmic reticulum is too large. Simulations also show that both a late depolarization and an increase in

  18. Magnesium, Potassium and Phosphorus in Available Forms in Luvisols in the Vicinity of Głogów Copper Smelter

    NASA Astrophysics Data System (ADS)

    Jaworska, H.; Dąbkowska-Naskręt, H.; Różański, S.

    2016-02-01

    Region near Głogów is characterized as industrial—agricultural area, intensively used. Presented study was undertaken to estimate the impact of agricultural land use and the vicinity of Głogów copper smelter on the contents of available forms of magnesium, phosphorus and potassium in selected profiles of Luvisols. The following analysis were performed: soil particle-size distribution, pH, organic carbon contents, CaCO3 contents. The contents of available forms of phosphorus and potassium were determined by Egner- Riehm method and that of magnesium using Schachtschabel's method. The results of the study showed that the contents of available P is medium (III class of abundance), very low in K (V class) and for available Mg very low (V class) to medium for surface horizons and very high (I class of abundance) in other soil horizons. The soils, in spite of the elevated copper content in humus horizons, according to IUNG, were classified as uncontaminated soils, therefore, can be used in plant production for all types of crops.

  19. Effect of a 30-day isolation stress on calcium, phosphorus and other excretory products in an unrestrained chimpanzee.

    NASA Technical Reports Server (NTRS)

    Sabbot, I. M.; Mcnew, J. J.; Hoshizaki, T.; Sedgwick, C. J.; Adey, W. R.

    1972-01-01

    An unrestrained chimpanzee was studied in an isolation chamber and in his home cage environment. The study consisted of 49 urine collection days (14 days pre-, 5 days post- and 30 days of isolation), and then of 10 days in the home cage. Dietary intake, urine and fecal data were obtained. The effect of isolation on various excretory parameters was studied. Urine samples were analyzed for volume, osmolarity, creatinine, creatine, urea-N, 17-hydroxy corticosteroids, VMA, calcium and inorganic phosphorus. One way analyses of variance performed on the urinary excretion parameters showed all except creatinine excretion to vary significantly during periods of the study. The changes observed in calcium and phosphorus were highly significant. The data suggests that the calcium to phosphorus excretion ratio might serve as a physiological stress indicator of Selye's adaptation syndrome (period of resistance).

  20. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant.

    PubMed

    Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine

    2014-02-01

    Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway. PMID:24279702

  1. Phytate phosphorus hydrolysis in broilers in response to dietary phytase, calcium, and phosphorus concentrations.

    PubMed

    Manangi, M K; Coon, C N

    2008-08-01

    Three 5-d bioassays were conducted to investigate the microbial phytase effect on apparent phytate phosphorus (PP) hydrolysis by 21-d-old broilers using corn-soybean meal basal diets. In Experiment 1, broilers fed corn-soy basal diet [0.7% Ca, 0.4% total P (TP), and 0.12% nonphytate P (NPP)] with 0, 250, 500, 750, 1,000, 1,500, 2,000, and 5,000 FTU of phytase/kg diet produced PP hydrolysis (%) of 43.12, 68.12, 74.7, 85.02, 85.25 92.77, 96.91, and 99.45, respectively. In Experiment 2, broilers fed corn-soy basal (0.5% Ca and 0.17% PP) without added phytase and 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP had PP hydrolysis (%) of 8.5, 27.6, 26.4, 28.9, 26.3, 17.1, 21.0, and 27.7, respectively. Broilers fed the same 0.5% Ca basal and NPP concentrations with 1,000 FTU of phytase/kg of diet increased (P < 0.05) PP hydrolysis (%) to 80.9, 75.9, 73.5, 72.2, 68.4, 71.6, 58.3, and 62.5, respectively. Experiment 3 was conducted in the same way as Experiment 2 but Ca was maintained at 0.9% for all diets. Phytate P hydrolysis (%) without addition of phytase in 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP-fed groups was 49.2, 19.6, 16.0, 8.0, 9.4, 2.1, 4.0, and 4.2, respectively. The addition of phytase increased (P < 0.05) PP hydrolysis (%) to 85.3, 76.1, 70.0, 76.1, 62.6, 68.6, 67.4, and 63.7, respectively. In conclusion, these studies indicated near-complete hydrolysis (99.45%) of PP at greater dietary phytase (5,000 FTU/kg) supplementation, but maximum TP retention was obtained with only 1,000 FTU of added phytase. Maximum PP hydrolysis occurred for broilers fed diets with 1,000 FTU added phytase when the diets contained the lowest concentration (0.08%) of dietary NPP with either 0.5 or 0.9% dietary Ca concentrations. These data also suggest that broilers fed 0.9% dietary Ca have a greater P physiological threshold before a loss in retention compared with broilers fed lower (0.5%) dietary Ca concentrations with no dietary phytase supplementation. PMID

  2. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    PubMed

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. PMID:26555273

  3. Potassium

    MedlinePlus

    Klor-Con® Powder ... Klor-Con®/25 Powder ... Potassium comes in oral liquid, powder, granules, effervescent tablets, regular tablets, extended-release (long-acting) tablets, and extended-release capsules. It usually is taken two to four ...

  4. The Phosphorus, Sulfur, Argon, and Calcium Isotopic Composition of the Galactic Cosmic Ray Source

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.; Stone, E. C.; Leske, R. A.; Mewaldt, R. A.; Wiedenbeck, M. E.; Binns, W. R.; Israel, M. H.; von Rosenvinge, T. T.; de Nolfo, G. A.; Moskalenko, I. V.

    2009-04-01

    Galactic cosmic ray (GCR) measurements of the phosphorus, sulfur, argon, and calcium isotopes made by the Cosmic Ray Isotope Spectrometer aboard the Advanced Composition Explorer are reported over the energy range from ~100 to ~400 MeV nucleon-1. The propagation of cosmic rays through the Galaxy and heliosphere is modeled with constraints imposed by measurements. Isotopic source abundance ratios 31P/32S, 34S/32S, 38Ar/36Ar, and 44Ca/40Ca are deduced. The derived 31P/32S ratio is 2.34 ± 0.34 times larger than the solar system value, lending further credence to the suggestion that refractory elements are enriched in the GCRs due to the sputtering of ions off grains in the cores of superbubbles. By determining the GCR source abundances of argon (a noble gas) and calcium (a refractory), it is determined that material in grains is accelerated to GCR energies a factor of 6.4 ± 0.3 more efficiently than gas-phase material in this charge range. With this information, the dust fraction of phosphorus and sulfur in the interstellar material that is mixed with stellar ejecta to form the GCR seed material is found to be consistent with astronomical observations.

  5. [Reference values of calcium, vitamin D, phosphorus, magnesium and fluoride for the Venezuelan population].

    PubMed

    Macías-Tomei, Coromoto; Palacios, Cristina; Mariño Elizondo, Mariana; Carías, Diamela; Noguera, Dalmacia; Chávez Pérez, José Félix

    2013-12-01

    The following micronutrients were considered together for their role in bone health: calcium, vitamin D, phosphorus, magnesium and fluoride. Calcium: not enough is known to change current recommendations. In adolescents and adults, limited data suggest that consuming the recommended level is associated with normal bone mass. In older adults, the limited data reported low consumption and a high rate of fractures but there is no information on whether the current values are adequate. Vitamin D: the limited data reported high deficiency in older adults, which was related to osteoporosis. Given the recent increase in North American recommendation for their contribution to bone health, we proposed to increase the recommendation to 400-600 IU/d for Venezuela. Phosphorus, magnesium and fluoride: the lack of local data does not support changing the latest recommendations. Therefore, it highlights the lack of local studies to assess current recommendations. Studies are needed to estimate the intake of these micronutrients in the population and evaluate their interaction and their relation to bone and overall health. Information of the adequacy of these nutrients in human milk for infants is needed. Alto, it is necessary to implement an effective nutrition surveillance system and implement interventions that maximize bone health from an early stage, including the design and implementation of a dairy policy that leads to an increase in production and consumption by the population. PMID:25924466

  6. Intestinal zinc uptake in freshwater rainbow trout: evidence for apical pathways associated with potassium efflux and modified by calcium.

    PubMed

    Glover, Chris N; Bury, Nicolas R; Hogstrand, Christer

    2004-05-27

    Understanding the mechanisms of intestinal zinc uptake in fish is of considerable interest from both nutritional and toxicological perspectives. In this study, properties of zinc transport across the apical membrane of freshwater rainbow trout intestinal epithelia were examined using right-side-out brush border membrane vesicles (BBMV's). Extravesicular calcium was found to have complex actions on zinc uptake. At a low zinc concentration of 1 microM, calcium (0.1-2 mM) significantly stimulated zinc uptake. In contrast, calcium inhibited zinc uptake at higher zinc levels (100 microM). Lanthanum and cadmium in the external medium did not block zinc uptake, suggesting that interactions between zinc and calcium were not exerted at a calcium channel. Copper also failed to exercise any inhibitory action. Zinc association with the BBMV's was enhanced by an outward potassium gradient. This stimulatory effect was only present at a zinc concentration of 100 microM. The potassium channel blocker, tetraethylammonium chloride inhibited zinc uptake at this relatively high zinc concentration, suggesting the presence of a low affinity zinc uptake pathway linked to potassium efflux. The present study provides evidence that the mechanism of intestinal zinc uptake in rainbow trout is pharmacologically very different from that of the piscine gill and the mammalian intestine. PMID:15157623

  7. Interaction of calcium and phytate in broiler diets: 1. Effects on apparent prececal digestibility and retention of phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytate phosphorus (P) utilization from soybean meal (SBM) included in broiler diets has been shown to be poor and highly dependent on dietary calcium (Ca) intake. Although low phytate varieties of SBM have been developed, it is not well known how reduced dietary phytate concentrations affect Ca abs...

  8. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium and phosphorus uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of Calcium (Ca) and Phosphorus (P). In 2010, over 10 milli...

  9. Evaluation of calcium, phosphorus, and selected trace mineral status in commercially available dry foods formulated for dogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective – To evaluate the mineral content including calcium, phosphorus, zinc, iron, copper, manganese, and selenium of canine commercial pet foods and compare them to current AAFCO recommendations for adult maintenance. Design - Descriptive study. Sample – Forty-five over the counter dry canine p...

  10. Calcium ions regulate K⁺ uptake into brain mitochondria: the evidence for a novel potassium channel.

    PubMed

    Skalska, Jolanta; Bednarczyk, Piotr; Piwońska, Marta; Kulawiak, Bogusz; Wilczynski, Grzegorz; Dołowy, Krzysztof; Kudin, Alexei P; Kunz, Wolfram S; Szewczyk, Adam

    2009-03-01

    The mitochondrial response to changes of cytosolic calcium concentration has a strong impact on neuronal cell metabolism and viability. We observed that Ca(2+) additions to isolated rat brain mitochondria induced in potassium ion containing media a mitochondrial membrane potential depolarization and an accompanying increase of mitochondrial respiration. These Ca(2+) effects can be blocked by iberiotoxin and charybdotoxin, well known inhibitors of large conductance potassium channel (BK(Ca) channel). Furthermore, NS1619 - a BK(Ca) channel opener - induced potassium ion-specific effects on brain mitochondria similar to those induced by Ca(2+). These findings suggest the presence of a calcium-activated, large conductance potassium channel (sensitive to charybdotoxin and NS1619), which was confirmed by reconstitution of the mitochondrial inner membrane into planar lipid bilayers. The conductance of the reconstituted channel was 265 pS under gradient (50/450 mM KCl) conditions. Its reversal potential was equal to 50 mV, which proved that the examined channel was cation-selective. We also observed immunoreactivity of anti-beta(4) subunit (of the BK(Ca) channel) antibodies with ~26 kDa proteins of rat brain mitochondria. Immunohistochemical analysis confirmed the predominant occurrence of beta(4) subunit in neuronal mitochondria. We hypothesize that the mitochondrial BK(Ca) channel represents a calcium sensor, which can contribute to neuronal signal transduction and survival. PMID:19399240

  11. Tumor-induced osteomalacia. Kinetics of calcium, phosphorus, and vitamin D metabolism and characteristics of bone histomorphometry.

    PubMed

    Siris, E S; Clemens, T L; Dempster, D W; Shane, E; Segre, G V; Lindsay, R; Bilezikian, J P

    1987-02-01

    A patient with a mesenchymal tumor and hypophosphatemic osteomalacia was studied before and after tumor excision. Initial laboratory values included normal serum calcium, decreased serum phosphorus and tubular reabsorption of phosphate, undetectable 1,25-dihydroxyvitamin D, and normal parathyroid hormone. Histomorphometry of a bone biopsy specimen showed evidence of increased osteoclastic bone resorption. By 16 hours after tumor removal, 1,25-dihydroxyvitamin D level had normalized, but serum phosphorus level was unchanged; at 28 hours, both serum phosphorus value and tubular reabsorption of phosphate were within normal limits. It is concluded that tumor removal is associated with rapid correction both of 1,25-dihydroxyvitamin D production and of renal phosphate wasting. Increased bone resorption suggests the production of an osteoclast activator by the tumor and may explain the typically normal serum calcium value in this disorder. PMID:3812526

  12. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. The effect of different dietary calcium and phosphorus concentrations and ratios on nutrient digestibility.

    PubMed

    Wilkinson, S J; Bradbury, E J; Thomson, P C; Bedford, M R; Cowieson, A J

    2014-07-01

    A total of 600 Ross 308-day-old male broiler chicks were used in a 28 day digestibility study to investigate the interaction between dietary calcium (Ca) and non-phytate phosphorus (nPP) on the digestibility of minerals and amino acids. Diets were formulated to be nutritionally adequate except for Ca and nPP. Fifteen mash diets based on corn and soya bean meal with varying concentrations of Ca (6.4 to 12.0 g/kg) and nPP (2.4 to 7.0 g/kg) were used. Diets were clustered around total densities of Ca and nPP of 12, 13.5 or 15.0 (g/kg) and within each density, a range of five Ca : nPP ratios (1.14 : 1, 1.5 : 1, 2.0 : 1, 2.75 : 1 and 4.0 : 1) were fed. Birds had free access to feed and water throughout the study. At day 28, birds were euthanised for the determination of apparent ileal mineral and amino acid digestibility. Data were modelled in R version 2.15 using a linear mixed-effects model and interrogation of the data was performed by fitting a low order polynomial function. At high Ca concentrations, increasing nPP led to an increase in the apparent digestibility of minerals. Apparent ileal digestibility of phosphorus (P) was enhanced with increasing dietary nPP up to 5.5 g/kg beyond which no improvements were found. Maximal Ca digestibility was found in diets with >8.0 g/kg Ca with concomitant low concentrations of nPP. Diets with a broader Ca : nPP ratio improved the digestibility of Ca but were deleterious to the digestibility of P. In this study, apparent digestibility of amino acids was broadly unaffected by dietary Ca and nPP concentrations. However, interactions between Ca and nPP were observed for the digestibility of glutamine, tyrosine and methionine (all P<0.001). Nitrogen digestibility showed discrete optima around 10.0 and 5.0 g/kg nPP and Na digestibility was maximised around 8 to 9.0 g/kg Ca and 4.5 to 5.4 g/kg nPP. These data show that the ratio of Ca : nPP is more influential to mineral digestibility than the absolute dietary concentration of each

  13. The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

    PubMed Central

    Kim, Sung-Jo; Kang, Sun-Yang; Yi, Jin Woong; Kim, Seung-Min

    2014-01-01

    Purpose Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium (KCa) channel genes in HOKPP patients. Methods We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the KCa channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes KCa1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels. PMID:25379045

  14. Preparation of CTS Coatings Containing Calcium and Phosphorus on Titanium Surface by the Cathode Liquid Phase Plasma Technology

    NASA Astrophysics Data System (ADS)

    Ye, Wenting; Wu, Di; Pan, Xin; Chen, Yashao; Han, Yong; Song, Zhongxiao

    2010-10-01

    Chitosan (CTS) coatings contained calcium (Ca) and phosphorus (P) on titanium (Ti) surface are prepared by the cathode liquid phase plasma technology (CLPT), in a certain concentration electrolyte solution with selective additions of ammonium dihydrogen phosphate and calcium nitrate. It is indicated that the parameters for a stable discharge are voltage of 400 V, frequency of 100 Hz, duty cycle of 30% based on a large amount of experiment data. The morphology, structure and composition of the coated samples are studied by SEM, FTIR, XRD, XPS. The results demonstrate that the composite coatings are uniform, and some solid particles of inorganic salt containing calcium and phosphorus dispersed on the coatings. CA tests show that the samples treated by the liquid plasma became less hydrophilic. The variation of hydrophilicity on the CLPT treated titanium is attributed to the change of the function groups on the sample surface. Meanwhile, a possible formation mechanism of the composite coatings is discussed.

  15. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

    PubMed

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A S; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-06-01

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels. PMID:25997445

  16. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps

    PubMed Central

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A. S.; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-01-01

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K+ uptake system in the Venus flytrap. In search of K+ transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K+-transporter genes into Xenopus oocytes, however, both putative K+ transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K+ transporter 1 (AKT1), we coexpressed the putative K+ transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K+ uptake. DmKT1 was found to be a K+-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around −120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K+, reducing its concentration from millimolar levels down to trace levels. PMID:25997445

  17. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    PubMed

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation. PMID:17942746

  18. Equilibrium studies of sodium-ammonium potassium-ammonium, and calcium-ammonium exchanges on clinoptilolite zeolite

    SciTech Connect

    Jama, M.A.; Yuecel, H. )

    1989-12-01

    Forward and reverse ion-exchange isotherms for the binary sodium-ammonium, potassium-ammonium, and calcium-ammonium systems on clinoptilolite have been measured in aqueous solutions at a total concentration of 0.1 equiv/dm{sup 3} and at 298 K. Prior to exchange experiments it was attempted to prepare homoionic forms of the zeolite by exhaustive treatments with appropriate salt solutions of cations. With no binary exchanges, full replacement of the cation by the ammonium ion is observed, which conflicts with some earlier work on clinoptilolite. Despite the observed partial exchange levels, clinoptilolite shows a very high preference for ammonium ion over sodium and calcium but not over potassium. Thermodynamic values for the exchanges were calculated and compared with data in the literature. Both the selectivity and thermodynamic affinity sequence, in agreement with previous work reported in the literature, are K{sup +} > NH{sub 4}{sup +} > Na{sup +} > Ca{sup 2+}.

  19. Effect of the method of preparation for consumption on calcium retention, calcium:phosphorus ratio, nutrient density and recommended daily allowance in fourteen vegetables.

    PubMed

    Słupski, Jacek; Gębczyński, Piotr; Korus, Anna; Lisiewska, Zofia

    2014-06-01

    The aim of this work was to evaluate calcium retention in 14 species of vegetable (from four usable groups). The material investigated consisted of raw and boiled fresh vegetables and two types of frozen product prepared for consumption after 12-month storage: one traditionally produced; the other obtained using the modified method (convenience food). The highest calcium content was found in leafy vegetables, followed (in descending order) by leguminous, root and brassica vegetables. The proportion by weight of Ca to P was highest in leafy vegetables and decreased with calcium retention despite the fact that levels of phosphorus were highest in leguminous and lowest in leafy vegetables. The nutrient density (ND%) of calcium for adults exceeded 100 for each individual vegetable species. The recommended daily allowance (RDA) percentage value varied between 23.04 (kale) and 1.46 (white cauliflower). Of the three types of product, ND and RDA values were generally greater in the frozen convenience products. PMID:24467467

  20. Regulation of large conductance calcium- and voltage-activated potassium (BK) channels by S-palmitoylation.

    PubMed

    Shipston, Michael J

    2013-02-01

    BK (large conductance calcium- and voltage-activated potassium) channels are important determinants of physiological control in the nervous, endocrine and vascular systems with channel dysfunction associated with major disorders ranging from epilepsy to hypertension and obesity. Thus the mechanisms that control channel surface expression and/or activity are important determinants of their (patho)physiological function. BK channels are S-acylated (palmitoylated) at two distinct sites within the N- and C-terminus of the pore-forming α-subunit. Palmitoylation of the N-terminus controls channel trafficking and surface expression whereas palmitoylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. Recent studies are beginning to reveal mechanistic insights into how palmitoylation controls channel trafficking and cross-talk with phosphorylation-dependent signalling pathways. Intriguingly, each site of palmitoylation is regulated by distinct zDHHCs (palmitoyl acyltransferases) and APTs (acyl thioesterases). This supports that different mechanisms may control substrate specificity by zDHHCs and APTs even within the same target protein. As palmitoylation is dynamically regulated, this fundamental post-translational modification represents an important determinant of BK channel physiology in health and disease. PMID:23356260

  1. Chaotic model and memory in single calcium-activated potassium channel kinetics

    NASA Astrophysics Data System (ADS)

    Bandeira, Heliovânio T.; Barbosa, Catão T. F.; Campos De Oliveira, Regina A.; Aguiar, José F.; Nogueira, Romildo A.

    2008-09-01

    Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R /S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Tóth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data.

  2. Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs).

    PubMed

    Okano, Kenji; Uemoto, Masahide; Kagami, Jumpei; Miura, Keiichi; Aketo, Tsuyoshi; Toda, Masaya; Honda, Kohsuke; Ohtake, Hisao

    2013-05-01

    A novel technique for phosphorus (P) recovery from aqueous solutions was developed using amorphous calcium silicate hydrates (A-CSHs). A-CSHs, which have a high Ca/Si molar ratio of 2.0 or greater, could be synthesized using unlimitedly available, inexpensive materials such as siliceous shale and calcium hydroxide. A-CSHs showed high performance for P recovery from an anaerobic sludge digestion liquor (ASDL) and the synthetic model liquor (s-ASDL) containing 89 mg PO4-P/L. After 20 min mixing, 1.5 g/L A-CSHs could remove approximately 69 and 73% PO4-P from ASDL and s-ASDL, respectively. By contrast, autoclaved lightweight concrete particles, which contained crystalline calcium silicate hydrates as a principal component, removed only 10 and 6% PO4-P from ASDL and s-ASDL, respectively, under the same experimental conditions. When A-CSHs were washed with deionized water to remove free Ca(OH)2, P removability was significantly improved (up to 82%) despite the reduction in the amount of Ca(2+) released. Unlike in the case of Ca(OH)2, no significant carbonate inhibition was observed with P removal by A-CSHs. Moreover, P removed by A-CSHs showed better settleability, filterability, and dewaterability than P precipitated with conventional CaCl2 and Ca(OH)2. The present study demonstrated that A-CSHs have great potential as a novel, beneficial material for P recovery and recycling. PMID:23497975

  3. Influence of Estrogen Therapy on Calcium, Phosphorus, and Other Regulatory Hormones in Postmenopausal Women: The MESA Study

    PubMed Central

    Katz, Ronit; de Boer, Ian H.; Kestenbaum, Bryan; Siscovick, David S.; Hoofnagle, Andrew N.; Tracy, Russell; Laughlin, Gail A.; Criqui, Michael H.; Budoff, Mathew J.; Li, Dong; Ix, Joachim H.

    2013-01-01

    Background: Estrogen therapy (ET) is associated with lower serum calcium and phosphorus concentrations and is known to increase bone mineral density (BMD). Other biomarkers of mineral metabolism may help understand the biological basis of these actions. Methods: We studied 2767 postmenopausal women in the Multi-Ethnic Study of Atherosclerosis, 862 (31%) of whom were using ET. We measured serum concentrations of calcium, phosphorus, 25-hydroxyvitamin D, 24,25-dihydoxyvitamin D, and fibroblast growth factor-23 and urinary fractional excretion of calcium (FEca) and phosphorus (FEphos). We examined the associations of ET with each biomarker. In addition, we tested whether the adjustment for biomarkers attenuated the association of ET with lumbar BMD measured by abdominal computed tomography in a subset of 810 women. Results: In adjusted models, women who used ET were younger in age [62 (SD 8) vs 66 (9) y, P < .001], had lower mean serum calcium [−13 mg/dL (95% confidence interval [CI] −0.17, −0.10), P < .001] and lower FEca [−0.15% (95% CI −0.21, −0.09), P < .001]. Mean serum phosphorus was lower [−0.19 mg/dL (95% CI −0.23, −0.15), P < .001] and FEphos [0.56% (95% CI 0.16, 0.96), P = .007] was higher in women on ET. Mean 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D were higher [1.52 ng/dL (95% CI 0.57, 2.47), P = .002, and 0.26 ng/mL (95% CI 0.03, 0.48), P = .03, respectively] in women who used ET. Mean PTH and fibroblast growth factor-23 did not differ significantly by the use of ET. ET use was strongly associated with higher lumbar BMD [12.75 mg/cm3 (95% CI 7.77–17.73), P < .001]; however, mineral metabolism measures did not meaningfully alter this association. Conclusions: In a multiethnic cohort of postmenopausal women, ET use was associated with lower serum calcium, lower FEca, lower serum phosphorus, and higher FEphos, suggesting these associations are attributable to increased calcium intake into bone and increased urinary phosphorus

  4. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  5. The combined effects of ionizing radiation and weightlessness on calcium and phosphorus content in the mineral fraction of the calcified tissues in the rat skeleton

    NASA Technical Reports Server (NTRS)

    Prokhonchukov, A. A.; Komissarova, N. A.; Kolesnik, A. G.; Novikov, L. L.

    1980-01-01

    Phosphorus and calcium content in the ash from skeletal bones (ribs, scapula, vertebra, and crus) of 30 rats exposed to ionizing radiation (800 rads) on the flight of the Kosmos 690 biosatellite was studied. A 10 percent decrease in ash content coefficient and 29 percent decrease in phosphorus content was found immediately after the flight, and a 9 percent decrease in phosphorus content persisted after 26 days of readaptation to terrestrial conditions.

  6. Effect of radiation processing on in vitro protein digestibility and availability of calcium, phosphorus and iron of peanut

    NASA Astrophysics Data System (ADS)

    Hassan, Amro B.; Diab, Eiman E.; Mahmoud, Nagat S.; Elagib, Randa A. A.; Rushdi, Mohamed A. H.; Osman, Gammaa A. M.

    2013-10-01

    The effect of gamma irradiation of two peanut cultivars (Sodari and Madani) on protein content, in vitro protein digestibility and availability of calcium, phosphorus and iron was determined. Seeds were treated with gamma irradiation at dose levels of 1.0, 1.5 and 2.0 kGy. Total protein in seeds was not changed significantly by irradiation. However, the in vitro protein digestibility was decreased for both cultivars. In addition, the irradiation also caused an increment on the available calcium, phosphorus and iron for both cultivars. Moreover, radiation processing caused an increment on tannin content of the seeds especially at the dose 2 kGy for both cultivars. Regarding these results, irradiation treatment of peanut up to 2 kGy can be used as an effective alternative method to chemical treatments for insect disinfestation and microbial disinfection.

  7. Tibial bone mineral distribution as influenced by calcium, phosphorus, and vitamin D feeding levels in the growing turkey

    NASA Technical Reports Server (NTRS)

    Spurrell, F. A.; Brenes, J.; Waibel, P.

    1974-01-01

    Roentgen signs, subperiosteal, endosteal, and trabecular bone growth are evaluated in turkeys fed phosphorus at the 0.5, 0.56, 0.68, 0.90, and 2.70 percent levels. Calcium levels of 0.30, 0.40, 0.60, 1.2, and 3.60 percent were also tested. Vitamin D levels of 0, 100, 300, 900 and 27,000 I.U. per day were likewise evaluated. Roentgen signs, bone mineral as measured by T-125 gamma ray absorption, and bone mineral growth patterns as shown by radiograph area projection are correlated with calcium, phosphorus, and vitamin D feeding levels. Differences in bone growth at the various feeding levels were observed which were not reflected by differences in other studied parameters.

  8. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    PubMed

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation. PMID:26493746

  9. Serum vitamin D, calcium, and phosphorus concentrations in ponies, horses and foals from the United States and Thailand.

    PubMed

    Pozza, Megan E; Kaewsakhorn, Thattawan; Trinarong, Chumnan; Inpanbutr, Nongnuch; Toribio, Ramiro E

    2014-03-01

    Vitamin D is essential in calcium and phosphorus regulation, bone physiology, cell proliferation and epithelial integrity. Literature on vitamin D in growing horses is sparse, and the effect of age on vitamin D has not been evaluated in equids in the United States or in tropical countries. The goal of this study was to determine if there was an effect of age on serum 25(OH)D3 concentrations in equids in the US (Ohio/Kentucky) and Thailand (Chiang Rai and Kanchanaburi) during the same time of the year. Blood samples were collected from healthy ponies (n=21) and Thoroughbred foals (n=13), yearlings (n=10), and horses (n=20) in Thailand and from Thoroughbred foals (n=10) and horses (n=17) in the US. Serum concentrations of 25(OH)D3, calcium and phosphorus were measured. In both countries, serum 25(OH)D3 concentrations were lower in foals than in yearlings and adult horses. Serum 25(OH)D3 concentrations were higher in horses than in ponies in Thailand, but were not different between horses from either country. Calcium concentrations were not different between groups or location. In both countries, phosphorus concentrations were higher in foals than in older groups; however, were not different between ponies and horses. This study shows that independent of geography there are age-related differences in 25(OH)D3 concentrations in horses and further confirms that 25(OH)D3 concentrations are lower in horses compared to other species. The information will serve as the basis for future clinical studies and to help understand better the pathophysiology of equine disorders associated with calcium and phosphorus dysregulation. PMID:24524849

  10. Comparison of calcium and phosphorus excretion with bone density changes during restraint in immature Macaca nemestrina primates.

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Hood, W. N.; Mack, P. B.

    1972-01-01

    Calcium and phosphorus balance data on Macaca nemestrina monkeys during immobilization are presented and correlated with X-ray bone densitometry findings. A positive mineral balance was maintained during the immobilized period. A reduced bone density was observed in most skeletal sites examined with increased density observed in epiphyseal regions. Migration of mineral from one site to another is suggested as a possible explanation for the findings.

  11. Distribution of High-Conductance Calcium-Activated Potassium Channels in Rat Vestibular Epithelia

    PubMed Central

    Schweizer, Felix E.; Savin, David; Luu, Cindy; Sultemeier, David R.; Hoffman, Larry F.

    2011-01-01

    Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development. PMID:19731297

  12. Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels.

    PubMed

    Page, A J; O'Donnell, T A; Blackshaw, L A

    2006-01-01

    GABA(B) receptors inhibit mechanosensitivity of visceral afferents. This is associated with reduced triggering of events that lead to gastro-esophageal reflux, with important therapeutic consequences. In other neuronal systems, GABA(B) receptor activation may be linked via G-proteins to reduced N-type Ca(2+) channel opening, increased inward rectifier K(+) channel opening, plus effects on a number of intracellular messengers. Here we aimed to determine the role of Ca(2+) and K(+) channels in the inhibition of vagal afferent mechanoreceptor function by the GABA(B) receptor agonist baclofen. The responses of three types of ferret gastro-esophageal vagal afferents (mucosal, tension and tension mucosal receptors) to graded mechanical stimuli were investigated in vitro. The effects of baclofen (200 microM) alone on these responses were quantified, and the effects of baclofen in the presence of the G-protein-coupled inward rectifier potassium channel blocker Rb(+) (4.7 mM) and/or the N-type calcium channel blocker omega-conotoxin GVIA (0.1 microM). Baclofen inhibition of mucosal receptor mechanosensitivity was abolished by both blockers. Its inhibitory effect on tension mucosal receptors was partly reduced by both. The inhibitory effect of baclofen on tension receptors was unaffected. The data indicate that the inhibitory action of GABA(B) receptors is mediated via different pathways in mucosal, tension and tension mucosal receptors via mechanisms involving both N-type Ca(2+) channels and inwardly rectifying K(+) channels and others. PMID:16289839

  13. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels

    PubMed Central

    Castillo, Karen; Contreras, Gustavo F.; Pupo, Amaury; Torres, Yolima P.; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-01-01

    Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  14. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    PubMed

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  15. 17Beta-Estradiol Inhibits Calcium-Activated Potassium Channel Expressions in Rat Whole Bladder

    PubMed Central

    2016-01-01

    Purpose: To investigate the effect of estrogen on the expression of calcium-activated potassium (KCa) channels in an overactive bladder rat model. To this end, mRNA and protein levels of KCa channel subtypes in the bladder of ovariectomized rats were measured by reverse transcription polymerase chain reaction and western blotting, respectively. Methods: Ten-week-old female Sprague-Dawley rats were divided randomly into 3 groups: sham-operated control group (n=11), ovariectomy group (n=11), and the group treated with estrogen after ovariectomy (n=12). Rats in the last group were subcutaneously injected with 17β-estradiol (50 μg/kg) every other day for 2 weeks, whereas rats in the other 2 groups received vehicle (soybean oil) alone. Two weeks after treatment, the whole bladder was excised for mRNA and protein measurements. Results: Protein levels of the large-conductance KCa (BK) channels in the ovariectomy group were 1.5 folds higher than those in the sham-operated control group. However, the protein levels of the other KCa channel subtypes did not change significantly upon bilateral ovariectomy. Treatment with 17β-estradiol after ovariectomy restored BK channel protein levels to the control value. In contrast, BK channel mRNA levels were not significantly affected by either ovariectomy alone or 17β-estradiol treatment. The small-conductance KCa type 3 channel (SK3) mRNA and protein levels decreased to 75% of control levels upon 17β-estradiol treatment. Conclusions: These results suggest that 17β-estradiol may influence urinary bladder function by modulating BK and SK3 channel expression. PMID:27032553

  16. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk.

    PubMed

    Malacarne, Massimo; Franceschi, Piero; Formaggioni, Paolo; Sandri, Sandro; Mariani, Primo; Summer, Andrea

    2014-05-01

    The main requirement for milk processed in most cheese typologies is its rennet coagulation ability. Despite the increasing number of studies, the causes for abnormal coagulation of milk are not fully understood. The aim of this study was to ascertain relationships between milk characteristics and its rennet coagulation ability, focusing on the influence of calcium (Ca) and phosphorus (P). Ca and P are essential constituents of the micelles. Micellar P can be present as part of colloidal calcium phosphate (inorganic-P) or covalently bound to caseins as phosphate groups (casein-P). Eighty one herd milk samples (SCC<400 000 cell/ml) were classified as Optimal (8), Suboptimal (39) Poor (29) and Non-coagulating milk (5), according to their rennet coagulation parameters as assessed by lactodynamographic test. Samples were analysed for their chemical composition (basic composition, protein fractions, minerals and salt equilibria), physicochemical parameters (pH and titratable acidity) and rheological properties. Optimal milk was characterised by the highest contents of major constituents, protein fractions and minerals, lowest content of chloride and highest values of titratable acidity. Non-coagulating milk was characterised by the highest values of pH and the lowest of titratable acidity. At micellar level, Optimal milk showed the highest values of colloidal Ca, casein-P and colloidal Mg (g/100 g casein), while Non-coagulating milk showed the lowest values. Interestingly, there was no statistical difference regarding the content of colloidal inorganic-P (g/100 g casein) between Optimal and Non-coagulating milks. Overall, high mineralisation of the micelle (expressed as g inorganic-P/100 g casein) positively affect its rennetability. However, excessive mineralisation could lead to a reduction of the phosphate groups (g casein-P/100 g casein) available for curd formation. PMID:24345431

  17. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-07-01

    We used soil columns to study nutrients release from two compressed NPK fertilizers. The columns were filled with soil material from the surface horizon of a granitic soil. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil, and then water was percolated through the columns in a saturated regime. Percolates were analyzed for N, P, K, Ca and Mg. These nutrients were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first percolates, reaching a steady state when 1426 mm water have percolated, which is equivalent to approximately 1.5 years of rainfall in the geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K, Ca and Mg were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with composition 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident.

  18. Effect of fiber and phytate source and of calcium and phosphorus level on phytate hydrolysis in the chick.

    PubMed

    Ballam, G C; Nelson, T S; Kirby, L K

    1984-02-01

    Broiler chicks were fed a corn-soybean meal diet or a corn-soybean meal diet containing either 15% rice bran, 15% wheat bran, 15% alfalfa meal, 10% cellulose, or 10% cottonseed hulls. All diets contained 3190 kcal/kg of metabolizable energy, 22.8% protein, and either 1.0% calcium and .5% nonphytate phosphorus (Pnp) or .85% calcium and .42% Pnp. The diets were fed for 3 weeks at which time a digestion trial was conducted to determine the amount of phytate hydrolyzed. Chicks consuming diets containing the lower levels of calcium and Pnp hydrolyzed more phytate than those fed the higher levels of calcium and Pnp except when the diet contained rice bran. Less phytate was hydrolyzed in the rice bran diet at the lower calcium and Pnp levels. Phytate hydrolysis was not affected by wheat bran but was reduced by cottonseed hulls. At the lower levels of calcium and Pnp, alfalfa meal and cellulose significantly increased phytate hydrolysis by chicks. The hydrolysis of phytate was influenced more by calcium and by source than by fiber or by level of phytate fed. PMID:6324157

  19. Assessment of nitrogen, phosphorus, and potassium uptake capacity and root growth in mature alternate-bearing pistachio (Pistacia vera) trees.

    PubMed

    Rosecrance, R. C.; Weinbaum, S. A.; Brown, P. H.

    1996-01-01

    We examined interrelationships between crop load, nitrogen (N), phosphorus (P), and potassium (K) uptake, and root growth in mature, alternate-bearing pistachio (Pistacia vera L.) trees. Pistachio trees bear heavy (on-year) and light (off-year) fruit crops in alternate years. Uptake and partitioning of N, P, and K among tree parts were determined during (a) spring flush (mid-March to late May), (b) nut fill (late May to early September), and (c) postharvest-leaf senescence (late September to early December). Nutrient uptake occurred primarily during nut fill in both on-year and off-year trees. In on-year trees, N and K uptake increased by 35 and 112%, respectively, during nut fill compared with off-year trees. During this period, nutrients were allocated largely to embryo development in on-year trees and to storage in perennial tissues in off-year trees. Nutrient uptake was negligible between harvest and leaf senescence. Although root growth was reduced during nut fill in on-year trees compared with off-year trees, there was no relationship between root growth and the uptake of N, P or K from the soil. Our data support the hypothesis that sink demand regulates the uptake and distribution of N, P, and K in pistachio trees. PMID:14871788

  20. True manganese absorption in chicks as affected by dietary excesses of calcium and phosphorus

    SciTech Connect

    Wedekind, K.J.; Titgemeyer, E.C.; Twardock, A.R.; Baker, D.H. )

    1991-03-15

    Two balance studies with growing chicks were conducted to evaluate the effects of excess calcium (Ca) or excess phosphorus (P) on endogenous fecal manganese (Mn) excretion and true Mn absorption determined using an isotope-dilution technique. Supplements were added to a corn-soybean meal diet containing 1% Ca, 0.7% P and 37 mg/kg Mn. In Exp. 1, supplemental Ca levels of 0, 0.5 and 1.0% from feedgrade limestone were compared. True absorption of Mn was not affected by Ca level and averaged 2.8% for birds fed the Mn-unsupplemented diet. In Exp. 2, a 2 x 3 factorial arrangement of treatments included: 100 and 1,000 mg/kg supplemental Mn and 0, 0.4 and 0.8% added P supplied by dicalcium phosphate. Excess P decreased true absorption of Mn. In birds fed 100 mg/kg supplemental Mn, absorption of Mn decreased 22% as excess P increased from 0 to 0.8%, whereas in birds fed 1,000 mg/kg supplemental Mn, Mn absorption decreased 58% as a result of 0.8% P supplementation. These results confirm that excess Ca has little effect while excess P has a marked effect on gut absorption of Mn.

