Science.gov

Sample records for phosphorus-ion implanted synthetic

  1. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  2. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    SciTech Connect

    Oka, Hiroshi Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  3. Synthetic facial implants.

    PubMed

    Quatela, Vito C; Chow, Jen

    2008-02-01

    This article presents a range of synthetic implant materials for use in facial plastic surgery. The authors discuss alternatives to autogenous tissue transfer in terms of biocompatibility, technique, complications, controversies, and cautions. The reader is presented information about a range of synthetic implant materials such as silicone, polyester fiber, polyamide mesh, metal, polyethylene, polyacrylamide gel, hydroxyapatite, polylactic acid, collagen, and others. PMID:18063244

  4. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2014-02-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  5. Towards simultaneous achievement of carrier activation and crystallinity in Ge and GeSn with heated phosphorus ion implantation: An optical study

    NASA Astrophysics Data System (ADS)

    D'Costa, Vijay Richard; Wang, Lanxiang; Wang, Wei; Lim, Sin Leng; Chan, Taw Kuei; Chua, Lye Hing; Henry, Todd; Zou, Wei; Hatem, Christopher; Osipowicz, Thomas; Tok, Eng Soon; Yeo, Yee-Chia

    2014-09-01

    We have investigated the optical properties of Ge and GeSn alloys implanted with phosphorus ions at 400 °C by spectroscopic ellipsometry from far-infrared to ultraviolet. The dielectric response of heated GeSn implants displays structural and transport properties similar to those of heated Ge implants. The far-infrared dielectric function of as-implanted Ge and GeSn shows the typical free carrier response which can be described by a single Drude oscillator. Bulk Ge-like critical points E1, E1 + Δ1, E0', and E2 are observed in the visible-UV dielectric function of heated Ge and GeSn indicating single crystalline quality of the as-implanted layers. Although the implantation at 400 °C recovers crystallinity in both Ge and GeSn, an annealing step is necessary to enhance the carrier activation.

  6. Molecular phosphorus ion source for semiconductor technology

    SciTech Connect

    Gushenets V. I.; Hershcovitch A.; Bugaev, A.S.; Oks, E.M.; Kulevoy, T.V.

    2012-02-15

    This paper presents results on the generation of molecular phosphorus ion beams in a hot filament ion source. Solid red phosphorous is evaporated mainly as tetra-atomic molecules up to a temperature of 800 C. Thus, one of the main conditions for producing maximum P{sub 4}{sup +} fraction in the beam is to keep the temperature of the phosphorous oven, the steam line and the discharge chamber walls no greater than 800 C. The prior version of our ion source was equipped with a discharge chamber cooling system. The modified source ensured a P{sub 4}{sup +} ion beam current greater than 30% of the total beam current.

  7. Implantation of a synthetic cornea: design, development and biological response.

    PubMed

    Trinkaus-Randall, V; Wu, X Y; Tablante, R; Tsuk, A

    1997-11-01

    Our goal was to evaluate 3 different designs of synthetic corneas in vivo. All devices had a transparent hydrogel center molded to a porous peripheral skirt. Over 30 devices were implanted into rabbits and followed for up to 6 months. The devices were preseeded with rabbit stromal fibroblasts, which enhanced the rate of fibroplasia. The anterior surface of the hydrogel was modified using argon rf plasma treatments. Clinical examinations were performed, and histological analyses were conducted on tissue throughout the time course. Our optimal model ranged from 4.5 to 6 mm and had an extended porous skirt increasing the surface area for fibroplasia and ultimate anchorage of the device. Fibroplasia occurred in this model, and collagen was detected by 28 days. The anterior chamber was normal with no detectable leakage of aqueous humor. Glycosaminoglycans were detected and followed the time course outlined previously when porous material itself was inserted into the stroma. We present the first demonstration that rabbit limbal epithelial cells can migrate onto the synthetic cornea in vivo. PMID:9384324

  8. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    PubMed Central

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  9. VAGINAL DEGENERATION FOLLOWING IMPLANTATION OF SYNTHETIC MESH WITH INCREASED STIFFNESS

    PubMed Central

    Liang, Rui; Abramowitch, Steven; Knight, Katrina; Palcsey, Stacy; Nolfi, Alexis; Feola, Andrew; Stein, Susan; Moalli, Pamela A.

    2012-01-01

    Objective To compare the impact of the prototype prolapse mesh Gynemesh PS to that of two new generation lower stiffness meshes, UltraPro and SmartMesh, on vaginal morphology and structural composition. Design A mechanistic study employing a non-human primate (NHP) model. Setting Magee-Womens Research Institute at the University of Pittsburgh. Population Parous rhesus macaques, with similar age, weight, parity and POP-Q scores. Methods Following IACUC approval, 50 rhesus macaques were implanted with Gynemesh PS (n=12), UltraPro with its blue line perpendicular to the longitudinal axis of vagina (n=10), UltraPro with its blue line parallel to the longitudinal axis of vagina (n=8) and SmartMesh (n=8) via sacrocolpopexy following hysterectomy. Sham operated animals (n=12) served as controls. Main Outcome Measures The mesh-vagina complex (MVC) was removed after 12 weeks and analyzed for histomorphology, in situ cell apoptosis, total collagen, elastin, glycosaminoglycan content and total collagenase activity. Appropriate statistics and correlation analyses were performed accordingly. Results Relative to sham and the two lower stiffness meshes, Gynemesh PS had the greatest negative impact on vaginal histomorphology and composition. Compared to sham, implantation with Gynemesh PS caused substantial thinning of the smooth muscle layer (1557 ± 499μm vs 866 ± 210 μm, P=0.02), increased apoptosis particularly in the area of the mesh fibers (P=0.01), decreased collagen and elastin content (20% (P=0.03) and 43% (P=0.02), respectively) and increased total collagenase activity (135% (P=0.01)). GAG (glycosaminoglycan), a marker of tissue injury, was the highest with Gynemesh PS compared to sham and other meshes (P=0.01). Conclusion Mesh implantation with the stiffer mesh Gynemesh PS induced a maladaptive remodeling response consistent with vaginal degeneration. PMID:23240802

  10. Use of HTR synthetic bone grafts in conjunction with immediate dental implants.

    PubMed

    Yukna, Raymond A; Sayed-Suleyman, Amer; Finley, James M; Hochstedler, J; Mayer, Elizabeth T

    2003-09-01

    Immediate placement of dental implants in fresh extraction sockets is associated with remaining voids around the implants and often a partial dehiscence or thinning of the facial alveolar plate. Nine patients had Bioplant HTR synthetic bone used as a ridge preservation/augmentation material in conjunction with immediate placement of 10 implants. Hard tissue replacement (HTR) was used to fill the remaining socket void and enhance the facial ridge width, and the wound closed as completely as possible. Dental implants were uncovered at approximately 6 months. Measurements taken of the internal socket width and total ridge width at the implant placement and uncovering showed the mean internal socket width was maintained (7.2 mm vs 6.9 mm), and the total ridge width exhibited a mean change from 9.6 mm to 8.8 mm. Of the 10 implant sites, 7 showed a net increase, 2 no change, and 1 a decrease in overall ridge width. All 10 implants were restored for at least 6 months. These clinical results suggest that HTR is a useful adjunct in the placement of immediate dental implants for the preservation of ridge width and provides a good base for functional and esthetic prosthetic reconstruction. PMID:14596206

  11. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis.

    PubMed

    Schukur, Lina; Geering, Barbara; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-12-16

    Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies. PMID:26676608

  12. Quantification of in vitro wear of a synthetic meniscus implant using gravimetric and micro-CT measurements.

    PubMed

    Elsner, Jonathan J; Shemesh, Maoz; Shefy-Peleg, Adaya; Gabet, Yankel; Zylberberg, Eyal; Linder-Ganz, Eran

    2015-09-01

    A synthetic meniscus implant was recently developed for the treatment of patients with mild to moderate osteoarthritis with knee pain associated with medial joint overload. The implant is distinctively different from most orthopedic implants in its pliable construction, and non-anchored design, which enables implantation through a mini-arthrotomy without disruption to the bone, cartilage, and ligaments. Due to these features, it is important to show that the material and design can withstand knee joint conditions. This study evaluated the long-term performance of this device by simulating loading for a total of 5 million gait cycles (Mc), corresponding to approximately five years of service in-vivo. All five implants remained in good condition and did not dislodge from the joint space during the simulation. Mild abrasion was detected by electron microscopy, but µ-CT scans of the implants confirmed that the damage was confined to the superficial surfaces. The average gravimetric wear rate was 14.5 mg/Mc, whereas volumetric changes in reconstructed µ-CT scans point to an average wear rate of 15.76 mm(3)/Mc (18.8 mg/Mc). Particles isolated from the lubricant had average diameter of 15 µm. The wear performance of this polycarbonate-urethane meniscus implant concept under ISO-14243 loading conditions is encouraging. PMID:26057364

  13. Acromioclavicular joint reconstruction using the LockDown synthetic implant: a study with cadavers.

    PubMed

    Taranu, R; Rushton, P R P; Serrano-Pedraza, I; Holder, L; Wallace, W A; Candal-Couto, J J

    2015-12-01

    Dislocation of the acromioclavicular joint is a relatively common injury and a number of surgical interventions have been described for its treatment. Recently, a synthetic ligament device has become available and been successfully used, however, like other non-native solutions, a compromise must be reached when choosing non-anatomical locations for their placement. This cadaveric study aimed to assess the effect of different clavicular anchorage points for the Lockdown device on the reduction of acromioclavicular joint dislocations, and suggest an optimal location. We also assessed whether further stability is provided using a coracoacromial ligament transfer (a modified Neviaser technique). The acromioclavicular joint was exposed on seven fresh-frozen cadaveric shoulders. The joint was reconstructed using the Lockdown implant using four different clavicular anchorage points and reduction was measured. The coracoacromial ligament was then transferred to the lateral end of the clavicle, and the joint re-assessed. If the Lockdown ligament was secured at the level of the conoid tubercle, the acromioclavicular joint could be reduced anatomically in all cases. If placed medial or 2 cm lateral, the joint was irreducible. If the Lockdown was placed 1 cm lateral to the conoid tubercle, the joint could be reduced with difficulty in four cases. Correct placement of the Lockdown device is crucial to allow anatomical joint reduction. Even when the Lockdown was placed over the conoid tubercle, anterior clavicle displacement remained but this could be controlled using a coracoacromial ligament transfer. PMID:26637681

  14. Effect of Speaking Rate on Recognition of Synthetic and Natural Speech by Normal-Hearing and Cochlear Implant Listeners

    PubMed Central

    Ji, Caili; Galvin, John J.; Xu, Anting; Fu, Qian-Jie

    2012-01-01

    Objective Most studies have evaluated cochlear implant (CI) performance using “clear” speech materials, which are highly intelligible and well-articulated. CI users may encounter much greater variability in speech patterns in the “real-world,” including synthetic speech. In this study, we measured normal-hearing (NH) and CI listeners’ sentence recognition with multiple talkers and speaking rates, and with naturally produced and synthetic speech. Design NH and CI subjects were asked to recognize naturally produced or synthetic sentences, presented at a slow, normal, or fast speaking rate. Natural speech was produced by one male and one female talker; synthetic speech was generated to simulate a male and female talker. For natural speech, the speaking rate was time-scaled while preserving voice pitch and formant frequency information. For synthetic speech, the speaking rate was adjusted within the speech synthesis engine. NH subjects were tested while listening to unprocessed speech or to an 8-channel acoustic CI simulation. CI subjects were tested while listening with their clinical processors and the recommended microphone sensitivity and volume settings. Results The NH group performed significantly better than the CI simulation group, and the CI simulation group performed significantly better than the CI group. For all subject groups, sentence recognition was significantly better with natural than with synthetic speech. The performance deficit with synthetic speech was relatively small for NH subjects listening to unprocessed speech. However, the performance deficit with synthetic speech was much greater for CI subjects and for CI simulation subjects. There was significant effect of talker gender, with slightly better performance with the female talker for CI subjects and slightly better performance with the male talker for the CI simulations. For all subject groups, sentence recognition was significantly poorer only at the fast rate. CI performance was

  15. Regulation of Cellular Response Pattern to Phosphorus Ion is a New Target for the Design of Tissue-Engineered Blood Vessel.

    PubMed

    Chen, Wen; Wang, Fangjuan; Zeng, Wen; Sun, Jun; Li, Li; Yang, Mingcan; Sun, Jiansen; Wu, Yangxiao; Zhao, Xiaohui; Zhu, Chuhong

    2015-05-01

    Regulation of cellular response pattern to phosphorus ion (PI) is a new target for the design of tissue-engineered materials. Changing cellular response pattern to high PI can maintain monocyte/macrophage survival in TEBV and the signal of increasing PI can be converted by klotho to the adenosine signals through the regulation of energy metabolism in monocytes/macrophages. PMID:25694105

  16. Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl).

    PubMed

    Lopez, E; Le Faou, A; Borzeix, S; Berland, S

    2000-02-01

    The components of the cutaneous envelope, the epidermis and the dermis, change in response to aging or environmental stress factors. The fibroblasts involved in maintaining skin tone are the main targets. Nacre, mother of pearl, from Pinctada maxima, which can stimulate and regulate bone forming cells, was implanted in the dermis of rats to test its action on the skin fibroblasts. This report describes the effect of nacre on the skin fibroblast recruitment and physiological activity. It resulted in enhanced extracellular matrix synthesis and the production of components implicated in cell to cell adhesion and communication (such as decorine) and in tissue regeneration (type I and type III collagens). The nacre implant produced a well vascularized tissue. The physiological conditions in the region around the implant are thus those required for the positive interactions between the dermis and epidermis which are fundamental for the physiological function of the skin. PMID:10798323

  17. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site.

    PubMed

    Tamimi, Faleh; Torres, Jesus; Al-Abedalla, Khadijeh; Lopez-Cabarcos, Enrique; Alkhraisat, Mohammad H; Bassett, David C; Gbureck, Uwe; Barralet, Jake E

    2014-07-01

    Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography-computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays. PMID:24726538

  18. Estrogens and synthetic androgens in manure slurry from trenbolone acetate/estradiol implanted cattle and in waste-receiving lagoons used for irrigation.

    PubMed

    Khan, Bushra; Lee, Linda S

    2012-11-01

    The increasing size of concentrated animal feeding operations has led to a concomitant increase in the land-application of manure, which has spawned research on the concentrations and environmental risk assessment of natural and synthetic hormones in animal manures. 17β-Trenbolone acetate (TBA) is widely used in the United States for improving daily gains in beef cattle and is often administered in combination with 17β-estradiol (17β-E2). Trenbolone (TB) and E2 isomers and their metabolites were quantified in manure collection pits and lagoon effluent from beef cattle implanted with the commercial anabolic preparation Ravoler-S (containing 140 mg 17β-trenbolone acetate and 28 mg 17β-E2). Manure pit and lagoon effluent samples were collected weekly for 9 weeks post implanting and analyzed using reverse-phase liquid chromatography tandem mass spectrometry. 17α-TB was the most abundant androgen with the highest concentration observed 2 weeks post implant. 17β-TB and trendione peaked at the end of week 2 and 4, respectively. For the estrogens, the highest concentrations for estrone (E1), estriol (E3), and 17α-E2 were observed after week 4, 6, and 8, respectively. 17β-E2 concentrations were the lowest of the estrogens and erratic over time. In lagoon water, which is used for irrigation, 17α-TB and E1 had the highest detected hormone concentrations (1.53 and 1.72 μg L(-1), respectively). Assuming a 1-2 order dilution during transport to surface water, these hormone levels could lead to concentrations in receiving waters that exceed some of the lowest observable effect levels (LOELs) reported for hormones (e.g., 0.01-0.03 μg L(-1)). PMID:22795306

  19. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  20. Investigation of the performance of articular cartilage and synthetic biomaterials in multi-directional sliding motion as in orthopedic implants

    NASA Astrophysics Data System (ADS)

    Schwartz, Christian John

    The performance of several synthetic biomaterials and bovine articular cartilage were investigated in terms of their suitability for use as articulating surfaces in artificial joints. The Dual-Axis Wear Simulator (DAWS), a wear testing machine that simulates conditions in a synovial joint, was designed and fabricated to enable investigators to measure the wear of such materials in multi-directional sliding while immersed in a bovine serum lubricant solution. This machine was used initially to determine the wear mechanisms and wear amounts of ultra-high molecular weight polyethylene (UHMWPE), polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and the compliant elastomer Pellethane(TM) 2363-80A. It was found that the compliant material produced lower wear. Dynamic mechanical analysis was used to determine that bovine articular cartilage had a very significant amount of viscoelasticity to support static loads and damp impact loads. Furthermore, the use of a compliant counterface led to lower wear in the cartilage as compared to a rigid counterface. Pt-Zr quasicrystals were used as fillers in UHMWPE, and the wear, stiffness, and impact toughness of the filled polymer were shown to be comparable or better than those of UHMWPE that had been irradiation crosslinked. Crosslinked UHMWPE was investigated for its susceptibility to oxidative degradation and increased wear. It was found that thermal stabilization of the polymer could be eliminated if a mild amount crosslinking was used. Furthermore, there was no degradation in wear resistance of mildly crosslinked and non-stabilized UHMWPE even after accelerated aging. Based on the results of this work and lessons learned about compliance and wear resistance, blends were produced by using surface-activated UHMWPE particles as fillers in elastomeric PUR. The blends showed better wear resistance than UHMWPE, as well as increased stiffness and damping over PUR. The results of this work indicated that there is great potential

  1. Hair implant complications.

    PubMed

    Hanke, C W; Norins, A L; Pantzer, J G; Bennett, J E

    1981-04-01

    Four men who underwent hair implantation for pattern baldness were treated for complications such as infection, foreign-body reaction, pruritus, and scarring. The complications were similar to those reported with synthetic modacrylic fiber implants that have been used for the same purpose. Although we believe this is the first article to report complications from hair implants, the illogical basis of the procedure suggests that complications will occur in many unsuspecting patients who undergo hair implantation. PMID:7009899

  2. Prospects of implant with locking plate in fixation of subtrochanteric fracture: experimental demonstration of its potential benefits on synthetic femur model with supportive hierarchical nonlinear hyperelastic finite element analysis

    PubMed Central

    2012-01-01

    Background Effective fixation of fracture requires careful selection of a suitable implant to provide stability and durability. Implant with a feature of locking plate (LP) has been used widely for treating distal fractures in femur because of its favourable clinical outcome, but its potential in fixing proximal fractures in the subtrochancteric region has yet to be explored. Therefore, this comparative study was undertaken to demonstrate the merits of the LP implant in treating the subtrochancteric fracture by comparing its performance limits against those obtained with the more traditional implants; angle blade plate (ABP) and dynamic condylar screw plate (DCSP). Materials and Methods Nine standard composite femurs were acquired, divided into three groups and fixed with LP (n = 3), ABP (n = 3) and DCSP (n = 3). The fracture was modeled by a 20 mm gap created at the subtrochanteric region to experimentally study the biomechanical response of each implant under both static and dynamic axial loading paradigms. To confirm the experimental findings and to understand the critical interactions at the boundaries, the synthetic femur/implant systems were numerically analyzed by constructing hierarchical finite element models with nonlinear hyperelastic properties. The predictions from the analyses were then compared against the experimental measurements to demonstrate the validity of each numeric model, and to characterize the internal load distribution in the femur and load bearing properties of each implant. Results The average measurements indicated that the constructs with ABP, DCPS and LP respectively had overall stiffness values of 70.9, 110.2 and 131.4 N/mm, and exhibited reversible deformations of 12.4, 4.9 and 4.1 mm when the applied dynamic load was 400 N and plastic deformations of 11.3, 2.4 and 1.4 mm when the load was 1000 N. The corresponding peak cyclic loads to failure were 1100, 1167 and 1600 N. The errors between the

  3. Interface and biocompatibility of polyethylene terephthalate knee ligament prostheses. A histological and ultrastructural device retrieval analysis in failed synthetic implants used for surgical repair of anterior cruciate ligaments.

    PubMed

    Kock, H J; Stürmer, K M; Letsch, R; Schmit-Neuerburg, K P

    1994-01-01

    In a prospective clinical study of 54 patients with acute anterior cruciate ligament instability, 56 artificial ligaments made of polyethylene terephthalate (Trevira hochfest) were implanted to restore knee stability. The average follow-up of these artificial knee ligaments was 40.2 (12-79) months; five implants (10%) had to be explanted due to failure after an average of 17.8 (6-50) months. All explants were examined by histological and ultrastructural methods in a device retrieval analysis. With regard to short- and medium-term artificial ligament failure in the human knee joint, a non-isometric surgical implantation technique, inappropriate strain during rehabilitation and implant fatigue and wear were responsible for ligament failures. PMID:7696041

  4. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Baumann, H.; Bethge, K.; Bilger, G.; Jones, D.; Symietz, I.

    2002-11-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (α,α) backscattering and the resonant nuclear reaction 1H( 15N,αγ) 12C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of marrow bone cells on the implanted sample surface with that of titanium.

  5. Effects of positive ion implantation into antireflection coating of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Middleton, A. E.; Harpster, J. W.; Collis, W. J.; Kim, C. K.

    1971-01-01

    The state of technological development of Si solar cells for highest obtained efficiency and radiation resistance is summarized. The various theoretical analyses of Si solar cells are reviewed. It is shown that factors controlling blue response are carrier diffusion length, surface recombination, impurity concentration profile in surface region, high level of surface impurity concentration (degeneracy), reflection coefficient of oxide, and absorption coefficient of Si. The theory of ion implantation of charge into the oxide antireflection coating is developed and side effects are discussed. The experimental investigations were directed at determining whether the blue response of Si solar cells could be improved by phosphorus ion charges introduced into the oxide antireflection coating.

  6. n{sup +}/p diodes by ion implantation: Dopant, extended defects, and impurity concerns

    SciTech Connect

    Xu, M.; Venables, D.; Christensen, K.N.; Maher, D.M.

    1995-08-01

    The present study is concerned with the formation of defect structures resulting from phosphorus ion implantation into p-type, <100> silicon and with the rearrangement as well as removal of defect structures following high temperature annealing. The problematic interaction of background impurities with extended defects also is included in this study, as are the non-illuminated and illuminated electrical characteristics of n+/p diodes that are fabricated using ion implantation. Wafers and diodes that are fabricated using a phosphorus planar diffusion technique are run in parallel and serve as the controls. In this contribution, preliminary results for the cases of a 50 keV implant followed by an anneal at 900{degrees}C/30 min and a diffusion at 825{degrees}C/60 min are summarized.

  7. Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model

    PubMed Central

    Allen, Robert A.; Wu, Wei; Yao, Mingyi; Dutta, Debaditya; Duan, Xinjie; Bachman, Timothy N.; Champion, Hunter C.; Stolz, Donna B.; Robertson, Anne M.; Kim, Kang; Isenberg, Jeffrey S.; Wang, Yadong

    2013-01-01

    The objective of this study was to evaluate the long term performance of cell-free vascular grafts made from a fast-degrading elastic polymer. We fabricated small arterial grafts from microporous tubes of poly(glycerol sebacate) (PGS) reinforced with polycaprolactone (PCL) nanofibers on the outer surface. Grafts were interpositioned in rat abdominal aortas and characterized at 1 year post-implant. Grafts remodeled into “neoarteries” (regenerated arteries) with similar gross appearance to native rat aortas. Neoarteries mimic arterial tissue architecture with a confluent endothelium and media and adventita-like layers. Patent vessels (80%) showed no significant stenosis, dilation, or calcification. Neoarteries contain nerves and have the same amount of mature elastin as native arteries. Despite some differences in matrix organization, regenerated arteries had similar dynamic mechanical compliance to native arteries in vivo. Neoarteries responded to vasomotor agents, albeit with different magnitude than native aortas. These data suggest that an elastic vascular graft that resorbs quickly has potential to improve the performance of vascular grafts used in small arteries. This design may also promote constructive remodeling in other soft tissues. PMID:24119457

  8. Biomechanical Comparison of Pedicle Screw Augmented with Different Volumes of Polymethylmethacrylate in Osteoporotic and Severely Osteoporotic Synthetic Bone Blocks in Primary Implantation: An Experimental Study

    PubMed Central

    Liu, Da; Zhang, Xiao-jun; Liao, Dong-fa; Zhou, Jiang-jun; Li, Zhi-qiang; Zhang, Bo; Wang, Cai-ru; Lei, Wei; Kang, Xia; Zheng, Wei

    2016-01-01

    This study was designed to compare screw stabilities augmented with different volumes of PMMA and analyze relationship between screw stability and volume of PMMA and optimum volume of PMMA in different bone condition. Osteoporotic and severely osteoporotic synthetic bone blocks were divided into groups A0-A5 and B0-B5, respectively. Different volumes of PMMA were injected in groups A0 to A5 and B0 to B5. Axial pullout tests were performed and Fmax was measured. Fmax in groups A1-A5 were all significantly higher than group A0. Except between groups A1 and A2, A3 and A4, and A4 and A5, there were significant differences on Fmax between any other two groups. Fmax in groups B1-B5 were all significantly higher than group B0. Except between groups B1 and B2, B2 and B3, and B4 and B5, there were significant differences on Fmax between any other two groups. There was significantly positive correlation between Fmax and volume of PMMA in osteoporotic and severely osteoporotic blocks. PMMA can significantly enhance pedicle screw stability in osteoporosis and severe osteoporosis. There were positive correlations between screw stability and volume of PMMA. In this study, injection of 3 mL and 4 mL PMMA was preferred in osteoporotic and severely osteoporotic blocks, respectively. PMID:26885525

  9. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  10. Synthetic fuels

    SciTech Connect

    Sammons, V.O.

    1980-01-01

    This guide is designed for those who wish to learn more about the science and technology of synthetic fuels by reviewing materials in the collections of the Library of Congress. This is not a comprehensive bibliography, it is designed to put the reader on target. Subject headings used by the Library of Congress under which books on synthetic fuels can be located are: oil-shale industry; oil-shales; shale oils; synthetic fuels; synthetic fuels industry; coal gasification; coal liquefaction; fossil fuels; hydrogen as fuel; oil sands; petroleum, synthesis gas; biomass energy; pyrolysis; and thermal oil recovery. Basic texts, handbooks, government publications, journals, etc. were included. (DP)

  11. [Is a physician liable for an unsafe implant?].

    PubMed

    Wijne, Rolinka P

    2015-01-01

    In recent years, various incidents involving unsafe implants have drawn a lot of attention. Examples include problems with breast prostheses (PIP implants), artificial hips (metal-on-metal hip prostheses) and synthetic mesh implants, and possible dysfunctional leads of implantable cardioverter defibrillators. This article highlights the regulations concerning physicians' liability if it transpires that the implants they used for the treatment of patients prove to be unsafe. PMID:27007937

  12. Benefits and Risks of Cochlear Implants

    MedlinePlus

    ... in aircraft interact in unpredictable ways with other computer systems Will have to be careful of static electricity. Static electricity may temporarily or permanently damage a cochlear implant. It ... computer monitors, or synthetic fabric. For more details regarding ...

  13. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  14. Abdominal wall reconstruction with implantable meshes.

    PubMed

    Masden, Derek; Felder, John M; Iorio, Matthew L; Bhanot, Parag; Attinger, Christopher E

    2011-01-01

    Abdominal wall defects present a difficult problem for the reconstructive surgeon. Over the years, numerous implantable materials have becomes available to aid the surgeon in recreating the abdominal wall. This spectrum of implants includes permanent synthetic meshes, absorbable meshes, composite meshes and biomaterials. This review includes the pros and cons for the commercially available abdominal wall implants as well as a review of the literature regarding outcomes for each material. This review will provide the surgeon with current evidence-based information on implantable abdominal materials to be able to make a more informed decision about which implant to use. PMID:21663579

  15. Cochlear Implants

    MedlinePlus

    ... electrodes are inserted. The electronic device at the base of the electrode array is then placed under ... FDA approval for implants The Food and Drug Administration (FDA) regulates cochlear implant devices for both adults ...

  16. Goserelin Implant

    MedlinePlus

    Goserelin implant is used in combination with radiation therapy and other medications to treat localized prostate cancer and is ... treatment of abnormal bleeding of the uterus. Goserelin implant is in a class of medications called gonadotropin- ...

  17. Cochlear Implants

    MedlinePlus

    A cochlear implant is a small, complex electronic device that can help to provide a sense of sound. People who are ... of-hearing can get help from them. The implant consists of two parts. One part sits on ...

  18. Carmustine Implant

    MedlinePlus

    Carmustine implant is used along with surgery and sometimes radiation therapy to treat malignant glioma (a certain type of ... Carmustine implant comes as a small wafer that is placed in the brain by a doctor during surgery to ...

  19. Cochlear implant

    MedlinePlus

    ... antenna. This part of the implant receives the sound, converts the sound into an electrical signal, and sends it to ... implants allow deaf people to receive and process sounds and speech. However, these devices do not restore ...

  20. Breast Implants

    MedlinePlus

    ... Updated Safety Information (Consumer Article) FDA Provides Updated Safety Data on Silicone Gel-Filled Breast Implants (Press Announcement) [ARCHIVED] Breast Implant Guidance for Industry (2006) Post Approval Studies Webpage Freedom of Information ...

  1. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  2. Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    Current investigation of synthetic jets and synthetic jets in cross-flow examined the effects of orifice geometry and dimensions, momentum-flux ratio, cluster of orifices, pitch and yaw angles as well as streamwise development of the flow field. This comprehensive study provided much needed experimental information related to the various control strategies. The results of the current investigation on isolated and clustered synthetic jets with and without cross-flow will be further analyzed and documented in detail. Presentations at national conferences and publication of peer- reviewed journal articles are also expected. Projected publications will present both the mean and turbulent properties of the flow field, comparisons made with the data available in an open literature, as well as recommendations for the future work.

  3. Synthetic meniscus replacement: a review.

    PubMed

    Vrancken, Anne Christiane Theodora; Buma, Pieter; van Tienen, Tony George

    2013-02-01

    The number of meniscus-related operations continues to rise due to the ageing and more active population. Irreparable meniscal lesions generally require (partial) meniscectomy. Although a majority of the patients benefit from pain relief and functional improvement post-meniscectomy, some remain symptomatic. As an alternative to a meniscal allograft, which is only indicated for the severely damaged meniscus, most patients can nowadays be treated by implantation of a synthetic meniscal substitute. Currently three of these implants, two partial and one total replacement, are clinically available and several others are in the stage of preclinical testing. Grossly, two types of meniscal substitutes can be distinguished: porous, resorbable implants that stimulate tissue regeneration and solid, non-resorbable implants that permanently replace the whole meniscus. Although the implantation of a porous meniscus replacement generally seems promising and improves clinical outcome measures to some degree, their superiority to partial meniscectomy still needs to be proven. The evaluation of new prostheses being developed requires a wider focus than has been adopted so far. Upon selection of the appropriate materials, preclinical evaluation of such implants should comprise a combination of (in vitro) biomechanical and (in vivo) biological tests, while up to now the focus has mainly been on biological aspects. Obviously, well-defined randomised controlled trials are necessary to support clinical performance of new implants. Since the use of a meniscus replacement requires an additional costly implant and surgery compared to meniscectomy only, the clinical outcome of new products should be proven to surpass the results of the conventional therapies available. PMID:23100123

  4. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  5. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  6. Electrical measurements on ion-implanted LPCVD polycrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Huang, Ruey-Shing; Cheng, Chin-Hsiung; Liu, J. C.; Lee, M. K.; Chen, C. T.

    1983-07-01

    The electrical conduction properties of ion implanted polycrystalline silicon films have been studied. The polysilicon films were deposited by pyrolysis of silane at 647°C in LPCVD system onto oxide-coated silicon wafers to a thickness of 0.6 μm. Dopants were itroducd by implanting with boron or phosphorus ions, accelerated to 145 keV; doses ranged from 1 × 10 12 cm -2 to 1 × 10 15 cm -2. Film resistivities spanning 8 orders of magnitude were obtained using this doping range. Current-voltage characteristics of polysilicon resistors were measured at temperatures ranging from 24 to 140°C. The associated barrier heights and activation energies were derived. The grain-boundary trapping states density was estimated to be 5 × 10 12 cm -2. We found that both dopant atom segregation and carrier trapping at the grain boundaries play important roles in polysilicon electrical conduction properties. However, within the dose range studies, the dopant atom segragation is most detrimental to the film conductivity for doses < 1 × 10 13 cm -2; as the dose is increased, carrier trapping effects become more pronounced for doses up to 5 × 10 14 cm -2. For doses ⩾ 5 × 10 14 cm -2, conduction due to carriers tunneling through the potential barriers at grain boundaries has to be considered.

  7. Synthetic chromosomes.

    PubMed

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes. PMID:26111960

  8. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications.

  9. High Productivity Implantation ''PARTIAL IMPLANT''

    SciTech Connect

    Hino, Masayoshi; Miyamoto, Naoki; Sakai, Shigeki; Matsumoto, Takao

    2008-11-03

    The patterned ion implantation 'PARTIAL IMPLANT' has been developed as a productivity improvement tool. The Partial Implant can form several different ion dose areas on the wafer surface by controlling the speed of wafer moving and the stepwise rotation of twist axis. The Partial Implant system contains two implant methods. One method is 'DIVIDE PARTIAL IMPLANT', that is aimed at reducing the consumption of the wafer. The Divide Partial Implant evenly divides dose area on one wafer surface into two or three different dose part. Any dose can be selected in each area. So the consumption of the wafer for experimental implantation can be reduced. The second method is 'RING PARTIAL IMPLANT' that is aimed at improving yield by correcting electrical characteristic of devices. The Ring Partial Implant can form concentric ion dose areas. The dose of wafer external area can be selected to be within plus or minus 30% of dose of wafer central area. So the electrical characteristic of devices can be corrected by controlling dose at edge side on the wafer.

  10. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... still unknown about how synthetic cathinones affect the human brain. Researchers do know that synthetic cathinones are chemically ... of the chemicals in synthetic cathinones affect the human brain. Synthetic cathinones can cause: nosebleeds paranoia increased sociability ...

  11. [Implant allergies].

    PubMed

    Thomas, P; Thomsen, M

    2010-03-01

    An increasing number of patients receive and benefit from osteosynthesis materials or artificial joint replacement. The most common complications are mechanical problems or infection. Metals like nickel, chromium and cobalt as well as bone cement components like acrylates and gentamicin are potential contact allergens which can cause intolerance reactions to implants. Eczema, delayed wound/bone healing, recurrent effusions, pain and implant loosening all have been described as manifestation of implant allergy. In contrast to the high incidence of cutaneous metal allergy, allergies associated with implants are rare. Diagnosis of metal implant allergy is still difficult. Thus differential diagnoses--in particular infection--have to be excluded and a combined approach of allergologic diagnostics by patch test and histopathology of peri-implant tissue is recommended. It is still unknown which conditions induce allergic sensitization to implants or trigger peri-implant allergic reactions in the case of preexisting cutaneous metal allergy. Despite the risk of developing complications being unclear, titanium based osteosynthesis materials are recommended for metal allergic patients and the use of metal-metal couplings in arthroplasty is not recommended for such patients. If the regular CoCr-polyethylene articulation is employed, the patient should give informed written consent. PMID:20204719

  12. Synthetic cornea: biocompatibility and optics

    NASA Astrophysics Data System (ADS)

    Parel, Jean-Marie A.; Kaminski, Stefan; Fernandez, Viviana; Alfonso, E.; Lamar, Peggy; Lacombe, Emmanuel; Duchesne, Bernard; Dubovy, Sander; Manns, Fabrice; Rol, Pascal O.

    2002-06-01

    Purpose. Experimentally find a method to provide a safe surgical technique and an inexpensive and long lasting mesoplant for the restoration of vision in patients with bilateral corneal blindness due to ocular surface and stromal diseases. Methods. Identify the least invasive and the safest surgical technique for synthetic cornea implantation. Identify the most compatible biomaterials and the optimal shape a synthetic cornea must have to last a long time when implanted in vivo. Results. Penetrating procedures were deemed too invasive, time consuming, difficult and prone to long term complications. Therefore a non-penetrating delamination technique with central trephination was developed to preserve the integrity of Descemet's membrane and the anterior segment. Even though this approach limits the number of indications, it is acceptable since the majority of patients only have opacities in the stroma. The prosthesis was designed to fit in the removed tissue plane with its skirt fitted under the delaminated stroma. To improve retention, the trephination wall was made conical with the smallest opening on the anterior surface and a hat-shaped mesoplant was made to fit. The skirt was perforated in its perimeter to allow passage of nutrients and tissues ingrowths. To simplify the fabrication procedure, the haptic and optic were made of the same polymer. The intrastromal biocompatibility of several hydrogels was found superior to current clinically used PMMA and PTFE materials. Monobloc mesoplants made of 4 different materials were implanted in rabbits and followed weekly until extrusion occurred. Some remained optically clear allowing for fundus photography. Conclusions. Hydrogel synthetic corneas can be made to survive for periods longer than 1 year. ArF excimer laser photoablation studies are needed to determine the refractive correction potential of these mesoplants. A pilot FDA clinical trial is needed to assess the mesoplant efficacy and very long-term stability.

