Sample records for phosphorylation promotes cholangiocarcinoma

  1. Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.

    PubMed

    Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S

    2017-05-01

    Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. CXCL7 promotes proliferation and invasion of cholangiocarcinoma cells.

    PubMed

    Guo, Qian; Jian, Zhixiang; Jia, Baoqing; Chang, Liang

    2017-02-01

    CXCL7 is an important chemoattractant cytokine, which signals through binding to its receptor CXCR2. Recent studies have demonstrated that the CXCL7/CXCR2 signaling plays a promoting role in several common malignancies, including lung, renal, colon, and breast cancer. However, the regulatory role of CXCL7, in cholangiocarcinoma, as well as the underlying mechanism, has not been previously reported. Herein, we found more positive expression of CXCL7 in cholangiocarcinoma tissues compared to adjacent non-tumor tissues. High CXCL7 expression was significantly correlated with poor differentiation, lymph node metastasis, vascular invasion and advanced clinical stage, but was not associated with age, gender, or tumor size. Besides, the expression of CXCL7 was significantly associated with the Ki67 expression, but not associated with CA199, AFP, or P53 expression in cholangiocarcinoma. Moreover, the overall survival of cholangiocarcinoma patients with high CXCL7 expression was significantly shorter than those with low CXCL7 expression. In vitro study indicated that CXCL7 and CXCR2 were also positively expressed in several common cholangiocarcinoma cell lines, including HuCCT1, HuH28, QBC939, EGI-1, OZ and WITT. SiRNA-induced inhibition of CXCL7 significantly reduced the proliferation and invasion of QBC939 cells. On the contrary, overexpression of CXCL7 markedly promoted these malignant phenotypes of QBC939 cells. Of note, the conditioned medium of CXCL7-overexpresing human hepatic stellate cells could also promote the proliferation and invasion of QBC939 cells, suggesting that CXCL7 may also play an oncogenic role in cholangiocarcinoma in a paracrine-dependent manner, not only in an autocrine-dependent manner. Molecular assay data suggested that the AKT signaling pathway was involved in the CXCL7-mediated malignant phenotypes of QBC939 cells. In summary, our study suggests that CXCL7 plays a promoting role in regulating the growth and metastasis of cholangiocarcinoma.

  3. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.

    PubMed

    Peng, Hong; Zhang, Qiuyang; Li, Jiali; Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-03-29

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC.

  4. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-01-01

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384

  5. Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion.

    PubMed

    Zhao, Haiying; Yang, Fuquan; Zhao, Wenyan; Zhang, Chunjv; Liu, Jingang

    2016-04-01

    Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma. © The Author(s) 2015.

  6. YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells is Regulated by LCK and Independent of LATS Activity.

    PubMed

    Sugihara, Takaaki; Werneburg, Nathan W; Hernandez, Matthew C; Yang, Lin; Kabashima, Ayano; Hirsova, Petra; Yohanathan, Lavanya; Sosa, Carlos; Truty, Mark Joseph; Vasmatzis, George; Gores, Gregory J; Smoot, Rory L

    2018-06-14

    The hippo pathway effector, Yes-associated protein (YAP) is a transcriptional co-activator implicated in cholangiocarcinoma (CCA) pathogenesis. YAP is known to be regulated by a serine/threonine kinase relay module (MST1/2 - LATS1/2) culminating in phosphorylation of YAP at Serine 127 (S127) and cytoplasmic sequestration. However, YAP also undergoes tyrosine phosphorylation, and the role of tyrosine phosphorylation in YAP regulation remains unclear. Herein, YAP regulation by tyrosine phosphorylation was examined in human and mouse CCA cells, as well as patient-derived xenograft (PDX) models. YAP was phosphorylated on tyrosine 357 (Y357) in CCA cell lines and PDX models. SRC family kinase (SFK) inhibition with dasatinib resulted in loss of YAPY357 phosphorylation, promoted its translocation from the nucleus to the cytoplasm, and reduced YAP target gene expression; including cell lines expressing a LATS1/2-resistant YAP mutant in which all serine residues were mutated to alanine. Consistent with these observations, precluding YAPY357 phosphorylation by site-directed mutagenesis (YAPY357F) excluded YAP from the nucleus. Targeted siRNA experiments identified LCK as the SFK that most potently mediated YAPY357 phosphorylation. Likewise, inducible CRISPR/Cas9-targeted LCK deletion decreased YAPY357 phosphorylation and its nuclear localization. The importance of LCK in CCA biology was demonstrated by clinical observations suggesting LCK expression levels were associated with early tumor recurrence following resection of CCA. Finally, dasatinib displayed therapeutic efficacy in PDX models. Demonstration of targetable, LCK-mediated YAP tyrosine phosphorylation in CCA regulating YAP's nuclear retention and oncogenic activity. Copyright ©2018, American Association for Cancer Research.

  7. MicroRNA-26a Promotes Cholangiocarcinoma Growth by Activating β-catenin

    PubMed Central

    Zhang, Jinqiang; Han, Chang; Wu, Tong

    2013-01-01

    Background & Aims MicroRNAs (miRNAs) have been implicated in the development and progression of human cancers. We investigated the roles and mechanisms of miR-26a in human cholangiocarcinoma. Methods We used in situ hybridization and quantitative reverse transcriptase polymerase chain reaction to measure expression of miR-26a in human cholangiocarcinoma tissues and cell lines (eg, CCLP1, SG231, HuCCT1, TFK1). Human cholangiocarcinoma cell lines were transduced with lentiviruses that expressed miR-26a1 or a scrambled sequence (control); proliferation and colony formation were analyzed. We analyzed growth of human cholangiocarcinoma cells that overexpress miR-26a or its inhibitor in severe combined immune-deficient mice. Immunoblot, immunoprecipitation, DNA pull-down, immunofluorescence, and luciferase reporter assays were used to measure expression and activity of glycogen synthase kinase (GSK)-3β, β-catenin, and related signaling molecules. Results Human cholangiocarcinoma tissues and cell lines had increased levels of miR-26a compared with the noncancerous biliary epithelial cells. Overexpression of miR-26a increased proliferation of cholangiocarcinoma cells and colony formation in vitro, whereas miR-26 depletion reduced these parameters. In severe combined immune-deficient mice, overexpression of miR-26a by cholangiocarcinoma cells increased tumor growth and overexpression of the miR-26a inhibitor reduced it. GSK-3β messenger RNA was identified as a direct target of miR-26a by computational analysis and experimental assays. miR-26a–mediated reduction of GSK-3β resulted in activation of β-catenin and induction of several downstream genes including c-Myc, cyclinD1, and peroxisome proliferator-activated receptor δ. Depletion of β-catenin partially prevented miR-26a-induced tumor cell proliferation and colony formation. Conclusions miR-26a promotes cholangiocarcinoma growth by inhibition of GSK-3β and subsequent activation of β-catenin. These signaling

  8. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism.

    PubMed

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2012-02-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.

  9. Integrin β6 serves as an immunohistochemical marker for lymph node metastasis and promotes cell invasiveness in cholangiocarcinoma

    PubMed Central

    Li, Zequn; Biswas, Siddhartha; Liang, Benjia; Zou, Xueqing; Shan, Liqun; Li, Yang; Fang, Ruliang; Niu, Jun

    2016-01-01

    Cholangiocarcinoma is a devastating malignancy that is notoriously difficult to diagnose and is associated with a high mortality. Despite extensive efforts to improve the diagnosis and treatment of this neoplasm, limited progress has been made. Integrin β6 is a subtype of integrin that is expressed exclusively on the surfaces of epithelial cells and is associated with a variety of tumors. In the present study, we investigated the expression and roles of integrin β6 in cholangiocarcinoma. β6 upregulation in cholangiocarcinoma was correlated with lymph node metastasis and distant metastasis. Moreover, integrin β6 was identified as a biomarker for the diagnosis of cholangiocarcinoma and an indicator of lymph node metastasis. Integrin β6 significantly promoted the proliferation, migration and invasion of cholangiocarcinoma cells. Furthermore, integrin β6 increased Rac1-GTPase, resulting in the upregulation of metalloproteinase-9 (MMP9) and F-actin polymerization. Taken together, our results indicate that integrin β6 promotes tumor invasiveness in a Rac1-dependent manner and is a potential biomarker for tumor metastasis. Integrin β6 may help to improve the diagnostic accuracy, and targeting β6 may be a novel strategy for the treatment of cholangiocarcinoma. PMID:27440504

  10. Integrin β6 serves as an immunohistochemical marker for lymph node metastasis and promotes cell invasiveness in cholangiocarcinoma.

    PubMed

    Li, Zequn; Biswas, Siddhartha; Liang, Benjia; Zou, Xueqing; Shan, Liqun; Li, Yang; Fang, Ruliang; Niu, Jun

    2016-07-21

    Cholangiocarcinoma is a devastating malignancy that is notoriously difficult to diagnose and is associated with a high mortality. Despite extensive efforts to improve the diagnosis and treatment of this neoplasm, limited progress has been made. Integrin β6 is a subtype of integrin that is expressed exclusively on the surfaces of epithelial cells and is associated with a variety of tumors. In the present study, we investigated the expression and roles of integrin β6 in cholangiocarcinoma. β6 upregulation in cholangiocarcinoma was correlated with lymph node metastasis and distant metastasis. Moreover, integrin β6 was identified as a biomarker for the diagnosis of cholangiocarcinoma and an indicator of lymph node metastasis. Integrin β6 significantly promoted the proliferation, migration and invasion of cholangiocarcinoma cells. Furthermore, integrin β6 increased Rac1-GTPase, resulting in the upregulation of metalloproteinase-9 (MMP9) and F-actin polymerization. Taken together, our results indicate that integrin β6 promotes tumor invasiveness in a Rac1-dependent manner and is a potential biomarker for tumor metastasis. Integrin β6 may help to improve the diagnostic accuracy, and targeting β6 may be a novel strategy for the treatment of cholangiocarcinoma.

  11. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism

    PubMed Central

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2015-01-01

    Background and objectives Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. Methods The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Results Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Conclusions Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies. PMID:22068162

  12. Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma.

    PubMed

    Wang, Weiwei; Zhong, Wei; Yuan, Jiahui; Yan, Congcong; Hu, Shaoping; Tong, Yinping; Mao, Yubin; Hu, Tianhui; Zhang, Bing; Song, Gang

    2015-12-08

    Mesenchymal stem cells (MSCs) are multi-potent progenitor cells with ability to differentiate into multiple lineages, including bone, cartilage, fat, and muscles. Recent research indicates that MSCs can be efficiently recruited to tumor sites, modulating tumor growth and metastasis. However, the underlying molecular mechanisms are not fully understood. Here, we first demonstrated that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), when mixed with human cholangiocarcinoma cell lines QBC939 in a xenograft tumor model, significantly increased the cancer cells proliferation and metastatic potency. MSCs and their conditioned media (MSC-CM) could improve the drug resistance of tumor when the compound K (CK) as an anti-cancer drug, a major intestinal bacterial metabolite of panaxoside, was administered to xenograft tumor mice. Furthermore, MSCs greatly increased the colony formation and invasion of cholangiocarcinoma cells QBC939 and Mz-ChA-1. Immunochemistry studies of cholangiocarcinoma tissue chips and transplantation tumor from nude mice showed that the expression of β-catenin was important for cholangiocarcinoma development. We further demonstrated that MSCs and MSCs-CM could promote proliferation and migration of cholangiocarcinoma cells through targeting the Wnt/β-catenin signaling pathway. hUC-MSCs or MSCs-CM stimulated Wnt activity by promoting the nuclear translocation of β-catenin, and up-regulated Wnt target genes MMPs family, cyclin D1 and c-Myc. Together, our studies highlight a critical role for MSCs on cancer metastasis and indicate MSCs promote metastatic growth and chemoresistance of cholangiocarcinoma cells via activation of Wnt/β-catenin signaling.

  13. Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma

    PubMed Central

    Yuan, Jiahui; Yan, Congcong; Hu, Shaoping; Tong, Yinping; Mao, Yubin; Hu, Tianhui; Zhang, Bing; Song, Gang

    2015-01-01

    Mesenchymal stem cells (MSCs) are multi-potent progenitor cells with ability to differentiate into multiple lineages, including bone, cartilage, fat, and muscles. Recent research indicates that MSCs can be efficiently recruited to tumor sites, modulating tumor growth and metastasis. However, the underlying molecular mechanisms are not fully understood. Here, we first demonstrated that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), when mixed with human cholangiocarcinoma cell lines QBC939 in a xenograft tumor model, significantly increased the cancer cells proliferation and metastatic potency. MSCs and their conditioned media (MSC-CM) could improve the drug resistance of tumor when the compound K (CK) as an anti-cancer drug, a major intestinal bacterial metabolite of panaxoside, was administered to xenograft tumor mice. Furthermore, MSCs greatly increased the colony formation and invasion of cholangiocarcinoma cells QBC939 and Mz-ChA-1. Immunochemistry studies of cholangiocarcinoma tissue chips and transplantation tumor from nude mice showed that the expression of β-catenin was important for cholangiocarcinoma development. We further demonstrated that MSCs and MSCs-CM could promote proliferation and migration of cholangiocarcinoma cells through targeting the Wnt/β-catenin signaling pathway. hUC-MSCs or MSCs-CM stimulated Wnt activity by promoting the nuclear translocation of β-catenin, and up-regulated Wnt target genes MMPs family, cyclin D1 and c-Myc. Together, our studies highlight a critical role for MSCs on cancer metastasis and indicate MSCs promote metastatic growth and chemoresistance of cholangiocarcinoma cells via activation of Wnt/β-catenin signaling. PMID:26474277

  14. miR-17-92 Cluster Promotes Cholangiocarcinoma Growth

    PubMed Central

    Zhu, Hanqing; Han, Chang; Lu, Dongdong; Wu, Tong

    2015-01-01

    miR-17-92 is an oncogenic miRNA cluster implicated in the development of several cancers; however, it remains unknown whether the miR-17-92 cluster is able to regulate cholangiocarcinogenesis. This study was designed to investigate the biological functions and molecular mechanisms of the miR-17-92 cluster in cholangiocarcinoma. In situ hybridization and quantitative RT-PCR analysis showed that the miR-17-92 cluster is highly expressed in human cholangiocarcinoma cells compared with the nonneoplastic biliary epithelial cells. Forced overexpression of the miR-17-92 cluster or its members, miR-92a and miR-19a, in cultured human cholangiocarcinoma cells enhanced tumor cell proliferation, colony formation, and invasiveness, in vitro. Overexpression of the miR-17-92 cluster or miR-92a also enhanced cholangiocarcinoma growth in vivo in hairless outbred mice with severe combined immunodeficiency (SHO-PrkdcscidHrhr). The tumor-suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), was identified as a bona fide target of both miR-92a and miR-19a in cholangiocarcinoma cells via sequence prediction, 3′ untranslated region luciferase activity assay, and Western blot analysis. Accordingly, overexpression of the PTEN open reading frame protein (devoid of 3′ untranslated region) prevented miR-92a– or miR-19a–induced cholangiocarcinoma cell growth. Microarray analysis revealed additional targets of the miR-17-92 cluster in human cholangiocarcinoma cells, including APAF-1 and PRDM2. Moreover, we observed that the expression of the miR-17-92 cluster is regulated by IL-6/Stat3, a key oncogenic signaling pathway pivotal in cholangiocarcinogenesis. Taken together, our findings disclose a novel IL-6/Stat3–miR-17-92 cluster–PTEN signaling axis that is crucial for cholangiocarcinogenesis and tumor progression. PMID:25239565

  15. Cholangiocarcinoma

    PubMed Central

    Razumilava, Nataliya; Gores, Gregory J

    2014-01-01

    Cholangiocarcinoma represents a diverse group of epithelial cancers united by late diagnosis and poor outcomes. Specific diagnostic and therapeutic approaches are undertaken for cholangiocarcinomas of different anatomical locations (intrahepatic, perihilar, and distal). Mixed hepatocellular cholangiocarcinomas have emerged as a distinct subtype of primary liver cancer. Clinicians need to be aware of intrahepatic cholangiocarcinomas arising in cirrhosis and properly assess liver masses in this setting for cholangiocarcinoma. Management of biliary obstruction is obligatory in perihilar cholangiocarcinoma, and advanced cytological tests such as fluorescence in-situ hybridisation for aneusomy are helpful in the diagnosis. Liver transplantation is a curative option for selected patients with perihilar but not with intrahepatic or distal cholangiocarcinoma. International efforts of clinicians and scientists are helping to identify the genetic drivers of cholangiocarcinoma progression, which will unveil early diagnostic markers and direct development of individualised therapies. PMID:24581682

  16. Monoamine oxidase A expression is suppressed in human cholangiocarcinoma via coordinated epigenetic and IL-6-driven events

    PubMed Central

    Huang, Li; Frampton, Gabriel; Rao, Arundhati; Zhang, Kun-song; Chen, Wei; Lai, Jia-ming; Yin, Xiao-yu; Walker, Kimberly; Culbreath, Brianne; Leyva-Illades, Dinorah; Quinn, Matthew; McMillin, Matthew; Bradley, Michelle; Liang, Li-Jian; DeMorrow, Sharon

    2014-01-01

    Objectives The secretion of dopamine and serotonin is increased in cholangiocarcinoma, which has growth-promoting effects. Monoamine oxidase A (MAOA), the degradation enzyme of serotonin and dopamine, is suppressed in cholangiocarcinoma via an unknown mechanism. The aims of this study were to (i) correlate MAOA immunoreactivity with pathophysiological parameters of cholangiocarcinoma, (ii) determine the mechanism by which MAOA expression is suppressed and (iii) evaluate the consequences of restored MAOA expression in cholangiocarcinoma. Design MAOA expression was assessed in cholangiocarcinoma and non-malignant controls. The control of MAOA expression by promoter hypermethylation was evaluated and the contribution of IL-6 signaling to the suppression of MAOA expression was determined. The effects of MAOA overexpression on cholangiocarcinoma growth and invasion were also assessed. Results MAOA expression is correlated with differentiation, invasion and survival in cholangiocarcinoma. The MAOA promoter was hypermethylated immediately upstream of the start codon in cholangiocarcinoma samples and cell lines but not in non-malignant counterparts. IL-6 signaling also decreased MAOA expression via a mechanism independent of hypermethylation, involving the regulation of the balance between SP-1 transcriptional activity and its inhibitor, R1 repressor. Inhibition of both IL-6 signaling and DNA methylation restored MAOA levels to those observed in cholangiocytes. Forced MAOA overexpression inhibited cholangiocarcinoma growth and invasion. Conclusions MAOA expression is suppressed by the coordinated control of promoter hypermethylation and IL-6 signaling. MAOA may be a useful prognostic marker in the management of cholangiocarcinoma, and therapies designed to increase MAOA expression might prove beneficial in the treatment of cholangiocarcinoma. PMID:22906985

  17. Monoamine oxidase A expression is suppressed in human cholangiocarcinoma via coordinated epigenetic and IL-6-driven events.

    PubMed

    Huang, Li; Frampton, Gabriel; Rao, Arundhati; Zhang, Kun-song; Chen, Wei; Lai, Jia-ming; Yin, Xiao-yu; Walker, Kimberly; Culbreath, Brianne; Leyva-Illades, Dinorah; Quinn, Matthew; McMillin, Matthew; Bradley, Michelle; Liang, Li-Jian; DeMorrow, Sharon

    2012-10-01

    The secretion of dopamine and serotonin is increased in cholangiocarcinoma, which has growth-promoting effects. Monoamine oxidase A (MAOA), the degradation enzyme of serotonin and dopamine, is suppressed in cholangiocarcinoma via an unknown mechanism. The aims of this study were to (i) correlate MAOA immunoreactivity with pathophysiological parameters of cholangiocarcinoma, (ii) determine the mechanism by which MAOA expression is suppressed and (iii) evaluate the consequences of restored MAOA expression in cholangiocarcinoma. MAOA expression was assessed in cholangiocarcinoma and nonmalignant controls. The control of MAOA expression by promoter hypermethylation was evaluated and the contribution of interleukin-6 (IL-6) signaling to the suppression of MAOA expression was determined. The effects of MAOA overexpression on cholangiocarcinoma growth and invasion were also assessed. MAOA expression is correlated with differentiation, invasion and survival in cholangiocarcinoma. The MAOA promoter was hypermethylated immediately upstream of the start codon in cholangiocarcinoma samples and cell lines but not in nonmalignant counterparts. IL-6 signaling also decreased MAOA expression via a mechanism independent of hypermethylation, involving the regulation of the balance between SP-1 transcriptional activity and its inhibitor, R1 repressor. Inhibition of both IL-6 signaling and DNA methylation restored MAOA levels to those observed in cholangiocytes. Forced MAOA overexpression inhibited cholangiocarcinoma growth and invasion. MAOA expression is suppressed by the coordinated control of promoter hypermethylation and IL-6 signaling. MAOA may be a useful prognostic marker in the management of cholangiocarcinoma, and therapies designed to increase MAOA expression might prove beneficial in the treatment of cholangiocarcinoma.

  18. Sox9 expression in carcinogenesis and its clinical significance in intrahepatic cholangiocarcinoma.

    PubMed

    Matsushima, Hajime; Kuroki, Tamotsu; Kitasato, Amane; Adachi, Tomohiko; Tanaka, Takayuki; Hirabaru, Masataka; Hirayama, Takanori; Kuroshima, Naoki; Hidaka, Masaaki; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kinoshita, Naoe; Sano, Kazunori; Nishida, Noriyuki; Eguchi, Susumu

    2015-12-01

    Intrahepatic cholangiocarcinomas develop through a multi-step carcinogenesis. Precancerous lesions are defined as biliary intraepithelial neoplasia. Sex determining region Y-box9 (Sox9) is required for the normal differentiation of the biliary tract. To evaluate the Sox9 expression in carcinogenesis and its correlation with clinicopathological features in intrahepatic cholangiocarcinoma. Sox9 expression in normal epithelium, biliary intraepithelial neoplasia, and intrahepatic cholangiocarcinoma were investigated immunohistochemically using 43 specimens of intrahepatic cholangiocarcinoma. Sox9 expression in intrahepatic cholangiocarcinoma was compared with the clinicopathological features. The molecular effects of Sox9 were investigated by gene transfection to intrahepatic cholangiocarcinoma cell lines. Sox9 expression was decreased from the normal epithelium to the biliary intraepithelial neoplasia in a stepwise fashion. In 51.2% (22/43) of the patients with intrahepatic cholangiocarcinoma, Sox9 expression was positive, and Sox9 expression was significantly associated with the biliary infiltration (P=0.034) and poor overall survival (P=0.039). Upregulation of Sox9 promoted the cell migration and invasion, and decreased the E-cadherin expression and increased the vimentin and α-SMA expression in cell lines. Decreased Sox9 expression may be related to the early stage of the carcinogenesis of intrahepatic cholangiocarcinoma. Sox9 overexpression in intrahepatic cholangiocarcinoma is related to biliary infiltration and poorer prognosis, and it promotes cell migration and invasion, via the epithelial-to-mesenchymal transition. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  19. Neuropeptide Y inhibits cholangiocarcinoma cell growth and invasion

    PubMed Central

    DeMorrow, Sharon; Onori, Paolo; Venter, Julie; Invernizzi, Pietro; Frampton, Gabriel; White, Mellanie; Franchitto, Antonio; Kopriva, Shelley; Bernuzzi, Francesca; Francis, Heather; Coufal, Monique; Glaser, Shannon; Fava, Giammarco; Meng, Fanyin; Alvaro, Domenico; Carpino, Guido; Gaudio, Eugenio

    2011-01-01

    No information exists on the role of neuropeptide Y (NPY) in cholangiocarcinoma growth. Therefore, we evaluated the expression and secretion of NPY and its subsequent effects on cholangiocarcinoma growth and invasion. Cholangiocarcinoma cell lines and nonmalignant cholangiocytes were used to assess NPY mRNA expression and protein secretion. NPY expression was assessed by immunohistochemistry in human liver biopsies. Cell proliferation and migration were evaluated in vitro by MTS assays and matrigel invasion chambers, respectively, after treatment with NPY or a neutralizing NPY antibody. The effect of NPY or NPY depletion on tumor growth was assessed in vivo after treatment with NPY or the neutralizing NPY antibody in a xenograft model of cholangiocarcinoma. NPY secretion was upregulated in cholangiocarcinoma compared with normal cholangiocytes. Administration of exogenous NPY decreased proliferation and cell invasion in all cholangiocarcinoma cell lines studied and reduced tumor cell growth in vivo. In vitro, the effects of NPY on proliferation were blocked by specific inhibitors for NPY receptor Y2, but not Y1 or Y5, and were associated with an increase in intracellular d-myo-inositol 1,4,5-trisphosphate and PKCα activation. Blocking of NPY activity using a neutralizing antibody promoted cholangiocarcinoma growth in vitro and in vivo and increased the invasiveness of cholangiocarcinoma in vitro. Increased NPY immunoreactivity in human tumor tissue occurred predominantly in the center of the tumor, with less expression toward the invasion front of the tumor. We demonstrated that NPY expression is upregulated in cholangiocarcinoma, which exerts local control on tumor cell proliferation and invasion. Modulation of NPY secretion may be important for the management of cholangiocarcinoma. PMID:21270292

  20. Perioperative and long-term outcome of intrahepatic cholangiocarcinoma involving the hepatic hilus after curative-intent resection: comparison with peripheral intrahepatic cholangiocarcinoma and hilar cholangiocarcinoma.