  1. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  2. Effect of dual ion implantation of calcium and phosphorus on the properties of titanium.

    PubMed

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Biliński, A; Lewandowska-Szumieł, M; Rajchel, B

    2005-06-01

    This study is concerned with the effect of dual implantation of calcium and phosphorus upon the structure, corrosion resistance and biocompatibility of titanium. The ions were implanted in sequence, first Ca and then P, both at a dose of 10(17) ions/cm2 at a beam energy of 25 keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the implanted layer was examined by XPS and SIMS. The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. The biocompatibility tests were performed in vitro in a culture of human-derived bone cells (HDBC) in contact with the tested materials. The viability of the cells was determined by an XTT assay and their activity by the measurements of the alkaline phosphatase activity in contact with implanted and non-implanted titanium samples. The in vitro examinations confirmed that, under the conditions prevailing during the experiments, the biocompatibility of Ca + P ion-implanted titanium was satisfactory. TEM results show that the surface layer formed by the Ca + P implantation is amorphous. The corrosion resistance of titanium, examined by the electrochemical methods, appeared to be increased after the Ca + P ion implantation. PMID:15603780

  3. An Optical Method for Serum Calcium and Phosphorus Level Assessment during Hemodialysis

    PubMed Central

    Holmar, Jana; Uhlin, Fredrik; Fernström, Anders; Luman, Merike; Jankowski, Joachim; Fridolin, Ivo

    2015-01-01

    Survival among hemodialysis patients is disturbingly low, partly because vascular calcification (VC) and cardiovascular disease are highly prevalent. Elevated serum phosphorus (P) and calcium (Ca) levels play an essential role in the formation of VC events. The purpose of the current study was to reveal optical monitoring possibilities of serum P and Ca values during dialysis. Twenty-eight patients from Tallinn (Estonia) and Linköping (Sweden) were included in the study. The serum levels of Ca and P on the basis of optical information, i.e., absorbance and fluorescence of the spent dialysate (optical method) were assessed. Obtained levels were compared in means and SD. The mean serum level of Ca was 2.54 ± 0.21 and 2.53 ± 0.19 mmol/L; P levels varied between 1.08 ± 0.51 and 1.08 ± 0.48 mmol/L, measured in the laboratory and estimated by the optical method respectively. The levels achieved were not significantly different (p = 0.5). The Bland-Altman 95% limits of agreement between the two methods varied from −0.19 to 0.19 for Ca and from −0.37 to 0.37 in the case of P. In conclusion, optical monitoring of the spent dialysate for assessing the serum levels of Ca and P during dialysis seems to be feasible and could offer valuable and continuous information to medical staff. PMID:25734785

  4. X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition

    SciTech Connect

    Lee, P.; Ye, Z.; Van Dyke, K.; Kirk, R.G.

    1988-08-01

    Cryosections of human red blood cells infected by Plasmodium falciparum were analyzed by energy dispersive x-ray microanalysis to determine the elemental composition of the parasites and their red cell hosts separately. The effects of two antimalarial drugs, qinghaosu and chloroquine, on potassium, sodium, and phosphorus concentrations were studied. Malarial infection causes a decrease in potassium concentration and an increase in sodium concentration in the host red cells. The drastic change in the cation composition, however, occurs only in red cells infected by late stage parasites (late trophozoite and schizont). Red cells infected by early stage parasites (ring stage) show only small changes in sodium concentration. Furthermore, the noninfected red cells in parasitized cultures show no difference in composition from those of normal red cells. Treatment of the parasitized cultures with qinghaosu (10(-6) M) or chloroquine (10(-6) M) for 8 hr causes phosphorus concentration of both early and late parasites to decrease. An 8 hr treatment with qinghaosu also produces a reduction in potassium and an increase in sodium concentrations in early and late parasites. In contrast, 8 hr treatment with chloroquine only causes a change in the sodium and potassium concentrations of the late stage parasites and does not affect the early stage parasites.

  5. Isosteviol as a potassium channel opener to lower intracellular calcium concentrations in cultured aortic smooth muscle cells.

    PubMed

    Wong, Kar-Lok; Yang, Hung-Yu; Chan, Paul; Cheng, Tz-Hurng; Liu, Ju-Chi; Hsu, Feng-Lin; Liu, I-Min; Cheng, Yu-Wan; Cheng, Juei-Tang

    2004-02-01

    Isosteviol is a derivative of stevioside, a constituent of Stevia rebaudiana, and is commonly used as a non-caloric sugar substitute in Japan and Brazil. The present study attempted to elucidate the role of potassium (K (+)) channels in the action of isosteviol on intracellular calcium concentrations ([Ca (2+)]i) in cultured vascular smooth muscle (A7r5) cells using the Ca (2+)-sensitive dye Fura-2 as an indicator. The increase of [Ca (2+)]i in A7r5 cells produced by vasopressin (1 micromol/L) or phenylephrine (1 micromol/L) was attenuated by isosteviol from 0.01 micromol/L to 10 micromol/L. The attenuation by isosteviol of the vasopressin- and phenylephrine-induced increase in [Ca (2+)]i was inhibited by glibenclamide, apamin and 4-aminopyridine but not by charybdotoxin. Furthermore, the inhibitory action of isosteviol on [Ca (2+)]i was blocked when A7r5 cells co-treated with glibenclamide and apamin in conjunction with 4-aminopyridine were present. Therefore, not only did the ATP-sensitive potassium (K (ATP)) channel affect the action of isosteviol on [Ca (2+)]i modulation in A7r5 cells, but also those on the small conductance calcium-activated potassium (SK (Ca)) channels and voltage-gated (Kv) channels. However, the blockers of large-conductance Ca (2+)-activated potassium channels failed to modify the inhibitory action of isosteviol on [Ca (2+)]i. The obtained results indicated that a decrease of [Ca (2+)]i in A7r5 cells by isosteviol is mainly mediated by the selective opening of K (ATP) channel or/and SK (Ca) channel. Alteration in the Kv channel also plays a critical role in the inhibitory action of isosteviol. PMID:14994186

  6. Efficacy of a novel calcium/potassium salt of (-)-hydroxycitric acid in weight control.

    PubMed

    Preuss, H G; Garis, R I; Bramble, J D; Bagchi, D; Bagchi, M; Rao, C V S; Satyanarayana, S

    2005-01-01

    The weight-loss efficacy of a novel, water-soluble, calcium-potassium salt of (-)-hydroxycitric acid (HCA-SX) was re-examined in 90 obese subjects (BMI: 30-50.8 kg/m2). We combined data from two previously reported randomized, double-blind, placebo-controlled clinical studies in order to achieve a better statistical evaluation based on a larger population. This re-examination of data also allowed us to reflect more intensely on various aspects of weight loss studies. Subjects were randomly divided into three groups: group A received a daily dose of HCA-SX 4, 667 mg (providing 2,800 mg HCA per day); group B was given a daily dose of a combination of HCA-SX 4,667 mg, niacin-bound chromium (NBC) 4 mg (providing 400 microg elemental chromium), and Gymnema sylvestre extract (GSE) 400 mg (providing 100 mg gymnemic acid); and group C received a placebo in three equally divided doses 30-60 min before each meal. All subjects were provided a 2,000 kcal diet/day and participated in a supervised walking program for 30 min/day, 5 days/week. Eighty-two subjects completed the study. At the end of 8 weeks, in group A, both body weight and BMI decreased by 5.4%, low-density lipoprotein and triglycerides levels were reduced by 12.9% and 6.9%, respectively, while high-density lipoprotein levels increased by 8.9%, serum leptin levels decreased by 38%, serotonin levels increased by 44.5% and urinary excretion of fat metabolites increased by 32-109%. Group B demonstrated similar beneficial changes, but generally to a greater extent. No significant adverse effects were observed. The combined results confirm that HCA-SX and, to a greater degree, the combination of HCA-SX plus NBC and GSE reduce body weight and BMI, suppress appetite, improve blood lipid profiles, increase serum leptin and serotonin levels and increase fat oxidation more than placebo. We conclude that dosage levels, timing of administration, subject compliance and bioavailability of HCA-SX significantly affect results and

  7. Calcium and potassium content in beef: influences on tenderness and associations with molecular markers in Nellore cattle.

    PubMed

    Tizioto, Polyana Cristine; Gromboni, Caio Fernando; Nogueira, Ana Rita de Araujo; de Souza, Marcela Maria; Mudadu, Maurício de Alvarenga; Tholon, Patricia; Rosa, Antônio do Nascimento; Tullio, Rymer Ramiz; Medeiros, Sérgio Raposo; Nassu, Renata Tieko; Regitano, Luciana Correia de Almeida

    2014-01-01

    Calcium (Ca) and potassium (K) are essential nutrients in animal nutrition. Furthermore, the Ca content can influence meat tenderness because it is needed by the proteolytic system of calpains and calpastatins, major factors in postmortem tenderization of skeletal muscles. K content, which is needed for muscle contraction, can also affect meat tenderness. This study showed that K positively affects the Warner-Bratzler shear force (WBSF), measured at 14days of meat aging, which means that higher levels of K are related to lower meat tenderness. Additionally, a significant effect (P≤0.015) of a SNP in the calcium-activated neutral protease 1 (CAPN1) gene on Ca content was observed. Metal content in beef can affect not only nutritional values but also meat quality traits. Part of this effect may be related to variation in specific genes. PMID:23995697

  8. New Precision Mass Measurements of Neutron-Rich Calcium and Potassium Isotopes and Three-Nucleon Forces

    SciTech Connect

    Gallant, A. T.; Bale, J. C.; Chowdhury, U.; Lennarz, A.; Simon, V. V.; Holt, J. D.; Mané, E.; Menéndez, J.; Simon, M. C.; Andreoiu, C.; Delheij, P.; Pearson, M.; Savajols, H.; Schwenk, A.

    2012-01-01

    We present precision Penning trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system, the mass of 51K was measured for the first time, and the precision of the 51,52Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, 52Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces.

  9. Effect of Trisetum flavescens P.B. on calcium and phosphorus metabolism in rats. Experimental evidence for the principle actively affecting phospho-calcium homeostasis.

    PubMed

    Wilczek, H; Ston, J; Pacovský, V

    1978-01-01

    After reviewing the literature on the vitamin D3-like activity of certain plants [Solanum malacoxylon, Cestrum diurnum and Trisetum flavescens], the authors present results of experiments in which dried Trisetum flavescens was administered perorally to rats. The addition of 2.5% dried Trisetum flavescens to the standard laboratory diet caused a drop in blood phosphate levels and a simultaneous marked increase in the calcium and phosphorus content of bones of the experimental animals. The mechanism of the action of Trisetum flavescens on phosphocalcium metabolism is discussed. PMID:150612

  10. Changes in serum calcium, phosphorus, and magnesium levels in captive ruminants affected by diet manipulation.

    PubMed

    Miller, Michele; Weber, Martha; Valdes, Eduardo V; Neiffer, Donald; Fontenot, Diedre; Fleming, Gregory; Stetter, Mark

    2010-09-01

    A combination of low serum calcium (Ca), high serum phosphorus (P), and low serum magnesium (Mg) has been observed in individual captive ruminants, primarily affecting kudu (Tragelaphus strepsiceros), eland (Taurotragus oryx), nyala (Tragelaphus angasii), bongo (Tragelaphus eurycerus), and giraffe (Giraffa camelopardalis). These mineral abnormalities have been associated with chronic laminitis, acute tetany, seizures, and death. Underlying rumen disease secondary to feeding highly fermentable carbohydrates was suspected to be contributing to the mineral deficiencies, and diet changes that decreased the amount of starch fed were implemented in 2003. Serum chemistry values from before and after the diet change were compared. The most notable improvement after the diet change was a decrease in mean serum P. Statistically significant decreases in mean serum P were observed for the kudu (102.1-66.4 ppm), eland (73.3-58.4 ppm), and bongo (92.1-64.2 ppm; P < 0.05). Although not statistically significant, mean serum P levels also decreased for nyala (99.3-86.8 ppm) and giraffe (82.6-68.7 ppm). Significant increases in mean serum Mg were also observed for kudu (15.9-17.9 ppm) and eland (17.1-19.7 ppm). A trend toward increased serum Mg was also observed in nyala, bongo, and giraffe after the diet change. No significant changes in mean serum Ca were observed in any of the five species evaluated, and Ca was within normal ranges for domestic ruminants. The mean Ca:P ratio increased to greater than one in every species after the diet change, with kudu, eland, and bongo showing a statistically significant change. The results of this study indicate that the diet change had a generally positive effect on serum P and Mg levels. PMID:20945636

  11. Effects of natural organic matter on calcium and phosphorus co-precipitation.

    PubMed

    Sindelar, Hugo R; Brown, Mark T; Boyer, Treavor H

    2015-11-01

    Phosphorus (P), calcium (Ca) and natural organic matter (NOM) naturally occur in all aquatic ecosystems. However, excessive P loads can cause eutrophic or hyper-eutrophic conditions in these waters. As a result, P regulation is important for these impaired aquatic systems, and Ca-P co-precipitation is a vital mechanism of natural P removal in many alkaline systems, such as the Florida Everglades. The interaction of P, Ca, and NOM is also an important factor in lime softening and corrosion control, both critical processes of drinking water treatment. Determining the role of NOM in Ca-P co-precipitation is important for identifying mechanisms that may limit P removal in both natural and engineered systems. The main goal of this research is to assess the role of NOM in inhibiting Ca and P co-precipitation by: (1) measuring how Ca, NOM, and P concentrations affect NOM's potential inhibition of co-precipitation; (2) determining the effect of pH; and (3) evaluating the precipitated solids. Results showed that Ca-P co-precipitation occurs at pH 9.5 in the presence of high natural organic matter (NOM) (≈30 mg L(-1)). The supersaturation of calcite overcomes the inhibitory effect of NOM seen at lower pH values. Higher initial P concentrations lead to both higher P precipitation rates and densities of P on the calcite surface. The maximum surface density of co-precipitated P on the precipitated calcite surface increases with increasing NOM levels, suggesting that NOM does prevent the co-precipitation of Ca and P. PMID:26079982

  12. Potassium Bicarbonate Supplementation Lowers Bone Turnover and Calcium Excretion in Older Men and Women: A Randomized Dose-Finding Trial

    PubMed Central

    Dawson-Hughes, Bess; Harris, Susan S; Palermo, Nancy J; Gilhooly, Cheryl H; Shea, M Kyla; Fielding, Roger A; Ceglia, Lisa

    2016-01-01

    The acid load accompanying modern diets may have adverse effects on bone and muscle metabolism. Treatment with alkaline salts of potassium can neutralize the acid load, but the optimal amount of alkali is not established. Our objective was to determine the effectiveness of two doses of potassium bicarbonate (KHCO3) compared with placebo on biochemical markers of bone turnover, and calcium and nitrogen (N) excretion. In this double-blind, randomized, placebo-controlled study, 244 men and women age 50 years and older were randomized to placebo or 1 mmol/kg or 1.5 mmol/kg of KHCO3 daily for 3 months; 233 completed the study. The primary outcomes were changes in 24-hour urinary N-telopeptide (NTX) and N; changes in these measures were compared across the treatment groups. Exploratory outcomes included 24-hour urinary calcium excretion, serum amino-terminal propeptide of type I procollagen (P1NP), and muscle strength and function assessments. The median administered doses in the low-dose and high-dose groups were 81 mmol/day and 122 mmol/day, respectively. When compared with placebo, urinary NTX declined significantly in the low-dose group (p =0.012, after adjustment for baseline NTX, gender, and change in urine creatinine) and serum P1NP declined significantly in the low-dose group (p =0.004, adjusted for baseline P1NP and gender). Urinary calcium declined significantly in both KHCO3 groups versus placebo (p < 0.001, adjusted for baseline urinary calcium, gender, and changes in urine creatinine and calcium intake). There was no significant effect of either dose of KHCO3 on urinary N excretion or on the physical strength and function measures. KHCO3 has favorable effects on bone turnover and calcium excretion and the lower dose appears to be the more effective dose. Long-term trials to assess the effect of alkali on bone mass and fracture risk are needed. PMID:25990255

  13. Model Vestibular Nuclei Neurons Can Exhibit a Boosting Nonlinearity Due to an Adaptation Current Regulated by Spike-Triggered Calcium and Calcium-Activated Potassium Channels

    PubMed Central

    Schneider, Adam D.

    2016-01-01

    In vitro studies have previously found a class of vestibular nuclei neurons to exhibit a bidirectional afterhyperpolarization (AHP) in their membrane potential, due to calcium and calcium-activated potassium conductances. More recently in vivo studies of such vestibular neurons were found to exhibit a boosting nonlinearity in their input-output tuning curves. In this paper, a Hodgkin-Huxley (HH) type neuron model, originally developed to reproduce the in vitro AHP, is shown to produce a boosting nonlinearity similar to that seen in vivo for increased the calcium conductance. Indicative of a bifurcation, the HH model is reduced to a generalized integrate-and-fire (IF) model that preserves the bifurcation structure and boosting nonliearity. By then projecting the neuron model’s phase space trajectories into 2D, the underlying geometric mechanism relating the AHP and boosting nonlinearity is revealed. Further simplifications and approximations are made to derive analytic expressions for the steady steady state firing rate as a function of bias current, μ, as well as the gain (i.e. its slope) and the position of its peak at μ = μ*. Finally, although the boosting nonlinearity has not yet been experimentally observed in vitro, testable predictions indicate how it might be found. PMID:27427914

  14. Urinary Magnesium, Calcium, and Phosphorus to Creatinine Ratios of Healthy Elementary School Lebanese Children.

    PubMed

    El Mallah, Carla; Ghattas, Hala; Shatila, Dareen; Francis, Sirine; Merhi, Karina; Hlais, Sani; Toufeili, Imad; Obeid, Omar

    2016-04-01

    Urinary magnesium (Mg), calcium (Ca), and phosphorus (P) excretions are known to vary greatly between populations due to dietary habits, physical activity, mineral content of water, climate, genetics, and race. Thus, it is essential to determine the normal values in each population in order to assess the status as well as to diagnose any possible abnormality of metabolisms especially hypercalciuria. A study was conducted to determine urinary Mg/creatinine (Cr), Ca/Cr, and P/Cr ratios of healthy Lebanese elementary schoolchildren. Using a multi-stage cluster sampling at district, school, and class levels, a sample of 1403 children (781 boys and 622 girls), from 26 different schools, was selected. Non-fasting morning urine samples and anthropometric data were collected and analyzed. The mean Mg/Cr, Ca/Cr, and P/Cr ratios were 0.122 ± 0.075 mg/mg (0.568 ± 0.348 mM/mM), 0.084 ± 0.101 mg/mg (0.237 ± 0.286 mM/mM), and 0.692 ± 0.417 mg/mg (2.527 ± 1.524 mM/mM), respectively, with no significant difference between boys and girls (P = 0.706, 0.161, and 0.604; respectively). The 95th percentile of Mg/Cr, Ca/Cr, and P/Cr ratios fluctuated with age, showing a sharp decrease in Ca/Cr and P/Cr at the age of 10. The mean Mg/Cr, Ca/Cr, and P/Cr ratios were comparable to those of similar age groups in other populations. The 95th percentiles of Mg/Cr, Ca/Cr, and P/Cr ratios were 0.26 mg/mg (1.23 mM/mM), 0.27 mg/mg (0.76 mM/mM), and 1.48 mg/mg (5.40 mM/mM), respectively. These values can be used as cutoffs to detect abnormalities in these three minerals' metabolisms among healthy Lebanese children. PMID:26306589

  15. Conservation of body calcium by increased dietary intake of potassium: A potential measure to reduce the osteoporosis process during prolonged exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Nechay, Bohdan R.

    1989-01-01

    During the 1988 NASA Summer Faculty Fellowship Program, it was proposed that the loss of skeletal calcium upon prolonged exposure to microgravity could be explained, in part, by a renal maladjustment characterized by an increased urinary excretion of calcium. It was theorized that because the conservation of body fluids and electrolytes depends upon the energy of adenosine triphosphate and enzymes that control the use of its energy for renal ion transport, an induction of renal sodium and potassium-dependent adenosine triphosphatase (Na + K ATPase) by oral loading with potassium would increase the reabsorption of sodium directly and that of calcium indirectly, leading to improved hydration and to reduced calcium loss. Preliminary studies showed the following. Rats drinking water containing 0.2 M potassium chloride for six to 13 days excreted in urine 22 muEq of calcium and 135 muEq of sodium per 100 grams of body weight per day. The corresponding values for control rats drinking tap water were 43 muEq and 269 muEq respectively. Renal Na + K ATPase activity in potassium loaded rats was higher than in controls. Thus, oral potassium loading resulted in increased Na + K ATPase activity and diminished urinary excretion of calcium and of sodium as predicted by the hypothesis. An extension of these studies to humans has the potential of resulting in development of harmless, non-invasive, drug-free, convenient measures to reduce bone loss and other electrolyte and fluid problems in space travelers exposed to prolonged periods of microgravity.

  16. Effect of gutta-percha solvents at different temperatures on the calcium, phosphorus and magnesium levels of human root dentin.

    PubMed

    Doğan, H; Taşman, F; Cehreli, Z C

    2001-08-01

    The aim of this study in vitro investigation was to evaluate the alterations caused by warmed gutta-percha solvents on the calcium, phosphorus and magnesium levels of root dentin. Extracted human anterior teeth, whose crowns and apical root thirds had been removed were used as root dentin specimens. The roots were sectioned longitudinally into two segments, cleaned and dried. Segments were divided into 12 groups (n=12). In 6 groups, the specimens received treatment with the following solvents at room temperature (22 degrees C): Chloroform, xylene, eucalyptol, orange oil, halothane and saline (control). Within each group, the specimens were further subgrouped into two to be incubated (100% humidity at 37 degrees C) for 5 and 10 min, respectively, following treatment with the solvents. The remaining six groups were treated with the same solvents which had been previously warmed to body temperature (37 degrees C) and received the same experimental procedures. The levels of calcium, phosphorus and magnesium in each specimen were analysed using energy dispersive spectrometric microanalysis. Statistical analysis of the readings showed that neither warming of the solvents nor prolonged incubation (treatment) time was capable of altering the histochemical composition of cut root dentin surfaces. PMID:11556962

  17. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    USGS Publications Warehouse

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  18. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  19. The Abnormal Phenotypes of Cartilage and Bone in Calcium-Sensing Receptor Deficient Mice Are Dependent on the Actions of Calcium, Phosphorus, and PTH

    PubMed Central

    Tao, Chunxiang; Ding, Guoxian; Karaplis, Andrew; Brown, Edward; Goltzman, David; Miao, Dengshun

    2011-01-01

    Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)2D3 or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR–deficient (CaR−/−) mice to those of double homozygous CaR– and 1α(OH)ase–deficient [CaR−/−1α(OH)ase−/−] mice or those of double homozygous CaR– and PTH–deficient [CaR−/−PTH−/−] mice at 2 weeks of age. Compared to wild-type littermates, CaR−/− mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR−/− mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR−/− mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR−/− mice and that defects in endochondral bone formation in CaR−/− mice result from effects of the

  20. The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH.

    PubMed

    Liu, Jingning; Lv, Fangqiao; Sun, Wen; Tao, Chunxiang; Ding, Guoxian; Karaplis, Andrew; Brown, Edward; Goltzman, David; Miao, Dengshun

    2011-09-01

    Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)(2)D(3) or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR-deficient (CaR(-/-)) mice to those of double homozygous CaR- and 1α(OH)ase-deficient [CaR(-/-)1α(OH)ase(-/-)] mice or those of double homozygous CaR- and PTH-deficient [CaR(-/-)PTH(-/-)] mice at 2 weeks of age. Compared to wild-type littermates, CaR(-/-) mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR(-/-) mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR(-/-) mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR(-/-) mice and that defects in endochondral bone formation in CaR(-/-) mice result from effects of the marked elevation in serum

  1. Use of Calcium, Potassium, and Sodium Lactates to Control Germination and Outgrowth of Clostridium perfringens Spores during Chilling of Injected Pork

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of Clostridium perfringens spore germination and outgrowth by calcium (CaL), potassium (KL) or sodium (NaL) lactate in injected pork during abusive chilling regimes was investigated. Lactates (Ca, K, or Na) were incorporated into injected pork at various concentrations (1.0, 2.0, 3.0 and...

  2. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    USGS Publications Warehouse

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  3. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF).

    PubMed

    Smith, Kevin T; Balouet, Jean Christophe; Shortle, Walter C; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A; Burken, Joel G

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations. PMID:24034830

  4. Observation of Doubly-Excited States in CALCIUM(17+) and Inner Shell-Photoexcitations in Argon, Potassium and Rubidium

    NASA Astrophysics Data System (ADS)

    Suleiman, Jamal A.

    High resolution X-ray spectroscopy is used to study (A) simultaneous electron-excitation and electron capture in the collision of calcium ions with argon atoms; these studies are important because of the close relationship to dielectronic recombination (DR) which plays an important role in energy-transfer processes in astrophysical and laboratory plasmas; (B) single and double inner-shell photoexcitations of potassium, rubidium and argon; these measurements can lead to very precise tests of electron correlation effects, such as Breit interaction, and QED effects in many electron systems. In the first case, Ca^{18+ } and Ca^{19+} ions from the ATLAS accelerator at Argonne National Laboratory, at energies near 100 MeV, were directed to an argon gas target. X-ray spectra near 3.9 KeV were collected using a high-resolution X-ray spectrometer. We have resolved transitions from doubly-excited 1s2lnl^ ' states to singly-excited 1s ^2nl^' states in lithium -like calcium. Comparison of the experimental wavelengths and intensities with relativistic Hartree-Fock calculations shows very good agreement. In the second case, we have obtained high spectral resolution absorption spectra of potassium near K-, KN -, and KM-edges, rubidium near K- and KO edges, and argon near K-, KM-, and KL-edges. The measurements were made at the X-24A and X-23A2 beamlines at the National Synchrotron Light Source at Brookhaven National Laboratory. Preliminary identifications of most the peaks are made using Dirac Hartree-Fock calculations. Comparisons of the experimental wavelengths and intensities with relativistic Hartree-Fock calculations show very good agreement.

  5. Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains.

    PubMed

    Kaufmann, Walter A; Ferraguti, Francesco; Fukazawa, Yugo; Kasugai, Yu; Shigemoto, Ryuichi; Laake, Petter; Sexton, Joseph A; Ruth, Peter; Wietzorrek, Georg; Knaus, Hans-Günther; Storm, Johan F; Ottersen, Ole Petter

    2009-07-10

    Calcium-activated potassium channels have been shown to be critically involved in neuronal function, but an elucidation of their detailed roles awaits identification of the microdomains where they are located. This study was undertaken to unravel the precise subcellular distribution of the large-conductance calcium-activated potassium channels (called BK, KCa1.1, or Slo1) in the somatodendritic compartment of cerebellar Purkinje cells by means of postembedding immunogold cytochemistry and SDS-digested freeze-fracture replica labeling (SDS-FRL). We found BK channels to be unevenly distributed over the Purkinje cell plasma membrane. At distal dendritic compartments, BK channels were scattered over the plasma membrane of dendritic shafts and spines but absent from postsynaptic densities. At the soma and proximal dendrites, BK channels formed two distinct pools. One pool was scattered over the plasma membrane, whereas the other pool was clustered in plasma membrane domains overlying subsurface cisterns. The labeling density ratio of clustered to scattered channels was about 60:1, established in SDS-FRL. Subsurface cisterns, also called hypolemmal cisterns, are subcompartments of the endoplasmic reticulum likely representing calciosomes that unload and refill Ca2+ independently. Purkinje cell subsurface cisterns are enriched in inositol 1,4,5-triphosphate receptors that mediate the effects of several neurotransmitters, hormones, and growth factors by releasing Ca2+ into the cytosol, generating local Ca2+ sparks. Such increases in cytosolic [Ca2+] may be sufficient for BK channel activation. Clustered BK channels in the plasma membrane may thus participate in building a functional unit (plasmerosome) with the underlying calciosome that contributes significantly to local signaling in Purkinje cells. PMID:19412945

  6. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    PubMed

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. PMID:25388287

  7. Multiparametric Flow System for the Automated Determination of Sodium, Potassium, Calcium, and Magnesium in Large-Volume Parenteral Solutions and Concentrated Hemodialysis Solutions

    PubMed Central

    Pistón, Mariela; Dol, Isabel

    2006-01-01

    A multiparametric flow system based on multicommutation and binary sampling has been designed for the automated determination of sodium, potassium, calcium, and magnesium in large-volume parenteral solutions and hemodialysis concentrated solutions. The goal was to obtain a computer-controlled system capable of determining the four metals without extensive modifications. The system involved the use of five solenoid valves under software control, allowing the establishment of the appropriate flow conditions for each analyte, that is, sample size, dilution, reagent addition, and so forth. Detection was carried out by either flame atomic emission spectrometry (sodium, potassium) or flame atomic absorption spectrometry (calcium, magnesium). The influence of several operating parameters was studied. Validation was carried out by analyzing artificial samples. Figures of merit obtained include linearity, accuracy, precision, and sampling frequency. Linearity was satisfactory: sodium, r 2 >0.999 ( 0.5 – 3.5 g/L), potassium, r 2 >0.996 (50–150 mg/L), calcium, r 2 >0.999 (30–120 mg/L), and magnesium, r 2 >0.999 (20–40 mg/L). Precision ( s r , %, n=5 ) was better than 2.1 %, and accuracy (evaluated through recovery assays) was in the range of 99.8 %– 101.0 % (sodium), 100.8 – 102.5 % (potassium), 97.3 %– 101.3 % (calcium), and 97.1 %– 99.8 % (magnesium). Sampling frequencies ( h −1 ) were 70 (sodium), 75 (potassium), 70 (calcium), and 58 (magnesium). According to the results obtained, the use of an automated multiparametric system based on multicommutation offers several advantages for the quality control of large-volume parenteral solutions and hemodialysis concentrated solutions. PMID:17671619

  8. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium, phosphorus, copper, iron, manganese and zinc uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of calcium (Ca) and phosphorus (P). In 2010, over 10 milli...

  9. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. PMID:26901743

  10. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy

    PubMed Central

    Diness, Jonas G.; Bentzen, Bo H.; Sørensen, Ulrik S.

    2015-01-01

    Abstract: Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle. PMID:25830485

  11. Diffusion of sodium, potassium, calcium, manganese, and radon in tuff and clinoptilolite under leaching

    NASA Astrophysics Data System (ADS)

    Dikii, N. P.; Dovbnya, A. N.; Lyashko, Yu. V.; Medvedev, D. V.; Medvedeva, E. P.; Uvarov, V. L.; Achkasov, K. V.

    2011-07-01

    Nuclear physics methods are used to determine the diffusion coefficients of Na, Ca, Mn, K, and 222Rn in clinoptilolite (Sokirnitsa occurrence, Ukraine) and in natural tuff (Yucca Mountain, Nevada, United States) and in tuff irradiated by γ-quanta ( E max = 23 MeV) to a dose of 107 Gy at a leaching temperature of 37°C. The diffusion coefficients of sodium and potassium in clinoptilolite are found to differ considerably: 4 × 10-17 and 2 × 10-20 m2/s, respectively. This indicates the influence of aquacomplexes on the cation transfer. The diffusion coefficient of radon in these materials is determined: in clinoptilolite it equals 2.5 × 10-12 m2/s.

  12. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    PubMed

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  13. Potassium barium hexacyanoferrate - A potential cathode material for rechargeable calcium ion batteries

    NASA Astrophysics Data System (ADS)

    Padigi, Prasanna; Goncher, Gary; Evans, David; Solanki, Raj

    2015-01-01

    Potassium barium hexacyanoferrate (K2BaFe(CN)6) was investigated as a cathode material for reversible Ca2+ ion insertion/extraction type rechargeable battery using non-aqueous electrolytes. The electrochemical performance of K2BaFe(CN)6was evaluated using cyclic voltammetry and galvanic cycling at ambient temperature. It is shown that addition of water led to significant enhancement in intercalation and de-intercalation of Ca2+ ions, leading to improved charge/discharge capacity. The enhancement in performance is attributed to formation of solvation spheres around the intercalating Ca2+ ions which provide screening from the electrostatic charges of the BaFe(CN)6 lattice. A reversible capacity of 55.8 mA hr g-1 and a coulombic efficiency of 93.8% was demonstrated at the end of 30 charge/discharge cycles.

  14. Calcium and bones

    MedlinePlus

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  15. Differential effect of calcium-activated potassium and chloride channels on rat basilar artery vasomotion.

    PubMed

    Li, Li; Wang, Rui; Ma, Ke-tao; Li, Xin-zhi; Zhang, Chuan-lin; Liu, Wei-dong; Zhao, Lei; Si, Jun-qiang

    2014-08-01

    Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P<0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic contractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 18β-GA, TEA or in Ca(2+)-free medium. Nifedipine, NFA, 18β-GA or Ca(2+)-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results suggest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca(2+)-activated Cl(-) channels (CaCCs) currents and K(Ca) currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca(2+) channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium

  16. Involvements of calcium channel and potassium channel in Danshen and Gegen decoction induced vasodilation in porcine coronary LAD artery.

    PubMed

    Hu, Fan; Koon, Chi Man; Chan, Judy Yuet Wa; Lau, Kit Man; Kwan, Y W; Fung, Kwok Pui

    2012-09-15

    Danshen (Salviae Miltiorrhizae Radix) and Gegen (Puerariae Lobatae Radix) have been widely used in treating cardiovascular diseases for thousands of years in China. The present study was carried out to evaluate the effects of a Danshen and Gegen decoction (DG) on the vascular reactivity of a porcine isolated coronary artery and the underlying mechanisms involved. Porcine coronary rings were precontracted with 15 nM U46619. The involvement of endothelium-dependent mechanisms was explored by removing the endothelium; the involvement of potassium channels was investigated by the pretreatment of the artery rings with various blockers, and the involvement of the calcium channels was investigated by incubating the artery rings with Ca²⁺-free buffer and priming them with high [K⁺] prior to adding CaCl₂ to elicit contraction. The involvement of Ca²⁺ sensitization was explored by evaluating the Rho-activity expression. The results revealed that DG elicited a concentration-dependent relaxation on a U46619-precontracted coronary artery ring. These relaxation responses were not altered by the pretreatment of inhibitors of endothelium-related dilator synthases, cGMP and cAMP pathway inhibitors, potassium channel (BK(Ca), SK(Ca), K(V) and K(ATP)) blockers and endothelium removal. The K(IR) channel blocker BaCl₂ only slightly attenuated the DG-induced relaxation. However, the Ca²⁺-induced artery contraction was inhibited by DG. Additionally, the expression of the phosphorylated myosin light chain was inhibited by DG whereas the activity of RhoA was not affected. Therefore, DG could be a useful cardioprotective agent for vasodilation in patients who have hypertension. PMID:22889578

  17. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  18. [Effects of weightlessness on phosphorus and calcium metabolism and bone remodeling].

    PubMed

    Alexandre, C; Chappard, D; Vico, L; Minaire, P; Riffat, G

    1986-05-17

    Weightlessness results in negative calcium balance which can only reflect a redistribution of calcium in the body: the loss of calcium in the faeces and/or urine is constant, but an increase in urinary hydroxyproline indicating bone collagen destruction is not always detectable; moreover, a slowing down of collagen maturation may be suspected. Bone analysis by histomorphometry in animals and by indirect, non-invasive methods in man shows a decrease in bone mass. However, this bone tissue atrophy might only reflect excessive ageing of the bone during weightlessness, as suggested by slow bone formation and lack of variation in bone resorption. Since the experimental results obtained in men and animals during simulated weightlessness on earth are not strictly identical with those observed in space- flights, their validity may be questioned. Additional studies (notably histomorphometric studies) are therefore required for a better knowledge, as well as prevention, of the problems raised by human life in space. PMID:2940573

  19. The effects of bepridil, compared with calcium-channel inhibitors and calmodulin antagonists on both spontaneous activity and contractions induced by potassium or phenylephrine in rat portal vein.

    PubMed

    Campbell, J K; Winslow, E; Marshall, R J

    1986-12-16

    Bepridil is known to block calcium channels in some vascular tissues. Recent work has shown that bepridil also antagonises calmodulin. The present study attempted to more fully characterize the vasodilator actions of bepridil by comparing it with the known calcium channel blocking drugs, nifedipine, diltiazem, verapamil and flunarizine, the calmodulin inhibitors, trifluoperazine and W7 and propylmethylenedioxyindene, which is thought to act intracellularly, on rat portal vein. The relative activities of the test drugs were compared on spontaneous activity and on all components of the contractile responses to potassium and phenylephrine. Bepridil inhibited all components of the potassium and phenylephrine responses equally, actions similar to those of the intracellular acting drugs. The exception to this was trifluoperazine which also exerted alpha-adrenoceptor blocking actions. In contrast the calcium channel blocking drugs, with the exception of verapamil, inhibited the tonic component of both spasmogen responses more than the phasic component. Bepridil like the intracellular acting drugs, but unlike the calcium channel blockers, markedly increased the frequency of spontaneous contractions whilst reducing amplitude. It is concluded that the profile of bepridil on rat portal vein more closely resembles that of intracellularly acting drugs than that of classical calcium channel inhibitors. PMID:3493163

  20. Sequential acquisition of cacophony calcium currents, sodium channels and voltage-dependent potassium currents affects spike shape and dendrite growth during postembryonic maturation of an identified Drosophila motoneuron

    PubMed Central

    Ryglewski, Stefanie; Kilo, Lukas; Duch, Carsten

    2015-01-01

    During metamorphosis the CNS undergoes profound changes to accommodate the switch from larval to adult behaviors. In Drosophila and other holometabolous insects, adult neurons differentiate either from respecified larval neurons, newly born neurons, or are born embryonically but remain developmentally arrested until differentiation during pupal life. This study addresses the latter in the identified Drosophila flight motoneuron 5. In situ patch-clamp recordings, intracellular dye fills and immunocytochemistry address the interplay between dendritic shape, excitability and ionic current development. During pupal life, changes in excitability and spike shape correspond to a stereotyped, progressive appearance of voltage-gated ion channels. High-voltage-activated calcium current is the first current to appear at pupal stage P4, prior to the onset of dendrite growth. This is followed by voltage-gated sodium as well as transient potassium channel expression, when first dendrites grow, and sodium-dependent action potentials can be evoked by somatic current injection. Sustained potassium current appears later than transient potassium current. During the early stages of rapid dendritic growth, sodium-dependent action potentials are broadened by a calcium component. Narrowing of spike shape coincides with sequential increases in transient and sustained potassium currents during stages when dendritic growth ceases. Targeted RNAi knockdown of pupal calcium current significantly reduces dendritic growth. These data indicate that the stereotyped sequential acquisition of different voltage-gated ion channels affects spike shape and excitability such that activity-dependent calcium influx serves as a partner of genetic programs during critical stages of motoneuron dendrite growth. PMID:24620836

  1. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth.