  13. Cochlear Implants

    MedlinePlus

    ... additional visits are needed for activating, adjusting, and programming the various electrodes that have been implanted. Also, ... to the center for checkups once the final programming is made to the speech processor. Both children ...

  14. Histrelin Implant

    MedlinePlus

    ... bone growth and development of sexual characteristics) in girls usually between 2 and 8 years of age ... MRI scans (radiology techniques designed to show the images of body structures) to find the implant when ...

  15. Goserelin Implant

    MedlinePlus

    ... which the type of tissue that lines the uterus [womb] grows in other areas of the body ... with the treatment of abnormal bleeding of the uterus. Goserelin implant is in a class of medications ...

  16. Ion Implantation

    NASA Astrophysics Data System (ADS)

    Langouche, G.; Yoshida, Y.

    In this tutorial we describe the basic principles of the ion implantation technique and we demonstrate that emission Mössbauer spectroscopy is an extremely powerful technique to investigate the atomic and electronic configuration around implanted atoms. The physics of dilute atoms in materials, the final lattice sites and their chemical state as well as diffusion phenomena can be studied. We focus on the latest developments of implantation Mössbauer spectroscopy, where three accelerator facilities, i.e., Hahn-Meitner Institute Berlin, ISOLDE-CERN and RIKEN, have intensively been used for materials research in in-beam and on-line Mössbauer experiments immediately after implantation of the nuclear probes.

  17. Dental Implants

    MedlinePlus Videos and Cool Tools

    ... facts so you can make an informed decision as to whether dental implants are right for your ... the jaw bone. It’s obviously not the same as the original connection , but functions just the same. ...

  18. Probing the carrier concentration profiles in phosphorus-implanted germanium using infrared spectroscopic ellipsometry

    SciTech Connect

    D'Costa, Vijay Richard Yeo, Yee-Chia

    2015-02-21

    Spectroscopic ellipsometry with photon energy in the 0.045–0.65 eV range was used to investigate germanium samples implanted with 30 keV phosphorus ions and annealed at 700 °C. The infrared response of implanted layers is dominated by free carrier absorption which is modeled using a Drude oscillator. The carrier concentration profiles were modeled using an error function, and compared with those obtained by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. In the flat region of the carrier concentration profile, average carrier concentration and mobility of 1.40 × 10{sup 19} cm{sup −3} and 336 cm{sup 2}V{sup −1}s{sup −1}, respectively, were obtained. A phosphorus diffusivity of ∼1.2 × 10{sup −13} cm{sup 2}/s was obtained. The mobility versus carrier concentration relationships obtained for the implanted samples are close to the empirical relationship for bulk Ge.

  19. Treatment of Infected Facial Implants.

    PubMed

    Mohan, Kriti; Cox, Joshua A; Dickey, Ryan M; Gravina, Paula; Echo, Anthony; Izaddoost, Shayan A; Nguyen, Anh H

    2016-05-01

    Alloplastic facial implants have a wide range of uses to achieve the appropriate facial contour. A variety of materials such as metals, polymers, ceramics and synthetic injectable fillers are available to the reconstructive and aesthetic surgeon. Besides choosing the right surgical technique and the adequate material, the surgeon must be prepared to treat complications. Infection is an uncommon but serious complication that can cause displeasing consequences for the patient. There are few references in literature regarding treatment and management of facial implant-related infections. This study aims to discuss the role of biofilm in predisposing alloplastic materials to infection, to provide a review of literature, to describe our own institutional experience, and to define a patient care pathway for facial implant-associated infection. PMID:27152100

  20. Cochlear Implants

    MedlinePlus

    ... outside of the body, behind the ear. A second part is surgically placed under the skin. An implant does not restore normal hearing. It can help a person understand speech. Children and adults can benefit from them. National Institute on Deafness and Other Communication Disorders

  1. Cochlear implant

    MedlinePlus

    ... are sent along the auditory nerve to the brain. A deaf person does not have a functioning inner ear. A cochlear implant tries to replace the function of the inner ear by ... signals to the brain. Sound is picked up by a microphone worn ...

  2. Cell microencapsulation with synthetic polymers

    PubMed Central

    Olabisi, Ronke M

    2015-01-01

    The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 846–859, 2015. PMID:24771675

  3. Cell microencapsulation with synthetic polymers.

    PubMed

    Olabisi, Ronke M

    2015-02-01

    The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. PMID:24771675

  4. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    NASA Astrophysics Data System (ADS)

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.; Benick, Jan; Hermle, Martin

    2015-07-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  5. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    SciTech Connect

    Schrof, Julian Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after

  6. Coating analysis of implant materials used in orthopaedic surgery.

    PubMed

    Aksakal, B; Yildirim, O S; Okur, A

    2003-01-01

    Biocompatibility of orthopaedic surgical implants with bone tissue allows adequate osseointegration between the bone and implant. To achieve this, implants are coated with biocompatible materials. The costly plasma spray procedure is routinely used to coat implants but uses high temperatures (over 16,000 degrees C), which affect the surface quality and microstructure of the implant. We analysed the effect of sintering temperature, time and rate on coated and uncoated implants using a dipping method. The effectiveness of synthetic hydrated calcium silicate compound as an interlayer was also investigated, using the dipping method and electrophoretic deposition. Sintering temperature, time and rate all affected the quality of the bond with the coating, but the interlayer bonded effectively with both implant and biocompatible coating. Electrophoretic deposition resulted in imperfect bonding and some irregularity on the substrate surface was seen. This technique may be improved by using coating particles of a smaller size. PMID:14587310

  7. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  8. SEN Ultra-High Energy Implanter (UHE) Developed for Next Generation Image Sensors

    SciTech Connect

    Suetsugu, Noriyuki; Tsukihara, Mitsukuni; Fuse, Genshu; Ueno, Kazuyoshi; Sugitani, Michiro

    2011-01-07

    The UHE is an ultra-high energy implanter developed by SEN Corporation. It was derived from the NV-GSD-HE3 by adding six RF resonators to the beam line. This extends performance so that singly charged boron ions can reach 2 MeV with beam current of 0.75 mA. The maximum energy for triple charged boron is 5 MeV with beam current of 1p{mu}A. For phosphorus ions, the UHE can accelerate doubly charged ions up to 4.4 MeV with beam current of 0.35 mA and quadruply charged ions up to 8 MeV with beam current of 1 p{mu}A. The primary application of the UHE is the image sensor market where it is used to increase the depth of CCD photodiodes into the surface of the wafer and thereby permit higher pixel density for image sensors. The second purpose is to improve productivity for relatively high boron doses at energies around 3 MeV. In order to address certain CCD defects, the system includes a state-of-the-art beam profile controller which allows optimization of implant damage and micro-uniformity. The ULE is currently used in production of high-end CCD's.

  9. SEN Ultra-High Energy Implanter (UHE) Developed for Next Generation Image Sensors

    NASA Astrophysics Data System (ADS)

    Suetsugu, Noriyuki; Tsukihara, Mitsukuni; Fuse, Genshu; Ueno, Kazuyoshi; Sugitani, Michiro

    2011-01-01

    The UHE is an ultra-high energy implanter developed by SEN Corporation. It was derived from the NV-GSD-HE3 by adding six RF resonators to the beam line. This extends performance so that singly charged boron ions can reach 2 MeV with beam current of 0.75 mA. The maximum energy for triple charged boron is 5 MeV with beam current of 1pμA. For phosphorus ions, the UHE can accelerate doubly charged ions up to 4.4 MeV with beam current of 0.35 mA and quadruply charged ions up to 8 MeV with beam current of 1 pμA. The primary application of the UHE is the image sensor market where it is used to increase the depth of CCD photodiodes into the surface of the wafer and thereby permit higher pixel density for image sensors. The second purpose is to improve productivity for relatively high boron doses at energies around 3 MeV. In order to address certain CCD defects, the system includes a state-of-the-art beam profile controller which allows optimization of implant damage and micro-uniformity. The ULE is currently used in production of high-end CCD's.

  10. Synthetic cannabinoids and potential reproductive consequences

    PubMed Central

    Sun, Xiaofei; Dey, Sudhansu K.

    2013-01-01

    Increases in emergency room visits due to abuse of designer drugs, popularly known by the street names “K2” and “Spice,” are a cause for social, judicial, and clinical concerns. The psychoactive components in these herbal drugs mainly consist of different synthetic cannabinoids, and users of these street drugs are primarily within the age group of 12 to 20 years old. The abusive use of synthetic cannabinoids results in anxiety, nausea, vomiting, tachycardia, elevated blood pressure, tremors, seizures, hallucinations, and paranoid behavior, but the effects of maternal use of synthetic cannabinoids during pregnancy are ambiguous due to limited studies in humans and a relative short history of the drugs. In this review, we discuss the known and potential adverse effects of synthetic cannabinoids on human pregnancy using knowledge gathered from studies in mice and limited studies in humans. In mice, multiple sites and stages of pregnancy are potential targets of synthetic cannabinoids, including preimplantation embryo development, oviductal embryo transport, implantation, placentation, and parturition. It is anticipated that maternal use of synthetic cannabinoids would result in severely compromised female fertility and pregnancy outcome. PMID:23827241

  11. Synthetic cannabinoids and potential reproductive consequences.

    PubMed

    Sun, Xiaofei; Dey, Sudhansu K

    2014-02-27

    Increases in emergency room visits due to abuse of designer drugs, popularly known by the street names "K2" and "Spice," are a cause for social, judicial, and clinical concerns. The psychoactive components in these herbal drugs mainly consist of different synthetic cannabinoids, and users of these street drugs are primarily within the age group of 12 to 20years old. The abusive use of synthetic cannabinoids results in anxiety, nausea, vomiting, tachycardia, elevated blood pressure, tremors, seizures, hallucinations, and paranoid behavior, but the effects of maternal use of synthetic cannabinoids during pregnancy are ambiguous due to limited studies in humans and a relative short history of the drugs. In this review, we discuss the known and potential adverse effects of synthetic cannabinoids on human pregnancy using knowledge gathered from studies in mice and limited studies in humans. In mice, multiple sites and stages of pregnancy are potential targets of synthetic cannabinoids, including preimplantation embryo development, oviductal embryo transport, implantation, placentation, and parturition. It is anticipated that maternal use of synthetic cannabinoids would result in severely compromised female fertility and pregnancy outcome. PMID:23827241

  12. Impact of ion-implantation-induced band gap engineering on the temperature-dependent photoluminescence properties of InAs/InP quantum dashes

    SciTech Connect

    Hadj Alouane, M. H.; Ilahi, B.; Maaref, H.; Salem, B.; Aimez, V.; Morris, D.; Turala, A.; Regreny, P.; Gendry, M.

    2010-07-15

    We report on the effects of the As/P intermixing induced by phosphorus ion implantation in InAs/InP quantum dashes (QDas) on their photoluminescence (PL) properties. For nonintermixed QDas, usual temperature-dependent PL properties characterized by a monotonic redshift in the emission band and a continual broadening of the PL linewidth as the temperature increases, are observed. For intermediate ion implantation doses, the inhomogeneous intermixing enhances the QDas size dispersion and the enlarged distribution of carrier confining potential depths strongly affects the temperature-dependent PL properties below 180 K. An important redshift in the PL emission band occurs between 10 and 180 K which is explained by a redistribution of carriers among the different intermixed QDas of the ensemble. For higher implantation doses, the homogeneous intermixing reduces the broadening of the localized QDas state distribution and the measured linewidth temperature behavior matches that of the nonintermixed QDas. An anomalous temperature-dependent emission energy behavior has been observed for extremely high implantation doses, which is interpreted by a possible QDas dissolution.

  13. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. PMID:26238764

  14. Retrograde peri-implantitis.

    PubMed

    Mohamed, Jumshad B; Shivakumar, B; Sudarsan, Sabitha; Arun, K V; Kumar, T S S

    2010-01-01

    Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to) retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation. PMID:20922082

  15. Synthetic cathinone abuse

    PubMed Central

    Capriola, Michael

    2013-01-01

    The abuse of synthetic cathinones, widely known as bath salts, has been increasing since the mid-2000s. These substances are derivatives of the naturally occurring compound cathinone, which is the primary psychoactive component of khat. The toxicity of synthetic cathinones includes significant sympathomimetic effects, as well as psychosis, agitation, aggression, and sometimes violent and bizarre behavior. Mephedrone and methylenedioxypyrovalerone are currently the predominantly abused synthetic cathinones. PMID:23869180

  16. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  17. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  18. Retention of ion-implanted-xenon in olivine: Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Tombrello, T. A.; Burnett, D. S.

    1982-01-01

    The diffusion of Xe in olivine, a major mineral in both meteorites and lunar samples, was studied. Xe ions were implanted at 200 keV into single-crystal synthetic-forsterite targets and the depth profiles were measured by alpha particle backscattering before and after annealing for 1 hour at temperatures up to 1500 C. The fraction of implanted Xe retained following annealing was strongly dependent on the implantation dose. Maximum retention of 100% occurred for an implantion dose of 3 x 10 to the 15th power Xe ions/sq cm. Retention was less at lower doses, with (approximately more than or = 50% loss at one hundred trillion Xe ions/sq cm. Taking the diffusion coefficient at this dose as a lower limit, the minimum activation energy necessary for Xe retention in a 10 micrometer layer for ten million years was calculated as a function of metamorphic temperature.

  19. Characterizing synthetic gypsum

    SciTech Connect

    Henkels, P.J.; Gaynor, J.C.

    1996-10-01

    Each gypsum wallboard manufacturer has developed its own general guidelines for synthetic gypsum. The guidelines vary accordingly for each manufacturer and are often modified to suite a particular source and end use. In addition, the physical and chemical properties of synthetic gypsum are characterized by several proprietary and published test methods. Characterizing a synthetic gypsum and determining its acceptability is a time consuming process and can be confusing, particularly to those outside the gypsum wallboard industry. This paper describes some of the more important characteristics and practical aspects of synthetic gypsum usage based on USG`s extensive experience in wall board manufacture.

  20. Nanotechnology Approaches for Better Dental Implants

    PubMed Central

    Tomsia, Antoni P.; Launey, Maximilien E.; Lee, Janice S.; Mankani, Mahesh H.; Wegst, Ulrike G.K.; Saiz, Eduardo

    2011-01-01

    The combined requirements imposed by the enormous scale and overall complexity of designing new implants or complete organ regeneration are well beyond the reach of present technology in many dimensions, including nanoscale, as we do not yet have the basic knowledge required to achieve these goals. The need for a synthetic implant to address multiple physical and biological factors imposes tremendous constraints on the choice of suitable materials. There is a strong belief that nanoscale materials will produce a new generation of implant materials with high efficiency, low cost, and high volume. The nanoscale in materials processing is truly a new frontier. Metallic dental implants have been successfully used for decades but they have serious shortcomings related to their osseointegration and the fact that their mechanical properties do not match those of bone. This paper reviews recent advances in the fabrication of novel coatings and nanopatterning of dental implants. It also provides a general summary of the state of the art in dental implant science and describes possible advantages of nanotechnology for further improvements. The ultimate goal is to produce materials and therapies that will bring state-of-the-art technology to the bedside and improve quality of life and current standards of care. PMID:21464998

  1. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology. PMID:24156739

  2. Variable Synthetic Capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1986-01-01

    Feedback amplifier circuit synthesizes electronically variable capacitance. Variable Synthetic Capacitor is amplifier circuit with follower/feedback configuration. Effective input capacitance depends on input set current. If synthetic capacitor is connected across resonant element of oscillator, oscillator frequency controlled via input set current. Circuit especially suitable for fine frequency adjustments of piezoelectric-crystal or inductor/capacitor resonant oscillators.

  3. Biodegradable synthetic scaffolds for tendon regeneration

    PubMed Central

    Reverchon, Ernesto; Baldino, Lucia; Cardea, Stefano; De Marco, Iolanda

    2012-01-01

    Summary Tissue regeneration is aimed at producing biological or synthetic scaffolds to be implanted in the body for regenerate functional tissues. Several techniques and materials have been used to obtain biodegradable synthetic scaffolds, on which adhesion, growth, migration and differentiation of human cells has been attempted. Scaffolds for tendon regeneration have been less frequently proposed, because they have a complex hierarchical structure and it is very difficult to mimic their peculiar mechanical properties. In this review, we critically analyzed the proposed materials and fabrication techniques for tendon tissue engineering and we indicated new preparation processes, based on the use of supercritical fluids, to produce scaffolds with characteristics very similar to the native tendon structure. PMID:23738295

  4. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    NASA Astrophysics Data System (ADS)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  5. Building synthetic memory

    PubMed Central

    Inniss, Mara C.; Silver, Pamela A.

    2013-01-01

    Synopsis Cellular memory – conversion of a transient signal into a sustained response – is a common feature of biological systems. Synthetic biologists aim to understand and reengineer such systems in a reliable and predictable manner. Synthetic memory circuits have been designed and built in vitro and in vivo based on diverse mechanisms such as oligonucleotide hybridization, recombination, transcription, phosphorylation, and RNA editing. Thus far, building these circuits has helped us explore the basic principles required for stable memory and ask novel biological questions. Here we discuss strategies for building synthetic memory circuits, their use as research tools, and future applications of these devices in medicine and industry. PMID:24028965

  6. Building synthetic memory.

    PubMed

    Inniss, Mara C; Silver, Pamela A

    2013-09-01

    Cellular memory - conversion of a transient signal into a sustained response - is a common feature of biological systems. Synthetic biologists aim to understand and re-engineer such systems in a reliable and predictable manner. Synthetic memory circuits have been designed and built in vitro and in vivo based on diverse mechanisms, such as oligonucleotide hybridization, recombination, transcription, phosphorylation, and RNA editing. Thus far, building these circuits has helped us explore the basic principles required for stable memory and ask novel biological questions. Here we discuss strategies for building synthetic memory circuits, their use as research tools, and future applications of these devices in medicine and industry. PMID:24028965

  7. Synthetic Base Fluids

    NASA Astrophysics Data System (ADS)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  8. Integrative Performance Analysis of a Novel Bone Level Tapered Implant.

    PubMed

    Dard, M; Kuehne, S; Obrecht, M; Grandin, M; Helfenstein, J; Pippenger, B E

    2016-03-01

    Primary mechanical stability, as measured by maximum insertion torque and resonance frequency analysis, is generally considered to be positively associated with successful secondary stability and implant success. Primary implant stability can be affected by several factors, including the quality and quantity of available bone, the implant design, and the surgical procedure. The use of a tapered implant design, for instance, has been shown to result in good primary stability even in clinical scenarios where primary stability is otherwise difficult to achieve with traditional cylindrical implants-for example, in soft bone and for immediate placement in extraction sockets. In this study, bone-type specific drill procedures are presented for a novel Straumann bone level tapered implant that ensure maximum insertion torque values are kept within the range of 15 to 80 Ncm. The drill procedures are tested in vitro using polyurethane foam blocks of variable density, ex vivo on explanted porcine ribs (bone type 3), and finally in vivo on porcine mandibles (bone type 1). In each test site, adapted drill procedures are found to achieve a good primary stability. These results are further translated into a finite element analysis model capable of predicting primary stability of tapered implants. In conclusion, we have assessed the biomechanical behavior of a novel taper-walled implant in combination with a bone-type specific drill procedure in both synthetic and natural bone of various types, and we have developed an in silico model for predicting primary stability upon implantation. PMID:26927485

  9. Urinary incontinence - injectable implant

    MedlinePlus

    Injectable implants are injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a ... into the tissue next to the sphincter. The implant procedure is usually done in the hospital. Or ...

  10. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  11. What Are Synthetic Cannabinoids?

    MedlinePlus

    ... those produced by marijuana: elevated mood relaxation altered perception —awareness of surrounding objects and conditions symptoms of ... those produced by marijuana: elevated mood relaxation altered perception symptoms of psychosis Synthetic cannabinoids can also cause ...

  12. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  13. Models for synthetic biology

    PubMed Central

    Kaznessis, Yiannis N

    2007-01-01

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal. PMID:17986347

  14. Synthetic microbial communities☆

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2014-01-01

    While natural microbial communities are composed of a mix of microbes with often unknown functions, the construction of synthetic microbial communities allows for the generation of defined systems with reduced complexity. Used in a top-down approach, synthetic communities serve as model systems to ask questions about the performance and stability of microbial communities. In a second, bottom-up approach, synthetic microbial communities are used to study which conditions are necessary to generate interaction patterns like symbiosis or competition, and how higher order community structure can emerge from these. Besides their obvious value as model systems to understand the structure, function and evolution of microbial communities as complex dynamical systems, synthetic communities can also open up new avenues for biotechnological applications. PMID:24632350

  15. Synthetic biology and biosecurity.

    PubMed

    Robienski, Jürgen; Simon, Jürgen

    2014-01-01

    This article discusses the conflict fields and legal questions of synthetic biology, esp. concerning biosecurity. A respective jurisprudential discussion has not taken place yet in Germany apart from few statements and recommendations. But in Germany, Europe and the USA, it is generally accepted that a broad discussion is necessary. This is esp. true for the question of biosecurity and the possible dangers arising from Synthetic Biology. PMID:25845204

  16. Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Prinzel, L.J.; Kramer, L.J.

    2009-01-01

    A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.

  17. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  18. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  19. Breast implants: the good, the bad and the ugly. Can nanotechnology improve implants?

    PubMed

    Puskas, Judit E; Luebbers, Matthew T

    2012-01-01

    This advanced review will discuss the history of implants used in breast reconstruction and augmentation, the most frequently performed plastic surgery today. Currently, only silicone rubber-based silica nanocomposite implants are available in the United States. The most prevalent issues involving breast implants include capsular contracture, gel bleed, implant rupture, and infection. In the past, studies have also been reported which linked breast implants to increased incidence of systemic diseases such as autoimmune disease, various forms of cancer, and psychological disease. The goal of this review is to survey the literature from the perspective of material science. It is also largely unnoticed that nanotechnology is involved: the silicone rubber shell is reinforced with nanosilica so implants appear to be homogeneous and crystal clear. We are hoping that this review will contribute to a better understanding of the controversial issues and motivate material scientists and medical doctors to work together to develop alternatives based on new nanotechnology for the women who opt for a device made of synthetic materials. PMID:21964678

  20. Relationship between the surface chemical composition of implants and contact with the substrate.

    PubMed

    Lima da Costa Valente, Mariana; Shimano, Antonio Carlos; Marcantonio Junior, Elcio; Reis, Andréa Candido Dos

    2015-02-01

    The purpose of the study was to use scanning electron microscopy and energy dispersive x-ray spectrometry to assess possible morphologic and chemical changes after performing double-insertion and pullout tests of implants of different shapes and surface treatments. Four different types of implants were used-cylindrical machined-surface implants, cylindrical double-surface-treated porous implants, cylindrical surface-treated porous implants, and tapered surface-treated porous implants-representing a total of 32 screws. The implants were inserted into synthetic bone femurs, totaling 8 samples, before performing each insertion with standardized torque. After each pullout the implants were analyzed by scanning electron microscopy and energy dispersive x-ray spectrometry using a universal testing machine and magnified 35 times. No structural changes were detected on morphological surface characterization, only substrate accumulation. As for composition, there were concentration differences in the titanium, oxygen, and carbon elements. Implants with surface acid treatment undergo greater superficial changes in chemical composition than machined implants, that is, the greater the contact area of the implant with the substrate, the greater the oxide layer change. In addition, prior manipulation can alter the chemical composition of implants, typically to a greater degree in surface-treated implants. PMID:23339297

  1. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  2. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  3. Silicone breast implant materials.

    PubMed

    Daniels, A U

    2012-01-01

    This opinion article has been written on request because of the recent public controversy over silicone breast implants produced by a now-defunct company, Poly Implant Prosthese (PIP) in France. More than 300,000 PIP devices have been implanted. The purposes of my article are to (1.) provide a general overview of silicone breast implant materials, (2.) to describe the general safety of these materials as reported to date, and (3.) to summarise current publicly available information about these aspects of the PIP prostheses. The materials covered are the silicone rubber from which the implant shells are made and the silicone gel used to fill the shell. The materials safety issues are biocompatibility (especially of the gel) and biodurability of the shell. The literature reviewed indicates that biocompatibility is not an issue with other current generation implants. However, biodurability is. A rough estimate of implant shell rupture rate is ~10+% at 10 years. Information is still emerging about the PIP implants. Initial regulatory disclosures suggest the PIP implants may have both biocompatibility and biodurability problems. They also suggest that PIP implants may have been produced using silicone materials not certified as medical grade. Governmental health and regulatory agencies are just now in the process of deciding what actions should be taken to protect patients. PMID:22826101

  4. Automated synthetic scene generation

    NASA Astrophysics Data System (ADS)

    Givens, Ryan N.

    Physics-based simulations generate synthetic imagery to help organizations anticipate system performance of proposed remote sensing systems. However, manually constructing synthetic scenes which are sophisticated enough to capture the complexity of real-world sites can take days to months depending on the size of the site and desired fidelity of the scene. This research, sponsored by the Air Force Research Laboratory's Sensors Directorate, successfully developed an automated approach to fuse high-resolution RGB imagery, lidar data, and hyperspectral imagery and then extract the necessary scene components. The method greatly reduces the time and money required to generate realistic synthetic scenes and developed new approaches to improve material identification using information from all three of the input datasets.

  5. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  6. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  7. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  8. Implants in adolescents

    PubMed Central

    Shah, Rohit A.; Mitra, Dipika K.; Rodrigues, Silvia V.; Pathare, Pragalbha N.; Podar, Rajesh S.; Vijayakar, Harshad N.

    2013-01-01

    Implants have gained tremendous popularity as a treatment modality for replacement of missing teeth in adults. There is extensive research present on the use of implants in adults, but there is a dearth of data available on the same in adolescents. The treatment planning and execution of implant placement in adolescents is still in its infancy. This review article is an attempt to bring together available literature. PMID:24174743

  9. Larynx: implants and stents

    PubMed Central

    Sittel, Christian

    2011-01-01

    In the human larynx, implants a primarily used for the correction of glottis insufficiency. In a broader sense laryngeal stents may be considered as implants as well. Laryngeal implants can be differentiated into injectable and solid. The most important representatives of both groups are discussed in detail along with the respective technique of application. Laryngeal stents are primarily used perioperatively. Different types and their use are presented. PMID:22073097

  10. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  11. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  12. Synthetic Vision Workshop 2

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J. (Compiler)

    1999-01-01

    The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

  13. Synthetic Bursae for Robots

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers. A natural bursa is a thin bladder filled with synovial fluid, which serves to reduce friction and provide a cushion between a bone and a muscle or a tendon. A synthetic bursa would be similar in form and function: It would be, essentially, a compact, soft roller consisting of a bladder filled with a non-Newtonian fluid. The bladder would be constrained to approximately constant volume. The synthetic bursa would cushion an actuator cable against one of the members of a robot joint and would reduce the friction between the cable and the member. Under load, the pressure in the bladder would hold the opposite walls of the bladder apart, making it possible for them to move freely past each other without rubbing.

  14. Bio-packaged transponder MEMS implanted in rats.

    PubMed

    Rodriguez, R; Loske, A M; Estevez, M; Vargas, S; Salazar, R; Pacheco, F; Vazquez-Carpizo, J; Gamboa, J M

    2013-01-01

    A novel hydroxyapatite-based hybrid material with controlled porosity was designed as a bio-package to implant micro-electro-mechanical systems (MEMS) in living organisms. The biomaterial was prepared using synthetic stoichiometric hydroxyapatite powder reacted with a chemical-active, solvent-free, alkyd-based polyurethane. This porous material has interconnected pores with sizes between 100 and 350 μm and a pore volume fraction of 50%, fulfilling the requirements for implants. The biomaterial additionally has high wearing resistance and hydrolytic stability providing high endurance properties. The bio-package was characterized mechanically and morphologically using X-ray diffraction, scanning electron microscopy, densitometry, abrasion and mechanical tests. Twelve packaged micro-electro-mechanical systems were implanted subcutaneously into rats and tested for up to 9 months with good acceptance as revealed by the histological analysis performed on the soft tissue surrounding each implant. PMID:22304894

  15. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  16. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  17. Mesh implants: An overview of crucial mesh parameters

    PubMed Central

    Zhu, Lei-Ming; Schuster, Philipp; Klinge, Uwe

    2015-01-01

    Hernia repair is one of the most frequently performed surgical interventions that use mesh implants. This article evaluates crucial mesh parameters to facilitate selection of the most appropriate mesh implant, considering raw materials, mesh composition, structure parameters and mechanical parameters. A literature review was performed using the PubMed database. The most important mesh parameters in the selection of a mesh implant are the raw material, structural parameters and mechanical parameters, which should match the physiological conditions. The structural parameters, especially the porosity, are the most important predictors of the biocompatibility performance of synthetic meshes. Meshes with large pores exhibit less inflammatory infiltrate, connective tissue and scar bridging, which allows increased soft tissue ingrowth. The raw material and combination of raw materials of the used mesh, including potential coatings and textile design, strongly impact the inflammatory reaction to the mesh. Synthetic meshes made from innovative polymers combined with surface coating have been demonstrated to exhibit advantageous behavior in specialized fields. Monofilament, large-pore synthetic meshes exhibit advantages. The value of mesh classification based on mesh weight seems to be overestimated. Mechanical properties of meshes, such as anisotropy/isotropy, elasticity and tensile strength, are crucial parameters for predicting mesh performance after implantation. PMID:26523210

  18. Smoking and dental implants

    PubMed Central

    Kasat, V.; Ladda, R.

    2012-01-01

    Smoking is a prevalent behaviour in the population. The aim of this review is to bring to light the effects of smoking on dental implants. These facts will assist dental professionals when implants are planned in tobacco users. A search of “PubMed” was made with the key words “dental implant,” “nicotine,” “smoking,” “tobacco,” and “osseointegration.” Also, publications on tobacco control by the Government of India were considered. For review, only those articles published from 1988 onward in English language were selected. Smoking has its influence on general as well as oral health of an individual. Tobacco negatively affects the outcome of almost all therapeutic procedures performed in the oral cavity. The failure rate of implant osseointegration is considerably higher among smokers, and maintenance of oral hygiene around the implants and the risk of peri-implantitis are adversely affected by smoking. To increase implant survival in smokers, various protocols have been recommended. Although osseointegrated dental implants have become the state of the art for tooth replacement, they are not without limitations or complications. In this litigious era, it is extremely important that the practitioner clearly understands and is able and willing to convey the spectrum of possible complications and their frequency to the patients. PMID:24478965

  19. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  20. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  1. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  2. Gold bead implants.

    PubMed

    Durkes, T E

    1992-03-01

    Gold bead implantation is an experimental area of study in the acupuncture field dealing with chronic diseases. Special acupuncture techniques are required to implant the gold beads successfully in the proper location. Gold beads are used to treat degenerative joint disease, osteochondritis, osteochondritis dessicans, ventral spondylosis, and seizures. PMID:1581658

  3. Percutaneous and skeletal biocarbon implants

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  4. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  5. Number of implants for mandibular implant overdentures: a systematic review

    PubMed Central

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  6. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  7. Synthetic ligaments. Current status.

    PubMed

    Funk, F J

    1987-06-01

    Many techniques for ligamentous reconstruction have been developed in recent years. In the United States, injuries of the knee have been increasingly treated with innovative methods of surgical reconstruction, most of which have used normal structures. There are obvious theoretic advantages in using synthetic materials that might simplify surgery, spare normal tissues, and possibly facilitate stronger repairs. To these ends, several synthetic substances have been used experimentally and clinically. This is a brief summary of eight of the materials that have been or are being investigated in the United States. Some are no longer in use, others are currently being used in clinical trials. As of this writing, only the Gortex ligament has received a general device release from the Food and Drug Administration (FDA). PMID:3034461

  8. Wholly Synthetic Molecular Machines.

    PubMed

    Cheng, Chuyang; Stoddart, J Fraser

    2016-06-17

    The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors. PMID:26833859

  9. Engineered Asymmetric Synthetic Vesicles

    NASA Astrophysics Data System (ADS)

    Lu, Li; Chiarot, Paul

    2013-11-01

    Synthetic vesicles are small, fluid-filled spheres that are enclosed by a bilayer of lipid molecules. They can be used as models for investigating membrane biology and as delivery vehicles for pharmaceuticals. In practice, it is difficult to simultaneously control membrane asymmetry, unilamellarity, vesicle size, vesicle-to-vesicle uniformity, and luminal content. Membrane asymmetry, where each leaflet of the bilayer is composed of different lipids, is of particular importance as it is a feature of most natural membranes. In this study, we leverage microfluidic technology to build asymmetric vesicles at high-throughput. We use the precise flow control offered by microfluidic devices to make highly uniform emulsions, with controlled internal content, that serve as templates to build the synthetic vesicles. Flow focusing, dielectrophoretic steering, and interfacial lipid self-assembly are critical procedures performed on-chip to produce the vesicles. Fluorescent and confocal microscopy are used to evaluate the vesicle characteristics.

  10. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  11. Cochlear implants in children.

    PubMed

    Young, N M

    1994-04-01

    Children with such profound deafness that they are not helped by hearing aids are now candidates for cochlear implantation. This technology permits us to provide these children with a significant degree of useful hearing. The degree of improvement in speech perception and spoken language in pediatric cochlear implant recipients varies. However, the younger the children and the less time they have been completely deprived of auditory stimuli, the more likely they are to make significant progress. The evaluation of the deaf child for implantation is best done by a multidisciplinary team who understands the needs of hearing-impaired children and who can work with the family, the child, and classroom teachers, as well as other school professionals. The decision to proceed with cochlear implantation in a child is one that requires long-term commitment on the part of the family and the cochlear implant team. PMID:8039409

  12. [Implantable medical devices].

    PubMed

    Crickx, B; Arrault, X

    2008-01-01

    Medical devices have been individualized to include a category of implantable medical devices, "designed to be totally implanted in the human body or to replace an epithelial surface or a surface of the eye, through surgery, and remain in place after the intervention" (directive 93/42/CEE and decree of 20 April 206). Each implantable medical device has a common name and a commercial name for precise identification of the model (type/references). The users' service and the implanting physician should be clearly identified. There are a number of rules concerning health traceability to rapidly identify patients exposed to risks in which the implantable medical devices of a particular batch or series were used and to monitor the consequences. The traceability data should be preserved 10 years and the patient's medical file for 20 years. PMID:18442666

  13. Synthetic aircraft turbine oil

    SciTech Connect

    Reinhard, R.R.; Yaffe, R.

    1980-10-07

    Synthetic lubricating oil composition having improved oxidation stability comprises a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a hydrocarbyl phosphate ester, a polyhydroxy anthraquninone, an alkylamine salt of 3-amino-triazole-dodecenylsuccinamic acid, 2-hydroxylpropyl-n, n-dibutyldithiocarbamate, and an alkyl amine salt of a methyl acid phosphate.

  14. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  15. Straight, semi-anatomic and anatomic TMJ implants: the influence of condylar geometry and bone fixation screws.

    PubMed

    Ramos, A; Completo, A; Relvas, C; Mesnard, M; Simões, J A

    2011-07-01

    A 3D finite element model of in vitro intact and implanted mandibles with different temporomandibular joints (TMJ) was analyzed. Three TMJ implant geometries were assessed. The displacements, stress and strain fields on the condyle were obtained for both simulated cases. Strains were also assessed near the screws that fixate the implant to the mandible. The geometry of the mandible was obtained through 3D digitalization of a synthetic model. The TMJ implants studied were modelled considering a commercial implant which was also used to create semi-anatomic and anatomic implants that were analyzed and to assess the influence of the geometry. Numerical finite element models were built and the implants were positioned by an experienced orofacial surgeon. All implants were fixed by four screws which were placed in the same position on the mandible. The boundary conditions were simulated considering the support on the incisive tooth, the loads of the five most important muscular forces and a 5mm mouth aperture. This study indicates that the deformation on the intact mandible was similar when an anatomic implant was considered in the implanted mandible. However, the anatomic geometry presented some problems concerning the implant integrity due to geometric variations. The geometry of TMJ implant also played a role relatively to the screws structural integration and bone fixation. The geometry of TMJ implant defines the necessary number of screws and position in the mandible fixation. PMID:20801667

  16. Reflections on Rodent Implantation.

    PubMed

    Cha, Jeeyeon M; Dey, Sudhansu K

    2015-01-01

    Embryo implantation is a complex process involving endocrine, paracrine, autocrine, and juxtacrine modulators that span cell-cell and cell-matrix interactions. The quality of implantation is predictive for pregnancy success. Earlier observational studies formed the basis for genetic and molecular approaches that ensued with emerging technological advances. However, the precise sequence and details of the molecular interactions involved have yet to be defined. This review reflects briefly on aspects of our current understanding of rodent implantation as a tribute to Roger Short's lifelong contributions to the field of reproductive physiology. PMID:26450495

  17. [Implantable hearing aids].