    PubMed

    Zhang, Xu-Feng; Bagante, Fabio; Chen, Qinyu; Beal, Eliza W; Lv, Yi; Weiss, Matthew; Popescu, Irinel; Marques, Hugo P; Aldrighetti, Luca; Maithel, Shishir K; Pulitano, Carlo; Bauer, Todd W; Shen, Feng; Poultsides, George A; Soubrane, Olivier; Martel, Guillaume; Koerkamp, B Groot; Guglielmi, Alfredo; Itaru, Endo; Pawlik, Timothy M

    2018-05-01

    Intrahepatic cholangiocarcinoma with hepatic hilus involvement has been either classified as intrahepatic cholangiocarcinoma or hilar cholangiocarcinoma. The present study aimed to investigate the clinicopathologic characteristics and short- and long-term outcomes after curative resection for hilar type intrahepatic cholangiocarcinoma in comparison with peripheral intrahepatic cholangiocarcinoma and hilar cholangiocarcinoma. A total of 912 patients with mass-forming peripheral intrahepatic cholangiocarcinoma, 101 patients with hilar type intrahepatic cholangiocarcinoma, and 159 patients with hilar cholangiocarcinoma undergoing curative resection from 2000 to 2015 were included from two multi-institutional databases. Clinicopathologic characteristics and short- and long-term outcomes were compared among the 3 groups. Patients with hilar type intrahepatic cholangiocarcinoma had more aggressive tumor characteristics (eg, higher frequency of vascular invasion and lymph nodes metastasis) and experienced more extensive resections in comparison with either peripheral intrahepatic cholangiocarcinoma or hilar cholangiocarcinoma patients. The odds of lymphadenectomy and R0 resection rate among patients with hilar type intrahepatic cholangiocarcinoma were comparable with hilar cholangiocarcinoma patients, but higher than peripheral intrahepatic cholangiocarcinoma patients (lymphadenectomy incidence, 85.1% vs 42.5%, P < .001; R0 rate, 75.2% vs 88.8%, P < .001). After curative surgery, patients with hilar type intrahepatic cholangiocarcinoma experienced a higher rate of technical-related complications compared with peripheral intrahepatic cholangiocarcinoma patients. Of note, hilar type intrahepatic cholangiocarcinoma was associated with worse disease-specific survival and recurrence-free survival after curative resection versus peripheral intrahepatic cholangiocarcinoma (median disease-specific survival, 26.0 vs 54.0 months, P < .001; median recurrence

  1. Fisetin Reduces Cell Viability Through Up-Regulation of Phosphorylation of ERK1/2 in Cholangiocarcinoma Cells.

    PubMed

    Kim, Nayoung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Jae Min; Kang, Min-Jung; Kim, Bo Hye; Lee, Jung-Su; Ryu, Ji Kon; Kim, Yong-Tae

    2016-11-01

    Cholangiocarcinoma (CCA) is a malignancy with poor prognosis and limited therapeutic options. Effective prevention and treatment of CCA require developing novel anticancer agents and improved therapeutic regimens. As natural products are concidered a rich source of potential anticancer agents, we investigated the anticancer effect of fisetin in combination with gemcitabine. Cytotoxic effect of fisetin and gemcitabine on a human CCA cell line SNU-308 was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay using propidium iodine and annexin V. Molecular mechanisms of fisetin action in CCA were investigated by western blotting. Fisetin was found to inhibit survival of CCA cells, through strongly phosphorylating ERK. It also induced cellular apoptosis additively in combination with gemcitabine. Expression of cellular proliferative markers, such as phospho-p65 and myelocytomatosis (MYC), were reduced by fisetin. These results suggest fisetin in combination with gemcitabine as a candidate for use in improved anticancer regimens. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells.

    PubMed

    Ding, Xiwei; Chaiteerakij, Roongruedee; Moser, Catherine D; Shaleh, Hassan; Boakye, Jeffrey; Chen, Gang; Ndzengue, Albert; Li, Ying; Zhou, Yanling; Huang, Shengbing; Sinicrope, Frank A; Zou, Xiaoping; Thomas, Melanie B; Smith, Charles D; Roberts, Lewis R

    2016-04-12

    Sphingosine kinase 2 (Sphk2) has an oncogenic role in cancer. A recently developed first-in-class Sphk2 specific inhibitor ABC294640 displays antitumor activity in many cancer models. However, the role of Sphk2 and the antitumor activity of its inhibitor ABC294640 are not known in cholangiocarcinoma. We investigated the potential of targeting Sphk2 for the treatment of cholangiocarcinoma. We found that Sphk2 is overexpressed in five established human cholangiocarcinoma cell lines (WITT, HuCCT1, EGI-1, OZ and HuH28) and a new patient-derived cholangiocarcinoma cell line (LIV27) compared to H69 normal cholangiocytes. Inhibition of Sphk2 by ABC294640 inhibited proliferation and induced caspase-dependent apoptosis. Furthermore, we found that ABC294640 inhibited STAT3 phosphorylation, one of the key signaling pathways regulating cholangiocarcinoma cell proliferation and survival. ABC294640 also induced autophagy. Inhibition of autophagy by bafilomycin A1 or chloroquine potentiated ABC294640-induced cytotoxicity and apoptosis. In addition, ABC294640 in combination with sorafenib synergistically inhibited cell proliferation of cholangiocarcinoma cells. Strong decreases in STAT3 phosphorylation were observed in WITT and HuCCT1 cells exposed to the ABC294640 and sorafenib combination. These findings provide novel evidence that Sphk2 may be a rational therapeutic target in cholangiocarcinoma. Combinations of ABC294640 with sorafenib and/or autophagy inhibitors may provide novel strategies for the treatment of cholangiocarcinoma.

  3. Genetics Home Reference: cholangiocarcinoma

    MedlinePlus

    ... more frequently in Southeast Asian countries such as Thailand, where it is related to infection with a ... Cholangiocarcinoma Charity (UK) Cholangiocarcinoma Foundation Cholangiocarcinoma Foundation of Thailand ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles ...

  4. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    PubMed

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C Cdc20 ) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  5. MenaINV dysregulates cortactin phosphorylation to promote invadopodium maturation

    PubMed Central

    Weidmann, Maxwell D.; Surve, Chinmay R.; Eddy, Robert J.; Chen, Xiaoming; Gertler, Frank B.; Sharma, Ved P.; Condeelis, John S.

    2016-01-01

    Invadopodia, actin-based protrusions of invasive carcinoma cells that focally activate extracellular matrix-degrading proteases, are essential for the migration and intravasation of tumor cells during dissemination from the primary tumor. We have previously shown that cortactin phosphorylation at tyrosine residues, in particular tyrosine 421, promotes actin polymerization at newly-forming invadopodia, promoting their maturation to matrix-degrading structures. However, the mechanism by which cells regulate the cortactin tyrosine phosphorylation-dephosphorylation cycle at invadopodia is unknown. Mena, an actin barbed-end capping protein antagonist, is expressed as various splice-isoforms. The MenaINV isoform is upregulated in migratory and invasive sub-populations of breast carcinoma cells, and is involved in tumor cell intravasation. Here we show that forced MenaINV expression increases invadopodium maturation to a far greater extent than equivalent expression of other Mena isoforms. MenaINV is recruited to invadopodium precursors just after their initial assembly at the plasma membrane, and promotes the phosphorylation of cortactin tyrosine 421 at invadopodia. In addition, we show that cortactin phosphorylation at tyrosine 421 is suppressed by the phosphatase PTP1B, and that PTP1B localization to the invadopodium is reduced by MenaINV expression. We conclude that MenaINV promotes invadopodium maturation by inhibiting normal dephosphorylation of cortactin at tyrosine 421 by the phosphatase PTP1B. PMID:27824079

  6. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  7. Intrahepatic cholangiocarcinoma.

    PubMed

    Nakano, Masayuki; Ariizumi, Shun-Ichi; Yamamoto, Masakazu

    2017-03-01

    Cholangiocarcinoma, also referred to as cholangiocellular carcinoma (particularly in Japan), develops along the biliary tract. The tumor may be intra- or extrahepatic and have different features with specific treatments based on the site of origin. Guidelines for diagnosis and management of cholangiorcarcinoma, such as those proposed by EASL (European Association for the Study of the Liver) 1 and the Mayo Clinic 2 classify the tumor into intrahepatic, perihilar, and distal cholangiocarcinoma. There are three main macroscopic patterns of growth of cholangiocarcinoma: mass-forming, periductal-infiltrating and intraductal. A combination of mass-forming and periductal infiltrating tumors have been shown to have a poor prognosis. 3 Intrahepatic cholangiocarcinoma (ICC) comprises two microscopic subtypes: bile duct and cholangiolar. 4 The bile duct subtype has tall columnar cells that form large glands, whereas cholangiolar tumors are composed of cuboidal and low columnar cells. Patients with cholangiolar tumors, referred to as cholangiolocellular carcinoma, reportedly have a better 5-year survival rate than those with the bile duct type. 4 . Copyright © 2017 Elsevier Inc. All rights reserved.

  8. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1

    PubMed Central

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-01-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin-dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III–IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments. PMID:27279267

  9. Phosphorylation of Nanog is Essential to Regulate Bmi1 and Promote Tumorigenesis

    PubMed Central

    Xie, Xiujie; Piao, Longzhu; Cavey, Greg S.; Old, Matthew; Teknos, Theodoros N.; Mapp, Anna K; Pan, Quintin

    2014-01-01

    Emerging evidence indicates that Nanog is intimately involved in tumorigenesis in part through regulation of the cancer initiating cell population. However, the regulation and role of Nanog in tumorigenesis are still poorly understood. In this study, human Nanog was identified to be phosphorylated by human PKCε at multiple residues including T200 and T280. Our work indicated that phosphorylation at T200 and T280 modulates Nanog function through several regulatory mechanisms. Results with phosphorylation-insensitive and phosphorylation-mimetic mutant Nanog revealed that phosphorylation at T200 and T280 enhance Nanog protein stability. Moreover, phosphorylation-insensitive T200A and T280A mutant Nanog had a dominant-negative function to inhibit endogenous Nanog transcriptional activity. Inactivation of Nanog was due to impaired homodimerization, DNA binding, promoter occupancy, and p300, a transcriptional co-activator, recruitment resulting in a defect in target gene promoter activation. Ectopic expression of phosphorylation-insensitive T200A or T280A mutant Nanog reduced cell proliferation, colony formation, invasion, migration, and the cancer initiating cell population in head and neck squamous cell carcinoma (HNSCC) cells. The in vivo cancer initiating ability was severely compromised in HNSCC cells expressing phosphorylation-insensitive T200A or T280A mutant Nanog; 87.5% (14/16), 12.5% (1/8), and 0% (0/8) for control, T200A, and T280A, respectively. Nanog occupied the Bmi1 promoter to directly transactivate and regulate Bmi1. Genetic ablation and rescue experiments demonstrated that Bmi1 is a critical downstream signaling node for the pleiotropic, pro-oncogenic effects of Nanog. Taken together, our study revealed, for the first time, that post-translational phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. PMID:23708658

  10. SKI promotes Smad3 linker phosphorylations associated with the tumor-promoting trait of TGFbeta.

    PubMed

    Lin, Qiushi; Chen, Dahu; Timchenko, Nikolai A; Medrano, Estela E

    2010-05-01

    The transcriptional co-regulator SKI is a potent inhibitor of TGFbeta-growth inhibitory signals. SKI binds to receptor-activated Smads in the nucleus, forming repressor complexes containing HDACs, mSin3, NCoR, and other protein partners. Alternatively, SKI binds to activated Smads in the cytoplasm, preventing their nuclear translocation. SKI is necessary for anchorage-independent growth of melanoma cells in vitro, and most important, for human melanoma xenograft growth in vivo. We recently identified a novel role of SKI in TGFbeta signaling. SKI promotes the switch of Smad3 from repressor of proliferation to activator of oncogenesis by facilitating phosphorylations in the linker domain. High levels of endogenous SKI are required by the tumor promoting trait of TGFbeta to induce expression of the plasminogen-activator inhibitor-1 (PAI-1), sustained expression of C-Myc and for aborting upregulation of p21(Waf-1). Here we discuss how SKI diversifies and amplifies its functions by associating with multiple protein partners and by promoting Smad3 linker phosphorylation(s) in response to TGFbeta signaling in melanoma cells.

  11. Programmed death-ligand 1 is upregulated in intrahepatic lymphoepithelioma-like cholangiocarcinoma.

    PubMed

    Wang, Lei; Dong, Hui; Ni, Shujuan; Huang, Dan; Tan, Cong; Chang, Bin; Sheng, Weiqi

    2016-10-25

    Intrahepatic lymphoepithelioma-like cholangiocarcinoma (LELCC) is a rare variant of cholangiocarcinoma. Here, we report the largest single series of LELCC cases yet studied (n = 13). We retrospectively analyzed the clinical data of the 13 patients and measured the expression of programmed death-ligand 1 (PD-L1) in tumors using immunohistochemical staining. We also analyzed 15 cases of conventional intrahepatic cholangiocarcinoma (IHCC) for comparison. We found that eight patients with LELCC were infected with Epstein-Barr Virus (EBV), and EBV infection correlated with poor prognosis in LELCC. Four patients among the five (80.0%) without EBV had a history of chronic viral hepatitis B. None of the 15 cases of conventional cholangiocarcinoma were positive for EBV. PD-L1 was expressed in both the tumor cells and tumor-infiltrating immune cells in LELCC patients at higher levels than in IHCC patients (P < 0.05). These observations suggest that EBV infection may promote the development of LELCC, and that PD-L1 may be a potential therapeutic target for treatment of EBV-associated LELCC.

  12. Cutaneous metastasis of cholangiocarcinoma.

    PubMed

    Liu, Min; Liu, Bai-Long; Liu, Bin; Guo, Liang; Wang, Qiang; Song, Yan-Qiu; Dong, Li-Hua

    2015-03-14

    To investigate the clinical characteristics and prognostic factors of cutaneous metastasis of cholangiocarcinoma by a retrospective analysis of published cases. An extensive search was conducted in the English literature within the PubMed database using the following keywords: cutaneous metastasis or skin metastasis and cholangiocarcinoma or bile duct. The data of 30 patients from 21 articles from 1978 to 2014 were analyzed. Patient data retrieved from the articles included the following: age, gender, time cutaneous metastasis occurred, number of cutaneous metastases throughout life, sites of initial cutaneous metastasis, anatomic site, pathology and differentiation of cholangiocarcinoma, and immunohistochemical results of the cutaneous metastasis. The assessment of overall survival after cutaneous metastasis (OSCM) was the primary endpoint. The median age at diagnosis of cutaneous metastasis of cholangiocarcinoma was 60.0 years (range: 35-77). This metastasis showed a predilection towards males, with a male to female ratio of 3.29. In 8 cases (27.6%), skin metastasis was the first sign of cholangiocarcinoma. Additionally, 18 cases (60.0%) manifested single cutaneous metastasis, while 12 cases (40.0%) demonstrated multiple skin metastases. In 50.0% of patients, the metastasis occurred in the drainage region, while 50.0% of patients had distant cutaneous metastases. The scalp was the most frequently involved region of distant skin metastasis, occurring in 36.7% of patients. The median OSCM of cholangiocarcinoma was 4.0 mo. Patient age and cutaneous metastatic sites showed no significant relation with OSCM, while male gender and single metastasis of the skin were associated with a poorer OSCM (hazard ratio: 0.168; P = 0.005, and hazard ratio: 0.296; P = 0.011, respectively). The prognosis of cutaneous metastasis of cholangiocarcinoma is dismal. Both male gender and single skin metastasis are associated with a poorer OSCM.

  13. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1.

    PubMed

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-08-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin‑dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III-IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments.

  14. Perioperative Management of Hilar Cholangiocarcinoma.

    PubMed

    Poruk, Katherine E; Pawlik, Timothy M; Weiss, Matthew J

    2015-10-01

    Cholangiocarcinoma is the most common primary tumor of the biliary tract although it accounts for only 2 % of all human malignancies. We herein review hilar cholangiocarcinoma including its risk factors, the main classification systems for tumors, current surgical management of the disease, and the role chemotherapy and liver transplantation may play in selected patients. We performed a comprehensive literature search using PubMed, Medline, and the Cochrane library for the period 1980-2015 using the following MeSH terms: "hilar cholangiocarcinoma", "biliary cancer", and "cholangiocarcinoma". Only recent studies that were published in English and in peer reviewed journals were included. Hilar cholangiocarcinoma is a disease of advanced age with an unclear etiology, most frequently found in Southeast Asia and relatively rare in Western countries. The best chance of long-term survival and potential cure is surgical resection with negative surgical margins, but many patients are unresectable due to locally advanced or metastatic disease at diagnosis. As a result of recent efforts, new methods of management have been identified for these patients, including preoperative portal vein embolism and biliary drainage, neoadjuvant chemotherapy with subsequent transplantation, and chemoradiation therapy. Current management of hilar cholangiocarcinoma depends on extent of the tumor at presentation and includes surgical resection, liver transplantation, portal vein embolization, and chemoradiation therapy. Our understanding of hilar cholangiocarcinoma has improved in recent years and further research offers hope to improve the outcome in patients with these rare tumors.

  15. Clinical diagnosis and staging of cholangiocarcinoma

    PubMed Central

    Blechacz, Boris; Komuta, Mina; Roskams, Tania; Gores, Gregory J.

    2012-01-01

    Cholangiocarcinoma is the most frequent biliary malignancy. It is difficult to diagnose owing to its anatomic location, growth patterns and lack of definite diagnostic criteria. Currently, cholangiocarcinoma is classified into the following types according to its anatomic location along the biliary tree: intrahepatic, perihilar or distal extrahepatic cholangiocarcinoma. These cholangiocarcinoma types differ in their biological behavior and management. The appropriate stratification of patients with regard to the anatomic location and stage of cholangiocarcinoma is a key determinate in their management. Staging systems can guide this stratification and provide prognostic information. In addition, staging systems are essential in order to compare and contrast the outcomes of different therapeutic approaches. A number of staging systems exist for cholangiocarcinoma—several early ones have been updated, and new ones are being developed. We discuss the emerging diagnostic criteria as well as the different staging systems for cholangiocarcinoma, and provide a critical appraisal regarding these advances in biliary tract malignancies. PMID:21808282

  16. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    PubMed

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-06-01

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stathmin decreases cholangiocarcinoma cell line sensitivity to staurosporine-triggered apoptosis via the induction of ERK and Akt signaling.

    PubMed

    Wang, Yueqi; Gao, Zhihui; Zhang, Dexiang; Bo, Xiaobo; Wang, Yaojie; Wang, Jiwen; Shen, Sheng; Liu, Han; Suo, Tao; Pan, Hongtao; Ai, Zhilong; Liu, Houbao

    2017-02-28

    Cholangiocarcinoma is a rare, but highly fatal malignancy. However, the intrinsic mechanism involved in its tumorigenesis remains obscure. An urgent need remains for a promising target for cholangiocarcinoma biological therapies. Based on comparative proteomical technologies, we found 253 and 231 different spots in gallbladder tumor cell lines and cholangiocarcinoma cell lines, respectively, relative to non-malignant cells. Using Mass Spectrometry (MS) and database searching, we chose seven differentially expressed proteins. High Stathmin expression was found in both cholangiocarcinoma and gallbladder carcinoma cells. Stathmin expression was validated using immunohistochemistry and western blot in cholangiocarcinoma tissue samples and peritumoral tissue. It was further revealed that high Stathmin expression was associated with the repression of staurosporine-induced apoptosis in the cholangiocarcinoma cell. Moreover, we found that Stathmin promoted cancer cell proliferation and inhibited its apoptosis through protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) signaling. Integrin, β1 appears to serve as a partner of Stathmin induction of ERK and Akt signaling by inhibiting apoptosis in the cholangiocarcinoma cell. Understanding the regulation of anti-apoptosis effect by Stathmin might provide new insight into how to overcome therapeutic resistance in cholangiocarcinoma.

  18. Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level.

    PubMed

    Kaufmann, Roland; Hascher, Alexander; Mussbach, Franziska; Henklein, Petra; Katenkamp, Kathrin; Westermann, Martin; Settmacher, Utz

    2012-12-01

    In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR(2)), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR(2)-selective activating peptide, furoyl-LIGRLO-NH(2), increased migration across a collagen membrane barrier. This effect was inhibited by a PAR(2)-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR(2)-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR(2)-driven activation of Met, p42/p44 MAPKinases and Stat3.

  19. Adenoma–carcinoma sequence in intrahepatic cholangiocarcinoma

    PubMed Central

    Pinho, André Costa; Melo, Renato Bessa; Oliveira, Manuel; Almeida, Marinho; Lopes, Joanne; Graça, Luís; Costa-Maia, J.

    2012-01-01

    Introduction Cholangiocarcinoma is a rare tumor but recent data report a worldwide increase in incidence and mortality. There are several risk factors associated with cholangiocarcinoma, and chronic inflammation of billiary tree seems to be implied in the cholangiocarcinogenesis, but little is known about this process. Presentation of case We present a 56-year-old female with a bile duct adenoma incidentally discovered in the follow up of breast cancer that 18 months later progress to intrahepatic cholangiocarcinoma. Discussion This is a rare presentation of intrahepatic cholangiocarcinoma that suggests the classic adenoma-carcinoma sequence in cholangiocarcinogenesis. Furthermore this case gives rise to some questions about the possible common ground on intrahepatic cholangiocarcinoma and breast cancer. Conclusion Cholangiocarcinogenesis is a complex multi-step mechanism and further investigations are needed to fully understand this process. PMID:22326450

  20. Ecto-domain phosphorylation promotes functional recovery from spinal cord injury

    PubMed Central

    Suehiro, Kenji; Nakamura, Yuka; Xu, Shuai; Uda, Youichi; Matsumura, Takafumi; Yamaguchi, Yoshiaki; Okamura, Hitoshi; Yamashita, Toshihide; Takei, Yoshinori

    2014-01-01

    Inhibition of Nogo-66 receptor (NgR) can promote recovery following spinal cord injury. The ecto-domain of NgR can be phosphorylated by protein kinase A (PKA), which blocks activation of the receptor. Here, we found that infusion of PKA plus ATP into the damaged spinal cord can promote recovery of locomotor function. While significant elongation of cortical-spinal axons was not detectable even in the rats showing enhanced recovery, neuronal precursor cells were observed in the region where PKA plus ATP were directly applied. NgR1 was expressed in neural stem/progenitor cells (NSPs) derived from the adult spinal cord. Both an NgR1 antagonist NEP1-40 and ecto-domain phosphorylation of NgR1 promote neuronal cell production of the NSPs, in vitro. Thus, inhibition of NgR1 in NSPs can promote neuronal cell production, which could contribute to the enhanced recovery of locomotor function following infusion of PKA and ATP. PMID:24826969

  1. Laparoscopic resection of hilar cholangiocarcinoma.

    PubMed

    Lee, Woohyung; Han, Ho-Seong; Yoon, Yoo-Seok; Cho, Jai Young; Choi, YoungRok; Shin, Hong Kyung; Jang, Jae Yool; Choi, Hanlim

    2015-10-01

    Laparoscopic resection of hilar cholangiocarcinoma is technically challenging because it involves complicated laparoscopic procedures that include laparoscopic hepatoduodenal lymphadenectomy, hemihepatectomy with caudate lobectomy, and hepaticojejunostomy. There are currently very few reports describing this type of surgery. Between August 2014 and December 2014, 5 patients underwent total laparoscopic or laparoscopic-assisted surgery for hilar cholangiocarcinoma. Two patients with type I or II hilar cholangiocarcinoma underwent radical hilar resection. Three patients with type IIIa or IIIb cholangiocarcinoma underwent extended hemihepatectomy together with caudate lobectomy. The median (range) age, operation time, blood loss, and length of hospital stay were 63 years (43-76 years), 610 minutes (410-665 minutes), 650 mL (450-1,300 mL), and 12 days (9-21 days), respectively. Four patients had a negative margin, but 1 patient was diagnosed with high-grade dysplasia on the proximal resection margin. The median tumor size was 3.0 cm. One patient experienced postoperative biliary leakage, which resolved spontaneously. Laparoscopic resection is a feasible surgical approach in selected patients with hilar cholangiocarcinoma.

  2. Sumoylation in p27kip1 via RanBP2 promotes cancer cell growth in cholangiocarcinoma cell line QBC939.

    PubMed

    Yang, Jun; Liu, Yan; Wang, Bing; Lan, Hongzhen; Liu, Ying; Chen, Fei; Zhang, Ju; Luo, Jian

    2017-09-07

    Cholangiocarcinoma is one of the deadly disease with poor 5-year survival and poor response to conventional therapies. Previously, we found that p27kip1 nuclear-cytoplasmic translocation confers proliferation potential to cholangiocarcinoma cell line QBC939 and this process is mediated by crm-1. However, no other post-transcriptional regulation was found in this process including sumoylation in cholangiocarcinoma. In this study, we explored the role of sumoylation in the nuclear-cytoplasmic translocation of p27kip1 and its involvement of QBC939 cells' proliferation. First, we identified K73 as the sumoylation site in p27kip1. By utilizing plasmid flag-p27kip1, HA-RanBP2, GST-RanBP2 and His-p27kip1 and immunoprecipitation assay, we validated that p27kip1 can serve as the sumoylation target of RanBP2 in QBC939. Furthermore, we confirmed crm-1's role in promoting nuclear-cytoplasmic translocation of p27kip1 and found that RanBP2's function relies on crm-1. However, K73R mutated p27kip1 can't be identified by crm-1 or RanBP2 in p27kip1 translocation process, suggesting sumoylation of p27kip1 via K73 site is necessary in this process by RanBP2 and crm-1. Phenotypically, the overexpression of either RanBP2 or crm-1 can partially rescue the anti-proliferative effect brought by p27kip1 overexpression in both the MTS and EdU assay. For the first time, we identified and validated the K73 sumoylation site in p27kip1, which is critical to RanBP2 and crm-1 in p27kip1 nuclear-cytoplasmic translocation process. Taken together, targeted inhibition of sumoylation of p27kip1 may serve as a potentially potent therapeutic target in the eradication of cholangiocarcinoma development and relapses.

  3. Cholangiocarcinoma — evolving concepts and therapeutic strategies

    PubMed Central

    Rizvi, Sumera; Khan, Shahid A.; Hallemeier, Christopher L.; Kelley, Robin K.; Gores, Gregory J.