    PubMed

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernandez, A

    2008-07-01

    A quantitative investigation on the individual effects of sodium (NaCl), potassium (KCl), calcium (CaCl2), and magnesium (MgCl2) chloride salts against Lactobacillus pentosus and Saccharomyces cerevisiae, two representative microorganisms of table olives and other fermented vegetables, was carried out. In order to assess their potential activities, both the kinetic growth parameters and dose-response profiles in synthetic media (deMan Rogosa Sharpe broth medium and yeast-malt-peptone-glucose broth medium, respectively) were obtained and analyzed. Microbial growth was monitored via optical density measurements as a function of contact time in the presence of progressive chloride salt concentrations. Relative maximum specific growth rate and lag-phase period were modeled as a function of the chloride salt concentrations. Moreover, for each salt and microorganism tested, the noninhibitory concentrations and the MICs were estimated and compared. All chloride salts exerted a significant antimicrobial effect on the growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. Microbial susceptibility and resistance were found to be nonlinearly dose related. PMID:18680941

  2. Growth-inhibiting extracellular matrix proteins also inhibit electrical activity by reducing calcium and increasing potassium conductances.

    PubMed

    Vargas, J; De-Miguel, F F

    2009-01-23

    Inhibitionof neurite sprouting and electrical activity by extracellular matrix (ECM) glycoproteins was studied during neurite regeneration by using anterior pagoda (AP) neurons of the leech. Adult isolated neurons were plated in culture inside ganglion capsules, which among many ECM proteins, contain a group of inhibitory peanut lectin- (PNA) binding glycoproteins. These proteins inhibit neurite production and contribute to the formation of a bipolar outgrowth pattern by AP neurons. Addition of PNA lectin to the culture medium to block the inhibitory effects of ECM glycoproteins induced an increase of neurite sprouting, the loss of the bipolar pattern, and also an increase in the amplitude and duration of action potentials evoked by intracellular current injection. PNA lectin had independent effects on neurite sprouting and electrical activity, since there was no correlation between the total neurite length and the amplitude of the action potentials. Moreover, action potentials were increased by the presence of PNA lectin even in neurons that did not grow. The changes induced by PNA lectin on the active conductances underlying the action potentials were estimated by quantitative model simulations. We predict that the increases in the amplitude and duration of the action potential induced by PNA lectin were due to an increase in a calcium conductance and a reduction in the delayed rectifier potassium conductance. Our results suggest that inhibitory ECM glycoproteins may use independent signaling pathways to inhibit neurite sprouting and electrical activity. These proteins affect the action potential by changing the proportion of inward and outward active conductances. PMID:18976697

  3. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.

    PubMed

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-08-15

    This study examined the stabilization and solidification (S/S) of mercury (Hg)-contaminated waste ash generated from an industrial waste incinerator using chemically bonded phosphate ceramic (CBPC) technology. A magnesium potassium phosphate (MKP; MgKPO4 · 6H2O) ceramic, fabricated from MgO and KH2PO4, and a calcium sodium phosphate (CNP; CaNaPO4) ceramic, fabricated from CaO and Na2HPO4, were used as solidification binders in the CBPC process, and Na2S or FeS was added to each solidification binder to stabilize the Hg-contaminated waste ash. The S/S processes were conducted under various operating conditions (based on the solidification binder and stabilization reagent, stabilization reagent dosage, and waste loading ratio), and the performance characteristics of the S/S sample under each operating condition were compared, including the Hg leaching value and compressive strength. The Hg leaching value of untreated Hg-contaminated waste ash was 231.3 μg/L, whereas the S/S samples treated using the MKP and CNP processes exhibited Hg leaching values below the universal treatment standard (UTS) limit (25 μg/L). Although the compressive strengths of the S/S samples decreased as the sulfide dosage and waste loading ratio were increased, most of the S/S samples fabricated by the MKP and CNP processes exhibited good mechanical properties. PMID:24997263

  4. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury.

    PubMed

    Sevelsted Møller, Linda; Fialla, Annette Dam; Schierwagen, Robert; Biagini, Matteo; Liedtke, Christian; Laleman, Wim; Klein, Sabine; Reul, Winfried; Koch Hansen, Lars; Rabjerg, Maj; Singh, Vikrant; Surra, Joaquin; Osada, Jesus; Reinehr, Roland; de Muckadell, Ove B Schaffalitzky; Köhler, Ralf; Trebicka, Jonel

    2016-01-01

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury. PMID:27354175

  5. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury

    PubMed Central

    Sevelsted Møller, Linda; Fialla, Annette Dam; Schierwagen, Robert; Biagini, Matteo; Liedtke, Christian; Laleman, Wim; Klein, Sabine; Reul, Winfried; Koch Hansen, Lars; Rabjerg, Maj; Singh, Vikrant; Surra, Joaquin; Osada, Jesus; Reinehr, Roland; de Muckadell, Ove B. Schaffalitzky; Köhler, Ralf; Trebicka, Jonel

    2016-01-01

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury. PMID:27354175

  6. In utero physiology: role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only limited aspects of the transfer of calcium across the placenta to the fetus are known. Clinical outcome studies suggest that bone mineral mass in newborn infants is related to maternal size and dairy intake. Available data indicate that vitamin D deficiency may also limit in utero fetal bone mi...

  7. Stimulation of beta-adrenoceptors inhibits calcium-dependent potassium-channels in mouse macrophages

    SciTech Connect

    Rosati, C.; Hannaert, P.; Dausse, J.P.; Braquet, P.; Garay, R.

    1986-12-01

    K/sup +/ efflux in mouse macrophages exhibited a rate constant (k/sub k/) of 0.67 +/- 0.04 (h)/sup -1/. This was strongly stimulated by increasing concentrations of the Ca/sup 2 +/ ionophore A23187 up to a maximal value of 4.01 +/- 0.25 (h)/sup -1/ with an IC/sub 50/ of 7.6 +/- 1.9 ..mu..M. Similar results were obtained with the Ca/sup 2 +/ ionophore ionomycin. Binding experiments with /sup 3/H-dihydroalprenolol revealed a high density of beta-adrenergic receptors with apparent dissociation constant of 2.03 +/- 0.06 nM. Isoproterenol at a concentration of 10/sup -6/ -10/sup -5/ M induced a two- to threefold stimulation of endogenous levels of cyclic AMP (cAMP). A23187-stimulated K/sup +/ efflux was partially inhibited by (i) stimulation of adenylate cyclase with isoproterenol, forskolin or, PGE/sub 1/; (ii) exogenous cAMP; and (iii) inhibition of phosphodiesterase with MIX (1-methyl-3-isobutylxanthine). Maximal inhibition of K/sup +/ efflux was obtained by simultaneous addition of isoproterenol and MIX. In dose-response curves, the isoproterenol-sensitive K/sup +/ efflux was half-maximally inhibited (IC/sub 50/) with 2-5 x 10/sup -10/ M of isoproterenol concentration. Propranolol was able to completely block the effect of isoproterenol, with an IC/sub 50/ of about 1-2 x 10/sup -7/ M. Isoproterenol and MIX did not inhibit A23187-stimulated K/sup +/ efflux in an incubation medium where NaCl was replaced by sucrose (or choline), suggesting the involvement of an Na/sup +/:Ca/sup 2 +/ exchange mechanism. The results show that stimulation of beta-adrenoceptors in mouse macrophages counter balances the opening of K/sup +/ channels induced by the calcium ionophore A23187. This likely reflects a decrease in cytoslic free calcium content via a cAMP-mediated stimulation of Na/sup +/:Ca/sup 2 +/ exchange.

  8. The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*

    PubMed Central

    Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto

    2013-01-01

    The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca2+ concentration ([Ca2+]i) and was enhanced by elevating [Ca2+]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca2+]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca2+]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF β-receptors and inhibiting the rise in [Ca2+]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca2+-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis. PMID:23609438

  9. Effects of dietary addition of vitamins C and D3 on growth and calcium and phosphorus content of pond-cultured channel catfish

    USGS Publications Warehouse

    Launer, C.A.; Tiemeier, O.W.; Deyoe, C.W.

    1978-01-01

    Fingerling channel catfish, Ictalurus punctatus, were fed one of three diets: one deficient in vitamin C (ascorbic acid), one deficient in vitamin D3 (cholecalciferol), or one containing both vitamins. Semimonthly from May to September and monthly from September to February, calcium and phosphorus were determined in eviscerated bodies and fat-free skeletons by neutron activation analysis. Body weight gains, survival rate, and feed conversion rates were determined for the May to September period. Fish on the three diet regimens showed no significant difference in weight gain, feed conversion, or survival. Interactions between sampling date and diet indicated no correlation between vitamin C or D3 and the calcium and phosphorus in eviscerated bodies and fat-free skeletons of the fish.

  10. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase

    PubMed Central

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria

    2014-01-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. PMID:25080489

  11. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943

    PubMed Central

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C

    2012-01-01

    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687

  12. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels.

    PubMed

    Shipston, Michael J

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  13. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

    PubMed Central

    Shipston, Michael J.

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  14. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    PubMed

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. PMID:26362752

  15. The effects of piracetam and its novel peptide analogue GVS-111 on neuronal voltage-gated calcium and potassium channels.

    PubMed

    Solntseva, E I; Bukanova, J V; Ostrovskaya, R U; Gudasheva, T A; Voronina, T A; Skrebitsky, V G

    1997-07-01

    1. With the use of the two-microelectrode voltage-clamp method, three types of voltage-activated ionic currents were examined in isolated neurons of the snail Helix pomatia: high-threshold Ca2+ current (ICa), high-threshold Ca(2+)-dependent K+ current (IK(Ca)) and high-threshold K+ current independent of Ca2+ (IK(V)). 2. The effect of bath application of the nootropics piracetam and a novel piracetam peptide analog, ethyl ester of N-phenyl-acetyl-L-prolyl-glycine (GVS-111), on these three types of voltage-activated ionic currents was studied. 3. In more than half of the tested cells, ICa was resistant to both piracetam and GVS-111. In the rest of the cells, ICa decreased 19 +/- 7% with 2 mM of piracetam and 39 +/- 14% with 2 microM of GVS-111. 4. IK(V) in almost all cells tested was resistant to piracetam at concentrations up to 2 mM. However, IK(V) in two-thirds of the cells was sensitive to GVS-111, being suppressed 49 +/- 18% with 1 microM GVS-111. 5. IK(Ca) appeared to be the most sensitive current of those studied to both piracetam and GVS-111. Piracetam at 1 mM and GVS-111 at 0.1 microM decreased the amplitude of IK(Ca) in most of the cells examined by 49 +/- 19% and 69 +/- 24%, respectively. 6. The results suggest that piracetam and GVS-111 suppression of voltage-activated calcium and potassium currents of the neuronal membrane may regulate (both up and down) Ca2+ influx into neurons. PMID:9195198

  16. External action of di- and polyamines on maxi calcium-activated potassium channels: an electrophysiological and molecular modeling study.

    PubMed Central

    Weiger, T M; Langer, T; Hermann, A

    1998-01-01

    In this study we compared polyamines to various diamines, and we modeled flexibility as well as hydrophobicity properties of these molecules to examine possible structural differences that could explain their external effects on the channels. The natural polyamines (putrescine, cadaverine, spermidine, spermine) and diamines increasing in CH2 chain length from C2 to C12 were used to probe maxi calcium-activated potassium (BK) channels in GH3 pituitary tumor cells when applied extracellularly. In single-channel recordings we found polyamines as well as diamines up to 1,10-diaminodecane to be ineffective in altering channel current amplitudes or kinetics. In contrast, 1,12-diamino dodecane (1,12-DD) was found to be a reversible blocker, with a blocking site at an electrical distance (z delta) of 0.72 within the channel. It reduced single-channel current amplitude, mean channel open time, and channel open probability. In computer simulations structural data, such as flexibility, hydration, and log D values, were calculated. 1,12-DD showed the largest flexibility of all diamines (minimum N-N distance 9.9 A) combined with a marked hydrophobicity due to a 4-5 A hydrophobic intersegment between hydrophilic ends in the molecule, as confirmed by GRID water probe maps and a log D value of -1.82 at pH 7.2. We propose that the amount of hydration of the molecule, more than its flexibility, constitutes an essential parameter for its ability to act as a channel blocker. PMID:9533685

  17. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    PubMed

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p < 0.05). CNTF-ACM produced a significant increase in BKα1 and BKβ3 expression (p < 0.05) but had no significant effect upon SK2 or SK3 expression (p > 0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons. PMID:27097551

  18. Structural evolution and adhesion of titanium oxide film containing phosphorus and calcium on titanium by anodic oxidation.

    PubMed

    Lin, C S; Chen, M T; Liu, J H

    2008-05-01

    This study investigated the microstructure evolution and defects of the titanium oxide layer containing calcium (Ca) and phosphorus (P) formed by anodic oxidation in a solution containing Ca and P compounds. Results show that the anodic film exhibited a two-layer structure: a pore-containing amorphous titanium oxide layer dispersed with nano-sized crystallites formed prior to sparking, and a porous overlay dotted with craters formed after sparking. Ca and P were predominantly incorporated in the porous overlay, in which the amorphous region contained more Ca and P than the crystalline region regardless of the anodizing voltages. Moreover, the ratio of amorphous to crystalline regions in the porous overlay changed insignificantly with anodizing voltage. Increasing anodizing voltage enhanced the incorporation of Ca and P in the anodic film, but deteriorated the adhesion of the anodic film to the substrate. This deterioration was related to two inherent adhesive weaknesses: the aligned pores in the titanium oxide layer and the craters in the major overlay, signifying that a new anodic oxidation process that can produce high Ca- and P-containing oxide film at relatively-low anodizing voltages, i.e. approximately 200 V, is a necessity. PMID:17688247

  19. Calcium, phosphorus and protein levels as factors in the distribution of the pheasant

    USGS Publications Warehouse

    Dale, F.H.; DeWitt, J.B.

    1958-01-01

    Summary of work on pheasant nutrition conducted since 1949 at the Patuxent Research Refuge. Pheasant chicks fed experimental diets failed to develop normally on protein levels of 15 and 18%. With 22% protein they grew at a reduced rate as compared to those on 28%. Protein level of the reproductive diet was shown to be important; low production of eggs and young resulted from levels below 25%. Calcium was found to be even more critical than protein level for reproduction; birds on a winter diet that furnished 145 mg./kg. per day had poor reproductive success the following spring. About 600 mg./kg. of Ca per day was necessary in the reproduction diet. Birds on an intermediate level of Ca (about 0.5% of diet) showed evidence of cumulative deficiency. It was concluded that pheasants receiving levels of Ca no higher than 0.5% in nature might display 'straggling failure' such as has been observed in several midwestern areas.

  20. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  1. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens.

    PubMed

    Tamim, N M; Angel, R; Christman, M

    2004-08-01

    The effect of Ca and phytase on phytate phosphorus (PP) hydrolysis was studied in vitro and in vivo. In vitro, PP hydrolysis by a 3-phytase and a 6-phytase was studied at pH 2.5 and 6.5 with Ca added at levels equivalent to 0, 0.1, 0.2, 0.4, 0.7, or 0.9% of the diet. Irrespective of enzyme, Ca at a level as low as 0.1% reduced (P < 0.05) PP hydrolysis at pH 6.5. To test these effects in vivo, 22-d-old male broilers were fed 1 of 6 diets (10 replicate pens of 4 birds per diet) for 30 h. The experimental design was a 3 x 2 factorial arrangement of 3 phytase treatments (0, 500 U of phytase A/kg of diet, and 500 U of phytase B/kg of diet) and 2 added Ca levels (0 and 0.5% from CaCO3) to a corn-soy basal diet. Adding Ca to the diet resulted in a reduction (P < 0.05) in ileal PP disappearance from 69.2 to 25.4% when the 0 and 0.5% added Ca diets were fed, respectively, and in apparent ileal Ca and P absorption (46.3 to 33.6% and 67.9 to 29.4% when 0 and 0.5% Ca were added, respectively). Inclusion of a 3-phytase improved (P < 0.05) ileal PP disappearance from 25.4 to 58.9% in diets containing 0 and 0.5% added Ca, but the improvement was less pronounced with a 6-phytase. Apparent ileal Ca absorption was improved (P < 0.05) when Ca, phytase, or both were added to the diet. PMID:15339011

  2. Potassium bicarbonate supplementation lowers bone turnover and calcium excretion in older men and women a randomized dose-finding trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acid load accompanying modern diets may have adverse effects on bone and muscle metabolism. Treatment with alkaline salts of potassium can neutralize the acid load, but the optimal amount of alkali is not established. Our objective was to determine the effectiveness of two doses of potassium bic...

  3. Emergence of Two-Dimensional Massless Dirac Fermions, Chiral Pseudospins, and Berry's Phase in Potassium Doped Few-Layer Black Phosphorus.

    PubMed

    Baik, Seung Su; Kim, Keun Su; Yi, Yeonjin; Choi, Hyoung Joon

    2015-12-01

    Thin flakes of black phosphorus (BP) are a two-dimensional (2D) semiconductor whose energy gap is predicted being sensitive to the number of layers and external perturbations. Very recently, it was found that a simple method of potassium (K) doping on the surface of BP closes its band gap completely, producing a Dirac semimetal state with a linear band dispersion in the armchair direction and a quadratic one in the zigzag direction. Here, based on first-principles density functional calculations, we predict that, beyond the critical K density of the gap closure, 2D massless Dirac Fermions (i.e., Dirac cones) emerge in K-doped few-layer BP, with linear band dispersions in all momentum directions, and the electronic states around Dirac points have chiral pseudospins and Berry's phase. These features are robust with respect to the spin-orbit interaction and may lead to graphene-like electronic transport properties with greater flexibility for potential device applications. PMID:26572058

  4. Seasonal patterns of nitrogen, phosphorus, potassium, calcium and magnesium in the leaves of the Massachusetts cranberry. [Vaccinium macrocarpon

    SciTech Connect

    DeMoranville, C.J.; Deubert, K.H.

    1986-01-01

    Leaf samples from cranberry plants in Wareham, MA, were collected during the 1980-82 growing seasons and analyzed for N, P, K, Ca and Mg. The seasonal patterns which emerged allowed the proposal of normal ranges for the elements and optimum times for sampling. The foliar nutrient levels obtained were compared to those for cranberries grown in other areas as well as to those for crops which are grown under similar conditions.

  5. Role of calcium-activated potassium channels in the regulation of basal and agonist-elevated tones in isolated conduit arteries. Short communication.

    PubMed

    Pataricza, J; Márton, Z; Hegedus, Z; Krassói, Irén; Kun, A; Varró, A; Papp, J Gy

    2004-01-01

    Functional role of calcium-activated potassium (KCa) channels on the basal and agonist-elevated arterial tones was investigated in isolated rabbit aorta, porcine and canine coronary arteries as well as in human internal mammary artery. The vascular tones enhanced by contractile agents were increased further by preincubation of these conduit blood vessels with selective (charybdotoxin or iberiotoxin) or nonselective (tetraethylammonium) inhibitors of KCa channels. The basal tone (without an agonist) was increased only in the canine coronary artery. The results indicate a feed-back regulatory role of KCa channels counteracting the vasospasm of conduit arteries. PMID:16438119

  6. Bone calcium/phosphorus ratio determination using dual energy X-ray method.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2015-05-01

    Non-invasive dual energy methods have been used extensively on osteoporosis diagnosis estimating parameters, such as, Bone Mineral Density (BMD) and Bone Mineral Content (BMC). In this study, an X-ray dual energy method (XRDE) was developed for the estimation of the bone Calcium-to-Phosphorous (Ca/P) mass ratio, as a bone quality index. The optimized irradiation parameters were assessed by performing analytical model simulations. X-ray tube output, filter material and thickness were used as input parameters. A single exposure technique, combined with K-edge filtering, was applied. The optimal X-ray spectra were selected according to the resulted precision and accuracy values. Experimental evaluation was performed on an XRDE system incorporating a Cadmium Telluride (CdTe) photon counting detector and three bone phantoms with different nominal mass Ca/P ratios. Additionally, the phantoms' mass Ca/P ratios were validated with energy-dispersive X-ray spectroscopy (EDX). Simulation results showed that the optimum filter atomic number (Z) ranges between 57 and 70. The optimum spectrum was obtained at 100 kVp, filtered with Cerium (Ce), with a surface density of 0.88 g/cm(2). All Ca/P ratio measurements were found to be accurate to within 1.6% of the nominal values, while the precision ranged between 0.91 and 1.37%. The accuracy and precision values of the proposed non-invasive method contributes to the assessment of the bone quality state through the mass Ca/P ratio determination. PMID:25726476

  7. Effects of sodium bicarbonate and 1,25-dihydroxy-cholecalciferol on calcium and phosphorus balances in the rat

    SciTech Connect

    Goulding, A.; McIntosh, J.; Campbell, D.

    1984-04-01

    Metabolic balance studies were undertaken to determine whether sodium bicarbonate (NaHCO/sub 3/) supplements (4.5 mmol/day) altered 7-day cumulative calcium (Ca) phosphorus (P) balances in growing rats consuming either a basal diet providing 0.6% Ca and 0.3% P, or this diet plus 1,25-dihydroxycholecalciferol (40 ng 1,25(OH)/sub 2/D/sub 3//day). Feeding bicarbonate lowered urinary Ca but raised fecal Ca so that Ca balance became less positive. However, 1,25(OH)/sub 2/D/sub 3/ increased net absorption of Ca and P to the same degree when given to control rats and rats consuming bicarbonate. Nevertheless, bicarbonate-fed rats had lower net Ca absorption than controls, even when treated with high doses of 1,25(OH)/sub 2/D/sub 3/. Changes in net Ca absorption induced by bicarbonate may occur at a point in the gut distal to the duodenum since duodenal /sup 45/Ca absorption was decreased by bicarbonate feeding. The present results show that bicarbonate consumption depressed net Ca absorption in the rat. The effect appears to be independent of changes in 1,25(OH)/sub 2/D/sub 3/ metabolism because it is manifest in animals receiving high doses of 1,25(OH)/sub 2/D/sub 3/, which stimulate alimentary Ca absorption maximally, and because bicarbonate-fed rats are able to respond normally to exogenous 1,25(OH)/sub 2/D/sub 3/ by increasing their net absorption of Ca and P. In view of this demonstration that NaHCO/sub 3/ supplements elevate fecal Ca loss in the rat, it is suggested that studies should be undertaken to determine whether bicarbonate exerts similar adverse effects on Ca balance in humans.

  8. Effects of calcium and phosphorus intake and excretion on bone density in postmenopausal women in Hermosillo, Mexico.

    PubMed

    Méndez, R O; Gómez, M A; López, A M; González, H; Wyatt, C J

    2002-01-01

    Calcium (Ca) is important in bone formation and as aging progresses, bone loss gradually occurs. With the onset of menopause, reduced estrogen levels and insufficient Ca in the diet often create serious problems with fractures. Since little is known about the diet and other factors related to risk factors in postmenopausal women in northern Mexico, it was the objective of this study to determine the effects of dietary Ca and phosphorus (P) and their excretion, anthropometric measurements, and blood serum estradiol on bone density in women aged 45-63 years. No studies are available on the dietary intake of Ca and P and the effects on bone mineral density (BMD) in postmenopausal women in northern Mexico, so this study reports some of the first data on this population. Women with an average age of 55 years showed a positive relation of Ca intake and Ca excretion, however, dietary intake of Ca and P had no relation to bone density. Age, urinary Ca, Ca/creatinine and years of postmenopause had the highest negative correlation. Weight and body mass index had a positive correlation with BMD in the forearm and heel. Only 15% of the women met the recommendation of 1,500 mg/day of Ca. A high Ca/creatinine ratio has been proposed to indicate excess Ca excretion and subsequent bone density loss. Thirty-five percent of the women exceed the Ca/creatinine indicator of >0.16. In this study, 1% of the subjects were classified as osteoporotic and 37% as osteopenic. PMID:12464724

  9. Mucosa-Associated Bacterial Microbiome of the Gastrointestinal Tract of Weaned Pigs and Dynamics Linked to Dietary Calcium-Phosphorus

    PubMed Central

    Mann, Evelyne; Schmitz-Esser, Stephan; Zebeli, Qendrim; Wagner, Martin; Ritzmann, Mathias; Metzler-Zebeli, Barbara U.

    2014-01-01

    Dietary composition largely influences pig’s gastrointestinal microbiota and represents a useful prophylactic tool against enteric disturbances in young pigs. Despite the importance for host-microbe interactions and bacterial colonization, dietary responses of the mucosa-associated bacterial communities are less well investigated. In the present study, we characterized the mucosa-associated bacterial communities at the Pars non-glandularis of the stomach, ileum and colon, and identified shifts in these communities in response to different dietary calcium-phosphorus (Ca-P) contents (100% versus 190% of the Ca and P requirements) in combination with two basal diets (wheat-barley- or corn-based) in weaned pigs. Pyrosequencing of 16S rRNA genes from 93 mucosal samples yielded 447,849 sequences, clustering into 997 operational taxonomic units (OTUs) at 97% similarity level. OTUs were assigned to 198 genera belonging to 14 different phyla. Correlation-based networks revealed strong interactions among OTUs at the various gastrointestinal sites. Our data describe a previously not reported high diversity and species richness at the Pars non-glandularis of the stomach in weaned pigs. Moreover, high versus adequate Ca-P content significantly promoted Lactobacillus by 14.9% units (1.4 fold change) at the gastric Pars non-glandularis (P = 0.035). Discriminant analysis revealed dynamic changes in OTU composition in response to dietary cereals and Ca-P contents at all gastrointestinal sites which were less distinguishable at higher taxonomic levels. Overall, this study revealed a distinct mucosa-associated bacterial community at the different gut sites, and a strong effect of high Ca-P diets on the gastric community, thereby markedly expanding our comprehension on mucosa-associated microbiota and their diet-related dynamics in weaned pigs. PMID:24466298

  10. Effects of Benzoic Acid and Dietary Calcium:Phosphorus Ratio on Performance and Mineral Metabolism of Weanling Pigs

    PubMed Central

    Gutzwiller, A.; Schlegel, P.; Guggisberg, D.; Stoll, P.

    2014-01-01

    In a 2×2 factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions. PMID:25049984

  11. Vitamin K3 inhibits mouse uterine contraction in vitro via interference with the calcium transfer and the potassium channels.

    PubMed

    Zhang, Xian-Xia; Lu, Li-Min; Wang, Li

    2016-08-01

    Previous studies have demonstrated vitamin K3 had a great relief to smooth muscle spastic disorders, but no researches have yet pinpointed its possible anti-contractile activity in the uterus. Here, we evaluated the effect of vitamin K3 on myometrial contractility and explored the possible mechanisms of vitamin K3 action. Myograph apparatus were used to record the changes in contractility of isolated mouse uterine strips in a tissue bath. Uterine strips were exposed to vitamin K3 or vehicle. Vitamin K3 suppressed spontaneous contractions in a concentration dependent manner. It significantly decreased the contractile frequency induced by PGF2ɑ but not their amplitude (expect 58.0 μM). Prior incubation with vitamin K3 reduced the effectiveness of PGF2ɑ-induced contraction. The antispasmodic effect of vitamin K3 was also sensitive to potassium channel blockers, such as tetraethylammonium, 4-aminopyridine, iberiotoxin) but not to the nitric oxide related pathway blockers. High concentrations (29.0, 58.0 μM) of vitamin K3 weakened the Ca(2+) dose response and inhibited phase 1 contraction (intracellular stored calcium release). These dates suggest that vitamin K3 specifically suppresses myometrial contractility by affecting calcium and potassium channels; thus, this approach has potential therapy for uterine contractile activity related disorders. PMID:27237971

  12. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  13. Effect of potassium sodium tartrate and sodium citrate on the preparation of {alpha}-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution

    SciTech Connect

    Shen, Z.X.; Guan, B.H.; Fu, H.L.; Yang, L.C.

    2009-12-15

    Flue gas desulfurization (FGD) gypsum mainly composed of calcium sulfate dihydrate (DH) was used as a raw material to obtain alpha-calcium sulfate hemihydrate ({alpha}-HH) through dehydration in a Ca-Mg-K-Cl-solution medium at 95{sup o}C under atmospheric pressure. The effects of potassium sodium tartrate and sodium citrate on the preparation of alpha-HH in the electrolyte solution were investigated. The results revealed that the addition of potassium sodium tartrate (1.0 x 10{sup -2} - 2.5 x 10{sup -2}M) decreased the dehydration rate of FGD gypsum and increased the length/width (l/w) ratio of {alpha}-HH crystals, which could yield unfavorable strength properties. Addition of sodium citrate (1.0 x 10{sup -5} - 2.0 x 10{sup -5}M) slightly increased the dehydration rate of FGD gypsum and decreased the l/w ratio of {alpha}-HH crystals, which could be beneficial to increase strength. However, it also led to a partial formation of anhydrite (AH) crystals. AH was also the only dehydration product when the concentration of sodium citrate increased to 1.0 x 10{sup -4}M. Therefore, sodium citrate rather than potassium sodium tartrate could be used as an additive in Ca-Mg-K-Cl electrolyte solutions if alpha-HH with a shorter l/w ratio is the desired product from FGD gypsum dehydration. The concentration of sodium citrate should be properly controlled to reduce the formation of AH.

  14. Use-dependent effects of the class III antiarrhythmic agent NE-10064 (azimilide) on cardiac repolarization: block of delayed rectifier potassium and L-type calcium currents.

    PubMed

    Fermini, B; Jurkiewicz, N K; Jow, B; Guinosso, P J; Baskin, E P; Lynch, J J; Salata, J J

    1995-08-01

    We studied the effects of NE-10064 (azimilide), a new antiarrhythmic agent reported to be a selective blocker of the slowly activating component of the delayed rectifier, IKs. In ferret papillary muscles, NE-10064 increased effective refractory period (ERP) and decreased isometric twitch tension in a concentration-dependent manner (0.3-30 microM). Increases in ERP showed reverse use-dependence, and were greater at 1 than at 3 Hz. In contrast, changes in tension were use dependent, with larger decreases observed at 3 than at 1 Hz. In guinea pig ventricular myocytes, NE-10064 (0.3-3 microM) significantly prolonged action potential duration (APD) at 1 Hz. At 3 Hz, NE-10064 (0.3-1 microM) increased APD only slightly, and at 10 microM decreased APD and the plateau potential. NE-10064 potently blocked the rapidly activating component of the delayed rectifier, IKr (IC50 0.4 microM), and inhibited IKs (IC50 3 microM) with nearly 10-fold less potency. NE-10064 (10 microM) did not block the inward rectifier potassium current (IKl). NE-10064 (10 microM) blocked the L-type calcium current (ICa) in a use-dependent manner; block was greater at 3 than at 1 Hz. We conclude that (a) NE-10064's block of potassium currents is relatively selective for IKr over IKs, (b) NE-10064 inhibits ICa in a use-dependent fashion, and (c) NE-10064's effects on ERP and tension in papillary muscle as well as APD and action potential plateau level in myocytes may be explained by its potassium and calcium channel blocking properties. PMID:7475051

  15. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. Growth performance, skeletal health and intake arrays.

    PubMed

    Bradbury, E J; Wilkinson, S J; Cronin, G M; Thomson, P C; Bedford, M R; Cowieson, A J

    2014-07-01

    The interaction between calcium (Ca) and non-phytate phosphorus (nPP) in broiler nutrition and skeletal health is highly complex with many factors influencing their digestion, absorption and utilisation. The use of an investigative model such as the geometric framework allows a graphical approach to explore these complex interactions. A total of 600 Ross 308-day-old male broiler chicks were allocated to one of 15 dietary treatments with five replicates and eight birds per replicate. Dietary treatments were formulated to one of three total densities of total Ca+nPP; high (15 g/kg), medium (13.5 g/kg) and low (12 g/kg) and at each density there were five different ratios of Ca : nPP (4, 2.75, 2.1, 1.5 and 1.14 : 1). Weekly performance data was collected and at the end of the experiment birds were individually weighed and the right leg removed for tibia ash analysis. Skeletal health was assessed using the latency to lie (LTL) at day 27. At low Ca and high nPP as well as high Ca and low nPP diets, birds had reduced feed intake, BW gain, poorer feed efficiency and lower tibia ash, resulting in a significant interaction between dietary Ca and nPP (P<0.05). LTL times were negatively influenced by diets having either a broad ratio (high Ca, low nPP) or too narrow a ratio (low Ca, high nPP) indicating that shorter LTL times may be influenced by the ratio of Ca : nPP rather than absolute concentrations of either mineral. The calculated intake arrays show that broilers more closely regulate Ca intake than nPP intake. Broilers are willing to over consume nPP to defend a Ca intake target more so than they are willing to over consume Ca to defend an nPP target. Overall dietary nPP was more influential on performance metrics, however, from the data it may appear that birds prioritise Ca intake over nPP and broadly ate to meet this requirement. As broilers are more willing to eat to a Ca intake target rather than an nPP intake target, this emphasises the importance of formulating

  16. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  17. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system particularly in older individuals with declining renal function. We sought to determine whether adding an alkaline salt, potassium bicar...

  18. Nutrient intake and urine composition in calcium oxalate stone-forming dogs: comparison with healthy dogs and impact of dietary modification.

    PubMed

    Stevenson, Abigail E; Blackburn, Judith M; Markwell, Peter J; Robertson, William G

    2004-01-01

    Nutrient intake and urine composition were analyzed in calcium oxalate (CaOx)stone-forming and healthy control dogs to identify factors that contribute to CaOx urolithiasis. Stone-forming dogs had significantly lower intake of sodium, calcium, potassium, and phosphorus and significantly higher urinary calcium and oxalate concentrations, calcium excretion, and CaOx relative supersaturation (RSS). Feeding a diet used in the treatment of canine lower urinary tract disease for 1 month was associated with increased intake of moisture, sodium, and fat; reduced intake of potassium and calcium; and decreased urinary calcium and oxalate concentrations, calcium excretion, and CaOx RSS. No clinical signs of disease recurrence were observed in the stone-forming dogs when the diet was fed for an additional 11 months. The results suggest that hypercalciuria and hyperoxaluria contribute to the formation of CaOx uroliths in dogs and show that dietary modifications can alter this process. PMID:15578454

  19. Measuring metal and phosphorus speciation in P-rich anaerobic digesters.

    PubMed

    Carliell-Marquet, C M; Wheatley, A D

    2002-01-01

    High concentrations of soluble orthophosphate, magnesium and potassium are released during anaerobic digestion of biological phosphorus removal (BPR) sludge. This research was undertaken to investigate the effects of phosphorus enrichment on digester performance, metal and phosphorus speciation. High concentrations of soluble PO4-P (> 250 mg/l) were found to have a retarding effect on anaerobic digestion, reducing the rate of volatile solids digestion and methane production in comparison to control digesters. This was found to be reversible after a period of time, which was related to the amount of PO4-P added to the digesters, higher concentrations of PO4-P requiring more time for digester recovery. Addition of magnesium and potassium to the digesters, together with PO4-P, reduced the inhibitory effect of phosphorus enrichment but these digesters still showed lower rates of volatile solids digestion and methane production in comparison to the control digesters. Phosphorus enrichment resulted in extensive precipitation of calcium, magnesium and manganese, markedly reducing the soluble and easily available fractions of these metals. Other trace metals such as copper, zinc, chromium, nickel and cobalt actually showed increased levels of solubility as a result of phosphorus enrichment. This was thought to be caused by high levels of soluble organic carbon in the phosphorus-rich anaerobic digesters, which acted as organic ligands for metal complexation. PMID:12188563

  20. Effect of low ambient mineral concentrations on the accumulation of calcium, magnesium and phosphorus by early life stages of the air-breathing armoured catfish Megalechis personata (Siluriformes: Callichthyidae).

    PubMed

    Mol, J H; Atsma, W; Flik, G; Bouwmeester, H; Osse, J W

    1999-08-01

    The accumulation of calcium, magnesium and phosphorus was measured during an 8-week period in the early life stages of the air-breathing armoured catfish Megalechis personata acclimated to low-mineral fresh water (0.073 mmol l-1 calcium, 0.015 mmol l-1 magnesium, <0.001 mmol l-1 phosphate) and high-mineral fresh water (0.59 mmol l-1 calcium, 1.94 mmol l-1 magnesium, <0.001 mmol l-1 phosphate). The fish accumulated calcium twice as fast and phosphorus 1.5 times as fast in low-mineral fresh water (LMF) as in high-mineral fresh water (HMF), while the rate of accumulation of magnesium did not differ in LMF and HMF. The difference in the rates of accumulation of calcium and phosphorus between LMF and HMF was independent of the growth performance (food intake) in LMF and HMF. The mineral content of young M. personata from natural swamps and rainforest creeks in Suriname followed the LMF accumulation curves. The transition from aquatic respiration to bimodal respiration in the third week after hatching did not affect rates of mineral accumulation. The high rates of accumulation of calcium and magnesium of M. personata in LMF of 654 and 58 micromol h-1 kg-1, respectively, exceed the rates of uptake of calcium and magnesium of teleosts reported in the literature. The high rates of mineral accumulation in the early life stages of M. personata reflect the exponential growth during the first 8 weeks after hatching and the requirements of the juveniles while building their dermal armour. M. personata is well-adapted to neotropical fresh waters with an extremely low mineral content. The accumulation of calcium and phosphorus is discussed in relation to the function of the bony armour of M. personata. PMID:10393827

  1. Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels

    PubMed Central

    Indriati, Dwi Wahyu; Kamasawa, Naomi; Matsui, Ko; Meredith, Andrea L.; Watanabe, Masahiko; Shigemoto, Ryuichi

    2014-01-01

    P/Q-type voltage-dependent calcium channels play key roles in transmitter release, integration of dendritic signals, generation of dendritic spikes, and gene expression. High intracellular calcium concentration transient produced by these channels is restricted to tens to hundreds of nanometers from the channels. Therefore, precise localization of these channels along the plasma membrane was long sought to decipher how each neuronal cell function is controlled. Here, we analyzed the distribution of Cav2.1 subunit of the P/Q-type channel using highly sensitive SDS-digested freeze-fracture replica labeling in the rat cerebellar Purkinje cells. The labeling efficiency was such that the number of immunogold particles in each parallel fiber active zone was comparable to that of functional channels calculated from previous reports. Two distinct patterns of Cav2.1 distribution, scattered and clustered, were found in Purkinje cells. The scattered Cav2.1 had a somatodendritic gradient with the density of immunogold particles increasing 2.5-fold from soma to distal dendrites. The other population with 74-fold higher density than the scattered particles was found within clusters of intramembrane particles on the P-face of soma and primary dendrites. Both populations of Cav2.1 were found as early as P3 and increased in the second postnatal week to a mature level. Using double immunogold labeling, we found that virtually all of the Cav2.1 clusters were colocalized with two types of calcium-activated potassium channels, BK and SK2, with the nearest neighbor distance of ~40 nm. Calcium nanodomain created by the opening of Cav2.1 channels likely activates the two channels that limit the extent of depolarization. PMID:23426693

  2. Vitamin D Metabolites and Their Association with Calcium, Phosphorus, and PTH Concentrations, Severity of Illness, and Mortality in Hospitalized Equine Neonates

    PubMed Central

    Kamr, Ahmed M.; Dembek, Katarzyna A.; Reed, Stephen M.; Slovis, Nathan M.; Zaghawa, Ahmed A.; Rosol, Thomas J.; Toribio, Ramiro E.