    PubMed

    Luers, J C; Beutner, D; Hüttenbrink, K-B

    2011-10-01

    Strictly speaking, implantable hearing aids are technical systems that process audiological signals and convey these by direct mechanical stimulation of the ossicular chain or cochlea. They have certain benefits over conventional hearing aids in terms of wearing comfort and general acceptance. As current studies lack convincing audiological results, the indications for implantable hearing aids are primarily of medical or cosmetic nature. To date, three systems are available in Germany: Vibrant Soundbridge®, Carina®, and Esteem®. Because the performance of the different implantable and nonimplantable hearing systems together with various surgical procedures are currently undergoing major changes, audiological indications may also develop in the future. PMID:21956678

  18. Transcatheter aortic valve implantation

    PubMed Central

    Oliemy, Ahmed

    2014-01-01

    Transcatheter aortic valve implantation was developed to offer a therapeutic solution to patients with severe symptomatic aortic stenosis who are not candidates for conventional aortic valve replacement. The improvement in transcatheter aortic valve implantation outcomes is still of concern in the areas of stroke, vascular injury, heart block, paravalvular regurgitation and valve durability. Concomitantly, the progress, both technical and in terms of material advances of transcatheter valve systems, as well as in patient selection, renders transcatheter aortic valve implantation an increasingly viable treatment for more and more patients with structural heart disease. PMID:25374670

  19. The evolution of embryo implantation.

    PubMed

    McGowen, Michael R; Erez, Offer; Romero, Roberto; Wildman, Derek E

    2014-01-01

    Embryo implantation varies widely in placental mammals. We review this variation in mammals with a special focus on two features: the depth of implantation and embryonic diapause. We discuss the two major types of implantation depth, superficial and interstitial, and map this character on a well-resolved molecular phylogenetic tree of placental mammals. We infer that relatively deep interstitial implantation has independently evolved at least eight times within placental mammals. Moreover, the superficial type of implantation represents the ancestral state for placental mammals. In addition, we review the genes involved in various phases of implantation, and suggest a future direction in investigating the molecular evolution of implantation-related genes. PMID:25023681

  20. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries.

    PubMed

    Singh, Charanpreet; Wong, Cynthia S; Wang, Xungai

    2015-01-01

    Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants. PMID:26133386

  1. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries

    PubMed Central

    Singh, Charanpreet; Wong, Cynthia S.; Wang, Xungai

    2015-01-01

    Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants. PMID:26133386

  2. [Silicone breast implants].

    PubMed

    Nielsen, M; Brandt, B; Breiting, V B; Christensen, L H; Thomsen, J L

    1989-12-18

    A brief review of the use of silicone breast implants, their structure, methods of implantation and complications is presented. Acute complications are rare, being mainly infection and hematoma. Long-term complications, on the contrary, are common, consisting mainly of capsular contracture around the prosthesis with subsequent pain and deformation of the breast. More rarely silicone granulomas form, and prosthesis rupture or herniation occurs. The importance of silicone leakage for these complications is discussed separately as well as the treatment of and prevention of capsular contracture and demonstration of silicone in tissue. A critical attitude towards the use of silicone breast implants, when these are used for purely cosmetic purposes, is recommended at present. New improved types of silicone breast implants are currently being tested clinically. PMID:2692262

  3. Peri-Implant Diseases

    MedlinePlus

    ... and flossing and regular check-ups from a dental professional. Other risks factors for developing peri-implant disease include previous periodontal disease diagnosis, poor plaque control, smoking , and diabetes . It is essential to routinely ...

  4. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  5. Risks of Breast Implants

    MedlinePlus

    ... larger and longer than these conducted so far. Breastfeeding Some women who undergo breast augmentation can successfully ... breast implant silicone shell into breast milk during breastfeeding. Although there are currently no established methods for ...

  6. Clinically based implant selection.

    PubMed

    Fugazzotto, P A

    1999-01-01

    A hierarchy of implant selection is presented, based on overcoming specific clinical challenges in a variety of situations, including maximization of the esthetic, comfort, and functional potentials of therapy. PMID:10709488

  7. Breast reconstruction - implants

    MedlinePlus

    ... stages, or surgeries. During the first stage, a tissue expander is used. An implant is placed during the ... a pouch under your chest muscle. A small tissue expander is placed in the pouch. The expander is ...

  8. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  9. Implantable microscale neural interfaces.

    PubMed

    Cheung, Karen C

    2007-12-01

    Implantable neural microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. Such implantable microelectrode arrays are being developed to simultaneously sample signals at many points in the tissue, providing insight into processes such as movement control, memory formation, and perception. These electrode arrays have been microfabricated on a variety of substrates, including silicon, using both surface and bulk micromachining techniques, and more recently, polymers. Current approaches to achieving a stable long-term tissue interface focus on engineering the surface properties of the implant, including coatings that discourage protein adsorption or release bioactive molecules. The implementation of a wireless interface requires consideration of the necessary data flow, amplification, signal processing, and packaging. In future, the realization of a fully implantable neural microsystem will contribute to both diagnostic and therapeutic applications, such as a neuroprosthetic interface to restore motor functions in paralyzed patients. PMID:17252207

  10. Implant treatment planning: endodontic considerations.

    PubMed

    Simonian, Krikor; Frydman, Alon; Verdugo, Fernando; Roges, Rafael; Kar, Kian

    2014-12-01

    Implants are a predictable and effective method for replacing missing teeth. Some clinicians have advocated extraction and replacement of compromised but treatable teeth on the assumption that implants will outperform endodontically and/or periodontally treated teeth. However, evidence shows that conventional therapy is as effective as implant treatment. With data on implants developing complications long term and a lack of predictable treatment for peri-implantitis, retaining and restoring the natural dentition should be the first choice when possible. PMID:25928961

  11. Ion implantation at elevated temperatures

    SciTech Connect

    Lam, N.Q.; Leaf, G.K.

    1985-11-01

    A kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al and Si ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail.

  12. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  13. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  14. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  15. [Implantable materials (author's transl)].

    PubMed

    Schaldach, M

    1975-11-01

    There is a steadily increasing importance of implants used as substitutions for body functions which have been impaired due to disease, natural abrasion or accident. With the present state of the art, the limitations for the application of surgical substitutions are due to insufficient properties of biomaterials with regard to specific applications as well as to deficiencies in design and function of the implants used. The basis for the improvement and new development of implants is therefore a functionally adequate design in which the specific properties of the material are taken into account with regard to the individual requirements of the implantation site. For orthopedic implants, materials have to be developed which are to a large extent corrosion and degradation resistant, and withstand high mechanical stress. For implants in the cardiovascular system, compatibility with blood is most significant. Present research in this field is concentrated on efforts to improve the thromboresistivity of conventional polymers by different kinds of surface treatments. One possibility is to influence actively the electrochemical interactions between material and blood components, e.g. by the use of redox catalysts. PMID:1107653

  16. [BIOLOGICAL IMPLANTS IN ABDOMINAL WALL HERNIA REPAIR (REVIEW)].

    PubMed

    Abatov, N; Badyrov, R; Abatova, A; Assamidanov, E; Kaukenov, B

    2016-02-01

    The use of synthetic meshes as a material for abdominal wall hernia repair does not always ensure a recurrence-free treatment outcome and full recovery of the abdominal wall functional activity. There are well-known disadvantages such as poor resistance to infection, the infiltrate formation in the place of implantation, expressed adhesive process in cases of introperitoneal fixation, to create certain restrictions on the using of these implants for abdominal wall reconstruction. The search for alternative materials that could minimize the risk of complications, has led to the study of biological grafts. It is known that various methods for the manufacturing biological implants determine endogenous properties for each material separately, and may be cause a variety of biological responses in vivo after implantation. The question has not been resolved, what the fresh raw material is better to use for derive biological implants. In this review we investigated the interaction of different types of biological implants between the abdominal wall and the organs of abdominal cavity of the recipient, their ability to resist infection and the development of relapses, as a leading indicator of the effectiveness of hernioplasty. PMID:27001778

  17. Resorbable synthetic mesh supported with omentum flap in the treatment of giant hiatal hernia.

    PubMed

    Pérez Lara, F J; Marín, R; del Rey, A; Oliva, H

    2014-01-01

    Covering a large hiatal hernia with a mesh has become a basic procedure in the last few years. However, mesh implants are associated with high complication rates (esophageal erosion, perforation, fistula, etc.). We propose using a synthetic resorbable mesh supported with an omental flap as a possible solution to this problem. A 54-year-old female patient with a large hiatal defect (9 cm) was laparoscopically implanted with a synthetic resorbable mesh supported with an omental flap. The surgical procedure was successful and the patient was discharged on postoperative day 2. On a follow-up examination 6 months after surgery, she remained free of relapse or complication signs. Supporting an implanted resorbable mesh with an omental flap may be a solution to the problems posed by large esophageal hiatus defects. However, more studies based on larger patient samples and longer follow-up periods are necessary. PMID:25216419

  18. Resorbable Synthetic Mesh Supported With Omentum Flap in the Treatment of Giant Hiatal Hernia

    PubMed Central

    Pérez Lara, F. J.; Marín, R.; del Rey, A.; Oliva, H.

    2014-01-01

    Covering a large hiatal hernia with a mesh has become a basic procedure in the last few years. However, mesh implants are associated with high complication rates (esophageal erosion, perforation, fistula, etc.). We propose using a synthetic resorbable mesh supported with an omental flap as a possible solution to this problem. A 54-year-old female patient with a large hiatal defect (9 cm) was laparoscopically implanted with a synthetic resorbable mesh supported with an omental flap. The surgical procedure was successful and the patient was discharged on postoperative day 2. On a follow-up examination 6 months after surgery, she remained free of relapse or complication signs. Supporting an implanted resorbable mesh with an omental flap may be a solution to the problems posed by large esophageal hiatus defects. However, more studies based on larger patient samples and longer follow-up periods are necessary. PMID:25216419

  19. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  20. Progress toward synthetic cells.

    PubMed

    Blain, J Craig; Szostak, Jack W

    2014-01-01

    The complexity of even the simplest known life forms makes efforts to synthesize living cells from inanimate components seem like a daunting task. However, recent progress toward the creation of synthetic cells, ranging from simple protocells to artificial cells approaching the complexity of bacteria, suggests that the synthesis of life is now a realistic goal. Protocell research, fueled by advances in the biophysics of primitive membranes and the chemistry of nucleic acid replication, is providing new insights into the origin of cellular life. Parallel efforts to construct more complex artificial cells, incorporating translational machinery and protein enzymes, are providing information about the requirements for protein-based life. We discuss recent advances and remaining challenges in the synthesis of artificial cells, the possibility of creating new forms of life distinct from existing biology, and the promise of this research for gaining a deeper understanding of the nature of living systems. PMID:24606140

  1. Multidimensional synthetic estimation filter

    NASA Technical Reports Server (NTRS)

    Monroe, Stanley E., Jr.; Juday, Richard D.

    1990-01-01

    The synthetic estimation filter (SEF) crafts an affine variation into its response to a changing parameter (e.g. scale or rotation). Sets of such filters are used in an estimation correlator to reduce the number of filters required for a given tracking accuracy. By overspecifying the system (one more SEF than parameters to be tracked), the ratio of correlation responses between filters forms a robust estimator into the spanned domain of the parameters. Previous results dealt with a laboratory correlator which could track a single parameter. This paper explores the SEF and the estimator's extension to more dimensions. A 2D example is given in which a reduction of filters from 25 to 3 is demonstrated to span a 4-degree square portion of pose space.

  2. Implant interactions with orthodontics.

    PubMed

    Celenza, Frank

    2012-09-01

    Many situations arise in which orthodontic therapy in conjunction with implant modalities is beneficial, relevant or necessary. These situations might entail orthodontic treatment preparatory to the placement of an implant, such as in the site preparation for implant placement. Traditionally, this has been somewhat well understood, but there are certain guidelines that must be adhered to as well as diagnostic steps that must be followed. Provision of adequate space for implant placement is of paramount importance, but there is also the consideration of tissue manipulation and remodeling which orthodontic therapy can achieve very predictably and orthodontists should be well versed in harnessing and employing this modality of site preparation. In this way, hopeless teeth that are slated for extraction can still be utilized by orthodontic extraction to augment tissues, both hard and soft, thereby facilitating site development. On the corollary, and representing a significant shift in treatment sequencing, there are many situations in which orthodontic mechanotherapy can be simplified, expedited, and facilitated by the placement of an implant and utilization as an integral part of the mechanotherapy. Implants have proven to provide excellent anchorage, and have resulted in a new class of anchorage known as "absolute anchorage". Implants can be harnessed as anchors both in a direct and indirect sense, depending upon the dictates of the case. Further, this has led to the development of orthodontic miniscrew systems and techniques, which can have added features such as flexibility in location and placement, as well as ease of use and removal. As orthodontic appliances evolve, the advent of aligner therapy has become mainstream and well accepted, and many of the aforementioned combined treatment modalities can and should be incorporated into this relatively new treatment modality as well. PMID:23040348

  3. Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns

    PubMed Central

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-01-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. PMID:23997647

  4. Positron implantation in solids

    SciTech Connect

    Ghosh, V.J.; Lynn, K.G.; Welch, D.O.

    1993-12-31

    The Monte Carlo technique for modeling positron prior to annihilation and electron implantation in semi-infinite metals is described. Particle implantation is modelled as a multistep process, a series of collisions with the atoms of the host material. In elastic collisions with neutral atoms there is no transfer of energy. The particle loses energy by several different channels, excitation of the electron gas, ionization of the ion cores, or, at low energies, by phonon excitation. These competing scattering mechanisms have been incorporated into the Monte Carlo framework and several different models are being used. Brief descriptions of these Monte Carlo schemes, as well as an analytic model for positron implantation are included. Results of the Monte Carlo simulations are presented and compared with expermental data. Problems associated with modeling positron implantation are discuss and the need for more expermental data on energy-loss in different materials is stressed. Positron implantation in multilayers of different metals is briefly described and extensions of this work to include a study of multilayers and heterostructures is suggested.

  5. Imaging for cochlear implants.

    PubMed

    Phelps, P D; Annis, J A; Robinson, P J

    1990-07-01

    Insertion of a sound amplification device into the round window niche (extracochlear implant) or into the coils of the cochlea (intracochlear implant) can give significant benefits to some carefully selected, severely deaf patients. Imaging has an essential role in selective and pre-operative assessment. Severe otosclerosis and post-meningitic labyrinthitis ossificans are common causes of deafness in these patients and can be demonstrated by computed tomography (CT). The most suitable side for operation can be assessed. We describe our experiences with 165 patients, 69 of whom were found suitable for implants. Thin (1 mm) section CT in axial and coronal planes is the best imaging investigation of the petrous temporal bones but the place of magnetic resonance scanning to confirm that the inner ear is fluid-filled and polytomography to show a multichannel implant in the cochlea is discussed. No implants were used for congenital deformities, but some observations are made of this type of structural deformity of the inner ear. PMID:2390686

  6. A synthetic approach to abiogenesis.

    PubMed

    Attwater, James; Holliger, Philipp

    2014-05-01

    Synthetic biology seeks to probe fundamental aspects of biological form and function by construction (resynthesis) rather than deconstruction (analysis). Here we discuss how such an approach could be applied to assemble synthetic quasibiological systems able to replicate and evolve, illuminating universal properties of life and the search for its origins. PMID:24781322

  7. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

    2009-01-01

    Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

  8. Recent advances in synthetic biosafety

    PubMed Central

    Simon, Anna J.; Ellington, Andrew D.

    2016-01-01

    Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment.

  9. Synthetic cannabis and respiratory depression.

    PubMed

    Jinwala, Felecia N; Gupta, Mayank

    2012-12-01

    In recent years, synthetic cannabis use has been increasing in appeal among adolescents, and its use is now at a 30 year peak among high school seniors. The constituents of synthetic cannabis are difficult to monitor, given the drug's easy accessibility. Currently, 40 U.S. states have banned the distribution and use of some known synthetic cannabinoids, and have included these drugs in the Schedule I category. The depressive respiratory effect in humans caused by synthetic cannabis inhalation has not been thoroughly investigated in the medical literature. We are the first to report, to our knowledge, two cases of self-reported synthetic cannabis use leading to respiratory depression and necessary intubation. PMID:23234589

  10. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  11. Hydroxylapatite Otologic Implants

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Beale, B.; Johnson, R.

    2000-01-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (LMER) and Smith and Nephew Richards Inc. of Bartlett, TN, was initiated in March 1997. The original completion date for the Agreement was March 25, 1998. The purpose of this work is to develop and commercialize net shape forming methods for directly creating dense hydroxylapatite (HA) ceramic otologic implants. The project includes three tasks: (1) modification of existing gelcasting formulations to accommodate HA slurries; (2) demonstration of gelcasting to fabricate green HA ceramic components of a size and shape appropriate to otologic implants: and (3) sintering and evaluation of the HA components.

  12. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  13. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  14. Tungsten contamination in ion implantation

    NASA Astrophysics Data System (ADS)

    Polignano, M. L.; Barbarossa, F.; Galbiati, A.; Magni, D.; Mica, I.

    2016-06-01

    In this paper the tungsten contamination in ion implantation processes is studied by DLTS analysis both in typical operating conditions and after contamination of the implanter by implantation of wafers with an exposed tungsten layer. Of course the contaminant concentration is orders of magnitude higher after contamination of the implanter, but in addition our data show that different mechanisms are active in a not contaminated and in a contaminated implanter. A moderate tungsten contamination is observed also in a not contaminated implanter, however in that case contamination is completely not energetic and can be effectively screened by a very thin oxide. On the contrary, the contamination due to an implantation in a previously contaminated implanter is reduced but not suppressed even by a relatively thick screen oxide. The comparison with SRIM calculations confirms that the observed deep penetration of the contaminant cannot be explained by a plain sputtering mechanism.

  15. Synthetic antimicrobial peptide design.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    1995-01-01

    To guide the design of potential plant pathogen-resistance genes, synthetic variants of naturally occurring antimicrobial gene products were evaluated. Five 20-amino acid (ESF1, ESF4, ESF5, ESF6, ESF13), one 18-amino acid (ESF12), and one 17-amino acid (ESF17) amphipathic peptide sequences were designed, synthesized, and tested with in vitro bioassays. Positive charges on the hydrophilic side of the peptide were shown to be essential for antifungal activity, yet the number of positive charges could be varied with little or no change in activity. The size could be reduced to 18 amino acids, but at 17 amino acids a significant reduction in activity was observed. ESF1, 5, 6, and 12 peptides were inhibitory to the germination of conidia from Cryphonectria parasitica, Fusarium oxysporum f. sp. lycopersici, and Septoria musiva but did not inhibit the germination of pollen from Castanea mollissima and Salix lucida. ESF12 also had no effect on the germination of Malus sylvestris and Lycopersicon esculentum pollen, but inhibited the growth of the bacteria Agrobacterium tumefaciens, Erwinia amylovora, and Pseudomonas syringae. The minimal inhibitory concentrations of the active ESF peptides were similar to those of the naturally occurring control peptides, magainin II and cecropin B. The significant differential in sensitivity between the microbes and plant cells indicated that the active ESF peptides are potentially useful models for designing plant pathogen-resistance genes. PMID:7579625

  16. Interferometric synthetic aperture microscopy

    NASA Astrophysics Data System (ADS)

    Ralston, Tyler S.; Marks, Daniel L.; Scott Carney, P.; Boppart, Stephen A.

    2007-02-01

    State-of-the-art methods in high-resolution three-dimensional optical microscopy require that the focus be scanned through the entire region of interest. However, an analysis of the physics of the light-sample interaction reveals that the Fourier-space coverage is independent of depth. Here we show that, by solving the inverse scattering problem for interference microscopy, computed reconstruction yields volumes with a resolution in all planes that is equivalent to the resolution achieved only at the focal plane for conventional high-resolution microscopy. In short, the entire illuminated volume has spatially invariant resolution, thus eliminating the compromise between resolution and depth of field. We describe and demonstrate a novel computational image-formation technique called interferometric synthetic aperture microscopy (ISAM). ISAM has the potential to broadly impact real-time three-dimensional microscopy and analysis in the fields of cell and tumour biology, as well as in clinical diagnosis where in vivo imaging is preferable to biopsy.

  17. Interferometric synthetic aperture microscopy

    NASA Astrophysics Data System (ADS)

    Ralston, Tyler S.

    State-of-the-art interferometric microscopies have problems representing objects that lie outside of the focus because the defocus and diffraction effects are not accounted for in the processing. These problems occur because of the lack of comprehensive models to include the scattering effects in the processing. In this dissertation, a new modality in three-dimensional (3D) optical microscopy, Interferometric Synthetic Aperture Microscopy (ISAM), is introduced to account for the scattering effects. Comprehensive models for interferometric microscopy, such as optical coherence tomography (OCT) are developed, for which forward, adjoint, normal, and inverse operators are formulated. Using an accurate model for the probe beam, the resulting algorithms demonstrate accurate linear estimation of the susceptibility of an object from the interferometric data. Using the regularized least squares solution, an ISAM reconstruction of underlying object structure having spatially invariant resolution is obtained from simulated and experimental interferometric data, even in regions outside of the focal plane of the lens. Two-dimensional (2D) and 3D interferometric data is used to resolve objects outside of the confocal region with minimal loss of resolution, unlike in OCT. Therefore, high-resolution details are recovered from outside of the confocal region. Models and solutions are presented for the planar-scanned, the rotationally scanned, and the full-field illuminated geometry. The models and algorithms presented account for the effects of a finite beam width, the source spectrum, the illumination and collection fields, as well as defocus, diffraction and dispersion effects.

  18. Synthetic retinoids in dermatology

    PubMed Central

    Heller, Elizabeth H.; Shiffman, Norman J.

    1985-01-01

    The potential of vitamin A, or retinol, in the treatment of a variety of skin diseases has long been recognized, but because of serious toxic effects this substance generally could not be used. The recent development and marketing of two relatively nontoxic synthetic analogues, which are known as retinoids, has made it possible to treat some of the diseases that are resistant to standard forms of therapy. Isotretinoin is very effective in cystic and conglobate acne, while etretinate is especially useful in the more severe forms of psoriasis. Good results have also been obtained in other disorders of keratinization. Vitamin A and its derivatives apparently have an antineoplastic effect as well and may come to be used in both the prevention and the treatment of epithelial cancer. In many of these diseases the retinoids act by enhancing the normal differentiation and proliferation of epidermal tissues, but the exact mechanisms are not well understood. Their influence on the intracellular polyamines that control the synthesis of nucleic acids and proteins may be an important factor. Although the retinoids have few serious systemic effects, they are teratogenic, and because they persist in the body their use in women of childbearing potential is limited. ImagesFig. 3 PMID:3158386

  19. Computing with synthetic protocells.

    PubMed

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise. PMID:25969126

  20. Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair.

    PubMed

    Todros, S; Pavan, P G; Natali, A N

    2015-03-01

    Synthetic meshes are widely used for surgical repair of different kind of prolapses. In the light of the experience of abdominal wall repair, similar prostheses are currently used in the pelvic region, to restore physiological anatomy after organ prolapse into the vaginal wall, that represent a recurrent dysfunction. For this purpose, synthetic meshes are surgically positioned in contact with the anterior and/or posterior vaginal wall, to inferiorly support prolapsed organs. Nonetheless, while mesh implantation restores physiological anatomy, it is often associated with different complications in the vaginal region. These potentially dangerous effects induce the surgical community to reconsider the safety and efficacy of mesh transvaginal placement. For this purpose, the evaluation of state-of-the-art research may provide the basis for a comprehensive analysis of mesh compatibility and functionality. The aim of this work is to review synthetic surgical meshes for pelvic organs prolapse repair, taking into account the mechanics of mesh material and structure, and to relate them with pelvic and vaginal tissue biomechanics. Synthetic meshes are currently available in different chemical composition, fiber and textile conformations. Material and structural properties are key factors in determining mesh biochemical and mechanical compatibility in vivo. The most significant results on vaginal tissue and surgical meshes mechanical characterization are here reported and discussed. Moreover, computational models of the pelvic region, which could support the surgeon in the evaluation of mesh performances in physiological conditions, are recalled. PMID:26615384

  1. Synthetic biology: lessons from the history of synthetic organic chemistry.

    PubMed

    Yeh, Brian J; Lim, Wendell A

    2007-09-01

    The mid-nineteenth century saw the development of a radical new direction in chemistry: instead of simply analyzing existing molecules, chemists began to synthesize them--including molecules that did not exist in nature. The combination of this new synthetic approach with more traditional analytical approaches revolutionized chemistry, leading to a deep understanding of the fundamental principles of chemical structure and reactivity and to the emergence of the modern pharmaceutical and chemical industries. The history of synthetic chemistry offers a possible roadmap for the development and impact of synthetic biology, a nascent field in which the goal is to build novel biological systems. PMID:17710092

  2. The ruptured PIP breast implant.

    PubMed

    Helyar, V; Burke, C; McWilliams, S

    2013-08-01

    Public concern erupted about the safety of Poly Implant Prothèse (PIP) breast implants when it was revealed in 2011 that they contained an inferior, unlicensed industrial-grade silicone associated with a high rate of rupture. There followed national guidance for UK clinicians, which led to a considerable increase in referrals of asymptomatic women for breast implant assessment. In this review we discuss possible approaches to screening the PIP cohort and the salient characteristics of a ruptured implant. PMID:23622796

  3. Rehabilitation using single stage implants

    PubMed Central

    Mohamed, Jumshad B.; Sudarsan, Sabitha; Arun, K. V.; Shivakumar, B.

    2009-01-01

    Implant related prosthesis has become an integral part of rehabilitation of edentulous areas. Single stage implant placement has become popular because of its ease of use and fairly predictable results. In this paper, we present a series of cases of single stage implants being used to rehabilitate different clinical situations. All the implants placed have been successfully restored and followed up for up to one year. PMID:20376239

  4. Effect of Allogeneic Platelet Lysate and Cyanoacrylate Tissue Glue on the Fibrovascularization of the Porous Polyethylene Implant.

    PubMed

    Ozturk, Sinan; Sahin, Cihan; Tas, Arzu Caputcu; Muftuoglu, Tuba; Karagoz, Huseyin

    2016-01-01

    Because of limited autogenous tissue sources, donor site morbidity, and difficulty of shaping the autologous tissue, surgeons often need to use alloplastic frameworks in reconstruction of 3-dimensional tissue defects. Synthetic porous polyethylene (PP) implant is widely used in plastic surgery for 3-dimensional reconstruction of the lost or highly deformed tissues. One of the main factors of PP implant exposure is delayed fibrovascular ingrowth. In the present study, the authors investigated the effect allogeneic plateletlysate (PL) and cyanoacrylate tissue glue (CTG) (2-octyl cyanoacrylate) on the fibrovascularization of the PP implant.Twenty adult female Wistar rats were divided into 4 groups equally, according to the different surgical techniques and implanted materials used. Only PP implant was implanted subcutaneously through a skin incision on the chest wall skin of the rats in the control group; however, CTG was applied with PP implant in the cyanoacrylate group, PL was applied with PP implant in the platelet group, CTG and platelet was applied together with PP implant in the combination group. All of the implants in each group were histologically assessed at postoperative second week. Determination of the collagen density in the tissues, inflammation, and necrosis and vascularization status was assessed semiquantitatively.A denser collagen structure, low inflammation, and necrosis were found in PL groups. There was, however, a significant decrease in vascular density with PL-treated groups. PL treatment may have a potential to reduce complications related to PP implants. PMID:26703066

  5. Prosthetic failure in implant dentistry.

    PubMed

    Sadid-Zadeh, Ramtin; Kutkut, Ahmad; Kim, Hyeongil

    2015-01-01

    Although osseointegrated dental implants have become a predictable and effective modality for the treatment of single or multiple missing teeth, their use is associated with clinical complications. Such complications can be biologic, technical, mechanical, or esthetic and may compromise implant outcomes to various degrees. This article presents prosthetic complications accompanied with implant-supported single and partial fixed dental prostheses. PMID:25434566

  6. Spicing thing up: Synthetic cannabinoids

    PubMed Central

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  7. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  8. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  9. Synthetic inhibitors of elastase.

    PubMed

    Edwards, P D; Bernstein, P R

    1994-03-01

    For more than two decades investigators around the world, in both academic and industrial institutions, have been developing inhibitors of human neutrophil elastase. A number of very elegant and insightful strategies have been reported. In the case of reversible peptidic inhibitors, this has resulted in the identification of some extremely potent compounds with dissociation constants in the 10(-11) M range. This is quite an accomplishment considering that these low molecular-weight inhibitors are only tri- and tetrapeptides. In the case of the heterocyclic-based inhibitors, the challenge of balancing the heterocycle's inherent reactivity and aqueous stability with the stability of the enzyme-inhibitor adduct has been meet by either using a latent, reactive functionality which is only activated within the enzyme, or by incorporating features which selectively obstruct deacylation but have little effect on the enzyme acylation step. The underlying goal of this research has been the identification of agents to treat diseases associated with HNE. Several animal models have been developed for evaluating the in vivo activity of elastase inhibitors, and compounds have been shown to be effective in all of these models by the intravenous, intratrachael or oral routes of administration. However, only a very small percentage of compounds have possessed all the necessary properties, including lack of toxicity, for progression into the clinic. The peptidyl TFMK ICI 200,880 (25-12) has many of the desired characteristics of a drug to treat the diseases associated with HNE: chemical stability, in vitro and in vivo activity, a long duration of action, and adequate metabolic stability. Currently ICI 200,880 is the only low molecular-weight HNE inhibitor known to be undergoing clinical trials, and may be the compound which finally demonstrates the clinical utility of a synthetic HNE inhibitor. PMID:8189835

  10. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.

    PubMed

    Chen, Ye; Kim, Jae Kyoung; Hirning, Andrew J; Josić, Krešimir; Bennett, Matthew R

    2015-08-28

    A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types—an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types. PMID:26315440

  11. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  12. Cochlear Implantation in Neurobrucellosis

    PubMed Central

    Bajin, Münir Demir; Savaş, Özden; Aslan, Filiz; Sennaroğlu, Levent

    2016-01-01

    Background: Neurobrucellosis is a disease consisting of a wide spectrum of complications such as peripheral neuropathy, cranial nerve involvement, ataxia, meningeal irritation, paraplegia, seizures, coma, and even death. The vestibulocochlear nerve seems to be the most commonly affected cranial nerve (10%). We present a patient with neurobrucellosis whose auditory perception and speech intelligibility skill performances improved after cochlear implantation. Case Report: A 35 year-old woman was admitted to another hospital 2 years ago with the symptoms of headache, nausea, and altered consciousness, who was finally diagnosed with neurobrucellosis. She developed bilateral profound sensorineural hearing loss during the following 6 months. There was no benefit of using hearing aids. After successful treatment of her illness, she was found to be suitable for cochlear implantation. After the operation, her auditory perception skills improved significantly with a Categories of Auditory Performance (CAP) score of 5. According to clinical observations and her family members’ statements, her Speech Intelligibility Rating (SIR) score was 3. Her speech intelligibility skills are still improving. Conclusion: Our case report represents the second case of hearing rehabilitation with cochlear implantation after neurobrucellosis. Cochlear implantation is a cost-effective and time-proven successful intervention in post-lingual adult patients with sensorineural hearing loss. Early timing of the surgery after appropriate treatment of meningitis helps the patient to achieve better postoperative results. PMID:26966626

  13. Implantable electrical device

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D. (Inventor)

    1982-01-01

    A fully implantable and self contained device is disclosed composed of a flexible electrode array for surrounding damaged nerves and a signal generator for driving the electrode array with periodic electrical impulses of nanoampere magnitude to induce regeneration of the damaged nerves.

  14. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  15. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  16. Allergy to Surgical Implants.

    PubMed

    Pacheco, Karin A

    2015-01-01

    Surgical implants have a wide array of therapeutic uses, most commonly in joint replacements, but also in repair of pes excavatum and spinal disorders, in cardiac devices (stents, patches, pacers, valves), in gynecological implants, and in dentistry. Many of the metals used are immunologically active, as are the methacrylates and epoxies used in conjunction with several of these devices. Allergic responses to surgical components can present atypically as failure of the device, with nonspecific symptoms of localized pain, swelling, warmth, loosening, instability, itching, or burning; localized rash is infrequent. Identification of the specific metal and cement components used in a particular implant can be difficult, but is crucial to guide testing and interpretation of results. Nickel, cobalt, and chromium remain the most common metals implicated in implant failure due to metal sensitization; methacrylate-based cements are also important contributors. This review will provide a guide on how to assess and interpret the clinical history, identify the components used in surgery, test for sensitization, and provide advice on possible solutions. Data on the pathways of metal-induced immune stimulation are included. In this setting, the allergist, the dermatologist, or both have the potential to significantly improve surgical outcomes and patient care. PMID:26362550

  17. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  18. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  19. The reverse zygomatic implant: a new implant for maxillofacial reconstruction.

    PubMed

    Dawood, Andrew; Collier, Jonathan; Darwood, Alastair; Tanner, Susan

    2015-01-01

    This case report describes the rehabilitation of a patient who had been treated with a hemimaxillectomy, reconstruction with a latissimus dorsi vascularized free flap, and radiotherapy for carcinoma of the sinus some years previously. Limited jaw opening, difficult access through the flap to the bony site, and the very small amount of bone available in which to anchor the implant inspired the development and use of a new "reverse zygomatic" implant. For this treatment, site preparation and implant insertion were accomplished using an extraoral approach. The implant was used along with two other conventional zygomatic implants to provide support for a milled titanium bar and overdenture to rehabilitate the maxilla. Two years later, the patient continues to enjoy a healthy reconstruction. The reverse zygomatic implant appears to show promise as a useful addition to the implant armamentarium for the treatment of the patient undergoing maxillectomy. PMID:26574864

  20. Synthetic Biology for Therapeutic Applications

    PubMed Central

    2015-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders. PMID:25098838

  1. Synthetic Fillers for Facial Rejuvenation.

    PubMed

    Lee, Johnson C; Lorenc, Z Paul

    2016-07-01

    Soft tissue filler procedures have increased dramatically in popularity in the United States. Synthetic fillers such as calcium hydroxyapatite (CaHA), polymethyl methacrylate (PMMA), and poly-l-lactic acid (PLLA), and silicone provide initial volume replacement but have an additional biostimulatory effect to supplement facial volumization. Indications include human immunodeficiency virus lipoatrophy and nasolabial folds for CaHA and PLLA and atrophic acne scars for PMMA. Most clinical use of these synthetic fillers is in an off-label fashion. Beyond the proper choice of a synthetic filler, careful consideration of dilution, injection method, and postprocedural care allows for successful and consistent results. PMID:27363763

  2. Prosthodontic management of implant therapy.

    PubMed

    Thalji, Ghadeer; Bryington, Matthew; De Kok, Ingeborg J; Cooper, Lyndon F

    2014-01-01

    Implant-supported dental restorations can be screw-retained, cement-retained, or a combination of both, whereby a metal superstructure is screwed to the implants and crowns are individually cemented to the metal frame. Each treatment modality has advantages and disadvantages. The use of computer-aided design/computer-assisted manufacture technologies for the manufacture of implant superstructures has proved to be advantageous in the quality of materials, precision of the milled superstructures, and passive fit. Maintenance and recall evaluations are an essential component of implant therapy. The longevity of implant restorations is limited by their biological and prosthetic maintenance requirements. PMID:24286654

  3. The Effect of Temporal Gap Identification on Speech Perception by Users of Cochlear Implants

    ERIC Educational Resources Information Center

    Sagi, Elad; Kaiser, Adam R.; Meyer, Ted A.; Svirsky, Mario A.

    2009-01-01

    Purpose: This study examined the ability of listeners using cochlear implants (CIs) and listeners with normal hearing (NH) to identify silent gaps of different duration and the relation of this ability to speech understanding in CI users. Method: Sixteen NH adults and 11 postlingually deafened adults with CIs identified synthetic vowel-like…

  4. Synthetic Turf Multiplies Stadium Use.

    ERIC Educational Resources Information Center

    Leach, Richard

    1979-01-01

    The high school stadium in Flint, Michigan, once was used only for varsity football games. After the installation of synthetic turf, an average of 332 events have been staged there each year. (Author/MLF)

  5. A Course on Synthetic Fuels.

    ERIC Educational Resources Information Center

    Kimmel, Howard S.; Tomkins, Reginald P. T.

    1985-01-01

    A senior-level, elective course on synthetic fuels was developed for chemistry and chemical engineering majors. The topics covered in this course, instructional strategies used, and independent student projects are described. (JN)

  6. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms. PMID:26205204

  7. Programming languages for synthetic biology.

    PubMed

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented. PMID:22132053

  8. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  9. SYNTHETIC SLING FAILURE - EVALUATIONS & RECOMMENDATIONS

    SciTech Connect

    MACKEY TC; HENDERSON CS

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall industry safety.