    2018-01-01

    Cholangiocarcinoma is a disease entity comprising diverse epithelial tumours with features of cholangiocyte differentiation: cholangiocarcinomas are categorized according to anatomical location as intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA). Each subtype has a distinct epidemiology, biology, prognosis, and strategy for clinical management. The incidence of cholangiocarcinoma, particularly iCCA, has increased globally over the past few decades. Surgical resection remains the mainstay of potentially curative treatment for all three disease subtypes, whereas liver transplantation after neoadjuvant chemoradiation is restricted to a subset of patients with early stage pCCA. For patients with advanced-stage or unresectable disease, locoregional and systemic chemotherapeutics are the primary treatment options. Improvements in external-beam radiation therapy have facilitated the treatment of cholangiocarcinoma. Moreover, advances in comprehensive whole-exome and transcriptome sequencing have defined the genetic landscape of each cholangiocarcinoma subtype. Accordingly, promising molecular targets for precision medicine have been identified, and are being evaluated in clinical trials, including those exploring immunotherapy. Biomarker-driven trials, in which patients are stratified according to anatomical cholangiocarcinoma subtype and genetic aberrations, will be essential in the development of targeted therapies. Targeting the rich tumour stroma of cholangiocarcinoma in conjunction with targeted therapies might also be useful. Herein, we review the evolving developments in the epidemiology, pathogenesis, and management of cholangiocarcinoma. PMID:28994423

  4. Compound C induces protective autophagy in human cholangiocarcinoma cells via Akt/mTOR-independent pathway.

    PubMed

    Zhao, Xiaofang; Luo, Guosong; Cheng, Ying; Yu, Wenjing; Chen, Run; Xiao, Bin; Xiang, Yuancai; Feng, Chunhong; Fu, Wenguang; Duan, Chunyan; Yao, Fuli; Xia, Xianming; Tao, Qinghua; Wei, Mei; Dai, Rongyang

    2018-07-01

    Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to exert antitumor activities in some types of cells. Whether compound C can exert antitumor effects in human cholangiocarcinoma (CCA) remains unknown. Here, we demonstrated that compound C is a potent inducer of cell death and autophagy in human CCA cells. Autophagy inhibitors increased the cytotoxicity of compound C towards human CCA cells, as confirmed by increased LDH release, and PARP cleavage. It is notable that compound C treatment increased phosphorylated Akt, sustained high levels of phosphorylated p70S6K, and decreased mTOR regulated p-ULK1 (ser757). Based on the data that blocking PI3K/Akt or mTOR had no apparent influence on autophagic response, we suggest that compound C induces autophagy independent of Akt/mTOR signaling in human CCA cells. Further study demonstrated that compound C inhibited the phosphorylation of JNK and its target c-Jun. Blocking JNK by SP600125 or siRNA suppressed autophagy induction upon compound C treatment. Moreover, compound C induced p38 MAPK activation, and its inhibition promoted autophagy induction via JNK activation. In addition, compound C induced p53 expression, and its inhibition attenuated compound C-induced autophagic response. Thus, compound C triggers autophagy, at least in part, via the JNK and p53 pathways in human CCA cells. In conclusion, suppresses autophagy could increase compound C sensitivity in human CCA. © 2018 Wiley Periodicals, Inc.

  5. Tyrosine kinase activity of EphA2 promotes its S897 phosphorylation and glioblastoma cell proliferation.

    PubMed

    Hamaoka, Yuho; Negishi, Manabu; Katoh, Hironori

    2018-05-23

    EphA2, a member of the Eph family of receptor tyrosine kinases, has been reported to promote tumor malignancy through phosphorylation of serine 897 (S897). Here, we found that overexpression of wild-type EphA2 induced S897 phosphorylation through ERK activation without growth factors or cytokines and promoted glioblastoma cell proliferation. However, overexpression of a kinase-inactive mutant of EphA2 failed to induce ERK activation, S897 phosphorylation, and promotion of glioblastoma cell proliferation. These data suggest that when overexpressed, EphA2 induces ERK activation through its tyrosine kinase activity, leading to S897 phosphorylation and promotion of glioblastoma cell proliferation. Our findings provide a new insight into how EphA2 mediates glioblastoma progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The Tyrosine Kinase c-Met Contributes to the Pro-tumorigenic Function of the p38 Kinase in Human Bile Duct Cholangiocarcinoma Cells*

    PubMed Central

    Dai, Rongyang; Li, Juanjuan; Fu, Jing; Chen, Yao; Wang, Ruoyu; Zhao, Xiaofang; Luo, Tao; Zhu, Junjie; Ren, Yibin; Cao, Jie; Qian, Youwen; Li, Ning; Wang, Hongyang

    2012-01-01

    Pro-tumorigenic function of the p38 kinase plays a critical role in human cholangiocarcinogenesis. However, the underlying mechanism remains incompletely understood. Here, we report that c-Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), contributes to the pro-tumorigenic ability of p38 in human cholangiocarcinoma cells. Both p38 and c-Met promote the proliferation and invasion of human cholangiocarcinoma cells. Importantly, inhibition or knockdown of p38 decreased the basal activation of c-Met. Tyrosine phosphatase inhibitor studies revealed that p38 promotes the activity of c-Met, at least in part, by inhibiting dephosphorylation of the receptor. Moreover, density enhanced phosphatase-1 (DEP-1) is involved in p38-mediated inhibiting dephosphorylation of c-Met. Furthermore, p38 inhibits the degradation of c-Met. Taken together, these data provide a potential mechanism to explain how p38 promotes human cholangiocarcinoma cell proliferation and invasion. We propose that the link between p38 and c-Met is implicated in the progression of human cholangiocarcinoma. PMID:23024367

  7. Outcomes after resection of occupational cholangiocarcinoma.

    PubMed

    Kubo, Shoji; Takemura, Shigekazu; Tanaka, Shogo; Shinkawa, Hiroji; Kinoshita, Masahiko; Hamano, Genya; Ito, Tokuji; Koda, Masaki; Aota, Takanori; Yamamoto, Takatsugu; Terajima, Hiroaki; Tachiyama, Gorou; Yamada, Terumasa; Nakamori, Shoji; Arimoto, Akira; Fujikawa, Masahiro; Tomimaru, Yoshito; Sugawara, Yasuhiko; Nakagawa, Kei; Unno, Michiaki; Mizuguchi, Toru; Takenaka, Kenji; Kimura, Koichi; Shirabe, Ken; Saiura, Akio; Uesaka, Katsuhiko; Taniguchi, Hiroki; Fukuda, Akira; Chong, Ja-Mun; Kuwae, Yuko; Ohsawa, Masahiko; Sato, Yasunori; Nakanuma, Yasuni

    2016-09-01

    Cholangiocarcinoma caused by exposure to 1,2-dichloropropane and/or dichloromethane is recognized as occupational cholangiocarcinoma. The aim of this study was to investigate the outcomes after resection of occupational cholangiocarcinoma to establish a treatment strategy for this disease. Clinicopathological findings and outcomes after surgical intervention in 20 patients with occupational cholangiocarcinoma were investigated. Of 20 the patients, curative resection was performed in 16 patients. Three patients underwent radiation at the stump of the bile ducts. Adjuvant chemotherapy was performed in 12 patients. Biliary intraepithelial neoplasia, intraductal papillary neoplasm of the bile duct, and/or chronic bile duct injury was detected in most subjects. Intraabdominal infection developed after surgery in nine patients. Cholangiocarcinoma recurred in 12 of the 20 patients. The recurrent tumors in five patients developed at a different part of the bile duct from the primary tumor and a second resection was performed in four of these five patients. The incidence of postoperative complications including intraabdominal infection was high in patients with occupational cholangiocarcinoma. Multicentric recurrence occurred not infrequently after surgery because the bile ducts had a high potential for the development of carcinoma. The aggressive treatment including second resection for the multicentric recurrence appeared to be effective. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  8. Downregulation of the expression of HDGF attenuates malignant biological behaviors of hilar cholangiocarcinoma cells.

    PubMed

    Liu, Yanfeng; Sun, Jingxian; Yang, Guangyun; Liu, Zhaojian; Guo, Sen; Zhao, Rui; Xu, Kesen; Wu, Xiaopeng; Zhang, Zhaoyang

    2015-09-01

    Hepatoma-derived growth factor (HDGF) has been reported to be a potential predictive and prognostic marker for several types of cancer and important in malignant biological behaviors. However, its role in human hilar cholangiocarcinoma remains to be elucidated. Our previous study demonstrated that high expression levels of HDGF in hilar cholangiocarcinoma tissues correlates with tumor progression and patient outcome. The present study aimed to elucidate the detailed functions of the HDGF protein. This was performed by downregulating the protein expression of HDGF in the FRH0201 hilar cholangiocarcinoma cell line by RNA interference (RNAi) in vitro, and revealed that downregulation of the HDGF protein significantly inhibited the malignant biological behavior of the FRH0201 cells. In addition, further investigation revealed that downregulation of the protein expression of HDGF significantly decreased the secretion of vascular endothelial growth factor, which may be the mechanism partially responsible for the inhibition of malignant biological behaviors. These findings demonstrated that HDGF is important in promoting malignant biological behaviors, including proliferation, migration and invasion of hilar cholangiocarcinoma FRH0201 cells. Inhibition of the expression of HDGF downregulated the malignant biological behaviors, suggesting that downregulation of the protein expression of HDGF by RNAi may be a novel therapeutic approach to inhibit the progression of hilar cholangiocarcinoma.

  9. Tamoxifen enhances therapeutic effects of gemcitabine on cholangiocarcinoma tumorigenesis.

    PubMed

    Jing, Gu; Yuan, Kaiyu; Turk, Amy N; Jhala, Nirag C; Arnoletti, Juan P; Zhang, Kui; McDonald, Jay M; Chen, Yabing

    2011-06-01

    Cholangiocarcinoma is a highly malignant tumor with limited therapeutic options. We have previously reported that tamoxifen (TMX) induces apoptosis of cholangiocarcinoma cells and reduces cholangiocarcinoma tumorigenesis in mice. In the present studies, we determined the effect of combination therapy of TMX and gemcitabine (GMT), another chemotherapeutical reagent for many cancers, on cholangiocarcinoma tumorigenesis and investigated the responsible mechanisms. GMT inhibited cell growth and induced apoptosis of cholangiocarcinoma cells in a concentration-dependent manner. TMX enhanced GMT-induced apoptosis of cholangiocarcinoma cells. Consistently, GMT (15 mg/kg) inhibited cholangiocarcinoma tumorigenesis in nude mice by 50%. TMX (15 mg/kg) enhanced the inhibitory effect of GMT on tumorigenesis by 33%. The inhibition of tumor growth correlated with enhanced apoptosis in tumor tissues. To elucidate the mechanisms underlying the additive effects of TMX on GMT-induced apoptosis, we determined the activation of caspases in cholangiocarcinoma cells exposed to GMT, TMX, or both. Activation of caspases 9 and 3, as well as cytochrome c release to the cytosol, was demonstrated in cells exposed to both reagents. In contrast, TMX activated caspase 2, whereas GMT had no effect. Inhibition of caspase 2 activation decreased TMX-, but not GMT-, induced activation of caspase 3 and apoptosis of cholangiocarcinoma cells. Similarly, activation of caspase 2 was found in tumors from TMX-treated mice, but not GMT-treated mice. Therefore, the enhanced effect of TMX on GMT-induced cholangiocarcinoma cell death is partially mediated by activation of caspase 2. TMX and GMT both induce apoptosis and inhibit cholangiocarcinoma tumorigenesis, which may be attributed to the activation of distinct apoptosis signals by TMX and GMT. Our studies provide in vivo evidence and molecular insight to support the use of TMX and GMT in combination as an effective therapy for cholangiocarcinoma.

  10. Overexpression of periostin and distinct mesothelin forms predict malignant progression in a rat cholangiocarcinoma model

    PubMed Central

    Manzanares, Miguel Á.; Campbell, Deanna J.W.; Maldonado, Gabrielle T.

    2017-01-01

    Periostin and mesothelin have each been suggested to be predictors of poor survival for patients with intrahepatic cholangiocarcinoma, although the clinical prognostic value of both of these biomarkers remains uncertain. The aim of the current study was to investigate these biomarkers for their potential to act as tumor progression factors when assessed in orthotopic tumor and three‐dimensional culture models of rat cholangiocarcinoma progression. Using our orthotopic model, we demonstrated a strong positive correlation between tumor and serum periostin and mesothelin and increasing liver tumor mass and associated peritoneal metastases that also reflected differences in cholangiocarcinoma cell aggressiveness and malignant grade. Periostin immunostaining was most prominent in the desmoplastic stroma of larger sized more aggressive liver tumors and peritoneal metastases. In comparison, mesothelin was more highly expressed in the cholangiocarcinoma cells; the slower growing more highly differentiated liver tumors exhibited a luminal cancer cell surface immunostaining for this biomarker, and the rapidly growing less differentiated liver and metastatic tumor masses largely showed cytoplasmic mesothelin immunoreactivity. Two molecular weight forms of mesothelin were identified, one at ∼40 kDa and the other, a more heavily glycosylated form, at ∼50 kDa. Increased expression of the 40‐kDa mesothelin over that of the 50 kDa form predicted increased malignant progression in both the orthotopic liver tumors and in cholangiocarcinoma cells of different malignant potential in three‐dimensional culture. Moreover, coculturing of cancer‐associated myofibroblasts with cholangiocarcinoma cells promoted overexpression of the 40‐kDa mesothelin, which correlated with enhanced malignant progression in vitro. Conclusion: Periostin and mesothelin are useful predictors of tumor progression in our rat desmoplastic cholangiocarcinoma models. This supports their relevance to

  11. A comparative proteomic analysis of bile for biomarkers of cholangiocarcinoma.

    PubMed

    Laohaviroj, Marut; Potriquet, Jeremy; Jia, Xinying; Suttiprapa, Sutas; Chamgramol, Yaovalux; Pairojkul, Chawalit; Sithithaworn, Paiboon; Mulvenna, Jason; Sripa, Banchob

    2017-06-01

    Cholangiocarcinoma is a primary malignant tumor of the bile duct epithelium. Cholangiocarcinoma is usually detected at an advanced stage when successful treatment is no longer possible. As the tumor originates from the bile duct epithelium, bile is an ideal source of tumor biomarkers for cholangiocarcinoma. In this study, we used a quantitative proteomics approach to identify potential tumor-associated proteins in the bile fluid of six cholangiocarcinoma patients. Three different gross-appearance tumor types were used in the analysis: mass-forming type ( n = 2), periductal infiltrating type ( n = 2), and intraductal growth type ( n = 2). Two bile samples from non-cancerous patients were used as controls. Isobaric labeling, coupled with Tandem mass spectrometry, was used to quantify protein levels in the bile of cholangiocarcinoma and control patients. In all, 63 proteins were significantly increased in cholangiocarcinoma bile compared to normal bile. Alpha-1-antitrypsin was one of the overexpressed proteins that increased in cholangiocarcinoma bile samples. Immunohistochemical analysis revealed that alpha-1-antitrypsin was detected in 177 (50%) of 354 cholangiocarcinoma tissues from our Tissue Bank. Immunoblotting of 54 cholangiocarcinoma bile samples showed that alpha-1-antitrypsin was positive in 38 (70%) samples. Fecal enzyme-linked immunosorbent assay showed that alpha-1-antitrypsin level was able to distinguish cholangiocarcinoma patients from normal individuals. In conclusion, alpha-1-antitrypsin is a potential marker for early diagnosis of cholangiocarcinoma.

  12. MiR-199a-3p enhances cisplatin sensitivity of cholangiocarcinoma cells by inhibiting mTOR signaling pathway and expression of MDR1.

    PubMed

    Li, Qiang; Xia, Xuefeng; Ji, Jie; Ma, Jianghui; Tao, Liang; Mo, Linjun; Chen, Wei

    2017-05-16

    Several studies have reported reduced miRNA-199a-3p (miR-199a-3p) in different human malignancies, however, little is known about miR-199a-3p in cholangiocarcinoma cells. In this study, we demonstrate the essential role and mechanism of miR-199a-3p in regulating cisplatin sensitivity in cholangiocarcinoma cell lines. Using a CCK-8 cell counting assay we found that expression of miR-199a-3p was positively correlated with cisplatin sensitivity in cholangiocarcinoma cell lines. MiR-199a-3p overexpression could decrease the proliferation rate and increase apoptosis of cholangiocarcinoma cells in the presence of cisplatin, while miR-199a-3p inhibition had the opposite effect. Further study demonstrated that mTOR was the target gene of miR-199a-3p, and that miR-199a-3p mimics could inhibit expression of mTOR, which consequently reduced the phosphorylation of its downstream proteins 4EBP1 and p70s6k. Rescue experiments proved that miR-199a-3p could increase the cisplatin sensitivity of cholangiocarcinoma cell lines by regulating mTOR expression. Moreover, we also found that miR-199a-3p overexpression could reduce cisplatin induced MDR1 expression by decreasing the synthesis and increasing the degradation of MDR1, thus enhancing the effectiveness of cisplatin in cholangiocarcinoma. In conclusion, miR-199a-3p could increase cisplatin sensitivity of cholangiocarcinoma cell lines by inhibiting the activity of the mTOR signaling pathway and decreasing the expression of MDR1.

  13. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    PubMed Central

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  14. Perioperative Management of Hilar Cholangiocarcinoma

    PubMed Central

    Poruk, Katherine E.; Pawlik, Timothy M.

    2016-01-01

    Background Cholangiocarcinoma is the most common primary tumor of the biliary tract although it accounts for only 2 % of all human malignancies. We herein review hilar cholangiocarcinoma including its risk factors, the main classification systems for tumors, current surgical management of the disease, and the role chemotherapy and liver transplantation may play in selected patients. Methods We performed a comprehensive literature search using PubMed, Medline, and the Cochrane library for the period 1980–2015 using the following MeSH terms: “hilar cholangiocarcinoma”, “biliary cancer”, and “cholangiocarcinoma”. Only recent studies that were published in English and in peer reviewed journals were included. Findings Hilar cholangiocarcinoma is a disease of advanced age with an unclear etiology, most frequently found in Southeast Asia and relatively rare in Western countries. The best chance of long-term survival and potential cure is surgical resection with negative surgical margins, but many patients are unresectable due to locally advanced or metastatic disease at diagnosis. As a result of recent efforts, new methods of management have been identified for these patients, including preoperative portal vein embolism and biliary drainage, neoadjuvant chemotherapy with subsequent transplantation, and chemoradiation therapy. Conclusion Current management of hilar cholangiocarcinoma depends on extent of the tumor at presentation and includes surgical resection, liver transplantation, portal vein embolization, and chemoradiation therapy. Our understanding of hilar cholangiocarcinoma has improved in recent years and further research offers hope to improve the outcome in patients with these rare tumors. PMID:26022776

  15. Hilar cholangiocarcinoma with intratumoral calcification: A case report.

    PubMed

    Inoko, Kazuho; Tsuchikawa, Takahiro; Noji, Takehiro; Kurashima, Yo; Ebihara, Yuma; Tamoto, Eiji; Nakamura, Toru; Murakami, Soichi; Okamura, Keisuke; Shichinohe, Toshiaki; Hirano, Satoshi

    2015-10-14

    This report describes a rare case of hilar cholangiocarcinoma with intratumoral calcification that mimicked hepatolithiasis. A 73-year-old man presented to a local hospital with a calcified lesion in the hepatic hilum. At first, hepatolithiasis was diagnosed, and he underwent endoscopic stone extraction via the trans-papillary route. This treatment strategy failed due to biliary stricture. He was referred to our hospital, and further examination suggested the existence of cholangiocarcinoma. He underwent left hepatectomy with caudate lobectomy and extrahepatic bile duct resection. Pathological examination revealed hilar cholangiocarcinoma with intratumoral calcification, while no stones were found. To the best of our knowledge, only one case of calcified hilar cholangiocarcinoma has been previously reported in the literature. Here, we report a rare case of calcified hilar cholangiocarcinoma and reveal its clinicopathologic features.

  16. ALDH1A3, the Major Aldehyde Dehydrogenase Isoform in Human Cholangiocarcinoma Cells, Affects Prognosis and Gemcitabine Resistance in Cholangiocarcinoma Patients.

    PubMed

    Chen, Ming-Huang; Weng, Jing-Jie; Cheng, Chi-Tung; Wu, Ren-Chin; Huang, Shih-Chiang; Wu, Chiao-En; Chung, Yi-Hsiu; Liu, Chun-Yu; Chang, Mu-Hsin; Chen, Ming-Han; Chiang, Kun-Chun; Yeh, Ta-Sen; Su, Yeu; Yeh, Chun-Nan

    2016-08-15

    Intrahepatic cholangiocarcinoma is a fatal primary liver cancer resulting from diagnosis at an advanced stage. Understanding the mechanisms of drug resistance and metastasis of cholangiocarcinoma may improve the disease prognosis. Enhanced aldehyde dehydrogenase (ALDH) activity is suggested to be associated with increased drug resistance and the metastasis. This study aims to investigate the roles of the ALDH isoforms in cholangiocarcinoma. Aldefluor assays, RT-PCR, and Western blot analysis were used to identify the major ALDH isoforms contributing to Aldefluor activity in human cholangiocarcinoma cell lines. We manipulated isoform expression in HuCCT1 cells to elucidate the role of ALDH1A3 in the malignant progression of these cells. Finally, we used immunohistochemical staining to evaluate the clinical significance of ALDH1A3 in 77 hepatectomized cholangiocarcinoma patients and an additional 31 patients with advanced cholangiocarcinoma who received gemcitabine-based therapy. ALDH(high) cholangiocarcinoma cells not only migrated faster but were more resistant to gemcitabine. Among the 19 ALDH isoforms studied, ALDH1A3 was found to be the main contributor to Aldefluor activity. In addition, we also found that knockdown of ALDH1A3 expression in HuCCT1 cells markedly reduced not only their sensitivity to gemcitabine, which might be attributed to a decreased expression of ribonucleotide reductase M1, but also their migration. Most importantly, this enzyme was also identified as an independent poor prognostic factor for patients with intrahepatic cholangiocarcinoma, as well as a prognostic biomarker of gemcitabine-treated patients. ALDH1A3 plays an important role in enhancing malignant behavior of cholangiocarcinoma and serves as a new therapeutic target. Clin Cancer Res; 22(16); 4225-35. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Update on the Diagnosis and Treatment of Cholangiocarcinoma.

    PubMed

    Doherty, Bryan; Nambudiri, Vinod E; Palmer, William C

    2017-01-01

    Cholangiocarcinoma is a rare biliary adenocarcinoma associated with poor outcomes. Cholangiocarcinoma is subdivided into extrahepatic and intrahepatic variants. Intrahepatic cholangiocarcinoma is then further differentiated into (1) peripheral mass-forming tumors and (2) central periductal infiltrating tumors. We aimed to review the currently known risk factors, diagnostic tools, and treatment options, as well as highlight the need for further clinical trials and research to improve overall survival rates. Cholangiocarcinoma has seen significant increase in incidence rates over the last several decades. Most patients do not carry the documented risk factors, which include infections and inflammatory conditions, but cholangiocarcinoma typically forms in the setting of cholestasis and chronic inflammation. Management strategies include multispecialty treatments, with consideration of surgical resection, systemic chemotherapy, and targeted radiation therapy. Surgically resectable disease is the only curable treatment option, which may involve liver transplantation in certain selected cases. Referrals to centers of excellence, along with enrollment in novel clinical trials are recommended for patients with unresectable or recurrent disease. This article provides an overview of cholangiocarcinoma and discusses the current diagnosis and treatment options. While incidence is increasing and more risk factors are being discovered, much more work remains to improve outcomes of this ominous disease.

  18. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma.

    PubMed

    Graham, Rondell P; Barr Fritcher, Emily G; Pestova, Ekaterina; Schulz, John; Sitailo, Leonid A; Vasmatzis, George; Murphy, Stephen J; McWilliams, Robert R; Hart, Steven N; Halling, Kevin C; Roberts, Lewis R; Gores, Gregory J; Couch, Fergus J; Zhang, Lizhi; Borad, Mitesh J; Kipp, Benjamin R

    2014-08-01

    Patients with cholangiocarcinoma often present with locally advanced or metastatic disease. There is a need for effective therapeutic strategies for advanced stage cholangiocarcinoma. Recently, FGFR2 translocations have been identified as a potential target for tyrosine kinase inhibitor therapies. This study evaluated 152 cholangiocarcinomas and 4 intraductal papillary biliary neoplasms of the bile duct for presence of FGFR2 translocations by fluorescence in situ hybridization and characterized the clinicopathologic features of cases with FGFR2 translocations. Thirteen (10 women, 3 men; 8%) of 156 biliary tumors harbored FGFR2 translocations, including 12 intrahepatic cholangiocarcinomas (12/96; 13%) and 1 intraductal papillary neoplasm of the bile duct. Histologically, cholangiocarcinomas with FGFR2 translocations displayed prominent intraductal growth (62%) or anastomosing tubular glands with desmoplasia (38%). Immunohistochemically, the tumors with FGFR2 translocations frequently showed weak and patchy expression of CK19 (77%). Markers of the stem cell phenotype in cholangiocarcinoma, HepPar1 and CK20, were negative in all cases. The median cancer-specific survival for patients whose tumors harbored FGFR2 translocations was 123 months compared to 37 months for cases without FGFR2 translocations (P = .039). This study also assessed 100 cholangiocarcinomas for ERBB2 amplification and ROS1 translocations. Of the cases tested, 3% and 1% were positive for ERBB2 amplification and ROS1 translocation, respectively. These results confirm that FGFR2, ERRB2, and ROS1 alterations are potential therapeutic targets for intrahepatic cholangiocarcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization.