    2015-01-01

    Background Hypocalcemia is a frequent abnormality that has been associated with disease severity and outcome in hospitalized foals. However, the pathogenesis of equine neonatal hypocalcemia is poorly understood. Hypovitaminosis D in critically ill people has been linked to hypocalcemia and mortality; however, information on vitamin D metabolites and their association with clinical findings and outcome in critically ill foals is lacking. The goal of this study was to determine the prevalence of vitamin D deficiency (hypovitaminosis D) and its association with serum calcium, phosphorus, and parathyroid hormone (PTH) concentrations, disease severity, and mortality in hospitalized newborn foals. Methods and Results One hundred newborn foals ≤72 hours old divided into hospitalized (n = 83; 59 septic, 24 sick non-septic [SNS]) and healthy (n = 17) groups were included. Blood samples were collected on admission to measure serum 25-hydroxyvitamin D3 [25(OH)D3], 1,25-dihydroxyvitamin D3 [1,25(OH) 2D3], and PTH concentrations. Data were analyzed by nonparametric methods and univariate logistic regression. The prevalence of hypovitaminosis D [defined as 25(OH)D3 <9.51 ng/mL] was 63% for hospitalized, 64% for septic, and 63% for SNS foals. Serum 25(OH)D3 and 1,25(OH) 2D3 concentrations were significantly lower in septic and SNS compared to healthy foals (P<0.0001; P = 0.037). Septic foals had significantly lower calcium and higher phosphorus and PTH concentrations than healthy and SNS foals (P<0.05). In hospitalized and septic foals, low 1,25(OH)2D3 concentrations were associated with increased PTH but not with calcium or phosphorus concentrations. Septic foals with 25(OH)D3 <9.51 ng/mL and 1,25(OH) 2D3 <7.09 pmol/L were more likely to die (OR=3.62; 95% CI = 1.1-12.40; OR = 5.41; 95% CI = 1.19-24.52, respectively). Conclusions Low 25(OH)D3 and 1,25(OH)2D3 concentrations are associated with disease severity and mortality in hospitalized foals. Vitamin D deficiency may

  3. What We Eat In America, NHANES 2005-2006, usual nutrient intakes from food and water compared to 1997 Dietary Reference Intakes for vitamin D, calcium, phosphorus, and magnesium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report presents national estimates of usual nutrient intake distributions from food and water for vitamin D, calcium, phosphorus, and magnesium and compares those estimates to the Dietary Reference Intakes published by the Institute of Medicine in 1997. Estimates are based on data from 8,437 in...

  4. Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth.

    PubMed

    Gackière, Florian; Warnier, Marine; Katsogiannou, Maria; Derouiche, Sandra; Delcourt, Philippe; Dewailly, Etienne; Slomianny, Christian; Humez, Sandrine; Prevarskaya, Natalia; Roudbaraki, Morad; Mariot, Pascal

    2013-01-01

    It is strongly suspected that potassium (K(+)) channels are involved in various aspects of prostate cancer development, such as cell growth. However, the molecular nature of those K(+) channels implicated in prostate cancer cell proliferation and the mechanisms through which they control proliferation are still unknown. This study uses pharmacological, biophysical and molecular approaches to show that the main voltage-dependent K(+) current in prostate cancer LNCaP cells is carried by large-conductance BK channels. Indeed, most of the voltage-dependent current was inhibited by inhibitors of BK channels (paxillin and iberiotoxin) and by siRNA targeting BK channels. In addition, we reveal that BK channels constitute the main K(+) channel family involved in setting the resting membrane potential in LNCaP cells at around -40 mV. This consequently promotes a constitutive calcium entry through T-type Cav3.2 calcium channels. We demonstrate, using single-channel recording, confocal imaging and co-immunoprecipitation approaches, that both channels form macromolecular complexes. Finally, using flow cytometry cell cycle measurements, cell survival assays and Ki67 immunofluorescent staining, we show that both BK and Cav3.2 channels participate in the proliferation of prostate cancer cells. PMID:24143281

  5. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    SciTech Connect

    Mendoza, Oscar; Giraldo, Carolina; Camargo, Sergio S.

    2015-08-15

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  6. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  7. 78 FR 63228 - Determination That Potassium Citrate, 10 Milliequivalents/Packet and 20 Milliequivalents/Packet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, and uric acid lithiasis with or without calcium stones. Potassium Citrate, 10...

  8. Availability of phosphorus from selected inorganic phosphate to juvenile abalone, Haliotis discus hannai ino.

    NASA Astrophysics Data System (ADS)

    Bei-Ping, Tan; Kang-Sen, Mai; Wei, Xu

    2002-06-01

    The availability of phosphorus to juvenile abalone, Haliotis discus hannai from primary, secondary and tertiary calcium phosphate, primary sodium or potassium phosphate separately or in combination was determined in a 120-day feeding trial. Seven semi-purified diets were formulated to contain relatively constant dietary phosphorus, ranging from 0.78%-0.82%. The concentrations of dietary phosphorus were presumed to be slightly below the requirement for abalone. A brown alga, Laminaria japonica, was used as a control diet. Abalone juveniles of silimar size (average weight 1.18 g; average shell length 18.74 mm) were distributed in a single-pass, flow-through system using a completely randomized design with eight treatments and three replicates each treatment. The survival ranged from 71.1% to 81.1%, and was not significantly (P>0.05) related to dietary treatment. However, the weight gain rate (41.72%-65.02%), daily increment in shell length (36.87-55.07 μm) and muscle RNA-DNA ratio (3.44-4.69) were significantly (P<0.05) affected by dietary treatment. Soft body alkaline phosphatase activity (10.9-19.8 U/g wet tissue) and carcass levels of lipid (7.71%-9.33%) and protein (46.68%-49.35%) were significantly (P<0.05) responsive to available phosphorus of the diets. Dietary treatment had significant effect (P<0.05) on concentrations of phosphorus in the whole body (WB) and soft body (SB). Apparent digestibility coefficients (45%-97%) of phosphorus were also significantly (P<0.05) different between dietary treatments. The results indicated that among these inorganic compounds, primary calcium, potassium and sodium phosphates separately or in combination could be utilized effectively by juvenile abalone as dietary phosphorus sources (availability ranging from 87%-97%). However, secondary and tertiary calcium phosphates were found to be low in availability, the values being 45% and 77%, repectively.

  9. What aspect of dietary modification in broilers controls litter water soluble P: dietary phosphorus, phytase, or calcium?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental concerns about phosphorus (P) losses from animal agriculture have led to interest in dietary strategies to reduce the concentration and solubility of P in manures. To address the effects of dietary modification in broilers, we fed 18 treatments consisting of three levels of AvP (0.35%,...

  10. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone. PMID:26119308

  11. Epinephrine is a hypophosphatemic hormone in man. Physiological effects of circulating epinephrine on plasma calcium, magnesium, phosphorus, parathyroid hormone, and calcitonin.

    PubMed

    Body, J J; Cryer, P E; Offord, K P; Heath, H

    1983-03-01

    The physiologic effects of epinephrine on mineral metabolism are not known. In six healthy men, insulin-induced hypoglycemia, a potent stimulus to endogenous epinephrine secretion, resulted in a decrement of 0.9+/-0.1 mg/dl (mean+/-SE, P < 0.001) in serum inorganic phosphorus and smaller increments in magnesium and total and ionized calcium. Plasma immunoreactive parathyroid hormone (iPTH) decreased and plasma immunoreactive calcitonin (iCT) increased appropriately with the increments in calcium and magnesium. We wished to determine to what extent these changes in mineral metabolism might be attributable to epinephrine. Therefore, in the same protocol, we infused the hormone over 60 min in these six men, in doses that resulted in steady-state plasma epinephrine concentrations ranging from 52 to 945 pg/ml (levels that span the physiologic range), for a total of 25 studies. Serum ionized calcium, iPTH, and iCT concentrations were unaltered by these physiologic elevations of plasma epinephrine. However, epinephrine resulted in dose-dependent decrements in serum inorganic phosphorus of 0.6+/-0.1 mg/dl (P < 0.005) for the highest epinephrine infusion rate. The plasma epinephrine concentration threshold for this hypophosphatemic effect was approximately 50-100 pg/ml. Thus, the sensitivity of the hypophosphatemic response to epinephrine is comparable to that of the cardiac chronotropic, systolic pressor, and lipolytic responses to epinephrine, and considerably greater than that of the diastolic depressor, glycogenolytic, glycolytic, and ketogenic responses to the hormone in human beings. In view of its rapidity, the hypophosphatemic effect of epinephrine is probably the result of a net shift of phosphate from the extracellular compartment to intracellular compartments. We suggest that it is a direct effect of epinephrine, in that it is not mediated by changes in availability of the primary regulatory hormones PTH and CT, although indirect effects mediated by changes in

  12. Influence of blanketing and season on vitamin D and parathyroid hormone, calcium, phosphorus, and magnesium concentrations in horses in New Zealand.

    PubMed

    Azarpeykan, S; Dittmer, K E; Gee, E K; Marshall, J C; Wallace, J; Elder, P; Acke, E; Thompson, K G

    2016-07-01

    The aims of the study were to determine the effect of season and blanketing on vitamin D synthesis in horses and examine the interaction between vitamin D and other analytes involved in calcium homeostasis. Twenty-one healthy horses at pasture were included; 5 were covered with standard horse blankets including neck rugs. Blood samples were collected for 13 mo and analyzed for 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3), 1,25-dihydroxyvitamin D (1,25[OH]2D), ionized calcium (iCa), total calcium (tCa), phosphorus (P), total magnesium (tMg), and parathyroid hormone (PTH). Grass and hay samples were collected and analyzed for vitamin D, calcium, phosphorus, and magnesium. Climate data were also collected. The serum concentration of 25OHD3 in horses was either undetectable or below the detection limit of the assay, and the main form of 25OHD was 25OHD2. No differences in serum 25OHD2, 1,25(OH)2D, iCa, tCa, P, tMg, and PTH (P ≥ 0.05) concentrations were seen between the 2 groups. Associations were seen between iCa and PTH (P < 0.05), iCa and tMg (P < 0.05), and dietary vitamin D and 25OHD2 (P < 0.05). A strong seasonal trend was seen in serum 25OHD2 (P < 0.0001), which was higher during spring and summer when the amount of sunshine and UV radiation was higher. Parathyroid hormone and 1,25(OH)2D showed opposing trends with PTH higher in winter whereas 1,25(OH)2D was higher in summer. The results suggest that dietary vitamin D may be necessary for horses to fulfill their vitamin D requirements; however, further research is required to determine the contribution of vitamin D3 synthesis in the skin to the vitamin D status of the horse. PMID:27131337

  13. Phosphorus and potassium losses by runoff under three oats residue treatments in two no-tillage variants on a Southbrazilian Typic Hapludox

    NASA Astrophysics Data System (ADS)

    Do Amaral, André J.; Bertol, Ildegardis; Cogo, Neroli P.; Barbosa, Fabrício T.; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    rates of 1, 1 -2, and 1 -4, respectively. Phosphorus and potassium levels in runoff water showed a similar trend than water losses, so that they decreased as the crop residue rate decreased. In our conditions the value of P and K losses varied between 0.31 and 12.08 US ha-1. We concluded that the state of the soil surface under NT, which depends on the operations during sowing and on the rate of addition of previous crop residue, influence total water losses as well as P and K contents. In turn differences in P and K losses have a bearing on financial aspects of nutrient application. Acknowledgement: This work was supported by Spanish Ministry of Education (Project CGL2005-08219-C02).

  14. Gain control of synaptic response function in cerebellar nuclear neurons by a calcium-activated potassium conductance.

    PubMed

    Feng, Steven Si; Lin, Risa; Gauck, Volker; Jaeger, Dieter

    2013-10-01

    Small conductance Ca(2+)-activated potassium (SK) current provides an important modulator of excitatory synaptic transmission, which undergoes plastic regulation via multiple mechanisms. We examined whether inhibitory input processing is also dependent on SK current in the cerebellar nuclei (CN) where inhibition provides the only route of information transfer from the cerebellar cortical Purkinje cells. We employed dynamic clamping in conjunction with computer simulations to address this question. We found that SK current plays a critical role in the inhibitory synaptic control of spiking output. Specifically, regulation of SK current density resulted in a gain control of spiking output, such that low SK current promoted large output signaling for large inhibitory cell input fluctuations due to Purkinje cell synchronization. In contrast, smaller nonsynchronized Purkinje cell input fluctuations were not amplified. Regulation of SK density in the CN therefore would likely lead to important consequences for the transmission of synchronized Purkinje cell activity to the motor system. PMID:23605187

  15. The efflux of potassium, sodium, chloride, calcium and sulphate ions and of sorbitol and glycerol during the cardiac cycle in frog's ventricle

    PubMed Central

    Lamb, J. F.; McGuigan, J. A. S.

    1968-01-01

    1. The exchanges of potassium and various other substances have been measured in beating frog's ventricles, using both superfused and distended preparations. In both preparations the high fluid flow rates used (1 ml./sec) cleared the ventricular cavity with a half-time (T½) of about 130 msec. 2. Histological sections show that the modal strand radius in the relaxed or contracted distended ventricle is 17·5 μ, and in the relaxed and contracted superfused ventricle is 17·5 and 27·5 μ respectively. 3. In quiescent ventricles the resting potassium influx and efflux are approximately equal at about 16 p-mole/cm2.sec. This figure is computed from Niedergerke's (1963b) estimate of a cell size of 3·5 μ taken from electron-micrographs. If the older figure of 9·2 μ from single isolated cells is used (Skramlik, 1921) then the fluxes are about 44 p-mole/cm2.sec. To allow for some cell damage in these preparations a further increase in flux of about 30% may be necessary. 4. Contraction leads to a diminution of both potassium influx and efflux. Measurements made at 100 msec intervals throughout the cardiac cycle have demonstrated (a) that this decreased K efflux occurs at the same time as the mechanical twitch, and (b) that the size of the decrease is dependent on the external calcium concentration. Other experiments show that a similar decrease can be obtained by inducing a contracture at a constant membrane potential. It is concluded that the decreased K efflux during contraction is due to mechanical distortion of the tissue. This leads to a further slowing of the K diffusion and allows considerable reabsorption of K to occur into the cells. 5. Efflux analysis suggests that normal K diffusion in the extracellular space may be about 1/10 of that in free solution. If this is correct the true membrane fluxes may be × 5 those measured. 6. Phasic efflux measurements of Na, Ca, K, Cl, SO4, sorbitol and erythritol show that a peak of efflux occurs just after the point of

  16. The small-conductance calcium-activated potassium channel is a key modulator of firing and long-term depression in the dorsal striatum

    PubMed Central

    Hopf, F. Woodward; Seif, Taban; Mohamedi, Maysha L.; Chen, Billy T.; Bonci, Antonello

    2011-01-01

    The striatum is considered to be critical for the control of goal-directed action, with the lateral dorsal striatum (latDS) being implicated in modulation of habits and the nucleus accumbens thought to represent a limbic–motor interface. Although medium spiny neurons from different striatal subregions exhibit many similar properties, differential firing and synaptic plasticity could contribute to the varied behavioral roles across subregions. Here, we examined the contribution of small-conductance calcium-activated potassium channels (SKs) to action potential generation and synaptic plasticity in adult rat latDS and nucleus accumbens shell (NAS) projection neurons in vitro. The SK-selective antagonist apamin exerted a prominent effect on latDS firing, significantly decreasing the interspike interval. Furthermore, prolonged latDS depolarization increased the interspike interval and reduced firing, and this enhancement was reversed by apamin. In contrast, NAS neurons exhibited greater basal firing rates and less regulation of firing by SK inhibition and prolonged depolarization. LatDS neurons also had greater SK currents than NAS neurons under voltage-clamp. Importantly, SK inhibition with apamin facilitated long-term depression (LTD) induction in the latDS but not the NAS, without alterations in glutamate release. In addition, SK activation in the latDS prevented LTD induction. Greater SK function in the latDS than in the NAS was not secondary to differences in sodium or inwardly rectifying potassium channel function, and apamin enhancement of firing did not reflect indirect action through cholinergic interneurons. Thus, these data demonstrate that SKs are potent modulators of action potential generation and LTD in the dorsal striatum, and could represent a fundamental cellular mechanism through which habits are regulated. PMID:20497469

  17. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    NASA Astrophysics Data System (ADS)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-06-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  18. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    NASA Astrophysics Data System (ADS)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-02-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients (L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient (β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  19. The small conductance calcium-activated potassium channel 3 (SK3) is a molecular target for Edelfosine to reduce the invasive potential of urothelial carcinoma cells.

    PubMed

    Steinestel, Konrad; Eder, Stefan; Ehinger, Konstantin; Schneider, Juliane; Genze, Felicitas; Winkler, Eva; Wardelmann, Eva; Schrader, Andres J; Steinestel, Julie

    2016-05-01

    Metastasis is the survival-determining factor in urothelial carcinoma (UC) of the urinary bladder. The small conductance calcium-activated potassium channel 3 (SK3) enhances tumor cell invasion in breast cancer and malignant melanoma. Since Edelfosine, a glycerophospholipid with antitumoral properties, effectively inhibits SK3 channel activity, our goal was to evaluate SK3 as a potential molecular target to inhibit the gain of an invasive phenotype in UC. SK3 protein expression was analyzed in 208 tissue samples and UC cell lines. Effects of Edelfosine on SK3 expression and intracellular calcium levels as well as on cell morphology, cell survival and proliferation were assessed using immunoblotting, potentiometric fluorescence microscopy, and clonogenic/cell survival assay; furthermore, we analyzed the effect of Edelfosine and SK3 RNAi knockdown on tumor cell migration and invasion in vitro and in vivo. We found that SK3 is strongly expressed in muscle-invasive UC and in the RT112 cellular tumor model. Higher concentrations of Edelfosine have a strong antitumoral effect on UC cells, while 1 μM effectively inhibits migration/invasion of UC cells in vitro and in vivo comparable to the SK3 knockdown phenotype. Taken together, our results show strong expression of SK3 in muscle-invasive UC, consistent with the postulated role of the protein in tumor cell invasion. Edelfosine is able to effectively inhibit migration and invasion of UC cells in vitro and in vivo in an SK3-dependent way, pointing towards a possible role for Edelfosine as an antiinvasive drug to effectively inhibit UC cell invasion and metastasis. PMID:26619845

  20. Regulatory mechanisms and the role of calcium and potassium channels controlling supercontractile crop muscles in adult Phormia regina.

    PubMed

    Solari, Paolo; Stoffolano, John G; Fitzpatrick, Joanna; Gelperin, Alan; Thomson, Alan; Talani, Giuseppe; Sanna, Enrico; Liscia, Anna

    2013-09-01

    Bioassays and electrophysiological recordings were conducted in the adult blowfly Phormia regina to provide new insights into the regulatory mechanisms governing the crop filling and emptying processes of the supercontractile crop muscles. The cibarial pump drives ingestion. Simultaneous multisite extracellular recordings show that crop lobe (P5) distension during ingestion of a 4.7 μl sugar meal does not require muscle activity by any of the other pumps of the system. Conversely, pumping of fluids toward the anterior of the crop system during crop emptying is brought about by active muscle contraction, in the form of a highly coordinated peristaltic wave starting from P5 and progressively propagating to P6, P4 and P3 pumps, with P5 contracting with a frequency about 3.4 times higher than the other pumps. The crop contraction rate is also modulated by hemolymph-borne factors such as sugars, through ligand recognition at a presumptive receptor site rather than by an osmotic effect, as assessed by both behavioural and electrophysiological experiments. In this respect, sugars of equal osmolarity produce different effects, glucose being inhibitory and mannose ineffective for crop muscles, while trehalose enhances crop activity. Finally, voltage and current clamp experiments show that the muscle action potentials (mAPs) at the P4 pump are sustained by a serotonin-sensitive calcium conductance. Serotonin enhances calcium entry into the muscle cells and this could lead, as an indirect modulatory effect, to activation of a Ca(2+)-activated K(+) conductance (IK(Ca)), which sustains the following mAP repolarization phase in such a way that further mAPs can be generated early and the frequency consequently increased. PMID:23834826

  1. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice.

    PubMed

    Wang, Furong; Zhang, Yu; Wang, Li; Sun, Peng; Luo, Xianwen; Ishigaki, Yasuhito; Sugai, Tokio; Yamamoto, Ryo; Kato, Nobuo

    2015-10-01

    Transcranial magnetic stimulation (TMS) is fragmentarily reported to be beneficial to Alzheimer's patients. Its underlying mechanism was investigated. TMS was applied at 1, 10 or 15 Hz daily for 4 weeks to young Alzheimer's disease model mice (3xTg), in which intracellular soluble amyloid-β is notably accumulated. Hippocampal long-term potentiation (LTP) was tested after behavior. TMS ameliorated spatial learning deficits and enhanced LTP in the same frequency-dependent manner. Activity of the large conductance calcium-activated potassium (Big-K; BK) channels was suppressed in 3xTg mice and recovered by TMS frequency-dependently. These suppression and recovery were accompanied by increase and decrease in cortical excitability, respectively. TMS frequency-dependently enhanced the expression of the activity-dependently expressed scaffold protein Homer1a, which turned out to enhance BK channel activity. Isopimaric acid, an activator of the BK channel, magnified LTP. Amyloid-β lowering was detected after TMS in 3xTg mice. In 3xTg mice with Homer1a knocked out, amyloid-β lowering was not detected, though the TMS effects on BK channel and LTP remained. We concluded that TMS facilitates BK channels both Homer1a-dependently and -independently, thereby enhancing hippocampal LTP and decreasing cortical excitability. Reduced excitability contributed to amyloid-β lowering. A cascade of these correlated processes, triggered by TMS, was likely to improve learning in 3xTg mice. PMID:26051398

  2. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    PubMed

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD. PMID:25450964

  3. Calcium- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in the lateral chain.

    PubMed

    Bukiya, Anna N; Patil, Shivaputra A; Li, Wei; Miller, Duane D; Dopico, Alex M

    2012-10-01

    Large conductance, calcium- and voltage-gated potassium (BK) channels regulate various physiological processes and represent an attractive target for drug discovery. Numerous BK channel activators are available. However, these agents usually interact with the ubiquitously distributed channel-forming subunit and thus cannot selectively target a particular tissue. We performed a structure-activity relationship study of lithocholic acid (LCA), a cholane that activates BK channels via the accessory BK β1 subunit. The latter protein is highly abundant in smooth muscle but scarce in most other tissues. Modifications to the LCA lateral chain length and functional group yielded two novel smooth muscle BK channel activators in which the substituent at C24 has a small volume and a net negative charge. Our data provide detailed structural information that will be useful to advance a pharmacophore in search of β1 subunit-selective BK channel activators. These compounds are expected to evoke smooth muscle relaxation, which would be beneficial in the pharmacotherapy of prevalent human disorders associated with increased smooth muscle contraction, such as systemic hypertension, cerebral or coronary vasospasm, bronchial asthma, bladder hyperactivity, and erectile dysfunction. PMID:22945504

  4. Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States

    SciTech Connect

    Gillette, D.A. ); Stensland, G.J.; Williams, A.L.; Barnard, W.; Gatz, D. ); Sinclair, P.C. ); Johnson, T.C. )

    1992-12-01

    Models of dust emissions by wind erosion (including winds associated with regional activity as well as dust devils) and vehicular disturbances of unpaved roads were developed, calibrated, and used to estimate alkaline dust emissions from elemental soil and road composition data. Emissions from tillage of soils were estimated form the work of previous researchers. The area of maximum dust production by all of those sources is the area of the old Dust Bowl' of the 1930s (the panhandles of Texas and Oklahoma, eastern New Mexico and Colorado, and western Kansas). The areas of maximum alkaline dust production are the arid southwest, the Dust Bowl,' and the midwestern-mideastern states from Iowa to Pennsylvania. Our calculations show that calcium is the dominant alkaline element produced by open sources' (sources too great in extent to be controlled by enclosure or ducting). Although the largest dust mass source is wind erosion (by winds associated with regional activity and convective activity), the largest producer of the alkaline component is road dust because the abundance of alkaline materials in road coverings (which include crushed limestone) is significantly higher than for soils. Comparing the above estimated sources of alkaline material with inventories of SO[sub 2] and NO[sub x] emissions by previous investigators gives the rough approximation that alkaline emission rates are of the order of the SO[sub 2] + NO[sub x] emissions in the western United States and that they are much smaller than SO[sub 2] + NO[sub x] in the eastern United States. This approximation is substantiated by data on Ca/(SO[sub 4] + NO[sub 3]) for wet deposition for National Atmospheric Deposition Program sites. 53 refs., 9 figs., 2 tabs.

  5. Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Gillette, Dale A.; Stensland, Gary J.; Williams, Allen L.; Barnard, William; Gatz, Donald; Sinclair, Peter C.; Johnson, Tezz C.

    1992-12-01

    Models of dust emissions by wind erosion (including winds associated with regional activity as well as dust devils) and vehicular disturbances of unpaved roads were developed, calibrated,and used to estimate alkaline dust emissions from elemental soil and road composition data. Emissions from tillage of soils were estimated from the work of previous researchers. The area of maximum dust production by all of those sources is the area of the old "Dust Bowl" of the 1930s (the panhandles of Texas and Oklahoma, eastern New Mexico and Colorado, and western Kansas). The areas of maximum alkaline dust production are the arid southwest, the "Dust Bowl," and the midwestern-mideastern states from Iowa to Pennsylvania. Our calculations show that calcium is the dominant alkaline element produced by "open sources" (sources too great in extent to be controlled by enclosure or ducting). Although the largest dust mass source is wind erosion (by winds associated with regional activity and convective activity), the largest producer of the alkaline component is road dust because the abundance of alkaline materials in road coverings (which include crushed limestone) is significantly higher than for soils. Comparing the above estimated sources of alkaline material with inventories of SO2 and NOx emissions by previous investigators gives the rough approximation that alkaline emission rates are of the order of the SO2 + NOx emissions in the western United States and that they are much smaller than SO2 + NOx in the eastern United States. This approximation is substantiated by data on Ca/(SO4 + NO3) for wet deposition for National Atmospheric Deposition Program sites.

  6. Is there an association between elevated or low serum levels of phosphorus, parathyroid hormone, and calcium and mortality in patients with end stage renal disease? A meta-analysis

    PubMed Central

    2013-01-01

    Background Biochemical markers of altered mineral metabolism have been associated with increased mortality in end stage renal disease patients. Several studies have demonstrated non-linear (U-shaped or J-shaped) associations between these minerals and mortality, though many researchers have assumed linear relationships in their statistical modeling. This analysis synthesizes the non-linear relationships across studies. Methods We updated a prior systematic review through 2010. Studies included adults receiving dialysis and reported categorical data for calcium, phosphorus, and/or parathyroid hormone (PTH) together with all-cause mortality. We performed 2 separate meta-analyses to compare higher-than-referent levels vs referent and lower-than-referent levels vs referent levels. Results A literature review showed that when a linear relationship between the minerals and mortality was assumed, the estimated associations were more likely to be smaller or non-significant compared to non-linear models. In the meta-analyses, higher-than-referent levels of phosphorus (4 studies, RR = 1.20, 95% CI = 1.15-1.25), calcium (3 studies, RR = 1.10, 95% CI = 1.05-1.14), and PTH (5 studies, RR = 1.11, 95% CI = 1.07-1.16) were significantly associated with increased mortality. Although no significant associations between relatively low phosphorus or PTH and mortality were observed, a protective effect was observed for lower-than-referent calcium (RR = 0.86, 95% CI = 0.83-0.89). Conclusions Higher-than-referent levels of PTH, calcium, and phosphorus in dialysis patients were associated with increased mortality risk in a selection of observational studies suitable for meta-analysis of non-linear relationships. Findings were less consistent for lower-than-referent values. Future analyses should incorporate the non-linear relationships between the minerals and mortality to obtain accurate effect estimates. PMID:23594621

  7. [Circadian variations in rat serum and urinary calcium and phosphorus. Reflections on the Ca/PO4 ratio].

    PubMed

    Gaggi, R; Bartolomei, N; David, M; Ghelfi, C; Ceresi, E

    1978-01-01

    Daily variations of serum and urine calcium and phosphate were determined in young and adult rats of both sexes. The animals were maintained in natural conditions of illumination and feeding ad libitum. The twenty-four hour rhythm of the serum levels and urinary excretion of these electrolytes in male rats is confirmed. This rhythm is markedly modified in young females and less in adult females. Evidence for a circadian rhythm of the Ca/PO4 ratio appears in all groups of rats. The rhythms of serum and urine Ca/PO4 rations are similar in all experimental groups. PMID:555322

  8. Potassium test

    MedlinePlus

    ... activity of nerves and muscles, especially the heart. Low levels of potassium can lead to an irregular heartbeat or other ... cell destruction Too much potassium in your diet Low levels of potassium ( hypokalemia ) may be due to: Chronic diarrhea Cushing ...

  9. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  10. Protective effect of pretreatment with the calcium antagonist anipamil on the ischemic-reperfused rat myocardium: a phosphorus-31 nuclear magnetic resonance study

    SciTech Connect

    Kirkels, J.H.; Ruigrok, T.J.; Van Echteld, C.J.; Meijler, F.L.

    1988-05-01

    To assess whether the prophylactic administration of anipamil, a new calcium antagonist, protects the heart against the effects of ischemia and reperfusion, rats were injected intraperitoneally twice daily for 5 days with 5 mg/kg body weight of this drug. The heart was then isolated and perfused by the Langendorff technique. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to monitor myocardial energy metabolism and intracellular pH during control perfusion and 30 min of total ischemia (37/sup 0/C), followed by 30 min of reperfusion. Pretreatment with anipamil altered neither left ventricular developed pressure under normoxic conditions nor the rate and extent of depletion of adenosine triphosphate (ATP) and creatine phosphate during ischemia. Intracellular acidification, however, was attenuated. On reperfusion, hearts from anipamil-pretreated animals recovered significantly better than untreated hearts with respect to replenishment of ATP and creatine phosphate stores, restitution of low levels of intracellular inorganic phosphate and recovery of left ventricular function and coronary flow. Intracellular pH recovered rapidly to preischemic levels, whereas in untreated hearts a complex intracellular inorganic phosphate peak indicated the existence of areas of different pH within the myocardium. It is concluded that anipamil pretreatment protects the heart against some of the deleterious effects of ischemia and reperfusion. Because this protection occurred in the absence of a negative inotropic effect during normoxia, it cannot be attributed to an energy-sparing effect during ischemia. Therefore, alternative mechanisms of action are to be considered.

  11. Acid precipitation and food quality: Inhibition of growth and survival in black ducks and mallards by dietary aluminum, calcium and phosphorus

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.

  12. Effects of β-hydroxybutyrate and different calcium and potassium concentrations on the membrane potential and motility of abomasal smooth muscle cells in cattle.

    PubMed

    Zurr, L; Leonhard-Marek, S

    2012-10-01

    The left displacement of the abomasum (LDA) is a common disease in periparturient dairy cows. Plasma β-hydroxybutyrate (BHBA) levels above the reference range are regarded as risk factors for the occurrence of LDA. Additionally, hypokalemia and hypocalcemia have been observed in LDA cows. The aim of the present study was to characterize the membrane potential and the slow waves in abomasal smooth muscle cells by a microelectrode technique and to determine possible effects of BHBA and of various calcium and potassium concentrations on the membrane potential. Subsequently, the results obtained by the microelectrode technique were combined with in vitro motility experiments of abomasal smooth muscles. Strips of the abomasal circular smooth muscles were prepared and incubated in different buffer solutions. For the microelectrode technique, healthy bulls and cows that underwent surgery for LDA were sampled. These measurements showed a frequency of the slow waves between 3.5 and 10.9 per minute (for amplitudes ≥ 3mV) and between 0.6 and 4.5 per minute (for amplitudes ≥ 5mV). The frequency of contractions (1.8 to 3.1 per minute) were in the same order as the frequency of the slow waves with amplitudes ≥ 5 mV. Blocking potassium conductance with barium chloride induced a depolarization of the basal membrane potential (from -43±2.9 to -37±4.1mV; mean ± standard error of the mean) without affecting the frequency or the height of the slow waves. The reduction in the potassium concentration from 5.4 to 2 mmol/L resulted in a nominal decrease in the activity of contractions (from 22.2 to 18.6 mN/min). The subsequent addition of 1 mmol of KCl/L induced a nominal increase in contraction activity (from 18.6 to 25.7 mN/min). An effect of BHBA (5 mmol/L) could not be demonstrated, neither on the electric nor on the motility parameters. A simulated hypocalcemia (1.2 mmol/L total, 0.9 mmol/L ionized Ca) did not change slow waves and motility. In conclusion, changes in

  13. Activation of endothelial and epithelial KCa2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    PubMed Central

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm; Laursen, Britt E; Pilegaard, Hans; Köhler, Ralf; Simonsen, Ulf

    2012-01-01

    BACKGROUND AND PURPOSE Small (KCa2) and intermediate (KCa3.1) conductance calcium-activated potassium channels (KCa) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we investigated the expression of KCa2.3 and KCa3.1 channels, and hypothesized that activation of these channels would produce relaxation of human bronchioles and pulmonary arteries. EXPERIMENTAL APPROACH Channel expression and functional studies were conducted in human isolated small pulmonary arteries and bronchioles. KCa2 and KCa3.1 currents were examined in human small airways epithelial (HSAEpi) cells by whole-cell patch clamp techniques. RESULTS While KCa2.3 expression was similar, KCa3.1 protein was more highly expressed in pulmonary arteries than bronchioles. Immunoreactive KCa2.3 and KCa3.1 proteins were found in both endothelium and epithelium. KCa currents were present in HSAEpi cells and sensitive to the KCa2.3 blocker UCL1684 and the KCa3.1 blocker TRAM-34. In pulmonary arteries contracted by U46619 and in bronchioles contracted by histamine, the KCa2.3/ KCa3.1 activator, NS309, induced concentration-dependent relaxations. NS309 was equally potent in relaxing pulmonary arteries, but less potent in bronchioles, than salbutamol. NS309 relaxations were blocked by the KCa2 channel blocker apamin, while the KCa3.1 channel blocker, charybdotoxin failed to reduce relaxation to NS309 (0.01–1 µM). CONCLUSIONS AND IMPLICATIONS KCa2.3 and KCa3.1 channels are expressed in the endothelium of human pulmonary arteries and epithelium of bronchioles. KCa2.3 channels contributed to endo- and epithelium-dependent relaxations suggesting that these channels are potential targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease. PMID:22506557

  14. Cutaneous blood flow during intradermal NO administration in young and older adults: roles for calcium-activated potassium channels and cyclooxygenase?

    PubMed

    Fujii, Naoto; Meade, Robert D; Minson, Christopher T; Brunt, Vienna E; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2016-06-01

    Nitric oxide (NO) increases cutaneous blood flow; however, the underpinning mechanism(s) remains to be elucidated. We hypothesized that the cutaneous blood flow response during intradermal administration of sodium nitroprusside (SNP, a NO donor) is regulated by calcium-activated potassium (KCa) channels and cyclooxygenase (COX) in young adults. We also hypothesized that these contributions are diminished in older adults given that aging can downregulate KCa channels and reduce COX-derived vasodilator prostanoids. In 10 young (23 ± 5 yr) and 10 older (54 ± 4 yr) adults, cutaneous vascular conductance (CVC) was measured at four forearm skin sites infused with 1) Ringer (Control), 2) 50 mM tetraethylammonium (TEA), a nonspecific KCa channel blocker, 3) 10 mM ketorolac, a nonspecific COX inhibitor, or 4) 50 mM TEA + 10 mM ketorolac via intradermal microdialysis. All skin sites were coinfused with incremental doses of SNP (0.005, 0.05, 0.5, 5, and 50 mM each for 25 min). During SNP administration, CVC was similar at the ketorolac site (0.005-50 mM, all P > 0.05) relative to Control, but lower at the TEA and TEA + ketorolac sites (0.005-0.05 mM, all P < 0.05) in young adults. In older adults, ketorolac increased CVC relative to Control during 0.005-0.05 mM SNP administration (all P < 0.05), but this increase was not observed when TEA was coadministered (all P > 0.05). Furthermore, TEA alone did not modulate CVC during any concentration of SNP administration in older adults (all P > 0.05). We show that during low-dose NO administration (e.g., 0.005-0.05 mM), KCa channels contribute to cutaneous blood flow regulation in young adults; however, in older adults, COX inhibition increases cutaneous blood flow through a KCa channel-dependent mechanism. PMID:27053645

  15. Cognitive recovery by chronic activation of the large-conductance calcium-activated potassium channel in a mouse model of Alzheimer's disease.