  10. Compounding in synthetic aperture imaging.

    PubMed

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-09-01

    A method for obtaining compound images using synthetic aperture data is investigated using a convex array transducer. The new approach allows spatial compounding to be performed for any number of angles without reducing the frame rate or temporal resolution. This important feature is an intrinsic property of how the compound images are constructed using synthetic aperture data and an improvement compared with how spatial compounding is obtained using conventional methods. The synthetic aperture compound images are created by exploiting the linearity of delay-and-sum beamformation for data collected from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution and clutter levels are measured using a wire phantom setup and compared with conventional application of the array, as well as to synthetic aperture imaging without compounding. If the full aperture is used for synthetic aperture compounding, the cystic resolution is improved by 41% compared with conventional imaging, and is at least as good as what can be obtained using synthetic aperture imaging without compounding. PMID:23007781

  11. Superresolution and Synthetic Aperture Radar

    SciTech Connect

    DICKEY,FRED M.; ROMERO,LOUIS; DOERRY,ARMIN W.

    2001-05-01

    Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. The application of the concept to synthetic aperture radar is investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. A criterion for judging superresolution processing of an image is presented.

  12. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo.

    PubMed

    Damien, Elsie; Hing, Karin; Saeed, Suhur; Revell, Peter A

    2003-08-01

    Synthetic hydroxyapatite, a bioactive calcium phosphate, is clinically used as a bone replacement bioceramic because of its similarity in composition to bone mineral, biocompatibility, and osteoconductive nature. The aim of this study was to evaluate the bioactivity of a novel synthetic porous hydroxyapatite (PHA) in vivo in rabbit and to investigate the enhancement of its bioactivity and osteointegration. In the investigation reported here, insulin-like growth factor-I (IGF-I) has been used to enhance the bioactivity of PHA. Cylindrical PHA implants with or without IGF-I were implanted bilaterally in rabbit femurs. Fluorochrome bone markers were administered at 7-day intervals. The implants with the attached bone were retrieved at postmortem, 1 and 3 weeks after implantation, for histological and histomorphometric analysis. Undecalcified sections stained with toluidine blue showed new bone formation. Mineralization of the new bone formed in the interface, surrounding trabecular bone, and within the pores of the implants was studied. Lamellar bone mineral apposition rate (MAR) was assessed and compared among treatment groups, sham, PHA alone, and PHA with IGF-I (500 ng/implant), by fluorochrome label incorporation using UVL microscopy. We report for the first time, that the supplementation of PHA implants with IGF-I significantly increased new bone formation and MAR (6.58 +/- 0.08 microm/day) compared with implantation of PHA alone (4.08 +/- 0.05 microm/day) or sham operation (3.11 +/- 0.12 microm/day). These results suggest that synthetic PHA might provide a delivery system for bioactive agents to accelerate bone healing in orthopedic procedures. PMID:12888993

  13. Synthetic Eelgrass Oil Barrier

    NASA Astrophysics Data System (ADS)

    Curtis, T. G.

    2013-05-01

    Although surviving in situ micro-organisms eventually consume spilled oil, extensive inundation of shore biota by oil requires cleanup to enable ecological recovery within normal time scales. Although effective in calm seas and quiet waters, oil is advected over and under conventional curtain oil booms by wave actions and currents when seas are running. Most sorbent booms are not reusable, and are usually disposed of in landfills, creating excessive waste. A new concept is proposed for a floating oil barrier, to be positioned off vulnerable coasts, to interdict, contain, and sequester spilled oil, which can then be recovered and the barrier reused. While conventional oil boom designs rely principally on the immiscibility of oil in water and its relative buoyancy, the new concept barrier avoids the pitfalls of the former by taking advantage of the synergistic benefits of numerous fluid and material properties, including: density, buoyancy, elasticity, polarity, and surface area to volume ratio. Modeled after Zostera marina, commonly called eelgrass, the new barrier, referred to as synthetic eelgrass (SE), behaves analogously. Eelgrass has very long narrow, ribbon-like, leaves which support periphyton, a complex matrix of algae and heterotrophic microbes, which position themselves there to extract nutrients from the seawater flowing past them. In an analogous fashion, oil on, or in, seawater, which comes in contact with SE, is adsorbed on the surface and sequestered there. Secured to the bottom, in shoal waters, SE rises to the surface, and, if the tide is low enough, floats on the sea surface down wind, or down current to snare floating oil. The leaves of SE, called filaments, consist of intrinsically buoyant strips of ethylene methyl acrylate, aka EMA. EMA, made of long chain, saturated, hydrocarbon molecules with nearly homogeneous electron charge distributions, is a non-polar material which is oleophilic and hydrophobic. Oil must be in close proximity to the

  14. Pediatric Cochlear Implantation: Why Do Children Receive Implants Late?

    PubMed Central

    Ham, Julia; Whittingham, JoAnne

    2015-01-01

    Objectives: Early cochlear implantation has been widely promoted for children who derive inadequate benefit from conventional acoustic amplification. Universal newborn hearing screening has led to earlier identification and intervention, including cochlear implantation in much of the world. The purpose of this study was to examine age and time to cochlear implantation and to understand the factors that affected late cochlear implantation in children who received cochlear implants. Design: In this population-based study, data were examined for all children who underwent cochlear implant surgery in one region of Canada from 2002 to 2013. Clinical characteristics were collected prospectively as part of a larger project examining outcomes from newborn hearing screening. For this study, audiologic details including age and severity of hearing loss at diagnosis, age at cochlear implant candidacy, and age at cochlear implantation were documented. Additional detailed medical chart information was extracted to identify the factors associated with late implantation for children who received cochlear implants more than 12 months after confirmation of hearing loss. Results: The median age of diagnosis of permanent hearing loss for 187 children was 12.6 (interquartile range: 5.5, 21.7) months, and the age of cochlear implantation over the 12-year period was highly variable with a median age of 36.2 (interquartile range: 21.4, 71.3) months. A total of 118 (63.1%) received their first implant more than 12 months after confirmation of hearing loss. Detailed analysis of clinical profiles for these 118 children revealed that late implantation could be accounted for primarily by progressive hearing loss (52.5%), complex medical conditions (16.9%), family indecision (9.3%), geographical location (5.9%), and other miscellaneous known (6.8%) and unknown factors (8.5%). Conclusions: This study confirms that despite the trend toward earlier implantation, a substantial number of children

  15. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  16. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  17. Hormonal control of implantation.

    PubMed

    Sandra, Olivier

    2016-06-01

    In mammals, implantation represents a key step of pregnancy and its progression conditions not only the success of pregnancy but health of the offspring. Implantation requires a complex and specific uterine tissue, the endometrium, whose biological functions are tightly regulated by numerous signals, including steroids and polypeptide hormones. Endometrial tissue is endowed with dynamic properties that associate its ability to control the developmental trajectory of the embryo (driver property) and its ability to react to embryos displaying distinct capacities to develop to term (sensor property). Since dynamical properties of the endometrium can be affected by pre- and post-conceptional environment, determining how maternal hormonal signals and their biological actions are affected by environmental factors (e.g. nutrition, stress, infections) is mandatory to reduce or even to prevent their detrimental effects on endometrial physiology in order to preserve the optimal functionality of this tissue. PMID:27172870

  18. Sterilisation of implantable devices.

    PubMed

    Matthews, I P; Gibson, C; Samuel, A H

    1994-01-01

    The pathogenesis and rates of infection associated with the use of a wide variety of implantable devices are described. The multi-factorial nature of post-operative periprosthetic infection is outlined and the role of sterilisation of devices is explained. The resistance of bacterial spores is highlighted as a problem and a full description is given of the processes of sterilisation by heat, steam, ethylene oxide, low temperature steam and formaldehyde, ionising radiation and liquid glutaraldehyde. Sterility assurance and validation are discussed in the context of biological indicators and physical/chemical indicators. Adverse effects upon the material composition of devices and problems of process control are listed. Finally, possible optimisations of the ethylene oxide process and their potential significance to the field of sterilisation of implants is explored. PMID:10172076

  19. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    PubMed Central

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 Project: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  20. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    PubMed

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  1. Miniature implantable ultrasonic echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K. (Inventor)

    1978-01-01

    A miniature echosonometer adapted for implantation in the interior of an animal for imaging the internal structure of a organ, tissue or vessel is presented. The echosonometer includes a receiver/transmitter circuit which is coupled to an ultrasonic transducer. Power is coupled to the echosonometer by electromagnetic induction through the animal's skin. Imaging signals from the echosonometer are electromagnetically transmitted through the animal's skin to an external readout apparatus.

  2. Hip Resurfacing Implants.

    PubMed

    Cadossi, Matteo; Tedesco, Giuseppe; Sambri, Andrea; Mazzotti, Antonio; Giannini, Sandro

    2015-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Describe the advantages of hip resurfacing. 2. Describe the disadvantages of hip resurfacing. 3. Identify the population in which hip resurfacing is most often indicated. 4. Demonstrate how to properly postoperatively manage patients with metal-on-metal prostheses. Hip resurfacing offers a suitable solution for young patients affected by hip disease who have high function demands and good bone quality. Bone stock preservation, restoration of the normal proximal femur anatomy, the lack of stress shielding, and the possibility of resuming sporting activity are proven advantages of hip resurfacing. However, there are some disadvantages, such as fracture of the femoral neck, onset of neck narrowing, and possible complications due to the metal-on-metal bearings, including pseudotumors, peri-implant osteolysis, and chronic elevation of metal ions in serum levels. Recent data suggest that the ideal candidate for hip resurfacing is an active male, younger than 65 years, with primary or posttraumatic osteoarthritis, and with a femoral head diameter larger than 50 to 54 mm. Based on these selection criteria, the literature reports implant survival to be similar to that of total hip arthroplasty. The current authors' experience confirms a low failure rate and excellent functional outcomes, with metal ion serum levels becoming stable over time in well-functioning implants. Proper surgical technique, correct patient selection, and the right choice of a well-established prosthetic model are essential elements for the long-term success of these implants. PMID:26270748

  3. [Neurotology and cochlear implants].

    PubMed

    Merchán, Miguel A

    2015-05-01

    In this review we analyse cochlear implantation in terms of the fundamental aspects of the functioning of the auditory system. Concepts concerning neuronal plasticity applied to electrical stimulation in perinatal and adult deep hypoacusis are reviewed, and the latest scientific bases that justify early implantation following screening for congenital deafness are discussed. Finally, this review aims to serve as an example of the importance of fostering the sub-specialty of neurotology in our milieu, with the aim of bridging some of the gaps between specialties and thus improving both the knowledge in the field of research on auditory pathologies and in the screening of patients. The objectives of this review, targeted above all towards specialists in the field of otorhinolaryngology, are to analyse some significant neurological foundations in order to reach a better understanding of the clinical events that condition the indications and the rehabilitation of patients with cochlear implants, as well as to use this means to foster the growth of the sub-specialty of neurotology. PMID:25912703

  4. Synthetic genomics and the construction of a synthetic bacterial cell.

    PubMed

    Glass, John I

    2012-01-01

    The first synthetic cellular organism was created in 2010 and based on a very small, very simple bacterium called Mycoplasma mycoides. The bacterium was called synthetic because its DNA genome was chemically synthesized rather than replicated from an existing template DNA, as occurs in all other known cellular life on Earth. The experiment was undertaken in order to develop a system that would allow creation of a minimal bacterial cell that could lead to a better understand of the first principles of cellular life. The effort resulted in new synthetic genomics techniques called genome assembly and genome transplantation. The ability of scientists to design and build bacteria opens new possibilities for creating microbes to solve human problems. PMID:23502559

  5. Short implants: are they a viable option in implant dentistry?

    PubMed

    Schwartz, Steven Richard

    2015-04-01

    Short-length implants (<10 mm) can be used effectively in atrophic maxillae or mandibles even with crown/implant ratios that previously would have been considered excessive. Short implants can support either single or multiple units and can be used for fixed prostheses or overdentures. The use of short-length implants may avoid the need for complicated bone augmentation procedures, thus allowing patients who were either unwilling or unable for financial or medical reasons to undergo these advanced grafting techniques to be adequately treated. PMID:25835796

  6. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  7. Control theory meets synthetic biology.

    PubMed

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  8. Control theory meets synthetic biology

    PubMed Central

    2016-01-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  9. [Actuality with the breast implants].

    PubMed

    Duchateau, J

    2013-09-01

    The author presents the history of breast implants, and the modern evolution where breast implants are largely used in both cosmetic and reconstructive surgery. Breast augmentation is one of the most performed cosmetic procedures, with a high satisfaction rate. However, one needs to remind that breast implants have a limited duration of life. The estimated rate of breast implant rupture after 10 years is of 10% in the current literature, This rate will probably become lower with the new more cohesive implants recently available on the market. It is therefore essential to propose a regular follow-up to all patients having breast implants. This follow-up is performed using a combination of physical examination, mammograms, ultrasound and MRI. The more specific therapeutic approach for patients having a PIP prosthesis will also be discussed. PMID:24195240

  10. Nasal base, maxillary, and infraorbital implants--alloplastic.

    PubMed

    Hinderer, U T

    1991-01-01

    The aesthetic surgery of the facial skeletal contour requires either the performance of ostectomies of excessively prominent segments or the augmentation of retruded segments with organic or synthetic material, in order to achieve balanced tridimensional relations of each segment with regard to the total facial unit. Craniomaxillofacial surgeries are necessary in major malformations or in those combined with malocclusion. In the nasal dorsum or tip, the author prefers the use of cartilage, because synthetic materials need adequate soft-tissue bulk for cover to be inserted without tension and absence of passive mobility of the reception site. For malar augmentation, first proposed by the author and independently by Spadafora in 1971, for chin augmentation up to 8 mm, and for augmentation of the mandibular angle, the author prefers silicone implants because they do not change in shape or volume, may be premanufactured or custom-made, have a similar consistency to that of bone, and do not support bacterial growth. On the other hand, autologous bone grafts adapt less to curved bony surfaces, have an erratic rate of resorption, and need an additional surgical step for removal with the corresponding morbidity and scar. Subperiosteal insertion is preferred because it confers greater stability and the cavity is easier to dissect without soft-tissue damage. Although bone erosion may occur, with over 1200 implants clinically no major change in the soft-tissue contour has been observed, nor has the author been consulted for late complication. In the malar region this may be due to the large surface of the implant and absence of muscular pressure. In the chin, an insertion over the site of the dental roots is avoided. For midface augmentation the following implants are used: (1) The premaxillary lower nasal base implant, proposed in 1971, is indicated to correct a concave midfacial profile, frequent in Asian, black, and Mestizo patients from Latin America and in Caucasian

  11. Positron Implantation Profile in Kapton

    NASA Astrophysics Data System (ADS)

    Dryzek, J.; Dryzek, E.

    2006-11-01

    The discussion presented in the paper focuses on processes accompanying positron implantation in condensed matter. They finally constitute the positron implantation profile which generally does not exhibit the exponential behavior as it is concluded from the Monte Carlo simulation made using the EGSnrc 4.0 code. The simulation was performed for the kapton and two commonly used positron sources 22Na and 68Ge\\68Ga. New formula for the implantation profile was proposed.

  12. [Pre-implant esthetic study].

    PubMed

    Missika, P; Khayat, P

    1990-09-01

    The first dental prostheses used on Branemark implants were aesthetically disappointing both for the dentists and their patients. Therefore the authors will consider the various aesthetic problems encountered when treating loss of teeth with implant systems. The problems related to resorption are numerous: large bone losses are resolved by adapting removable acrylic, carrying out bone transplants immediately fixed by the implants, using filling materials, or complete dentures fixed with attachments supported by the implants. Periodontal surgery often provides a solution to the problem of gum visibility at the level of the maxillary anterior teeth. The problems related to the site where implants emerge can often be avoided by consultation between the surgeon and the prosthodontist and by flexing a surgical guide compiled from a pre-prosthetic analysis of the clinical situation. The aesthetic problems related to the actual implant systems are dependent on three factors: When the prosthesis is directly screwed onto the implant, the axis of the implant determines the axis of the dental prosthesis and can lead to the emergence of the screw on the buccal surface; With angulated cores, orientated screws provide the required solution. The implant material, when metallic leads to an unsightly border at the gingival level. Ceramic implants, or the "ceraming" of titanium, provide a solution to this problem. In case of diastema the use of an implant system gives the best choice in comparison to the more conventional treatments. In conclusion, the authors point out the importance of pre-implant analysis which must give an evaluation of the aesthetic result. The fragility of the aesthetic evaluation should encourage dentists to obtain the "clear and written consent" of their patients, accepting the risks run by treatment of this kind. PMID:2268774

  13. Development, Characterizations and Biocompatibility Evaluations of Intravitreal Lipid Implants

    PubMed Central

    Tamaddon, Lana; Mostafavi, Abolfazl; Riazi-esfahani, Mohammad; Karkhane, Reza; Aghazadeh, Sara; Rafiee-Tehrani, Morteza; Abedin Dorkoosh, Farid; Asadi Amoli, Fahimeh

    2014-01-01

    Background: The treatment of posterior eye diseases is always challenging mainly due to inaccessibility of the region. Many drugs are currently delivered by repeated intraocular injections. Objectives: The purpose of this study was to investigate the potential applications of natural triglycerides as alternative carriers to synthetic polymers in terms of drug release profile and also biocompatibility for intraocular use. Materials and Methods: In vitro/in vivo evaluations of intravitreal implants fabricated from the physiological lipid, glyceride tripalmitate containing clindamycin phosphate as a model drug was performed. The micro-implants with average diameter of 0.4 mm were fabricated via a hot melt extrusion method. The extrudates were analyzed using scanning electron microscopy, differential scanning calorimetry, and in vitro drug dissolution studies. For biocompatibility, the implants were implanted into rabbit eyes. Clinical investigations including fundus observations, electroretinography as well as histological evaluations were performed. Results: In vitro tests guaranteed usefulness of the production method for preparing the homogenous mixture of the drug and lipid without affecting thermal and crystalinity characteristics of the components. In vitro releases indicated a bi-phasic pattern for lower lipid ratios, which were completed by the end of day three. With higher lipid ratios, more controlled release profiles were achieved until about ten days for a lipid ratio of 95%. Clinical observations did not show any abnormalities up to two months after implantation into the rabbit eye. Conclusions: These results suggest that although the implant could not adequately retard release of the present drug model yet, due to good physical characteristics and in vivo biocompatibility, it can represent a suitable device for loading wide ranges of therapeutics in treatment of many kinds of retinochoroidal disorders. PMID:24872944

  14. Cellular responses to implant materials: biological, physical and chemical factors.

    PubMed

    Kawahara, H

    1983-12-01

    Adhesion of bone and epithelial cells to the dental implant are vital to its retention in alveolar bone and to the prevention of infection via its 'gingival' margin. Studies of cytotoxicity, tissue irritability and carcinogenicity of implantable polymers, metals and ceramics and of tissue adhesion to them have been carried out in tissue culture and in animal experiments. The more similar the polymeric materials are chemically to living tissue the more easily are they dissolved and digested in the host. Therefore, implant materials having a molecular structure similar to protein or polysaccharide, e.g. Nylon, cannot be expected to function. On the other hand, silicones, polyethylene and Teflon (polytetrafluroethylene), which have molecular structures completely different from living substances, are generally more stable in the tissues. However, these polymers are hydrophobic and have little adhesion to living cells in spite of their high stability. They are not, therefore, suitable materials for the construction of implants. Studies on antithrombotic polymers have demonstrated the possibility of creating implantable polymers which have high stability as well as strong adhesion to the surrounding tissues. These properties may be conferred by grafting a hydrophilic polymer on to the surface of a hydrophobic polymer. Of the metals, Ti, Zr and Ta are fairly stable in living tissue, and allow cells to adhere strongly. Alloys of Co-Cr-Mo, Fe-Ni-Cr-Mo, Ti-Al-V, Ti-Mo, Ti-Pd and Ti-Pt deserve to be better evaluated because they are low in density, have high mechanical strength, stability and corrosion resistance in living tissue, and there is direct adhesion to the surrounding tissues. Biodegradable or bioactive ceramics which induce bone formation around the implant do not have sufficient mechanical strength. Implant ceramics have to be stable, e.g. crystal alumina, vitreous carbon, synthetic hydroxypatite and silicon nitrate. These exhibit high biocompatibility and

  15. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  16. Designer Drugs: A Synthetic Catastrophe

    PubMed Central

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    2016-01-01

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are “Not for Human Consumption”, therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants.

  17. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  18. Synthetic neurosteroids on brain protection

    PubMed Central

    Rey, Mariana; Coirini, Héctor

    2015-01-01

    Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABAA receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions. PMID:25788907

  19. International Classification of Reliability for Implanted Cochlear Implant Receiver Stimulators

    PubMed Central

    Battmer, Rolf-Dieter; Backous, Douglas D.; Balkany, Thomas J.; Briggs, Robert J. S.; Gantz, Bruce J.; van Hasselt, Andrew; Kim, Chong Sun; Kubo, Takeshi; Lenarz, Thomas; Pillsbury, Harold C.; O’Donoghue, Gerard M.

    2016-01-01

    Objective To design an international standard to be used when reporting reliability of the implanted components of cochlear implant systems to appropriate governmental authorities, cochlear implant (CI) centers, and for journal editors in evaluating manuscripts involving cochlear implant reliability. Study Design The International Consensus Group for Cochlear Implant Reliability Reporting was assembled to unify ongoing efforts in the United States, Europe, Asia, and Australia to create a consistent and comprehensive classification system for the implanted components of CI systems across manufacturers. Setting All members of the consensus group are from tertiary referral cochlear implant centers. Interventions None. Main Outcome Measure A clinically relevant classification scheme adapted from principles of ISO standard 5841-2:2000 (1) originally designed for reporting reliability of cardiac pacemakers, pulse generators, or leads. Results Standard definitions for device failure, survival time, clinical benefit, reduced clinical benefit, and specification were generated. Time intervals for reporting back to implant centers for devices tested to be “out of specification,” categorization of explanted devices, the method of cumulative survival reporting, and content of reliability reports to be issued by manufacturers was agreed upon by all members. The methodology for calculating Cumulative survival was adapted from ISO standard 5841-2:2000 (1). Conclusion The International Consensus Group on Cochlear Implant Device Reliability Reporting recommends compliance to this new standard in reporting reliability of implanted CI components by all manufacturers of CIs and the adoption of this standard as a minimal reporting guideline for editors of journals publishing cochlear implant research results. PMID:20864879

  20. Implant biomaterials: A comprehensive review

    PubMed Central

    Saini, Monika; Singh, Yashpal; Arora, Pooja; Arora, Vipin; Jain, Krati

    2015-01-01

    Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about the different biomaterials used for the dental implants. This article makes an effort to summarize various dental bio-materials which were used in the past and as well as the latest material used now. PMID:25610850

  1. Graphene synthesis by ion implantation

    NASA Astrophysics Data System (ADS)

    Garaj, Slaven; Hubbard, William; Golovchenko, J. A.

    2010-11-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate.

  2. Graphene synthesis by ion implantation.

    PubMed

    Garaj, Slaven; Hubbard, William; Golovchenko, J A

    2010-11-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate. PMID:21124725

  3. Implantable medical devices MRI safe.

    PubMed

    Dal Molin, Renzo; Hecker, Bertrand

    2013-01-01

    Pacemakers, ICDs, neurostimulators like deep brain stimulator electrodes, spiral cord stimulators, insulin pumps, cochlear implants, retinal implants, hearing aids, electro cardio gram (ECG) leads, or devices in interventional MRI such as vascular guide wires or catheters are affected by MRI magnetic and electromagnetic fields. Design of MRI Safe medical devices requires computer modeling, bench testing, phantom testing, and animal studies. Implanted medical devices can be MRI unsafe, MRI conditional or MRI safe (see glossary). In the following paragraphs we will investigate how to design implanted medical devices MRI safe. PMID:23739365

  4. Graphene synthesis by ion implantation

    PubMed Central

    Garaj, Slaven; Hubbard, William; Golovchenko, J. A.

    2010-01-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate. PMID:21124725

  5. US Competitiveness in Synthetic Biology.

    PubMed

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized. PMID:26690379

  6. Synthetic biology in cellular immunotherapy

    PubMed Central

    Chakravarti, Deboki; Wong, Wilson W.

    2015-01-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. Here, we first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. PMID:26088008

  7. Gearing up for synthetic lubricants

    SciTech Connect

    Shelley, S.

    1993-07-01

    Much of today's plant machinery operates at faster speeds, closer tolerances and higher temperatures than ever before. Without the help of lubricants to reduce wear, remove heat, and prevent corrosion, the chemical process industries would grind to a halt. Traditional, petroleum-derived products--called mineral oils-- have long starred in these roles. But today, synthetics, such as polyalphaolefins, carboxylic acid esters, phosphate esters and polyglycols are stealing the limelight, thanks to their inherent resistance to oxidation and hydrolysis and their extended range of service temperatures. The paper reviews the advantages of the synthetic lubricants.

  8. The Case for Synthetic Injectables.

    PubMed

    Joseph, John H

    2015-11-01

    There are several different classes of synthetic dermal fillers and volume enhancers including semipermanent and permanent products available in the United States. Based on clinical and scientific evidence, this article reviews the chemical and polymeric properties, clinical data, patient selection, indications for use, injection technique, and adverse event profiles of permanent synthetic injectables currently used in clinical practice in the United States: medical-grade liquid injectable silicone and polymethyl methacrylate. Understanding the unique characteristics of these two products reinforces the advantages and disadvantages of each, including under what circumstances they should be used and why they perform the way they do. PMID:26505540

  9. The design of synthetic genes.

    PubMed Central

    Presnell, S R; Benner, S A

    1988-01-01

    Computer programs are described that aid in the design of synthetic genes coding for proteins that are targets of a research program in site directed mutagenesis. These programs "reverse-translate" protein sequences into general nucleic acid sequences (those where codons have not yet been selected), map restriction sites into general DNA sequences, identify points in the synthetic gene where unique restriction sites can be introduced, and assist in the design of genes coding for hybrids and evolutionary intermediates between homologous proteins. Application of these programs therefore facilitates the use of modular mutagenesis to create variants of proteins, and the implementation of evolutionary guidance as a strategy for selecting mutants. PMID:2451218

  10. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  11. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  12. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  13. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  14. [Implantation of the zygote].

    PubMed

    Hicks Gómez, J J

    1990-01-01

    In order for implantation to occur, the endometrium must be adequately differentiated, a estate which results from the sequential interaction of progesterone and estrogens, and the local effects of prostaglandins and histamine. Nevertheless, the exact mechanism through which these hormones affect the uterus is not clearly understood. Recently it has been proposed the role of second messengers (cAMP.cGMP, inositol triphosphate and diacylglycerol) in this process. All these messengers are related with the intracellular mechanisms of proteic and steroid hormones action. PMID:2177440

  15. Synthetic Division and Matrix Factorization

    ERIC Educational Resources Information Center

    Barabe, Samuel; Dubeau, Franc

    2007-01-01

    Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.

  16. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, E.R.; Mitchell, A.R.; Pearson, K.W.; Smith, R.E.

    1983-06-14

    Synthetic substrates are provided which may be represented as A-D. The A moiety includes an amino acid, polypeptide, or derivative. The D moiety includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons. No Drawings

  17. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, Eugene R.; Mitchell, Alexander R.; Pearson, Karen W.; Smith, Robert E.

    1983-01-01

    Synthetic substrates are provided which may be represented as A-D. The A moiety thereof includes an amino acid, polypeptide, or derivative thereof. The D moiety thereof includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons.

  18. Where Synthetic Biology Meets ET

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  19. Future of synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  20. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  1. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  2. Digital 'faces' of synthetic biology.

    PubMed

    Friedrich, Kathrin

    2013-06-01

    In silicio design plays a fundamental role in the endeavour to synthesise biological systems. In particular, computer-aided design software enables users to manage the complexity of biological entities that is connected to their construction and reconfiguration. The software's graphical user interface bridges the gap between the machine-readable data on the algorithmic subface of the computer and its human-amenable surface represented by standardised diagrammatic elements. Notations like the Systems Biology Graphical Notation (SBGN), together with interactive operations such as drag & drop, allow the user to visually design and simulate synthetic systems as 'bio-algorithmic signs'. Finally, the digital programming process should be extended to the wet lab to manufacture the designed synthetic biological systems. By exploring the different 'faces' of synthetic biology, I argue that in particular computer-aided design (CAD) is pushing the idea to automatically produce de novo objects. Multifaceted software processes serve mutually aesthetic, epistemic and performative purposes by simultaneously black-boxing and bridging different data sources, experimental operations and community-wide standards. So far, synthetic biology is mainly a product of digital media technologies that structurally mimic the epistemological challenge to take both qualitative as well as quantitative aspects of biological systems into account in order to understand and produce new and functional entities. PMID:23578486

  3. Evaluation of Hi-Tec Implant Restoration in Mandibular First Molar Region- A Prospective Clinical Study

    PubMed Central

    Sreeram, Roopa Rani. S.; Prasad, L Krishna; Chakravarthi, P Srinivas; Devi, Naga Neelima; Sreeram, Sanjay Krishna

    2015-01-01

    Background and Aims Missing teeth lead to loss of structural balance, inefficient function, poor aesthetics and psychological effects on human beings, which needs restoration for normal contour, function and aesthetics. Several natural or synthetic substitutes are being used for replacement of missing tooth since centuries. Implants are the latest modality of replacement. So, the study was aimed to assess clinical success rate of Hi-Tec implant; which is economical and new in market. Results of the study will help clinician for appropriate implant selection. Materials and Methods The study included 10 patients from 19 to 31 years and needed restoration of missing mandibular first molar. Restoration had done using Hi Tec Single-tooth implants with metal-ceramic single crown prosthesis after three months of osseointegration. The implants were evaluated clinically (bleeding on probing, probing depth, implant mobility- periotest) and radiographically (marginal bone loss and peri-implant radiolucency) for six years. The observers were blinded for the duration of the study to prevent bias. Results All the patients had uneventful post-surgical healing. No bleeding on probing, Implant mobility, peri-implant radiolucency with minimal marginal bone loss and constant probing depths were observed well within the normal range during follow-up periods. Conclusion Two stage single-tooth Hi Tec implant restoration can be used as a successful treatment modality for replacing mandibular first molar in an economic way. However, these results were obtained after 6 years of follow up with a smaller sample size, so long term multi center studies with a larger sample size is recommended for the predictability of success rate conclusively. PMID:26436053

  4. New molecular strategies for reducing implantable medical devices associated infections.

    PubMed

    Holban, Alina Maria; Gestal, Monica Cartelle; Grumezescu, Alexandru Mihai

    2014-01-01

    Due to the great prevalence of persistent and recurrent implanted device associated-infections novel and alternative therapeutic approaches are intensely investigated. For reducing complications and antibiotic resistance development, one major strategy is using natural or synthetic modulators for targeting microbial molecular pathways which are not related with cell multiplication and death, as Quorum Sensing, virulence and biofilm formation. The purpose of this review paper is to discuss the most recent in vitro approaches, investigating the efficiency of some novel antimicrobial products and the nano-technologic progress performed in order to increase their effect and stability. PMID:24606502

  5. Comparison of Lyophilized Glutaraldehyde-Preserved Bovine Pericardium with Different Vascular Prostheses for Use as Vocal Cords Implants: Experimental Study

    PubMed Central

    Olmos-Zuñiga, J. Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel; Sotres-Vega, Avelina; Hernández-Jiménez, Claudia; Baltazares-Lipp, Matilde; Arredondo del Bosque, Fernando; Santillan-Doherty, Patricio

    2015-01-01

    This study compared the use of lyophilized glutaraldehyde-preserved bovine pericardium (LGPBP), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), and Teflon felt (TF) as implants for vocal cords (VC) medialization and aimed to assess the endoscopic, macroscopic, and microscopic VC changes after medialization in a canine model. In 18 mongrel dogs, the right VC were medialized with LGPBP and the left were implanted as follows: Group I (n = 6): LGPBP and PTFE; Group II (n = 6): LGPBP and PET; Group III (n = 6): LGPBP and TF. Surgical handling of the implants was compared. Three months after surgery, macroscopic and microscopic changes of VC and implants were evaluated. LGPBP offered the best surgical handling (p = 0.005, Kruskal-Wallis). TF implants showed extrusion (p = 0.005, Kruskal-Wallis) and severe inflammation. All VC formed fibrous capsules around the implants; the ones developed by LGPBP implants were thinner (p = 0.001, ANOVA, Tukey). VC implanted with synthetic materials showed eosinophilic infiltration (p = 0.01, Kruskal-Wallis). We concluded that the LGPBP could be used as an implant for VC medialization because it is biocompatible, easy to handle and remove during surgical procedures, and nonabsorbable or extrudable and produces an inflammatory reaction similar to PTFE and PET. PMID:26075232

  6. Comparison of lyophilized glutaraldehyde-preserved bovine pericardium with different vascular prostheses for use as vocal cords implants: experimental study.

    PubMed

    Olmos-Zuñiga, J Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel; Sotres-Vega, Avelina; Hernández-Jiménez, Claudia; Baltazares-Lipp, Matilde; Arredondo del Bosque, Fernando; Santillan-Doherty, Patricio

    2015-01-01

    This study compared the use of lyophilized glutaraldehyde-preserved bovine pericardium (LGPBP), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), and Teflon felt (TF) as implants for vocal cords (VC) medialization and aimed to assess the endoscopic, macroscopic, and microscopic VC changes after medialization in a canine model. In 18 mongrel dogs, the right VC were medialized with LGPBP and the left were implanted as follows: Group I (n = 6): LGPBP and PTFE; Group II (n = 6): LGPBP and PET; Group III (n = 6): LGPBP and TF. Surgical handling of the implants was compared. Three months after surgery, macroscopic and microscopic changes of VC and implants were evaluated. LGPBP offered the best surgical handling (p = 0.005, Kruskal-Wallis). TF implants showed extrusion (p = 0.005, Kruskal-Wallis) and severe inflammation. All VC formed fibrous capsules around the implants; the ones developed by LGPBP implants were thinner (p = 0.001, ANOVA, Tukey). VC implanted with synthetic materials showed eosinophilic infiltration (p = 0.01, Kruskal-Wallis). We concluded that the LGPBP could be used as an implant for VC medialization because it is biocompatible, easy to handle and remove during surgical procedures, and nonabsorbable or extrudable and produces an inflammatory reaction similar to PTFE and PET. PMID:26075232

  7. Nanomaterials and synergistic low intensity direct current (LIDC) stimulation technology for orthopaedic implantable medical devices

    PubMed Central

    Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.

    2012-01-01

    Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493

  8. Sequential provisional implant prosthodontics therapy.

    PubMed

    Zinner, Ira D; Markovits, Stanley; Jansen, Curtis E; Reid, Patrick E; Schnader, Yale E; Shapiro, Herbert J

    2012-01-01

    The fabrication and long-term use of first- and second-stage provisional implant prostheses is critical to create a favorable prognosis for function and esthetics of a fixed-implant supported prosthesis. The fixed metal and acrylic resin cemented first-stage prosthesis, as reviewed in Part I, is needed for prevention of adjacent and opposing tooth movement, pressure on the implant site as well as protection to avoid micromovement of the freshly placed implant body. The second-stage prosthesis, reviewed in Part II, should be used following implant uncovering and abutment installation. The patient wears this provisional prosthesis until maturation of the bone and healing of soft tissues. The second-stage provisional prosthesis is also a fail-safe mechanism for possible early implant failures and also can be used with late failures and/or for the necessity to repair the definitive prosthesis. In addition, the screw-retained provisional prosthesis is used if and when an implant requires removal or other implants are to be placed as in a sequential approach. The creation and use of both first- and second-stage provisional prostheses involve a restorative dentist, dental technician, surgeon, and patient to work as a team. If the dentist alone cannot do diagnosis and treatment planning, surgery, and laboratory techniques, he or she needs help by employing the expertise of a surgeon and a laboratory technician. This team approach is essential for optimum results. PMID:23220306

  9. [Allergy diagnostics in implant intolerance].

    PubMed

    Thomas, P; Thomsen, M

    2008-02-01

    To clarify a suspected implant allergy, a patch test with implant metals and bone cement components can be used. The (immuno)histology of periimplant tissue may also indicate T-lymphocyte-dominant inflammation. Identification of histological allergy characteristics and evaluation of the lymphocyte transformation test beyond indications of sensitization will be possible only when larger studies are available. PMID:18227997

  10. Implant Maintenance: A Clinical Update

    PubMed Central

    Gulati, Minkle; Govila, Vivek; Anand, Vishal; Anand, Bhargavi

    2014-01-01

    Introduction. The differences in the supporting structure of the implant make them more susceptible to inflammation and bone loss when plaque accumulates as compared to the teeth. Therefore, a comprehensive maintenance protocol should be followed to ensure the longevity of the implant. Material and Method. A research to provide scientific evidence supporting the feasibility of various implant care methods was carried out using various online resources to retrieve relevant studies published since 1985. Results. The electronic search yielded 708 titles, out of which a total of 42 articles were considered appropriate and finally included for the preparation of this review article. Discussion. A typical maintenance visit for patients with dental implants should last 1 hour and should be scheduled every 3 months to evaluate any changes in their oral and general history. It is essential to have a proper instrument selection to prevent damage to the implant surface and trauma to the peri-implant tissues. Conclusion. As the number of patients opting for dental implants is increasing, it becomes increasingly essential to know the differences between natural teeth and implant care and accept the challenges of maintaining these restorations. PMID:27437506

  11. Porous metal for orthopedics implants

    PubMed Central

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Summary Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery. PMID:24133527

  12. Regenerative Surgical Treatment of Peri-implantitis

    ClinicalTrials.gov

    2016-08-31

    Failure of Dental Implant Due to Infection; Infection; Inflammation; Peri-implantitis; Bacterial Infections; Bleeding of Subgingival Space; Molecular Sequence Variation; Periodontal Diseases; Mouth Diseases

  13. Li diffusion and substitution in chemically diverse synthetic zircon

    NASA Astrophysics Data System (ADS)

    Trail, D.