    PubMed

    Chen, Chongguang; Chiu, Yi-Ting; Wu, Wenman; Huang, Peng; Mann, Anika; Schulz, Stefan; Liu-Chen, Lee-Yuan

    2016-02-15

    Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated

  20. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23

    PubMed Central

    Wei, Yao; Wang, Dong; Jin, Fangfang; Bian, Zhen; Li, Limin; Liang, Hongwei; Li, Mingzhen; Shi, Lei; Pan, Chaoyun; Zhu, Dihan; Chen, Xi; Hu, Gang; Liu, Yuan; Zhang, Chen-Yu; Zen, Ke

    2017-01-01

    Tumour cells secrete exosomes that are involved in the remodelling of the tumour–stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours. During exosome secretion, phosphorylated PKM2 serves as a protein kinase to phosphorylate synaptosome-associated protein 23 (SNAP-23), which in turn enables the formation of the SNARE complex to allow exosomes release. Direct phosphorylation assay and mass spectrometry confirm that PKM2 phosphorylates SNAP-23 at Ser95. Ectopic expression of non-phosphorylated SNAP-23 mutant (Ser95→Ala95) significantly reduces PKM2-mediated exosomes release whereas expression of selective phosphomimetic SNAP-23 mutants (Ser95→Glu95 but not Ser20→Glu20) rescues the impaired exosomes release induced by PKM2 knockdown. Our findings reveal a non-metabolic function of PKM2, an enzyme associated with tumour cell reliance on aerobic glycolysis, in promoting tumour cell exosome release. PMID:28067230

  1. Pontin Acts as a Potential Biomarker for Poor Clinical Outcome and Promotes Tumor Invasion in Hilar Cholangiocarcinoma.

    PubMed

    Sun, Qi; Li, Fanni; Yu, Songyang; Zhang, Xiang; Shi, Feiyu; She, Junjun

    2018-01-01

    Hilar cholangiocarcinoma (HC) is a devastating malignancy that carries a poor overall prognosis. As a member of the AAA+ superfamily, Pontin becomes highly expressed in several malignant tumors, which contributes to tumor progression and influences tumor prognosis. In our research, Pontin expression in tumor specimens resected from 86 HC patients was detected by immunohistochemistry. Interestingly, high expression of Pontin was significantly associated with lymph node metastasis ( p = 0.011) and tumor node metastasis (TNM) stage ( p = 0.005). The Kaplan-Meier overall survival rate and multivariate analyses were performed to evaluate the prognosis of patients with HC. Patients with high Pontin expression had significantly poorer overall survival outcomes. Multivariate analyses found that Pontin was an independent prognostic factor ( p = 0.001). Moreover, bioinformatics analysis confirmed the increase in Pontin mRNA expression levels in cholangiocarcinoma tissues. In addition, in vitro experiments showed that Pontin expression was inhibited at the mRNA as well as protein levels after transfection with Pontin siRNA in human cholangiocarcinoma cell lines. Moreover, significant suppression of cell invasion was observed after the downregulation of Pontin. Taken together, the present study suggested that Pontin could act as a potential prognostic predictor, which might be a new valuable molecular candidate for the prevention and treatment of HC.

  2. Imaging features predict prognosis of patients with combined hepatocellular-cholangiocarcinoma.

    PubMed

    Mao, Y; Xu, S; Hu, W; Huang, J; Wang, J; Zhang, R; Li, S

    2017-02-01

    To evaluate the prognostic value of imaging patterns in combined hepatocellular-cholangiocarcinoma. A total of 36 patients with histopathologically confirmed combined hepatocellular-cholangiocarcinoma were enrolled. Pretreatment imaging was conducted to evaluate the tumour enhancement patterns, based on which the disease was classified as two subtypes: radiographic hepatocellular carcinoma-dominant (n=26) and radiographic cholangiocarcinoma-dominant (n=10). Moreover, based on the proportion of components, all combined hepatocellular-cholangiocarcinoma cases were divided into histopathological hepatocellular carcinoma-dominant (n=26) or histopathological cholangiocarcinoma-dominant (n=10). The Kaplan-Meier method was used to compare patient outcome between the two subtypes of each classification. Univariate Cox regression analysis were employed to evaluate the prognostic relevance of the imaging and histopathological classification. Consistency between histopathological and imaging classification was not high. Only 66.7% of patients had consistent classification. Moreover, the median overall survival of the radiographic cholangiocarcinoma-dominant and radiographic hepatocellular carcinoma-dominant population was 15.03 and 40.4 months, respectively (p=0.012); however, no significant difference was observed between histopathological type, with median overall survival being 32.07 and 40.4 months in the histopathological cholangiocarcinoma-dominant group and histopathological hepatocellular carcinoma-dominant group, respectively (p=0.784). There was an association between imaging patterns and overall survival in combined hepatocellular-cholangiocarcinoma. Postoperative re-evaluation of imaging patterns could help to assess patient outcome. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma

    PubMed Central

    Kwak, Tae Won; Shin, Hee Jae; Jeong, Young-Il; Han, Myoung-Eun; Oh, Sae-Ock; Kim, Hyun-Jung; Kim, Do Hyung; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to investigate the anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Methods The anticancer activity of streptochlorin was evaluated in vitro in various cholangiocarcinoma cell lines for apoptosis, proliferation, invasiveness, and expression of various protein levels. A liver metastasis model was prepared by splenic injection of HuCC-T1 cholangiocarcinoma cells using a BALB/c nude mouse model to study the systemic antimetastatic efficacy of streptochlorin 5 mg/kg at 8 weeks. The antitumor efficacy of subcutaneously injected streptochlorin was also assessed using a solid tumor xenograft model of SNU478 cells for 22 days in the BALB/c nude mouse. Results Streptochlorin inhibited growth and secretion of vascular endothelial growth factor by cholangiocarcinoma cells in a dose-dependent manner and induced apoptosis in vitro. In addition, streptochlorin effectively inhibited invasion and migration of cholangiocarcinoma cells. Secretion of vascular endothelial growth factor and activity of matrix metalloproteinase-9 in cholangiocarcinoma cells were also suppressed by treatment with streptochlorin. Streptochlorin effectively regulated metastasis of HuCC-T1 cells in a mouse model of liver metastasis. In a tumor xenograft study using SNU478 cells, streptochlorin significantly inhibited tumor growth without changes in body weight when compared with the control. Conclusion These results reveal that streptochlorin is a promising chemotherapeutic agent to the treatment of cholangiocarcinoma. PMID:25931814

  4. Bile Duct Cancer (Cholangiocarcinoma)

    MedlinePlus

    ... and pediatric oncologists, oncology nurses, physician assistants, social workers, and patient advocates. Cancer.Net Guide Bile Duct Cancer (Cholangiocarcinoma) ... Team Additional Resources View All Pages f ...

  5. Imaging spectrum of cholangiocarcinoma: role in diagnosis, staging, and posttreatment evaluation.

    PubMed

    Mar, Winnie A; Shon, Andrew M; Lu, Yang; Yu, Jonathan H; Berggruen, Senta M; Guzman, Grace; Ray, Charles E; Miller, Frank

    2016-03-01

    Cholangiocarcinoma, a tumor of biliary epithelium, is increasing in incidence. The imaging appearance, behavior, and treatment of cholangiocarcinoma differ according to its location and morphology. Cholangiocarcinoma is usually classified as intrahepatic, perihilar, or distal. The three morphologies are mass-forming, periductal sclerosing, and intraductal growing. As surgical resection is the only cure, prompt diagnosis and accurate staging is crucial. In staging, vascular involvement, longitudinal spread, and lymphadenopathy are important to assess. The role of liver transplantation for unresectable peripheral cholangiocarcinoma will be discussed. Locoregional therapy can extend survival for those with unresectable intrahepatic tumors. The main risk factors predisposing to cholangiocarcinoma are parasitic infections, primary sclerosing cholangitis, choledochal cysts, and viral hepatitis. Several inflammatory conditions can mimic cholangiocarcinoma, including IgG4 disease, sclerosing cholangitis, Mirizzi's syndrome, and recurrent pyogenic cholangitis. The role of PET in diagnosis and staging will also be discussed. Radiologists play a crucial role in diagnosis, staging, and treatment of this disease.

  6. Tyrosine Phosphorylation of the Pioneer Transcription Factor FoxA1 Promotes Activation of Estrogen Signaling.

    PubMed

    Yamaguchi, Noritaka; Shibazaki, Misato; Yamada, Chiaki; Anzai, Erina; Morii, Mariko; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2017-06-01

    The pioneer transcription factor FoxA1 plays an important role in estrogen signaling by opening closed chromatin and promoting recruitment of the estrogen receptor to its target regions in DNA. In this study, we analyzed tyrosine phosphorylation of FoxA1 by the non-receptor-type tyrosine kinase c-Abl. c-Abl was shown to phosphorylate FoxA1 at multiple sites, especially in the N- and C-terminal regions. Tyr429 and Tyr464 were identified as the major phosphorylation sites in the FoxA1 C-terminal region. The phosphomimetic and nonphosphorylatable FoxA1 mutants were generated by glutamic acid and phenylalanine substitutions at these tyrosine residues, respectively. The phosphomimetic FoxA1 promoted the activation of estrogen signaling, whereas the nonphosphorylatable FoxA1 suppressed its activation. Stimulation with the epidermal growth factor, which activates c-Abl, enhanced the activation of estrogen signaling. In contrast, the c-Abl inhibitor imatinib reduced its activation. The phosphomimetic FoxA1 mutant showed a higher affinity toward histone H3 than the wild-type. These results suggest that c-Abl-mediated phosphorylation of FoxA1 promotes the activation of estrogen signaling by inducing its binding to histones. J. Cell. Biochem. 118: 1453-1461, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Influence of marital status on the survival of adults with extrahepatic/intrahepatic cholangiocarcinoma.

    PubMed

    Chen, Zhiqiang; Pu, Liyong; Gao, Wen; Zhang, Long; Han, Guoyong; Zhu, Qin; Li, Xiangcheng; Wu, Jindao; Wang, Xuehao

    2017-04-25

    Although the prognostic value of marital status has been implicated in many cancers, its prognostic impact on cholangiocarcinoma has not yet been determined. The aim of this study was to examine the association between marital status and cholangiocarcinoma survival. We included 8,776 extrahepatic cholangiocarcinoma cases and 1,352 intrahepatic cholangiocarcinoma cases between 1973 and 2013 from the Surveillance, Epidemiology, and End Results database. We found widowed patients were more likely to be female, aged more than 70, and from low income areas. Multivariate analysis indicated that marital status was an independent prognostic factor for extrahepatic cholangiocarcinoma patients. Subgroup analysis suggested the widowed status independently predicted poor survival at regional stage and in older patients with intrahepatic cholangiocarcinoma. To conclude, marital status is a valuable prognostic factor in cholangiocarcinoma, and widowed patients are at greater risk of death than others.

  8. Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4.

    PubMed

    Nie, Jihua; Zhang, Jingying; Wang, Lili; Lu, Lunjie; Yuan, Qian; An, Fangmei; Zhang, Shuyu; Jiao, Yang

    2017-12-13

    The early occurrence regional nodal and distant metastases cholangiocarcinoma (CCA) is one of the major reasons for its poor prognosis. However, the related mechanisms are largely elusive. Recently, increasing evidences indicate that adipocytes might be involved in the proliferation, homing, migration and invasion of several malignancies. In the present study, we attempt to determine the effects and possible mechanisms of adipocytes on regulating progression of CCA. Adipocyte-CCA cell co-culture system and CCA metastasis mice model were used to determine the effects of adipocytes on CCA metastasis. We identified the biological functions and possible mechanisms of adipocyte-derived fatty acid binding protein 4 (FABP4) in regulating the adipocyte-induced CCA metastasis and epithelial-mesenchymal transition (EMT) phenotypes, both in vitro and in vivo. Adipocyte-CCA cell co-culture promotes the in vitro and in vivo tumor metastasis, leading to increased adipocyte-derived fatty acid absorbance and intracellular lipids of CCA cells, which indicates adipocytes might function as the energy source for CCA progression by providing free fatty acids. Further, highly expressed FABP4 protein was identified in adipose tissues and fully differentiated adipocytes, and upregulated FABP4 was also detected by qRT-PCR assay in CCA cells co-cultivated with adipose extracts as compared to parental CCA cells. The specific FABP4 inhibitor BMS309403 significantly impaired adipocyte-induced CCA metastasis and EMT phenotypes both in vitro and in vivo. Together, the results demonstrate that the adipocyte-CCA interaction and the energy extraction of CCA cells from adipocytes are crucial for the invasion, migration and EMT of CCA cells. FABP4 from adipocytes mediates these adipocyte-induced variations in CCA cells, which could serve as a potential target for the treatment of CCA.

  9. COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer.

    PubMed

    Kim, Garam; Khanal, Prem; Kim, Jin Young; Yun, Hyo-Jeong; Lim, Sung-Chul; Shim, Jung-Hyun; Choi, Hong Seok

    2015-06-01

    Pin1, a conserved eukaryotic Peptidyl-prolyl cis/trans isomerase, has profound effects on numerous key-signaling molecules, and its deregulation contributes to disease, particularly cancer. Although Pin1-mediated prolyl isomerization is an essential and novel regulatory mechanism for protein phosphorylation, little is known about the upstream signaling pathway(s) that regulates Pin1 activity. Here, we identify MAP3K-related serine-threonine kinase (the gene encoding COT/Tpl2) as a kinase responsible for phosphorylation of Pin1 Ser16. COT interacts with and phosphorylates Pin1 on Ser16. Consequently, Pin1 Ser16 phosphorylation by COT increases cyclin D1 abundance and enhances tumorigenecity of MCF7 cells. In contrast, depletion of COT in MCF7 cells leads to downregulation of Pin1 Ser16 phosphorylation, which subsequently decrease cyclin D1 levels, inhibiting tumorigenecity of MCF7 cells. In a xenograft model, treatment of TKI, a COT inhibitor, and Juglone, a Pin1 inhibitor, abrogates tumor growth. In human breast cancer patients, immunohistochemical staining shows that Pin1 pSer16 levels are positively correlated with COT levels, providing strong evidence for an essential role of the COT/Pin1 axis in conveying oncogenic signals to promote aggressiveness in human breast cancer. © 2013 Wiley Periodicals, Inc.

  10. Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma.

    PubMed

    Zhang, Dawei; Li, Haiyan; Xie, Juping; Jiang, Decan; Cao, Liangqi; Yang, Xuewei; Xue, Ping; Jiang, Xiaofeng

    2018-06-01

    The aim of the present study was to elucidate whether, and how, long intergenic non-protein coding RNA 1296 (LINC01296) is involved in the modulation of human cholangiocarcinoma (CCA) development and progression. Microarray data analysis and reverse transcription-quantitative polymerase chain reaction analysis demonstrated that LINC01296 was significantly upregulated in human CCA compared with nontumor tissues. Furthermore, the expression of LINC01296 in human CCA was positively associated with tumor severity and clinical stage. Knockdown of LINC01296 dramatically suppressed the viability, migration and invasion of RBE and CCLP1 cells, and promoted cell apoptosis in vitro. Furthermore, LINC01296 knockdown inhibited tumor growth in a xenograft model. Mechanistically, LINC01296 was demonstrated to sponge microRNA-5095 (miR-5095), which targets MYCN proto-oncogene bHLH transcription factor (MYCN) mRNA in human CCA. By inhibition of miR-5095, LINC01296 overexpression upregulated the expression of MYCN and promoted cell viability, migration and invasion in CCA cells. The results reveal that the axis of LINC01296/miR-5095/MYCN may be a mechanism to regulate CCA development and progression.

  11. Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin.

    PubMed

    Chen, Hsin-Yi; Shen, Che-Hung; Tsai, Yuh-Tyng; Lin, Feng-Chi; Huang, Yuan-Ping; Chen, Ruey-Hwa

    2004-12-01

    Brk (for breast tumor kinase) is a nonreceptor tyrosine kinase containing SH3, SH2, and tyrosine kinase catalytic domains. Brk was originally identified from a human metastatic breast tumor, and its overexpression is frequently observed in breast cancer and several other cancer types. However, the molecular mechanism by which this kinase participates in tumorigenesis remains poorly characterized. In the present study, we not only identified paxillin as the binding partner and substrate of Brk but also discovered a novel signaling pathway by which Brk mediates epidermal growth factor (EGF)-induced paxillin phosphorylation. We show that EGF stimulation activates the catalytic activity of Brk, which in turn phosphorylates paxillin at Y31 and Y118. These phosphorylation events promote the activation of small GTPase Rac1 via the function of CrkII. Through this pathway, Brk is capable of promoting cell motility and invasion and functions as a mediator of EGF-induced migration and invasion. In accordance with these functional roles, Brk translocates to membrane ruffles, where it colocalizes with paxillin during cell migration. Together, our findings identify novel signaling and biological roles of Brk and indicate the first potential link between Brk and metastatic malignancy.

  12. MDCT assessment of resectability in hilar cholangiocarcinoma.

    PubMed

    Ni, Qihong; Wang, Haolu; Zhang, Yunhe; Qian, Lijun; Chi, Jiachang; Liang, Xiaowen; Chen, Tao; Wang, Jian

    2017-03-01

    The purpose of this study is to investigate the value of multidetector computed tomography (MDCT) assessment of resectability in hilar cholangiocarcinoma, and to identify the factors associated with unresectability and accurate evaluation of resectability. From January 2007 to June 2015, a total of 77 consecutive patients were included. All patients had preoperative MDCT (with MPR and MinIP) and surgical treatment, and were pathologically proven with hilar cholangiocarcinoma. The MDCT images were reviewed retrospectively by two senior radiologists and one hepatobiliary surgeon. The surgical findings and pathologic results were considered to be the gold standard. The Chi square test was used to identify factors associated with unresectability and accurate evaluation of resectability. The sensitivity, specificity, and overall accuracy of MDCT assessment were 83.3 %, 75.9 %, and 80.5 %, respectively. The main causes of inaccuracy were incorrect evaluation of N2 lymph node metastasis (4/15) and distant metastasis (4/15). Bismuth type IV tumor, main or bilateral hepatic artery involvement, and main or bilateral portal vein involvement were highly associated with unresectability (P < 0.001). Patients without biliary drainage had higher accuracy of MDCT evaluation of resectability compared to those with biliary drainage (P < 0.001). MDCT is reliable for preoperative assessment of resectability in hilar cholangiocarcinoma. Bismuth type IV tumor and main or bilateral vascular involvement highly suggest the unresectability of hilar cholangiocarcinoma. Patients without biliary drainage have a more accurate MDCT evaluation of resectability. We suggest MDCT should be performed before biliary drainage to achieve an accurate evaluation of resectability in hilar cholangiocarcinoma.

  13. Proteomic Studies of Cholangiocarcinoma and Hepatocellular Carcinoma Cell Secretomes

    PubMed Central

    Srisomsap, Chantragan; Sawangareetrakul, Phannee; Subhasitanont, Pantipa; Chokchaichamnankit, Daranee; Chiablaem, Khajeelak; Bhudhisawasdi, Vaharabhongsa; Wongkham, Sopit; Svasti, Jisnuson

    2010-01-01

    Cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) occur with relatively high incidence in Thailand. The secretome, proteins secreted from cancer cells, are potentially useful as biomarkers of the diseases. Proteomic analysis was performed on the secreted proteins of cholangiocarcinoma (HuCCA-1) and hepatocellular carcinoma (HCC-S102, HepG2, SK-Hep-1, and Alexander) cell lines. The secretomes of the five cancer cell lines were analyzed by SDS-PAGE combined with LC/MS/MS. Sixty-eight proteins were found to be expressed only in HuCCA-1. Examples include neutrophil gelatinase-associated lipocalin (lipocalin 2), laminin 5 beta 3, cathepsin D precursor, desmoplakin, annexin IV variant, and annexin A5. Immunoblotting was used to confirm the presence of lipocalin 2 in conditioned media and cell lysate of 5 cell lines. The results showed that lipocalin 2 was a secreted protein which is expressed only in the conditioned media of the cholangiocarcinoma cell line. Study of lipocalin 2 expression in different types of cancer and normal tissues from cholangiocarcinoma patients showed that lipocalin 2 was expressed only in the cancer tissues. We suggest that lipocalin 2 may be a potential biomarker for cholangiocarcinoma. PMID:20069059

  14. Preoperative biliary drainage in hilar cholangiocarcinoma: When and how?

    PubMed Central

    Paik, Woo Hyun; Loganathan, Nerenthran; Hwang, Jin-Hyeok

    2014-01-01

    Hilar cholangiocarcinoma is a tumor of the extrahepatic bile duct involving the left main hepatic duct, the right main hepatic duct, or their confluence. Biliary drainage in hilar cholangiocarcinoma is sometimes clinically challenging because of complexities associated with the level of biliary obstruction. This may result in some adverse events, especially acute cholangitis. Hence the decision on the indication and methods of biliary drainage in patients with hilar cholangiocarcinoma should be carefully evaluated. This review focuses on the optimal method and duration of preoperative biliary drainage (PBD) in resectable hilar cholangiocarcinoma. Under certain special indications such as right lobectomy for Bismuth type IIIA or IV hilar cholangiocarcinoma, or preoperative portal vein embolization with chemoradiation therapy, PBD should be strongly recommended. Generally, selective biliary drainage is enough before surgery, however, in the cases of development of cholangitis after unilateral drainage or slow resolving hyperbilirubinemia, total biliary drainage may be considered. Although the optimal preoperative bilirubin level is still a matter of debate, the shortest possible duration of PBD is recommended. Endoscopic nasobiliary drainage seems to be the most appropriate method of PBD in terms of minimizing the risks of tract seeding and inflammatory reactions. PMID:24634710

  15. Epithelial Transforming Growth Factor-β Signaling Does Not Contribute to Liver Fibrosis but Protects Mice From Cholangiocarcinoma.

    PubMed

    Mu, Xueru; Pradere, Jean-Philippe; Affò, Silvia; Dapito, Dianne H; Friedman, Richard; Lefkovitch, Jay H; Schwabe, Robert F

    2016-03-01

    Transforming growth factor-β (TGFβ) exerts key functions in fibrogenic cells, promoting fibrosis development in the liver and other organs. In contrast, the functions of TGFβ in liver epithelial cells are not well understood, despite their high level of responsiveness to TGFβ. We sought to determine the contribution of epithelial TGFβ signaling to hepatic fibrogenesis and carcinogenesis. TGFβ signaling in liver epithelial cells was inhibited by albumin-Cre-, K19-CreERT-, Prom1-CreERT2-, or AAV8-TBG-Cre-mediated deletion of the floxed TGFβ receptor II gene (Tgfbr2). Liver fibrosis was induced by carbon tetrachloride, bile duct ligation, or disruption of the multidrug-resistance transporter 2 gene (Mdr2). Hepatocarcinogenesis was induced by diethylnitrosamine or hepatic deletion of PTEN. Deletion of Tgfbr2 from liver epithelial cells did not alter liver injury, toxin-induced or biliary fibrosis, or diethylnitrosamine-induced hepatocarcinogenesis. In contrast, epithelial deletion of Tgfbr2 promoted tumorigenesis and reduced survival of mice with concomitant hepatic deletion of Pten, accompanied by an increase in tumor number and a shift from hepatocellular carcinoma to cholangiocarcinoma. Surprisingly, both hepatocyte- and cholangiocyte-specific deletion of Pten and Tgfbr2 promoted the development of cholangiocarcinoma, but with different latencies. The prolonged latency and the presence of hepatocyte-derived cholangiocytes after AAV8-TBG-Cre-mediated deletion of Tgfbr2 and Pten indicated that cholangiocarcinoma might arise from hepatocyte-derived cholangiocytes in this model. Pten deletion resulted in up-regulation of Tgfbr2, and deletion of Tgfbr2 increased cholangiocyte but not hepatocyte proliferation, indicating that the main function of epithelial TGFBR2 is to restrict cholangiocyte proliferation. Epithelial TGFβ signaling does not contribute to the development of liver fibrosis or formation of hepatocellular carcinomas in mice, but restricts

  16. Hilar Cholangiocarcinoma: expert consensus statement

    PubMed Central

    Mansour, John C; Aloia, Thomas A; Crane, Christopher H; Heimbach, Julie K; Nagino, Masato; Vauthey, Jean-Nicolas

    2015-01-01

    An American Hepato-Pancreato-Biliary Association (AHPBA)-sponsored consensus meeting of expert panellists met on 15 January 2014 to review current evidence on the management of hilar cholangiocarcinoma in order to establish practice guidelines and to agree consensus statements. It was established that the treatment of patients with hilar cholangiocarcinoma requires a coordinated, multidisciplinary approach to optimize the chances for both durable survival and effective palliation. An adequate diagnostic and staging work-up includes high-quality cross-sectional imaging; however, pathologic confirmation is not required prior to resection or initiation of a liver transplant trimodal treatment protocol. The ideal treatment for suitable patients with resectable hilar malignancy is resection of the intra- and extrahepatic bile ducts, as well as resection of the involved ipsilateral liver. Preoperative biliary drainage is best achieved with percutaneous transhepatic approaches and may be indicated for patients with cholangitis, malnutrition or hepatic insufficiency. Portal vein embolization is a safe and effective strategy for increasing the future liver remnant (FLR) and is particularly useful for patients with an FLR of <30%. Selected patients with unresectable hilar cholangiocarcinoma should be evaluated for a standard trimodal protocol incorporating external beam and endoluminal radiation therapy, systemic chemotherapy and liver transplantation. Post-resection chemoradiation should be offered to patients who show high-risk features on surgical pathology. Chemoradiation is also recommended for patients with locally advanced, unresectable hilar cancers. For patients with locally recurrent or metastatic hilar cholangiocarcinoma, first-line chemotherapy with gemcitabine and cisplatin is recommended based on multiple Phase II trials and a large randomized controlled trial including a heterogeneous population of patients with biliary cancers. PMID:26172136

  17. Hilar cholangiocarcinoma: expert consensus statement.

    PubMed

    Mansour, John C; Aloia, Thomas A; Crane, Christopher H; Heimbach, Julie K; Nagino, Masato; Vauthey, Jean-Nicolas

    2015-08-01

    An American Hepato-Pancreato-Biliary Association (AHPBA)-sponsored consensus meeting of expert panellists met on 15 January 2014 to review current evidence on the management of hilar cholangiocarcinoma in order to establish practice guidelines and to agree consensus statements. It was established that the treatment of patients with hilar cholangiocarcinoma requires a coordinated, multidisciplinary approach to optimize the chances for both durable survival and effective palliation. An adequate diagnostic and staging work-up includes high-quality cross-sectional imaging; however, pathologic confirmation is not required prior to resection or initiation of a liver transplant trimodal treatment protocol. The ideal treatment for suitable patients with resectable hilar malignancy is resection of the intra- and extrahepatic bile ducts, as well as resection of the involved ipsilateral liver. Preoperative biliary drainage is best achieved with percutaneous transhepatic approaches and may be indicated for patients with cholangitis, malnutrition or hepatic insufficiency. Portal vein embolization is a safe and effective strategy for increasing the future liver remnant (FLR) and is particularly useful for patients with an FLR of <30%. Selected patients with unresectable hilar cholangiocarcinoma should be evaluated for a standard trimodal protocol incorporating external beam and endoluminal radiation therapy, systemic chemotherapy and liver transplantation. Post-resection chemoradiation should be offered to patients who show high-risk features on surgical pathology. Chemoradiation is also recommended for patients with locally advanced, unresectable hilar cancers. For patients with locally recurrent or metastatic hilar cholangiocarcinoma, first-line chemotherapy with gemcitabine and cisplatin is recommended based on multiple Phase II trials and a large randomized controlled trial including a heterogeneous population of patients with biliary cancers. © 2015 International Hepato

  18. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Cholangiocarcinoma: classification, diagnosis, staging, imaging features, and management.