    PubMed

    Wang, Li; Kang, Huicong; Li, Yongzhi; Shui, Yuan; Yamamoto, Ryo; Sugai, Tokio; Kato, Nobuo

    2015-05-01

    We previously showed that activity of the large conductance calcium-activated potassium (Big-K; BK) channels is suppressed in 3xTg Alzheimer disease (AD) model mice. However, its behavioral significance is not known. In the present report, ventricular injection of the BK channel activator isopimaric acid (ISO) was conducted to examine whether BK channel activation ameliorates cognition in 3xTg mice. The novel object recognition (NOR) test revealed that chronic injection of ISO improved non-spatial memory in 3xTg mice. In the Morris water maze, the probe test demonstrated an improved spatial memory after ISO injection. Electrophysiological underpinnings of the ISO effect were then examined in slices obtained from the mice after behavior. At hippocampal CA1 synapses, the basic synaptic transmission was abnormally elevated and long-term potentiation (LTP) was partially suppressed in 3xTg mice. These were both recovered by ISO treatment. We then confirmed suppressed BK channel activity in 3xTg mice by measuring the half-width of evoked action potentials. This was also recovered by ISO treatment. We previously showed that the recovery of BK channel activity accompanies reduction of neuronal excitability in pyramidal cells. Here again, pyramidal cell excitability, as assessed by calculating the frequency of evoked spikes, was elevated in the 3xTg mouse and was normalized by ISO. ELISA experiments demonstrated an ISO-induced reduction of Aβ1-42 content in hippocampal tissue in 3xTg mice. The present study thus suggests a potential therapeutic utility of BK channel activators for AD. PMID:25577958

  16. Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients

    PubMed Central

    Liu, Yuhong; Xie, An; Singh, Arun K; Ehsan, Afshin; Choudhary, Gaurav; Dudley, Samuel; Sellke, Frank W; Feng, Jun

    2015-01-01

    Background Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SKCa/IKCa) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. Methods and Results Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SKCa/IKCa activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SKCa/IKCa in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SKCa/IKCa activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SKCa/IKCa currents and hyperpolarization induced by the SKCa/IKCa activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SKCa/IKCa proteins in the coronary microvessels. Conclusions Diabetes is associated with inactivation of endothelial SKCa/IKCa channels, which may contribute to endothelial dysfunction in diabetic patients. PMID:26304940

  17. Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors.

    PubMed

    Blanchet, C; Eróstegui, C; Sugasawa, M; Dulon, D

    1996-04-15

    The cholinergic efferent inhibition of mammalian outer hair cells (OHCs) is mediated by a hyperpolarizing K+ current. We have made whole-cell tight-seal recordings from single OHCs isolated from the guinea pig cochlea to characterize the mechanism by which acetylcholine (ACh) activates K+ channels. After ACh application, OHCs exhibited a biphasic response: an early depolarizing current preceding the predominant hyperpolarizing K+ current. The current-voltage (I-V) relationship of the ACh-induced response displayed an N-shape, suggesting the involvement of Ca2+ influx. When whole-cell recording was combined with confocal calcium imaging, we simultaneously observed the ACh-induced K+ current (IK(ACh)) and a Ca2+ response restricted to the synaptic area of the cell. This IK(ACh) could be prevented by loading OHCs with 10 mM of the fast Ca2+ buffer bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (or BAPTA), therefore allowing the observation of the ACh-induced early current in isolation. This early current revealed nicotinic features because it activated with an intrinsic delay in the millisecond range, reversed nearly in between potassium and sodium equilibrium potentials, and was blocked by curare. However, it was strongly reduced in the absence of external Ca2+, and its I-V relationship displayed an unusual outward rectification at positive membrane potentials and an inward rectification below -60 mV. The results indicate that the cholinergic response of mammalian OHCs involves a "nicotinic-like" nonspecific cation channel through which Ca2+ enters and triggers activation of nearby Ca2+-dependent K+ channels. PMID:8786433

  18. Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient.

    PubMed

    Kumari, K G I D; Moldrup, Per; Paradelo, Marcos; Elsgaard, Lars; Hauggaard-Nielsen, Henrik; de Jonge, Lis W

    2014-03-01

    Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions before biochar application. This study examined the short-term physicochemical effects of biochar amendment in an agricultural field in Denmark with a calcium carbonate (CaCO) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500°C) was applied at a rate of 20 t ha. Five undisturbed soil columns (10 cm diam., 8 cm height) were sampled from each plot 7 mo after biochar application, and a series of leaching experiments was conducted. The leachate was analyzed for tritium (used as a tracer), colloids, and phosphorus concentration. The results revealed that the presence of CaCO has resulted in marked changes in soil structure (bulk density) and soil chemical properties (e.g., pH and ionic strength), which significantly affected air and water transport and colloid and phosphorous leaching. In denser soils (bulk density, 1.57-1.69 g cm) preferential flow dominated the transport and caused an enhanced movement of air and water, whereas in less dense soils (bulk density, 1.38-1.52 g cm) matrix flow predominated the transport. Compared with reference soils, biochar-amended soils showed slightly lower air permeability and a shorter travel time for 5% of the applied tracer (tritium) to leach through the soil columns. Colloid and phosphorus leaching was observed to be time dependent in soils with low CaCO. Biochar-amended soils showed higher colloid and P release than reference soils. Field-scale variations in total colloid and P leaching reflected clear effects of changes in pH and ionic strength due to the presence of CaCO. There was a linear relationship between colloid and P concentrations in the leachate, suggesting that colloid-facilitated P leaching was the dominant P transport mechanism. PMID:25602666

  19. Physiology of Calcium and Phosphate Metabolism: 1980 Refresher Course, Syllabus.

    ERIC Educational Resources Information Center

    Knox, Franklyn G., Ed.

    1980-01-01

    This syllabus reviews information concerning calcium and phosphate regulation. Topics of interest include the following: calcium metabolism, phosphorus metabolism, bone, parathyroid hormone, calcitonin, and vitamin D. (CS)

  20. Biotribocorrosion (tribo-electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture.

    PubMed

    Felgueiras, H P; Castanheira, L; Changotade, S; Poirier, F; Oughlis, S; Henriques, M; Chakar, C; Naaman, N; Younes, R; Migonney, V; Celis, J P; Ponthiaux, P; Rocha, L A; Lutomski, D

    2015-04-01

    The purpose of this study was to investigate the relationship between the osteoblastic cells behavior and biotribocorrosion phenomena on bioactive titanium (Ti). Ti substrates submitted to bioactive anodic oxidation and etching treatments were cultured up to 28 days with MG63 osteoblast-like cells. Important parameters of in vitro bone-like tissue formation were assessed. Although no major differences were observed between the surfaces topography (both rough) and wettability (both hydrophobic), a significant increase in cell attachment and differentiation was detected on the anodized substrates as product of favorable surface morphology and chemical composition. Alkaline phosphatase production has increased (≈20 nmol/min/mg of protein) on the anodized materials, while phosphate concentration has reached the double of the etched material and calcium production increased (over 20 µg/mL). The mechanical and biological stability of the anodic surfaces were also put to test through biotribocorrosion sliding solicitations, putting in evidence the resistance of the anodic layer and the cells capacity of regeneration after implant degradation. The Ti osteointegration abilities were also confirmed by the development of strong cell-biomaterial bonds at the interface, on both substrates. By combining the biological and mechanical results, the anodized Ti can be considered a viable option for dentistry. PMID:24989830

  1. Effect of different levels of calcium and phosphorus and their interaction on the performance of young broilers.

    PubMed

    Hamdi, M; López-Vergé, S; Manzanilla, E G; Barroeta, A C; Pérez, J F

    2015-09-01

    A study was conducted to evaluate the interaction among 3 levels of Ca and 4 levels of nonphytate phosphorus (NPP) on broiler performance, bone ash, and whole-body fractional retention of Ca and P. Ross male broiler-chicks (n=420) were sorted by BW at d 1 posthatch and assigned to 5 cages/diet with 7 birds/cage. Twelve diets were arranged in a 3×4 factorial of 3 levels Ca (at 0.5, 0.7, or 0.9%) and 4 levels NPP (at 0.25, 0.31, 0.38, or 0.45%) with a high dose of phytase (1,150 U/kg) in all diets. On d 14, chickens were euthanized and the right tibia was collected from 3 birds/replicate; the rest of the animals were used to measure whole-body Ca and P retention. An interaction was observed between the level of Ca and NPP on feed intake (FI), tibia weight, and bone-ash content (P<0.05). Increasing the level of NPP from 0.25 to 0.38% increased FI (P<0.05) on chickens fed the high-Ca diet (0.9%), but not with Ca at 0.5 or 0.7%. Broilers achieved their greatest weight gain (WG) and bone formation with 0.7% Ca and 0.38% NPP. Increasing the dietary Ca decreased its fractional retention from 74% with dietary Ca at 0.5 to 46% with Ca at 0.9%. The increase in the levels of dietary P steadily increased the fractional retention of Ca from 53 to 61%, and increased the whole-body Ca content (g/kg BW). It can be concluded that a dietary level of 0.38% NPP/kg in diets containing a high dose of phytase (1,150 U/kg) and 0.7% Ca are adequate to ensure broiler performance and bone ash of broilers from d 0 to d 14 posthatch. PMID:26195805

  2. [Zinc, copper, iron, calcium, phosphorus and magnesium content of maternal milk during the first 3 weeks of lactation].

    PubMed

    Itriago, A; Carrión, N; Fernández, A; Puig, M; Dini, E

    1997-03-01

    Zinc, Copper, Iron. Calcium Phosphorous and Magnesium contents were determined in early milk samples in 72 mothers from Caracas city. The samples were collected during three different lactation stages: calostro (3 days), transitional (7 days) and mature milk (21 days). The more significant changes in the concentration of the studied elements were observed during the first two weeks, them they stabilize during the third week. The Zn, Cu, Fe, Ca, P and Mg average concentration found in calostro samples were 7.1 +/- 2.5 micrograms/ml; 0.52 +/- 0.15 microgram/ml; 0.49 +/- 0.14 microgram/ml; 214 +/- 62 micrograms/ml, 107 +/- 27 micrograms/ml and 33.3 +/- 7.5 micrograms/ml. respectively. For the transitional milk samples the average concentration found for the studied elements were: 4.0 +/- 1.0 micrograms/ml; 0.50 +/- 0.10 microgram/ml; 0.38 +/- 0.08 microgram/ml, 292 +/- 62 micrograms/ml; 213 +/- 36 micrograms/ml and 30.4 +/- 5.2 micrograms/ml. For the mature milk samples the results were: 2.8 +/- 2.7 micrograms/ml; 0.47 +/- 0.08 microgram/ml; 0.36 +/- 0.09 microgram/ml; 244 +/- 49 micrograms/ml; 175 +/-35 micrograms/ml and 25.2 +/- 3.3 micrograms/ml. The concentration range for all trace elements studied (Cu, Fe and Zn) can be considered normal. For the major elements (Ca, P and Mg) the results obtained in our work are similar to those reported for other countries. These facts allows to conclude that the nutritional state of this mother population is adequate to satisfy the lactate's requirements during their first live stage. PMID:9429635

  3. Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats.

    PubMed

    La Fuente, José M; Fernández, Argentina; Cuevas, Pedro; González-Corrochano, Rocío; Chen, Mao Xiang; Angulo, Javier

    2014-07-15

    We have analysed the effects of large-conductance calcium-activated potassium channel (BK) stimulation on neurogenic and myogenic contraction of human bladder from healthy subjects and patients with urinary symptoms and evaluated the efficacy of activating BK to relief bladder hyperactivity in rats. Bladder specimens were obtained from organ donors and from men with benign prostatic hyperplasia (BPH). Contractions elicited by electrical field stimulation (EFS) and carbachol (CCh) were evaluated in isolated bladder strips. in vivo cystometric recordings were obtained in anesthetized rats under control and acetic acid-induced hyperactive conditions. Neurogenic contractions of human bladder were potentiated by blockade of BK and small-conductance calcium-activated potassium channels (SK) but were unaffected by the blockade of intermediate calcium-activated potassium channels (IK). EFS-induced contractions were inhibited by BK stimulation with NS-8 or NS1619 or by SK/IK stimulation with NS309 (3µM). CCh-induced contractions were not modified by blockade or stimulation of BK, IK or SK. The anti-cholinergic agent, oxybutynin (0.3µM) inhibited either neurogenic or CCh-induced contractions. Neurogenic contractions of bladders from BPH patients were less sensitive to BK inhibition and more sensitive to BK activation than healthy bladders. The BK activator, NS-8 (5mg/kg; i.v.), reversed bladder hyperactivity induced by acetic acid in rats, while oxybutynin was ineffective. NS-8 did not significantly impact blood pressure or heart rate. BK stimulation specifically inhibits neurogenic contractions in patients with urinary symptoms and relieves bladder hyperactivity in vivo without compromising bladder contractile capacity or cardiovascular safety, supporting its potential therapeutic use for relieving bladder overactivity. PMID:24747752

  4. Calcium sources and their interaction with the different levels of non-phytate phosphorus affect performance and bone mineralization in broiler chickens.

    PubMed

    Hamdi, M; Solà-Oriol, D; Davin, R; Perez, J F

    2015-09-01

    An experiment was conducted to evaluate the influence of different Ca sources (limestone, Ca chloride, and Lipocal, a fat-encapsulated tricalcium phosphate, TCP) in conjunction with 4 dietary levels of non-phytate P (NPP) on performance, ileal digestibility of Ca and P, and bone mineralization in broiler chickens. Calcium sources were also evaluated in vitro to measure acid-binding capacity (ABC) and Ca solubility at different pH values. Ca chloride showed the highest solubility of Ca, with TCP showing the highest ABC. Ross male broiler-chicks were sorted by BW at 1 d post-hatch and assigned to 5 cages per diet with 5 birds per cage. Twelve diets were arranged in a 3×4 factorial of the 3 Ca sources and 4 levels of NPP (0.3%, 0.35%, 0.4% or 0.45%) consisting of 4 added P levels (Ca(H2PO4)2) with a high dose of phytase (1,150 U/kg) in all diets. On d 14 post-hatch, 3 birds were euthanized, and ileal digesta and the right tibia were collected to determine ileal Ca and P digestibility and bone mineralization, respectively. Feed intake (FI) and weight gain (WG) on d 14 was higher (P<0.01) with TCP and limestone than with Ca chloride. Added P increased the tibia weight and tibia ash content in chicks fed TCP up to 0.4% NPP and limestone up to 0.35% NPP. Calcium ileal digestibility was higher (P<0.01) with Ca chloride (73.7%) than with limestone (67.1%) or TCP (66.8%), which increased (P<0.05) with added levels of P from monocalcium phosphate. Phosphorus ileal digestibility was not affected by the Ca source and increased (P<0.001) with added levels of NPP. It can be concluded that starting broilers responded better to low-soluble Ca sources compared to high-soluble sources. A level of 0.35%-0.40% NPP with a high dose of phytase (1,150 U/kg) in diets including limestone or TCP is sufficient to guarantee performance and bone formation for broiler chickens from d 0 to d 14. PMID:25638469

  5. Changing Dietary Calcium-Phosphorus Level and Cereal Source Selectively Alters Abundance of Bacteria and Metabolites in the Upper Gastrointestinal Tracts of Weaned Pigs

    PubMed Central

    Mann, Evelyne; Schmitz-Esser, Stephan; Wagner, Martin; Ritzmann, Mathias; Zebeli, Qendrim

    2013-01-01

    Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning. PMID:24038702

  6. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.)

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Abd_Allah, Elsayed F.; Hashem, Abeer; Sarwat, Maryam; Anjum, Naser A.; Gucel, Salih

    2016-01-01

    This work examined the role of exogenously applied calcium (Ca; 50 mM) and potassium (K; 10 mM) (alone and in combination) in alleviating the negative effects of cadmium (Cd; 200 μM) on growth, biochemical attributes, secondary metabolites and yield of chickpea (Cicer arietinum L.). Cd stress significantly decreased the length and weight (fresh and dry) of shoot and root and yield attributes in terms of number of pods and seed yield (vs. control). Exhibition of decreases in chlorophyll (Chl) a, Chl b, and total Chl was also observed with Cd-exposure when compared to control. However, Cd-exposure led to an increase in the content of carotenoids. In contrast, the exogenous application of Ca and K individually as well as in combination minimized the extent of Cd-impact on previous traits. C. arietinum seedlings subjected to Cd treatment exhibited increased contents of organic solute (proline, Pro) and total protein; whereas, Ca and K-supplementation further enhanced the Pro and total protein content. Additionally, compared to control, Cd-exposure also caused elevation in the contents of oxidative stress markers (hydrogen peroxidase, H2O2; malondialdehyde, MDA) and in the activity of antioxidant defense enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Ca, K, and Ca + K supplementation caused further enhancements in the activity of these enzymes but significantly decreased contents of H2O2 and MDA, also that of Cd accumulation in shoot and root. The contents of total phenol, flavonoid and mineral elements (S, Mn, Mg, Ca and K) that were also suppressed in Cd stressed plants in both shoot and root were restored to appreciable levels with Ca- and K-supplementation. However, the combination of Ca + K supplementation was more effective in bringing the positive response as compared to individual effect of Ca and K on Cd-exposed C. arietinum. Overall, this investigation suggests that application of Ca and/or K can

  7. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.).

    PubMed

    Ahmad, Parvaiz; Abdel Latef, Arafat A; Abd Allah, Elsayed F; Hashem, Abeer; Sarwat, Maryam; Anjum, Naser A; Gucel, Salih

    2016-01-01

    This work examined the role of exogenously applied calcium (Ca; 50 mM) and potassium (K; 10 mM) (alone and in combination) in alleviating the negative effects of cadmium (Cd; 200 μM) on growth, biochemical attributes, secondary metabolites and yield of chickpea (Cicer arietinum L.). Cd stress significantly decreased the length and weight (fresh and dry) of shoot and root and yield attributes in terms of number of pods and seed yield (vs. control). Exhibition of decreases in chlorophyll (Chl) a, Chl b, and total Chl was also observed with Cd-exposure when compared to control. However, Cd-exposure led to an increase in the content of carotenoids. In contrast, the exogenous application of Ca and K individually as well as in combination minimized the extent of Cd-impact on previous traits. C. arietinum seedlings subjected to Cd treatment exhibited increased contents of organic solute (proline, Pro) and total protein; whereas, Ca and K-supplementation further enhanced the Pro and total protein content. Additionally, compared to control, Cd-exposure also caused elevation in the contents of oxidative stress markers (hydrogen peroxidase, H2O2; malondialdehyde, MDA) and in the activity of antioxidant defense enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Ca, K, and Ca + K supplementation caused further enhancements in the activity of these enzymes but significantly decreased contents of H2O2 and MDA, also that of Cd accumulation in shoot and root. The contents of total phenol, flavonoid and mineral elements (S, Mn, Mg, Ca and K) that were also suppressed in Cd stressed plants in both shoot and root were restored to appreciable levels with Ca- and K-supplementation. However, the combination of Ca + K supplementation was more effective in bringing the positive response as compared to individual effect of Ca and K on Cd-exposed C. arietinum. Overall, this investigation suggests that application of Ca and/or K can

  8. Potassium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Potassium Share this page: Was this page helpful? Also known as: K Formal name: Potassium, blood or urine Related tests: Chloride , Sodium , Bicarbonate , ...

  9. Classification of hyperspectral data and neural networks to differentiate between typical leaves of wheat and those deficient in nitrogen, phosphorus, potassium and calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fast identification of insufficiency of nutrients using spectral features would be a useful instrument in farming and in other nutrient demanding agricultural systems such as those proposed for long period space missions. A Multilayer Perceptron (MLP) neural network and backpropagation algorithm w...

  10. [Relation between mineral fertilization and supply of potassium, calcium, magnesium and phosphorus to the population under conditions of intensive plant production in East Germany].

    PubMed

    Römer, W; Merbach, W

    1982-01-01

    In the past 25 years, mineral fertilization increased considerably in the GDR in the course of the intensification of plant production. This happened on the basis of computer-assisted advice on mineral fertilizing and resulted in the improvement of the mineral contents of the soil and also in a considerable increase in crop yields, the mineral contents typical of the respective plants remaining mostly unchanged or being in part increased. During the same period, the proportion of vegetable foods in the mineral supply to man decreased due to changes in food habits. Nevertheless, most of the P, K and Mg consumed in the nutrition still originates from vegetable products; only in case of Ca, milk is the main course. In the course of this development, the amounts of P, K and Ca consumed in the human nutrition increased, whereas the amount of Mg remained almost unchanged. There is some evidence of the (at last potential) danger of an insufficient supply of Ca and Mg. As the intensive plant production in the GDR furnishes high-mineral crops in sufficient quantity, a better supply of these minerals might be realized by reducing the losses due to processing (extraction rate of cereals, preservation) and by changing the food habits (more vegetable foods, greens). PMID:7099246

  11. Possible site of calcium regulation in rat exocrine pancreas cells: an X-ray microanalytical study

    SciTech Connect

    Roos, N.

    1988-03-01

    We analysed four subcellular compartments in rat exocrine pancreas cells, zymogen granules, cytoplasm surrounding the zymogen granules, mitochondria and cytoplasm in the basal part of the cells for sodium, magnesium, phosphorus, sulfur, chlorine, potassium and calcium content, using ultrathin frozen-dried cryosections. The highest concentrations of calcium were measured in the zymogen granules and the surrounding apical part of the cell containing Golgi apparatus, smooth endoplasmic reticulum and condensing vacuoles. Calcium concentrations in the basal part of the cells (mostly rough endoplasmic reticulum) were 60% lower than in the apical part of the cells. The lowest calcium concentrations were measured in mitochondria. The results suggest that other subcellular compartments than the rough endoplasmic reticulum and mitochondria might be involved in the intracellular Ca2+ regulation.

  12. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual sugars and water-soluble organic acids during ripening.

    PubMed

    Upreti, P; McKay, L L; Metzger, L E

    2006-02-01

    Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during

  13. Discovery of novel tetrahydroisoquinoline derivatives as orally active N-type calcium channel blockers with high selectivity for hERG potassium channels.

    PubMed

    Ogiyama, Takashi; Inoue, Makoto; Honda, Shugo; Yamada, Hiroyoshi; Watanabe, Toshihiro; Gotoh, Takayasu; Kiso, Tetsuo; Koakutsu, Akiko; Kakimoto, Shuichiro; Shishikura, Jun-ichi

    2014-12-15

    N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain. PMID:25456079

  14. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: Important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis

    SciTech Connect

    Payne, C.M.; Cromey, D.W. )

    1990-05-01

    A series of calcium phosphate standards having calcium/phosphorus (Ca/P) molar ratios of 0.50, 1.00, 1.50, and 1.67, respectively, was prepared for bulk specimen analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXA). The standards were mounted on carbon planchettes as either pure crystals or crystals embedded in epoxy resin. Ten different samples of each embedded and non-embedded standard were analyzed in a JEOL 100 CX electron microscope interfaced with a Kevex 8000 EDXA system using a lithium-drifted silicon detector and a multichannel analyzer. The Ca/P ratios were determined by calculating both net peak intensities without matrix corrections and atomic kappa-ratios using the MAGIC V computer program with ZAF correction factors for quantitative analysis. There was such extensive absorption of phosphorus X-rays in standards embedded in an epoxy matrix that the observed Ca/P ratios were statistically compatible with four different standards ranging in theoretical Ca/P ratios from 1.0 to 1.67. Although the non-embedded crystals showed a greater separation in the Ca/P ratios, both methods of preparation produced serious flaws in analysis. Direct application of the discovery of this caveat to the identification of suspected bone fragments for forensic science purposes is discussed.

  15. Availability of phosphorus from selected inorganic phosphate to juvenile abalone, Haliotis discus hannai ino.

    NASA Astrophysics Data System (ADS)

    Tan, Bei-Ping; Mai, Kang-Sen; Xu, Wei

    2002-06-01

    The availability of phosphorus to juvenile abalone, Haliotis discus hannai from primary, secondary and tertiary calcium phosphate, primary sodium or potassium phosphate separately or in combination was determined in a 120-day feeding trial. Seven semi-purified diets were formulated to contain relatively constant dietary phosphorus, ranging from 0.78% 0.82%. The concentrations of dietary phosphorus were presumed to be slightly below the requirement for abalone. A brown alga, Laminaria japonica, was used as a control diet. Abalone juveniles of silimar size (average weight 1.18 g; average shell length 18.74 mm) were distributed in a single-pass, flow-through system using a completely randomized design with eight treatments and three replicates each treatment. The survival ranged from 71.1% to 81.1%, and was not significantly (P>0.05) related to dietary treatment. However, the weight gain rate (41.72% 65.02%), daily increment in shell length (36.87 55.07 μm) and muscle RNA-DNA ratio (3.44 4.69) were significantly (P<0.05) affected by dietary treatment. Soft body alkaline phosphatase activity (10.9 19.8 U/g wet tissue) and carcass levels of lipid (7.71% 9.33%) and protein (46.68% 49.35%) were significantly (P<0.05) responsive to available phosphorus of the diets. Dietary treatment had significant effect (P<0.05) on concentrations of phosphorus in the whole body (WB) and soft body (SB). Apparent digestibility coefficients (45% 97%) of phosphorus were also significantly (P<0.05) different between dietary treatments. The results indicated that among these inorganic compounds, primary calcium, potassium and sodium phosphates separately or in combination could be utilized effectively by juvenile abalone as dietary phosphorus sources (availability ranging from 87% 97%). However, secondary and tertiary calcium phosphates were found to be low in availability, the values being 45% and 77%, repectively.

  16. Phosphorus removal from synthetic and municipal wastewater using spent alum sludge.

    PubMed

    Georgantas, D A; Grigoropoulou, H P

    2005-01-01

    In the present study, phosphorus removal was studied using as coagulant spent alum sludge from a water treatment plant of EYDAP (Athens Water Supply and Sewerage Company) and compared to alum (Al2(SO4)3.18H2O), iron chloride (FeCl3.7H2O), iron sulfate (Fe2(S04).10H2O) and calcium hydroxide (Ca(OH)2) at a constant pH (equal to 6). The comparison was based on their efficiency to remove phosphorus in synthetic wastewater consisting of 10 mg/L P as potassium dihydrogen phosphate and 50 mg/L N as ammonium chloride, The experiments were carried out using a jar-test apparatus and the measurements were performed according to the Standard Methods for the Examination of Water and Wastewater. Pure alum, iron chloride and iron sulfate were much more efficient in phosphorus removal than the spent alum sludge but in the case of calcium hydroxide, phosphorus removal was very low in pH = 6. Specifically, orthophosphate were totally removed by alum using 15 mg/L as Al, by alum sludge using 75 mg/L as Al and by FeCl3.7H2O or Fe2(SO4).10H2O using 30 mg/L of Fe while in the case of calcium hydroxide P removal was actually zero. pH measurements showed that the uptake of phosphates is associated to the release of OH ions in the solution and that the end of P uptake is accompanied by the stabilization of pH. Finally this spent alum sludge was tested on municipal wastewater and proved to be effective as apart from phosphorus it was shown to remove turbidity and COD. PMID:16459830

  17. The heart and potassium: a banana republic.

    PubMed

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium. PMID:23425010

  18. Demographic, Dietary, and Urinary Factors and 24-h Urinary Calcium Excretion

    PubMed Central

    Curhan, Gary C.

    2009-01-01

    Background and objectives: Higher urinary calcium is a risk factor for nephrolithiasis. This study delineated associations between demographic, dietary, and urinary factors and 24-h urinary calcium. Design, setting, participants, & measurements: Cross-sectional studies were conducted of 2201 stone formers (SF) and 1167 nonstone formers (NSF) in the Health Professionals Follow-up Study (men) and Nurses' Health Studies I and II (older and younger women). Results: Median urinary calcium was 182 mg/d in men, 182 mg/d in older women, and 192 mg/d in younger women. Compared with NSF, urinary calcium as a fraction of calcium intake was 33 to 38% higher in SF (P values ≤0.01). In regression analyses, participants were combined because associations with urinary calcium were similar in each cohort and in SF and NSF. After multivariate adjustment, participants in the highest quartile of calcium intake excreted 18 mg/d more urinary calcium than those in the lowest (P trend =0.01). Caffeine and family history of nephrolithiasis were positively associated, whereas urinary potassium, thiazides, gout, and age were inversely associated, with urinary calcium. After multivariate adjustment, participants in the highest quartiles of urinary magnesium, sodium, sulfate, citrate, phosphorus, and volume excreted 71 mg/d, 37 mg/d, 44 mg/d, 61 mg/d, 37 mg/d, and 24 mg/d more urinary calcium, respectively, than participants in the lowest (P values trend ≤0.01). Conclusions: Intestinal calcium absorption and/or negative calcium balance is greater in SF than NSF. Higher calcium intakes at levels typically observed in free-living individuals are associated with only small increases in urinary calcium. PMID:19820135

  19. Phosphorus Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Phosphorus Share this page: Was this page helpful? Also ... else I should know? How is it used? Phosphorus tests are most often ordered along with other ...

  20. A Case of Hypophosphatemia with Increased Urinary Excretion of Phosphorus Associated with Ibrutinib

    PubMed Central

    Wysokinska, Ewa M.; Thompson, Amanda M.; Franco Palacios, Carlos R.

    2016-01-01

    Ibrutinib, an irreversible oral inhibitor of Bruton's tyrosine kinase, has been used in the treatment of patients with multiple hematologic malignancies. A 59-year-old male with chronic lymphocytic leukemia was treated with 420 mg/day of ibrutinib. No evidence of bruising or diarrhea was noted. The treatment was complicated by a transient increase in creatinine (from a baseline of 1.2 to 1.5 mg/dl) and potassium (reaching a peak of 6.5 mEq/l). Uric acid and calcium levels were normal. The patient developed hypophosphatemia (prior to initiation of therapy the serum phosphorus was 2.9 mg/dl). No metabolic acidosis was noted. Urinalysis showed no glucosuria or proteinuria. Urinary fraction of excretion of phosphate was found to be 345% (normal <5%). Because of these changes, ibrutinib was held, and the patient was given kayexalate. Serum potassium normalized. Serum phosphorus was checked a couple of weeks later and also normalized. A lower dose of ibrutinib (140 mg/day) was restarted. Upon follow-up, the phosphorus level has been between 2.9 and 3.2 mg/dl. No further evidence of hyperkalemia has been noted. Renal function has remained at baseline. To the best of our knowledge, this is the first case report describing the mechanism of hypophosphatemia in a patient treated with ibrutinib. PMID:27194982

  1. A Case of Hypophosphatemia with Increased Urinary Excretion of Phosphorus Associated with Ibrutinib.

    PubMed

    Wysokinska, Ewa M; Thompson, Amanda M; Franco Palacios, Carlos R

    2016-01-01

    Ibrutinib, an irreversible oral inhibitor of Bruton's tyrosine kinase, has been used in the treatment of patients with multiple hematologic malignancies. A 59-year-old male with chronic lymphocytic leukemia was treated with 420 mg/day of ibrutinib. No evidence of bruising or diarrhea was noted. The treatment was complicated by a transient increase in creatinine (from a baseline of 1.2 to 1.5 mg/dl) and potassium (reaching a peak of 6.5 mEq/l). Uric acid and calcium levels were normal. The patient developed hypophosphatemia (prior to initiation of therapy the serum phosphorus was 2.9 mg/dl). No metabolic acidosis was noted. Urinalysis showed no glucosuria or proteinuria. Urinary fraction of excretion of phosphate was found to be 345% (normal <5%). Because of these changes, ibrutinib was held, and the patient was given kayexalate. Serum potassium normalized. Serum phosphorus was checked a couple of weeks later and also normalized. A lower dose of ibrutinib (140 mg/day) was restarted. Upon follow-up, the phosphorus level has been between 2.9 and 3.2 mg/dl. No further evidence of hyperkalemia has been noted. Renal function has remained at baseline. To the best of our knowledge, this is the first case report describing the mechanism of hypophosphatemia in a patient treated with ibrutinib. PMID:27194982

  2. Effectiveness of acidic calcium sulfate with propionic and lactic acid and lactates as postprocessing dipping solutions to control Listeria monocytogenes on frankfurters with or without potassium lactate and stored vacuum packaged at 4.5 degrees C.

    PubMed

    Nuñez de Gonzalez, Maryuri T; Keeton, Jimmy T; Acuff, Gary R; Ringer, Larry J; Lucia, Lisa M

    2004-05-01

    The safety of ready-to-eat meat products such as frankfurters can be enhanced by treating with approved antimicrobial substances to control the growth of Listeria monocytogenes. We evaluated the effectiveness of acidic calcium sulfate with propionic and lactic acid, potassium lactate, or lactic acid postprocessing dipping solutions to control L. monocytogenes inoculated (ca. 10(8) CFU/ml) onto the surface of frankfurters with or without potassium lactate and stored in vacuum packages at 4.5 degrees C for up to 12 weeks. Two frankfurter formulations were manufactured without (control) or with potassium lactate (KL, 3.3% of a 60% [wt/wt] commercially available syrup). After cooking, chilling, and peeling, each batch was divided into inoculated (four strains of L. monocytogenes mixture) and noninoculated groups. Each group was treated with four different dips: (i) control (saline solution), (ii) acidic calcium sulfate with propionic and lactic acid (ACS, 1:2 water), (iii) KL, or (iv) lactic acid (LA, 3.4% of a 88% [wt/wt] commercially available syrup) for 30 s. Noninoculated frankfurters were periodically analyzed for pH, water activity, residual nitrite, and aerobic plate counts (APCs), and L. monocytogenes counts (modified Oxford medium) were determined on inoculated samples. Surface APC counts remained at or near the lower limit of detection (<2 log CFU per frank) on franks with or without KL and treated with ACS or LA throughout 12 weeks at 4.5 degrees C. L. monoctogenes counts remained at the minimum level of detection on all franks treated with the ACS dip, which indicated a residual bactericidal effect when L. monocytogenes populations were monitored over 12 weeks. L. monocytogenes numbers were also reduced, but not to the same degree in franks made without or with KL and treated with LA. These results revealed the effectiveness of ACS (bactericidal effect) or LA (bacteriostatic effect) as postprocessing dipping solutions to inhibit or control the growth of L

  3. Effects of broiler litter ash, layer manure ash and calcium phosphate on corn, wheat and soybean growth, phosphorus and arsenic uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter is being incinerated in order to reduce excess litter and to increase the percentage of renewable fuel used to generate electricity. Ash from incinerated litter has been effective in increasing crop growth. However, there is no current literature comparing phosphorus availability fr...

  4. The role of potassium and other ions in the control of aldosterone synthesis

    SciTech Connect

    Kenyon, C.J.; Shepherd, R.M.; Fraser, R.; Pediani, J.D.; Elder, H.Y. )

    1991-01-01

    Fast and slow K+ efflux components, independently regulated by angiotensin II (AII), have been identified in bovine adrenocortical cells. The authors have further investigated the role of potassium in the control of aldosterone synthesis in two ways. Firstly, isotopic tracers, in conjunction with channel modulators, have been used to study the interrelationship of K+ and Ca2+ in the control of AII-stimulated aldosterone synthesis. Secondly, electron probe X-ray microanalysis (EPXMA) was used to quantify potassium, sodium, chlorine and phosphorous in control and AII-stimulated cells. The effects of verapamil on 43K efflux were measured at two stages during AII stimulation. During the first ten minutes of treatment, when efflux via the fast component predominates, AII and verapamil both slowed efflux and their effects were additive. If verapamil was added later, at the time when efflux by the fast component appeared exhausted and the stimulatory effect of AII on the slow efflux component was apparent, it again slowed efflux. These data suggest that verapamil prevents calcium-gated K+ channels from opening by blocking Ca2+ channels. However, verapamil had no effect on AII-stimulated calcium efflux. In addition to blocking Ca2+ channels, verapamil may directly inhibit potassium efflux. EPXMA showed a bimodal distribution of potassium concentrations in control cells. However, in cells stimulated with AII for five minutes, the mean potassium content was less than in controls and was not bimodally distributed. Sodium content was increased by AII-treatment, chlorine was lowered and phosphorus remained unchanged. The data confirm previous observations that AII inhibits Na+/K+ ATPase activity.

  5. Development of a method based on inductively coupled plasma-dynamic reaction cell-mass spectrometry for the simultaneous determination of phosphorus, calcium and strontium in bone and dental tissue

    NASA Astrophysics Data System (ADS)

    De Muynck, David; Vanhaecke, Frank

    2009-05-01

    A method, based on the use of a quadrupole-based inductively coupled plasma-mass spectrometry instrument equipped with a quadrupole-based collision/reaction cell (dynamic reaction cell, DRC), was developed for the simultaneous determination of phosphorus, calcium and strontium in bone and dental (enamel and dentine) tissue. The use of NH 3, introduced at a gas flow rate of 0.8 mL min - 1 in the dynamic reaction cell, combined with a rejection parameter q (RPq) setting of 0.65, allows interference-free determination of calcium via its low-abundant isotopes 42Ca, 43Ca and 44Ca, and of strontium via its isotopes 86Sr and 88Sr that are freed from overlap due to the occurrence of ArCa + and/or Ca 2+ ions. Also the determination of phosphorus ( 31P, mono-isotopic) was shown to be achievable using the same dynamic reaction cell operating conditions. The bone certified reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were used for validation of the measurement protocol that was shown capable of providing accurate and reproducible results. Detection limits of P, Ca and Sr in dental tissue digests were established as 3 µg L - 1 for P, 2 µg L - 1 for Ca and 0.2 µg L - 1 for Sr. This method can be used to simultaneously (i) evaluate the impact of diagenesis on the elemental and isotopic composition of buried skeletal tissue via its Ca/P ratio and (ii) determine its Sr concentration. The measurement protocol was demonstrated as fit-for-purpose by the analysis of a set of teeth of archaeological interest for their Ca/P ratio and Sr concentration.

  6. Potassium Iodide

    MedlinePlus

    ... radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. ... only take potassium iodide if there is a nuclear radiation emergency and public officials tell you that you ...

  7. Potassium Iodide

    MedlinePlus

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. You ...

  8. Potassium test

    MedlinePlus

    ... also be done if your provider suspects metabolic acidosis (for example, caused by uncontrolled diabetes) or alkalosis ( ... Hypoaldosteronism (very rare) Kidney failure Metabolic or respiratory acidosis Red blood cell destruction Too much potassium in ...

  9. Calcium Induces Long-Term Legacy Effects in a Subalpine Ecosystem

    PubMed Central

    Schaffner, Urs; Alewell, Christine; Eschen, René; Matthies, Diethart; Spiegelberger, Thomas; Hegg, Otto

    2012-01-01

    Human activities have transformed a significant proportion of the world’s land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m−2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems. PMID:23284779

  10. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study.