    2015-12-01

    Li concentrations and 7Li/6Li ratios in zircon may potentially trace crustal recycling because continental and mantle-derived zircons yield distinct values (Ushikubo et al. 2008; Bouvier et al. 2012). To some extent, the usefulness of these differences may depend upon the retentively of Li in zircon. Cherniak and Watson (2010) measured relatively high diffusivities for Li; here we sought to discover the scenarios under which Li mobility might be inhibited by charge compensating cations. We conducted "in" diffusion experiments in synthetic Lu-doped (~5000 ppm), P-doped (~250 ppm), and nearly pure zircon following the procedure in Cherniak and Watson (2010). In separate experiments, Li was ion implanted at depth within polished Mud Tank zircon slabs to form a Gaussian Li concentration profile; the relaxed concentration profile was measured after heating the zircon slabs. In all experiments, which ranged from 920 to 650 oC, calculated diffusivities were in agreement with a previously established Arrhenius relationship calibrated on trace element poor Mud Tank zircon (Cherniak and Watson, 2010). We also conducted complementary LA-ICP-MS mapping on the surfaces of P- and Lu-doped synthetic zircon crystals after the Li diffusion results were obtained. This revealed heterogeneous though patterned correlation between Li+Lu in the near surface of the crystal (no strong patterns emerged for P+Li). And finally, we observed that synthetic sector-zoned zircon exhibits near step function Li concentration profiles - correlating with changes in the rare earth element concentrations across these sectors - which allowed us to examine Li diffusion in yet another manner. Re-heating these grains followed by LA-ICP-MS analysis revealed significant Li migration, with no detectable migration of the rare earth elements. While our experiments cannot be considered exhaustive, we have yet to find a scenario where Li mobility in synthetic zircon depends on charge compensating cations.

  14. Anatomic consideration for preventive implantation.

    PubMed

    Denissen, H W; Kalk, W; Veldhuis, H A; van Waas, M A

    1993-01-01

    The aim of preventive implant therapy is to prevent or delay loss of alveolar ridge bone mass. For use in an anatomic study of 60 mandibles, resorption of the alveolar ridge was classified into four preventive stages: (1) after extraction of teeth; (2) after initial resorption; (3) when the ridge has atrophied to a knife-edge shape; and (4) when only basal bone remains. Implantation in stage 3 necessitates removal of the knife-edge ridge to create space for cylindrical implants. Therefore, implantation in stage 2 is advocated to prevent the development of stage 3. The aim of implantation in stage 4 is to prevent total loss of function of the atrophic mandible. PMID:8359876

  15. Reward-based hypertension control by a synthetic brain-dopamine interface.

    PubMed

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-01

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future. PMID:24127594

  16. Reward-based hypertension control by a synthetic brain–dopamine interface

    PubMed Central

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-01-01

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal’s reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future. PMID:24127594

  17. Transcatheter aortic valve implantation.

    PubMed

    Nielsen, Hans Henrik Møller

    2012-12-01

    Transcatheter aortic valve implantation (TAVI) was introduced experimentally in 1989, based on a newly developed heart valve prosthesis - the stentvalve. The valve was invented by a Danish cardiologist named Henning Rud Andersen. The new valve was revolutionary. It was foldable and could be inserted via a catheter through an artery in the groin, without the need for heart lung machine. This allowed for a new valve implantation technique, much less invasive than conventional surgical aortic valve replacement (SAVR). Surgical aortic valve replacement is safe and improves symptoms along with survival. However, up to 1/3 of patients with aortic valve stenosis cannot complete the procedure due to frailty. The catheter technique was hoped to provide a new treatment option for these patients. The first human case was in 2002, but more widespread clinical use did not begin until 2006-2010. Today, in 2011, more than 40,000 valves have been implanted worldwide. Initially, because of the experimental character of the procedure, TAVI was reserved for patients who could not undergo SAVR due to high risk. The results in this group of patients were promising. The procedural safety was acceptable, and the patients experienced significant improvements in their symptoms. Three of the papers in this PhD-thesis are based on the outcome of TAVI at Skejby Hospital, in this high-risk population [I, II and IV]. Along with other international publications, they support TAVI as being superior to standard medical treatment, despite a high risk of prosthetic regurgitation. These results only apply to high-risk patients, who cannot undergo SAVR. The main purpose of this PhD study has been to investigate the quality of TAVI compared to SAVR, in order to define the indications for this new procedure. The article attached [V] describes a prospective clinical randomised controlled trial, between TAVI to SAVR in surgically amenable patients over 75 years of age with isolated aortic valve stenosis

  18. A Retrospective Analysis of Ruptured Breast Implants

    PubMed Central

    Baek, Woo Yeol; Lew, Dae Hyun

    2014-01-01

    Background Rupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants. Methods We performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone), duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management. Results Forty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case), microfat graft (2 case), removal only (14 case), and follow-up loss (17 case). Conclusions Saline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs. PMID:25396188

  19. [Maintenance care for dental implant].

    PubMed

    Kamoi, K

    1989-10-01

    Dental implant has tried at the early stage in 19th century recovering an oral function and esthetics. Technological revolutions in biochemical and new materials have developed on the remarkable change in the dental implants, nowadays we call the three generation therapy for dental implantology. There are many kinds of methods and techniques in dental implants, however a lot of troublesome complication on the process of surgical phase, construction of prothodontics and prognosis of maintenance care. In the proceedings of this symposium, I would like to propose you how to manage the maintenance care for various kind of dental implants through the methodology and case presentations. Tendenay and future for dental implants The current outlook of dental implant has increasing supply and demand not only dentists but also patients. According to Japanese Welfare Ministry's report in 1987, average missing teeth over sixty years old generations are approximately 42% in accordance with NIDR (U.S.A.) research. They are missed on ten over teeth in full 28th teeth dentitions owing to dental caries and periodontal diseases. Generally speaking, latent implant patients are occupied on the same possibility of needs for dental implants both Japan and U.S.A. Management of maintenance care The patients hardly recognized the importance of plaque control for the maintenance care in the intraoral condition after implantation. Dentists and dental staffs must be instruct patients for importance of plaque removal and control, because they already had forgotten the habit of teeth cleaning, especially in the edenturous conditions. 1) Concept of establishment in oral hygiene. Motivation and instruction for patients include very important factors in dental implants as well as in periodontal diseases. Patients who could not achieve on good oral hygiene levels obtained no good results in the long term observations. To establish good oral hygiene are how to control supra plaque surrounding tissues

  20. Retrieval and analysis of explanted and in situ implants including bone grafts.

    PubMed

    Lemons, Jack E

    2010-08-01

    This article briefly explains the process of, and provides examples from, dental surgical implant device retrieval and analysis. Study results of three areas where unique and new information has been or is being published within professional journals are summarized. An analysis of past and current activities strongly supports opportunities for more in-depth investigations of explanted and postmortem-type specimens. It seems that these types of protocols will be supportive of more fully investigating the clinical applications for successful and unsuccessful outcomes of evolving tissue-engineered medical products as alternatives to some types of synthetic-origin implant devices. PMID:20713272

  1. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications.

    PubMed

    Loo, Yihua; Hauser, Charlotte A E

    2016-02-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. PMID:26694103

  2. Percutaneous Pulmonary Valve Implantation

    PubMed Central

    Lee, Hyoung-Doo

    2012-01-01

    Pulmonary regurgitation (PR) is a frequent sequelae after repair of tetralogy of Fallot, pulmonary atresia, truncus arteriosus, Rastelli and Ross operation. Due to patient growth and conduit degeneration, these conduits have to be changed frequently due to regurgitation or stenosis. However, morbidity is significant in these repeated operations. To prolong conduit longevity, bare-metal stenting in the right ventricular outflow tract (RVOT) obstruction has been performed. Stenting the RVOT can reduce the right ventricular pressure and symptomatic improvement, but it causes PR with detrimental effects on the right ventricle function and risks of arrhythmia. Percutaneous pulmonary valve implantation has been shown to be a safe and effective treatment for patients with pulmonary valve insufficiency, or stenotic RVOTs. PMID:23170091

  3. Nitinol Surfaces for Implantation

    NASA Astrophysics Data System (ADS)

    Shabalovskaya, Svetlana; Rondelli, Gianni; Rettenmayr, Markus

    2009-08-01

    Nitinol, a group of nearly equiatomic Ni-Ti alloys, steadily conquers new areas of application. Because of the need to keep a low profile of miniature implant devices, and considering the lack of compatibility between Nitinol superelasticity and the mechanical properties of traditional coatings, bare surfaces are of interest. In this article, an overview of our studies of bare Nitinol surfaces is presented, and the performance of coated surfaces is outlined. Together dense and porous Nitinol offer a wide array of surface topographies, suitable for attachment and migration of biological cells and tissue ingrowth. Native Nitinol surface oxides vary from amorphous to crystalline and exhibit semiconducting properties associated with better blood compatibility. Nitinol surfaces are analyzed with regard to high and lasting nickel release in vitro. Surface oxide thickness and Nitinol intermetallic particulates are discussed in relation to corrosion resistance and mechanical performance of the material.

  4. Transcatheter Aortic Valve Implantation.

    PubMed

    Malaisrie, S Chris; Iddriss, Adam; Flaherty, James D; Churyla, Andrei

    2016-05-01

    Severe aortic stenosis (AS) is a life-threatening condition when left untreated. Aortic valve replacement (AVR) is the gold standard treatment for the majority of patients; however, transcatheter aortic valve implantation/replacement (TAVI/TAVR) has emerged as the preferred treatment for high-risk or inoperable patients. The concept of transcatheter heart valves originated in the 1960s and has evolved into the current Edwards Sapien and Medtronic CoreValve platforms available for clinical use. Complications following TAVI, including cerebrovascular events, perivalvular regurgitation, vascular injury, and heart block have decreased with experience and evolving technology, such that ongoing trials studying TAVI in lower risk patients have become tenable. The multidisciplinary team involving the cardiac surgeon and cardiologist plays an essential role in patient selection, procedural conduct, and perioperative care. PMID:27021619

  5. Implantable, multifunctional, bioresorbable optics

    PubMed Central

    Tao, Hu; Kainerstorfer, Jana M.; Siebert, Sean M.; Pritchard, Eleanor M.; Sassaroli, Angelo; Panilaitis, Bruce J. B.; Brenckle, Mark A.; Amsden, Jason J.; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-01-01

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  6. Designing synthetic vaccines for HIV.

    PubMed

    Fernández-Tejada, Alberto; Haynes, Barton F; Danishefsky, Samuel J

    2015-06-01

    Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines. PMID:25824661

  7. Synthetic approaches to multifunctional indenes

    PubMed Central

    López-Pérez, Sara; Dinarès, Immaculada

    2011-01-01

    Summary The synthesis of multifunctional indenes with at least two different functional groups has not yet been extensively explored. Among the plausible synthetic routes to 3,5-disubstituted indenes bearing two different functional groups, such as the [3-(aminoethyl)inden-5-yl)]amines, a reasonable pathway involves the (5-nitro-3-indenyl)acetamides as key intermediates. Although several multistep synthetic approaches can be applied to obtain these advanced intermediates, we describe herein their preparation by an aldol-type reaction between 5-nitroindan-1-ones and the lithium salt of N,N-disubstituted acetamides, followed immediately by dehydration with acid. This classical condensation process, which is neither simple nor trivial despite its apparent directness, permits an efficient entry to a variety of indene-based molecular modules, which could be adapted to a range of functionalized indanones. PMID:22238553

  8. Developing technologies for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Sprow, F. B.

    1981-05-01

    After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

  9. Synthetic Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Manners, Ian

    2004-04-01

    The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

  10. Engineering Ecosystems and Synthetic Ecologies#

    PubMed Central

    Mee, Michael T; Wang, Harris H

    2012-01-01

    Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

  11. Synthetic RR Lyrae velocity curves

    SciTech Connect

    Liu, Tianxing Boston Univ., MA )

    1991-02-01

    An amplitude correlation between the pulsation velocity curves and visual light curves of ab-type RR Lyrae stars is derived from a large number of RR Lyrae that have high-precision radial-velocity and photometric data. Based on the determined AVp, AV ralation, a synthetic radial-velocity curve for a typical ab-type RR Lyrae star is constructed. This would be of particular use in determining the systemic velocities of RR Lyrae. 17 refs.

  12. Synthetic LDL as targeted drug delivery vehicle

    SciTech Connect

    Forte, Trudy M.; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  13. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  14. Approaches to synthetic platelet analogs.

    PubMed

    Modery-Pawlowski, Christa L; Tian, Lewis L; Pan, Victor; McCrae, Keith R; Mitragotri, Samir; Sen Gupta, Anirban

    2013-01-01

    Platelet transfusion is routinely used for treating bleeding complications in patients with hematologic or oncologic clotting disorders, chemo/radiotherapy-induced myelosuppression, trauma and surgery. Currently, these transfusions mostly use allogeneic platelet concentrates, while products like lyophilized platelets, cold-stored platelets and infusible platelet membranes are under investigation. These natural platelet-based products pose considerable risks of contamination, resulting in short shelf-life (3-5 days). Recent advances in pathogen reduction technologies have increased shelf-life to ~7 days. Furthermore, natural platelets are short in supply and also cause several biological side effects. Hence, there is significant clinical interest in platelet-mimetic synthetic analogs that can allow long storage-life and minimum side effects. Accordingly, several designs have been studied which decorate synthetic particles with motifs that promote platelet-mimetic adhesion or aggregation. Recent refinement in this design involves combining the adhesion and aggregation functionalities on a single particle platform. Further refinement is being focused on constructing particles that also mimic natural platelet's shape, size and elasticity, to influence margination and wall-interaction. The optimum design of a synthetic platelet analog would require efficient integration of platelet's physico-mechanical properties and biological functionalities. We present a comprehensive review of these approaches and provide our opinion regarding the future directions of this research. PMID:23092864

  15. Nano-enabled synthetic biology

    PubMed Central

    Doktycz, Mitchel J; Simpson, Michael L

    2007-01-01

    Biological systems display a functional diversity, density and efficiency that make them a paradigm for synthetic systems. In natural systems, the cell is the elemental unit and efforts to emulate cells, their components, and organization have relied primarily on the use of bioorganic materials. Impressive advances have been made towards assembling simple genetic systems within cellular scale containers. These biological system assembly efforts are particularly instructive, as we gain command over the directed synthesis and assembly of synthetic nanoscale structures. Advances in nanoscale fabrication, assembly, and characterization are providing the tools and materials for characterizing and emulating the smallest scale features of biology. Further, they are revealing unique physical properties that emerge at the nanoscale. Realizing these properties in useful ways will require attention to the assembly of these nanoscale components. Attention to systems biology principles can lead to the practical development of nanoscale technologies with possible realization of synthetic systems with cell-like complexity. In turn, useful tools for interpreting biological complexity and for interfacing to biological processes will result. PMID:17625513

  16. Synthetic metabolons for metabolic engineering.

    PubMed

    Singleton, Chloe; Howard, Thomas P; Smirnoff, Nicholas

    2014-05-01

    It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular location or minimizing the escape of reactive intermediates. Metabolons can be formed by relatively loose non-covalent protein-protein interaction, anchorage to membranes, and (in bacteria) by encapsulation of enzymes in protein-coated microcompartments. Evidence that non-coated metabolons are effective at channelling substrates is scarce and difficult to obtain. In plants there is strong evidence that small proportions of glycolytic enzymes are associated with the outside of mitochondria and are effective in substrate channelling. More recently, synthetic metabolons, in which enzymes are scaffolded to synthetic proteins or nucleic acids, have been expressed in microorganisms and these provide evidence that scaffolded enzymes are more effective than free enzymes for metabolic engineering. This provides experimental evidence that metabolons may have a general advantage and opens the way to improving the outcome of metabolic engineering in plants by including synthetic metabolons in the toolbox. PMID:24591054

  17. Synthetic biology with RNA motifs.

    PubMed

    Saito, Hirohide; Inoue, Tan

    2009-02-01

    Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs. PMID:18775792

  18. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  19. Male chest enhancement: pectoral implants.

    PubMed

    Benito-Ruiz, J; Raigosa, J M; Manzano-Surroca, M; Salvador, L

    2008-01-01

    The authors present their experience with the pectoral muscle implant for male chest enhancement in 21 patients. The markings and technique are thoroughly described. The implants used were manufactured and custom made. The candidates for implants comprised three groups: group 1 (18 patients seeking chest enhancement), group 2 (1 patient with muscular atrophy), and group 3 (2 patients with muscular injuries). Because of the satisfying results obtained, including significant enhancement of the chest contour and no major complications, this technique is used for an increasing number of male cosmetic surgeries. PMID:17676376

  20. Pediatric cochlear implantation: an update.

    PubMed

    Vincenti, Vincenzo; Bacciu, Andrea; Guida, Maurizio; Marra, Francesca; Bertoldi, Barbara; Bacciu, Salvatore; Pasanisi, Enrico

    2014-01-01

    Deafness in pediatric age can adversely impact language acquisition as well as educational and social-emotional development. Once diagnosed, hearing loss should be rehabilitated early; the goal is to provide the child with maximum access to the acoustic features of speech within a listening range that is safe and comfortable. In presence of severe to profound deafness, benefit from auditory amplification cannot be enough to allow a proper language development. Cochlear implants are partially implantable electronic devices designed to provide profoundly deafened patients with hearing sensitivity within the speech range. Since their introduction more than 30 years ago, cochlear implants have improved their performance to the extent that are now considered to be standard of care in the treatment of children with severe to profound deafness. Over the years patient candidacy has been expanded and the criteria for implantation continue to evolve within the paediatric population. The minimum age for implantation has progressively reduced; it has been recognized that implantation at a very early age (12-18 months) provides children with the best outcomes, taking advantage of sensitive periods of auditory development. Bilateral implantation offers a better sound localization, as well as a superior ability to understand speech in noisy environments than unilateral cochlear implant. Deafened children with special clinical situations, including inner ear malformation, cochlear nerve deficiency, cochlear ossification, and additional disabilities can be successfully treated, even thogh they require an individualized candidacy evaluation and a complex post-implantation rehabilitation. Benefits from cochlear implantation include not only better abilities to hear and to develop speech and language skills, but also improved academic attainment, improved quality of life, and better employment status. Cochlear implants permit deaf people to hear, but they have a long way to go before

  1. Silicone breast implants and platinum.

    PubMed

    Wixtrom, Roger N

    2007-12-01

    Platinum, in a specific form, is used as a catalyst in the cross-linking reactions of the silicone gel and elastomer in breast implants. After manufacture, it remains in the devices at low-parts-per-million levels. Potential concerns have been raised as to whether this platinum might diffuse from silicone breast implants into the body and result in adverse health effects. The weight of evidence indicates that the platinum present is in its most biocompatible (zero valence) form, and the very minute levels (<0.1 percent) that might diffuse from the implants do not represent a significant health risk to patients. PMID:18090821

  2. Synthetic thermoelectric materials comprising phononic crystals

    SciTech Connect

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  3. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7...—(1) Amount. One implant per mink. (2) Indications for use. For use in healthy male and female kit...

  4. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7...—(1) Amount. One implant per mink. (2) Indications for use. For use in healthy male and female kit...

  5. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7...—(1) Amount. One implant per mink. (2) Indications for use. For use in healthy male and female kit...

  6. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7...—(1) Amount. One implant per mink. (2) Indications for use. For use in healthy male and female kit...

  7. Occlusion on oral implants: current clinical guidelines.

    PubMed

    Koyano, K; Esaki, D

    2015-02-01

    Proper implant occlusion is essential for adequate oral function and the prevention of adverse consequences, such as implant overloading. Dental implants are thought to be more prone to occlusal overloading than natural teeth because of the loss of the periodontal ligament, which provides shock absorption and periodontal mechanoreceptors, which provide tactile sensitivity and proprioceptive motion feedback. Although many guidelines and theories on implant occlusion have been proposed, few have provided strong supportive evidence. Thus, we performed a narrative literature review to ascertain the influence of implant occlusion on the occurrence of complications of implant treatment and discuss the clinical considerations focused on the overloading factors at present. The search terms were 'dental implant', 'dental implantation', 'dental occlusion' and 'dental prosthesis'. The inclusion criteria were literature published in English up to September 2013. Randomised controlled trials (RCTs), prospective cohort studies and case-control studies with at least 20 cases and 12 months follow-up interval were included. Based on the selected literature, this review explores factors related to the implant prosthesis (cantilever, crown/implant ratio, premature contact, occlusal scheme, implant-abutment connection, splinting implants and tooth-implant connection) and other considerations, such as the number, diameter, length and angulation of implants. Over 700 abstracts were reviewed, from which more than 30 manuscripts were included. We found insufficient evidence to establish firm clinical guidelines for implant occlusion. To discuss the ideal occlusion for implants, further well-designed RCTs are required in the future. PMID:25284468

  8. [Choosing the right synthetic progestogen].

    PubMed

    Rozenbaum, H

    1983-11-01

    A number of synthetic progestogens are currently available which differ greatly among themselves in various ways. The common property of all progestogens is that they transform a proliferative endometrium into a secretory or luteal endometrium by fixing the progestogen or 1 of its metabolites to the progesterone receptor. Most progestogens also have a greater or lesser affinity for other hormonal receptors, and some cause modifications in metabolism, especially of lipids and glucose. Synthetic progestogens can be classified according to their chemical formulas, biologic properties, and efficiency in relation to hormone receptors, but none of the current classification systems is a satisfactory guide to use. It is not yet definitively known whether pro-hormones, which must be transformed into norethindrone in vivo before taking effect, are advantageous or disadvantageous for therapeutic use. Synthetic progestogens have been found to have varying metabolic effects according to their content and dosage; hepatic function, lipid metabolism, glucose metabolism, coagulation factors, and the renin-angiotensin-aldosterone system are among the functions affected. The metabolic effects of synthetic progestogens are the principal criteria of choice. High dose 19 norsteroids are recommended only for cancer treatment, 19 nor-pregnane derivatives and progesterone isomers appear suitable for treatment of conditions such as endometriosis, premenopausal menstrual irregularities, and menstrual irregularity resulting from luteal insufficiency in younger women. Low-dose 19 norsteroids remain the best choice for contraception. Levonorgestrel has been preferred over norethindrone for some time because it is effective at a dose of .150 mcg compared to 1 mg for norethindrone, but some recent research suggests that even at a much smaller dose, levonorgestrel may cause more metabolic modifications than norethindrone. The pro-hormones ethynodial diacetate and lynestrel have additional

  9. Synthetic Calcite as a Scaffold for Osteoinductive Bone Substitutes.

    PubMed

    Chróścicka, Anna; Jaegermann, Zbigniew; Wychowański, Piotr; Ratajska, Anna; Sadło, Jarosław; Hoser, Grażyna; Michałowski, Sławomir; Lewandowska-Szumiel, Malgorzata

    2016-07-01

    Although a wide variety of biomaterials have been already proposed for use in bone tissue engineering, there is still need for man-made materials, which would combine support for osteogenesis with simplicity desirable for upscaling and costs reduction. In this study we have shown that synthetic calcite may serve as a scaffold for human osteoblasts transplantation. A simple dynamic system allows uniform and effective cell distribution. Cell viability and osteogenic phenotype were confirmed by XTT assay, alkaline phosphatase activity and selected osteoblast-specific genes expression. Extracellular matrix deposited by cells improved elasticity and made the whole system similar to the flexible composite material rather than to the brittle ceramic implants. It was revealed in the compression tests and also by the improved samples handling. Subcutaneous implantation of the cell-seeded calcite scaffolds to immunodeficient mice resulted in mineralized bone formation, which was confirmed histologically and by EPR analysis. The latter we propose as a method supplementary to histological analysis, for bone regeneration investigations. It specifically confirms the presence of bone mineral with a unique sensitivity and using bulk samples, which eliminates the risk of missing the material in the preparation. Our study resulted in development of a new osteogenic tissue engineered product based on man-made calcite. PMID:26666226

  10. [Imaging in silicone breast implantation].

    PubMed

    Gielens, Maaike P M; Koolen, Pieter G L; Hermens, Roland A E C; Rutten, Matthieu J C M

    2013-01-01

    Recently, there have been concerns regarding the use of breast implants from Poly Implant Prothèse (PIP, Seyne sur Mer, France) for breast augmentation due to their tendency to rupture and the possibility of having toxic contents. MRI using a specific silicone-sensitive sequence has proven to be the most sensitive and specific technique in the detection of intra- and extracapsular implant rupture. However, given its high costs, it is important that this technique is used sparingly. In this clinical lesson, we compare the sensitivity and specificity of mammography, ultrasound, CT and MRI for the detection of breast implant rupture. Based on two cases, a diagnostic approach is given in order to reduce health care costs. PMID:24252405

  11. ANTIARRHYTHMICS VERSUS IMPLANTABLE DEFIBRILLATORS (AVID)

    EPA Science Inventory

    Evaluates whether use of an implantable cardiac defibrillator (ICD) results in reduction in total mortality, when compared with conventional pharmacological therapy, in patients resuscitated from sudden cardiac death who are otherwise at very high risk of mortality from arrhythmi...

  12. Advances in lens implant technology

    PubMed Central

    Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patient’s individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining – the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

  13. Implants for draining neovascular glaucoma.

    PubMed Central

    Molteno, A C; Van Rooyen, M M; Bartholomew, R S

    1977-01-01

    The implant design, surgical technique, and pharmacological methods of controlling bleb fibrosis, used to treat neovascular glaucoma, are described, together with the results of 14 operations performed on 12 eyes. Images PMID:843508

  14. Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty--A finite element study.

    PubMed

    Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tim; Wolff, Jan

    2016-01-01

    This computational study investigates the effect of shape (defect contour curvature) and bone-implant interface (osteotomy angle) on the stress distribution within PMMA skull implants. Using finite element methodology, 15 configurations--combinations of simplified synthetic geometric shapes (circular, square, triangular, irregular) and interface angulations--were simulated under 50N static loads. Furthermore, the implant fixation devices were modelled and analysed in detail. Negative osteotomy configurations demonstrated the largest stresses in the implant (275 MPa), fixation devices (1258 MPa) and bone strains (0.04). The circular implant with zero and positive osteotomy performed well with maximum observed magnitudes of--implant stress (1.2 MPa and 1.2 MPa), fixation device stress (11.2 MPa and 2.2 MPa), bone strain (0.218e-3 and 0.750e-4). The results suggest that the preparation of defect sites is a critical procedure. Of the greatest importance is the angle at which the edges of the defect are sawed. If under an external load, the implant has no support from the interface and the stresses are transferred to the fixation devices. This can endanger their material integrity and lead to unphysiological strains in the adjacent bone, potentially compromising the bone morphology required for anchoring. These factors can ultimately weaken the stability of the entire implant assembly. PMID:26646634

  15. Fiber implantation for pattern baldness.

    PubMed

    Hanke, C W; Bergfeld, W F

    1979-01-12

    Examination of 20 patients who had fiber implantation for the treatment of pattern baldness showed that nearly all the fibers had fallen out by ten weeks. Complications observed were facial swelling, infection, foreign-body granulomas, scarring, and permanent hair loss. Scanning electron microscopy identified the fibers as modacrylic fibers. The complications, high monetary cost, and ultimate futility of fiber implantation make it an unacceptable procedure. PMID:364078

  16. Nanostructured Surfaces of Dental Implants

    PubMed Central

    Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

    2013-01-01

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years. PMID:23344062

  17. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  18. Auditory midbrain implant: a review.

    PubMed

    Lim, Hubert H; Lenarz, Minoo; Lenarz, Thomas

    2009-09-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  19. Therapy using implanted organic bioelectronics

    PubMed Central

    Jonsson, Amanda; Song, Zhiyang; Nilsson, David; Meyerson, Björn A.; Simon, Daniel T.; Linderoth, Bengt; Berggren, Magnus

    2015-01-01

    Many drugs provide their therapeutic action only at specific sites in the body, but are administered in ways that cause the drug’s spread throughout the organism. This can lead to serious side effects. Local delivery from an implanted device may avoid these issues, especially if the delivery rate can be tuned according to the need of the patient. We turned to electronically and ionically conducting polymers to design a device that could be implanted and used for local electrically controlled delivery of therapeutics. The conducting polymers in our device allow electronic pulses to be transduced into biological signals, in the form of ionic and molecular fluxes, which provide a way of interfacing biology with electronics. Devices based on conducting polymers and polyelectrolytes have been demonstrated in controlled substance delivery to neural tissue, biosensing, and neural recording and stimulation. While providing proof of principle of bioelectronic integration, such demonstrations have been performed in vitro or in anesthetized animals. Here, we demonstrate the efficacy of an implantable organic electronic delivery device for the treatment of neuropathic pain in an animal model. Devices were implanted onto the spinal cord of rats, and 2 days after implantation, local delivery of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) was initiated. Highly localized delivery resulted in a significant decrease in pain response with low dosage and no observable side effects. This demonstration of organic bioelectronics-based therapy in awake animals illustrates a viable alternative to existing pain treatments, paving the way for future implantable bioelectronic therapeutics. PMID:26601181

  20. Auditory Midbrain Implant: A Review

    PubMed Central

    Lim, Hubert H.; Lenarz, Minoo; Lenarz, Thomas

    2009-01-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  1. Why are mini-implants lost: The value of the implantation technique!

    PubMed Central

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss. PMID:25741821

  2. Imaging of common breast implants and implant-related complications: A pictorial essay

    PubMed Central

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269

  3. Synthetic Studies in Phytochrome Chemistry

    PubMed Central

    Jacobi, Peter A.; Adel Odeh, Imad M.; Buddhu, Subhas C.; Cai, Guolin; Rajeswari, Sundaramoorthi; Fry, Douglas; Zheng, Wanjun; DeSimone, Robert W.; Guo, Jiasheng; Coutts, Lisa D.; Hauck, Sheila I.; Leung, Sam H.; Ghosh, Indranath; Pippin., Douglas

    2008-01-01

    An account is given of the author’s several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both 2R- and 2S-phytochromobilin (4), as well as several 13C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1. PMID:18633455

  4. Synthetic magnetism for photon fluids

    NASA Astrophysics Data System (ADS)

    Westerberg, N.; Maitland, C.; Faccio, D.; Wilson, K.; Öhberg, P.; Wright, E. M.

    2016-08-01

    We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.

  5. Interferometry with synthetic gauge fields

    SciTech Connect

    Anderson, Brandon M.; Taylor, Jacob M.; Galitski, Victor M.

    2011-03-15

    We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S{approx}10{sup -7}(m/s{sup 2}/{radical}(Hz)).

  6. Synthetic networks in microbial communities

    NASA Astrophysics Data System (ADS)

    Suel, Gurol

    2015-03-01

    While bacteria are single celled organisms, they predominantly reside in structured communities known as biofilms. Cells in biofilms are encapsulated and protected by the extracellular matrix (ECM), which also confines cells in space. During biofilm development, microbial cells are organized in space and over time. Little is known regarding the processes that drive the spatio-temporal organization of microbial communities. Here I will present our latest efforts that utilize synthetic biology approaches to uncover the organizational principles that drive biofilm development. I will also discuss the possible implications of our recent findings in terms of the cost and benefit to biofilm cells.

  7. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  8. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    NASA Astrophysics Data System (ADS)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  9. Bone-grafting materials in implant dentistry.

    PubMed

    Misch, C E; Dietsh, F

    1993-01-01

    There are three classes of bone-grafting materials based upon the mode of action. Autogenous bone is an organic material and forms bone by osteogenesis, osteoinduction, and osteoconduction. Allografts such as demineralized freeze-dried bone are osteoinductive and osteoconductive and may be cortical and/or trabecular in nature. Alloplasts such as hydroxyapatite and tricalcium phosphate may be synthetic or natural, vary in size, and are only osteoconductive. They can be divided into three types based upon the porosity of the product and include dense, macroporous, and microporous materials. In addition, alloplastic materials may be crystalline or amorphous. These materials have different properties and therefore indications. The use of the three classes of materials in diverse combinations depends upon the size and topography of the bony defect. Small defects or defects with four walls of host bone can be repaired with alloplasts alone or allografts in combination with alloplasts. The loss of three or more bony walls mandates the addition of autogenous bone to the graft or the use of a small pore membrane. The larger the defect, the more autogenous bone is required. The different indications of bone substitutes are discussed as to their specific applications in implant dentistry. PMID:8142935

  10. Synthetic vision display evaluation studies

    NASA Technical Reports Server (NTRS)

    Regal, David M.; Whittington, David H.

    1994-01-01

    The goal of this research was to help us understand the display requirements for a synthetic vision system for the High Speed Civil Transport (HSCT). Four experiments were conducted to examine the effects of different levels of perceptual cue complexity in displays used by pilots in a flare and landing task. Increased levels of texture mapping of terrain and runway produced mixed results, including harder but shorter landings and a lower flare initiation altitude. Under higher workload conditions, increased texture resulted in an improvement in performance. An increase in familiar size cues did not result in improved performance. Only a small difference was found between displays using two patterns of high resolution texture mapping. The effects of increased perceptual cue complexity on performance was not as strong as would be predicted from the pilot's subjective reports or from related literature. A description of the role of a synthetic vision system in the High Speed Civil Transport is provide along with a literature review covering applied research related to perceptual cue usage in aircraft displays.

  11. The major synthetic evolutionary transitions.

    PubMed

    Solé, Ricard

    2016-08-19

    Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID:27431528

  12. Animal timing: a synthetic approach.

    PubMed

    de Carvalho, Marilia Pinheiro; Machado, Armando; Vasconcelos, Marco

    2016-07-01

    Inspired by Spence's seminal work on transposition, we propose a synthetic approach to understanding the temporal control of operant behavior. The approach takes as primitives the temporal generalization gradients obtained in prototypical concurrent and retrospective timing tasks and then combines them to synthetize more complex temporal performances. The approach is instantiated by the learning-to-time (LeT) model. The article is divided into three parts. In the first part, we review the basic findings concerning the generalization gradients observed in fixed-interval schedules, the peak procedure, and the temporal generalization procedure and then describe how LeT explains them. In the second part, we use LeT to derive by gradient combination the typical performances observed in mixed fixed-interval schedules, the free-operant psychophysical procedure, the temporal bisection task, and the double temporal bisection task. We also show how the model plays the role of a useful null hypothesis to examine whether temporal control in the bisection task is relative or absolute. In the third part, we identify a set of issues that must be solved to advance our understanding of temporal control, including the shape of the generalization gradients outside the range of trained stimulus durations, the nature of temporal memories, the influence of context on temporal learning, whether temporal control can be inhibitory, and whether temporal control is also relational. These issues attest to the heuristic value of a Spencean approach to temporal control. PMID:27000781

  13. Synthetic population system user guide

    SciTech Connect

    Roberts, D.J.

    1998-03-01

    The Los Alamos National Laboratory (LANL) TRansportation Analysis SIMulatiuon System (TRANSIMS) synthetic population system (SYN) is designed to produce populations (family households, non-family households, and group quarters) that are statistically equivalent to actual populations when compared at the level of block group or higher. The methodology used by this system is described in a report entitled Creating Synthetic Baseline Populations. The inputs to the system are US Census Bureau data (STF3A and PUMS) and MABLE/GEOCORR data. Census Bureau STF3A and PUMS data formats are commonly used and are available on CD-ROM from the Census Bureau. These data inputs will not be described in any detail in this guide. The primary function of MABLE/GEOCORR data is to cross-reference STF3 block group data to PUMS areas. The outputs of the system are files that contain family household, non-family household, and group quarters data in the form of household and person records. SYN will run on a variety of Unix platforms.