    PubMed

    Oliveira, Irai S; Kilcoyne, Aoife; Everett, Jamie M; Mino-Kenudson, Mari; Harisinghani, Mukesh G; Ganesan, Karthik

    2017-06-01

    Cholangiocarcinoma is a relatively uncommon malignant neoplasm with poor prognosis. The distinction between extrahepatic and intrahepatic subtypes is important as epidemiological features, biologic and pathologic characteristics, and clinical course are different for both entities. This review study focuses on the role imaging plays in the diagnosis, classification, staging, and post-treatment assessment of cholangiocarcinoma.

  20. Trousseau's Syndrome in Cholangiocarcinoma: The Risk of Making the Diagnosis.

    PubMed

    Blum, Matthew F; Ma, Vincent Y; Betbadal, Anthony M; Bonomo, Robert A; Raju, Rajeeva R; Packer, Clifford D

    2016-03-01

    We report a case of Trousseau's syndrome with cholangiocarcinoma complicated by a fatal pulmonary embolism after liver biopsy. A 69-year-old man who presented with right upper quadrant pain was found to have portal vein thrombosis and nonspecific liver hypodensities after imaging by computerized tomography. Following four days of anticoagulation, heparin was held for percutaneous liver biopsy. After the biopsy, he developed acute hepatic failure, acute kidney injury, lactic acidemia, and expired. Autopsy revealed intrahepatic cholangiocarcinoma and a pulmonary embolism. Trousseau's syndrome with cholangiocarcinoma is rarely reported and has a poor prognosis. This case highlights a fundamental challenge in the diagnosis and early management of intrahepatic cholangiocarcinoma with hypercoagulability. Diagnostic biopsy creates an imperative to reduce post-operative bleeding risk, but this conflicts with the need to reduce thrombotic risk in a hypercoagulable state. Considering the risk of withholding anticoagulation in patients with proven or suspected cholangiocarcinoma complicated by portal vein thrombosis, physicians should consider biopsy procedures with lesser bleeding risks, such as transjugular liver biopsy or plugged percutaneous liver biopsy, to minimize interruption of anticoagulation. © 2016 Marshfield Clinic.

  1.  Intrahepatic, perihilar and distal cholangiocarcinoma: Management and outcomes.

    PubMed

    Waseem, David; Tushar, Patel

     Introduction and aims. Cholangiocarcinomas are a heterogeneous group of tumors that can be classified into three clinically distinct types of cancers, intrahepatic, perihilar and distal cholangiocarcinoma. The inconsistent use of nomenclature for these cancers has obscured a true knowledge of the epidemiology, natural history and response to therapy of these cancers. Our aims were to define demographic characteristics, management and outcomes of these three distinct cancer types. A retrospective study of patients enrolled in an institutional cancer registry from 1992 to 2010. Median survival was compared between different treatment modalities over three time periods for the three types of cholangiocarcinoma at different stages of the disease using Kaplan Meyer analysis. 242 patients were identified. All cases were reviewed and classified into intrahepatic (90 patients), distal (48 patients) or perihilar (104 patients) cholangiocarcinomas. These cancers differed in median age of onset, gender distribution, median survival and stage. 13.8% of patients presented with stage I, 5.8% with stage II, 9.6% with stage III, 28% with stage IV, with 41.8% having unknown stage. The overall median survival was 15.8 months, and was 23, 25, 14, and 4.5 months for stages I, II, III, and IV respectively. Surgery improved survival in both early and advanced stages. Multimodality therapies further improved outcomes, particularly for perihilar cholangiocarcinoma. Perihilar, distal and intrahepatic cholangiocarcinoma vary in their presentation, natural history and therapeutic approach to management. A consistently applied classification is essential for meaningful interpretation of studies of these cancers.

  2. Dysregulated Expression of MITF in Subsets of Hepatocellular Carcinoma and Cholangiocarcinoma.

    PubMed

    Nooron, Nattakarn; Ohba, Koji; Takeda, Kazuhisa; Shibahara, Shigeki; Chiabchalard, Anchalee

    2017-08-01

    Cholangiocarcinoma represents the second most common primary liver tumor after hepatocellular carcinoma. Mahanine, a carbazole alkaloid derived from Murraya koenigii (Linn.) Spreng, has been used as folk medicine in Thailand, where the liver fluke-associated cholangiocarcinoma is common. The expression of microphthalmia-associated transcription factor (MITF) is maintained at immunohistochemically undetectable levels in hepatocytes and cholangiocytes. To explore the regulation of MITF expression in the liver, we immunohistochemically analyzed the MITF expression using hepatocellular carcinoma and cholangiocarcinoma specimens of the human liver cancer tissue array. MITF immunoreactivity was detected in subsets of hepatocellular carcinoma (6 out of 38 specimens; 16%) and cholangiocarcinoma (2/7 specimens; 29%). Moreover, immunoreactivity for glioma-associated oncogene 1 (GLI1), a transcription factor of the Hedgehog signaling pathway, was detected in 55% of hepatocellular carcinoma (21/38 specimens) and 86% of cholangiocarcinoma (6/7 specimens). Importantly, MITF was detectable only in the GLI1-positive hepatocellular carcinoma and cholangiocarcinoma, and MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. Subsequently, the effect of mahanine was analyzed in HepG2 human hepatocellular carcinoma and HuCCT1 and KKU-100 human cholangiocarcinoma cells. Mahanine (25 µM) showed the potent cytotoxicity in these hepatic cancer cell lines, which was associated with increased expression levels of MITF, as judged by Western blot analysis. MITF is over-expressed in subsets of hepatocellular carcinoma and cholangiocarcinoma, and detectable MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. MITF expression levels may be determined in hepatic cancer cells by the balance between the Hedgehog signaling and the cellular stress.

  3. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    PubMed Central

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  4. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation

    PubMed Central

    Chornoguz, Olesya; Hagan, Robert S.; Haile, Azeb; Arwood, Matthew L.; Gamper, Christopher J.; Banerjee, Arnob; Powell, Jonathan D.

    2017-01-01

    CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFNγ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis – multiple reaction monitoring mass spectrometry (MRM-MS). We used MRM-MS to detect and quantify predicted phospho-peptides derived from T-bet. By analyzing activated murine WT and Rheb deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify 6 T-bet phosphorylation sites. Five of these are novel, and 4 sites are consistently dephosphorylated in both Rheb deficient CD4+ T-cells and T-cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the 6 phosphorylation sites was tested for the ability to impair IFNγ expression. Single phosphorylation site mutants still support induction of IFNγ expression, however simultaneous mutation of 3 of the mTORC1-dependent sites results in significantly reduced IFNγ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation. PMID:28424242

  5. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells.

    PubMed

    Kim, Hun Sik; Long, Eric O

    2012-07-10

    The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require synergistic signals from specific pairs of co-activation receptors, such as CD314 (also known as NKG2D) and CD244 (2B4), which bind to distinct ligands present on target cells. These signals are required to overcome inhibition mediated by the E3 ubiquitin ligase c-Cbl of the guanine nucleotide exchange factor Vav1, which promotes activation of NK cells. Here, we showed that the adaptor protein SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons) was required for this synergy and that distinct tyrosine residues in SLP-76 were phosphorylated by each member of a pair of synergistic receptors. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76 enabled binding of SLP-76 to Vav1. Selective phosphorylation of SLP-76 at these residues was restricted to receptors that stimulated ligand-dependent target cell killing; antibody-dependent stimulation of the Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 mutant proteins showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that combined phosphorylation of separate tyrosine residues in SLP-76 forms the basis of synergistic NK cell activation.

  6. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma.

    PubMed

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-05-23

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1 , p14 , p16 , death-associated protein kinase ( DAPK ), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response.

  7. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma

    PubMed Central

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-01-01

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1, p14, p16, death-associated protein kinase (DAPK), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response. PMID:28545228

  8. IgG4-Associated Cholangitis Can Mimic Hilar Cholangiocarcinoma.

    PubMed

    Zaydfudim, Victor M; Wang, Andrew Y; de Lange, Eduard E; Zhao, Zimin; Moskaluk, Christopher A; Bauer, Todd W; Adams, Reid B

    2015-07-01

    IgG4-associated cholangitis can mimic hilar cholangiocarcinoma. Previously reported patients with IgG4-associated cholangitis mimicking cholangiocarcinoma had elevated serum IgG4 levels and long-segment biliary strictures. However, in the absence of other diagnostic criteria for malignancy, IgG4-associated cholangitis should remain a consideration among patients with normal serum IgG4 and a hilar mass suspicious for cholangiocarcinoma. The presence of a hilar mass and a malignant-appearing biliary stricture in two patients with normal serum IgG4 prompted further evaluation and subsequent concomitant liver and bile duct resection and reconstruction. The diagnosis of IgG4-associated cholangitis was established during the pathologic evaluation of the resected specimens. IgG4-associated cholangitis is a known imitator of hilar cholangiocarcinoma and should be considered in the differential diagnosis even among serologically IgG4-negative patients with a hilar mass prior to operative resection.

  9. The PD-1/PD-L1 axis may be aberrantly activated in occupational cholangiocarcinoma.

    PubMed

    Sato, Yasunori; Kinoshita, Masahiko; Takemura, Shigekazu; Tanaka, Shogo; Hamano, Genya; Nakamori, Shoji; Fujikawa, Masahiro; Sugawara, Yasuhiko; Yamamoto, Takatsugu; Arimoto, Akira; Yamamura, Minako; Sasaki, Motoko; Harada, Kenichi; Nakanuma, Yasuni; Kubo, Shoji

    2017-03-01

    An outbreak of cholangiocarcinoma in a printing company was reported in Japan, and these cases were regarded as an occupational disease (occupational cholangiocarcinoma). This study examined the expression status of programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in occupational cholangiocarcinoma. Immunostaining of PD-1, PD-L1, CD3, CD8, and CD163 was performed using tissue sections of occupational cholangiocarcinoma (n = 10), and the results were compared with those of control cases consisting of intrahepatic (n = 23) and extrahepatic (n = 45) cholangiocarcinoma. Carcinoma cells expressed PD-L1 in all cases of occupational cholangiocarcinoma, whereas the detection of PD-L1 expression in cholangiocarcinoma cells was limited to a low number of cases (less than 10%) in the control subjects. In cases of occupational cholangiocarcinoma, occasional PD-L1 expression was also noted in precancerous/preinvasive lesions such as biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct. Additionally, tumor-associated macrophages and tumor-infiltrating T cells expressed PD-L1 and PD-1, respectively. The number of PD-L1-positive mononuclear cells, PD-1-positive lymphocytes, and CD8-positive lymphocytes infiltrating within the tumor was significantly higher in occupational cholangiocarcinoma compared with that in control cases. These results indicate that immune escape via the PD-1/PD-L1 axis may be occurring in occupational cholangiocarcinoma. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  10. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation

    PubMed Central

    Teixeira, Felipe K.; Sanchez, Carlos G.; Hurd, Thomas R.; Seifert, Jessica R. K.; Czech, Benjamin; Preall, Jonathan B.; Hannon, Gregory J.; Lehmann, Ruth

    2015-01-01

    The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used1,2. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation. PMID:25915123

  11. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool.

    PubMed

    Jamnongkan, Wassana; Thanan, Raynoo; Techasen, Anchalee; Namwat, Nisana; Loilome, Watcharin; Intarawichian, Piyapharom; Titapun, Attapol; Yongvanit, Puangrat

    2017-07-01

    Labile iron pool is a cellular source of ions available for Fenton reactions resulting in oxidative stress. Living organisms avoid an excess of free irons by a tight control of iron homeostasis. We investigated the altered expression of iron regulatory proteins and iron discrimination in the development of liver fluke-associated cholangiocarcinoma. Additionally, the levels of labile iron pool and the functions of transferrin receptor-1 on cholangiocarcinoma development were also identified. Iron deposition was determined using the Prussian blue staining method in human cholangiocarcinoma tissues. We investigated the alteration of iron regulatory proteins including transferrin, transferrin receptor-1, ferritin, ferroportin, hepcidin, and divalent metal transporter-1 in cholangiocarcinoma tissues using immunohistochemistry. The clinicopathological data of cholangiocarcinoma patients and the expressions of proteins were analyzed. Moreover, the level of intracellular labile iron pool in cholangiocarcinoma cell lines was identified by the RhoNox-1 staining method. We further demonstrated transferrin receptor-1 functions on cell proliferation and migration upon small interfering RNA for human transferrin receptor 1 transfection. Results show that Iron was strongly stained in tumor tissues, whereas negative staining was observed in normal bile ducts of healthy donors. Interestingly, high iron accumulation was significantly correlated with poor prognosis of cholangiocarcinoma patients. The expressions of iron regulatory proteins in human cholangiocarcinoma tissues and normal liver from cadaveric donors revealed that transferrin receptor-1 expression was increased in the cancer cells of cholangiocarcinoma tissues when compared with the adjacent normal bile ducts and was significantly correlated with cholangiocarcinoma metastasis. Labile iron pool level and transferrin receptor-1 expression were significantly increased in KKU-214 and KKU-213 when compared with cholangiocyte

  12. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  13. Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation

    NASA Technical Reports Server (NTRS)

    Paliyath, G.; Poovaiah, B. W.

    1988-01-01

    Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.

  14. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.

    PubMed

    Sasaki, Motoko; Nakanuma, Yasuni

    2016-01-01

    Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future.

  15. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    PubMed

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. SRF phosphorylation by glycogen synthase kinase-3 promotes axon growth in hippocampal neurons.

    PubMed

    Li, Cong L; Sathyamurthy, Aruna; Oldenborg, Anna; Tank, Dharmesh; Ramanan, Narendrakumar

    2014-03-12

    The growth of axons is an intricately regulated process involving intracellular signaling cascades and gene transcription. We had previously shown that the stimulus-dependent transcription factor, serum response factor (SRF), plays a critical role in regulating axon growth in the mammalian brain. However, the molecular mechanisms underlying SRF-dependent axon growth remains unknown. Here we report that SRF is phosphorylated and activated by GSK-3 to promote axon outgrowth in mouse hippocampal neurons. GSK-3 binds to and directly phosphorylates SRF on a highly conserved serine residue. This serine phosphorylation is necessary for SRF activity and for its interaction with MKL-family cofactors, MKL1 and MKL2, but not with TCF-family cofactor, ELK-1. Axonal growth deficits caused by GSK-3 inhibition could be rescued by expression of a constitutively active SRF. The SRF target gene and actin-binding protein, vinculin, is sufficient to overcome the axonal growth deficits of SRF-deficient and GSK-3-inhibited neurons. Furthermore, short hairpin RNA-mediated knockdown of vinculin also attenuated axonal growth. Thus, our findings reveal a novel phosphorylation and activation of SRF by GSK-3 that is critical for SRF-dependent axon growth in mammalian central neurons.

  17. TROP2 correlates with microvessel density and poor prognosis in hilar cholangiocarcinoma.

    PubMed

    Ning, Shanglei; Guo, Sen; Xie, Jianjun; Xu, Yunfei; Lu, Xiaofei; Chen, Yuxin

    2013-02-01

    Trophoblast cell surface antigen 2 (TROP2) was found to be associated with tumor progression and poor prognosis in a variety of epithelial carcinomas. The aim of the study was to investigate TROP2 expression and its prognostic impact in hilar cholangiocarcinoma. Immunohistochemistry and quantitative real-time PCR were used to determine TROP2 expression in surgical specimens from 70 hilar cholangiocarcinoma patients receiving radical resection. The relationship between TROP2 expression and microvessel density was investigated and standard statistical analysis was used to evaluate TROP2 prognosis significance in hilar cholangiocarcinoma. High TROP2 expression by immunohistochemistry was found in 43 (61.4 %) of the 70 tumor specimens. Quantitative real-time PCR confirmed that TROP2 level in tumor was significantly higher than in non-tumoral biliary tissues (P = 0.001). Significant correlations were found between TROP2 expression and histological differentiation (P = 0.016) and tumor T stage (P = 0.031) in hilar cholangiocarcinoma. TROP2 expression correlated with microvessel density in hilar cholangiocarcinoma (P = 0.026). High TROP2 expression patients had a significantly poorer overall survival rate than those with low TROP2 expression (30 vs. 68.5 %, P = 0.001), and multivariate Cox regression analysis indicated TROP2 as an independent prognostic factor for hilar cholangiocarcinoma (P = 0.004). TROP2 expression correlates with microvessel density significantly and is an independent prognostic factor in human hilar cholangiocarcinoma.

  18. Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1

    PubMed Central

    Iijima-Ando, Kanae; Sekiya, Michiko; Suzuki, Emiko; Lu, Bingwei; Iijima, Koichi M.

    2012-01-01

    Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi–mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD–related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. PMID:22952452

  19. Clinicopathologic study on metachronous double cholangiocarcinomas of perihilar and subsequent distal bile duct origin.

    PubMed

    Shinohara, Kentaro; Shimoyama, Yoshie; Ebata, Tomoki; Yokoyama, Yukihiro; Mizuno, Takashi; Nakaguro, Masato; Nagino, Masato

    2017-07-01

    Despite an increasing number of long-term survivors after the resection of perihilar cholangiocarcinoma, metachronous carcinoma in the remnant distal bile duct has not been well documented because of its rarity. The aim of this study was to clarify the feasibility of operative resection and the pathologic features for metachronous double cholangiocarcinomas. Between 2003 and 2013, 6 patients underwent resections for both a primary perihilar cholangiocarcinoma and a metachronous distal cholangiocarcinoma. Their medical records were retrospectively reviewed. At a median of 42 months (range, 19-138 months) after the hepatectomy, a metachronous distal cholangiocarcinoma was detected by follow-up computed tomography and, interestingly, no symptoms were observed. Despite severe adhesions, a pancreatoduodenectomy was undertaken in all patients; there were no serious complications, and the procedure resulted in an R0 resection. Although 2 patients died of the disease after the second operation, the remaining 4 patients are now alive with (n = 1) or without recurrence. A pathologic survey showed that 4 patients had changes of biliary intraepithelial neoplasia-2/3 around their primary and metachronous lesions. The primary and metachronous cholangiocarcinomas showed histologic similarity in 4 of the 6 patients and immunohistochemical concordance in 3 of the 6 patients. Pancreatoduodenectomy for metachronous distal cholangiocarcinoma can lead to a favorable prognosis. Careful observation after the resection of perihilar cholangiocarcinoma is mandatory to detect this potentially curable disease. Pathologically, some of the multicentric cholangiocarcinomas present histologic and immunohistochemical similarities. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Hypermutation and unique mutational signatures of occupational cholangiocarcinoma in printing workers exposed to haloalkanes.

    PubMed

    Mimaki, Sachiyo; Totsuka, Yukari; Suzuki, Yutaka; Nakai, Chikako; Goto, Masanori; Kojima, Motohiro; Arakawa, Hirofumi; Takemura, Shigekazu; Tanaka, Shogo; Marubashi, Shigeru; Kinoshita, Masahiko; Matsuda, Tomonari; Shibata, Tatsuhiro; Nakagama, Hitoshi; Ochiai, Atsushi; Kubo, Shoji; Nakamori, Shoji; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2016-08-01

    Cholangiocarcinoma is a relatively rare cancer, but its incidence is increasing worldwide. Although several risk factors have been suggested, the etiology and pathogenesis of the majority of cholangiocarcinomas remain unclear. Recently, a high incidence of early-onset cholangiocarcinoma was reported among the workers of a printing company in Osaka, Japan. These workers underwent high exposure to organic solvents, mainly haloalkanes such as 1,2-dichloropropane (1,2-DCP) and/or dichloromethane. We performed whole-exome analysis on four cases of cholangiocarcinoma among the printing workers. An average of 44.8 somatic mutations was detected per Mb in the genome of the printing workers' cholangiocarcinoma tissues, approximately 30-fold higher than that found in control common cholangiocarcinoma tissues. Furthermore, C:G-to-T:A transitions with substantial strand bias as well as unique trinucleotide mutational changes of GpCpY to GpTpY and NpCpY to NpTpY or NpApY were predominant in all of the printing workers' cholangiocarcinoma genomes. These results were consistent with the epidemiological observation that they had been exposed to high concentrations of chemical compounds. Whole-genome analysis of Salmonella typhimurium strain TA100 exposed to 1,2-DCP revealed a partial recapitulation of the mutational signature in the printing workers' cholangiocarcinoma. Although our results provide mutational signatures unique to occupational cholangiocarcinoma, the underlying mechanisms of the disease should be further investigated by using appropriate model systems and by comparison with genomic data from other cancers. © The Author 2016. Published by Oxford University Press.

  1. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells.

    PubMed

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower than that in control group

  2. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells

    PubMed Central

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    Objective: To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Methods: Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. Results: The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower

  3. Expression and clinical significance of PIWIL2 in hilar cholangiocarcinoma tissues and cell lines.

    PubMed

    Chen, Y J; Xiong, X F; Wen, S Q; Tian, L; Cheng, W L; Qi, Y Q

    2015-06-26

    The objective of this study was to explore the relationship between PIWI-like protein 2 (PIWIL2) and clinicopathological charac-teristics and prognosis after radical resection. To accomplish this, we analyzed PIWIL2 expression in hilar cholangiocarcinoma tissues and cell lines. PIWIL2 expression was detected by immunohistochemistry in 41 hilar cholangiocarcinoma samples and 10 control tissues. Western blotting and immunocytofluorescence were used to investigate PIWIL2 expression in the cholangiocarcinoma cell line QBC939 and the bile duct epithelial cell line HIBEpic. Univariate and multivariate surviv-al analyses were performed using the Kaplan-Meier method for hilar cholangiocarcinoma patients who underwent radical resection. PIWIL2 expression was significantly higher in the hilar cholangiocarcinoma tissues and QBC939 cells than in control tissues and HIBEpic cells, respectively (P < 0.05). Poorly and moderately differentiated cholan-giocarcinoma tissues had significantly higher PIWIL2 expression than well-differentiated tissues (P < 0.05). Univariate analysis demonstrated that high PIWIL2 expression was associated with shorter survival time after radical resection (P < 0.05). Multivariate analysis showed that PI-WIL2 expression was an independent prognostic factor after radical re-section of hilar cholangiocarcinoma (P < 0.05). PIWIL2 expression was also associated with tumor-node-metastasis stage and differentiation. PIWIL2 was an independent prognostic factor after radical resection of hilar cholangiocarcinoma.

  4. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative evaluation with diffusion-weighted MR imaging.

    PubMed

    Fattach, Hassan El; Dohan, Anthony; Guerrache, Youcef; Dautry, Raphael; Boudiaf, Mourad; Hoeffel, Christine; Soyer, Philippe

    2015-08-01

    To qualitatively and quantitatively analyze the presentation of intrahepatic and hilar mass-forming cholangiocarcinoma with diffusion-weighted magnetic resonance imaging (DW-MRI). Twenty-eight patients with histopathologically proven mass-forming cholangiocarcinoma (hilar, n=17; intrahepatic, n=11) underwent hepatic DW-MRI at 1.5-T using free-breathing acquisition and three b-values (0,400,800s/mm(2)). Cholangiocarcinomas were evaluated qualitatively using visual analysis of DW-MR images and quantitatively with conventional ADC and normalized ADC measurements using liver and spleen as reference organs. All cholangiocarcinomas (28/28; 100%) were visible on DW-MR images. DW-MRI yielded best conspicuity of cholangiocarcinomas than the other MRI sequences (P<0.001). Seven cholangiocarcinomas (7/11; 64%) showed hypointense central area on DW-MR images. Conventional ADC value of cholangiocarcinomas (1.042×10(-3)mm(2)/s±0.221×10(-3)mm(2)/s; range: 0.616×10(-3)mm(2)/s to 2.050×10(-3)mm(2)/s) was significantly lower than that of apparently normal hepatic parenchyma (1.362×10(-3)mm(2)/s±0.187×10(-3)mm(2)/s) (P<0.0001), although substantial overlap was found. No significant differences in ADC and normalized ADC values were found between intrahepatic and hilar cholangiocarcinomas. The use of normalized ADC using the liver as reference organ resulted in the most restricted distribution of ADC values of cholangiocarcinomas (variation coefficient=16.6%). There is a trend towards a common appearance of intrahepatic and hilar mass-forming cholangiocarcinomas on DW-MRI but variations may be observed. Familiarity with these variations may improve the diagnosis of mass-forming cholangiocarcinoma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    PubMed

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  6. A functional microRNA library screen reveals miR-410 as a novel anti-apoptotic regulator of cholangiocarcinoma.