    PubMed Central

    Sheikh, M S; Maguire, J A; Emmett, M; Santa Ana, C A; Nicar, M J; Schiller, L R; Fordtran, J S

    1989-01-01

    Antacids used to decrease phosphorus absorption in patients with renal failure may be toxic. To find more efficient or less toxic binders, a three-part study was conducted. First, theoretical calculations showed that phosphorus binding occurs in the following order of avidity: Al3+ greater than H+ greater than Ca2+ greater than Mg2+. In the presence of acid (as in the stomach), aluminum can therefore bind phosphorus better than calcium or magnesium. Second, in vitro studies showed that the time required to reach equilibrium varied from 10 min to 3 wk among different compounds, depending upon solubility in acid and neutral solutions. Third, the relative order of effectiveness of binders in vivo was accurately predicted from theoretical and in vitro results; specifically, calcium acetate and aluminum carbonate gel were superior to calcium carbonate or calcium citrate in inhibiting dietary phosphorus absorption in normal subjects. We concluded that: (a) inhibition of phosphorus absorption by binders involves a complex interplay between chemical reactions and ion transport processes in the stomach and small intestine; (b) theoretical and in vitro studies can identify potentially better in vivo phosphorus binders; and (c) calcium acetate, not previously used for medical purposes, is approximately as efficient as aluminum carbonate gel and more efficient as a phosphorus binder than other currently used calcium salts. PMID:2910921

  11. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na+/K+ ATPase on EDHF relaxations in the rat hepatic artery

    PubMed Central

    Andersson, David A; Zygmunt, Peter M; Movahed, Pouya; Andersson, Tomas L G; Högestätt, Edward D

    2000-01-01

    In the rat hepatic artery, the SKCa inhibitors UCL 1684 (300 nM) completely blocked, and scyllatoxin (1 μM) and d-tubocurarine (100 μM) partially inhibited EDHF relaxations when each of them was combined with charybdotoxin (300 nM).The IKCa inhibitors clotrimazole (3 μM) and 2-chlorophenyl-bisphenyl-methanol (3 μM) strongly depressed EDHF relaxations when each of them was combined with apamin (300 nM). The cytochrome P450 mono-oxygenase inhibitor ketoconazole (10 μM) had no effect in the presence of apamin.Ciclazindol (10 μM), which abolishes EDHF relaxations in the presence of apamin, almost completely prevented the calcium ionophore (A23187) stimulated 86Rb+ influx via the Gardos channel (IKCa) in human erythrocytes.The Na+/K+ ATPase inhibitor ouabain (500 μM) and the KIR blocker Ba2+ (30 μM) neither alone nor in combination inhibited EDHF relaxations. Ba2+ was also without effect in the presence of either apamin or charybdotoxin.In contrast to EDHF, an increase in extracellular [K+] from 4.6 mM to 9.6, 14.6 and 19.6 mM inconsistently relaxed arteries. In K+-free physiological salt solution, re-admission of K+ always caused complete and sustained relaxations which were abolished by ouabain but unaffected by Ba2+.The present study provides pharmacological evidence for the involvement of SKCa and IKCa in the action of EDHF in the rat hepatic artery. Our results are not consistent with the idea that EDHF is K+ activating Na+/K+ ATPase and KIR in this blood vessel. PMID:10742306

  12. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  13. High pressure synthesis and crystal structure of a ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} containing layer structured calcium sub-network isomorphous with black phosphorus

    SciTech Connect

    Tanaka, Masashi; Zhang, Shuai; Tanaka, Yuki; Inumaru, Kei; Yamanaka, Shoji

    2013-02-15

    The Zintl compound CaAl{sub 2}Si{sub 2} is peritectically decomposed to a mixture of Ca{sub 2}Al{sub 3}Si{sub 4} and aluminum metal at temperatures above 600 Degree-Sign C under a pressure of 5 GPa. The new ternary compound Ca{sub 2}Al{sub 3}Sl{sub 4} crystalizes with the space group Cmc2{sub 1} and the lattice parameters a=5.8846(8), b=14.973(1), and c=7.7966(5) A. The structure is composed of aluminum silicide framework [Al{sub 3}Si{sub 4}] and layer structured [Ca{sub 2}] network interpenetrating with each other. The electron probe microanalysis (EPMA) shows the formation of solid solutions Ca{sub 2}Al{sub 3-x}Si{sub 4+x} (x<0.6). The layer structured [Ca{sub 2}] sub-network is isomorphous with black phosphorus. The new ternary compound shows superconductivity with a transition temperature (T{sub c}) of 6.4 K. The band structure calculation suggests that the superconductivity should occur through the conduction bands mainly composed of 3p orbitals of the aluminum silicide framework. - Graphical abstract: A new ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} has been prepared under high pressure and high temperature conditions, which includes layer structured calcium sub-network isomorphous with black phosphorus. Highlights: Black-Right-Pointing-Pointer A typical Zintl compound CaAl{sub 2}Si{sub 2} melts congruently at ambient pressure. Black-Right-Pointing-Pointer Under high pressure CaAl{sub 2}Si{sub 2} decomposes to Ca{sub 2}Al{sub 3}Si{sub 4} and Al at {approx}600 Degree-Sign C. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} contains Ca sub-network isomorphous with black phosphorus. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} shows superconductivity with a transition temperature of 6.4 K.

  14. Phytate phosphorus intake and disappearance in the gastrointestinal tract of high producing dairy cows.

    PubMed

    Clark, W D; Wohlt, J E; Gilbreath, R L; Zajac, P K

    1986-12-01

    Thirty Holstein cows were fed diets of 50% grain and 50% corn silage (dry matter basis) through the first 18 wk of lactation. Grain mixes were supplemented with inorganic calcium sources (aragonite, calcite flour, or albacar) to provide .6 or .9% dietary calcium (dry matter basis). Phytate phosphorus intake averaged 38.3 and 42.6 g/d in digestion trials conducted during wk 4 and 10 of lactation, respectively. Even though large quantities of feed and significant amounts of grain were consumed, 98% of dietary phytate phosphorus was hydrolyzed to inorganic phosphorus. Neither calcium source nor calcium quantity affected the hydrolysis of phytate phosphorus. PMID:3558929

  15. The Effects of Dietary Phosphorus on the Growth Performance and Phosphorus Excretion of Dairy Heifers

    PubMed Central

    Zhang, B.; Wang, C.; Wei, Z. H.; Sun, H. Z.; Xu, G. Z.; Liu, J. X.; Liu, H. Y.

    2016-01-01

    The objective of this study was to investigate the effects of reducing dietary phosphorus (P) on the frame size, udder traits, blood parameters and nutrient digestibility coefficient in 8- to 10-month-old Holstein heifers. Forty-five heifers were divided into 15 blocks according to the mo of age and were randomly assigned one of three dietary treatments: 0.26% (low P [LP]), 0.36% (medium P [MP]), or 0.42% (high P [HP]) (dry matter basis). Samples were collected at the wk 1, 4, 8. The results show that low dietary P had no effect on body measurement. The blood P concentration decreased with decreasing dietary P (p<0.05), while the blood calcium content of LP was higher than that of the MP and HP groups (p<0.05), though still in the normal range. The serum contents of alkalinephosphatase, potassium, and magnesium were similar among the treatments. No differences were found in all nutrients’ apparent digestibility coefficients with varied dietary P. However, with P diet decreased from HP to LP, the total fecal P and urine P concentration declined significantly, as did fecal water soluble P (p<0.05). In conclusion, reducing the dietary P from 0.42% to 0.26% did not negatively affect the heifers’ growth performance but did significantly lessen manure P excretion into the environment. PMID:26954160

  16. The Effects of Dietary Phosphorus on the Growth Performance and Phosphorus Excretion of Dairy Heifers.

    PubMed

    Zhang, B; Wang, C; Wei, Z H; Sun, H Z; Xu, G Z; Liu, J X; Liu, H Y

    2016-07-01

    The objective of this study was to investigate the effects of reducing dietary phosphorus (P) on the frame size, udder traits, blood parameters and nutrient digestibility coefficient in 8- to 10-month-old Holstein heifers. Forty-five heifers were divided into 15 blocks according to the mo of age and were randomly assigned one of three dietary treatments: 0.26% (low P [LP]), 0.36% (medium P [MP]), or 0.42% (high P [HP]) (dry matter basis). Samples were collected at the wk 1, 4, 8. The results show that low dietary P had no effect on body measurement. The blood P concentration decreased with decreasing dietary P (p<0.05), while the blood calcium content of LP was higher than that of the MP and HP groups (p<0.05), though still in the normal range. The serum contents of alkalinephosphatase, potassium, and magnesium were similar among the treatments. No differences were found in all nutrients' apparent digestibility coefficients with varied dietary P. However, with P diet decreased from HP to LP, the total fecal P and urine P concentration declined significantly, as did fecal water soluble P (p<0.05). In conclusion, reducing the dietary P from 0.42% to 0.26% did not negatively affect the heifers' growth performance but did significantly lessen manure P excretion into the environment. PMID:26954160

  17. Patterns in potassium dynamics in forest ecosystems.

    PubMed

    Tripler, Christopher E; Kaushal, Sujay S; Likens, Gene E; Walter, M Todd

    2006-04-01

    The biotic cycling of potassium (K) in forest systems has been relatively understudied in comparison with nitrogen (N) and phosphorus (P) despite its critical roles in maintaining the nutrition of primary production in forests. We investigated the ecological significance of K in forests from a literature review and data synthesis. We focused on (1) describing patterns of the effects of K availability on aboveground growth and change in foliar tissue of tree species from a variety of forests; and (2) documenting previously unreported relationships between hydrologic losses of K and N in forested watersheds from the Americas. In a review of studies examining tree growth under K manipulations/fertilizations, a high percentage (69% of studies) showed a positive response to increases in K availability in forest soils. In addition, 76% of the tree studies reviewed showed a positive and significant increase in K concentrations in plant tissue after soil K manipulation/fertilization. A meta-analysis on a subset of the reviewed studies was found to provide further evidence that potassium effects tree growth and increased tissue [K] with an effect size of 0.709 for growth and an overall effect size of 0.56. In our review of watershed studies, we observed that concentrations of K typically decreased during growing seasons in streams draining forested areas in the Temperate Zones and were responsive to vegetation disturbance in both temperate and tropical regions. We found a strong relationship (r2 = 0.42-0.99) between concentrations of K and N (another critical plant nutrient) in stream water, suggesting that similar mechanisms of biotic retention may control the flow of these nutrients. Furthermore, K dynamics appear to be unique among the base cations, e.g. calcium, magnesium, and sodium, because the others do not show similar seasonal patterns to K. We suggest that K may be important to the productivity and sustenance of many forests, and its dynamics and ecological

  18. Potassium in diet

    MedlinePlus

    ... good sources of potassium. Soy products and veggie burgers are also good sources of potassium. Vegetables including ... these dietary intakes for potassium, based on age: Infants 0 - 6 months: 0.4 grams a day ( ...

  19. High potassium level

    MedlinePlus

    High potassium level is a problem in which the amount of potassium in the blood is higher than normal. The medical ... There are often no symptoms with a high level of potassium. When symptoms do occur, they may ...

  20. Low potassium level

    MedlinePlus

    Low potassium level is a condition in which the amount of potassium in the blood is lower than normal. The medical ... in the body. Common causes of low potassium level include: Antibiotics Diarrhea or vomiting Using too much ...

  1. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  2. Analysis of Adequacy of 25-Hydroxi vitamin D3 Supplementation in Patients on Hemodialysis and Parathormone, Calcium and Phosphorus Level in the Blood of These Patients

    PubMed Central

    Prnjavorac, Besim; Irejiz, Nedzada; Kurbasic, Zahid; Krajina, Katarina; Deljkic, Amina; Sinanovic, Albina; Fejzic, Jasmin

    2015-01-01

    Introduction: Appropriate vitamin D turnover is essential for many physiological function. Knowledge of it’s function was improved in last two decades with enlargement of scientific confirmation and understanding of overall importance. In addition to classical (skeletal) roles of vitamin D, many other function (no classical), out of bone and calcium-phosphate metabolism, are well defined today. Aim: To analyze vitamin D level in the blood in dialysis and pre dialysis patients and evaluate efficacy of supplementation therapy with vitamin D supplements. Methods: Vitamin D3 level in form of 25-hydroxivitamin D3 was measured in dialysis and pre dialysis patients, using combination of enzyme immunoassay competition method with final fluorescent detection (ELFA). Parathormone was measured by ELISA method. Other parameters were measured by colorimetric methods. Statistical analysis was done by nonparametric methods, because of dispersion of results of Vitamin D and parathormone. Results: In group of dialysis patients 38 were analyzed. Among them 35 (92%) presented vitamin D deficiency, whether they took supplementation or not. In only 3 patients vitamin D deficiency was not so severe. Vitamin D form were evaluated in 42 pre dialysis patients. Out of all 19 patients (45 %) have satisfied level, more than 30 ng/ml. Moderate deficiency have 16 patients (38%), 5 of all (12%) have severe deficiency, and two patients (5%) have very severe deficiency, less than 5 ng/ml. Parathormone was within normal range (9.5-75 pg/mL) in 13 patients (34 %), below normal range (2 %) in one subject, and in above normal range in 24 (63 %). Conclusion: Vitamin D3 deficiency was registered in most hemodialysis patients; nevertheless supplemental therapy was given regularly or not. It is to be considered more appropriate supplementation of Vitamin D3 for dialyzed patients as well as for pre dialysis ones. In pre dialysis patient moderate deficiency is shown in half of patients but sever in only

  3. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Periparturient effects of feeding a low dietary cation-anion difference diet on acid-base, calcium, and phosphorus homeostasis and on intravenous glucose tolerance test in high-producing dairy cows.

    PubMed

    Grünberg, W; Donkin, S S; Constable, P D

    2011-02-01

    Feeding rations with low dietary cation-anion difference (DCAD) to dairy cows during late gestation is a common strategy to prevent periparturient hypocalcemia. Although the efficacy of low-DCAD rations in reducing the incidence of clinical hypocalcemia is well documented, potentially deleterious effects have not been explored in detail. The objective of the study presented here was to determine the effect of fully compensated metabolic acidosis on calcium and phosphorus homeostasis, insulin responsiveness, and insulin sensitivity as well as on protein metabolism. Twenty multiparous Holstein-Friesian dairy cows were assigned to 1 of 2 treatment groups and fed a low-DCAD ration (DCAD = -9 mEq/100g, group L) or a control ration (DCAD = +11 mEq/100g, group C) for the last 3 wk before the expected calving date. Blood and urine samples were obtained periodically between 14 d before to 14 d after calving. Intravenous glucose tolerance tests and 24-h volumetric urine collection were conducted before calving as well as 7 and 14 d postpartum. Cows fed the low-DCAD ration had lower urine pH and higher net acid excretion, but unchanged blood pH and bicarbonate concentration before calving. Protein-corrected plasma Ca concentration 1 d postpartum was higher in cows on the low-DCAD diet when compared with control animals. Urinary Ca and P excretion was positively associated with urine net acid excretion and negatively associated with urine pH. Whereas metabolic acidosis resulted in a 6-fold increase in urinary Ca excretion, the effect on renal P excretion was negligible. A more pronounced decline of plasma protein and globulin concentration in the periparturient period was observed in cows on the low-DCAD diets resulting in significantly lower total protein and globulin concentrations after calving in cows on low-DCAD diets. Intravenous glucose tolerance tests conducted before and after calving did not reveal group differences in insulin response or insulin sensitivity. Our

  5. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater. PMID:26937943

  6. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. Land Application of Wastes: An Educational Program. Phosphorus Considerations - Module 19, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    The treatment of wastewater phosphorus via land application includes both chemical and biological mechanisms. Chemically, phosphorus reacts with iron, aluminum, and calcium compounds in the soil providing efficient removal over a wide range of pH values. Phosphorus is also absorbed by rooted plants which, upon harvest, constitute a further removal…

  8. Multistability in a neuron model with extracellular potassium dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, J. W.

    2012-06-01

    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  9. Patient education for phosphorus management in chronic kidney disease

    PubMed Central

    Kalantar-Zadeh, Kamyar

    2013-01-01

    Objectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD) to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia. Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed. Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels. Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism. PMID:23667310

  10. Intracellular mediators of potassium-induced aldosterone secretion

    SciTech Connect

    Ganguly, A.; Chiou, S.; Davis, J.S. )

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) in {sup 3}H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium.

  11. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  12. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  13. Characterization of phosphorus in organisms at sub-micron resolution using X-ray fluorescence spectromicroscopy.

    SciTech Connect

    Diaz, J.; Ingall, E; Vogt, S; Paterson, D; DeJonge, M; Rao, C; Brandes, J

    2009-01-01

    X-ray spectromicroscopy (combined X-ray spectroscopy and microscopy) is uniquely capable of determining sub-micron scale elemental content and chemical speciation in minimally-prepared particulate samples. The high spatial resolutions achievable with this technique have enabled the close examination of important microscale processes relevant to the cycling of biogeochemically important elements. Here, we demonstrate the value of X-ray microscopy to environmental and biological research by examining the phosphorus and metal chemistry of complete individual cells from the algal genera Chlamydomonas sp. and Chlorella sp. X-ray analysis revealed that both genera store substantial intracellular phosphorus as distinct, heterogeneously distributed granules whose X-ray fluorescence spectra are consistent with that of polyphosphate. Polyphosphate inclusions ranged in size from 0.3-1.4 {micro}m in diameter and exhibited a nonspecies-specific average phosphorus concentration of 6.87 {+-} 1.86 {micro}g cm{sup -2}, which was significantly higher than the average concentration of phosphorus measured in the total cell, at 3.14 {+-} 0.98 {micro}g cm{sup -2} (95% confidence). Polyphosphate was consistently associated with calcium and iron, exhibiting average P:cation molar ratios of 8.31 {+-} 2.00 and 108 {+-} 34, respectively (95% confidence). In some cells, polyphosphate was also associated with potassium, zinc, manganese, and titanium. Based on our results, X-ray spectromicroscopy can provide high-resolution elemental data on minimally prepared, unsectioned cells that are unattainable through alternative microscopic methods and conventional bulk chemical techniques currently available in many fields of marine chemistry.

  14. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    NASA Astrophysics Data System (ADS)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  15. DESIGN MANUAL: PHOSPHORUS REMOVAL

    EPA Science Inventory

    This manual summarizes process design information for the best developed methods for removing phosphorus from wastewater. his manual discusses several proven phosphorus removal methods, including phosphorus removal obtainable through biological activity as well as chemical precip...

  16. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  17. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse.

    PubMed

    De Carvalho, Laércio A; Meurer, Ismael; Da Silva Junior, Carlos A; Santos, Cristiane F B; Libardi, Paulo L

    2014-12-01

    When deposited on land the vinasse can promote improvement in fertility, however, often fertilizer application occurs in areas considered homogeneous, without taking into account the variability of the soil. The objective of this study was to evaluate the effect of vinasse application on potassium content in two classes of soils cultivated with sugarcane, and characterize the spatial variability of soil using geostatistical techniques. In the 2010 and 2011 crop year, soil samples were collected from an experimental grid at 0-0.2 and 0.2-0.4 m depth in three soils cultivated with sugarcane, totaling 90 samplings in each grid, for the determination of pH, calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), aluminum (Al) and potential acidity (H + Al). The data have been submitted to analysis of descriptive statistics and the K attribute was subjected to geostatistical analysis. The coefficient of variation indicated medium and high variability of K for the three soils. The results showed that the spatial dependence of K increased in depth to FRce and decreased to PHlv, indicating that the attribute could have followed the pattern of distribution of clay in depth. The investigation of the spatial variability of K on the surface and subsurface soils provided the definition of management zones with different levels of fertility, which can be organized into sub-areas for a more efficient management of the resources and the environment. PMID:25590735

  18. Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract.

    PubMed

    Li, W; Angel, R; Kim, S-W; Brady, K; Yu, S; Plumstead, P W

    2016-03-01

    A total of 1,440 straight-run Heritage 56M × fast-feathering Cobb 500F broiler birds were fed from 11 to 13 d of age to determine the impacts of calcium (Ca), phytate phosphorus (PP), nonphytate P (NPP) and phytase concentrations on the myo-inositol hexakisphosphate (IP6) flow through the different parts of gastrointestinal tract (GIT). The experiment was a 2×2×2×3 randomized block design with 2 Ca (0.7 and 1.0%), 2 PP (0.23 and 0.34%), 2 nPP (0.28 and 0.45%) and 3 phytase (0-, 500-, and 1,000-phytase unit (FTU)/kg) concentrations. The experiment was replicated twice (block) with 3 replicates per treatment (TRT) of 10 birds per block. Concentration of IP6 in crop, proventriculus (PROV) plus (+) gizzard (GIZ) and distal ileum digesta as well as the ileal IP6 disappearance was determined at 13 d of age. In crop, higher IP6 concentration was seen with increased Ca (P < 0.05). Despite the interaction between PP and phytase, higher dietary PP led to greater IP6 concentration (P < 0.05). Similar main effects of PP and phytase were also seen in Prov+Giz and ileum (P < 0.05) without interactions. Interaction between Ca and nPP on IP6 concentration was seen in Prov+Giz (P < 0.05). Decreased ileal IP6 disappearance was found at higher Ca (62.3% at 0.7% Ca vs. 57.5% at 1.0% Ca; P < 0.05). In general, adding phytase improved IP6 degradation but the degree of impact was dependent on nPP and PP (P < 0.05). In conclusion, phytase inclusion significantly reduced IP6 concentration and IP6 disappearance in distal ileum regardless of GIT segments or diet composition, but impacts of dietary Ca, nPP, and PP differed depending on GIT segment examined. PMID:26740131

  19. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice

    PubMed Central

    Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and

  20. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice.

    PubMed

    Friedman, Michael A; Bailey, Alyssa M; Rondon, Matthew J; McNerny, Erin M; Sahar, Nadder D; Kohn, David H

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6-12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups-exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases

  1. Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract

    PubMed Central

    Li, W.; Angel, R.; Kim, S.-W.; Brady, K.; Yu, S.; Plumstead, P. W.

    2016-01-01

    A total of 1,440 straight-run Heritage 56M × fast-feathering Cobb 500F broiler birds were fed from 11 to 13 d of age to determine the impacts of calcium (Ca), phytate phosphorus (PP), nonphytate P (nPP) and phytase concentrations on the myo-inositol hexakisphosphate (IP6) flow through the different parts of gastrointestinal tract (GIT). The experiment was a 2×2×2×3 randomized block design with 2 Ca (0.7 and 1.0%), 2 PP (0.23 and 0.34%), 2 nPP (0.28 and 0.45%) and 3 phytase (0-, 500-, and 1,000-phytase unit (FTU)/kg) concentrations. The experiment was replicated twice (block) with 3 replicates per treatment (Trt) of 10 birds per block. Concentration of IP6 in crop, proventriculus (Prov) plus (+) gizzard (Giz) and distal ileum digesta as well as the ileal IP6 disappearance was determined at 13 d of age. In crop, higher IP6 concentration was seen with increased Ca (P < 0.05). Despite the interaction between PP and phytase, higher dietary PP led to greater IP6 concentration (P < 0.05). Similar main effects of PP and phytase were also seen in Prov+Giz and ileum (P < 0.05) without interactions. Interaction between Ca and nPP on IP6 concentration was seen in Prov+Giz (P < 0.05). Decreased ileal IP6 disappearance was found at higher Ca (62.3% at 0.7% Ca vs. 57.5% at 1.0% Ca; P < 0.05). In general, adding phytase improved IP6 degradation but the degree of impact was dependent on nPP and PP (P < 0.05). In conclusion, phytase inclusion significantly reduced IP6 concentration and IP6 disappearance in distal ileum regardless of GIT segments or diet composition, but impacts of dietary Ca, nPP, and PP differed depending on GIT segment examined. PMID:26740131

  2. Lenticular energy metabolism during exogenous calcium deprivation and during recovery: effects of dextran-40.

    PubMed

    Glonek, T; Kopp, S J; Greiner, J V; Sanders, D R

    1985-02-01

    Phosphatic metabolites of the intact rabbit lens were quantitated as a function of time by phosphorus-31 nuclear magnetic resonance (P-31 NMR) spectroscopy during in vitro incubations at 37 degrees C in calcium-sufficient and calcium-deficient modified Earle's buffer with and without the osmotic agent, Dextran-40. Intralenticular pH was determined from the resonance shift position of inorganic orthophosphate (Pi). Incubation of lenses in calcium-deficient buffer resulted in a pronounced, time-dependent decrease in lenticular adenosine triphosphate (ATP) levels. The half-life of ATP within the lens was 11 hr under these experimental conditions. A concomitant, essentially stoichiometric increase in adenosine diphosphate and Pi levels was observed also. The other phosphatic metabolites were unaffected by exogenous calcium deprivation except for adenosine and inosine monophosphate which accumulated with time. Dextran-40 (6%), which has been shown to prevent lens swelling under these same experimental conditions, did not influence the metabolic responses of the lens to external calcium deprivation and did not facilitate subsequent restoration of lens phosphatic metabolites following restoration of a physiologic calcium concentration to the supporting medium. The Dextran-40 did, however, promote the retention of intralenticular pH environment during the experimental period. These findings suggest that the previously reported Dextran-40-dependent recovery of intralenticular sodium and potassium concentrations to control levels following 10 hr of incubation in calcium-deficient media cannot be attributed to a direct energy-sparing action of Dextran-40 on lenticular energy metabolism. Instead, the mechanistic basis for the action of Dextran-40 would appear to be related to its colloid osmotic properties and its ability to prevent lenticular swelling, which otherwise occurs in the absence of Dextran under these experimental conditions. PMID:2579839

  3. Calcium concretions in the pineal gland of aged rats: an ultrastructural and microanalytical study of their biogenesis.

    PubMed

    Humbert, W; Pévet, P

    1995-03-01

    The genesis of calcium concretions in aged rats was studied by means of transmission and scanning electron microscopy. The potassium pyroantimonate method, combined with X-ray microanalysis, allowed us to study the distribution of cations and calcium. Notable accumulations of calcium (associated with phosphorus) were localized in vesicles, vacuoles, lipid droplets, lipopigments, and mitochondria of dark pinealocytes. The results obtained in the present investigation suggest that these organelles are involved in the genesis of the concretions. The presence of sulfur indicates the existence of an organic matrix. We propose that genesis takes place in dark pinealocytes, which contain more calcium than light pinealocytes. Mineralization foci are sometimes associated with cellular debris and enlarge by further apposition of material. Two types of concretions, as determined by electron microscopy and confirmed by electron diffraction, could be observed: the "amorphous" type with concentric layers and the crystalline type with needle-shaped crystals. Once formed, the concretions reach the extracellular space and the cell breaks down. Possible extracellular calcification is suggested in the extracellular calcium-rich floculent material. The mineralization process is interpreted as being an age-related phenomenon and mainly a consequence of the degeneration of pinealocytes. PMID:7736553

  4. Improved Synthesis Of Potassium Beta' '-Alumina

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  5. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    PubMed Central

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  6. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    NASA Astrophysics Data System (ADS)

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  7. Impact of Fish Farming on Phosphorus in Reservoir Sediments.

    PubMed

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  8. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  9. Potassium in diet

    MedlinePlus

    ... of electrolyte . Function Potassium is a very important mineral for the human body. Your body needs potassium to: Build proteins Break down and use carbohydrates Build muscle Maintain normal body growth Control ...

  10. Potassium carbonate poisoning

    MedlinePlus

    Potassium carbonate is a white powder used to make soap, glass, and other items. This article discusses poisoning from swallowing or breathing in potassium carbonate. This article is for information only. Do ...

  11. Penicillin V Potassium Oral

    MedlinePlus

    Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken ...

  12. Uptake of phosphorus by filamentous bacteria and the role of cation on polyphosphates composition.

    PubMed

    Machnicka, A; Suschka, J; Wiatowski, M

    2008-01-01

    Many microorganisms have the ability to store phosphorus as polyphosphates in volutin granules. The aim of the research was to characterise the phosphorus sequestered by filamentous microorganisms present in the foam. Also the importance of required cations like potassium and magnesium in the process of phosphorus uptake by filamentous microorganisms was examined. Electron microscopy and energy dispersive X - ray analysis were used to define the composition of polyphosphate granules in filamentous bacteria. PMID:18610546

  13. Soil phosphorus and the ecology of lowland tropical forests

    NASA Astrophysics Data System (ADS)

    Turner, Ben

    2016-04-01

    In this presentation I will explore the extent to which phosphorus influences the productivity, diversity, and distribution of plant species in tropical forests. I will highlight the range of soils that occur in tropical forests and will argue that pedogenesis and associated phosphorus depletion is a primary driver of forest diversity over long timescales. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined predominantly as a function of dry season intensity and soil phosphorus availability, and will suggest potential mechanistic explanations for this pattern in relation to phosphorus acquisition. Finally, I will present observational and experimental evidence from Panama to show how phosphorus, nitrogen, and potassium, limit plant productivity and microbial communities on strongly-weathered soils in the lowland tropics.

  14. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  15. Management of natural and added dietary phosphorus burden in kidney disease.

    PubMed

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2013-03-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (∼60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular, low-cost foods. In a nonenhanced mixed diet, digestible phosphorus correlates closely with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is limited more appropriately in predialysis patients who are on a low-protein diet (∼0.6 g/kg/d), whereas dialysis patients who require higher protein intake (∼1.2 g/kg/d) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Phosphorus rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking-induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counseling to address the emerging aspects of dietary phosphorus management is instrumental for achieving a reduction of phosphorus load. PMID:23465504

  16. Regulation of Potassium Homeostasis

    PubMed Central

    2015-01-01

    Potassium is the most abundant cation in the intracellular fluid, and maintaining the proper distribution of potassium across the cell membrane is critical for normal cell function. Long-term maintenance of potassium homeostasis is achieved by alterations in renal excretion of potassium in response to variations in intake. Understanding the mechanism and regulatory influences governing the internal distribution and renal clearance of potassium under normal circumstances can provide a framework for approaching disorders of potassium commonly encountered in clinical practice. This paper reviews key aspects of the normal regulation of potassium metabolism and is designed to serve as a readily accessible review for the well informed clinician as well as a resource for teaching trainees and medical students. PMID:24721891

  17. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  18. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  19. Effectiveness of biochar as a phosphorus fertilizer source for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When processed via pyrolysis, livestock manures have the potential of providing energy and biochar. The biochars are high in nutrient content, especially potassium and phosphorus. Thus, they must be applied in accordance with their nutrient supplying capacity. This capacity will be affected by fa...

  20. Changes in water quality of the River Frome (UK) from 1965 to 2009: is phosphorus mitigation finally working?

    PubMed

    Bowes, M J; Smith, J T; Neal, C; Leach, D V; Scarlett, P M; Wickham, H D; Harman, S A; Armstrong, L K; Davy-Bowker, J; Haft, M; Davies, C E

    2011-08-15

    The water quality of the River Frome, Dorset, southern England, was monitored at weekly intervals from 1965 until 2009. Determinands included phosphorus, nitrogen, silicon, potassium, calcium, sodium, magnesium, pH, alkalinity and temperature. Nitrate-N concentrations increased from an annual average of 2.4 mg l⁻¹ in the mid to late 1960s to 6.0 mg l⁻¹ in 2008-2009, but the rate of increase was beginning to slow. Annual soluble reactive phosphorus (SRP) concentrations increased from 101 μg l⁻¹ in the mid 1960s to a maximum of 190 μg l⁻¹ in 1989. In 2002, there was a step reduction in SRP concentration (average=88 μg l⁻¹ in 2002-2005), with further improvement in 2007-2009 (average=49 μg l⁻¹), due to the introduction of phosphorus stripping at sewage treatment works. Phosphorus and nitrate concentrations showed clear annual cycles, related to the timing of inputs from the catchment, and within-stream bioaccumulation and release. Annual depressions in silicon concentration each spring (due to diatom proliferation) reached a maximum between 1980 and 1991, (the period of maximum SRP concentration) indicating that algal biomass had increased within the river. The timing of these silicon depressions was closely related to temperature. Excess carbon dioxide partial pressures (EpCO₂) of 60 times atmospheric CO₂ were also observed through the winter periods from 1980 to 1992, when phosphorus concentration was greatest, indicating very high respiration rates due to microbial decomposition of this enhanced biomass. Declining phosphorus concentrations since 2002 reduced productivity and algal biomass in the summer, and EpCO₂ through the winter, indicating that sewage treatment improvements had improved riverine ecology. Algal blooms were limited by phosphorus, rather than silicon concentration. The value of long-term water quality data sets is discussed. The data from this monitoring programme are made freely available to the wider science community

  1. Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions.

    PubMed

    Nordström, E G; Karlsson, K H

    1992-01-01

    A potassium-doped synthetic apatite was prepared by soaking hydroxyapatite in potassium carbonate and potassium chloride solutions. The hydroxyapatite was prepared by firing slip cast ceramic bodies in vacuum at 1100 degrees C. The conical ceramic samples and a crushed material of this were soaked in carbonate and chloride solutions for 2, 4, 6, and 8 weeks. Potassium, calcium, and phosphate were determined by direct current plasma emission spectroscopy. The carbonate content was determined by thermogravimetric analysis and chloride titrimetrically. After 2 weeks, one potassium ion substituted one calcium ion when soaked in a carbonate solution. When soaked in the chloride solution substitution occurred to the same extent. At phosphate sites the substitution of phosphate for carbonate occurred at one sixth of the sites after 2 weeks. Chloride incorporated one half of the OH-sites after 2 weeks. After 4 weeks about one chloride ion was found in the apatite, and after 6 weeks one and a half of the OH-sites were occupied by chloride ions. PMID:1483120

  2. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome

    PubMed Central

    Chowdhry, Vivek; Mohanty, B. B.

    2015-01-01

    Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (KATP) channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of KATP channel, it can expel K+ ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy. PMID:25566721

  3. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D.

    PubMed

    Nieves, J W

    2013-03-01

    There is a need to understand the role of nutrition, beyond calcium and vitamin D, in the treatment and prevention of osteoporosis in adults. Results regarding soy compounds on bone density and bone turnover are inconclusive perhaps due to differences in dose and composition or in study population characteristics. The skeletal benefit of black cohosh and red clover are unknown. Dehydroepiandrosterone (DHEA) use may benefit elderly individuals with low serum dehydroepiandrosterone-sulfate levels, but even in this group, there are inconsistent benefits to bone density (BMD). Higher fruit and vegetable intakes may relate to higher BMD. The skeletal benefit of flavonoids, carotenoids, omega-3-fatty acids, and vitamins A, C, E and K are limited to observational data or a few clinical trials, in some cases investigating pharmacologic doses. Given limited data, it would be better to get these nutrients from fruits and vegetables. Potassium bicarbonate may improve calcium homeostasis but with little impact on bone loss. High homocysteine may relate to fracture risk, but the skeletal benefit of each B vitamin is unclear. Magnesium supplementation is likely only required in persons with low magnesium levels. Data are very limited for the role of nutritional levels of boron, strontium, silicon and phosphorus in bone health. A nutrient rich diet with adequate fruits and vegetables will generally meet skeletal needs in healthy individuals. For most healthy adults, supplementation with nutrients other than calcium and vitamin D may not be required, except in those with chronic disease and the frail elderly. PMID:23152094

  4. Phosphorus: Riverine system transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport and transformation of phosphorus (P) in riverine systems fundamentally affects the outcome of watershed mitigation strategies aimed at curbing downstream eutrophication. Phosphorus transport and transformations in streams and rivers are mediated by physical (sediment deposition and res...

  5. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for...

  6. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for...

  7. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for...

  8. Potassium food supplement

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  9. Penicillin V Potassium Oral

    MedlinePlus

    V-Cillin K® ... Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, scarlet fever, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken every 6 ...

  10. Potassium and health.

    PubMed

    Weaver, Connie M

    2013-05-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  11. Potassium and Health123

    PubMed Central

    Weaver, Connie M.

    2013-01-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  12. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  13. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  14. Sodium and Potassium Intake of Urban Dwellers: Nothing Changed in Yazd, Iran

    PubMed Central

    Mirzaei, Masoud; Namayandeh, Mahdieh; GharahiGhehi, Neda

    2014-01-01

    To assess the daily salt intake of people aged 20-74 years based on the 24-hour urinary sodium excretion in urban population of Yazd, a population-based cross-sectional study was conducted. This is a substudy of Yazd Healthy Heart Project in Iran. From 2004 to 2005, two thousand people of the urban population of Yazd city, aged 20-74 years, were enrolled in the main study. Overall, 219 volunteer participants of 20-70 years were enrolled in this substudy. Sample frame was the household numbers according to the database of Yazd City Health Services. Calcium, phosphorus, sodium, potassium, and creatinine were measured in the urine samples collected from the participants over a 24-hour period. Sodium content in urine over 24 hours was 171.7±82.9 mmol/day in males and 127.8±56.1 mmol/day in females (p<0.0001) while potassium content was 49.4±23.2 mmol/day in males and 41.5±25.1 mmol/day in females (p=0.2). Estimated average daily salt (NaCl) intake was 10.0±4.8 g/day in males and 7.5±3.3 g/day in females (p<0.0001). Only one participant had the ideal Na/K ratio of less than one. Na/K ratios greater than one and less than two were seen in 11.3% (n=24), and a ratio equal to or greater than 2 was observed in 82.3% (n=118) of the participants. The average Na/K ratio was 3.69±1.58. Unlike many developed countries where sodium intake declined over the past few decades, the daily sodium intake in Yazd is high, and daily potassium intake is low. This is similar to what was observed four decades ago in an area not far from Yazd. Efforts must be directed towards health promotion interventions to increase public awareness to reduce sodium intake and increase potassium intake. PMID:24847600

  15. Potassium channels and vascular reactivity in genetically hypertensive rats.

    PubMed

    Furspan, P B; Webb, R C

    1990-06-01

    In hypertension, membrane potassium permeability and vascular reactivity are increased. This study characterizes a potassium-selective channel and contractions to barium, a potassium channel inhibitor, in vascular smooth muscle (tail artery) from spontaneously hypertensive stroke-prone rats (SHRSP) and normotensive Wistar-Kyoto (WKY) rats. Smooth muscle cells were isolated by enzymatic digestion, and potassium channel activity was characterized by using patch-clamp technique (inside-out configuration). Isometric contractile activity was evaluated in helically cut arterial strips by using standard muscle bath methodology. In membrane patches, a voltage-gated, calcium-insensitive, potassium-selective channel of large conductance (200 picosiemens) was observed. The channel did not conduct sodium or rubidium. Barium (10(-6) to 10(-4) M) produced a dose-dependent blockade of channel activity. These channel characteristics did not differ in SHRSP and WKY rat cells. After treatment with 35 mM KCl, barium (10(-5) to 10(-3) M) caused greater contractions in SHRSP arteries compared with arteries in WKY rats. The contractions to barium were markedly attenuated in calcium-free solution, and nifedipine and verapamil abolished contractions induced by barium in depolarizing solution. We conclude that increased vascular reactivity to barium in SHRSP arteries is not due to an alteration in the biophysical properties of the potassium channel studied. PMID:2351424

  16. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Update Date 5/3/2015 Updated ...