  14. Catalysts from synthetic genetic polymers

    PubMed Central

    Taylor, Alexander I.; Pinheiro, Vitor B.; Smola, Matthew J.; Morgunov, Alexey S.; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M.; Herdewijn, Piet; Holliger, Philipp

    2014-01-01

    The emergence of catalysis in early genetic polymers like RNA is considered a key transition in the origin of life1, predating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro2. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds3 for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands4 raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (ANA (arabino nucleic acids)5, FANA (2′-fluoroarabino nucleic acids)6, HNA (hexitol nucleic acids) and CeNA (cyclohexene nucleic acids)7 directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature8. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on earth and elsewhere in the universe9. PMID:25470036

  15. Synthetic in vitro transcriptional oscillators.

    PubMed

    Kim, Jongmin; Winfree, Erik

    2011-02-01

    The construction of synthetic biochemical circuits from simple components illuminates how complex behaviors can arise in chemistry and builds a foundation for future biological technologies. A simplified analog of genetic regulatory networks, in vitro transcriptional circuits, provides a modular platform for the systematic construction of arbitrary circuits and requires only two essential enzymes, bacteriophage T7 RNA polymerase and Escherichia coli ribonuclease H, to produce and degrade RNA signals. In this study, we design and experimentally demonstrate three transcriptional oscillators in vitro. First, a negative feedback oscillator comprising two switches, regulated by excitatory and inhibitory RNA signals, showed up to five complete cycles. To demonstrate modularity and to explore the design space further, a positive-feedback loop was added that modulates and extends the oscillatory regime. Finally, a three-switch ring oscillator was constructed and analyzed. Mathematical modeling guided the design process, identified experimental conditions likely to yield oscillations, and explained the system's robust response to interference by short degradation products. Synthetic transcriptional oscillators could prove valuable for systematic exploration of biochemical circuit design principles and for controlling nanoscale devices and orchestrating processes within artificial cells. PMID:21283141

  16. A Synthetic Multicellular Memory Device.

    PubMed

    Urrios, Arturo; Macia, Javier; Manzoni, Romilde; Conde, Núria; Bonforti, Adriano; de Nadal, Eulàlia; Posas, Francesc; Solé, Ricard

    2016-08-19

    Changing environments pose a challenge to living organisms. Cells need to gather and process incoming information, adapting to changes in predictable ways. This requires in particular the presence of memory, which allows different internal states to be stored. Biological memory can be stored by switches that retain information on past and present events. Synthetic biologists have implemented a number of memory devices for biological applications, mostly in single cells. It has been shown that the use of multicellular consortia provides interesting advantages to implement biological circuits. Here we show how to build a synthetic biological memory switch using an eukaryotic consortium. We engineered yeast cells that can communicate and retain memory of changes in the extracellular environment. These cells were able to produce and secrete a pheromone and sense a different pheromone following NOT logic. When the two strains were cocultured, they behaved as a double-negative-feedback motif with memory. In addition, we showed that memory can be effectively changed by the use of external inputs. Further optimization of these modules and addition of other cells could lead to new multicellular circuits that exhibit memory over a broad range of biological inputs. PMID:27439436

  17. Synthetic aperture sonar image statistics

    NASA Astrophysics Data System (ADS)

    Johnson, Shawn F.

    Synthetic Aperture Sonar (SAS) systems are capable of producing photograph quality seafloor imagery using a lower frequency than other systems of comparable resolution. However, as with other high-resolution sonar systems, SAS imagery is often characterized by heavy-tailed amplitude distributions which may adversely affect target detection systems. The constant cross-range resolution with respect to range that results from the synthetic aperture formation process provides a unique opportunity to improve our understanding of system and environment interactions, which is essential for accurate performance prediction. This research focused on the impact of multipath contamination and the impact of resolution on image statistics, accomplished through analyses of data collected during at-sea experiments, analytical modeling, and development of numerical simulations. Multipath contamination was shown to have an appreciable impact on image statistics at ranges greater than the water depth and when the levels of the contributing multipath are within 10 dB of the direct path, reducing the image amplitude distribution tails while also degrading image clarity. Image statistics were shown to depend strongly upon both system resolution and orientation to seafloor features such as sand ripples. This work contributes to improving detection systems by aiding understanding of the influences of background (i.e. non-target) image statistics.

  18. CFIT Prevention Using Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.

    2003-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot s ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach - departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.

  19. Synthetic biology in Streptomyces bacteria.

    PubMed

    Medema, Marnix H; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that the potential of Streptomyces species for the production of valuable secondary metabolites is even larger than previously realized. Accessing this rich genomic resource to discover new compounds by activating "cryptic" pathways is an interesting challenge for synthetic biology. This approach is facilitated by the inherent natural modularity of secondary metabolite biosynthetic pathways, at the level of individual enzymes (such as modular polyketide synthases), but also of gene cassettes/operons and entire biosynthetic gene clusters. It also benefits from a long tradition of molecular biology in Streptomyces, which provides a number of specific tools, ranging from cloning vectors to inducible promoters and translational control elements. In this chapter, we first provide an overview of the synthetic biology challenges in Streptomyces and then present the existing toolbox of molecular methods that can be employed in this organism. PMID:21601100

  20. CFIT prevention using synthetic vision

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.

    2003-09-01

    In commercial aviation, over 30 percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot's ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach / departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.

  1. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  2. Synthetic biology: a Jewish view.

    PubMed

    Glick, Shimon

    2012-01-01

    The discipline of synthetic biology may be one of the most dramatic advances of the past few decades. It represents a radical upgrading of humankind's ability to manipulate the world in which we live. The potential for benefits to society is enormous, but the risks for deliberate abuse or dangerous miscalculations are no less great. There are serious ethical issues, legitimate concerns for biosafety, and fears of bioterrorism. The ethical dilemmas posed are new and challenging and are being addressed by various groups and commissions. The present paper presents a Jewish approach to some of the ethical issues posed by this new technology. Judaism traditionally looks favorably on man as a co-creator with God and encourages research for the benefit of humankind. Thus it would have a positive attitude towards the current goals of synthetic biology. But in the Jewish tradition man is also charged with stewardship over nature and is admonished to preserve and nurture, not just to exploit and destroy. In line with the Presidential Commission on Bioethics, it would support a carefully weighed balance between the precautionary and the "proactionary" approaches. PMID:23502565

  3. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  4. Microbial synthetic biology for human therapeutics.

    PubMed

    Jain, Aastha; Bhatia, Pooja; Chugh, Archana

    2012-06-01

    The emerging field of synthetic biology holds tremendous potential for developing novel drugs to treat various human conditions. The current study discusses the scope of synthetic biology for human therapeutics via microbial approach. In this context, synthetic biology aims at designing, engineering and building new microbial synthetic cells that do not pre-exist in nature as well as re-engineer existing microbes for synthesis of therapeutic products. It is expected that the construction of novel microbial genetic circuitry for human therapeutics will greatly benefit from the data generated by 'omics' approaches and multidisciplinary nature of synthetic biology. Development of novel antimicrobial drugs and vaccines by engineering microbial systems are a promising area of research in the field of synthetic biology for human theragnostics. Expression of plant based medicinal compounds in the microbial system using synthetic biology tools is another avenue dealt in the present study. Additionally, the study suggest that the traditional medicinal knowledge can do value addition for developing novel drugs in the microbial systems using synthetic biology tools. The presented work envisions the success of synthetic biology for human therapeutics via microbial approach in a holistic manner. Keeping this in view, various legal and socio-ethical concerns emerging from the use of synthetic biology via microbial approach such as patenting, biosafety and biosecurity issues have been touched upon in the later sections. PMID:23730360

  5. Biomechanical load analysis of cantilevered implant systems.

    PubMed

    Osier, J F

    1991-01-01

    Historically, dental implants have been placed in areas where quality bone exists. The maxillary sinus areas and mandibular canal proximities have been avoided. From these placements, various cantilevered prosthetic applications have emerged. This analysis uses static engineering principles to define the loads (i.e., forces) placed upon the implants. These principles make use of Newton's first and third laws of mechanics by summing the forces and moments to zero. These summations then generate mathematical equations and their algebraic solutions. Three implant systems are analyzed. The first is a two-implant system. The second is a three-implant cross-arch stabilized system usually found in mandibular replacements of lower full dentures. The third is a five-implant system which is identical to the three-implant cantilevered system but which uses implants in the first molar area, thereby negating the cantilevered load magnification of the three-implant design. These analyses demonstrate that, in a cantilevered application, the implant closest to the point of load application (usually the most posterior implant) takes the largest compressive load. Implants opposite the load application (generally the anterior implant) are in tension. These loads on the implants are normally magnified over the biting force and can easily reach 2 1/2 to five times the biting load. PMID:1942131

  6. Synthetic slings: pros and cons.

    PubMed

    Staskin, David R; Plzak, Louis

    2002-10-01

    Historically, the choice of sling material for the treatment of urinary incontinence has been based on the surgeon's preference and experience. In general, pelvic surgeons have not differentiated artificial graft materials by their inherent qualities or for biocompatibility in the female pelvis and vaginal wall. The introduction of new artificial graft materials and new methods of implantation for the correction of genuine stress incontinence has generated renewed interest in the "pros and cons" associated with nonabsorbable material use. In this review, we discuss and differentiate sling materials and techniques. We consider some of the physical and biologic qualities of artificial graft materials, present theories and practices associated with the successful use of permanent grafts, and discuss the natural evolution of artificial graft slings to the current use of the tension-free vaginal tape and Suprapubic Arc Sling System (American Medical Systems, Minneapolis, MN). PMID:12354353

  7. Dental implant materials. I. Some effects of preparative procedures on surface topography.

    PubMed

    Smith, D C; Pilliar, R M; Chernecky, R

    1991-09-01

    The effect of different treatments for preparing implant materials was examined by scanning electron microscopy and by contact angle measurements. The materials examined were Ti6A14V alloy, Co-Cr-Mo alloy, A12O3, and synthetic hydroxyapatite. Samples were prepared with solid or porous surfaces of these materials. These were detergent-cleaned and then either autoclaved (steam sterilization), radiation-sterilized, nitric acid-etched, or plasma-cleaned. The results of wettability studies indicated marked changes in surface energy corresponding to the different preparation methods, and differences in surface morphology were also observed. These differences could have significant consequences on in vivo implant behaviour as mediated by tissue-implant interactions. PMID:1663951

  8. Pediatric cochlear implant candidacy issues.

    PubMed

    Osberger, M J; Chute, P M; Pope, M L; Kessler, K S; Carotta, C C; Firszt, J B; Zimmerman-Phillips, S

    1991-01-01

    Children with progressive sensorineural hearing impairment represent a special challenge to the audiologist and the otologist. These are patients with some residual auditory abilities that deteriorate with time as the hearing loss progresses. No doubt, the unnecessary implantation of an ear that significantly benefits from amplification needs to be avoided at all costs. By the same token however, there appears to be no advantage to waiting an inordinate amount of time after the loss of functional auditory abilities before recommending implantation. At times when a complete loss is predictable, implantation may be advantageous before the onset of complete auditory deprivation. Steps the clinicians should take to manage these patients effectively are briefly summarized below: Implementation of rigorous and frequent audiologic monitoring. If, for instance, a significant progressive loss of hearing has occurred over a 6-month period, resulting in a complete absence of open-set speech recognition abilities in the auditory-alone mode with appropriate hearing aids, it is probably counterproductive to wait to the point of a complete absence of aided speech detection. Implantation at a critical point in time will prevent complete auditory deprivation. Parental counseling concerning various management strategies, such as use of vibrotactile devices, changing communication skills, and issues involving cochlear implants need to be undertaken early. Parents need to be involved in every phase of the evaluation process because they are the ones who make the final decision concerning the implantation of their child. Relatively early implantation should be considered in light of what is known concerning the effects of disruption in a child's linguistic, cognitive, and emotional development resulting from complete auditory deprivation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2069195

  9. Drug-eluting medical implants.

    PubMed

    Zilberman, Meital; Kraitzer, Amir; Grinberg, Orly; Elsner, Jonathan J

    2010-01-01

    Drug-eluting medical implants are actually active implants that induce healing effects, in addition to their regular task of support. This effect is achieved by controlled release of active pharmaceutical ingredients (API) into the surrounding tissue. In this chapter we focus on three types of drug-eluting devices: drug-eluting vascular stents, drug-eluting wound dressings and protein-eluting scaffolds for tissue regeneration, thus describing both internal and external implants. Each of these drug-eluting devices also presents an approach for solving the drug release issue. Most drug-eluting vascular stents are loaded with water-insoluble antiproliferative agents, and their diffusion from the device to the surrounding tissue is relatively slow. In contrast, most drug-eluting wound dressings are loaded with highly water-soluble antibacterial agents and the issue of fast release must therefore be addressed. Growth factor release from scaffolds for tissue regeneration offers a new approach of incorporating high-molecular-weight bioactive agents which are very sensitive to process conditions and preserve their activity during the preparation stage. The drug-eluting medical implants are described here in terms of matrix formats and polymers, incorporated drugs and their release profiles from the implants, and implant functioning. Basic elements, such as new composite core/shell fibers and structured films, can be used to build new antibiotic-eluting devices. As presented in this chapter, the effect of the processing parameters on the microstructure and the resulting drug release profiles, mechanical and physical properties, and other relevant properties, must be elucidated in order to achieve the desired properties. Newly developed implants and novel modifications of previously developed approaches have enhanced the tools available for creating clinically important biomedical applications. PMID:20217535

  10. Risk factors affecting dental implant survival.

    PubMed

    Vehemente, Valerie A; Chuang, Sung-Kiang; Daher, Shadi; Muftu, Ali; Dodson, Thomas B

    2002-01-01

    Given the predictability of dental implant success, the attention of the scientific community is moving from descriptions of implant success toward a more detailed analysis of factors associated with implant failure. The purposes of this study were (1) to estimate the 1- and 5-year survival of Bicon dental implants and (2) to identify risk factors associated with implant failure in an objective, statistically valid manner. To address the research purposes, we used a retrospective cohort study design and a study sample composed of patients who had one or more implants placed. The predictor variables were grouped into the following categories: demographic, health status, anatomic, implant fixture-specific, prosthetic, perioperative, and ancillary variables. The major outcome variable of interest was implant failure defined as implant removal. Overall implant survival was estimated using the Kaplan-Meier analysis. Risk factors for implant failure were identified using the Cox proportional hazard regression models. The study sample was composed of 677 patients who had 677 implants randomly selected for analysis. The overall 1- and 5-year survival of the Bicon implant system was 95.2% and 90.2%, respectively. After adjusting for other covariates in a multivariate model, both tobacco use (P = .0004) and single-stage implant placement (P = .01) were statistically associated with an increased risk for failure. The results of these analyses suggest that the overall survival of the Bicon dental implant is comparable with other current implant systems. In addition, after controlling for covariates, we identified 2 exposures associated with implant survival, tobacco use and implant staging. Of interest, both of these exposures are under the clinician's control. PMID:12498449

  11. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  12. Biomimetic implant coatings.

    PubMed

    Eisenbarth, E; Velten, D; Breme, J

    2007-02-01

    Biomaterials and tissue engineering technologies are becoming increasingly important in biomedical practice, particularly as the population ages. Cellular responses depend on topographical properties of the biomaterial at the nanometer scale. Structures on biomaterial surfaces are used as powerful tools to influence or even control interactions between implants and the biological system [; ]. The influence of nanometer sized surface structures on osteoblastlike cell interactions was tested with niobium oxide coatings on polished titanium slices (cp-Ti grade 2). The aim of the study was to investigate the influence of nanoscopic surface structures on osteoblast interactions in order to support collagen I production and cell adhesion. The coatings were done by means of the sol-gel process. The surface structure was adjusted by annealing of the metaloxide ceramic coatings due to temperature depended crystal growth. The applied annealing temperatures were 450, 550 and 700 degrees C for 1 h, corresponding to Ra-numbers of 7, 15 and 40 nm. The surfaces were characterized by means of AFM, DTA/TG, diffractometry and white light interferometry. The cell reactions were investigated concerning adhesion kinetics, migration, spreading, cell adhesion, and collagen I synthesis. The smooth surface (Ra=7 nm) resulted in the fastest cell anchorage and cell migration. The closest cell adhesion was reached with the surface structure of Ra=15 nm. The roughest surface (Ra=40 nm) impedes the cell migration as well as a proper spreading of the cells. The best results concerning cell adhesion and spreading was reached with an intermediate surface roughness of Ra=15 nm of the niobium oxide coating on cp-titanium slices. PMID:16828342

  13. Impairment of an atrophic mandible by preparation of the implant cavity: a biomechanical study.

    PubMed

    Steiner, Timm; Torsiglieri, Tobias; Rau, Andrea; Möhlhenrich, Stephan C; Eichhorn, Stefan; Grohmann, Isabella; Deppe, Herbert; Hölzle, Frank; Raith, Stefan

    2016-07-01

    An important complication during insertion of implants in atrophic mandibles is the fracture that can be induced by preparation of the cavity. We designed this study to identify which configuration of cavities in the interforaminal region was the least likely to fracture. An electromechanical testing machine was used to measure breaking loads of specifically-designed synthetic models of atrophic mandibles. The implant cavities correlated with the common clinical patterns. Intact atrophied synthetic mandibles broke at a mean (SD) load of 729.48 (59.94) N (control group). Models with four different configurations of cavities fractured as follows: two short, wide cavities (8 x 4.2mm) at a mean (SD) load of 569.17 (67.7) N; two long, thin cavities (15 x2.8mm) at a load of 563.40 (62.0) N; four short, wide cavities (8 x 4.2mm) at a load of 667.01 (71.89) N; and four long, thin cavities (15 x 2.8mm) at a load of 409.50 (43.61) N. Biomechanical findings showed that there was a greater risk of fracture of atrophic mandibular models in long, thin implant cavities with more preparation sites. Each cavity prepared for an implant increased the risk of fracture in an atrophic mandible. The risk of fracture is greatest with long, thin cavities. PMID:27068851

  14. Investigation on plasma immersion ion implantation treated medical implants.

    PubMed

    Mändl, S; Sader, R; Thorwarth, G; Krause, D; Zeilhofer, H-F; Horch, H H; Rauschenbach, B

    2002-08-01

    In this work the biocompatibility of osteosynsthesis plates treated with plasma immersion ion implantation (PIII) was tested using a rat model. Small rods (Ø 0.9 mm, and length 10 mm) prepared from different materials-pure Ti, anodised Ti, and two NiTi alloys (SE 508, and SM 495)-were implanted with oxygen by PIII to form a rutile surface layer and subsequently inserted into rat femurs, together with a control group of untreated samples. The results of the biomechanical tests correlate with the histological results, and show that plasma immersion ion implantation leads to an increase of biocompatibility and osseointegration of titanium and NiTi, albeit no improvement of the (bad) biocompatibility of the anodised Ti. Despite the layer thickness of up to 0.5 microm a strong influence of the base material is still present. PMID:12202173

  15. Medical implants and methods of making medical implants

    SciTech Connect

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  16. Implantable biomedical devices on bioresorbable substrates

    DOEpatents

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  17. Nature's chemicals and synthetic chemicals: Comparative toxicology

    SciTech Connect

    Ames, B.N.; Profet, M.; Gold, L.S. )

    1990-10-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in broccoli) and ethanol. Trade-offs between synthetic and natural pesticides are discussed. The finding that in high-dose tests, a high proportion of both natural and synthetic chemicals are carcinogens, mutagens, teratogens, and clastogens (30-50{percent} for each group) undermines current regulatory efforts to protect public health from synthetic chemicals based on these tests.

  18. Word selection affects perceptions of synthetic biology

    PubMed Central

    2011-01-01

    Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008). Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create". PMID:21777466

  19. [Ossification of the collagen implant].

    PubMed

    Walter, M; Müller, J M; Keller, H W; Brenner, U

    1985-12-01

    Native collagen type I was studied morphologically and fluorescent-histologically after implantation in bony defects. As criteria for revitalisation we used depth and density of immigration, type of immigrated cells, revascularisation, formation of new cartilage and bone. Furthermore the deposition of fluorochromes was studied. The maximum of cellular immigration was reached after 8 weeks and remained at this level for the period of observation. The implants were impregnated only with fibroblasts and fibrocytes, developing into chondroblasts, chondrocytes, osteoblasts and osteocytes. Only in one case basophilic round-cells could be seen. The centres of the implants were after 6 weeks rarely, after 8 weeks fully revascularized. Formation of new cartilage and bone could be seen after 6 weeks, increasing in number and extension during the observation-period. Osteoneogenesis was performed both by desmal and enchondral ossification, enchondral ossification much more in evidence. The deposition of fluorochromes could be seen in each implant. After 8 weeks fluorochromes could only be seen at the bone-implant interface, after 12 and 16 weeks even the centres were well impregnated. In a single case reossification in a control-rib could be seen as well morphologically as fluorescent-histologically. PMID:2868614

  20. A synthetic zero air standard

    NASA Astrophysics Data System (ADS)

    Pearce, Ruth

    2016-04-01

    A Synthetic Zero Air Standard R. E. Hill-Pearce, K. V. Resner, D. R. Worton, P. J. Brewer The National Physical Laboratory Teddington, Middlesex TW11 0LW UK We present work towards providing traceability for measurements of high impact greenhouse gases identified by the World Meteorological Organisation (WMO) as critical for global monitoring. Standards for these components are required with challengingly low uncertainties to improve the quality assurance and control processes used for the global networks to better assess climate trends. Currently the WMO compatibility goals require reference standards with uncertainties of < 100 nmolmol‑1 for CO2 (northern hemisphere) and < 2 nmolmol‑1 for CH4 and CO. High purity zero gas is required for both the balance gas in the preparation of reference standards and for baseline calibrations of instrumentation. Quantification of the amount fraction of the target components in the zero gas is a significant contributor to the uncertainty and is challenging due to limited availability of reference standard at the amount fraction of the measurand and limited analytical techniques with sufficient detection limits. A novel dilutor was used to blend NPL Primary Reference Gas Mixtures containing CO2, CH4 and CO at atmospheric amount fractions with a zero gas under test. Several mixtures were generated with nominal dilution ratios ranging from 2000:1 to 350:1. The baseline of two cavity ring down spectrometers was calibrated using the zero gas under test after purification by oxidative removal of CO and hydrocarbons to < 1 nmolmol‑1 (SAES PS15-GC50) followed by the removal of CO2 and water vapour to < 100 pmolmol‑1 (SAES MC190). Using the standard addition method.[1] we have quantified the amount fraction of CO, CO2, and CH4 in scrubbed whole air (Scott Marrin) and NPL synthetic zero air. This is the first synthetic zero air standard with a matrix of N2, O2 and Ar closely matching ambient composition with gravimetrically

  1. Growth promoting in vitro effect of synthetic cyclic RGD-peptides on human osteoblast-like cells attached to cancellous bone.

    PubMed

    Magdolen, Ursula; Auernheimer, Jörg; Dahmen, Claudia; Schauwecker, Johannes; Gollwitzer, Hans; Tübel, Jutta; Gradinger, Reiner; Kessler, Horst; Schmitt, Manfred; Diehl, Peter

    2006-06-01

    In tissue engineering, the application of biofunctional compounds on biomaterials such as integrin binding RGD-peptides has gained growing interest. Anchorage-dependent cells like osteoblasts bind to these peptides thus ameliorating the integration of a synthetic implant. In case sterilized bone grafts are used as substitutes for reconstruction of bone defects, the ingrowth of the implanted bone is often disturbed because of severe pretreatment such as irradiation or autoclaving, impairing the biological and mechanical properties of the bone. We report for the first time on the in vitro coating of the surface of freshly resected, cleaned bone discs with synthetic, cyclic RGD-peptides. For this approach, two different RGD-peptides were used, one containing two phosphonate anchors, the other peptide four of these binding moieties to allow efficient association of these reactive RGD-peptides to the inorganic bone matrix. Human osteoblast-like cells were cultured on RGD-coated bone discs and the adherence and growth of the cells were analyzed. Coating of bone discs with RGD-peptides did not improve the adhesion rate of osteoblast-like cells to the discs but significantly (up to 40%) accelerated growth of these cells within 8 days after attachment. This effect points to pretreatment of bone implants, especially at the critical interface area between the implanted bone and the non-resected residual bone structure, before re-implantation in order to stimulate and enhance osteointegration of a bone implant. PMID:16685410

  2. Contact dermatitis after implantable cardiac defibrillator implantation for ventricular tachycardia

    PubMed Central

    Dogan, Pinar; Inci, Sinan; Kuyumcu, Mevlut Serdar; Kus, Ozgur

    2016-01-01

    Summary Pacemaker contact sensitivity is a rare condition. Less than 30 reports of pacemaker skin reactions have been described. We report a 57-year-old woman who underwent an implantable cardiac defibrillator (ICD) implantation for ventricular tachycardia. A skin patch test was positive on almost all components of the pacemaker system. She was treated with topical corticosteroids and skin lesions resolved within 2 weeks. Because of widespread use of various devices, we will see this more often and therefore it is important to recognize this problem and its effective management. PMID:26989652

  3. PROPERTIES OF DEFECTS AND IMPLANTS IN Mg+ IMPLANTED SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Zhu, Zihua; Varga, Tamas; Bowden, Mark E.; Manandhar, Sandeep; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2013-09-25

    As a candidate material for fusion reactor designs, silicon carbide (SiC) under high-energy neutron irradiation undergoes atomic displacement damage and transmutation reactions that create magnesium as one of the major metallic products. The presence of Mg and lattice disorder in SiC is expected to affect structural stability and degrade thermo-mechanical properties that could limit SiC lifetime for service. We have initiated a combined experimental and computational study that uses Mg+ ion implantation and multiscale modeling to investigate the structural and chemical effects in Mg implanted SiC and explore possible property degradation mechanisms.

  4. The sensitivity of cartilage contact pressures in the knee joint to the size and shape of an anatomically shaped meniscal implant.

    PubMed

    Khoshgoftar, M; Vrancken, A C T; van Tienen, T G; Buma, P; Janssen, D; Verdonschot, N

    2015-06-01

    Since meniscal geometry affects the cartilage contact pressures, it is essential to carefully define the geometry of the synthetic meniscal implant that we developed. Recently, six independent modes of size- and shape-related geometry variation were identified through 3D statistical shape modeling (SSM) of the medial meniscus. However, this model did not provide information on the functional importance of these geometry characteristics. Therefore, in this study finite element simulations were performed to determine the influence of anatomically-based meniscal implant size and shape variations on knee cartilage contact pressures. Finite element simulations of the knee joint were performed for a total medial meniscectomy, an allograft, the average implant geometry, six implant sizes and ten shape variations. The geometries of the allograft and all implant variations were based on the meniscus SSM. Cartilage contact pressures and implant tensile strains were evaluated in full extension under 1200N of axial compression. The average implant induced cartilage peak pressures intermediate between the allograft and meniscectomy and also reduced the cartilage area subjected to pressures >5MPa compared to the meniscectomy. The smaller implant sizes resulted in lower cartilage peak pressures and compressive strains than the allograft, yet high implant tensile strains were observed. Shape modes 2, 3 and 6 affected the cartilage contact stresses but to a lesser extent than the size variations. Shape modes 4 and 5 did not result in changes of the cartilage stress levels. The present study indicates that cartilage contact mechanics are more sensitive to implant size than to implant shape. Down-sizing the implant resulted in more favorable contact mechanics, but caused excessive material strains. Further evaluations are necessary to balance cartilage contact pressures and material strains to ensure cartilage protection and longevity of the implant. PMID:25766390

  5. Synthetically Simple, Highly Resilient Hydrogels

    PubMed Central

    Cui, Jun; Lackey, Melissa A.; Madkour, Ahmad E.; Saffer, Erika M.; Griffin, David M.; Bhatia, Surita R.; Crosby, Alfred J.; Tew, Gregory N.

    2014-01-01

    Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were well-controlled by the relative amounts of PEG and PDMS. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639

  6. Multifocal interferometric synthetic aperture microscopy

    PubMed Central

    Xu, Yang; Chng, Xiong Kai Benjamin; Adie, Steven G.; Boppart, Stephen A.; Scott Carney, P.

    2014-01-01

    There is an inherent trade-off between transverse resolution and depth of field (DOF) in optical coherence tomography (OCT) which becomes a limiting factor for certain applications. Multifocal OCT and interferometric synthetic aperture microscopy (ISAM) each provide a distinct solution to the trade-off through modification to the experiment or via post-processing, respectively. In this paper, we have solved the inverse problem of multifocal OCT and present a general algorithm for combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a regularized combination of the resampled datasets to bring advantages of both multifocal OCT and ISAM to achieve optimal transverse resolution, extended effective DOF and improved signal-to-noise ratio. We present theory, simulation and experimental results. PMID:24977909

  7. Multifocal interferometric synthetic aperture microscopy.

    PubMed

    Xu, Yang; Chng, Xiong Kai Benjamin; Adie, Steven G; Boppart, Stephen A; Carney, P Scott

    2014-06-30

    There is an inherent trade-off between transverse resolution and depth of field (DOF) in optical coherence tomography (OCT) which becomes a limiting factor for certain applications. Multifocal OCT and interferometric synthetic aperture microscopy (ISAM) each provide a distinct solution to the trade-off through modification to the experiment or via post-processing, respectively. In this paper, we have solved the inverse problem of multifocal OCT and present a general algorithm for combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a regularized combination of the resampled datasets to bring advantages of both multifocal OCT and ISAM to achieve optimal transverse resolution, extended effective DOF and improved signal-to-noise ratio. We present theory, simulation and experimental results. PMID:24977909

  8. Broadband synthetic aperture geoacoustic inversion.

    PubMed

    Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S

    2013-07-01

    A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment. PMID:23862809

  9. Synthetic biology of antimicrobial discovery.

    PubMed

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  10. Charge Transport in Synthetic Metals

    SciTech Connect

    Emery, V. J.; Kivelson, S. A.; Muthukumar, V. N.

    1999-01-15

    The phenomenology of charge transport in synthetic metals is reviewed. It is argued that the conventional quasiparticle picture and Boltzmann transport theory do not apply to these materials. The central ideas of Fermi liquid theory are reviewed, and the significant corrections produced by quasiparticle scattering from ferromagnetic spin fluctuations in liquid {sup 3}He are described. It is shown that Sr{sub 2}RuO{sub 4} does not display the symptoms of a nearly-ferromagnetic Fermi liquid, so the source of its odd angular momentum pairing remains to be understood. The solution of an assisted-tunneling model of charge transport in quasi-one dimensional materials is described. This model has a quantum critical point and gives a resistivity that is linear in temperature or frequency, whichever is greater.

  11. Nanostructures from Synthetic Genetic Polymers.

    PubMed

    Taylor, Alexander I; Beuron, Fabienne; Peak-Chew, Sew-Yeu; Morris, Edward P; Herdewijn, Piet; Holliger, Philipp

    2016-06-16

    Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano-objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2'-fluro-2'-deoxy-ribofuranose nucleic acid (2'F-RNA), 2'-fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all-FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano-objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability. PMID:26992063

  12. Synthetic biology of antimicrobial discovery

    PubMed Central

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  13. Synthetic Jets in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Yao, C. S.; Chen, F. J.; Neuhart, D.; Harris, J.

    2007-01-01

    An oscillatory jet with zero net mass flow is generated by a cavity-pumping actuator. Among the three test cases selected for the Langley CFD validation workshop to assess the current CFD capabilities to predict unsteady flow fields, this basic oscillating jet flow field is the least complex and is selected as the first test case. Increasing in complexity, two more cases studied include jet in cross flow boundary layer and unsteady flow induced by suction and oscillatory blowing with separation control geometries. In this experiment, velocity measurements from three different techniques, hot-wire anemometry, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV), documented the synthetic jet flow field. To provide boundary conditions for computations, the experiment also monitored the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature.

  14. Synthetically simple, highly resilient hydrogels.

    PubMed

    Cui, Jun; Lackey, Melissa A; Madkour, Ahmad E; Saffer, Erika M; Griffin, David M; Bhatia, Surita R; Crosby, Alfred J; Tew, Gregory N

    2012-03-12

    Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were controlled by the relative amounts of PEG and PDMS. The fracture toughness (G(c)) was increased to 80 J/m(2) as the water content of the hydrogel decreased from 95% to 82%. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639

  15. Synthetic chemistry with nitrous oxide.

    PubMed

    Severin, Kay

    2015-10-01

    This review article summarizes efforts to use nitrous oxide (N2O, 'laughing gas') as a reagent in synthetic chemistry. The focus will be on reactions which are carried out in homogeneous solution under (relatively) mild conditions. First, the utilization of N2O as an oxidant is discussed. Due to the low intrinsic reactivity of N2O, selective oxidation reactions of highly reactive compounds are possible. Furthermore, it is shown that transition metal complexes can be used to catalyze oxidation reactions, in some cases with high turnover numbers. In the final part of this overview, the utilization of N2O as a building block for more complex molecules is discussed. It is shown that N2O can be used as an N-atom donor for the synthesis of interesting organic molecules such as triazenes and azo dyes. PMID:26104268

  16. Engineering life through Synthetic Biology.

    PubMed

    Chopra, Paras; Kamma, Akhil

    2006-01-01

    Synthetic Biology is a field involving synthesis of novel biological systems which are not generally found in nature. It has brought a new paradigm in science as it has enabled scientists to create life from the scratch, hence helping better understand the principles of biology. The viability of living organisms that use unnatural molecules is also being explored. Unconventional projects such as DNA playing tic-tac-toe, bacterial photographic film, etc. are taking biology to its extremes. The field holds a promise for mass production of cheap drugs and programming bacteria to seek-and-destroy tumors in the body. However, the complexity of biological systems make the field a challenging one. In addition to this, there are other major technical and ethical challenges which need to be addressed before the field realizes its true potential. PMID:17274769

  17. Synthetic CA II Triplet Lines

    NASA Astrophysics Data System (ADS)

    Erdelyi, M. M.; Barbuy, B.

    1990-11-01

    RESUMEN. Se hicieron calculos de sintesis del espectro en el ititervalo de longitud de onda - 8700 A, ara ? oder verificar el comporta- mien to de diferentes lineas moleculares y at5micas como funci5n de los parametros esteldres de temperatura, gravedad y metalicidad. El espec- tro sintetico ha sido generado para:(a) todas las , (b) solamente de CN, (c) solamente de TiO, y (d) solamente lineas at6micas. Abstract. Spectrum synthesis calculations are carried out in the wavelength interval X 8300 - 8700 A, in order to verify the behaviour of different molecular and atomic lines as a function of the stellar para meters temperature, gravity and metallicity. Synthetic spectra were ge nerated for: (a) all lines, (b) only CN lines, (c) only TiO lines, and (d) only atomic lines Key `td6: LINE-PROFILE - ST S-AThOSPHERES

  18. Synthetic biology: a utilitarian perspective.

    PubMed

    Smith, Kevin

    2013-10-01

    I examine the positive and negative features of synthetic biology ('SynBio') from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a 'precautionary' approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio. PMID:24010857

  19. Synthetic aperture interferometry: error analysis

    SciTech Connect

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  20. Characterizing synthetic gypsum for wallboard manufacture

    SciTech Connect

    Henkels, P.J.; Gynor, J.C.

    1996-12-31

    United States Gypsum Company (USGC) has developed specifications and guidelines covering the chemical and physical aspects of synthetic gypsum to help predict end use acceptability in wallboard manufacture. These guidelines are based in part on past experiences with natural and synthetic gypsum. Similarly, most wallboard manufacturers in North America have developed their own guidelines based in part on its unique history and particular experiences with synthetic gypsum. While there are similarities between manufacturers` guidelines, differences do exist. This paper discusses the importance of selected parameters contained in the FGD gypsum guidelines. In most cases, the parameters are equally relevant to other synthetic gypsums and the naturally occurring gypsum mineral as well.

  1. Engineering biological systems with synthetic RNA molecules

    PubMed Central

    Liang, Joe C.; Bloom, Ryan J.; Smolke, Christina D.

    2011-01-01

    RNA molecules play diverse functional roles in natural biological systems. There has been growing interest in designing synthetic RNA counterparts for programming biological function. The design of synthetic RNA molecules that exhibit diverse activities, including sensing, regulatory, information processing, and scaffolding activities, has highlighted the advantages of RNA as a programmable design substrate. Recent advances in implementing these engineered RNA molecules as key control elements in synthetic genetic networks are highlighting the functional relevance of this class of synthetic elements in programming cellular behaviors. PMID:21925380

  2. Microorganism Utilization for Synthetic Milk

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  3. Implant rehabilitation in bruxism patient

    PubMed Central

    Goiato, Marcelo Coelho; Sonego, Mariana Vilela; dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas

    2014-01-01

    A white female patient presented to the university clinic to obtain implant retained prostheses. She had an edentulous maxillary jaw and presented three teeth with poor prognosis (33, 34 and 43). The alveolar bone and the surrounding tissues were healthy. The patient did not report any relevant medical history contraindicating routine dental treatment or implant surgery, but self-reported a dental history of asymptomatic nocturnal bruxism. The treatment plan was set and two Branemark protocols supported by six implants in each arch were installed after a 6-month healing period. A soft occlusal splint was made due to the patient's history of bruxism, and the lack of its use by the patient resulted in an acrylic fracture. The prosthesis was repaired and the importance of using the occlusal splint was restated. In the 4-year follow-up no fractures were reported. PMID:24907215

  4. Oral Implant Imaging: A Review

    PubMed Central

    GUPTA, Sarika; PATIL, Neelkant; SOLANKI, Jitender; SINGH, Ravinder; LALLER, Sanjeev

    2015-01-01

    Selecting an appropriate implant imaging technique has become a challenging task since the advent of advanced imaging modalities, and many of these are used for implant imaging. On imaging, the modality should not only consider the anatomy but should also provide dimensional accuracy. Many dentists use the conventional method, mostly orthopantograph (OPG), in their routine practice of implant placement. However, because of the drawbacks associated with OPG, higher technologies, such as computed tomography (CT) and cone beam computed tomography (CBCT), are better accepted. These help improve image sharpness and reduce distortion. These techniques are not used widely due to the cost effect. Therefore, to decide on the type of imaging technique, all associated advantages and disadvantages should be considered, which will be broadly discussed in this review. PMID:26715891

  5. Developmental neuroplasticity after cochlear implantation.

    PubMed

    Kral, Andrej; Sharma, Anu

    2012-02-01

    Cortical development is dependent on stimulus-driven learning. The absence of sensory input from birth, as occurs in congenital deafness, affects normal growth and connectivity needed to form a functional sensory system, resulting in deficits in oral language learning. Cochlear implants bypass cochlear damage by directly stimulating the auditory nerve and brain, making it possible to avoid many of the deleterious effects of sensory deprivation. Congenitally deaf animals and children who receive implants provide a platform to examine the characteristics of cortical plasticity in the auditory system. In this review, we discuss the existence of time limits for, and mechanistic constraints on, sensitive periods for cochlear implantation and describe the effects of multimodal and cognitive reorganization that result from long-term auditory deprivation. PMID:22104561

  6. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant

    PubMed Central

    Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin

    2014-01-01

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain–computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice. PMID:25386727

  7. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.