    PubMed

    Palumbo, Tiziana; Poultsides, George A; Kouraklis, Grigorios; Liakakos, Theodore; Drakaki, Alexandra; Peros, George; Hatziapostolou, Maria; Iliopoulos, Dimitrios

    2016-06-03

    Cholangiocarcinoma is characterized by late diagnosis and a poor survival rate. MicroRNAs have been involved in the pathogenesis of different cancer types, including cholangiocarcinoma. Our aim was to identify novel microRNAs regulating cholangiocarcinoma cell growth in vitro and in vivo. A functional microRNA library screen was performed in human cholangiocarcinoma cells to identify microRNAs that regulate cholangiocarcinoma cell growth. Real-time PCR analysis evaluated miR-9 and XIAP mRNA levels in cholangiocarcinoma cells and tumors. The screen identified 21 microRNAs that regulated >50 % cholangiocarcinoma cell growth. MiR-410 was identified as the top suppressor of growth, while its overexpression significantly inhibited the invasion and colony formation ability of cholangiocarcinoma cells. Bioinformatics analysis revealed that microRNA-410 exerts its effects through the direct regulation of the X-linked inhibitor of apoptosis protein (XIAP). Furthermore, overexpression of miR-410 significantly reduced cholangiocarcinoma tumor growth in a xenograft mouse model through induction of apoptosis. In addition, we identified an inverse relationship between miR-410 and XIAP mRNA levels in human cholangiocarcinomas. Taken together, our study revealed a novel microRNA signaling pathway involved in cholangiocarcinoma and suggests that manipulation of the miR-410/XIAP pathway could have a therapeutic potential for cholangiocarcinoma.

  7. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation.

    PubMed

    Asghar, Adeel; Lajeunesse, Audrey; Dulla, Kalyan; Combes, Guillaume; Thebault, Philippe; Nigg, Erich A; Elowe, Sabine

    2015-09-24

    During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation.

  8. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Resection margin influences survival after pancreatoduodenectomy for distal cholangiocarcinoma.

    PubMed

    Chua, Terence C; Mittal, Anubhav; Arena, Jenny; Sheen, Amy; Gill, Anthony J; Samra, Jaswinder S

    2017-06-01

    Distal cholangiocarcinoma remains a rare cancer associated with a dismal outcome. There is a lack of effective treatment options and where disease is amendable to resection, surgery affords the best potential for long-term survival. The aim of this study was to examine the survival outcomes and prognostic factors of patients undergoing pancreatoduodenectomy for distal cholangiocarcinoma. Between January 2004 to May 2016, patients who had undergone pancreatoduodenectomy with histologically proven distal cholangiocarcinoma were identified. Clinicopathologic data and survival outcomes were reported. Pancreatoduodenectomy alone was performed in 20 patients (71%) and eight patients (29%) required concomitant vascular resection. The major complication rate was 43% (n = 12). Nineteen patients (68%) had node positive disease. Eighteen patients (64%) had R0 resection. The median survival was 36 months (95%CI 9.7 to 63.8) and 5-year survival rate was 24%. Univariate analysis identified ASA (P < 0.001), tumor grade (P = 0.009) and margin status (P = 0.042) as prognostic factors associated with survival. Long-term survival may be achieved in selected patients undergoing pancreatoduodenectomy for distal cholangiocarcinoma, especially in patients who achieved an R0 resection. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Imaging and interventions in hilar cholangiocarcinoma: A review

    PubMed Central

    Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2015-01-01

    Hilar cholangiocarcinoma is a common malignant tumor of the biliary tree. It has poor prognosis with very low 5-year survival rates. Various imaging modalities are available for detection and staging of the hilar cholangiocarcinoma. Although ultrasonography is the initial investigation of choice, imaging with contrast enhanced computed tomography scan or magnetic resonance imaging is needed prior to management. Surgery is curative wherever possible. Radiological interventions play a role in operable patients in the form of biliary drainage and/or portal vein embolization. In inoperable cases, palliative interventions include biliary drainage, biliary stenting and intra-biliary palliative treatment techniques. Complete knowledge of application of various imaging modalities available and about the possible radiological interventions is important for a radiologist to play a critical role in appropriate management of such patients.We review the various imaging techniques and appearances of hilar cholangiocarcinoma and the possible radiological interventions. PMID:25729485

  11. Pancreatoduodenectomy with portal vein resection for distal cholangiocarcinoma.

    PubMed

    Maeta, T; Ebata, T; Hayashi, E; Kawahara, T; Mizuno, S; Matsumoto, N; Ohta, S; Nagino, M

    2017-10-01

    Little is known about the value of portal vein (PV) resection in distal cholangiocarcinoma. The aim of this study was to evaluate the clinical significance of PV resection in distal cholangiocarcinoma. Patients who underwent pancreatoduodenectomy (PD) for distal cholangiocarcinoma between 2001 and 2010 at one of 31 hospitals in Japan were reviewed retrospectively with special attention to PV resection. Short- and long-term outcomes were evaluated. In the study interval, 453 consecutive patients with distal cholangiocarcinoma underwent PD, of whom 31 (6·8 per cent) had combined PV resection. The duration of surgery (510 versus 427 min; P = 0·005) and incidence of blood transfusion (48 versus 30·7 per cent; P = 0·042) were greater in patients who had PV resection than in those who did not. Postoperative morbidity and mortality were no different in the two groups. Several indices of tumour progression, including high T classification, lymphatic invasion, perineural invasion, pancreatic invasion and lymph node metastasis, were more common in patients who had PV resection. Consequently, the incidence of R1/2 resection was higher in this group (32 versus 11·8 per cent; P = 0·004). Survival among the 31 patients with PV resection was worse than that for the 422 patients without PV resection (15 versus 42·4 per cent at 5 years; P < 0·001). Multivariable analyses revealed that age, blood loss, histological grade, perineural invasion, pancreatic invasion, lymph node metastasis and surgical margin were independent risk factors for overall survival. PV resection was not an independent risk factor. PV invasion in distal cholangiocarcinoma is associated with locally advanced disease and several negative prognostic factors. Survival for patients who have PV resection is poor even after curative resection. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  12. Serum albumin predicts survival in patients with hilar cholangiocarcinoma.

    PubMed

    Waghray, Abhijeet; Sobotka, Anastasia; Marrero, Carlos Romero; Estfan, Bassam; Aucejo, Federico; Narayanan Menon, K V

    2017-02-01

    Hilar cholangiocarcinoma is a devastating malignancy with incidence varying by geography and other risk factors. Rapid progression of disease and delays in diagnosis restrict the number of patients eligible for curative therapy. The objective of this study was to determine prognostic factors of overall survival in all patients presenting with hilar cholangiocarcinoma. All adult patients with histologically confirmed hilar cholangiocarcinoma from 2003 to 2013 were evaluated for predictors of survival using demographic factors, laboratory data, symptoms and radiological characteristics at presentation. A total of 116 patients were identified to have pathological diagnosis of hilar cholangiocarcinoma and were included in the analysis. Patients with a serum albumin level >3.0 g/dL (P < 0.01), cancer antigen 19-9 ≤200 U/mL (P = 0.03), carcinoembryonic antigen ≤10 ìg/L (P < 0.01) or patients without a history of cirrhosis (P < 0.01) or diabetes (P = 0.02) were associated with a greater length of overall survival. A serum albumin level >3.0 g/dL was identified as an independent predictor of overall survival (hazard ratio 0.31; 95% confidence interval 0.14-0.70) with a survival benefit of 44 weeks. This study was the largest analysis to date of prognostic factors in patients with hilar cholangiocarcinoma. A serum albumin level >3.0 g/dL conferred an independent survival advantage with a significantly greater length of survival. © The Author(s) 2016. Published by Oxford University Press and Sixth Affiliated Hospital of Sun Yat-Sen University.

  13. Serum albumin predicts survival in patients with hilar cholangiocarcinoma

    PubMed Central

    Waghray, Abhijeet; Sobotka, Anastasia; Marrero, Carlos Romero; Estfan, Bassam; Aucejo, Federico

    2017-01-01

    Background and aims: Hilar cholangiocarcinoma is a devastating malignancy with incidence varying by geography and other risk factors. Rapid progression of disease and delays in diagnosis restrict the number of patients eligible for curative therapy. The objective of this study was to determine prognostic factors of overall survival in all patients presenting with hilar cholangiocarcinoma. Methods: All adult patients with histologically confirmed hilar cholangiocarcinoma from 2003 to 2013 were evaluated for predictors of survival using demographic factors, laboratory data, symptoms and radiological characteristics at presentation. Results: A total of 116 patients were identified to have pathological diagnosis of hilar cholangiocarcinoma and were included in the analysis. Patients with a serum albumin level >3.0 g/dL (P < 0.01), cancer antigen 19‐9 ≤200 U/mL (P = 0.03), carcinoembryonic antigen ≤10 ìg/L (P < 0.01) or patients without a history of cirrhosis (P < 0.01) or diabetes (P = 0.02) were associated with a greater length of overall survival. A serum albumin level >3.0 g/dL was identified as an independent predictor of overall survival (hazard ratio 0.31; 95% confidence interval 0.14–0.70) with a survival benefit of 44 weeks. Conclusion: This study was the largest analysis to date of prognostic factors in patients with hilar cholangiocarcinoma. A serum albumin level >3.0 g/dL conferred an independent survival advantage with a significantly greater length of survival. PMID:27389416

  14. Regional lipiodolized chemotherapy for cholangiocarcinoma associated with oral contraceptives.

    PubMed Central

    McAleer, J. J.; Dickey, W.; Clarke, R.; Johnston, G. W.; Callender, M. E.

    1987-01-01

    We describe a case of cholangiocarcinoma in a young woman, who presented with cholestatic jaundice following oral contraceptive ingestion. Following diagnostic laparotomy she received intra-arterial 'lipiodolized' chemotherapy. Intravenous mitozantrone was given for 2 years and she is asymptomatic, with computed tomographic evidence of tumour response, 27 months after diagnosis. We suggest that this form of treatment is of value for cholangiocarcinoma. PMID:2821526

  15. External radiotherapy and brachytherapy in the management of extrahepatic and intrahepatic cholangiocarcinoma: available evidence.

    PubMed

    Sahai, Puja; Kumar, Senthil

    2017-08-01

    This review aims to summarize the currently available evidence for the role of external radiotherapy and brachytherapy in the management of cholangiocarcinoma. High locoregional disease recurrence rates after surgical resection alone for both the extrahepatic cholangiocarcinoma (EHCC) and intrahepatic cholangiocarcinoma (IHCC) provide a rationale for using adjuvant radiotherapy with chemotherapy. We performed a literature search related to radiotherapy in cholangiocarcinoma published between 2000 and 2016. The role of radiation is discussed in the adjuvant, neoadjuvant, definitive and the palliative setting. Evidence from Phase II trials have demonstrated efficacy of adjuvant chemoradiation in combination with chemotherapy in EHCC. Locally advanced cholangiocarcinoma may be treated with neoadjuvant chemoradiotherapy. In the case of downsizing, assessment for resection may be considered. Brachytherapy offers dose escalation after external radiotherapy. Selected unresectable cases of cholangiocarcinoma may be considered for stereotactic body radiation therapy with neoadjuvant and/or concurrent chemotherapy. Liver transplantation is a treatment option in selected patients with EHCC and IHCC after neoadjuvant chemoradiation. Stenting in combination with palliative external radiotherapy and/or brachytherapy provides improved stent patency and survival. Newer advanced radiation techniques provide a scope for achieving better disease control with reduced morbidity. Effective multimodality treatment incorporating radiotherapy is the way forward for improving survival in patients with cholangiocarcinoma.

  16. Resection of a cholangiocarcinoma via laparoscopic hepatopancreato- duodenectomy: A case report

    PubMed Central

    Zhang, Miao-Zun; Xu, Xiao-Wu; Mou, Yi-Ping; Yan, Jia-Fei; Zhu, Yi-Ping; Zhang, Ren-Chao; Zhou, Yu-Cheng; Chen, Ke; Jin, Wei-Wei; Matro, Erik; Ajoodhea, Harsha

    2014-01-01

    Some laterally advanced cholangiocarcinomas behave as ductal spread or local invasion, and hepatopancreatoduodenectomy (HPD) may be performed for R0 resection. To date, there have been no reports of laparoscopic HPD (LHPD) in the English literature. We report the first case of LHPD for the resection of a Bismuth IIIa cholangiocarcinoma invading the duodenum. The patient underwent laparoscopic pancreaticoduodenectomy and right hemihepatectomy. Child’s approach was used for the reconstruction. The patient recovered well with bile leakage from the 2nd postoperative day and was discharged on the 16th postoperative day with a drainage tube in place which was removed 2 wk after discharge. Postoperative pathology revealed a well-differentiated cholangiocarcinoma and the margin of liver parenchyma, pancreas and stomach was negative for metastases. The results suggest that LHPD is a feasible and safe procedure when performed in highly specialized centers and in suitable patients with cholangiocarcinoma. PMID:25493044

  17. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    PubMed

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  18. Down-Regulation of Gab1 Inhibits Cell Proliferation and Migration in Hilar Cholangiocarcinoma

    PubMed Central

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9. PMID:24312291

  19. Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver.

    PubMed

    Choi, Sung E; Kwon, Sanghoon; Seok, Sunmi; Xiao, Zhen; Lee, Kwan-Woo; Kang, Yup; Li, Xiaoling; Shinoda, Kosaku; Kajimura, Shingo; Kemper, Byron; Kemper, Jongsook Kim

    2017-08-01

    Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases. Copyright © 2017 American Society for Microbiology.

  20. Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver

    PubMed Central

    Choi, Sung E.; Kwon, Sanghoon; Seok, Sunmi; Xiao, Zhen; Lee, Kwan-Woo; Kang, Yup; Li, Xiaoling; Shinoda, Kosaku; Kajimura, Shingo; Kemper, Byron

    2017-01-01

    ABSTRACT Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases. PMID:28533219

  1. Living Donor Liver Transplantation for Combined Hepatocellular Carcinoma and Cholangiocarcinoma: Experience of a Single Center.

    PubMed

    Chang, Cheng-Chih; Chen, Ying-Ju; Huang, Tzu-Hao; Chen, Chun-Han; Kuo, Fang-Ying; Eng, Hock-Liew; Yong, Chee-Chien; Liu, Yueh-Wei; Lin, Ting-Lung; Li, Wei-Feng; Lin, Yu-Hung; Lin, Chih-Che; Wang, Chih-Chi; Chen, Chao-Long

    2017-02-28

    BACKGROUND Because the outcome of liver transplantation for cholangiocarcinoma is often poor, cholangiocarcinoma is a contraindication for liver transplantation in most centers. Combined hepatocellular carcinoma and cholangiocarcinoma is a rare type of primary hepatic malignancy containing features of hepatocellular carcinoma and cholangiocarcinoma. Diagnosing combined hepatocellular carcinoma and cholangiocarcinoma pre-operatively is difficult. Because of sparse research presentations worldwide, we report our experience with living donor liver transplantation for combined hepatocellular carcinoma and cholangiocarcinoma. MATERIAL AND METHODS A total of 710 patients underwent living donor liver transplantation at our institution from April 2006 to June 2014; 377 of them received transplantation because of hepatocellular carcinoma with University of California San Francisco (UCSF) staging criteria fulfilled pre-operatively. Eleven patients (2.92%) were diagnosed with combined hepatocellular carcinoma and cholangiocarcinoma confirmed pathologically from explant livers; we reviewed these cases retrospectively. Long-term survival was compared between patients diagnosed with combined hepatocellular carcinoma and cholangiocarcinoma and patients diagnosed with hepatocellular carcinoma. RESULTS The mean age of the patients in our series was 60.2 years, and the median follow-up period was 23.9 months. Four patients were diagnosed with a recurrence during the follow-up period, including one intra-hepatic and three extra-hepatic recurrences. Four patients died due to tumor recurrence. Except for patients with advanced-stage cancer, disease-free survival of patients with combined hepatocellular carcinoma and cholangiocarcinoma compared with that of patients with hepatocellular carcinoma was 80% versus 97.2% in 1 year, and 46.7% versus 92.5% in 3 years (p<0.001), and overall survival was 90% versus 97.2% in 1 year, and 61.7% versus 95.1% in 3 years (p<0.001). CONCLUSIONS

  2. Changes in laboratory test results and diagnostic imaging presentation before the detection of occupational cholangiocarcinoma.

    PubMed

    Kubo, Shoji; Takemura, Shigekazu; Sakata, Chikaharu; Urata, Yorihisa; Nishioka, Takayoshi; Nozawa, Akinori; Kinoshita, Masahiko; Hamano, Genya; Nakanuma, Yasuni; Endo, Ginji

    2014-01-01

    A cholangiocarcinoma outbreak among workers of an offset color proof-printing department in a printing company was recently reported. It is important to understand the clinical course leading to occupational cholangiocarcinoma development for investigation of the carcinogenesis process and for surveillance and early detection. We evaluated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma. We investigated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma in 2 patients because the data were available. Results The clinical courses observed in the 2 participating patients showed persistent elevation of serum γ-glutamyl transpeptidase levels with or without elevated serum levels of alanine aminotransferase and/or aspartate aminotransferase before cholangiocarcinoma detection. Dilatation of the bile ducts without tumor-induced stenosis was observed several years before cholangiocarcinoma detection and progressed gradually in both patients. The serum concentration of carbohydrate 19-9 also increased prior to cholangiocarcinoma detection in both patients. Eventually, observation of stenosis of the bile duct and a space-occupying lesion strongly suggested cholangiocarcinoma. Pathological examination of the resected specimens showed chronic bile duct injury and neoplastic lesions, such as "biliary intraepithelial neoplasia" and "intraductal papillary neoplasm of the bile duct" in various sites of the bile ducts, particularly in the dilated bile ducts. The changes in laboratory test results and diagnostic imaging might be related to the development of cholangiocarcinoma. It is important to monitor diagnostic imaging presentation and laboratory test results in workers with extended exposure to organic solvents.

  3. Liver transplantation in patients with incidental hepatocellular carcinoma/cholangiocarcinoma and intrahepatic cholangiocarcinoma: a single-center experience.

    PubMed

    Elshamy, Mohammed; Presser, Naftali; Hammad, Abdulrahman Y; Firl, Daniel J; Coppa, Christopher; Fung, John; Aucejo, Federico N

    2017-06-01

    Reports of liver transplantation (LT) in patients with mixed hepatocellular carcinoma/cholangiocarcinoma (HCC/CC) and intrahepatic cholangiocarcinoma (ICC) are modest and have been mostly retrospective after pathological categorization in the setting of presumed HCC. Some studies suggest that patients undergoing LT with small and unifocal ICC or mixed HCC/CC can achieve about 40%-60% 5-year post-transplant survival. The study aimed to report our experience in patients undergoing LT with explant pathology revealing HCC/CC and ICC. From a prospectively maintained database, we performed cohort analysis. We identified 13 patients who underwent LT with explant pathology revealing HCC/CC or ICC. The observed recurrence rate post-LT was 31% (4/13) and overall survival was 85%, 51%, and 51% at 1, 3 and 5 years, respectively. Disease-free survival was 68%, 51%, and 41% at 1, 3 and 5 years, respectively. In our cohort, four patients would have qualified for exception points based on updated HCC Organ Procurement and Transplantation Network imaging guidelines. Lesions which lack complete imaging characteristics of HCC may warrant pre-LT biopsy to fully elucidate their pathology. Identified patients with early HCC/CC or ICC may benefit from LT if unresectable. Additionally, incorporating adjunctive perioperative therapies such as in the case of patients undergoing LT with hilar cholangiocarcinoma may improve outcomes but this warrants further investigation.

  4. Duct-to-duct biliary reconstruction after radical resection of Bismuth IIIa hilar cholangiocarcinoma.

    PubMed

    Wu, Wen-Guang; Gu, Jun; Dong, Ping; Lu, Jian-Hua; Li, Mao-Lan; Wu, Xiang-Song; Yang, Jia-Hua; Zhang, Lin; Ding, Qi-Chen; Weng, Hao; Ding, Qian; Liu, Ying-Bin

    2013-04-21

    At present, radical resection remains the only effective treatment for patients with hilar cholangiocarcinoma. The surgical approach for R0 resection of hilar cholangiocarcinoma is complex and diverse, but for the biliary reconstruction after resection, almost all surgeons use Roux-en-Y hepaticojejunostomy. A viable alternative to Roux-en-Y reconstruction after radical resection of hilar cholangiocarcinoma has not yet been proposed. We report a case of performing duct-to-duct biliary reconstruction after radical resection of Bismuth IIIa hilar cholangiocarcinoma. End-to-end anastomosis between the left hepatic duct and the distal common bile duct was used for the biliary reconstruction, and a single-layer continuous suture was performed along the bile duct using 5-0 prolene. The patient was discharged favorably without biliary fistula 2 wk later. Evidence for tumor recurrence was not found after an 18 mo follow-up. Performing bile duct end-to-end anastomosis in hilar cholangiocarcinoma can simplify the complex digestive tract reconstruction process.

  5. Pulmonary Metastasis After Resection of Cholangiocarcinoma: Incidence, Resectability, and Survival.

    PubMed

    Yamada, Mihoko; Ebata, Tomoki; Yokoyama, Yukihiro; Igami, Tsuyoshi; Sugawara, Gen; Mizuno, Takashi; Yamaguchi, Junpei; Nagino, Masato

    2017-06-01

    There are few reports on pulmonary metastasis from cholangiocarcinoma; therefore, its incidence, resectability, and survival are unclear. Patients who underwent surgical resection for cholangiocarcinoma, including intrahepatic, perihilar, and distal cholangiocarcinoma were retrospectively reviewed, and this study focused on patients with pulmonary metastasis. Between January 2003 and December 2014, 681 patients underwent surgical resection for cholangiocarcinoma. Of these, 407 patients experienced disease recurrence, including 46 (11.3%) who developed pulmonary metastasis. Of these 46 patients, 9 underwent resection for pulmonary metastasis; no resection was performed in the remaining 37 patients. R0 resection was achieved in all patients, and no complications related to pulmonary metastasectomy were observed. The median time to recurrence was significantly longer in the 9 patients who underwent surgery than in the 37 patients without surgery (2.5 vs 1.0 years, p < 0.010). Survival after surgery for primary cancer and survival after recurrence were significantly better in the former group than in the latter group (after primary cancer: 66.7 vs 0% at 5 years, p < 0.001; after recurrence: 40.0 vs 8.7% at 3 years, p = 0.003). Multivariate analysis identified the time to recurrence and resection for pulmonary metastasis as independent prognostic factors for survival after recurrence. Resection for pulmonary metastasis originating from cholangiocarcinoma can be safely performed and confers survival benefits for select patients, especially those with a longer time to recurrence after initial surgery.

  6. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation

    PubMed Central

    Asghar, Adeel; Lajeunesse, Audrey; Dulla, Kalyan; Combes, Guillaume; Thebault, Philippe; Nigg, Erich A.; Elowe, Sabine

    2015-01-01

    During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation. PMID:26399325

  7. Casein Kinase 1 and Phosphorylation of Cohesin Subunit Rec11 (SA3) Promote Meiotic Recombination through Linear Element Formation.

    PubMed

    Phadnis, Naina; Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W; Cipakova, Ingrid; Anrather, Dorothea; Karvaiova, Lucia; Mechtler, Karl; Smith, Gerald R; Gregan, Juraj

    2015-05-01

    Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here.

  8. Identification of fucosylated Fetuin-A as a potential biomarker for cholangiocarcinoma.

    PubMed

    Betesh, Lucy; Comunale, Mary Ann; Wang, Mengjun; Liang, Hongyan; Hafner, Julie; Karabudak, Aykan; Giama, Nasra H; Moser, Catherine D; Miyoshi, Eiji; Roberts, Lewis R; Block, Timothy M; Mehta, Anand

    2017-09-01

    Cholangiocarcinoma (CCA) is a malignancy of the bile ducts. The purpose of this discovery study was to identify effective serum markers for surveillance of cholangiocarcinoma. Using a glycomic method, patients with CCA were determined to have increased levels of alpha-1,3 and alpha-1,6 linked fucosylated glycan. Proteomic analysis of the serum fucosylated proteome identified proteins such as alpha-2-macroglobulin, kininogen, hemopexin, fetuin-A, alpha-1 anti-trypsin, and ceruloplasmin as being hyperfucosylated in HCC. The levels of these glycoproteins in 109 patients with CCA, primary sclerosing cholangitis (PSC), and control patients were compared to the performance of CA-19-9, the current "gold standard" assay for cholangiocarcinoma. Fucosylated Fetuin-A (fc-Fetuin-A) had the best ability to differentiate CCA from PSC, with an AUROC of 0.812 or 0.8665 at differentiating CCA from those with PSC or other liver disease. CA-19-9 had poor ability to differentiate PSC from cholangiocarcinoma (AUROC of 0.625). Using glycomic and proteomic methods we identified a set of proteins that contain altered glycan in the sera of those with CCA. One of these proteins, fucosylated Fetuin-A may have value in the surveillance of people at risk for the development of cholangiocarcinoma. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA.

    PubMed

    Junking, Mutita; Grainok, Janya; Thepmalee, Chutamas; Wongkham, Sopit; Yenchitsomanus, Pa-Thai

    2017-10-01

    Cholangiocarcinoma is a malignancy of bile duct epithelia with an increasing in incidence rate worldwide. Surgery is the only curative treatment, while adjuvant chemotherapy and radiotherapy render poor responses. Cell-based immunotherapy is a potential strategy for cholangiocarcinoma treatment. However, variation of tumor antigens in cholangiocarcinoma leads to the ineffectiveness of cell-based immunotherapy. In this study, we examined the activation of effector T-cells by dendritic cells pulsed with protein lysate or total RNA from cholangiocarcinoma cell lines for their cytolytic activity against cholangiocarcinoma. Broad-spectrum antigen types with respect to RNA antigen sources were obtained from combination of three cholangiocarcinoma cell lines (KKU-213, KKU-100, and KKU-055). Compared with protein lysate-pulsed dendritic cells, total RNA-pulsed dendritic cells induced anti-tumor effector T-cell response with higher killing ability to KKU-100 and KKU-213 cells compared with protein lysate-pulsed dendritic cells. Moreover, pooled messenger RNA from three cholangiocarcinoma cell lines significantly increased the specific killing capacity of activated lymphocytes against KKU-213 cells. These results suggest that activation of anti-tumor effector T-cells against cholangiocarcinoma by RNA-pulsed dendritic cells is more effective than that by protein lysate-pulsed dendritic cells. In addition, pulsing dendritic cells with pooled messenger RNA from multiple cell lines enhanced the efficacy of a cellular immune response against cholangiocarcinoma.

  10. Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.

    PubMed

    Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu

    2014-04-01

    Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.