  17. Dietary phosphorus requirement of young abalone Haliotis discus Hannai Ino

    NASA Astrophysics Data System (ADS)

    Tan, Bei-Ping; Mai, Kang-Sen; Liufu, Zhi-Guo

    2002-03-01

    An experiment was performed to determine the dietary phosphorus requirement of the young abalone, Haliotis discus hannai. Five semi-purified diets were formulated to provide a series of graded levels of dietary total phosphorus (0.23% 1.98) from monobasic potassium phosphate (KH2P04). The brown alga, Laminaria japonica, was used as a control diet. Similar size abalone were distributed in a single-pass, flow-through system using a completely randomized design with six treatments and three replicates each treatment. The abalone were hand-fed to satiation with appropriate diets in excess, once daily at 17:00. The feeding trial was run for 120-d. Survival rate and soft-body to shell ratio (SB/S) were constantly maintained regardless of dietary treatment. However, the weight gain rate (WGR), daily increment in shell length (DISL), muscle RNA to DNA ratio (RNA/DNA), carcass levels of lipid and protein, soft-body alkaline phosphatase (SBAKP), and phosphorus concentrations of whole body (WB) and soft body (SB) were significantly (ANOVA, P<0.05) affected by the dietary phosphorus level. The dietary phosphorus requirements of the abalone were evaluated from the WGR, DISL, and RNA/DNA ratio respectively, by using second-order polynomial regression analysis. Based on these criteria, about 1.0% 1.2% total dietary phosphorus, i.e. 0.9% 1.1% dietary available phosphorus is recommended for the maximum growth of the abalone.

  18. Calcium supplements

    MedlinePlus

    ... SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the human body. It helps build and protect your teeth ... absorb calcium. You can get vitamin D from sunlight exposure to your skin and from your diet. Ask your provider whether ...

  19. Ameliorative effects of vanillin on potassium bromate induces bone and blood disorders in vivo.

    PubMed

    Ben Saad, H; Ben Amara, I; Krayem, N; Boudawara, T; Kallel, C; Zeghal, K M; Hakim, A

    2015-01-01

    The objective of this study was to investigate the propensity of potassium bromate (KBrO3) to induce oxidative stress in blood and bone of adult mice and its possible attenuation by vanillin. Our results demonstrated, after KBrO3 treatment, a decrease of red blood cells and hemoglobin and a significant increase of white blood cell. A decrease in plasma levels of folic acid, vitamin B12 and iron was also noted. Interestingly, an increase of lipid peroxidation, hydroperoxides, hydrogen peroxide, advanced oxidation protein products and protein carbonyl levels in erythrocytes and bone was observed, while superoxide dismutase, catalase and glutathione peroxidase activities and glutathione, non-protein thiol and vitamin C levels were decreased. KBrO3 treatment resulted in blood and bone DNA fragmentation, a hallmark of genotoxicity-KBrO3-induced, with reduction of DNA levels. Calcium and phosphorus levels showed a decrease in the bone and an increase in the plasma after KBrO3 treatment. These biochemical alterations were accompanied by histological changes in the blood smear and bone tissue. Treatment with vanillin improved the histopathological, hematotoxic and genotoxic effects induced by KBrO3. The results showed, for the first time, that the vanillin possesses a potent protective effect against the oxidative stress and genotoxicity in bone and blood of KBrO3-treated mice. PMID:26567599

  20. What is Potassium?

    MedlinePlus

    ... carrots and beans. It's also found in dairy foods, meat, poultry, fish and nuts. Reach your recommended daily intake of potassium by frequently adding these foods to your daily menu: 1 cup cooked spinach: ...

  1. Potassium hydroxide poisoning

    MedlinePlus

    Symptoms from swallowing potassium hydroxide include: Abdominal pain - severe Burns in the mouth and throat Chest pain Collapse Diarrhea Drooling Mouth pain - severe Rapid drop in blood pressure (shock) Throat pain - severe Throat ...

  2. Phosphorus poisoning in waterfowl

    USGS Publications Warehouse

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V., Jr.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  3. Extended sensitivity for the calcium selective electrode.

    PubMed

    Morton, R W; Chung, J K; Miller, J L; Charlton, J P; Fager, R S

    1986-09-01

    Sensitivity of calcium-selective electrodes heretofore has been limited to calcium concentrations above 10(-8) M in the absence of competing ions. We describe the use of calcium buffers to stabilize the free calcium in the reference electrode. Electrode calibration is linear to 10(-8) M and is curvilinear to 10(-11) M in the presence of 0.1 M ionic strength. Selectivity with respect to competing cations, magnesium, potassium, sodium, and hydrogen is preserved. Electrode response time is less than 2 s for small changes in calcium activity. Response range is linear over 9 log units of calcium activity. Potential-time stability is less than 10 mV/h at saturation currents. Although the silver-silver chloride terminals are photosensitive throughout the visible and near-ultraviolet regions, housing the reference and indifferent in opaque barrels avoids false photovoltaic response. PMID:3777438

  4. Biogeochemistry: The fate of phosphorus

    NASA Astrophysics Data System (ADS)

    Némery, Julien; Garnier, Josette

    2016-05-01

    Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.

  5. The challenge of controlling phosphorus in chronic kidney disease.

    PubMed

    Cannata-Andía, Jorge B; Martin, Kevin J

    2016-04-01

    The pathogenesis and management of chronic kidney disease-mineral bone disorders (CKD-MBD) has experienced major changes, but the control of serum phosphorus at all stages of CKD still seems to be a key factor to improve clinical outcomes. High serum phosphorus is the most important uremia-related, non-traditional risk factor associated with vascular calcification in CKD patients and in the general population. Phosphorus may also be one of the key elements linking vascular calcification with low bone turnover. The main hormones and factors that contribute to the kidney regulation of phosphorus and calcium include parathyroid hormone, FGF-23, klotho and 1,25-dihydroxyvitamin D (1,25(OH)2D). Serum phosphorus did not start rising until CKD 3b in contrast with the earlier changes observed with fibroblast growth factor-23 (FGF-23), Klotho, calcitriol and parathyroid hormone (PTH). Despite FGF-23 and PTH having synergic effects regarding phosphorus removal, they have opposite effects on 1,25(OH)2D3. At the same stages of CKD in which phosphorus retention appears to occur, calcium retention also occurs. As phosphorus accumulation is associated with poor outcomes, an important question without a clear answer is at which level-range should serum phosphorus be maintained at different stages of CKD to improve clinical outcomes. There are four main strategies to manage phosphate homeostasis; phosphorus dietary intake, administration of phosphate binder agents, effective control of hyperparathyroidism and to ensure in the CKD 5D setting, an adequate scheme of dialysis. Despite all the available strategies, and the introduction of new phosphate binder agents in the market, controlling serum phosphorus remains challenging, and hyperphosphatemia continues to be extremely common in CKD 5 patients. Furthermore, despite phosphate binding agents having proved to be effective in reducing serum phosphorus, their ultimate effects on clinical outcomes remain controversial. Thus, we still

  6. Industrial and Municipal Byproducts Effects on Leachable Arsenic From Phosphorus Amended Orchard Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are concerns of arsenic leaching from orchard soils with a history of lead arsenate use when phosphorus is applied. Research has shown that reagent grade calcium and iron salts sequester arsenic. The objective of this study was to determine the effectiveness of calcium, iron and organic bypr...

  7. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration

    NASA Astrophysics Data System (ADS)

    Diaz, Julia; Ingall, Ellery; Benitez-Nelson, Claudia; Paterson, David; de Jonge, Martin D.; McNulty, Ian; Brandes, Jay A.

    2008-05-01

    The in situ or authigenic formation of calcium phosphate minerals in marine sediments is a major sink for the vital nutrient phosphorus. However, because typical sediment chemistry is not kinetically conducive to the precipitation of these minerals, the mechanism behind their formation has remained a fundamental mystery. Here, we present evidence from high-sensitivity x-ray and electrodialysis techniques to describe a mechanism by which abundant diatom-derived polyphosphates play a critical role in the formation of calcium phosphate minerals in marine sediments. This mechanism can explain the puzzlingly dispersed distribution of calcium phosphate minerals observed in marine sediments worldwide.

  8. Marine polyphosphate : a key player in geologic phosphorus sequestration.

    SciTech Connect

    Diaz, J.; Ingall, E.; Benitez-Nelson, C.; Paterson, D.; de Jonge, M.; McNulty, I.; Brandes, J.; X-Ray Science Division; Georgia Inst. of Tech.; Univ. of South Carolina; Skidaway Inst. of Oceanography

    2008-05-01

    The in situ or authigenic formation of calcium phosphate minerals in marine sediments is a major sink for the vital nutrient phosphorus. However, because typical sediment chemistry is not kinetically conducive to the precipitation of these minerals, the mechanism behind their formation has remained a fundamental mystery. Here, we present evidence from high-sensitivity x-ray and electrodialysis techniques to describe a mechanism by which abundant diatom-derived polyphosphates play a critical role in the formation of calcium phosphate minerals in marine sediments. This mechanism can explain the puzzlingly dispersed distribution of calcium phosphate minerals observed in marine sediments worldwide.

  9. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration

    SciTech Connect

    Diaz, J.; Ingall, E; Benitez-Nelson, C; Paterson, D; de Jonge, M; McNulty , I; Brandes , J

    2008-01-01

    The in situ or authigenic formation of calcium phosphate minerals in marine sediments is a major sink for the vital nutrient phosphorus. However, because typical sediment chemistry is not kinetically conducive to the precipitation of these minerals, the mechanism behind their formation has remained a fundamental mystery. Here, we present evidence from high-sensitivity x-ray and electrodialysis techniques to describe a mechanism by which abundant diatom-derived polyphosphates play a critical role in the formation of calcium phosphate minerals in marine sediments. This mechanism can explain the puzzlingly dispersed distribution of calcium phosphate minerals observed in marine sediments worldwide.

  10. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  11. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway*

    PubMed Central

    Yao, Jin-jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-01-01

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca2+/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca2+ and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4−/− mice but not in Nfatc2−/− mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4−/− mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  12. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway.

    PubMed

    Yao, Jin-Jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-08-12

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  13. Effects of extracellular calcium and of the calcium entry blockers flunarizine and nimodipine on contractile responses in human temporal arteries.

    PubMed

    Jansen, I; Edvinsson, L

    1986-12-01

    Contraction induced by 124 mM potassium followed the depolarization of smooth-muscle cells and activation of potential-operated calcium channels in human temporal arteries. The contraction elicited consisted of two phases, one rapid and one slowly developing stable phase; both were affected by the two calcium entry blockers flunarizine and nimodipine but at significantly different concentrations. In calcium-free medium 124 mM potassium resulted in a weak contraction. Addition of calcium caused a concentration-dependent contraction that was attenuated by the calcium entry blockers at concentrations comparable to those inhibiting the second phase. The results suggested that in human temporal arteries flunarizine and nimodipine act as calcium entry blockers; there was good correlation with the therapeutic plasma concentration for nimodipine but not for flunarizine. PMID:3802190

  14. Phosphorus in diet

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002424.htm Phosphorus in diet To use the sharing features on this page, please enable ... the body make ATP, a molecule the body uses to store energy. Phosphorus works with the B vitamins. It also helps ...

  15. PHOSPHORUS RECOVERY FROM SEWAGE

    EPA Science Inventory

    Phosphorus is a growth limiting nutrient that is mined from rock ore, refined, used in fertilizers, and discharged to the environment through municipal sewage. The impacts of phosphorus discharge include severe eutrophication of fresh water bodies. The future sustainable use of...

  16. Phosphorus recovery from wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  17. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-01

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described. PMID:26270791

  18. Mitochondrial large-conductance potassium channel from Dictyostelium discoideum.

    PubMed

    Laskowski, Michal; Kicinska, Anna; Szewczyk, Adam; Jarmuszkiewicz, Wieslawa

    2015-03-01

    In the present study, we describe the existence of a large-conductance calcium-activated potassium (BKCa) channel in the mitochondria of Dictyostelium discoideum. A single-channel current was recorded in a reconstituted system, using planar lipid bilayers. The large-conductance potassium channel activity of 258±12 pS was recorded in a 50/150 mM KCl gradient solution. The probability of channel opening (the channel activity) was increased by calcium ions and NS1619 (potassium channel opener) and reduced by iberiotoxin (BKCa channel inhibitor). The substances known to modulate BKCa channel activity influenced the bioenergetics of D. discoideum mitochondria. In isolated mitochondria, NS1619 and NS11021 stimulated non-phosphorylating respiration and depolarized membrane potential, indicating the channel activation. These effects were blocked by iberiotoxin and paxilline. Moreover, the activation of the channel resulted in attenuation of superoxide formation, but its inhibition had the opposite effect. Immunological analysis with antibodies raised against mammalian BKCa channel subunits detected a pore-forming α subunit and auxiliary β subunits of the channel in D. discoideum mitochondria. In conclusion, we show for the first time that mitochondria of D. discoideum, a unicellular ameboid protozoon that facultatively forms multicellular structures, contain a large-conductance calcium-activated potassium channel with electrophysiological, biochemical and molecular properties similar to those of the channels previously described in mammalian and plant mitochondria. PMID:25596489

  19. We Use Dialysate Potassium Levels That Are Too Low in Hemodialysis.

    PubMed

    Tucker, Bryan; Moledina, Dennis G

    2016-07-01

    Sudden cardiac death accounts for a quarter of all deaths in hemodialysis patients. While this group is at high risk for cardiovascular events, there are certain modifiable factors that have been associated with higher risk of sudden cardiac death. These include short dialysis time, high ultrafiltration rate, and dialysate with a low potassium or calcium concentration. While it is impossible to discern the relative contribution of each of these factors, our review focuses on the role of dialysate potassium concentration in sudden cardiac death. Retrospective studies have identified low potassium dialysate (<2-3 mEq/l) as a risk factor for sudden cardiac death, particularly in patients with predialysis serum potassium concentrations <5 mEq/l. However, patients with predialysis hyperkalemia (≥5.5 mEq/l) may be an exception since a significant association of low potassium dialysate with sudden cardiac death was not observed in this subgroup. Dialysis prescribers must employ alternatives to low dialysate potassium concentrations to achieve potassium control such as increasing dialysis time and frequency, dietary restriction of potassium, prevention and treatment of constipation, discontinuation of medications contributing to hyperkalemia and traditional (or newer, better tolerated) potassium binding resins. Finally, one must also address other factors associated with sudden cardiac death such as short dialysis time, high ultrafiltration rate, and low calcium concentration dialysate. PMID:27061895

  20. Oxidation products of calcium and strontium bis(diphenylphosphanide).

    PubMed

    Al-Shboul, Tareq M A; Volland, Gritt; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2012-07-16

    The tetrahydrofuran adducts [(thf)(4)M(PPh(2))(2)] (M = Ca, Sr) are air sensitive and can easily be oxidized by chalcogens. Metalation of diphenylphosphane oxide, diphenylphosphinic acid, and diphenyldithiophosphinic acid as well as salt metathetical approaches of the potassium salts with MI(2) allow the synthesis of [(thf)(4)Ca(OPPh(2))(2)] (1), [(dmso)(2)Ca(O(2)PPh(2))(2)] (2), [(thf)(3)Ca(O(2)PPh(2))I](2) (3), [(thf)(3)Ca(S(2)PPh(2))(2)] (4), [(thf)(2)Ca(Se(2)PPh(2))(2)] (5), [(thf)(3)Sr(S(2)PPh(2))(2)] (6), [(thf)(3)Sr(Se(2)PPh(2))(2)] (7), and [(thf)(2)Ca(O(2)PPh(2))(S(2)PPh(2))](2) (8), respectively. The diphenylphosphinite anion in 1 contains a phosphorus atom in a trigonal pyramidal environment and binds terminally via the oxygen atom to calcium. The diphenylphosphinate anions act as bridging ligands leading to polymeric structures of calcium bis(diphenylphosphinates). Therefore strong Lewis bases such as dimethylsulfoxide (dmso) are required to recrystallize this complex yielding chain-like 2. The chain structure can also be cut into smaller units by ligands which avoid bridging positions such as iodide and diphenyldithiophosphinate (3 and 8, respectively). In general, diphenyldithio- and -diselenophosphinate anions act as terminal ligands and allow the isolation of mononuclear complexes 4 to 7. In these molecules the alkaline earth metals show coordination numbers of six (5) and seven (4, 6, and 7). PMID:22725251

  1. The Role of Calcium in Human Aging

    PubMed Central

    2015-01-01

    Calcium is an essential nutrient that is necessary for many functions in human health. Calcium is the most abundant mineral in the body with 99% found in teeth and bone. Only 1% is found in serum. The serum calcium level is tightly monitored to remain within normal range by a complex metabolic process. Calcium metabolism involves other nutrients including protein, vitamin D, and phosphorus. Bone formation and maintenance is a lifelong process. Early attention to strong bones in childhood and adulthood will provide more stable bone mass during the aging years. Research has shown that adequate calcium intake can reduce the risk of fractures, osteoporosis, and diabetes in some populations. The dietary requirements of calcium and other collaborative nutrients vary slightly around the world. Lactose intolerance due to lactase deficiency is a common cause of low calcium intake. Strategies will be discussed for addressing this potential barrier to adequate intake. The purpose of this narrative review is a) to examine the role of calcium in human health, b) to compare nutrient requirements for calcium across lifecycle groups and global populations, c) to review relationships between calcium intake, chronic disease risk, and fractures, and d) to discuss strategies to address diet deficiencies and lactose intolerance. PMID:25713787

  2. The role of calcium in human aging.

    PubMed

    Beto, Judith A

    2015-01-01

    Calcium is an essential nutrient that is necessary for many functions in human health. Calcium is the most abundant mineral in the body with 99% found in teeth and bone. Only 1% is found in serum. The serum calcium level is tightly monitored to remain within normal range by a complex metabolic process. Calcium metabolism involves other nutrients including protein, vitamin D, and phosphorus. Bone formation and maintenance is a lifelong process. Early attention to strong bones in childhood and adulthood will provide more stable bone mass during the aging years. Research has shown that adequate calcium intake can reduce the risk of fractures, osteoporosis, and diabetes in some populations. The dietary requirements of calcium and other collaborative nutrients vary slightly around the world. Lactose intolerance due to lactase deficiency is a common cause of low calcium intake. Strategies will be discussed for addressing this potential barrier to adequate intake. The purpose of this narrative review is a) to examine the role of calcium in human health, b) to compare nutrient requirements for calcium across lifecycle groups and global populations, c) to review relationships between calcium intake, chronic disease risk, and fractures, and d) to discuss strategies to address diet deficiencies and lactose intolerance. PMID:25713787

  3. [Phosphorus removal characteristics by aerobic granules in normal molasses wastewater after anaerobic treatment].

    PubMed

    Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng

    2012-04-01

    COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate. PMID:22724155

  4. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  5. Mechanisms for tolerance of very high tissue phosphorus concentrations in Ptilotus polystachyus.

    PubMed

    Aziz, Tariq; Lambers, Hans; Nicol, Dion; Ryan, Megan H

    2015-04-01

    Study of plants with unusual phosphorus (P) physiology may assist development of more P-efficient crops. Ptilotus polystachyus grows well at high P supply, when shoot P concentrations ([P]) may exceed 40 mg P g(-1) dry matter (DM). We explored the P physiology of P. polystachyus seedlings grown in nutrient solution with 0-5 mM P. In addition, young leaves and roots of soil-grown plants were used for cryo-scanning electron microscopy and X-ray microanalysis. No P-toxicity symptoms were observed, even at 5 mM P in solution. Shoot DM was similar at 0.1 and 1.0 mM P in solution, but was ∼14% lower at 2 and 5 mM P. At 1 mM P, [P] was 36, 18, 14 and 11 mg P g(-1) DM in mature leaves, young leaves, stems and roots, respectively. Leaf potassium, calcium and magnesium concentrations increased with increasing P supply. Leaf epidermal and palisade mesophyll cells had similar [P]. The root epidermis and most cortical cells had senesced, even in young roots. We conclude that preferential accumulation of P in mature leaves, accumulation of balancing cations and uniform distribution of P across leaf cell types allow P. polystachyus to tolerate very high leaf [P]. PMID:25258291

  6. Parathyroid and Calcium Status in Patients with Thalassemia

    PubMed Central

    Goyal, Meenu; Abrol, Pankaj

    2010-01-01

    Thirty patients with thalassemia major receiving repeated blood transfusion were studied to see their serum parathyroid hormone (PTH) and calcium status. Serum PTH, serum and 24 h urinary calcium, and serum alkaline phosphatase, phosphorus, and albumin-corrected calcium levels were determined. Half of these patients, in addition to transfusion, were also supplemented with vitamin D (60,000 IU for 10d) and calcium (1500 mg/day for 3 months). Serum PTH, and serum and 24 h urinary calcium concentrations of the patients receiving transfusions were found to be significantly reduced while their serum alkaline phosphatase, phosphorus, and albumin-corrected calcium levels were not significantly altered when compared to the respective mean values for the control group. Vitamin D and calcium supplementation significantly increased their serum PTH and calcium levels. Supplementations also increased urinary excretion of calcium. The results thus suggest that patients with thalassemia have hypoparathyroidism and reduced serum calcium concentrations that in turn were improved with vitamin D and calcium supplementation. PMID:21966110

  7. Recipe for potassium

    SciTech Connect

    Izutani, Natsuko

    2012-11-12

    I investigate favorable conditions for producing potassium (K). Observations show [K/Fe] > 0 at low metallicities, while zero-metal supernova models show low [K/Fe] (< 0). Theoretically, it is natural that the odd-Z element, potassium decreases with lower metallicity, and thus, the observation should imply new and unknown sites for potassium. In this proceedings, I calculate proton-rich nucleosynthesis with three parameters, the initial Y{sub e} (from 0.51 to 0.60), the initial density {rho}{sub max} (10{sup 7}, 10{sup 8}, and 10{sup 9} [g/cm{sup 3}]), and the e-fold time {tau} for the density (0.01, 0.1, and 1.0 [sec]). Among 90 models I have calculated, only 26 models show [K/Fe] > 0, and they all have {rho}{sub max} = 10{sup 9}[g/cm{sup 3}]. I discuss parameter dependence of [K/Fe].

  8. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  9. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  10. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  11. Potassium and High Blood Pressure

    MedlinePlus

    ... in blood pressure to certain patterns of food consumption. For example, the D.A.S.H. (Dietary Approaches ... are good natural sources of potassium. Potassium-rich foods include: Sweet ... Levels Mean * ...

  12. Potassium silver cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium silver cyanide is inclu

  13. High potassium level

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Kidney Diseases Potassium Browse the Encyclopedia A. ...

  14. Calcium antagonists.

    PubMed

    Grossman, Ehud; Messerli, Franz H

    2004-01-01

    Calcium antagonists were introduced for the treatment of hypertension in the 1980s. Their use was subsequently expanded to additional disorders, such as angina pectoris, paroxysmal supraventricular tachycardias, hypertrophic cardiomyopathy, Raynaud phenomenon, pulmonary hypertension, diffuse esophageal spasms, and migraine. Calcium antagonists as a group are heterogeneous and include 3 main classes--phenylalkylamines, benzothiazepines, and dihydropyridines--that differ in their molecular structure, sites and modes of action, and effects on various other cardiovascular functions. Calcium antagonists lower blood pressure mainly through vasodilation and reduction of peripheral resistance. They maintain blood flow to vital organs, and are safe in patients with renal impairment. Unlike diuretics and beta-blockers, calcium antagonists do not impair glucose metabolism or lipid profile and may even attenuate the development of arteriosclerotic lesions. In long-term follow-up, patients treated with calcium antagonists had development of less overt diabetes mellitus than those who were treated with diuretics and beta-blockers. Moreover, calcium antagonists are able to reduce left ventricular mass and are effective in improving anginal pain. Recent prospective randomized studies attested to the beneficial effects of calcium antagonists in hypertensive patients. In comparison with placebo, calcium antagonist-based therapy reduced major cardiovascular events and cardiovascular death significantly in elderly hypertensive patients and in diabetic patients. In several comparative studies in hypertensive patients, treatment with calcium antagonists was equally effective as treatment with diuretics, beta-blockers, or angiotensin-converting enzyme inhibitors. From these studies, it seems that a calcium antagonist-based regimen is superior to other regimens in preventing stroke, equivalent in preventing ischemic heart disease, and inferior in preventing congestive heart failure

  15. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    varieties, estimated at 85-100 t/ha for potato, 75-85 t/ha for beet and 12-15 t/ha for wheat (Evans 1977). These are far higher than the yields commonly obtained in practice. World average yields were only 1/6th of the potential for potato, 1/6th for wheat and 2/5th for sugar beet in 1995. Utilization of the crop The major part of potato production is usually used for human consumption. Human consumption of potatoes however has declined in the industrialised countries as the standard of living has increased. In these countries an increasing proportion of the crop is used for manufacturing products such as crisp, oven-ready chips, dehydrated potato powder. Thus, in Hungary the consumption of potatoes per person decreased from 110 kg in 1951/1960 to 60 kg in 1995, whereas the consumption of processed potatoes increased from 1 to 15 kg/person during this period. Uptake of potassium Potassium is the nutrient taken up by potato in the greatest quantity, it also takes up much nitrogen and appreciable amounts of phosphorus, calcium, magnesium and sulphur (Perrenoud 1993). Maximum uptakes by different varieties in Japan range between 140 and 267 K2O (Kali Kenkyu Kai 1980). In England, potatoes grown on the " blueprint" system and giving the very high yield of 77.7 t/ha took up 450 kg/ha K2O (Anderson and Hewgill 1978). Brazílian experiments with 6 varieties showed the following uptakes (kg/ha): potassium 207-367 (Motta 1976). Removal of potassium by tubers 23 experimental crops in France (Loué 1977), -with a mean yield of 37.3 t/ha tubers removed: 196 kg K2O, respectively. It is equal to 5.3 kg K2O per 1 tonne tuber. Motta Macedo (1976) reports the following removals in kg/ha for 6 varieties grown in Brazíl: K2O: 118-192. In 14 experiments in India (Grewal and Singh 1979) a mean yield of 28.8 t/ha tuber was obtained which removed an average of 91 kg/ha K2O. At very high yield level, nutrient removal in tuber is very high. Anderson and Hewgill (1978) report a yield of 90 t

  16. BIOLOGICAL PHOSPHORUS REMOVAL

    EPA Science Inventory

    Three proprietary biological phosphorus removal processes are reviewed. The paper presents the description and development status of these technologies. The paper is a summary of the emerging technology assessment report published by U.S. Environmental Protection Agency in 1984. ...

  17. Calcium in diet

    MedlinePlus

    ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ... the body on a full or empty stomach. Calcium carbonate is less expensive. It is absorbed better by ...

  18. Vasopressin regulates renal calcium excretion in humans

    PubMed Central

    Hanouna, Guillaume; Haymann, Jean-Philippe; Baud, Laurent; Letavernier, Emmanuel

    2015-01-01

    Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48–0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts. PMID:26620256

  19. Ion chromatographic determination of halogens, nitrogen, phosphorus, and sulfur in coals

    SciTech Connect

    Rigin, V.I.

    1987-12-10

    A method is proposed for simultaneous determination of sulfur, nitrogen, phosphorus, and halogens in fossil coals. The method consists in autoclave combustion of the sample in oxygen, absorption of the combustion products by a mixture of potassium carbonate and hydrogen peroxide solutions, and ion chromatographic determination of the anions formed.

  20. Anomalous distribution of fluoride and phosphorus forms in surface sediments along eastern Egyptian Mediterranean Sea coast.

    PubMed

    El-Said, Ghada F; Khalil, Mona Kh; Draz, Suzanne E O

    2016-07-01

    The study focused on the distribution of fluoride, total phosphorus, and four phosphorus fractions in some sites along the Egyptian Mediterranean Sea coast. The geochemical parameters and textures of 30 surficial sediment samples from six sectors were determined. The sediment's geochemical parameters (total carbonates (TCO3) and total organic carbon (TOC), exchangeable and carbonate-associated phosphorus (Pex), iron- and aluminum-associated phosphorus (POH), calcium-associated phosphate/apatite (PHCl), residual phosphorus (PR), total phosphorus (TP), calcium (Cas), magnesium (Mgs), and fluoride (Fs)) showed variable values. The rank of phosphorus fractions in the sediments PHCl > PR > POH > Pex reflected that the eastern Egyptian coast was still uncontaminated. Generally, Pex levels gave a gradual increase in the offshore direction, while POH values varied along the stations of each sector. Also, the presented data indicated that the apatite-P fraction was the main storage of the phosphate in the sediments with a contribution to TP ranging from 58 to 87 %. The highest and lowest average fluoride contents (0.49 ± 0.10 and 0.25 ± 0.31 mg/g) were determined in the Port Said and Damietta sectors, respectively. Interestingly, the variability of both phosphorus and fluoride levels in the investigated area seemed to be accompanied with the sediment's character beside the proximity to potential effluent sources. PMID:27053053

  1. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  2. PRE-ORE POTASSIUM METASOMATISM, CREEDE MINING DISTRICT, COLORADO.

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Barton, P.B., Jr.

    1985-01-01

    Rhyolitic welded-tuff wallrocks of the epithermal base and precious metal veins of the Creede district were pervasively altered by the addition of more than two billion metric tons of potassium some 1. 5-2 million years before mineralization. Sodium, calcium and magnesium were strongly depleted, yielding a nearly binary quartz plus potassium feldspar assemblage containing as much as 13 weight percent K//2O. This large-scale metasomatism, originally noted by Steven and Rattle (1965), took place progressively by initial alteration of plagioclase phenocrysts to orthoclase or microcline followed by alteration of the groundmass feldspar to orthoclase and gradual change of the sanidine phenocrysts to more Or-rich compositions. Oxygen isotope and chemical studies show that the metasomatism resulted from the interaction of the tuffs with deeply circulating heated ground water and suggest that the potassium metasomatism of rhyolitic rocks is the facies equivalent of propylitization of volcanic rocks of more basic composition.

  3. Assessment of the place of tubular reabsorption of phosphorus in the diagnosis of osteopenia of prematurity

    PubMed Central

    Acar, Duygu Besnili; Kavuncuoğlu, Sultan; Çetinkaya, Merih; Petmezci, Ercüment; Dursun, Mesut; Korkmaz, Orhan; Altuncu, Emel Kayrak

    2015-01-01

    Aim: In this study, we aimed to investigate the utility of tubular reabsorption of phosphorus in the diagnosis of osteopenia of prematurity in addition to biochemical markers. Materials and Method: Premature babies with a gestational age of ≤32 weeks and/or a birth weight of ≤1 500 g who were hospitalized in the neonatal intensive care unit between June 2009 and March 2011 were included in the study. These babies were evaluated at the 40th gestational week and serum calcium, phosphorus, alkaline phosphatase, urea, creatinine, urinary calcium and phosphorus levels were measured and tubular reabsorption of phosphorus was determined. The subjects who had bone graphy findings and/or an alkaline phosphatase level of >400IU/L and a phosphorus value of <3.5 mg/dL were considered osteopenic. The levels of tubular reabsorption of phosphorus of the osteopenic patients were compared with the ones of the non-osteopenic patients. The study was initiated after obtaining ethics committee approval (date: 04.29.2009/213). Results: During the study period, a total of 698 premature babies were hospitalized in our neonatology unit. A diagnosis of osteopenia of prematurity was made in 24 of 190 subjects who met the study criteria. The level of tubular reabsorption of phosphorus was compared with the serum calcium, phosphorus and alkaline phosphatase levels measured at the 40th gestational week and alkaline phosphatase was found to be significantly increased in the group with a high tubular reabsorption of phosphorus (≥%95). When the subjects with a phosphorus level of <3.5 mg/dL and an alkaline phosphatase level of >499 IU were compared with the newborns who were found to have a tubular reabsorption of phosphorus of ≥%95 for the objective of evaluating the specificity and sensitivity of tubular reabsorption of phosphorus, the sensitivity, specificity, positive predictive value and negative predictive value of tubular reabsorption of phosphorus in the diagnosis of osteopenia

  4. Calcium Test

    MedlinePlus

    ... as thyroid disease , parathyroid disorder , malabsorption , cancer, or malnutrition An ionized calcium test may be ordered when ... albumin , which can result from liver disease or malnutrition , both of which may result from alcoholism or ...

  5. Calcium Calculator

    MedlinePlus

    ... with Sarcopenia Skeletal Rare Disorders Data & Publications Facts and Statistics Vitamin D map Fracture Risk Map Hip Fracture ... Training Courses Working Groups Regional Audits Reports Facts and Statistics Popular content Calcium content of common foods What ...

  6. Calcium - ionized

    MedlinePlus

    ... levels. These may include abnormal blood levels of albumin or immunoglobulins. Normal Results Children: 4.8 to ... 2016:chap 245. Read More Acute kidney failure Albumin - blood (serum) test Bone tumor Calcium blood test ...

  7. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. PMID:26940168

  8. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. PMID:26113414

  9. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  10. Calcium Hydroxylapatite

    PubMed Central

    Yutskovskaya, Yana Alexandrovna; Philip Werschler, WM.

    2015-01-01

    Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today’s market. Methods: This article is an up-to-date review of calcium hydroxylapatite in aesthetic medicine along with procedures for its use, including a detailed injection protocol for a global facial approach by three expert injectors. Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. PMID:25610523

  11. Detecting potassium on Mercury

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Potter, A. E.; Morgan, T. H.

    1991-01-01

    A critical comment on the work of A.L. Sprague et al. (1990) is presented. It is argued that, in attributing an enhanced emission in the potassium D lines on Oct. 14, 1987 in the equatorial region of Mercury to a diffusion source centered on Caloris Basin, Sprague et al. misinterpreted the data. Sprague et al. present a reply, taking issue with the commenters.

  12. Potassium Channels in Epilepsy.

    PubMed

    Köhling, Rüdiger; Wolfart, Jakob

    2016-01-01

    This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079

  13. Interaction of potassium phosphonate fungicide in laterite soil.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Vasu, K; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G

    2005-10-01

    Potassium phosphonate is a fungicide widely used to control Phytophthora fungi species in many crops all over the world. In this paper, an attempt has been made to study the interaction of potassium phosphonate with soil under varying pH and calcium level. Several reports available in literature indicate that the phosphonate in organic form adsorb strongly on almost all mineral surfaces and natural materials like soil and sediments. The present study conducted on laterite soil of Kerala using 2 mm sieved sample indicated that phosphonate obeys Freundlich adsorption isotherm. Though at lower concentrations, Langmuir model equally fits well, deviation was observed at higher concentrations. pH and calcium content of the soil had striking influence on the interaction of the chemical with the soil. The calcium source also appeared to influence the adsorption phenomenon. Since potassium phosphonate is extensively used to control Phytophthora fungi species in black pepper (Piper nigrum) plantations in India and liming is a standard practice followed as soil amendment in acid soils to increase the soil pH, this study may help to maintain good soil quality. PMID:17051913

  14. The preparation of calcium superoxide from calcium peroxide diperoxyhydrate

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.

    1977-01-01

    There is interest in solid materials containing a high percentage of stored oxygen for use in emergency breathing apparatus for miners and as auxiliary oxygen sources for astronauts. In theory, the amount of available oxygen in calcium superoxide, Ca(O2)2 is higher than in potassium superoxide, KO2, and its availability during use should be unhindered by the formation of a low melting and hydrous coating. The decomposition of solid calcium peroxide diperoxyhydrate, CaO2.2H2O2 has been studied, using an apparatus which allows good control of the critical reaction parameters. Samples have been prepared showing apparent superoxide contents in excess of those previously reported and higher than the theoretical 58.4% expected from a disproportionation reaction.

  15. Effect of application of ammonium chloride and calcium chloride on alfalfa cation-anion content and yield.

    PubMed

    Goff, J P; Brummer, E C; Henning, S J; Doorenbos, R K; Horst, R L

    2007-11-01

    A major factor predisposing the cow to periparturient hypocalcemia, or milk fever, is being fed a prepartum ration with a high dietary cation-anion difference (DCAD). The DCAD can be favorably altered to prevent milk fever by decreasing K and Na or increasing Cl and S in forages for cows in late gestation. The objective of this study was to test the hypothesis that application of Cl to alfalfa could increase Cl in forage, thereby lowering DCAD. We conducted a field experiment at 2 Iowa locations in which established plots of alfalfa were treated in April 2001 with 0, 56, 112, or 168 kg of Cl/ha using ammonium chloride, calcium chloride, or a mix of the 2 sources with equal amounts of chloride coming from each source. Plots were harvested 4 times in 2001 and once in 2002 and plant tissue analyzed for mineral composition. Applying chloride from either source once in the spring resulted in increased plant chloride content over all 4 cuttings for that year. Averaged across both locations, chloride levels were elevated from 0.52% in control plots to 0.77, 0.87, and 0.89% Cl in plots treated with 56, 112, and 168 kg of Cl/ha, respectively. Chloride application had no effect on plant potassium, sodium, calcium, magnesium, or phosphorus. These results suggest chloride application can elevate chloride content and lower DCAD values of alfalfa, and also maintain crop yield. PMID:17954756

  16. Potassium dependent rescue of a myopathy with core-like structures in mouse

    PubMed Central

    Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L; Minic, Angela D; Niswander, Lee

    2015-01-01

    Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations. DOI: http://dx.doi.org/10.7554/eLife.02923.001 PMID:25564733

  17. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    PubMed

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. PMID:25456880

  18. Phosphorus in prebiotic chemistry

    PubMed Central

    Schwartz, Alan W

    2006-01-01

    The prebiotic synthesis of phosphorus-containing compounds—such as nucleotides and polynucleotides—would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the ‘phosphorus problem’ is no longer the stumbling block which it was once thought to be. PMID:17008215

  19. The effect of MgSO4 addition and the increasing doses of calcium and phosphorus during ending drying period on the occurrence of hypocalcaemia and hypophosphataemia in dairy cows.