    PubMed

    Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin

    2014-01-01

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice. PMID:25386727

  8. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  9. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler.

    PubMed

    Morra, Marco; Giavaresi, Gianluca; Sartori, Maria; Ferrari, Andrea; Parrilli, Annapaola; Bollati, Daniele; Baena, Ruggero Rodriguez Y; Cassinelli, Clara; Fini, Milena

    2015-04-01

    The paper presents results of physico-chemical and biological investigations of a surface-engineered synthetic bone filler. Surface analysis confirms that the ceramic phosphate granules present a collagen nanolayer to the surrounding environment. Cell cultures tests show that, in agreement with literature reports, surface-immobilized collagen molecular cues can stimulate progression along the osteogenic pathway of undifferentiated human mesenchymal cells. Finally, in vivo test in a rabbit model of critical bone defects shows statistically significant increase of bone volume and mineral apposition rate between the biomimetic bone filler and collagen-free control. All together, obtained data confirm that biomolecular surface engineering can upgrade the properties of implant device, by promoting more specific and targeted implant-host cells interactions. PMID:25786396

  10. Is degradable antibiotic coating for synthetic meshes provide protection against experimental animal infection after fascia repair?

    PubMed

    Letouzey, Vincent; Lavigne, Jean Philippe; Garric, Xavier; Coudane, Jean; de Tayrac, Renaud; Callaghan, David O

    2012-02-01

    The surgical repair of pelvic organ prolapse using synthetic mesh can fail because of slow or partial implant integration due to poor biocompatibility or infection. As systemic antibiotic prophylaxis has only limited success, we have developed a system that coats standard polypropylene mesh with clinically relevant antibiotics. Amoxicillin and ofloxacin are both released from the mesh in vitro at high levels over 3 days, preventing adhesion and biofilm formation by a clinical isolate of E. coli. In an in vivo incisional hernia repair model in rats, the antibiotic-coated mesh results in appropriate tissue integration with adequate vascularization and collagen formation. When implanted animals are infected with virulent E. coli, both antibiotic coatings provide full protection against infection (as assessed both clinically and microbiologically), thus demonstrating their bioavailability. This method is a specific approach for producing a therapeutic coating that could reduce postsurgical infections. PMID:22102417

  11. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  12. Elderly Benefit from Using Implantable Defibrillators

    MedlinePlus

    ... org Learn More Elderly benefit from using implantable defibrillators June 17, 2013 Categories: Heart News Study Highlights: Older people may benefit from implantable cardioverter defibrillators (ICDs) as much as younger people. Overall health, ...

  13. FDA Approves Implant to Battle Opioid Addiction

    MedlinePlus

    ... gov/medlineplus/news/fullstory_159050.html FDA Approves Implant to Battle Opioid Addiction Experts say steady dosing ... 26, 2016 (HealthDay News) -- A new long-acting implant that can help treat people addicted to heroin ...

  14. FDA Approves Eye Implant for Aging Boomers

    MedlinePlus

    ... medlineplus/news/fullstory_159648.html FDA Approves Eye Implant for Aging Boomers Tiny lens reshapes cornea to ... 2016 THURSDAY, June 30, 2016 (HealthDay News) -- An implant that helps the aging eye focus on small ...

  15. Educational Challenges for Children with Cochlear Implants.

    ERIC Educational Resources Information Center

    Chute, Patricia M.; Nevins, Mary Ellen

    2003-01-01

    This article addresses educational challenges for children with severe to profound hearing loss who receive cochlear implants. Despite the implants, these children face acoustic challenges, academic challenges, attention challenges, associative challenges, and adjustment challenges. (Contains references.) (Author/DB)

  16. MedlinePlus: Pacemakers and Implantable Defibrillators

    MedlinePlus

    ... CA, 10/30/13 Statistics and Research Elderly Benefit from Using Implantable Defibrillators (American Heart Association) Many People with Implantable Defibrillators Can Participate in Vigorous Sports (American Heart Association) Clinical Trials ClinicalTrials.gov: Defibrillators, ...

  17. Physiological and molecular determinants of embryo implantation

    PubMed Central

    Zhang, Shuang; Lin, Haiyan; Kong, Shuangbo; Wang, Shumin; Wang, Hongmei; Wang, Haibin; Armant, D. Randall

    2014-01-01

    Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women. PMID:23290997

  18. FDA Approves Eye Implant for Aging Boomers

    MedlinePlus

    ... fullstory_159648.html FDA Approves Eye Implant for Aging Boomers Tiny lens reshapes cornea to improve focus ... 2016 (HealthDay News) -- An implant that helps the aging eye focus on small print and nearby objects ...

  19. How Does an Implantable Cardioverter Defibrillator Work?

    MedlinePlus

    ... on Twitter. How Does an Implantable Cardioverter Defibrillator Work? An implantable cardioverter defibrillator (ICD) has wires with ... tune the programming of your ICD so it works better to correct irregular heartbeats. The type of ...

  20. Neutrophil Responses to Sterile Implant Materials

    PubMed Central

    Jhunjhunwala, Siddharth; Aresta-DaSilva, Stephanie; Tang, Katherine; Alvarez, David; Webber, Matthew J.; Tang, Benjamin C.; Lavin, Danya M.; Veiseh, Omid; Doloff, Joshua C.; Bose, Suman; Vegas, Arturo; Ma, Minglin; Sahay, Gaurav; Chiu, Alan; Bader, Andrew; Langan, Erin; Siebert, Sean; Li, Jie; Greiner, Dale L.; Newburger, Peter E.; von Andrian, Ulrich H.; Langer, Robert; Anderson, Daniel G.

    2015-01-01

    In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30–500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs) on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices. PMID:26355958

  1. Implants and Ethnocide: Learning from the Cochlear Implant Controversy

    ERIC Educational Resources Information Center

    Sparrow, Robert

    2010-01-01

    This paper uses the fictional case of the "Babel fish" to explore and illustrate the issues involved in the controversy about the use of cochlear implants in prelinguistically deaf children. Analysis of this controversy suggests that the development of genetic tests for deafness poses a serious threat to the continued flourishing of Deaf culture.…

  2. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  3. Augmentation Mammaplasty Using Implants: A Review

    PubMed Central

    2012-01-01

    One of the techniques for augmentation mammaplasty is the procedure using implants. Even though this technique has been used for many years, there are still several controversial issues to be discussed and overcome for patient safety. In this review article, capsular contracture, leak or rupture of the implants, possible systemic disease, relation with breast cancer, and recent problems with Poly Implant Prothese implants are described and discussed. PMID:23094237

  4. Assessing legal responsibility for implant failure.

    PubMed

    Palat, M

    1991-04-01

    The number of malpractice suits related to implants has recently increased significantly, with awards that are among the largest in dentistry. This article discusses the principles involved in assessing liability for implant failure and the various clinical situations that can affect liability in implant practice. The author also provides a list of the interrogatories required of defendants in malpractice suits related to implants. PMID:1893392

  5. Prevalence of peri-implant disease on platform switching implants: a cross-sectional pilot study.

    PubMed

    Duque, Andrés Duque; Aristizabal, Astrid Giraldo; Londoño, Susana; Castro, Lida; Alvarez, Luis Gonzalo

    2016-01-01

    The objective of this study was to assess the prevalence of mucositis and peri-implantitis associated with the use of two types of implants-conventional versus platform switching after one year of loading. A longitudinal study of 64 implants in 25 patients was performed. Clinical variables, such as clinical pocket depth and bleeding upon probing, plaque, mobility, gingival recession, clinical attachment loss, and radiographic bone loss, were analyzed. The case definition for peri-implantitis was established as pockets of ≥ 5 mm with bleeding and bone loss ≥ 2 mm. One year after implant loading, the prevalence of mucositis and peri-implantitis with conventional implants (CIs) was 81.2% and 15.6%, respectively. For platform switching implants (PSIs) the prevalence was 90% and 6.6%, respectively. These differences were not statistically significant (p = 0.5375). However, there was a trend towards a lower prevalence of peri-implantitis with platform switching Implants. PMID:26676197

  6. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  7. An Uncommon Presentation of Breast Implant Rupture

    PubMed Central

    Watson, David I.; Dean, Nicola R.

    2016-01-01

    Summary: Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  8. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  9. Rescuing failed oral implants via Wnt activation

    PubMed Central

    Yin, Xing; Li, Jingtao; Chen, Tao; Mouraret, Sylvain; Dhamdhere, Girija; Brunski, John B.; Zou, Shujuan; Helms, Jill A.

    2016-01-01

    Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over-sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri-implant bone. After fibrous encapsulation was established peri-implant injections of a liposomal formulation of WNT3A protein (L-WNT3A) or liposomal PBS (L-PBS) were then initiated. Quantitative assays were employed to analyse the effects of L-WNT3A treatment. Results Implants in gap-type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L-WNT3A or L-PBS injections were initiated. L-WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri-implant environment, cell proliferation and osteogenic protein expression. The amount of peri-implant bone and bone in contact with the implant were significantly higher in L-WNT3A cases. Conclusions These data demonstrate L-WNT3A can induce peri-implant bone formation even in cases where fibrous encapsulation predominates. PMID:26718012

  10. An Uncommon Presentation of Breast Implant Rupture.

    PubMed

    Koh, Eugene; Watson, David I; Dean, Nicola R

    2016-05-01

    Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  11. Factors Influencing Early Dental Implant Failures.

    PubMed

    Chrcanovic, B R; Kisch, J; Albrektsson, T; Wennerberg, A

    2016-08-01

    The purpose of the present study was to assess the influence of local and systemic factors on the occurrence of dental implant failures up to the second-stage surgery (abutment connection). This retrospective study is based on 2,670 patients who received 10,096 implants and were consecutively treated with implant-supported prostheses between 1980 and 2014 at 1 specialist clinic. Several anatomic-, patient-, health-, and implant-related factors were collected. Descriptive statistics were used to describe the patients and implants. Univariate and multivariate logistic regression models were used at the patient level as well as the implant level to evaluate the effect of explanatory variables on the failure of implants up to abutment connection. A generalized estimating equation method was used for the implant-level analysis to account for the fact that repeated observations (several implants) were available for a single patient. Overall, 642 implants (6.36%) failed, of which 176 (1.74%) in 139 patients were lost up to second-stage surgery. The distribution of implants in sites of different bone quantities and qualities was quite similar between implants lost up to and after abutment connection. Smoking and the intake of antidepressants were the statistically significant predictors in the multivariate model (ClinicalTrials.gov NCT02369562). PMID:27146701

  12. [The elementary discussion on digital implant dentistry].

    PubMed

    Su, Y C

    2016-04-01

    It is a digital age today. Exposed to all kinds of digital products in many fields. Certainly, implant dentistry is not exception. Digitalization could improve the outcomes and could decrease the complications of implant dentistry. This paper introduces the concepts, definitions, advantages, disadvantages, limitations and errors of digital implant dentistry. PMID:27117209

  13. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas

    2009-05-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  14. Synthetic biology: programming cells for biomedical applications.

    PubMed

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry. PMID:23502560

  15. 21 CFR 175.250 - Paraffin (synthetic).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.250 Paraffin (synthetic). Synthetic paraffin may be safely used as an impregnant in, coating on, or component of coatings on articles used in...

  16. Synthetic biology: from mainstream to counterculture.

    PubMed

    Sleator, Roy D

    2016-09-01

    Existing at the interface of science and engineering, synthetic biology represents a new and emerging field of mainstream biology. However, there also exists a counterculture of Do-It-Yourself biologists, citizen scientists, who have made significant inroads, particularly in the design and development of new tools and techniques. Herein, I review the development and convergence of synthetic biology's mainstream and countercultures. PMID:27316777

  17. 78 FR 22209 - Additional Synthetic Drug Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... COMMISSION 10 CFR Part 26 Additional Synthetic Drug Testing AGENCY: Nuclear Regulatory Commission. ACTION... NRC amend its Fitness for Duty program regulations to amend drug testing requirements to test for additional synthetic drugs currently not included in the regulations. The NRC determined that the...

  18. Opportunities for microfluidic technologies in synthetic biology

    PubMed Central

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed. PMID:19474079

  19. Synergistic Synthetic Biology: Units in Concert

    PubMed Central

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  20. Welded-woven fabrics for use as synthetic, minimally invasive orthopaedic implants

    NASA Astrophysics Data System (ADS)

    Rodts, Timothy W.

    The treatment of osteoarthritis in healthcare today focuses on minimizing pain and retaining mobility. Osteoarthritis of the knee is a common disease and known to be associated with traumatic injuries, among other factors. An identified trend is that patients are younger and have expectations of life with the preservation of an active lifestyle. As a result, great strain is placed on the available offerings of healthcare professionals and device manufacturers alike. This results in numerous design challenges for managing pain and disease over an extended period of time. The available treatments are being extended into younger populations, which increasingly suffer traumatic knee injuries. However, these patients are not good candidates for total joint replacement. A common problem for young patients is localized cartilage damage. This can heal, but often results in a painful condition that requires intervention. A welded-woven three-dimensional polymer fabric was developed to mimic the properties of articular cartilage. A process for the laser welding reinforcement of the surface layers of three-dimensional fabrics was investigated. Confined compression creep and pin-on-disc wear studies were conducted to characterize the contribution of the surface welding reinforcement. All materials used in the studies have previously been used in orthopaedic devices or meet the requirements for United States Pharmacopeial Convention (USP) Class VI biocompatibility approval. The compressive behavior of three-dimensional fabrics was tailored by the inclusion of surface welds. The compressive properties of the welded-woven fabrics were shown to better approximate articular cartilage compressive properties than conventional woven materials. The wear performance was benchmarked against identical fabrics without welding reinforcement. The wear rates were significantly reduced and the lifespan of the fabrics was markedly improved due to surface welding. Welding reinforcement offers a strengthening mechanism as well as a damage-resistant and damage-tolerant treatment for three-dimensional fabrics. Additionally, the concept of reinforcing three-dimensional fabrics in general has been proven and is transferrable to many industries and applications. The manufacturing approaches are scalable and robust.

  1. Synthetic implant surfaces. 1. The formation and characterization of sol-gel titania films.

    PubMed

    Haddow, D B; Kothari, S; James, P F; Short, R D; Hatton, P V; van Noort, R

    1996-03-01

    Sol-gel has been used to prepare thin titania films. We have investigated the effects of dip rate, sintering temperature and time on the chemical composition of the films, their physical structure and thickness, and adherence to a silica substrate. Our aim has been to produce films that mimic as closely as possible the natural oxide layer that is found on titanium. These films are to be used as substrates in an in vitro model of osseointegration. PMID:8991481

  2. Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation

    PubMed Central

    Schmid, Patricia C.; Paria, B. C.; Krebsbach, Randy J.; Schmid, Harald H. O.; Dey, S. K.

    1997-01-01

    Anandamide (N-arachidonoylethanolamine) is an endogenous ligand for both the brain-type (CB1-R) and spleen-type (CB2-R) cannabinoid receptors. This investigation demonstrates that the periimplantation mouse uterus contains the highest levels of anandamide (142–1345 pmol/μmol lipid P; 1–7 μg/g wet weight) yet discovered in a mammalian tissue. The levels fluctuate with the state of pregnancy; down-regulation of anandamide levels is associated with uterine receptivity, while up-regulation is correlated with uterine refractoriness to embryo implantation. Anandamide levels are highest during the nonreceptive phase in the pseudopregnant uterus and in the interimplantation sites, and lowest at the site of embryo implantation. The lower levels of uterine anandamide at the implantation sites may be a mechanism by which implanting embryos protect themselves from the detrimental effects of this endogenous ligand. We also observed a reduced rate of zona-hatching of blastocysts in vitro in the presence of anandamide, and inhibition of implantation by systemic administration of a synthetic cannabinoid agonist CP 55,940. These adverse effects were reversed by SR141716A, a specific CB1-R antagonist. Taken together, the results suggest that an aberrant synthesis of anandamide and/or expression of the cannabinoid receptors in the uterus/embryo may account for early pregnancy failure or female infertility. PMID:9108127

  3. Biomechanical, Topological and Chemical Features That Influence the Implant Success of an Urogynecological Mesh: A Review

    PubMed Central

    De Maria, Carmelo; Santoro, Vito

    2016-01-01

    Synthetic meshes are normally used to treat several diseases in the field of urogynecological surgery. Not-optimal selection of mesh and/or its not-correct implant may increase patient's pain and discomfort. The knowledge of mechanical behaviour and topological and chemical properties of a mesh plays a fundamental role to minimize patient's suffering and maximize the implant success. We analysed several papers reporting the meshes application for urogynecological pathologies, to extrapolate the principal parameters that normally are used to characterise the biomechanical, topological, and chemical properties, and to verify their influence on implant success. In this way we want demonstrate that, knowing these features, it is possible to foresee the success of a mesh implant. This review shows that the application of a mesh strictly depends on elastic modulus, failure load, porosity and pore size, filament diameter, polymer weight, and crystallinity. To increase the success of the implant and to help choice of optimal mesh for a clinical need, two indexes have been proposed for comparing, in an easier way, the mechanical performance of different commercially available meshes. PMID:27239469

  4. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  5. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  6. Bioceramic Coatings for Orthopaedic Implants

    SciTech Connect

    Campbell, Allison A.

    2003-11-02

    During the past century, man-made materials and devices have been developed to the point at which they have been used successfully to replace and/or restore function to diseased or damaged tissues. In the field of orthopaedics, the use of metal implants has significantly improved the quality of life for countless individuals. Critical factors for implant success include proper design, material selection, and biocompatibility. While early research focused on the understanding biomechanical properties of the metal device, recent work has turned toward improving the biological properties of these devices. This has lead to the introduction of calcium phosphate (CaP) bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first calcium phosphate coatings where produced via vapor phase routes but more recently, there has been the emergence of solution based and biomimetic methods. While each approach has its own intrinsic materials and biological properties, in general CaP coatings have the promise to improve implant biocompatibility and ultimately implant longevity.

  7. Wearable and implantable pancreas substitutes.

    PubMed

    Ricotti, Leonardo; Assaf, Tareq; Dario, Paolo; Menciassi, Arianna

    2013-03-01

    A lifelong-implanted and completely automated artificial or bioartificial pancreas (BAP) is the holy grail for type 1 diabetes treatment, and could be a definitive solution even for other severe pathologies, such as pancreatitis and pancreas cancer. Technology has made several important steps forward in the last years, providing new hope for the realization of such devices, whose feasibility is strictly connected to advances in glucose sensor technology, subcutaneous and intraperitoneal insulin pump development, the design of closed-loop control algorithms for mechatronic pancreases, as well as cell and tissue engineering and cell encapsulation for biohybrid pancreases. Furthermore, smart integration of the mentioned components and biocompatibility issues must be addressed, bearing in mind that, for mechatronic pancreases, it is most important to consider how to recharge implanted batteries and refill implanted insulin reservoirs without requiring periodic surgical interventions. This review describes recent advancements in technologies and concepts related to artificial and bioartificial pancreases, and assesses how far we are from a lifelong-implanted and self-working pancreas substitute that can fully restore the quality of life of a diabetic (or other type of) patient. PMID:22990986

  8. Contamination Control in Ion Implantation

    SciTech Connect

    Eddy, R.; Doi, D.; Santos, I.; Wriggins, W.

    2011-01-07

    The investigation and elimination or control of metallic contamination in ion implanters has been a leading, continuous effort at implanter OEMs and in fabs/IDMs alike. Much of the efforts have been in the area of control of sputtering through material and geometry changes in apertures, beamline and target chamber components. In this paper, we will focus on an area that has not, heretofore, been fully investigated or controlled. This is the area of lubricants and internal and external support material such as selected cleaning media. Some of these materials are designated for internal use (beamline/vacuum) only while others are for internal and/or external use. Many applications for selected greases, for example, are designated for or are used for platens, implant disks/wheels and for wafer handling components. We will present data from popular lubricants (to be unnamed) used worldwide in ion implanters. This paper will review elements of concern in many lubricants that should be tracked and monitored by all fabs.Proper understanding of the characteristics, risks and the control of these potential contaminants can provide for rapid return to full process capability following major PMs or parts changes. Using VPD-ICPMS, Glow Discharge Mass Spectrometry and Ion Chromatography (IC) data, we will review the typical cleaning results and correlation to ''on wafer'' contamination by elements of concern--and by some elements that are otherwise barred from the fab.

  9. The evolution of breast implants.

    PubMed

    Maxwell, G Patrick; Gabriel, Allen

    2009-01-01

    Female glandular hypomastia is a frequently encountered entity that occurs either developmentally or by postpartum involution. Historically, women have long sought breast enlargement to improve physical proportions, to foster a more feminine appearance, or to enhance self-image. This article explores the evolution of breast implants. PMID:19055956

  10. Sterility of packaged implant components.

    PubMed

    Worthington, Philip

    2005-01-01

    Several implant components in their original glass vial and peel-back packages were subjected to sterility testing to determine whether the contents remained sterile after the expiration date marked on the package had passed. The results from a university microbiology laboratory showed that the contents remained sterile for 6 to 11 years after the expiration dates. PMID:15973959

  11. Cortical Plasticity after Cochlear Implantation

    PubMed Central

    Petersen, B.; Gjedde, A.; Wallentin, M.; Vuust, P.

    2013-01-01

    The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing. PMID:24377050

  12. Advancing Binaural Cochlear Implant Technology

    PubMed Central

    McAlpine, David

    2015-01-01

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies. PMID:26721929

  13. Effectiveness of Implant Therapy Analyzed in a Swedish Population: Prevalence of Peri-implantitis.

    PubMed

    Derks, J; Schaller, D; Håkansson, J; Wennström, J L; Tomasi, C; Berglundh, T

    2016-01-01

    Peri-implantitis is an inflammatory disease affecting soft and hard tissues surrounding dental implants. As the global number of individuals that undergo restorative therapy through dental implants increases, peri-implantitis is considered as a major and growing problem in dentistry. A randomly selected sample of 588 patients who all had received implant-supported therapy 9 y earlier was clinically and radiographically examined. Prevalence of peri-implantitis was assessed and risk indicators were identified by multilevel regression analysis. Forty-five percent of all patients presented with peri-implantitis (bleeding on probing/suppuration and bone loss >0.5 mm). Moderate/severe peri-implantitis (bleeding on probing/suppuration and bone loss >2 mm) was diagnosed in 14.5%. Patients with periodontitis and with ≥4 implants, as well as implants of certain brands and prosthetic therapy delivered by general practitioners, exhibited higher odds ratios for moderate/severe peri-implantitis. Similarly, higher odds ratios were identified for implants installed in the mandible and with crown restoration margins positioned ≤1.5 mm from the crestal bone at baseline. It is suggested that peri-implantitis is a common condition and that several patient- and implant-related factors influence the risk for moderate/severe peri-implantitis (ClinicalTrials.gov NCT01825772). PMID:26701919

  14. Nanostructures from Synthetic Genetic Polymers

    PubMed Central

    Beuron, Fabienne; Peak‐Chew, Sew‐Yeu; Morris, Edward P.; Herdewijn, Piet

    2016-01-01

    Abstract Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano‐objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2′‐fluro‐2′‐deoxy‐ribofuranose nucleic acid (2′F‐RNA), 2′‐fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all‐FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano‐objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability. PMID:26992063

  15. Pyrazoloquinazolines: Synthetic strategies and bioactivities.

    PubMed

    Garg, Mansi; Chauhan, Monika; Singh, Pankaj Kumar; Alex, Jimi Marin; Kumar, Raj

    2015-06-01

    Numerous N-heterocycles are indisputably evidenced to exhibit myriad biological activities. In the recent past, attempts made to condense the various heterocycles have resulted in derivatives possessing better bioactivities. Among many such condensed heterocycles, pyrazoloquinazolines have managed to hold the attention of many researchers, owing to the broad spectrum of activities they portray. This review is the first of its kind to congregate the various pyrazoloquinazolines reported until now and categorizes these structurally isomeric classes into eleven different groups based on the fusion pattern of the ring such as [1,5-c], [5,1-b], [4,3-h], etc. Furthermore, this review is a concerted effort to highlight design, synthetic strategies as well as biological activities of each class of this condensed heterocycle. Structure-activity relationship studies and in silico approaches wherever reported have also been discussed. In addition, manuscript also offers scope for design, synthesis and generation of libraries of unreported classes of pyrazoloquinazolines for the biological evaluation. PMID:25438709

  16. Online professionalism: A synthetic review.

    PubMed

    Chretien, Katherine C; Tuck, Matthew G

    2015-04-01

    The rise of social media has increased connectivity and blurred personal and professional boundaries, bringing new challenges for medical professionalism. Whether traditional professionalism principles apply to the online social media space remains unknown. The purpose of this synthetic literature review was to characterize the original peer-reviewed research studies published between 1 January 2000-1 November 2014 on online professionalism, to assess methodologies and approaches used, and to provide insights to guide future studies in this area. The investigators searched three databases and performed manual searches of bibliographies to identify the 32 studies included. Most studies originated in the USA. Cross-sectional surveys and analyses of publicly available online content were the most common methodologies employed. Studies covered the general areas of use and privacy, assessment of unprofessional online behaviours, consensus-gathering of what constitutes unprofessional or inappropriate online behaviours, and education and policies. Studies were of variable quality; only around half of survey studies had response rates of 50% or greater. Medical trainees were the most common population studied. Future directions for research include public perspectives of online professionalism, impact on patient trust, and how to use social media productively as medical professionals. PMID:25804627

  17. Synthetic Landau levels for photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  18. Synthetic Landau levels for photons.

    PubMed

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons. PMID:27281214

  19. The major synthetic evolutionary transitions

    PubMed Central

    Solé, Ricard

    2016-01-01

    Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528

  20. Urinary Bisphenol A Concentrations and Implantation Failure among Women Undergoing in Vitro Fertilization

    PubMed Central

    Ehrlich, Shelley; Williams, Paige L.; Missmer, Stacey A.; Flaws, Jodi A.; Berry, Katharine F.; Calafat, Antonia M.; Ye, Xiaoyun; Petrozza, John C.; Wright, Diane

    2012-01-01

    Background: Bisphenol A (BPA) is a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins found in numerous consumer products. In experimental animals, BPA increases embryo implantation failure and reduces litter size. Objective: We evaluated the association of urinary BPA concentrations with implantation failure among women undergoing in vitro fertilization (IVF). Methods: We used online solid phase extraction–high performance liquid chromatography–isotope dilution tandem mass spectrometry to measure urinary BPA concentrations in 137 women in a prospective cohort study among women undergoing IVF at the Massachusetts General Hospital Fertility Center in Boston, Massachusetts. We used logistic regression to evaluate the association of cycle-specific urinary BPA concentrations with implantation failure, accounting for correlation among multiple IVF cycles in the same woman using generalized estimating equations. Implantation failure was defined as a negative serum β-human chorionic gonadotropin test (β-hCG < 6 IU/L) 17 days after egg retrieval. Results: Among 137 women undergoing 180 IVF cycles, urinary BPA concentrations had a geometric mean (SD) of 1.53 (2.22) µg/L. Overall, 42% (n = 75) of the IVF cycles resulted in implantation failure. In adjusted models, there was an increased odds of implantation failure with higher quartiles of urinary BPA concentrations {odds ratio (OR) 1.02 [95% confidence interval (CI): 0.35, 2.95}, 1.60 (95% CI: 0.70, 3.78), and 2.11 (95% CI: 0.84, 5.31) for quartiles 2, 3, and 4, respectively, compared with the lowest quartile (p-trend = 0.06). Conclusion: There was a positive linear dose–response association between BPA urinary concentrations and implantation failure. PMID:22484414

  1. IMPORTANCE OF COCHLEAR HEALTH FOR IMPLANT FUNCTION

    PubMed Central

    Pfingst, Bryan E.; Zhou, Ning; Colesa, Deborah J.; Watts, Melissa M.; Strahl, Stefan B.; Garadat, Soha N.; Schvartz-Leyzac, Kara C.; Budenz, Cameron L.; Raphael, Yehoash; Zwolan, Teresa A.

    2014-01-01

    Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. PMID:25261772

  2. Peri-implant esthetics assessment and management

    PubMed Central

    Balasubramaniam, Aarthi S.; Raja, Sunitha V.; Thomas, Libby John

    2013-01-01

    Providing an esthetic restoration in the anterior region of the mouth has been the basis of peri-implant esthetics. To achieve optimal esthetics, in implant supported restorations, various patient and tooth related factors have to be taken into consideration. Peri-implant plastic surgery has been adopted to improve the soft tissue and hard tissue profiles, during and after implant placement. The various factors and the procedures related to enhancement of peri-implant esthetics have been discussed in this review article. PMID:23878557

  3. [Digital implant impression taking - an overview].

    PubMed

    Mahl, Dominik; Glenz, Fabienne; Marinello, Carlo P

    2014-01-01

    In dentist's daily practice, intraoral scanning systems are increased. Besides scanning of prepared teeth, also implants could be scanned intraorally. This clinical report describes the step-by-step techniques to scan digitally intraoral implants with two intraoral scanners (Lava™ C.O.S., 3M Espe and the CEREC AC connected with inLab MC XL, Sirona) for generating implant suprastructures without the use of impression materials, dental stone or implant impression copings. Different workflows, possibilities and limits by scanning dental implants are demonstrated. PMID:24585419

  4. Breast implants as a preventive factor.

    PubMed

    Vincent, N; Barletta, L; Laguens, M

    2008-09-01

    After a large number of patients with silicone breast implants worldwide had been evaluated [2, 9], it was concluded that such implants were not carcinogenic. This allowed for experimentation with rats to determine the benefits and potential risks associated with implants. By means of a high-precision monitor, temperature measurements were obtained from 100 silicone-implanted rats. These measurements then were divided into various groups to compare the reaction of their implanted and nonimplanted mammary glands at different hormone levels. The temperature measurements were analyzed and compared. Dysthermia was detected in the skin area immediately overlying the implant. The results also demonstrated that at high hormone levels, implants act as neutralizing agents. By contrast, glandular alterations with severe signs of anisocytosis and anisokoryosis were observed in nonimplanted glands. PMID:18551342

  5. [Metal implant sensitivity: clinical and histological presentation].

    PubMed

    Hartmann, D; Letulé, V; Schneider, J J; Flaig, M J

    2016-05-01

    Metal implant sensitivity (intolerance) can cause pain, reduced mobility, loosening of the implant and skin rashes. Knowledge of differential diagnoses, histology and appropriate diagnostics are essential for proper diagnosis. To outline typical clinical signs and histology in metal-implant-associated skin lesions we present three exemplary patients from our implant allergy outpatient department and give an overview of the current literature regarding metal implant sensitivity. In patients with a negative patch test the lymphocyte transformation test may reveal metal sensitization. Even "pure" titanium alloys may contain traces of nickel. The histology of implant-associated skin reactions goes from teleangiectatic postimplantation erythema to eczema and vasculitis. Based on the synopsis of history, clinical picture, allergological testing and histology, metal implant sensitivity can be diagnosed more precisely. PMID:27090521

  6. Audiological results with the cochlear implant.

    PubMed

    Thielemeir, M A; Brimacombe, J A; Eisenberg, L S

    1982-01-01

    Audiological test results from 135 adult, profoundly deaf, single-electrode cochlear implant subjects are presented. Unaided, aided, and cochlear implant warble-tone and speech detection thresholds have been analyzed, as well as word, word stress, and environmental sound discrimination scores. Results indicate that implant thresholds are significantly better than aided thresholds at all frequencies tested and for speech detection. Also, word, word stress, and environmental sound discrimination scores are all significantly better with the implant than with a hearing aid. Although the implant does not provide speech discrimination, subjects report that it does provide valuable speech and sound awareness, which aids in speechreading and voice monitoring. A small group of subjects has shown that an an implant in the poorer ear can also be successfully combined with a hearing aid in the better ear. The audiological test results clearly show that the implant is a viable alternative for the profoundly deaf. PMID:6805394

  7. Implant failure: regional versus cumulative evaluation.

    PubMed

    Lauc, T; Krnić, D; Katanec, D

    2000-07-01

    In this paper the success rate of implant therapy in various bone regions is discussed. The objective is to determine whether differences existed in success rates of cylinder implants placed in different areas in the both maxilla and mandible. Forty four patients have been treated and reviewed five years after the placement of the fixed prosthetic restoration. The patients were provided with a total of 92 implants. Results from this study show very low survival rate for implants placed in anterior region of maxilla (55.6%) after five years. It is concluded that simple cumulative follow up studies do not entirely correspond to actual situations, positioning the implants has an important role in the planning of the implant therapy and that important factor for force compensation is not only the surrounding bone density, but also the region of the jaw where the implants are placed. PMID:10946471

  8. Channeling implants of boron in silicon

    NASA Astrophysics Data System (ADS)

    Raineri, V.; Galvagno, G.; Rimini, E.; La Ferla, A.; Capizzi, S.; Carnera, A.; Ferla, G.

    1991-04-01

    80 keV B + ions were implanted in <100> Si with a high-current implanter. The wafers were irradiated at 0° and 7°. The feasibility of the 0° implants was checked testing the influence of several geometrical parameters, such as the twist angle and the flex angle, on the shape and uniformity of the ion depth distributions. The damage generated by a high-fluence B + implant was lower for the 0° implanted samples and the disorder evolution was analyzed after different annealing processes were performed in the 600-120°C temperature range. Agglomeration and dissolution of extended defects in the 0° implanted samples occurs at temperatures 100° C lower than those in the 7° implanted samples.

  9. Early History and Challenges of Implantable Electronics

    PubMed Central

    KO, WEN H.

    2013-01-01

    Implantable systems for biomedical research and clinical care are now a flourishing field of activities in academia as well as industrial institutions. The broad field includes experimental explorations in electronics, mechanical, chemical, and biological components and systems, and the combination of all these. Today virtually all implants involve both electronic circuits and micro-electro-mechanical-systems (MEMS). This article offers a very brief glance back at the early history of implant electronics in the period from the 1950s to the 1970s, by employing selected examples from the author’s research. This short review also discusses the challenges of implantable electronics at present, and suggests some potentially important trends in the future research and development of implantable microsystems. It is aimed as an introduction of implantable/attached electronic systems to research engineers that are interested in implantable systems as a section of Biomedical Instrumentations. PMID:24791159

  10. Implant fractures: Rare but not exceptional.

    PubMed

    Sanivarapu, Sahitya; Moogla, Srinivas; Kuntcham, Rupa Sruthi; Kolaparthy, Lakshmi Kanth

    2016-01-01

    Fabrication of dentures aided with implants has become a preferred treatment option for rehabilitation of completely and partially edentulous patients when durability is concerned. Simulation to natural teeth in terms of esthetics and to a greater extent in function can be considered as key elements in the raise of implant dentistry worldwide. Despite its high success rate, therapy with osseointegrated dental implants is not free of complications. Implant failure can occur for other reasons, with implant fracture being one of the major reasons for late failure. Although the incidence of implant fractures may be low, it invariably effects the patient and also clinician. Thus, sound evidence based knowledge of cause of fracture is mandatory for that careful treatment that can reduce the incidence of fracture helping in a better treatment plan. The aim of this review is to enlighten the various causes of implant fracture. PMID:27041830

  11. Implant fractures: Rare but not exceptional

    PubMed Central

    Sanivarapu, Sahitya; Moogla, Srinivas; Kuntcham, Rupa Sruthi; Kolaparthy, Lakshmi Kanth

    2016-01-01

    Fabrication of dentures aided with implants has become a preferred treatment option for rehabilitation of completely and partially edentulous patients when durability is concerned. Simulation to natural teeth in terms of esthetics and to a greater extent in function can be considered as key elements in the raise of implant dentistry worldwide. Despite its high success rate, therapy with osseointegrated dental implants is not free of complications. Implant failure can occur for other reasons, with implant fracture being one of the major reasons for late failure. Although the incidence of implant fractures may be low, it invariably effects the patient and also clinician. Thus, sound evidence based knowledge of cause of fracture is mandatory for that careful treatment that can reduce the incidence of fracture helping in a better treatment plan. The aim of this review is to enlighten the various causes of implant fracture. PMID:27041830

  12. Functional fusion of living systems with synthetic electrode interfaces.

    PubMed

    Staufer, Oskar; Weber, Sebastian; Bengtson, C Peter; Bading, Hilmar; Spatz, Joachim P; Rustom, Amin

    2016-01-01

    The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events

  13. Implantation of nitrogen: Effects of hydrogen and implantation energy

    NASA Technical Reports Server (NTRS)

    Sugiura, Naoji; Futagami, Tsuneji; Nagai, Siro

    1993-01-01

    To solve the question on solar nitrogen in lunar soils, i.e. variation in isotopic composition and apparently high retentivity compared with rare gases, nitrogen implantation experiments were conducted. At the Meteoritical Society Meeting in Copenhagen, the results of stepped combustion of implanted nitrogen in ilmenite and olivine were presented. The degassing behavior of nitrogen (and also Ar) was quite different from that observed in the case of lunar soils. Extraction temperatures are higher (greater than 1100 C for ilmenite and 1500 C for olivine) than that for lunar soils. Both nitrogen and Ar seem to be retained at the same efficiency. Therefore, additional experiments were conducted to make degassing behavior of nitrogen more close to that observed in the case of lunar soils.