  11. Intrahepatic cholangiocarcinoma prognostic determination using pre-operative serum C-reactive protein levels.

    PubMed

    Lin, Zi-Ying; Liang, Zhen-Xing; Zhuang, Pei-Lin; Chen, Jie-Wei; Cao, Yun; Yan, Li-Xu; Yun, Jing-Ping; Xie, Dan; Cai, Mu-Yan

    2016-10-12

    Serum C-reactive protein (CRP), an acute inflammatory response biomarker, has been recognized as an indicator of malignant disease progression. However, the prognostic significance of CRP levels collected before tumor removal in intrahepatic cholangiocarcinoma requires further investigation. We sampled the CRP levels in 140 patients with intrahepatic cholangiocarcinoma who underwent hepatectomies with regional lymphadenectomies between 2006 and 2013. A retrospective analysis of the clinicopathological data was performed. We focused on the impact of serum CRP on the patients' cancer-specific survival and recurrence-free survival rates. High levels of preoperative serum CRP were significantly associated with well-established clinicopathologic features, including gender, advanced tumor stage, and elevated carcinoembryonic antigen and carbohydrate antigen 19-9 levels (P < 0.05). Univariate analysis demonstrated a significant association between high levels of serum CRP and adverse cancer-specific survival (P = 0.001) and recurrence-free survival (P < 0.001). In patients with stage I/II intrahepatic cholangiocarcinoma, the serum CRP level was a prognostic indicator for cancer-specific survival. In patients with stage I/II or stage III/IV, the serum CRP level was a prognostic indicator for recurrence-free survival (P < 0.05). Additionally, multivariate analysis identified serum CRP level in intrahepatic cholangiocarcinoma as an independent prognostic factor (P < 0.05). We confirmed a significant association of elevated pre-operative CRP levels with poor clinical outcomes for the tested patients with intrahepatic cholangiocarcinoma. Our results indicate that the serum CRP level may represent a useful factor for patient stratification in intrahepatic cholangiocarcinoma management.

  12. Hilar cholangiocarcinoma: controversies on the extent of surgical resection aiming at cure.

    PubMed

    Xiang, Shuai; Lau, Wan Yee; Chen, Xiao-ping

    2015-02-01

    Hilar cholangiocarcinoma is the most common malignant tumor affecting the extrahepatic bile duct. Surgical treatment offers the only possibility of cure, and it requires removal of all tumoral tissues with adequate resection margins. The aims of this review are to summarize the findings and to discuss the controversies on the extent of surgical resection aiming at cure for hilar cholangiocarcinoma. The English medical literatures on hilar cholangiocarcinoma were studied to review on the relevance of adequate resection margins, routine caudate lobe resection, extent of liver resection, and combined vascular resection on perioperative and long-term survival outcomes of patients with resectable hilar cholangiocarcinoma. Complete resection of tumor represents the most important prognostic factor of long-term survival for hilar cholangiocarcinoma. The primary aim of surgery is to achieve R0 resection. When R1 resection is shown intraoperatively, further resection is recommended. Combined hepatic resection is now generally accepted as a standard procedure even for Bismuth type I/II tumors. Routine caudate lobe resection is also advocated for cure. The extent of hepatic resection remains controversial. Most surgeons recommend major hepatic resection. However, minor hepatic resection has also been advocated in most patients. The decision to carry out right- or left-sided hepatectomy is made according to the predominant site of the lesion. Portal vein resection should be considered when its involvement by tumor is suspected. The curative treatment of hilar cholangiocarcinoma remains challenging. Advances in hepatobiliary techniques have improved the perioperative and long-term survival outcomes of this tumor.

  13. A case of distal extrahepatic cholangiocarcinoma with two positive resection margins.

    PubMed

    Warner, Wayne A; Ramcharan, Wesley; Harnanan, Dave; Umakanthan, Srikanth; Maharaj, Ravi

    2016-11-01

    Cholangiocarcinoma is an uncommon primary malignancy of the biliary tract that is challenging to diagnose and treat effectively due to its relatively silent and late clinical presentation. The present study reports a case of a 60-year-old male with distal extrahepatic cholangiocarcinoma with a 3-week history of painless obstructive jaundice symptoms and subjective weight loss. Imaging revealed an obstructing lesion in the common bile duct, just distal to the entrance of the cystic duct. Pathology revealed moderately differentiated cholangiocarcinoma with two positive proximal resection margins. The two positive resection margins presented a challenge during surgery and points to an urgent need for further studies to better illuminate diagnostic and therapeutic options for patients with similar clinicopathological presentation.

  14. Systemic and Adjuvant Therapies for Intrahepatic Cholangiocarcinoma.

    PubMed

    Chun, Yun Shin; Javle, Milind

    2017-01-01

    Intrahepatic cholangiocarcinoma represents the second most common primary liver cancer and is increasing in incidence. Most patients are diagnosed at an advanced, nonsurgical stage and only about 1 in 5 cases are surgically resectable. Despite surgery, the 5-year survival is low at only 30%. Multifocal, node- or margin-positive disease is at a higher risk of recurrence after resection. There is no level 1 evidence in support of postoperative adjuvant therapy. A recent adjuvant therapy phase III trial from the Partenariat de Recherche en Oncologie Digestive-Actions Concertées dans les Cancers Colo-Rectaux et Digestifs (PRODIGE) group reported no survival advantage with adjuvant gemcitabine and oxaliplatin therapy. Locally advanced or metastatic cholangiocarcinoma is treated with gemcitabine-based systemic chemotherapy with suboptimal response and survival. Integration of local therapy such as focal radiation along with induction chemotherapy is now being investigated in multicenter clinical trials. Recent molecular profiling studies have indicated that about 30% to 40% of intrahepatic cholangiocarcinoma cases have actionable mutations. These include fibroblast growth factor receptor (FGFR), isocitrate dehyrogenase 1 (IDH1), epidermal growth factor receptor (EGFR), and BRAF genetic aberrations. Clinical trials targeting these mutations as well as immune therapy using programmed cell death 1 (PD1) inhibitors indicated a promising early signal showing clinical efficacy.

  15. Combining cetuximab with killer lymphocytes synergistically inhibits human cholangiocarcinoma cells in vitro.

    PubMed

    Morisaki, Takashi; Umebayashi, Masayo; Kiyota, Akifumi; Koya, Norihiro; Tanaka, Hiroto; Onishi, Hideya; Katano, Mitsuo

    2012-06-01

    We explored the possibility of combining adoptive immunotherapy with cytokine-activated killer (CAK) cells and the epidermal growth factor receptor monoclonal antibody, cetuximab, as a treatment for cholangiocarcinoma. CAK cells were cultured with a high-dose of interleukin-2 and anti-CD3 monoclonal antibodies. This cell population contained both activated CD16+/CD56+ (NK) cells and CD3+/NKG2D(high+) T-cells. The effect of CAK cells and cetuximab, alone and in combination, on the viability of human cholangiocarcinoma cells was evaluated. Culture of CAK cells alone, but not cetuximab alone, exhibited modest cytotoxicity toward cholangiocarcinoma cells. However, combining CAK cells with cetuximab significantly enhanced cytotoxicity. This enhancement was inhibited by the addition of excess human immunoglobulins, suggesting that antibody-dependent cytotoxicity, mediated by activated NK cells in the CAK cell culture was involved in this mechanism. Cetuximab may be used to enhance CAK cell therapeutic activity in patients with cholangiocarcinoma, by potentiating antibody-dependent cellular cytotoxicity.

  16. Moderate DNA damage promotes metabolic flux into PPP via PKM2 Y-105 phosphorylation: a feature that favours cancer cells.

    PubMed

    Kumar, Bhupender; Bamezai, Rameshwar N K

    2015-08-01

    Pyruvate kinase M2, an important metabolic enzyme, promotes aerobic glycolysis (Warburg effect) to facilitate cancer cell proliferation. Unravelling the status of this important glycolytic pathway enzyme under sub-lethal doses of etoposide, a commonly used anti-proliferative genotoxic drug to induce mild/moderate DNA damage in HeLa cells as a model system and discern its effect on: PKM2 expression, phosphorylation, dimer: tetramer ratio, activity and associated effects, was pertinent. Protein expression and phosphorylation of PKM2 from HeLa cells was estimated using Western blotting. Same protein lysate was also used to estimate total pyruvate kinase activity and the total dimer: tetramer content evaluated using glycerol gradient ultra-centrifugation. Intracellular PEP was estimated manually using standard curve; while NADPH was assessed by NADPH estimation kit. Unpaired t test and two-way-ANOVA was used for statistical analysis. A relative decrease in PKM2 expression and a subsequent dose and time dependent increase in Y105-phosphorylation were observed. A concomitant increase in PKM2 dimer content and Y105-phosphorylation responsible for reduced PKM2 activity promoted PEP accumulation and NADPH production, representing increased metabolic flux into PPP, a feature that favours cancer cells. It was apparent that the sub-lethal doses of etoposide induced inadequate damage to DNA in cancer cells in culture promoted pro-survival conditions due to Y105-phosphorylation of PKM2, its stable dimerization and inactivation, a unique association not known earlier, indicating what might happen in tumour revivals or recurrences.

  17. Prevalence, Risk Factors, and Survival of Patients with Intrahepatic Cholangiocarcinoma.

    PubMed

    Chinchilla-López, Paulina; Aguilar-Olivos, Nancy; García-Gómez, Jaime; Hernández-Alejandro, Karen; Chablé-Montero, Fredy; Motola-Kuba, Daniel; Patel, Tushar; Méndez-Sánchez, Nahum

    2017-01-01

    To investigate the prevalence, related risk factors, and survival of intrahepatic cholangiocarcinoma in a Mexican population. We conducted a cross-sectional study at Medica Sur Hospital in Mexico City with approval of the local research ethics committee. We found cases by reviewing all clinical records of in-patients between October 2005 and January 2016 who had been diagnosed with malignant liver tumors. Clinical characteristics and comorbidities were obtained to evaluate the probable risk factors and the Charlson index. The cases were staged based on the TNM staging system for bile duct tumors used by the American Joint Committee on Cancer and median patient survival rates were calculated using the Kaplan-Meier method. We reviewed 233 cases of hepatic cancer. Amongst these, hepatocellular carcinomas represented 19.3% (n = 45), followed by intrahepatic cholangiocarcinomas, which accounted for 7.7% (n = 18). The median age of patients with intrahepatic cholangiocarcinoma was 63 years, and most of them presented with cholestasis and intrahepatic biliary ductal dilation. Unfortunately, 89% (n = 16) of them were in an advanced stage and 80% had multicentric tumors. Median survival was 286 days among patients with advanced stage tumors (25th-75th interquartile range, 174-645 days). No correlation was found between the presence of comorbidities defined by the Charlson index, and survival. We evaluated the presence of definite and probable risk factors for the development of intrahepatic cholangiocarcinoma, that is, smoking, alcohol consumption, and primary sclerosing cholangitis. We found an overall prevalence of intrahepatic cholangiocarcinoma of 7.7%; unfortunately, these patients were diagnosed at advanced stages. Smoking and primary sclerosing cholangitis were the positive risk factors for its development in this population.

  18. Elevated AQP1 Expression Is Associated With Unfavorable Oncologic Outcome in Patients With Hilar Cholangiocarcinoma.

    PubMed

    Li, Chunxiang; Li, Xiaofu; Wu, Linfeng; Jiang, Zheng

    2017-08-01

    Hilar cholangiocarcinomas are malignant tumors with a poor prognosis. An early prediction of prognosis for patients may help us determine treatment strategies. Aquaporin 1 is a cell membrane channel involved in water transport, cell motility, and proliferation. Increasing evidences showed that aquaporin 1 played a role in tumor prognosis and diagnosis. The purpose of this study is to evaluate the role of aquaporin 1 in hilar cholangiocarcinoma. Here, we analyzed messenger RNA expression data of genes function as bile secretion in a data set of 169 samples using the R2 bioinformatic platform ( http://r2.amc.nl ). Quantitative polymerase chain reaction was performed to verify the gene expression in 17 hilar cholangiocarcinoma samples. Immunohistochemistry was also performed in a series of specimens from 62 hilar cholangiocarcinoma tissues, and its clinical significance was assessed by clinical correlation and Kaplan-Meier analyses. All data were analyzed using the R2 web application, aquaporin 1 was selected for further analysis. The significant expression variation of aquaporin 1 among 17 cases with cholangiocarcinoma was also found using quantitative polymerase chain reaction. The expression level of aquaporin 1 protein significantly correlated with tumor-node-metastasis stage ( P = .002) and overall survival time ( P = .010). Higher aquaporin 1 expression indicated poor prognostic outcomes ( P <.05, log-rank test). Multivariate analysis also showed strong aquaporin 1 protein expression was an independent adverse prognosticator in hilar cholangiocarcinoma ( P = .002). This study highlighted the prognostic value of aquaporin 1 in hilar cholangiocarcinoma. Strong aquaporin 1 expression predicts poor survival, regardless of pathological features. Immunohistochemical detection of aquaporin 1, as a prognostic marker, may contribute to predicting clinical outcome for patients with hilar cholangiocarcinoma.

  19. A case of distal extrahepatic cholangiocarcinoma with two positive resection margins

    PubMed Central

    Warner, Wayne A.; Ramcharan, Wesley; Harnanan, Dave; Umakanthan, Srikanth; Maharaj, Ravi

    2016-01-01

    Cholangiocarcinoma is an uncommon primary malignancy of the biliary tract that is challenging to diagnose and treat effectively due to its relatively silent and late clinical presentation. The present study reports a case of a 60-year-old male with distal extrahepatic cholangiocarcinoma with a 3-week history of painless obstructive jaundice symptoms and subjective weight loss. Imaging revealed an obstructing lesion in the common bile duct, just distal to the entrance of the cystic duct. Pathology revealed moderately differentiated cholangiocarcinoma with two positive proximal resection margins. The two positive resection margins presented a challenge during surgery and points to an urgent need for further studies to better illuminate diagnostic and therapeutic options for patients with similar clinicopathological presentation. PMID:27895774

  20. Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP.

    PubMed

    Bartley, Christopher M; O'Keefe, Rachel A; Blice-Baum, Anna; Mihailescu, Mihaela-Rita; Gong, Xuan; Miyares, Laura; Karaca, Esra; Bordey, Angélique

    2016-01-01

    The fragile X mental retardation protein (FMRP) is an mRNA-binding regulator of protein translation that associates with 4-6% of brain transcripts and is central to neurodevelopment. Autism risk genes' transcripts are overrepresented among FMRP-binding mRNAs, and FMRP loss-of-function mutations are responsible for fragile X syndrome, the most common cause of monogenetic autism. It is thought that FMRP-dependent translational repression is governed by the phosphorylation of serine residue 499 (S499). However, recent evidence suggests that S499 phosphorylation is not modulated by metabotropic glutamate receptor class I (mGluR-I) or protein phosphatase 2A (PP2A), two molecules shown to regulate FMRP translational repression. Moreover, the mammalian FMRP S499 kinase remains unknown. We found that casein kinase II (CK2) phosphorylates murine FMRP S499. Further, we show that phosphorylation of FMRP S499 permits phosphorylation of additional, nearby residues. Evidence suggests that these nearby residues are modulated by mGluR-I and PP2A pathways. These data support an alternative phosphodynamic model of FMRP that is harmonious with prior studies and serves as a framework for further investigation.

  1. Substrate phosphorylation and feedback regulation in JFK-promoted p53 destabilization.

    PubMed

    Sun, Luyang; Shi, Lei; Wang, Feng; Huangyang, Peiwei; Si, Wenzhe; Yang, Jie; Yao, Zhi; Shang, Yongfeng

    2011-02-11

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Here, we report that the substrate recognition by JFK requires phosphorylation of p53 in its central core region by CSN (COP9 signalosome)-associated kinase. Significantly, inhibition of CSN-associated kinase activity or knockdown of CSN5 impairs JFK-promoted p53 degradation, enhances p53-dependent transcription, and promotes cell growth suppression, G(1) arrest, and apoptosis. Moreover, we showed that JFK is transcriptionally regulated by p53 and forms an auto-regulatory negative feedback loop with p53. These data may shed new light on the functional connection between CSN, Skp1-Cul1-F-box ubiquitin ligase, and p53 and provide a molecular mechanism for the regulation of JFK-promoted p53 degradation.

  2. Substrate Phosphorylation and Feedback Regulation in JFK-promoted p53 Destabilization*

    PubMed Central

    Sun, Luyang; Shi, Lei; Wang, Feng; Huangyang, Peiwei; Si, Wenzhe; Yang, Jie; Yao, Zhi; Shang, Yongfeng

    2011-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Here, we report that the substrate recognition by JFK requires phosphorylation of p53 in its central core region by CSN (COP9 signalosome)-associated kinase. Significantly, inhibition of CSN-associated kinase activity or knockdown of CSN5 impairs JFK-promoted p53 degradation, enhances p53-dependent transcription, and promotes cell growth suppression, G1 arrest, and apoptosis. Moreover, we showed that JFK is transcriptionally regulated by p53 and forms an auto-regulatory negative feedback loop with p53. These data may shed new light on the functional connection between CSN, Skp1-Cul1-F-box ubiquitin ligase, and p53 and provide a molecular mechanism for the regulation of JFK-promoted p53 degradation. PMID:21127074

  3. Induction of biliary cholangiocarcinoma cell apoptosis by 103Pd cholangial radioactive stent gamma-rays.

    PubMed

    He, Gui-jin; Sun, Dan-dan; Ji, Da-wei; Sui, Dong-ming; Yu, Fa-qiang; Gao, Qin-yi; Dai, Xian-wei; Gao, Hong; Jiang, Tao; Dai, Chao-liu

    2008-06-05

    In recent years, interventional tumor therapy, involving implantation of intra-cholangial metal stents through percutaneous trans-hepatic punctures, has provided a new method for treating cholangiocarcinoma. (103)Pd cholangial radioactive stents can concentrate high radioactive dosages into the malignant tumors and kill tumor cells effectively, in order to prevent re-stenosis of the lumen caused by a relapsed tumor. The aim of the present study was to investigate the efficacy of gamma-rays released by the (103)Pd biliary duct radioactive stent in treating cholangiocarcinoma via induction of biliary cholangiocarcinoma cell apoptosis. A group of biliary duct cancer cells was collectively treated with a dose of gamma-rays. Cells were then examined by the 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl terazolium-bromide (MTT) technique for determining the inhibition rate of the biliary duct cancer cells, as well as with other methods including electron microscopy, DNA agarose gel electrophoresis, and flow cytometry were applied for the evaluation of their morphological and biochemical characteristics. The growth curve and the growth inhibition rate of the cells were determined, and the changes in the ultrastructure of the cholangiocarcinoma cells and the DNA electrophoresis bands were examined under a UV-lamp. The gamma-ray released by (103)Pd inhibited cholangiocarcinoma cell growth, as demonstrated when the growth rate of the cells was stunned by a gamma-ray with a dosage larger than 197.321 MBq. Typical features of cholangiocarcinoma cell apoptosis were observed in the 197.321 MBq dosage group, while cell necrosis was observed when irradiated by a dosage above 245.865 MBq. DNA agarose gel electrophoresis results were different between the 197.321 MBq irradiation dosage group, the 245.865 MBq irradiation dosage group, and the control group. (103)Pd radioactive stents which provide a radioactive dosage of 197.321 MBq are effective in the treatment of cholangiocarcinoma

  4. Intrahepatic cholangiocarcinoma--a rare indication for liver transplantation. Case report and review of the literature.

    PubMed

    Hrehoreţ, D; Alexandrescu, S; Grigorie, R; Herlea, V; Anghel, R; Popescu, I

    2012-01-01

    While hepatocellular carcinoma is a common indication for liver transplantation, intrahepatic cholangiocarcinoma represents a controversial indication for this procedure, due to lower disease-free and overall survival rates achieved by liver transplantation in such patients. Hence, in the last years, few centers reported satisfactory survival rates after liver transplantation for cholangiocarcinoma, in highly selected groups of patients. Herein we present the clinicopathological characteristics, the pre- and postoperative management and the favorable outcome of a patient undergoing liver transplantation for an unresectable intrahepatic cholangiocarcinoma. We consider that reporting the patients with such favorable outcomes is useful, since collecting the data presented by different centers may contribute to identification of a selected group of patients with cholangiocarcinoma who may benefit from liver transplantation. A 62-year old female patient with a primary liver tumor developed on HBV liver cirrhosis, was admitted in our center for therapeutical management. Since preoperative work-up suggested that the tumor is an unresectable hepatocellular carcinoma (due to its location and underlying liver disease), we decided to perform liver transplantation. The pathological examination of the explanted liver revealed that the tumor was a stage I intrahepatic cholangiocarcinoma. The postoperative course was uneventful, and in present, 15 months after transplantation, the patient is alive, without recurrence. Liver transplantation may represent a valid therapeutical option in selected patients with intrahepatic cholangiocarcinoma. Patients with early stage intrahepatic cholangiocarcinomas unresectable due to the underlying liver cirrhosis seem to benefit mostly by liver transplantation. Further studies are needed to identify the favorable prognostic factors in order to select the most appropriate candidates for liver transplantation. The most suitable immunosuppressive

  5. Pure laparoscopic radical resection for type IIIa hilar cholangiocarcinoma.

    PubMed

    Zhang, Cheng-Wu; Liu, Jie; Hong, De-Fei; Wang, Zhi-Fei; Hu, Zhi-Ming; Huang, Dong-Shen; Shang, Min-Jie; Yao, Wei-Feng

    2018-03-01

    Pure laparoscopic radical resection of hilar cholangiocarcinoma is still a challenging procedure, in which laparoscopic lymphadenectomy, hemihepatectomy with caudate lobectomy, and hepaticojejunostomy were included [1-4]. Relative report is rare in the world up to now. Hilar cholangiocarcinoma has a poor prognosis, especially when it occurs with lymph node metastasis or vessel invasion [5, 6]. We recently had a patient who underwent a pure laparoscopic extended right hepatectomy and lymph node dissection and hepaticojejunostomy for a type IIIa hilar cholangiocarcinoma. The tumor was 20 × 15 × 12 mm in diameter and located in the right bile duct and common hepatic duct. Radiological examination showed that hepatic artery and portal vein was not invaded. After the division and mutilation of the right hepatic artery and the right portal vein, short hepatic veins were divided and cut off with clip and ultrasound knife from the anterior face of the vena cava. Mobilization was performed after the devascularization of the right liver, followed by the transection of liver parenchymal with CUSA and ultrasound knife. Finally, left hepatic bile duct jejunum Roux-en-Y reconstruction was performed. This patient underwent successfully with a totally laparoscopic procedure. An extended right hepatectomy (right hemihepatectomy combined with caudate lobectomy) and complete lymph node dissection and hepaticojejunostomy were performed in this operation. The operation time was nearly 590 min, and the intraoperative blood loss was about 300 ml. No obvious complication was observed and the postoperative hospital stay was 11 days. The final diagnosis of the hilar cholangiocarcinoma with no lymph node metastasis was pT2bN0M0 stage II (American Joint Committee on Cancer, AJCC). Pure laparoscopic resection for hilar cholangiocarcinoma was proved safe and feasible, which enabled the patient to recover early and have an opportunity to receive chemotherapy as soon as possible. We

  6. Cholangiocarcinoma in Italy: A national survey on clinical characteristics, diagnostic modalities and treatment. Results from the "Cholangiocarcinoma" committee of the Italian Association for the Study of Liver disease.

    PubMed

    Alvaro, Domenico; Bragazzi, Maria Consiglia; Benedetti, Antonio; Fabris, Luca; Fava, Giammarco; Invernizzi, Pietro; Marzioni, Marco; Nuzzo, Gennaro; Strazzabosco, Mario; Stroffolini, Tommaso

    2011-01-01

    Very few studies assessed cholangiocarcinoma clinical characteristics. To evaluate the clinical characteristics of intra-hepatic (IH) and extra-hepatic (EH)-CCA. We performed a national survey based on a questionnaire. 218 cholangiocarcinomas were observed (47% EH-CCA, 53% IH-CCA) with an age at the diagnosis higher for EH-CCA. Coexistence of cirrhosis or viral cirrhosis was more frequent in IH-CCA than EH-CCA. An incidental asymptomatic presentation occurred in 28% of IH-CCA vs 4% EH-CCA whilst, 74% EH-CCA vs 28% IH-CCA presented with jaundice. 91% of IH-CCA presented as a single intra-hepatic mass, whilst 50% of EH-CCA was peri-hilar. In the diagnostic work-up, 70% of all cholangiocarcinoma cases received at least 3 different imaging procedures. Tissue-proven diagnosis was obtained in 80% cholangiocarcinoma. Open surgery with curative intent was performed in 45% of IH-CCA and 29% EH-CCA. 18% IH-CCA vs 4% EH-CCA did not received treatment. In Italy IH-CCA is managed as frequently as EH-CCA. In comparison to EH-CCA, IH-CCA occurs at younger age and is more frequently associated with cirrhosis and with an incidental asymptomatic presentation. In contrast, most EH-CCAs are jaundiced at the diagnosis. Cholangiocarcinoma diagnostic management is cost- and time-consuming with curative surgical treatment applicable more frequently in IH-CCA. Copyright © 2010 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  7. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth.