    PubMed

    Bodarski, R; Kinal, S; Preś, J; Slupczyńska, M; Twardoń, J

    2013-01-01

    The aim of the presented study was the estimation of optimal Ca and P levels applied before calving together with anionic salt addition, as an element of hypocalcaemia and hypophosphataemia prevention. The experiment was carried out during the dry period on 48 cows with similar milk yield in the previous lactation. Cows were divided into four groups. In group I (control) the amount of minerals was in accordance to NRC standards. In experimental groups (groups II-IV), two weeks before calving, cows received 140 g/day/head of hydrated magnesium sulphate to achieve dietary cation-anion difference at the level of about 50 mEq/kg DM. In groups II and III cows received calcium carbonate (100 g/day) 10 days a.p. (antepartum) (group II), or 5 days a.p. (group III), while cows in IV group received dicalcium phosphate (100 g/day) for 5 days a.p. Application of MgSO4 x 7H20 significantly affected the urine pH of cows from group III and IV 4-5 d. before calving - 6.45 and 6.81, respectively. The acidification of urine was observed after calving in group IV (7.13). In cows from group II (100 CaCO3 10 days a.p.) urine pH decline was not found (7.97-7.75). In that group the incidences of hypophosphatemia were noted (blood serum inorganic P level 1.41-1.46 mmol/1). Addition of magnesium sulphate prevented hypocalcaemia occurrence -- 4-5 d. before calving the concentration of ionized Ca in blood serum was 1.11, 1.13 and 1.16 mmol/1 (respectively for group II, III and IV). Reproductive functions were significantly improved after the application of CaCO3 and CaHPO4 for 5 days a.p. in comparison with control and group II -- progesterone concentration in the blood serum on the 45th day of lactation was 1.396 - 1.409 versus 0.799 - 0.401. The correlation between progesterone and inorganic P level in serum was almost significant. Based on the obtained results a treatment optimal in prevention of hypocalcaemia and hypophosphataemia is the application of 50 g CaCO3 and 50 g of CaHPO4 for

  20. Targeting potassium channels in cancer

    PubMed Central

    2014-01-01

    Potassium channels are pore-forming transmembrane proteins that regulate a multitude of biological processes by controlling potassium flow across cell membranes. Aberrant potassium channel functions contribute to diseases such as epilepsy, cardiac arrhythmia, and neuromuscular symptoms collectively known as channelopathies. Increasing evidence suggests that cancer constitutes another category of channelopathies associated with dysregulated channel expression. Indeed, potassium channel–modulating agents have demonstrated antitumor efficacy. Potassium channels regulate cancer cell behaviors such as proliferation and migration through both canonical ion permeation–dependent and noncanonical ion permeation–independent functions. Given their cell surface localization and well-known pharmacology, pharmacological strategies to target potassium channel could prove to be promising cancer therapeutics. PMID:25049269

  1. [Distributions of phosphorus fractions in suspended sediments and surface sediments of Tiaoxi mainstreams and cause analysis].

    PubMed

    Chen, Hai-Long; Yuan, Xu-Yin; Wang, Huan; Li, Zheng-Yang; Xu, Hai-Yan

    2015-02-01

    Phosphorus is a primary nutrient showing the water quality status of river and inducing eutrophication, and a different phosphorus fraction can make diverse contributions to water quality. Four phosphorus forms of suspended sediments and surface sediments in Tiaoxi mainstreams were measured using a sequential extraction procedure, and the distributions of their forms were discussed. The results showed that the tropic status of Xitiaoxi River was inferior to that of Dongtiaoxi River as a whole, and the water quality in the middle reach of Dongtiaoxi River was better than that in the upper and lower reaches. The contents of nutrient elements in suspended sediments were significantly higher than those in surface sediment, which indicated an enrichment of nutrient in fine sediment. The percentages of the loosely absorbed phosphorus ( NH4Cl-P), the reductant phosphorus (BD-P) and the metal oxide bound phosphorus (NaOH-P) in the suspended sediment were higher than those in surface sediment, while the percentage of the calcium bound phosphorus (HCl-P) showed a reverse trend. Correlation analyses between phosphorus forms and chemical compositions of suspended sediments and surface sediments were performed. The results showed the phosphorus forms in suspended sediments and surface sediments of Xitiaoxi River had weak relationships with mineral components, while those in the Dongtiaoxi River had strong relationships with mineral, especially OM and clay mineral. The cause was associated with the geological setting and material sources in Tiaoxi watershed. PMID:26031071

  2. Calcination of calcium carbonate and blend therefor

    SciTech Connect

    Mallow, W.A.; Dziuk, J.J. Jr.

    1989-05-09

    This patent describes a method for the accelerated calcination of a calcium carbonate material. It comprises: heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a fused salt catalyst consisting of particles having a size above or below that of the calcium carbonate material; the catalyst comprising at least one fused salt having the formula M{sub 2}CO{sub 3}. CaCO{sub 3}-CaO-H{sub 2}O{sub {ital x}}, wherein M is an alkali metal selected from sodium or potassium and x is 0 to 1 and the salt is formed by fusing M{sub 2}CO{sub 3} and CaCO{sub 3} in a molar ratio of about 1:2 to 2:1 when the alkali metal is sodium and about 1:1 to 2:1 when the alkali metal is potassium. This patent also describes a blend adapted to be heated to form CaO. It comprises: a calcium carbonate material and a catalyst consisting of particles having a size above or below that of the calcium carbonate material; the catalyst comprising at least one fused salt having the formula M{sub 2}CO{sub 3}-CaCO{sub 3}CaO-H{sub 2}O{sub {ital x}}.

  3. Presynaptic calcium currents in squid giant synapse.

    PubMed Central

    Llinás, R; Steinberg, I Z; Walton, K

    1981-01-01

    A voltage clamp study has been performed in the presynaptic terminal of the squid stellate ganglion. After blockage of the voltage-dependent sodium and potassium conductances, an inward calcium current is demonstrated. Given a step-depolarization pulse, this voltage- and time-dependent conductance has an S-shaped onset. At the "break" of the voltage step, a rapid tail current is observed. From these results a kinetic model is generated which accounts for the experimental results and predicts for the time course and amplitude a possible calcium entry during presynaptic action potentials. Images FIGURE 1 PMID:7225510

  4. Presynaptic Calcium Signalling in Cerebellar Mossy Fibres

    PubMed Central

    Thomsen, Louiza B.; Jörntell, Henrik; Midtgaard, Jens

    2009-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX)-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette. PMID:20162034

  5. Magnesium Test

    MedlinePlus

    ... Mg; Mag Formal name: Magnesium Related tests: Calcium , Potassium , Phosphorus , PTH , Vitamin D At a Glance Test ... can, over time, cause persistently low calcium and potassium levels, it may be checked to help diagnose ...

  6. Potassium-binding resins: Associations with serum chemistries and interdialytic weight gain in hemodialysis patients

    PubMed Central

    Jadoul, Michel; Karaboyas, Angelo; Goodkin, David A.; Tentori, Francesca; Li, Yun; Labriola, Laura; Robinson, Bruce M.

    2014-01-01

    Background Although potassium-binding sodium-based resins (K resins) have been prescribed to treat hyperkalemia for 50 years, there have been no large studies of their effects among hemodialysis patients. Methods Data from 11,409 patients in the Dialysis Outcomes and Practice Patterns Study in Belgium, Canada, France, Italy, and Sweden (nations where ≥ 5% of patients were prescribed a sodium based K resin; seven other countries had <5% use) between 2002-2011 were analyzed. Linear mixed models examined associations between K resin use and interdialytic weight gain (IDWG) and serum electrolyte concentrations. Mortality was analyzed using Cox regression. An instrumental variable approach was used to partially account for unmeasured confounders. Results The K resin prescription rate was 20% overall. As hypothesized, patients prescribed a K resin had greater IDWG and higher serum bicarbonate, phosphorus, and sodium (but not calcium) concentrations. Patients prescribed a K resin had higher serum K, but lower serum K in an instrumental variable analysis to limit treatment by indication bias. K resin use was not associated with mortality risk. Conclusion We report the first large study of K resin use and associated lab and clinical outcomes in HD patients. The prescription rate of K resins varied dramatically by country and dialysis center. The results suggest that K resin use may effectively lower serum K, although at the expense of somewhat higher phosphatemia and greater IDWG, and had no clear association with mortality. Additional study is warranted to elucidate the optimal role for K resins in modern dialysis care. PMID:24642479

  7. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  8. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  9. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  10. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  11. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  12. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food... Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS... potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  13. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  14. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  15. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  16. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  17. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  18. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  19. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  20. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  1. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride...

  2. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium...

  3. Get Enough Calcium

    MedlinePlus

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  4. Calcium carbonate overdose

    MedlinePlus

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  5. Changes in Nutrition Knowledge Scores and Calcium Intake in Female Adolescents.

    ERIC Educational Resources Information Center

    Green, Julie; And Others

    1991-01-01

    Female adolescents were randomly assigned to an experimental group (n=29), which received nutrition instruction, and a no-treatment control group (n=20). In the experimental group, nutrition knowledge increased significantly, calcium and vitamin D intake increased, and mean intakes for calcium, vitamin D, and phosphorus were closer to the…

  6. Potassium ion channels and allergic asthma.

    PubMed

    Kocmalova, M; Oravec, M; Adamkov, M; Sadlonova, V; Kazimierova, I; Medvedova, I; Joskova, M; Franova, S; Sutovska, M

    2015-01-01

    High-conductive calcium-sensitive potassium channels (BK+Ca) and ATP-sensitive potassium (K+ATP) channels play a significant role in the airway smooth muscle cell and goblet cell function, and cytokine production. The present study evaluated the therapeutic potential of BK+Ca and K+ATP openers, NS 1619 and pinacidil, respectively, in an experimental model of allergic inflammation. Airway allergic inflammation was induced with ovalbumine in guinea pigs during 21 days, which was followed by a 14-day treatment with BK+Ca and K+ATP openers. The outcome measures were airway smooth muscle cells reactivity in vivo and in vitro, cilia beating frequency and the level of exhaled NO (ENO), and the level of pro-inflammatory cytokines in the plasma and bronchoalveolar lavage fluid. The openers of both channels decreased airway smooth muscle cells reactivity, cilia beating frequency, and cytokine levels in the serum. Furthermore, NS1619 reduced ENO and inflammatory cells infiltration. The findings confirmed the presence of beneficial effects of BK+Ca and K+ATP openers on airway defence mechanisms. Although both openers dampened pro-inflammatory cytokines and mast cells infiltration, an evident anti-inflammatory effect was provided only by NS1619. Therefore, we conclude that particularly BK+Ca channels represent a promising new drug target in treatment of airway's allergic inflammation. PMID:25315623

  7. Calcium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for calcium cyanide is included in th

  8. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    PubMed Central

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  9. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases. PMID:27038376

  10. Fractionation of Soil Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the qualitative and quantitative information provided by soil phosphorus (P) fractionation methods is important for addressing agronomic and water quality problems, as well as evaluating P biogeochemistry in extreme environments. This chapter provides a schematic overview of and ...

  11. Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats.

    PubMed

    Kolias, T J; Chai, S; Webb, R C

    1993-06-01

    The goal of this study was to characterize differences in contractile responsiveness to several potassium channel antagonists in vascular smooth muscle from stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto normotensive rats (WKY). Helically-cut strips of carotid arteries (endothelium removed) from SHRSP and WKY were mounted in muscle baths for measurement of isometric force generation. Contractile responses to tetraethylammonium (10(-4) to 3 x 10(-2) mol/L) and barium (3 x 10(-5) mol/L), blockers of the voltage-dependent and large conductance, calcium activated potassium channels, were greater in carotid arteries from SHRSP than in those from WKY. In contrast, contractile responses to the voltage-dependent potassium channel blockers 3,4-diamino-pyridine (10(-6) to 3 x 10(-3) mol/L) and sparteine (10(-6) to 3 x 10(-2) mol/L) in arteries from SHRSP did not differ from WKY values. Carotid arteries from SHRSP and WKY did not contract to apamin (10(-9) to 10(-6) mol/L), an antagonist of the small conductance, calcium activated potassium channel. Furthermore, relaxation responses to diazoxide (3 x 10(-4) mol/L), an activator of the ATP-sensitive potassium channel, and subsequent contractions to the ATP-sensitive potassium channel blocker glyburide (10(-8) to 3 x 10(-6) mol/L) in arteries from SHRSP did not differ from WKY values. Carotid artery segments from SHRSP were more sensitive to the contractile effects of elevated potassium than those from WKY. We conclude that altered activity of the large conductance, calcium activated potassium channel may play a role in the increased responsiveness observed in arteries from SHRSP. PMID:8343237

  12. Effects of oral administration of a calcium-containing gel on serum calcium concentration in postparturient dairy cows.

    PubMed

    Queen, W G; Miller, G Y; Masterson, M A

    1993-02-15

    Various nutritious nutritional-supplement gels are being marketed for use in veterinary medicine. This study was designed to determine whether serum calcium, phosphorous, or magnesium concentrations were different between cows given a gel containing calcium chloride as its active ingredient (treated) and cows given inert carrier gel (control). The study revealed a significant (P < 0.01) increase in serum total calcium concentration within 5 minutes of administration of a calcium gel given to cows within 1 hour of parturition. Serum total calcium concentration had returned to baseline value by 24 hours after calcium gel administration. Serum inorganic phosphorus concentration also increased significantly (P < 0.05) after treatment. Significant changes in serum magnesium concentrations were not detected. PMID:8449800

  13. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  14. Potassium hydroxide clay stabilization process

    SciTech Connect

    Sydansk, R.

    1981-07-28

    An aqueous solution having potassium hydroxide dissolved therein is injected into a subterranean sandstone formation containing water-sensitive fine particles, including clays. Potassium hydroxide stabilizes the fine particles for a substantial period of time thereby substantially preventing formation permeability damage caused by encroachment of aqueous solutions having a distinct ionic makeup into the treated formation.

  15. Phosphorus balance and mineral metabolism with 3 h daily hemodialysis.

    PubMed

    Ayus, J C; Achinger, S G; Mizani, M R; Chertow, G M; Furmaga, W; Lee, S; Rodriguez, F

    2007-02-01

    Poor control of mineral metabolism is independently associated with mortality in patients receiving hemodialysis. We analyzed data from a 12-month, prospective, non-randomized, controlled study of daily hemodialysis (DHD) (six sessions/week 3 h each) (n=26) vs conventional hemodialysis (CHD) (three sessions/week 4 h each) (n=51) for achievement of mineral metabolism goals and we performed a substudy of weekly dialytic phosphorus removal in DHD vs CHD. Phosphorus control was superior in the DHD group (% change from baseline to end-of-study -27+/-30% vs +7%+/-35% in the CHD group, P=0.0001). Percentage of patients using phosphate binders decreased from 77 to 40% among subjects on DHD, whereas these parameters did not change (76 vs 77%) in the CHD group (P=0.03 by Breslow-Day test for homogeneity of the odds ratios). Weekly mean phosphorus removal was higher in the DHD group (2452+/-720 mg/week vs 1572+/-366 mg/week, P=0.04). Mean normalized protein catabolic rate increased (0.90+/-0.43-1.22+/-0.26 g/kg/day, P=0.0013). DHD was also associated with an increase in the percent of subjects achieving three or more mineral metabolism goals (for phosphorus, calcium x phosphorus and parathyroid hormone) (15 vs 46%, P=0.046). In conclusion, DHD improves phosphorus control by increasing dialytic phosphorus removal while maintaining nutritional status and reducing the use of phosphate binders. The net effect allows for improved achievement of mineral metabolism goals. PMID:17191084

  16. Agronomic effectiveness of calcium phosphate recovered from liquid swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new manure treatment technology developed as an alternative to anaerobic lagoons on swine (Sus scrofa domesticus) farms includes solid-liquid separation and subsequent recovery of soluble phosphorus (P) as calcium phosphate from the wastewater. The objective was to determine the agronomic effectiv...

  17. Calcium and vitamin D requirements of enterally fed preterm infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone health is a critical concern in managing preterm infants. Key nutrients of importance are calcium, vitamin D, and phosphorus. Although human milk is critical for the health of preterm infants, it is low in these nutrients relative to the needs of the infants during growth. Strategies should be ...

  18. Phospohorus and calcium retention in serially harvested cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data from 3 serial harvest trials were utilized to calculate phosphorus and calcium retention in cattle. Trial 1 evaluated the effect of three rates of gain during a growing period followed by a common finishing diet utilizing British crossbred steers. Four steers were harvested from each treatmen...

  19. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22406520

  20. [The impact of known and unknown dietary components to phosphorus intake].

    PubMed

    Cupisti, Adamasco; D'Alessandro, Claudia

    2011-01-01

    The pathogenesis of CKD-MBD is multifactorial but the tendency towards phosphorus retention due to an excessive dietary intake for the residual renal function plays a central role. The dietary phosphorus is absorbed in the intestine as inorganic free phosphorus. The share of intestinal absorption (about 60% on average) is negligible for plant phosphorus (in the form of phytate), while it is maximal for phosphate or polyphosphates contained in food additives. The latter represent a dangerous extra load of phosphorus because they are poorly recognized by patients and widely used in modern nutrition, in particular in low-cost food. In a free mixed diet, the phosphorus content is directly related to that of proteins. It follows that protein-rich foods are the main source of phosphorus. This is a favorable condition for CKD patients in conservative therapy when a low-protein diet is implemented, while it represents a huge problem for dialysis patients, who need a high-protein diet. A simple and effective approach to reduce the load of dietary phosphorus without reducing protein intake is to educate patients to avoid foods high in phosphorus (cheese, egg yolk, nuts, etc.), and particularly those containing phosphorus additives. In addition, they should prefer boiling (resulting also in a decrease in sodium and potassium) to other methods of cooking. Counseling by a dietician is important for successful patient care. The dietician provides nutritional education, can help the patient with the choice of food, and may favor the adherence to dietary prescriptions, which is a crucial aspect in an integrated approach to CKD-MBD. PMID:21626496

  1. Phosphorus removal using nanofiltration membranes.

    PubMed

    Leo, C P; Chai, W K; Mohammad, A W; Qi, Y; Hoedley, A F A; Chai, S P

    2011-01-01

    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus. PMID:22053475

  2. Implications of phosphorus redox geochemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew

    2015-04-01

    Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.

  3. Studies on endogenous circulating calcium entry blocker and stimulator

    SciTech Connect

    Pang, P.K.T.; Yang, M.C.M.

    1986-03-01

    Several synthetic compounds have been studied extensively for their calcium entry blockade and stimulation in smooth muscles. It is hypothesized that there should be endogenous substances which control calcium entry into cells. We recently investigated the effect of some vasoactive hormones on calcium entry. Our studies on rat tail artery helical strip showed that the in vitro vasoconstriction produced by arginine vasopressin (AVP) decreased stepwise with decreasing concentration of both calcium. After exposure of the tail artery to calcium-free Ringer's solution for 1 minute or longer, the tissue lost its ability to respond to AVP. Subsequent addition of calcium to the medium produced immediate contraction. Measurements of low affinity lanthanum resistant pool of calcium with /sup 45/Ca showed that AVP increased calcium uptake by tail artery in a dose-dependent manner. In another study rat tail artery helical strip indicated that the vasorelaxing action of parathyroid hormone (PTH) was related to an inhibition of calcium uptake. AVP or 60 mM potassium chloride increased the low affinity lanthanum resistant pool of calcium in rate tail artery and PTH inhibited the increase. In conclusion, AVP and PTH may behave like endogenous calcium entry stimulator and inhibitor respectively in vascular tissues.

  4. Calcium-Mediated Abiotic Stress Signaling in Roots.

    PubMed

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  5. Idiopathic hypercalciuria and formation of calcium renal stones.

    PubMed

    Coe, Fredric L; Worcester, Elaine M; Evan, Andrew P

    2016-09-01

    The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall's plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone disease. PMID:27452364

  6. An evaluation of potassium ions as endothelium-derived hyperpolarizing factor in porcine coronary arteries.

    PubMed

    Bény, J L; Schaad, O

    2000-11-01

    In the rat hepatic artery, the endothelium-derived hyperpolarizing factor (EDHF) was identified as potassium. Potassium hyperpolarizes the smooth muscles by gating inward rectified potassium channels and by activating the sodium-potassium adenosine triphosphatase (Na(+)-K(+)ATPase). Our goal was to examine whether potassium could explain the EDHF in porcine coronary arteries. On coronary strips, the inhibition of calcium-dependent potassium channels with 100 nM apamin plus 100 microM charibdotoxin inhibited the endothelium-dependent relaxations, produced by 10 nM substance P and 300 nM bradykinin and resistant to nitro-L-arginine and indomethacin. The scavenging of potassium with 2 mM Kryptofix 2.2.2 abolished the endothelium-dependent relaxations produced by the kinins and resistant to nitro-L-arginine and indomethacin. Forty microM 18alpha glycyrrethinic acid or 50 microM palmitoleic acid, both uncoupling agents, did not inhibit these kinin relaxations. Therefore, EDHF does not result from an electrotonic spreading of an endothelial hyperpolarization. Barium (0.3 nM) did not inhibit the kinin relaxations resistant to nitro-L-arginine and indomethacin. Therefore, EDHF does not result from the activation of inward rectified potassium channels. Five hundred nM ouabain abolished the endothelium-dependent relaxations resistant to nitro-L-arginine and indomethacin without inhibiting the endothelium-derived NO relaxation. The perifusion of a medium supplemented with potassium depolarized and contracted a coronary strip; however, the short application of potassium hyperpolarized the smooth muscles. These results are compatible with the concept that, in porcine coronary artery, the EDHF is potassium released by the endothelial cells and that this ion hyperpolarizes and relaxes the smooth muscles by activating the Na(+)-K(+)ATPase. PMID:11053218

  7. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population.

    PubMed

    Calvo, Mona S; Uribarri, Jaime

    2013-07-01

    This review explores the potential adverse impact of the increasing phosphorus content in the American diet on renal, cardiovascular, and bone health of the general population. Increasingly, studies show that phosphorus intakes in excess of the nutrient needs of a healthy population may significantly disrupt the hormonal regulation of phosphate, calcium, and vitamin D, which contributes to disordered mineral metabolism, vascular calcification, impaired kidney function, and bone loss. Moreover, large epidemiologic studies suggest that mild elevations of serum phosphate within the normal range are associated with cardiovascular disease (CVD) risk in healthy populations without evidence of kidney disease. However, few studies linked high dietary phosphorus intake to mild changes in serum phosphate because of the nature of the study design and inaccuracies in the nutrient composition databases. Although phosphorus is an essential nutrient, in excess it could be linked to tissue damage by a variety of mechanisms involved in the endocrine regulation of extracellular phosphate, specifically the secretion and action of fibroblast growth factor 23 and parathyroid hormone. Disordered regulation of these hormones by high dietary phosphorus may be key factors contributing to renal failure, CVD, and osteoporosis. Although systematically underestimated in national surveys, phosphorus intake seemingly continues to increase as a result of the growing consumption of highly processed foods, especially restaurant meals, fast foods, and convenience foods. The increased cumulative use of ingredients containing phosphorus in food processing merits further study given what is now being shown about the potential toxicity of phosphorus intake when it exceeds nutrient needs. PMID:23719553

  8. Chloride- and alkali-containing calcium phosphates as basic materials to prepare calcium phosphate cements.

    PubMed

    Bermúdez, O; Boltong, M G; Driessens, F C; Ginebra, M P; Fernández, E; Planell, J A

    1994-10-01

    Combinations of an alkali-containing calcium phosphate-like rhenanite, sodium whitlockite or calcium potassium phosphate and a chloride-containing calcium phosphate-like spodiosite or chloroapatite with or without additions of other calcium phosphates like monocalcium phosphate monohydrate, dicalcium phosphate or dicalcium phosphate dihydrate were made and mixed with water into pastes. The setting time of these pastes was determined. After soaking for a day in Ringer's solution at 37 degrees C the compressive strength and the diametral tensile strength were determined. Two of the combinations tried in this study resulted in the formation of cements at room temperature. One cement was of the type dicalcium phosphate, whereas the other gave octocalcium phosphate as the solid reaction product. The byproducts formed were an aqueous solution of NaCl and one of K2HPO4, respectively. Applications for bone repair and augmentation are envisaged. PMID:7841290

  9. Effects of different phosphorus sources in the diet on bone composition and stability (breaking strength) in broilers.

    PubMed

    Hemme, A; Spark, M; Wolf, P; Paschertz, H; Kamphues, J

    2005-01-01

    In two fattening trials (in each 100 broilers kept in four groups with 25 animals) as well as in a balance trial (four groups with four broilers in a group) the effects of inorganic phosphorus sources [monocalcium phosphate (MCP), dicalcium phosphate (dihydrate; DCP) and defluorinated phosphate (DFP)] in broiler diets were examined. The four diets contained up to 9 g calcium and 6 g phosphorus per kg and comparable energy and nutrient contents. Controls were fed a commercial diet with Ca-Na-phosphate as inorganic phosphorus source supplemented by phytase. In both fattening trials body weight gain, feed consumption and feed conversion were proved as well as the calcium and phosphorus levels in serum, the breaking strength of tibia or humerus and the femur mineralization (ash content in the fat free dry matter). Furthermore, in the balance trial the retention of calcium and phosphorus was determined by calculation (intake minus excretion) as well as by analysis of body composition. On a high performance level (that was only slightly influenced by the different treatments), the addition of DFP resulted in significantly reduced phosphorus availability (estimated by analysis of the whole carcass: control/MCP/DCP/DFP: 48.6/46.0/45.7/35.5%). The significantly reduced phosphorus level in serum (1.77 +/- 0.20/1.77 +/- 0.24/1.73 +/- 0.28 1.34 +/- 0.33 mmol/l) indicates the lower phosphorus retention in broilers given DFP. Furthermore, the crude ash content (582 +/- 17.6/580 +/- 18.6/563 +/- 15.2/547 +/- 29.7 g/kg fat free DM) and the breaking strength of bones (in right tibia in trial 2: 232 +/- 82.4/227 +/- 51.5/232 +/- 41.7/196 +/- 655 N) were lowest when given DFP. For diagnostic purposes it is of special interest that the phosphorus levels in the serum reflected markedly the different concentrations of available phosphorus in the diet. PMID:15787983

  10. The problem with phosphorus

    NASA Astrophysics Data System (ADS)

    Froelich, Phillip N.

    Phosphorus is King of the aquatic plant kingdom.1 Without it there would be no growth, no reproduction, and thus no life.2 This simple principle has been concealed from a generation of aquatic scientists seduced by the powers of the Queen Consort, Nitrogen.3If Phosphorus is King and Nitrogen is Queen, then a naive observer4 of the Chess Queen, then a naive observer4 of the Chess Game of Life might prematurely conclude, after watching the moves unfolding on the board, that the Queen is all powerful and controls the game. She can move both diagonally and laterally across the board5 and travels long distances in one jump.6 Clones can be created from thin air on the back row.7 She literally dances over the board and controls the tempo of the game.8 A game without a dominant Queen is rare.9

  11. Potassium/lime muds reduce drilling costs through troublesome Dubai shales

    SciTech Connect

    Tipton, J.; Gaudin, D.

    1986-06-16

    Shale problems in the Arabian Gulf, offshore U.A.E., occur in two troublesome formations. The main problems occur in the 9 7/8-in. interval through the Aruma shales. Significant reductions in cost have been achieved by substituting water-based, potassium, lime, modified-deflocculant-polymer systems (called KLM muds) for oil-based systems in directional wells of less than 45/sup 0/. Additionally, laboratory tests have shown KLM muds to be equally inhibitive in comparison to KCI systems at significantly lower potassium concentrations. Excellent well stabilization has been maintained with the KLM systems, drilling near-gauge holes at improved penetration rates. This article presents a chronological development of inhibitive systems, clay chemistry, and laboratory research. It then gives field performance data from the five wells. The key technical points are that calcium and potassium work together synergistically, and that cheaper calcium can do much of the inhibition.

  12. Multiple phosphorus chemical sites in heavily phosphorus-doped diamond

    SciTech Connect

    Okazaki, Hiroyuki; Yoshida, Rikiya; Muro, Takayuki; Nakamura, Tetsuya; Hirai, Masaaki; Kato, Hiromitsu; Yamasaki, Satoshi; Takano, Yoshihiko; Ishii, Satoshi; Oguchi, Tamio

    2011-02-21

    We have performed high-resolution core level photoemission spectroscopy on a heavily phosphorus (P)-doped diamond film in order to elucidate the chemical sites of doped-phosphorus atoms in diamond. P 2p core level study shows two bulk components, providing spectroscopic evidence for multiple chemical sites of doped-phosphorus atoms. This indicates that only a part of doped-phosphorus atoms contribute to the formation of carriers. From a comparison with band calculations, possible origins for the chemical sites are discussed.

  13. Characterization and sonochemical synthesis of black phosphorus from red phosphorus

    NASA Astrophysics Data System (ADS)

    Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji

    2016-03-01

    Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.

  14. Calcium Deficiency Reduces Circulating Levels of FGF23

    PubMed Central

    Rodriguez-Ortiz, María E.; Lopez, Ignacio; Muñoz-Castañeda, Juan R.; Martinez-Moreno, Julio M.; Ramírez, Alan Peralta; Pineda, Carmen; Canalejo, Antonio; Jaeger, Philippe; Aguilera-Tejero, Escolastico; Felsenfeld, Arnold; Almaden, Yolanda

    2012-01-01

    Fibroblast growth factor (FGF) 23 inhibits calcitriol production, which could exacerbate calcium deficiency or hypocalcemia unless calcium itself modulates FGF23 in this setting. In Wistar rats with normal renal function fed a diet low in both calcium and vitamin D, the resulting hypocalcemia was associated with low FGF23 despite high parathyroid hormone (PTH) and high calcitriol levels. FGF23 correlated positively with calcium and negatively with PTH. Addition of high dietary phosphorus to this diet increased FGF23 except in rats with hypocalcemia despite high PTH levels. In parathyroidectomized rats, an increase in dietary calcium for 10 days increased serum calcium, with an associated increase in FGF23, decrease in calcitriol, and no change in phosphorus. Also in parathyroidectomized rats, FGF23 increased significantly 6 hours after administration of calcium gluconate. Taken together, these results suggest that hypocalcemia reduces the circulating concentrations of FGF23. This decrease in FGF23 could be a response to avoid a subsequent reduction in calcitriol, which could exacerbate hypocalcemia. PMID:22581996

  15. Bound potassium in muscle II.

    PubMed

    Hummel, Z

    1980-01-01

    Experiments were performed to decide between the alternatives a) the ionized K+ is in a dissolved state in the muscle water, or b) a part of the muscle potassium is in a "bound' state. Sartorius muscles of Rana esculenta were put into glicerol for about one hour at 0-2 degrees C. Most of muscle water came out, but most of muscle potassium remained in the muscles. In contrast to this: from muscle in heat rigor more potassium was released due to glicerol treating than from the intact ones. 1. Supposition a) is experimentally refuted. 2. Supposition b) corresponds to the experimental results. PMID:6969511

  16. Vanadium reduces mortality in phosphorus deficient chicks

    SciTech Connect

    Hill, C.H. )

    1991-03-15

    Since the vanadate anion is similar in structure to the phosphate ion, and since vanadate has been shown to interfere with phosphate metabolism both in vitro and in vivo, experiments were conducted to determine the effect of dietary vanadate (V) on chicks fed phosphorus (P) deficient diets. In these studies, broiler chicks of both sexes were fed the experimental diets from the day of hatching for 19 days. The diets were based on soybean meal and corn, supplemented with methionine, manganese, and vitamins to supply the chick's requirements. Calcium (Ca) and P levels were manipulated by use of feed grade dicalcium phosphate and limestone. V was added as ammonium metavanadate. Serum Ca and P were determined on representative chicks in each group. Increasing Ca levels increased serum Ca and decreased serum P. V increased serum P levels in the chicks receiving 0.2% P but not in those receiving 0.1% P.

  17. Cumulative Activation of Voltage-Dependent KVS-1 Potassium Channels

    PubMed Central

    Rojas, Patricio; Garst-Orozco, Jonathan; Baban, Beravan; de Santiago-Castillo, Jose Antonio; Covarrubias, Manuel; Salkoff, Lawrence

    2008-01-01

    In this study, we reveal the existence of a novel use-dependent phenomenon in potassium channels, which we refer to as cumulative activation (CA). CA consists of an increase in current amplitude in response to repetitive depolarizing step pulses to the same potential. CA persists for up to 20 s and is similar to a phenomenon called “voltage-dependent facilitation” observed in some calcium channels. The KVS-1 K+ channel, which exhibits CA, is a rapidly activating and inactivating voltage-dependent potassium channel expressed in chemosensory and other neurons of Caenorhabditis elegans. It is unusual in being most closely related to the Shab (Kv2) family of potassium channels, which typically behave like delayed rectifier K+ channels in other species. The magnitude of CA depends on the frequency, voltage, and duration of the depolarizing step pulse. CA also radically changes the activation and inactivation kinetics of the channel, suggesting that the channel may undergo a physical modification in a use-dependent manner; thus, a model that closely simulates the behavior of the channel postulates the existence of two populations of channels, unmodified and modified. Use-dependent changes in the behavior of potassium channels, such as CA observed in KVS-1, could be involved in functional mechanisms of cellular plasticity such as synaptic depression that represent the cellular basis of learning and memory. PMID:18199775

  18. Calcium and nitrogen balance, experiment M007

    NASA Technical Reports Server (NTRS)

    Whedon, G. D.; Lutwak, L.; Neuman, W. F.; Lachance, P. A.

    1971-01-01

    The collection of data on the response of the skeletal and muscular systems to 14-day space flights was evaluated for loss of calcium, nitrogen, and other metabolically related elements. Considerable interindividual variability was demonstrated in all experimental factors that were measured. Calcium balance became less positive and urinary phosphate excretion increased substantially in flight despite a reduction in phosphate intake. Patterns of excretion of magnesium, sodium, potassium, and chloride were different for each subject, and, in part, could be correlated with changes in adrenocortical steroid production. The principal hormonal change was a striking decrease during flight in the urinary excretion of 17-hydroxycortocosteroids. Dermal losses of calcium, magnesium, sulfate, and phosphate were insignificant during all three phases.

  19. Enzymatically- and Ultraviolet-labile Phosphorus in Humic Acid Fractions From Rice Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid is an important soil component which can improve nutrient availability and impact other important chemical, biological, and physical properties of soils. We investigated the lability of phosphorus (P) in the mobile humic acid (MHA) and calcium humate (CaHA) fractions of four rice soils as...

  20. Forms and Lability of Phosphorus in Humic Acid Fractions of Hord Silt Loam Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) has long been known to be present in soil humic fractions, but little is known about specific P forms in humic fractions, or their lability. We extracted the mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fractions from a Nebraska Hord silt loam soil under continuous c...

  1. INNOVATIVE TECHNOLOGY FOR RECYCLING OF MANURE PHOSPHORUS WITH RAPID AMORPHOUS PHOSPHATE PRECIPITATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) recovery from liquid swine manure is an attractive technology when soils on the farm are saturated with P and on-farm land application is not an option. A technology was developed for recovery of soluble P from liquid swine manure as amorphous calcium phosphate (ACP). Soluble P is rec...

  2. Phosphorus Solubility in Response to Acidification of Dairy Manure Amended Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) additions from animal manure beyond plant needs results in accumulated soil calcium phosphate (Ca-P). Although stable near neutral pH levels, there is concern about the solubility of accumulated soil Ca-P when soil pH conditions become acidic, potentially releasing water soluble P (WS...

  3. INNOVATIVE TECHNOLOGY FOR RECYCLING OF MANURE PHOSPHORUS WITH RAPID AMORPHOUS PHOSPHATE PRECIPITATION

    EPA Science Inventory

    Phosphorus (P) recovery from liquid swine manure is an attractive technology when soils in the farm are saturated with P and on-farm land application is not an option. A technology was developed for recovery of soluble P from liquid swine manure as amorphous calcium phosphate (AC...

  4. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...

  5. Phosphorus recovered from swine wastewater as a fertilizer for cotton grown with conservation tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current technologies for recycling phosphorus (P) from animal waste through precipitation result in non-conventional fertilizer products. The objective of this research was to evaluate the use of surface broadcasting recovered calcium phosphate as a P fertilizer source for cotton (Gossypium hirsutum...

  6. Analysis of Phosphorus in Soil Humic Acid Fractions by Enzymatic Hydrolysis and Ultraviolet Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid is an important soil component which influences chemical, biological, and physical soil properties. In this study, we investigated lability of phosphorus (P) in the mobile humic acid (MHA) and calcium humate (CaHA) fractions of four soils by orthophosphate-releasing enzymatic hydrolysis a...

  7. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium is required for the bone formation phase of bone remodeling. Typically about 5 nmol (200 mg) of calcium is removed from the adult skeleton and replaced each day. To supply this amount, one would need to consume about 600 mg of calcium, since calcium is not very efficiently absorbed. Calcium ...

  8. Phosphorus as a potential guide in the search for extinct life on Mars.

    PubMed

    Weckwerth, G; Schidlowski, M

    1995-03-01

    In contrast to the search for extant organisms, the quest for fossil remains of life on Mars need not be guided by the presence of water and organic compounds on the present surface. An appropriate tracer might be the element phosphorus which is a common constituent of living systems. Utilizing terrestrial analogues, it should preferentially exist in the form of sedimentary calcium phosphate (phosphorites), which would have readily resisted changing conditions on Mars. Moreover, higher ratios of P/Th in phosphorites in comparison to calcium phosphates from magmatic rocks give us the possibility to distinguish them from inorganically formed phosphorus deposits at or close to the Martian surface. Identification of anomalous phosphorus enrichments by remote sensing or in situ analysis could be promising approaches for selecting areas preferentially composed of rocks with remains of extinct life. PMID:11539223

  9. The salutary effect of dietary calcium on bone mass in a rat model of simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Globus, R.; Halloran, B. P.; Morey-Holton, E.

    1985-01-01

    Whether supplementation of dietary calcium reduces the differences in bone mass of unweighed limbs and normally weighted limbs, and whether parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH)2D) respond differently to dietary calcium in unweighted animals in comparison with pair-fed controls was studied. The hind limbs of rats were unweighted by a tail suspension method and diets containing 0.1% to 2.4% calcium. After 2 weeks serum calcium, phosphorus, PTH and 1,25(OH)2D intestinal calcium transport were determined and bone mass, ash weight, and calcium in the tibia, L-1 vertebra, and humerus were measured. No significant differences in body weights were observed among the various groups. Suspended rats maintained constant levels of serum calcium and phosphate over the wide range of dietary calcium. Serum PTH and 1,25(OH)2D and intestinal calcium transport fell as dietary calcium was increased. Bone calcium in the tibia and vertebra from suspended rats remained less than that from pair-fed control. It is suggested that although no striking difference between suspended and control animals was observed in response to dieteary calcium, increasing dietary calcium may reduce the negative impact of unloading on the calcium content of the unweighted bones. The salutary effect of high dietary calcium appears to be due to inhibition of bone resorption rather than to stimulation of bone formation.

  10. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  11. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  12. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  13. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... GRAS § 184.1613 Potassium bicarbonate. (a) Potassium bicarbonate (KHCO3, CAS Reg. No. 298-14-6) is made by the following processes: (1) By treating a solution of potassium hydroxide with carbon dioxide;...

  14. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  15. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  16. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  17. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  18. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  19. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  20. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide. (b) The ingredient meets...