  14. Synthetic Biology: Mapping the Scientific Landscape

    PubMed Central

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  15. Small Molecule Proprotein Convertase Inhibitors for Inhibition of Embryo Implantation

    PubMed Central

    Ho, Huiting; Singh, Harmeet; Heng, Sophea; Nero, Tracy L.; Paule, Sarah; Parker, Michael W.; Johnson, Alan T.; Jiao, Guan-Sheng; Nie, Guiying

    2013-01-01

    Uterine proprotein convertase (PC) 6 plays a critical role in embryo implantation and is pivotal for pregnancy establishment. Inhibition of PC6 may provide a novel approach for the development of non-hormonal and female-controlled contraceptives. We investigated a class of five synthetic non-peptidic small molecule compounds that were previously reported as potent inhibitors of furin, another PC member. We examined (i) the potency of these compounds in inhibiting PC6 activity in vitro; (ii) their binding modes in the PC6 active site in silico; (iii) their efficacy in inhibiting PC6-dependent cellular processes essential for embryo implantation using human cell-based models. All five compounds showed potent inhibition of PC6 activity in vitro, and in silico docking demonstrated that these inhibitors could adopt a similar binding mode in the PC6 active site. However, when these compounds were tested for their inhibition of decidualization of primary human endometrial stromal cells, a PC6-dependent cellular process critical for embryo implantation, only one (compound 1o) showed potent inhibition. The lack of activity in the cell-based assay may reflect the inability of the compounds to penetrate the cell membrane. Because compound's lipophilicity is linked to cell penetration, a measurement of lipophilicity (logP) was calculated for each compound. Compound 1o is unique as it appears the most lipophilic among the five compounds. Compound 1o also inhibited another crucial PC6-dependent process, the attachment of human trophoblast spheroids to endometrial epithelial cells (a model for human embryo attachment). We thus identified compound 1o as a potent small molecule PC6 inhibitor with pharmaceutical potential to inhibit embryo implantation. Our findings also highlight that human cell-based functional models are vital to complement the biochemical and in silico analyses in the selection of promising drug candidates. Further investigations for compound 1o are warranted in

  16. Mini vs. Standard Implants for Mandibular Overdentures: A Randomized Trial.

    PubMed

    de Souza, R F; Ribeiro, A B; Della Vecchia, M P; Costa, L; Cunha, T R; Reis, A C; Albuquerque, R F

    2015-10-01

    A mandibular implant-retained overdenture is considered a first-choice treatment for edentulism. However, some aspects limit the use of standard implants-for example, the width of edentulous ridges, chronic diseases, fear, or costs. This randomized trial compared mandibular overdentures retained by 2 or 4 mini-implants with standard implants, considering oral health-related quality of life (OHRQoL), patient satisfaction, and complications such as lost implant. In sum, 120 edentulous men and women (mean age, 59.5 ± 8.5 y) randomly received 4 mini-implants, 2 mini-implants, or 2 standard implants. Participants provided data regarding OHRQoL and satisfaction until 12 mo. Clinical parameters, including implant survival rate, were also recorded. Both 2 and 4 mini-implants led to better OHRQoL, compared with 2 standard implants. Treatment with 4 mini-implants was more satisfying than 2 standard implants, with 2 mini-implants presenting intermediate results. Implant survival rate was 89%, 82%, and 99% for 4 mini-implants, 2 mini-implants, or 2 standard implants, respectively. Overdentures retained by 4 or 2 mini-implants can achieve OHRQoL and satisfaction at least comparable with that of 2 standard implants. However, the survival rate of mini implants is not as high as that of standard implants (ClinicalTrials.gov NCT01411683). PMID:26294416

  17. [Evaluation of asymetric implants in breast cancer].

    PubMed

    Fitoussi, A; Couturaud, B; Laki, F; Alran, S; Salmon, R J

    2005-10-01

    Since more than twenty years, methods of breast reconstruction using implants have continued to evolve in order to improve their aesthetic results. Shapes and materials of these implants have also evolved to obtain contours similar to that of the natural opposite breast. Therefore it can be considered that the use of asymmetric implants is the last step in implant technology before using made to measure implants. Asymmetric implants allow obtaining different contours in harmony to the different breast shapes according to the side, left or right, of the reconstructed breast which maximise the naturalness of the result. Such implants have an axis directed towards the exterior and lower part of the chest wall, are wider than high with a thinner part on their inner edge and a concave rear side moulding the curves of the chest wall. In our own experience, we placed more than 500 asymmetric implants. When analysing retrospectively the medical records of 156 patients, no distinctive features were observed when compared to symmetric classic implants in easiness in the surgical procedure or in complications except a slightly higher rate of seroma formation. When compared to usual implants the main benefits of asymmetric implants are: to offer a wider breadth, to slope down gently on their upper and inner sides according to their concave rear side, and therefore to better match subtle curves of a normal breast. Moreover such contours allow a distribution of the volume which fit better to the usual natural breast configuration of patients who underwent surgery for breast carcinoma. At last, such implants are easy to place and a very low rate of secondary rotation has been observed. In summary, for all these reasons, asymmetric implants, can be considered to be the class one in the choice of implants for breast reconstruction after breast surgery. PMID:16198040

  18. Bacterial Adhesion at Synthetic Surfaces

    PubMed Central

    Cunliffe, D.; Smart, C. A.; Alexander, C.; Vulfson, E. N.

    1999-01-01

    A systematic investigation into the effect of surface chemistry on bacterial adhesion was carried out. In particular, a number of physicochemical factors important in defining the surface at the molecular level were assessed for their effect on the adhesion of Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The primary experiments involved the grafting of groups varying in hydrophilicity, hydrophobicity, chain length, and chemical functionality onto glass substrates such that the surfaces were homogeneous and densely packed with functional groups. All of the surfaces were found to be chemically well defined, and their measured surface energies varied from 15 to 41 mJ · m−2. Protein adsorption experiments were performed with 3H-labelled bovine serum albumin and cytochrome c prior to bacterial attachment studies. Hydrophilic uncharged surfaces showed the greatest resistance to protein adsorption; however, our studies also showed that the effectiveness of poly(ethyleneoxide) (PEO) polymers was not simply a result of its hydrophilicity and molecular weight alone. The adsorption of the two proteins approximately correlated with short-term cell adhesion, and bacterial attachment for L. monocytogenes and E. coli also correlated with the chemistry of the underlying substrate. However, for S. aureus and S. typhimurium a different pattern of attachment occurred, suggesting a dissimilar mechanism of cell attachment, although high-molecular-weight PEO was still the least-cell-adsorbing surface. The implications of this for in vivo attachment of cells suggest that hydrophilic passivating groups may be the best method for preventing cell adsorption to synthetic substrates provided they can be grafted uniformly and in sufficient density at the surface. PMID:10543814

  19. Effects of the Synthetic Neurosteroid

    PubMed Central

    Parésys, Lucie; Hoffmann, Kerstin; Bianchi, Massimiliano; Villey, Isabelle; Baulieu, Etienne-Emile; Fuchs, Eberhard

    2016-01-01

    Background: Most currently available active antidepressant drugs are selective serotonin/noradrenaline reuptake inhibitors. However, as their clinical efficacy is not immediate, long-term administration is often accompanied by substantial side effects, and numerous patients remain non- or partial responders. We have recently found that the synthetic neurosteroid derivative 3β-methoxypregnenolone, which binds to the microtubule-associated protein-2, can provide a novel therapeutic approach in experimental model of depressive disorders in rats. To further validate the antidepressant-like efficacy of 3β-methoxypregnenolone, we investigated effects of a longer treatment (4-week oral administration; 50mg/kg/d) in a nonrodent species, the tree shrew, exposed to psychosocial stress that elicits close-to-human alterations observed in patients with depressive disorders. Methods: During the experimental period, physiological parameters were registered, including core body temperature and electroencephalogram, while animals were videotaped to analyze their avoidance behavior. Morning urine samples were collected for measurements of cortisol and noradrenaline levels. Results: We found that treatment with 3β-methoxypregnenolone abolished stress-triggered avoidance behavior and prevented hormone hypersecretion, hypothermia, and sleep disturbances, further suggesting its antidepressant-like efficacy. Comparative treatment with fluoxetine also prevented some of the physiological alterations, while the hypersecretion of cortisol and sleep disturbances were not or partially restored by fluoxetine, suggesting a better efficacy of 3β-methoxypregnenolone. Alpha-tubulin isoforms were measured in hippocampi: we found that 3β-methoxypregnenolone reversed the specific decrease in acetylation of α-tubulin induced by psychosocial stress, while it did not modify the psychosocial stress-elicited reduction of tyrosinated α-tubulin. Conclusions: Taken together, these data strongly suggest

  20. [Mammary implant selection or chest implants fabrication with computer help].

    PubMed

    Chavoin, J-P; André, A; Bozonnet, E; Teisseyre, A; Arrue, J; Moreno, B; Gangloff, D; Grolleau, J-L; Garrido, I

    2010-10-01

    Authors present their personal and original experience in the use of computer to enhance the precision in the good choice of volumes and shapes in the field of mammary reconstruction and aesthetic augmentation (800 cases). Concerning funnel chest (163 cases) and Poland syndrome (12 cases), they use computer-assisted conception and custom-made implants, much more precise than traditional plaster cast. PMID:20864242

  1. Decontamination of dental implant surface in peri-implantitis treatment: A literature review

    PubMed Central

    Buitrago-Vera, Pedro; Solá-Ruiz, María F.; Ferrer-García, Juan C.

    2013-01-01

    Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics. Key words:Peri-implantitis, treatment, decontamination, implant surface, laser. PMID:23986023

  2. ['Which breast implant do I have?'; the importance of the Dutch Breast Implant Registry].

    PubMed

    Hommes, Juliëtte; Mureau, Marc A M; Harmsen, Manuel; Rakhorst, Hinne

    2015-01-01

    About 1 in 300 women in the Netherlands has a breast implant but many patients do not know what type of implant was inserted. The quality of breast implants is currently monitored by the implant manufacturers. Sufficient incidents have occurred to show that an independent registry is required to measure the quality of breast implants and to facilitate a national recall, if necessary. Good national and international collaboration with the government, the manufacturers and other specialist associations is crucial for setting up an implant registry. Since April 2015, data about patients and their implants have been collected, independently and prospectively, in the Dutch Breast Implant Registry to increase patient safety in cases of breast implant surgery in the Netherlands. PMID:26980465

  3. Successful Rehabilitation of Partial Edentulous Maxilla and Mandible with New Type of Implants: Molecular Precision Implants

    PubMed Central

    Danza, Matteo; Carinci, Francesco

    2014-01-01

    The extraction of teeth results in rapid bone resorption both vertically and horizontally in the first month. The loss of alveolar ridge reduces the chance of implant rehabilitation. Atraumatic extraction, implant placement in extraction socket, and an immediate prosthesis have been proposed as alternative therapies to maintain the volume and contours tissue and reduce time and cost of treatment. The immediate load of implants is a universally practiced procedure; nevertheless a successful procedure requires expertise in both the clinical and the reconstructive stages using a solid implant system. Excellent primary stability and high bone-implant contact are only minimal requirements for any type of implant procedure. In this paper we present a case report using a new type of implants. The new type of implants, due to its sophisticated control system of production, provides to the implantologist a safe and reliable implant, with a macromorphology designed to ensure a close contact with the surrounding bone. PMID:25525437

  4. Does the number of implants have any relation with peri-implant disease?

    PubMed Central

    PASSONI, Bernardo Born; DALAGO, Haline Renata; SCHULDT FILHO, Guenther; OLIVEIRA DE SOUZA, João Gustavo; BENFATTI, César Augusto Magalhães; MAGINI, Ricardo de Souza; BIANCHINI, Marco Aurélio

    2014-01-01

    Objective The aim of this study was to evaluate the relationship between the number of pillar implants of implant-supported fixed prostheses and the prevalence of periimplant disease. Material and Methods Clinical and radiographic data were obtained for the evaluation. The sample consisted of 32 patients with implant-supported fixed prostheses in function for at least one year. A total of 161 implants were evaluated. Two groups were formed according to the number of implants: G1) ≤5 implants and G2) >5 implants. Data collection included modified plaque index (MPi), bleeding on probing (BOP), probing depth (PD), width of keratinized mucosa (KM) and radiographic bone loss (BL). Clinical and radiographic data were grouped for each implant in order to conduct the diagnosis of mucositis or peri-implantitis. Results Clinical parameters were compared between groups using Student's t test for numeric variables (KM, PD and BL) and Mann-Whitney test for categorical variables (MPi and BOP). KM and BL showed statistically significant differences between both groups (p<0.001). Implants from G1 – 19 (20.43%) – compared with G2 – 26 (38.24%) – showed statistically significant differences regarding the prevalence of peri-implantitis (p=0.0210). Conclusion It seems that more than 5 implants in total fixed rehabilitations increase bone loss and consequently the prevalence of implants with periimplantitis. Notwithstanding, the number of implants does not have any influence on the prevalence of mucositis. PMID:25466474

  5. Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology.

    PubMed

    De Felice, Louis J; Glennon, Richard A; Negus, Sidney S

    2014-02-27

    This mini-review summarizes the history of cathinone and its synthesized derivatives from early records to the present day, including the appearance of synthetic cathinones in the drug combination known as bath salts. Bath salts may consist of one compound (MDPV) or combinations of MDPV and one or more other synthetic cathinones, which may also appear alone without MDPV. We briefly review recent in vitro studies of bath salts components alone or in combination, focusing on pharmacological and biophysical studies. Finally we summarize new data from in vivo procedures that characterize the abuse-related neurochemical and behavioral effects of synthetic cathinones in rats. PMID:24231923

  6. Synthetic promoter design for new microbial chassis

    PubMed Central

    Gilman, James; Love, John

    2016-01-01

    The judicious choice of promoter to drive gene expression remains one of the most important considerations for synthetic biology applications. Constitutive promoter sequences isolated from nature are often used in laboratory settings or small-scale commercial production streams, but unconventional microbial chassis for new synthetic biology applications require well-characterized, robust and orthogonal promoters. This review provides an overview of the opportunities and challenges for synthetic promoter discovery and design, including molecular methodologies, such as saturation mutagenesis of flanking regions and mutagenesis by error-prone PCR, as well as the less familiar use of computational and statistical analyses for de novo promoter design. PMID:27284035

  7. Synthetic promoter design for new microbial chassis.

    PubMed

    Gilman, James; Love, John

    2016-06-15

    The judicious choice of promoter to drive gene expression remains one of the most important considerations for synthetic biology applications. Constitutive promoter sequences isolated from nature are often used in laboratory settings or small-scale commercial production streams, but unconventional microbial chassis for new synthetic biology applications require well-characterized, robust and orthogonal promoters. This review provides an overview of the opportunities and challenges for synthetic promoter discovery and design, including molecular methodologies, such as saturation mutagenesis of flanking regions and mutagenesis by error-prone PCR, as well as the less familiar use of computational and statistical analyses for de novo promoter design. PMID:27284035

  8. Grand challenges in space synthetic biology.

    PubMed

    Menezes, Amor A; Montague, Michael G; Cumbers, John; Hogan, John A; Arkin, Adam P

    2015-12-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  9. Synthetic Cathinones: Chemical Phylogeny, Physiology, and Neuropharmacology

    PubMed Central

    De Felice, Louis J; Glennon, Richard A; Negus, Sidney S

    2014-01-01

    This mini-review summarizes the history of cathinone and its synthesized derivatives from early records to the present day, including the appearance of synthetic cathinones in the drug combination known as bath salts. Bath salts may consist of one compound (MDPV) or combinations of MDPV and one or more other synthetic cathinones, which may also appear alone without MDPV. We briefly review recent in vitro studies of bath salts components alone or in combination, focusing on pharmacological and biophysical studies. Finally we summarize new data from in vivo procedures that characterize the abuse-related neurochemical and behavioral effects of synthetic cathinones in rats. PMID:24231923

  10. Grand challenges in space synthetic biology

    PubMed Central

    Montague, Michael G.; Cumbers, John; Hogan, John A.

    2015-01-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  11. Selective laser sintering of calcium phosphate materials for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  12. Dental implants with versus without peri-implant bone defects treated with guided bone regeneration

    PubMed Central

    Peñarrocha-Oltra, David; Peñarrocha-Diago, Maria; Peñarrocha-Diago, Miguel

    2015-01-01

    Background The guided bone regeneration (GBR) technique is highly successful for the treatment of peri-implant bone defects. The aim was to determine whether or not implants associated with GBR due to peri-implant defects show the same survival and success rates as implants placed in native bone without defects. Material and Methods Patients with a minimum of two submerged dental implants: one suffering a dehiscence or fenestration defect during placement and undergoing simultaneous guided bone regeneration (test group), versus the other entirely surrounded by bone (control group) were treated and monitored annually for three years. Complications with the healing procedure, implant survival, implant success and peri-implant marginal bone loss were assessed. Statistical analysis was performed with non-parametric tests setting an alpha value of 0.05. Results Seventy-two patients and 326 implants were included (142 test, 184 control). One hundred and twenty-five dehiscences (average height 1.92±1.11) and 18 fenestrations (average height 3.34±2.16) were treated. At 3 years post-loading, implant survival rates were 95.7% (test) and 97.3% (control) and implant success rates were 93.6% and 96.2%, respectively. Mean marginal bone loss was 0.54 (SD 0.26 mm) for the test group and 0.43 (SD 0.22 mm) for the control group. No statistically significant differences between both groups were found. Conclusions Within the limits of this study, implants with peri-implant defects treated with guided bone regeneration exhibited similar survival and success rates and peri-implant marginal bone loss to implants without those defects. Large-scale randomized controlled studies with longer follow-ups involving the assessment of esthetic parameters and hard and soft peri-implant tissue stability are needed. Key words:Guided bone regeneration, peri-implant defects, dental implants, marginal bone level, success rate, survival rate. PMID:26330931

  13. Histopathology of Ossicular Grafts and Implants in Chronic Otitis Media

    PubMed Central

    Bahmad, Fayez; Merchant, Saumil N.

    2008-01-01

    Objectives We describe the histopathology of ossicular grafts and implants so as to provide insight into factors that may influence functional results after surgery for chronic otitis media. Methods Histopathologic observations were made on 56 cases: 50 surgical specimens and 6 temporal bone cases in which the graft was sectioned in situ. Results and Conclusions Autogenous malleus, incus, and cortical bone grafts behaved in a similar manner and maintained their morphological size, shape, and contour for extended periods of time, at least up to 30 years. These histopathologic observations support the continued use of autograft ossicular and cortical bone grafts for middle ear reconstruction. Cartilage grafts developed chondromalacia with resulting loss of stiffness and showed a tendency to undergo resorption. Synthetic prostheses made of porous plastic (Plastipore, Polycel) elicited foreign body giant cell reactions with various degrees of biodegradation of the implants. Prostheses made of hydroxyapatite and Bioglass were enveloped by a lining of connective tissue and mucosal epithelium. The Bioglass material was broken down into small fragments and partially resorbed by a host response within the middle ear. These results warrant caution in the use of prostheses made of porous plastic or Bioglass. PMID:17419521

  14. Laser bioengineering of glass-titanium implants surface

    NASA Astrophysics Data System (ADS)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  15. Implants of aluminum into silicon

    NASA Astrophysics Data System (ADS)

    Galvagno, G.; Scandurra, A.; Raineri, V.; Rimini, E.; La Ferla, A.; Sciascia, V.; Frisina, F.; Raspagliesi, M.; Ferla, G.

    1993-04-01

    The electrical behaviour of ion implanted aluminum into silicon was investigated by varying the beam energy in the 80 keV-6 MeV range, the dose in the 1 × 10 13-1 × 10 14/cm 2 range and the annealing procedure. Aluminum atoms precipitate into exten defects at the end of range damage and where the concentration exceeds the solid solubility value (about 2 × 10 19/cm 3 at 1200°C Escape of Al atoms occurs very easily as soon as they reach the external surface during the thermal diffusion. Using high energy implants, 6 MeV, it was possible to follow in detail the broadening of the diffused profiles. The measured trends between the retained dose and the junction depth and between the outdiffused dose and the annealing time are quite well predicted by the solution of the diffusion equation with the surface acting as a perfect sink for the dopant.

  16. Microsystem technologies for ophtalmological implants

    NASA Astrophysics Data System (ADS)

    Mokwa, Wilfried

    2003-01-01

    Due to the low power consumption CMOS electronics is ideal for the use in implanted systems. This paper presents two projects working on ophthalmological implants. Both systems are powered by an external RF-field. One system has been developed to measure the intraocular pressure continuously which is important for the therapy of glaucoma patients. The system consists of a micro coil and an integrated pressure transponder chip built into an artificial soft lens. A second example is a very complex system for epiretinal stimulation of the nerve cells of the retina. With such a system it might be possible to give blind people that are suffering from retinitis pigmentosa some visual contact to their surrounding.

  17. Pacemakers and implantable cardioverter defibrillators.

    PubMed

    Allen, M

    2006-09-01

    An increasing number of patients are now treated cardiac pacemakers and implantable cardioverter defibrillators and the technology of these is constantly changing. It is vital to have a good understanding of how they function and what the real risks are. Understanding how the device should work when functioning normally, and the possible effects of electromagnetic interference, is paramount to their safe management in the peri-operative period. Knowing when a device should be disabled or reprogrammed requires careful consideration. Information from the patient's pacemaker clinic should be sought whenever possible and can be invaluable. In addition, the Medicines Healthcare products Regulatory Agency have published the first set of UK guidelines on the management of implantable devices in the presence of surgical diathermy and this will undoubtedly provide a firm foundation on which anaesthetists can base much of their practice. PMID:16922756

  18. Inorganic-organic thin implant coatings deposited by lasers.

    PubMed

    Sima, Felix; Davidson, Patricia M; Dentzer, Joseph; Gadiou, Roger; Pauthe, Emmanuel; Gallet, Olivier; Mihailescu, Ion N; Anselme, Karine

    2015-01-14

    The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 μg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials. PMID:25485841

  19. Implantable telemetry for small animals

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG.

  20. Implantable telemetry for small animals

    NASA Astrophysics Data System (ADS)

    1982-03-01

    A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG.

  1. Dental Implants Installed in Irradiated Jaws

    PubMed Central

    Chambrone, L.; Mandia, J.; Shibli, J.A.; Romito, G.A.; Abrahao, M.

    2013-01-01

    The aim of this study was to assess the survival rate of titanium implants placed in irradiated jaws. MEDLINE, EMBASE, and CENTRAL were searched for studies assessing implants that had been placed in nongrafted sites of irradiated patients. Random effects meta-analyses assessed implant loss in irradiated versus nonirradiated patients and in irradiated patients treated with hyperbaric oxygen (HBO) therapy. Of 1,051 potentially eligible publications, 15 were included. A total of 10,150 implants were assessed in the included studies, and of these, 1,689 (14.3%) had been placed in irradiated jaws. The mean survival rate in the studies ranged from 46.3% to 98.0%. The pooled estimates indicated a significant increase in the risk of implant failure in irradiated patients (risk ratio: 2.74; 95% confidence interval: 1.86, 4.05; p < .00001) and in maxillary sites (risk ratio: 5.96; 95% confidence interval: 2.71, 13.12; p < .00001). Conversely, HBO therapy did not reduce the risk of implant failure (risk ratio: 1.28; 95% confidence interval: 0.19, 8.82; p = .80). Radiotherapy was linked to higher implant failure in the maxilla, and HBO therapy did not improve implant survival. Most included publications reported data on machined implants, and only 3 studies on HBO therapy were included. Overall, implant therapy appears to be a viable treatment option for reestablishing adequate occlusion and masticatory conditions in irradiated patients. PMID:24158336

  2. Computerized implant-dentistry: Advances toward automation

    PubMed Central

    Gulati, Minkle; Anand, Vishal; Salaria, Sanjeev Kumar; Jain, Nikil; Gupta, Shilpi

    2015-01-01

    Advancements in the field of implantology such as three-dimensional imaging, implant-planning software, computer-aided-design/computer-aided-manufacturing (CAD/CAM) technology, computer-guided, and navigated implant surgery have led to the computerization of implant-dentistry. This three-dimensional computer-generated implant-planning and surgery has not only enabled accurate preoperative evaluation of the anatomic limitations but has also facilitated preoperative planning of implant positions along with virtual implant placement and subsequently transferring the virtual treatment plans onto the surgical phase via static (guided) or dynamic (navigated) systems aided by CAD/CAM technology. Computerized-implant-dentistry being highly predictable and minimally invasive in nature has also allowed implant placement in patients with medical comorbidities (e.g. radiation therapy, blood dyscrasias), in patients with complex problems following a significant alteration of the bony anatomy as a result of benign or malignant pathology of the jaws or trauma and in patients with other physical and emotional problems. With significant achievements accomplished in the field of computerized implant-dentistry, attempts are now been made toward complete automation of implant-dentistry. PMID:25810585

  3. Miniscrew implant applications in contemporary orthodontics.

    PubMed

    Chang, Hong-Po; Tseng, Yu-Chuan

    2014-03-01

    The need for orthodontic treatment modalities that provide maximal anchorage control but with minimal patient compliance requirements has led to the development of implant-assisted orthodontics and dentofacial orthopedics. Skeletal anchorage with miniscrew implants has no patient compliance requirements and has been widely incorporated in orthodontic practice. Miniscrew implants are now routinely used as anchorage devices in orthodontic treatment. This review summarizes recent data regarding the interpretation of bone data (i.e., bone quantity and quality) obtained by preoperative diagnostic computed tomography (CT) or by cone-beam computed tomography (CBCT) prior to miniscrew implant placement. Such data are essential when selecting appropriate sites for miniscrew implant placement. Bone characteristics that are indications and contraindications for treatment with miniscrew implants are discussed. Additionally, bicortical orthodontic skeletal anchorage, risks associated with miniscrew implant failure, and miniscrew implants for nonsurgical correction of occlusal cant or vertical excess are reviewed. Finally, implant stability is compared between titanium alloy and stainless steel miniscrew implants. PMID:24581210

  4. Short dental implants: a systematic review.

    PubMed

    Annibali, S; Cristalli, M P; Dell'Aquila, D; Bignozzi, I; La Monaca, G; Pilloni, A

    2012-01-01

    Growing evidence has suggested the utility of short dental implants for oral reconstructive procedures in clinical situations of limited vertical bone height. The aim of this review was to systematically evaluate clinical studies of implants < 10 mm in length, to determine short implant-supported prosthesis success in the atrophic jaw. Implant survival, incidence of biological and biomechanical complications, and radiographic peri-implant marginal bone loss were evaluated. Screening of eligible studies, quality assessment, and data extraction were conducted by two reviewers independently. Meta-analyses were performed by the pooling of survival data by implant surface, surgical technique, implant location, type of edentulism, and prosthetic restoration. Two randomized controlled trials and 14 observational studies were selected and analyzed for data extraction. In total, 6193 short-implants were investigated from 3848 participants. The observational period was 3.2 ± 1.7 yrs (mean ± SD). The cumulative survival rate (CSR) was 99.1% (95%CI: 98.8-99.4). The biological success rate was 98.8% (95%CI: 97.8-99.8), and the biomechanical success rate was 99.9% (95%CI: 99.4-100.0). A higher CSR was reported for rough-surfaced implants. The provision of short implant-supported prostheses in patients with atrophic alveolar ridges appears to be a successful treatment option in the short term; however, more scientific evidence is needed for the long term. PMID:22034499

  5. Biological Applications of Synthetic Nanomachines

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel Robert

    The field of synthetic nano/microscale propulsion devices has been rapidly expanding because of their ability to possess many key features necessary for bioanalytical applications on biological microchip devices and targeted in vivo delivery. Past studies focused on developing powerful and easily controllable motors by investigating different propulsion schemes (e.g. electrophoretic, bubble release, magnetically propelled) for use in physiological environments. These engineering advancements and the nanomotors inherit capabilities have allowed for their use in three research areas: motion-based biosensing, cellular and biomolecular isolation, and targeted drug delivery. The first research area investigates a unique speed increase of electrophoretically propelled nanomotors when in the presence of silver ions. Au/Pt nanomotors propel by the electrocatalytic decomposition of H2O2 fuel. While most metal ions resulted in a decrease in speed to near Brownian levels, Ag+ has shown a steady increase in speed from 10microm/s to 52microm/s over the micro-molar range. This phenomenon was exploited by tagging nucleic acid detector probes with Ag nanoparticles when conducting simple sandwich assays. This resulted in a cheap, fast, and sensitive, motion-based readout of the concentration-dependent DNA target present on the sandwich assay. The second area of research involved the bioisolation of nucleic acids, protein, bacteria, and cancer cells by bubble-based microrockets. These microrockets contain a platinum interior to catalyze peroxide fuel and can be easily functionalized with antibodies and nucleic acid capture probes to isolate target biomolecules. The motion of these micro-isolation devices creates convection for faster isolation and can be used to transport the biomolecules to a clean environment. The third area of research is focused on targeted drug delivery by various propulsion methods. The ability of nanomotors to transport PLGA and liposome drug vesicles to

  6. Validation and acceptance of synthetic infrared imagery

    NASA Astrophysics Data System (ADS)

    Smith, Moira I.; Bernhardt, Mark; Angell, Christopher R.; Hickman, Duncan; Whitehead, Philip; Patel, Dilip

    2004-08-01

    This paper describes the use of an image query database (IQ-DB) tool as a means of implementing a validation strategy for synthetic long-wave infrared images of sea clutter. Specifically it was required to determine the validity of the synthetic imagery for use in developing and testing automatic target detection algorithms. The strategy adopted for exploiting synthetic imagery is outlined and the key issues of validation and acceptance are discussed in detail. A wide range of image metrics has been developed to achieve pre-defined validation criteria. A number of these metrics, which include post processing algorithms, are presented. Furthermore, the IQ-DB provides a robust mechanism for configuration management and control of the large volume of data used. The implementation of the IQ-DB is reviewed in terms of its cardinal point specification and its central role in synthetic imagery validation and EOSS progressive acceptance.

  7. Synthetic analogs of bacterial quorum sensors

    SciTech Connect

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  8. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi; Ganguly, Kumkum; Silks, Louis A.

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  9. Synthetic Aperture Radar Missions Study Report

    NASA Technical Reports Server (NTRS)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  10. Synthetic biology of fungal natural products

    PubMed Central

    Mattern, Derek J.; Valiante, Vito; Unkles, Shiela E.; Brakhage, Axel A.

    2015-01-01

    Synthetic biology is an ever-expanding field in science, also encompassing the research area of fungal natural product (NP) discovery and production. Until now, different aspects of synthetic biology have been covered in fungal NP studies from the manipulation of different regulatory elements and heterologous expression of biosynthetic pathways to the engineering of different multidomain biosynthetic enzymes such as polyketide synthases or non-ribosomal peptide synthetases. The following review will cover some of the exemplary studies of synthetic biology in filamentous fungi showing the capacity of these eukaryotes to be used as model organisms in the field. From the vast array of different NPs produced to the ease for genetic manipulation, filamentous fungi have proven to be an invaluable source for the further development of synthetic biology tools. PMID:26284053

  11. Principles for designing synthetic microbial communities.

    PubMed

    Johns, Nathan I; Blazejewski, Tomasz; Gomes, Antonio Lc; Wang, Harris H

    2016-06-01

    Advances in synthetic biology to build microbes with defined and controllable properties are enabling new approaches to design and program multispecies communities. This emerging field of synthetic ecology will be important for many areas of biotechnology, bioenergy and bioremediation. This endeavor draws upon knowledge from synthetic biology, systems biology, microbial ecology and evolution. Fully realizing the potential of this discipline requires the development of new strategies to control the intercellular interactions, spatiotemporal coordination, robustness, stability and biocontainment of synthetic microbial communities. Here, we review recent experimental, analytical and computational advances to study and build multi-species microbial communities with defined functions and behavior for various applications. We also highlight outstanding challenges and future directions to advance this field. PMID:27084981

  12. Contour-Mapping Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C.

    1985-01-01

    Airborne two-antenna synthetic-aperture-radar (SAR) interferometric system provides data processed to yield terrain elevation as well as reflectedintensity information. Relative altitudes of terrain points measured to within error of approximately 25 m.

  13. Eliminating Clutter in Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    Diffusion technique reduces clutter noise in coherent SAR (synthetic-aperature radar) image signal without degrading its resolution. Technique makes radar-mapped terrain features more obvious.It also has potential application in holographic microscopy.

  14. Action against contraceptive implant threatened.

    PubMed

    Dyer, C

    1995-08-19

    Norplant provides contraception over a five-year period through the gradual subcutaneous release of the progestogen levonorgestrel. It has been on the US market since 1991 and available in Great Britain since 1993. Already the subject of group legal actions in several US states, Norplant may soon be the target of lawyers in Britain for litigation. The lawyers allege that insertion of the implant under the skin of the upper arm by untrained doctors has led to painful and difficult removals and left women with scarred arms. Moreover, insufficient warning has been given about possible side effects such as mood swings and continuous vaginal bleeding. Hoechst Roussel, marketer of the implant in Britain, however, argues that only doctors trained in Norplant insertion and removal should attempt either procedure. Removal will be problematic only if preceded by a problem insertion. Hoechst Roussel recently advised gynecologists, in writing, not to attempt to extract the implant unless they are trained in the removal technique. By British law, the application of a drug product once approved for general release to general practitioners and family planning doctors cannot be restricted by a pharmaceutical company. PMID:7647639

  15. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. PMID:25500631

  16. Tissue response to peritoneal implants

    NASA Technical Reports Server (NTRS)

    Picha, G. J.

    1980-01-01

    Peritoneal implants were fabricated from poly 2-OH, ethyl methacrylate (HEMA), polyetherurethane (polytetramethylene glycol 1000 MW, 1,4 methylene disocynate, and ethyl diamine), and untreated and sputter treated polytetrafluoroethylene (PTFE). The sputter treated PTFE implants were produced by an 8 cm diameter argon ion source. The treated samples consisted of ion beam sputter polished samples, sputter etched samples (to produce a microscopic surface cone texture) and surface pitted samples (produced by ion beam sputtering to result in 50 microns wide by 100 microns deep square pits). These materials were implanted in rats for periods ranging from 30 minutes to 14 days. The results were evaluated with regard to cell type and attachment kinetics onto the different materials. Scanning electron microscopy and histological sections were also evaluated. In general the smooth hydrophobic surfaces attracted less cells than the ion etched PTFE or the HEMA samples. The ion etching was observed to enhance cell attachment, multinucleated giant cell (MNGC) formation, cell to cell contact, and fibrous capsule formation. The cell responsed in the case of ion etched PTFE to an altered surface morphology. However, equally interesting was the similar attachment kinetics of HEMA verses the ion etched PTFE. However, HEMA resulted in a markedly different response with no MNGC's formation, minimal to no capsule formation, and sample coverage by a uniform cell layer.

  17. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  18. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  19. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  20. Infrared spectra of natural and synthetic malachites

    NASA Astrophysics Data System (ADS)

    Schuiskii, A. V.; Zorina, M. L.

    2013-09-01

    IR absorption and reflection spectra of dark and light samples of natural and synthetic malachite over 400-4000 cm-1 are studied for the purpose of improving the synthesis technique and in order to distinguish between natural malachite and malachite grown from ammonia solutions. Nitrogen was not detected in the IR spectra or in microprobe analyses of the synthetic material. The differences found in the IR spectra were insignificant and cannot be regarded as distinctive indicators of these materials.