    PubMed

    Han, Yuyan; Meng, Fanyin; Venter, Julie; Wu, Nan; Wan, Ying; Standeford, Holly; Francis, Heather; Meininger, Cynthia; Greene, John; Trzeciakowski, Jerome P; Ehrlich, Laurent; Glaser, Shannon; Alpini, Gianfranco

    2016-06-01

    Disruption of circadian rhythm is associated with cancer development and progression. MicroRNAs (miRNAs) are a class of small non-coding RNAs that trigger mRNA translation inhibition. We aimed to evaluate the role of Per1 and related miRNAs in cholangiocarcinoma growth. The expression of clock genes was evaluated in human cholangiocarcinoma tissue arrays and cholangiocarcinoma lines. The rhythmic expression of clock genes was evaluated in cholangiocarcinoma cells and H69 (non-malignant cholangiocytes) by qPCR. We measured cell proliferation, cell cycle and apoptosis in Mz-ChA-1 cells after Per1 overexpression. We examined tumor growth in vivo after injection of Per1 overexpressing cells. We verified miRNAs that targets Per1. The circadian rhythm of miR-34a was evaluated in cholangiocarcinoma and H69 cells. We evaluated cell proliferation, apoptosis and invasion after inhibition of miR-34a in vitro, and the potential molecular mechanisms by mRNA profiling after overexpression of Per1. Expression of Per1 was decreased in cholangiocarcinoma. The circadian rhythm of Per1 expression was lost in cholangiocarcinoma cells. Decreased cell proliferation, lower G2/M arrest, and enhanced apoptosis were shown in Per1 overexpressing cells. An in vivo study revealed decreased tumor growth, decreased proliferation, angiogenesis and metastasis after overexpressing Per1. Per1 was verified as a target of miR-34a. miR-34a was rhythmically expressed in cholangiocarcinoma cells and H69. The inhibition of miR-34a decreased proliferation, migration and invasion in cholangiocarcinoma cells. mRNA profiling has shown that overexpression of Per1 inhibits cell growth through regulation of multiple cancer-related pathways, such as cell cycle, cell growth and apoptosis pathways. Disruption of circadian rhythms of clock genes contribute to the malignant phenotypes of human cholangiocarcinoma. The current study is about how biological clock and its regulators affect the bile duct tumor growth. The

  8. Overexpression of Prdx1 in hilar cholangiocarcinoma: a predictor for recurrence and prognosis

    PubMed Central

    Zhou, Jie; Shen, Weiwen; He, Xiaojing; Qian, Jing; Liu, Shiyuan; Yu, Guanzhen

    2015-01-01

    Prdx1 is an important member of peroxiredoxins (Prdxs) regulating various cellular signaling and differentiation. Prdx1 confers an aggressive survival phenotype of cancer cells and drug-resistance, yet its role in hilar cholangiocarcinoma is not fully investigated. In present study, we detected the expression profile of Prdx1 in 88 hilar cholangiocarcinoma by tissue arrays and immunohistochemistry. Prdx1 level was down-regulated by specific Prdx1-shRNA in vitro and the possible mechanism was investigated. Overexpression of Prdx1 was observed in 53 of 88 cases (60.2%). Prdx1 expression was significantly associated with tumor invasion, nodal metastasis, advanced disease stage. Down-regulation of Prdx1 inhibited cell proliferation and colony formation of QBC939 cells and reduced the level of SNAT1 expression. Patients with Prdx1 overexpression had a shorter disease-free survival and overall survival than those without Prdx1 expression. Multivariate analysis showed that Prdx1 was an independent prognostic factor for patients with hilar cholangiocarcinoma. The data indicate that Prdx1 may contribute to the development and progression of hilar cholangiocarcinoma, partially through regulating SNAT1 expression, and may be used as a biomarker in predicting the outcome of patients with hilar cholangiocarcinoma. PMID:26617696

  9. Overexpression of Prdx1 in hilar cholangiocarcinoma: a predictor for recurrence and prognosis.

    PubMed

    Zhou, Jie; Shen, Weiwen; He, Xiaojing; Qian, Jing; Liu, Shiyuan; Yu, Guanzhen

    2015-01-01

    Prdx1 is an important member of peroxiredoxins (Prdxs) regulating various cellular signaling and differentiation. Prdx1 confers an aggressive survival phenotype of cancer cells and drug-resistance, yet its role in hilar cholangiocarcinoma is not fully investigated. In present study, we detected the expression profile of Prdx1 in 88 hilar cholangiocarcinoma by tissue arrays and immunohistochemistry. Prdx1 level was down-regulated by specific Prdx1-shRNA in vitro and the possible mechanism was investigated. Overexpression of Prdx1 was observed in 53 of 88 cases (60.2%). Prdx1 expression was significantly associated with tumor invasion, nodal metastasis, advanced disease stage. Down-regulation of Prdx1 inhibited cell proliferation and colony formation of QBC939 cells and reduced the level of SNAT1 expression. Patients with Prdx1 overexpression had a shorter disease-free survival and overall survival than those without Prdx1 expression. Multivariate analysis showed that Prdx1 was an independent prognostic factor for patients with hilar cholangiocarcinoma. The data indicate that Prdx1 may contribute to the development and progression of hilar cholangiocarcinoma, partially through regulating SNAT1 expression, and may be used as a biomarker in predicting the outcome of patients with hilar cholangiocarcinoma.

  10. aPKC-ι/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma.

    PubMed

    Qian, Yawei; Yao, Wei; Yang, Tao; Yang, Yan; Liu, Yan; Shen, Qi; Zhang, Jian; Qi, Weipeng; Wang, Jianming

    2017-10-01

    Cholangiocarcinoma (CCA) is a highly malignant bile duct cancer that tends to invade and metastasize early. The epithelial-mesenchymal transition (EMT) has been implicated in cancer cell invasion and metastasis, as well as in cancer cell evasion of host immunity. In this study, we investigated the interaction between atypical protein kinase C-iota (aPKC-ι) and Snail in the regulation of EMT and its relationship to CCA immunosuppression. Our results demonstrated that aPKC-ι, Snail, and infiltrated immunosuppressive cells were significantly up-regulated in CCA tumor tissues and linked to poor prognosis. aPKC-ι induced EMT and immunosuppression by regulating Snail in vitro and in vivo, although aPKC-ι did not directly interact with Snail in coimmunoprecipitation experiments. To further clarify the molecular interaction between aPKC-ι and Snail in relation to EMT, quantitative iTRAQ-based phosphoproteomic analysis and liquid chromatography-tandem mass spectrometry were conducted to identify the substrates of aPKC-ι-dependent phosphorylation. Combined with coimmunoprecipitation, we showed that specificity protein 1 (Sp1) was directly phosphorylated by aPKC-ι on Ser59 (P-Sp1). Both Sp1 and P-Sp1 were up-regulated in CCA tumor tissues and associated with clinicopathological features and poor prognosis in CCA patients. Moreover, using chromatin immunoprecipitation assays, we found that P-Sp1 regulated Snail expression by increasing Sp1 binding to the Snail promoter. P-Sp1 also regulated aPKC-ι/Snail-induced EMT-like changes and immunosuppression in CCA cells. Our findings further indicated that CCA cells with EMT-like features appear to generate immunosuppressive natural T regulatory-like cluster of differentiation 4-positive (CD4 + )CD25 - cells rather than to increase CD4 + CD25 + natural T regulatory cells, in part by mediating T regulatory-inducible cytokines such as transforming growth factor β1 and interleukin 2. These results demonstrate that a

  11. Interleukin-8 is a prognostic indicator in human hilar cholangiocarcinoma

    PubMed Central

    Sun, Qi; Li, Fanni; Sun, Fengkai; Niu, Jun

    2015-01-01

    Interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9) and neovascularization have been implicated to be associated with biological processes, especially cancer progression. However, few studies have investigated the role of IL-8 in human hilar cholangiocarcinoma. In this study we detected the expression of IL-8 combined with MMP-9 and microvessel density (MVD) in hilar cholangiocarcinoma to evaluate their clinicopathological significance and prognostic value. A total of 62 patients with hilar cholangiocarcinoma who underwent curative surgery were enrolled in this study. The expression of IL-8, MMP-9 and MVD were examined immunohistochemically. The correlation of IL-8 with MMP-9 expression, MVD, clinicopathological features and survival time of patients were then analyzed. Expression of IL-8 was observed in 56.5% tumors, which was related to advanced TNM stage (P = 0.026) and tumor recurrence (P = 0.018). IL-8 had a positive correlation with MMP-9 expression and MVD. Furthermore, patients with high IL-8 expression had a significantly shorter overall survival than those with low IL-8 expression (P = 0.01). Multivariate analysis confirmed IL-8 as an independent prognostic factor (P = 0.005). In conclusion, IL-8 expression significantly correlated with MMP-9 expression and MVD, and IL-8 was a valuable prognostic factor for human hilar cholangiocarcinoma. PMID:26339407

  12. Prevalence of Nonalcoholic Steatohepatitis Among Patients with Resectable Intrahepatic Cholangiocarcinoma

    PubMed Central

    Reddy, Srinevas K.; Hyder, Omar; Marsh, J. Wallis; Sotiropoulos, Georgios C.; Paul, Andreas; Alexandrescu, Sorin; Marques, Hugo; Pulitano, Carlo; Barroso, Eduardo; Aldrighetti, Luca; Geller, David A.; Sempoux, Christine; Herlea, Vlad; Popescu, Irinel; Anders, Robert; Rubbia-Brandt, Laura; Gigot, Jean-Francois; Mentha, Giles; Pawlik, Timothy M.

    2014-01-01

    Background and Aims The objective of this report was to determine the prevalence of underlying nonalcoholic steatohepatitis in resectable intrahepatic cholangiocarcinoma. Methods Demographics, comorbidities, clinicopathologic characteristics, surgical treatments, and outcomes from patients who underwent resection of intrahepatic cholangiocarcinoma at one of eight hepatobiliary centers between 1991 and 2011 were reviewed. Results Of 181 patients who underwent resection for intrahepatic cholangiocarcinoma, 31 (17.1 %) had underlying nonalcoholic steatohepatitis. Patients with nonalcoholic steatohepatitis were more likely obese (median body mass index, 30.0 vs. 26.0 kg/m2, p<0.001) and had higher rates of diabetes mellitus (38.7 vs. 22.0 %, p=0.05) and the metabolic syndrome (22.6 vs. 10.0 %, p=0.05) compared with those without nonalcoholic steatohepatitis. Presence and severity of hepatic steatosis, lobular inflammation, and hepatocyte ballooning were more common among nonalcoholic steatohepatitis patients (all p<0.001). Macrovascular (35.5 vs. 11.3 %, p=0.01) and any vascular (48.4 vs. 26.7 %, p=0.02) tumor invasion were more common among patients with nonalcoholic steatohepatitis. There were no differences in recurrence-free (median, 17.0 versus 19.4 months, p=0.42) or overall (median, 31.5 versus 36.3 months, p=0.97) survival after surgical resection between patients with and without nonalcoholic steatohepatitis. Conclusions Nonalcoholic steatohepatitis affects up to 20 % of patients with resectable intrahepatic cholangiocarcinoma. PMID:23355033

  13. Initial Results of Hypofractionated Carbon Ion Radiotherapy for Cholangiocarcinoma.

    PubMed

    Abe, Takanori; Shibuya, Kei; Koyama, Yoshinori; Okamoto, Masahiko; Kiyohara, Hiroki; Katoh, Hiroyuki; Shimada, Hirohumi; Kuwano, Hiroyuki; Ohno, Tatsuya; Nakano, Takashi

    2016-06-01

    To report initial results of hypofractionated carbon ion radiotherapy (C-ion RT) for cholangiocarcinoma. Data regarding seven patients with cholangiocarcinoma treated by C-ion RT were analyzed. Prescribed doses were 52.8 Gy [relative biological effectiveness (RBE)] or 60.0 Gy (RBE) in four fractions for intrahepatic cases and 12 fractions for hilar hepatic/close to gastro-intestinal tract cases. Local control and overall survival were evaluated and toxicity was graded using Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up period was 16 months. There were two patients with stage I cancer, one with stage II, one with stage III, and three with stage IVA. Local control was achieved in five out of seven patients (71%) and survival was maintained in six out of seven patients (86%). There were no occurrences of acute or late toxicity of grade 3 or higher. Initial results show that hypofractionated C-ion RT appears to be tolerated and effective for cholangiocarcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. A phase 2 and biomarker study of cabozantinib in patients with advanced cholangiocarcinoma.

    PubMed

    Goyal, Lipika; Zheng, Hui; Yurgelun, Matthew B; Abrams, Thomas A; Allen, Jill N; Cleary, James M; Knowles, Michelle; Regan, Eileen; Reardon, Amanda; Khachatryan, Anna; Jain, Rakesh K; Nardi, Valentina; Borger, Darrell R; Duda, Dan G; Zhu, Andrew X

    2017-06-01

    Advanced cholangiocarcinoma carries a poor prognosis, and no standard treatment exists beyond first-line gemcitabine/platinum-based chemotherapy. A single-arm, phase 2 and biomarker study of cabozantinib, a multikinase inhibitor with potent activity against vascular endothelial growth factor receptor 2 (VEGFR2) and MET, was performed for patients with advanced refractory cholangiocarcinoma. Previously treated patients with unresectable or metastatic cholangiocarcinoma received cabozantinib (60 mg orally and daily on a continuous schedule). The primary endpoint was progression-free survival (PFS). Tumor MET expression and plasma biomarkers were evaluated. The study enrolled 19 patients with cholangiocarcinoma (female, 68%; median age, 67 years; intrahepatic vs extrahepatic, 84% vs 16%). The median PFS was 1.8 months (95% confidence interval, 1.6-5.4 months), and the median overall survival (OS) was 5.2 months (95% confidence interval, 2.7-10.5 months). Grade 3/4 adverse events occurred in 89% of the patients and included neutropenia (5%), hyperbilirubinemia (5%), epistaxis (5%), bowel perforation (5%), enterocutaneous fistulas (5%), and hypertension (11%). One patient with 3 + MET expression in the tumor stayed on treatment for 278 days, but the MET expression did not correlate with the outcomes in the overall study population. Plasma vascular endothelial growth factor, placental growth factor, and stromal cell-derived factor 1α increased and soluble VEGFR2 and angiopoietin 2 decreased after treatment (all P values < .01). Plasma tissue inhibitor of matrix metalloproteinase 1 was inversely correlated with PFS, and soluble MET (sMET) and interleukin 6 were inversely correlated with OS. In unselected patients with cholangiocarcinoma, cabozantinib demonstrated limited activity and significant toxicity. In the first clinical trial to assess the role of MET inhibition in cholangiocarcinoma, 1 patient with a MET-high tumor had a prolonged benefit from treatment

  15. Identification of bile survivin and carbohydrate antigen 199 in distinguishing cholangiocarcinoma from benign obstructive jaundice.

    PubMed

    Liu, Yanfeng; Sun, Jingxian; Zhang, Qiangbo; Jin, Bin; Zhu, Min; Zhang, Zongli

    2017-01-01

    To investigate whether bile survivin and carbohydrate antigen 199 (CA199) can be helpful in distinguishing cholangiocarcinoma (malignant obstructive jaundice) from benign obstructive jaundice. Receiver operating characteristic curve was used to evaluate the feasibility of bile survivin and CA199 in differentiating cholangiocarcinoma from benign obstructive jaundice. The area under the curve for survivin and CA199 in bile and serum were 0.780 (p < 0.001), 0.6 (p = 0.084), 0.746 (p < 0.001) and 0.542 (p = 0.464), respectively. Combination of bile survivin and CA199 could improve the diagnostic capability. Bile survivin and CA199 are significantly increased in patients with cholangiocarcinoma and may be useful biomarkers in differentiating distinguishing cholangiocarcinoma from benign obstructive jaundice.

  16. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma

    PubMed Central

    Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won

    2018-01-01

    Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.

  17. Anti-apoptosis Effect of Decoy Receptor 3 in Cholangiocarcinoma Cell Line TFK-1

    PubMed Central

    Xu, Ying-Chen; Cui, Jing; Zhang, Li-Jun; Zhang, Dong-Xin; Xing, Bing-Chen; Huang, Xiong-Wei-Ye; Wu, Ji-Xiang; Liang, Chao-Jie; Li, Guang-Ming

    2018-01-01

    Background: Decoy receptor 3 (DcR3) is a protein with anti-apoptotic effect that belongs to the tumor necrosis factor receptor superfamily. DcR3 is highly expressed in a variety of malignant tumors including cholangiocarcinoma and its expression was found to be related to the clinical stage, the invasion, and the metastasis of the tumor. This in vitro study aimed to investigate the effect of downregulated expression of DcR3 on cell viability, cell apoptosis, and cell cycle in cholangiocarcinoma cell line TFK-1. Methods: Three different cell lines were cultured: human cholangiocarcinoma TFK-1, human biliary epithelial carcinoma HuCCT-1, and human cholangiocarcinoma RBE. The cholangiocarcinoma cell line with the highest expression of DcR3 was selected for further investigation. The expression of DcR3 was silenced/knocked down by transfection with DcR3-siRNA in the selected cell line. Various biological phenotype parameters such as cell viability, apoptosis, and cell cycle were observed. Results: The mRNA and protein levels of DcR3 were measured in the three cell lines, and TFK-1 was selected. After the treatment with DcR3-siRNA for 48 h, DcR3 mRNA and protein expression in the treatment group were 38.45% (P < 0.01) and 48.03% (P < 0.05) of that of the control, respectively. It was found that the cell viability decreased to 61.87% of the control group (P < 0.01) after the downregulation of DcR3 in cholangiocarcinoma cell line TFK-1 by transfection with DcR3-siRNA, while the percentage of apoptotic cells was 2.98 times as compared with the control group (P < 0.05). Compared with the control group the ratio of G0/G1 increased, and the ratio of G2/M decreased in the treatment group. However, the differences were not statistically significant. Conclusions: The effect of DcR3 on the growth and apoptosis of cholangiocarcinoma has been demonstrated. DcR3 is not only a predictive marker for malignant tumor but it is also likely to be a potential target for cancer gene therapy

  18. Anti-apoptosis Effect of Decoy Receptor 3 in Cholangiocarcinoma Cell Line TFK-1.

    PubMed

    Xu, Ying-Chen; Cui, Jing; Zhang, Li-Jun; Zhang, Dong-Xin; Xing, Bing-Chen; Huang, Xiong-Wei-Ye; Wu, Ji-Xiang; Liang, Chao-Jie; Li, Guang-Ming

    2018-01-05

    Decoy receptor 3 (DcR3) is a protein with anti-apoptotic effect that belongs to the tumor necrosis factor receptor superfamily. DcR3 is highly expressed in a variety of malignant tumors including cholangiocarcinoma and its expression was found to be related to the clinical stage, the invasion, and the metastasis of the tumor. This in vitro study aimed to investigate the effect of downregulated expression of DcR3 on cell viability, cell apoptosis, and cell cycle in cholangiocarcinoma cell line TFK-1. Three different cell lines were cultured: human cholangiocarcinoma TFK-1, human biliary epithelial carcinoma HuCCT-1, and human cholangiocarcinoma RBE. The cholangiocarcinoma cell line with the highest expression of DcR3 was selected for further investigation. The expression of DcR3 was silenced/knocked down by transfection with DcR3-siRNA in the selected cell line. Various biological phenotype parameters such as cell viability, apoptosis, and cell cycle were observed. The mRNA and protein levels of DcR3 were measured in the three cell lines, and TFK-1 was selected. After the treatment with DcR3-siRNA for 48 h, DcR3 mRNA and protein expression in the treatment group were 38.45% (P < 0.01) and 48.03% (P < 0.05) of that of the control, respectively. It was found that the cell viability decreased to 61.87% of the control group (P < 0.01) after the downregulation of DcR3 in cholangiocarcinoma cell line TFK-1 by transfection with DcR3-siRNA, while the percentage of apoptotic cells was 2.98 times as compared with the control group (P < 0.05). Compared with the control group the ratio of G0/G1increased, and the ratio of G2/M decreased in the treatment group. However, the differences were not statistically significant. The effect of DcR3 on the growth and apoptosis of cholangiocarcinoma has been demonstrated. DcR3 is not only a predictive marker for malignant tumor but it is also likely to be a potential target for cancer gene therapy. Further studies should focus on exploring

  19. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumours

    PubMed Central

    Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-01-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterised. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium’s HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly epigenetically regulated in this tumour type. Using a linear model for microarray data we identified 1610 differentially methylated autosomal CpG sites with 809 CpG sites (representing 603 genes) being hypermethylated and 801 CpG sites (representing 712 genes) being hypomethylated in cholangiocarcinoma versus adjacent normal tissues (false discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12 and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  20. Nerve Growth Factor Expression Is Not Associated with Perineural Invasion in Extrahepatic Cholangiocarcinoma.

    PubMed

    Urabe, Kazuhide; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Hashimoto, Yasushi; Nakagawa, Naoya; Sasaki, Hayato; Hiyama, Eiso; Takahashi, Shinya; Sueda, Taijiro

    2016-03-01

    Although the presence of perineural invasion has been recognized as a poor prognostic factor in extrahepatic cholangiocarcinoma, the molecular mechanisms of perineural invasion in extrahepatic cholangiocarcinoma remain unclear. Nerve growth factor has been reported to be a candidate predictive biomarker of perineural invasion in some cancers. To investigate the impact of intratumoral nerve growth factor expression in resected extrahepatic cholangiocarcinoma on survival. Intratumoral nerve growth factor expression was investigated immunohistochemically in 112 patients with resected extrahepatic cholangiocarcinoma. Associations between nerve growth factor expression and clinicopathological factors were statistically evaluated, and risk factors for poor survival were analyzed using univariate and multivariate analyses. High and low nerve growth factor expression was observed in 62 (55%) and 50 (45%) patients, respectively. For all 112 patients, no significant correlation was found between nerve growth factor expression and presence of perineural invasion (P = 0.942). Moreover, nerve growth factor expression was not associated with recurrence-free survival (P = 0.861) and overall survival (P = 0.973). In multivariate analysis, lymph node metastasis (P = 0.004) was identified as an independent risk factor for early recurrence and the presence of perineural invasion (P = 0.002) and lymph node metastasis (P < 0.001) was identified as independent risk factors for poor survival. Intratumoral nerve growth factor expression is not associated with perineural invasion or recurrence-free and overall survival in patients with resected extrahepatic cholangiocarcinoma.

  1. Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise.

    PubMed

    Saha, Supriya K; Zhu, Andrew X; Fuchs, Charles S; Brooks, Gabriel A

    2016-05-01

    Challenges in the diagnosis and classification of cholangiocarcinoma have made it difficult to quantify the true incidence of this highly aggressive malignancy. We analyzed the Surveillance, Epidemiology, and End Results data to assess long-term trends in the age-standardized incidence of intrahepatic and extrahepatic cholangiocarcinoma between 1973 and 2012, correcting for systematic coding errors. Because intrahepatic cholangiocarcinoma (ICC) may frequently be misdiagnosed as cancer of unknown primary (CUP), we also analyzed trends in the incidence of CUP. Between 1973 and 2012, the reported U.S. incidence of ICC increased from 0.44 to 1.18 cases per 100,000, representing an annual percentage change (APC) of 2.30%; this trend has accelerated during the past decade to an APC of 4.36%. The incidence of extrahepatic cholangiocarcinoma increased modestly from 0.95 to 1.02 per 100,000 during the 40-year period (APC, 0.14%). The incidence of CUP with histologic features potentially consistent with cholangiocarcinoma decreased by 51% between 1973 and 2012 (APC, -1.87%), whereas the incidence of CUP with squamous or nonepithelial histologic features increased modestly (APC, 0.42%). The recognized incidence of ICC in the U.S. continues to rise, whereas the incidence of ECC is stable. The incidence of CUP has fallen dramatically during the same time period. Clinical distinctions between cholangiocarcinoma (particularly intrahepatic cholangiocarcinoma [ICC]) and cancer of unknown primary (CUP) can be challenging. Recent discoveries have identified recurrent and potentially targetable genomic abnormalities in ICC, highlighting the importance of improving diagnosis. This study demonstrates that the incidence of ICC is increasing in the U.S., whereas the incidence of extrahepatic cholangiocarcinoma is stable. Concomitantly, the incidence of CUP has declined dramatically, suggesting that improved distinction between ICC and CUP may be a major driver of the increasing recognized

  2. Clonorchis sinensis granulin: identification, immunolocalization, and function in promoting the metastasis of cholangiocarcinoma and hepatocellular carcinoma.

    PubMed

    Wang, Caiqin; Lei, Huali; Tian, Yanli; Shang, Mei; Wu, Yinjuan; Li, Ye; Zhao, Lu; Shi, Mengchen; Tang, Xin; Chen, Tingjin; Lv, Zhiyue; Huang, Yan; Tang, Xiaoping; Yu, Xinbing; Li, Xuerong

    2017-05-25

    Long-term infections by Clonorchis sinensis are associated with cholangitis, cholecystitis, liver fibrosis, cirrhosis, and even liver cancer. Molecules from the worm play vital roles in disease progress. In the present study, we identified and explored molecular characterization of C. sinensis granulin (CsGRN), a growth factor-like protein from C. sinensis excretory/secretory products (CsESPs). The encoding sequence and conserved domains of CsGRN were identified and analysed by bioinformatics tools. Recombinant CsGRN (rCsGRN) protein was expressed in Escherichia coli BL21 (DE3). The localisation of CsGRN in adult worms and Balb/c mice infected with C. sinensis was investigated by immunofluorescence and immunohistochemistry, respectively. Stable CsGRN-overexpressed cell lines of hepatoma cells (PLC-GRN cells) and cholangiocarcinoma cells (RBE-GRN cells) were constructed by transfection of eukaryotic expression plasmid of pEGFP-C1-CsGRN. The effects on cell migration and invasion of CsGRN were assessed through the wound-healing assay and transwell assay. The levels of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) in PLC-GRN or RBE-GRN cells were detected by real-time PCR (qRT-PCR). The levels of E-cadherin, vimentin, N-cadherin, zona occludens proteins (ZO-1), β-catenin, phosphorylated ERK (p-ERK) and phosphorylated AKT (p-AKT) were analysed by Western blotting. CsGRN, including the conserved GRN domains, was confirmed to be a member of the granulin family. CsGRN was identified as an ingredient of CsESPs. CsGRN was localised in the tegument and testes of the adult worm. Furthermore, it appeared in the cytoplasm of hepatocytes and biliary epithelium cells from infected Balb/c mouse. The enhancement of cell migration and invasion of PLC-GRN and RBE-GRN cells were observed. In addition, CsGRN upregulated the levels of vimentin, N-cadherin, β-catenin, MMP2 and MMP9, while it downregulated the level of ZO-1 in PLC-GRN/RBE-GRN cells. In total proteins of liver tissue

  3. Prevalence of nonalcoholic steatohepatitis among patients with resectable intrahepatic cholangiocarcinoma.

    PubMed

    Reddy, Srinevas K; Hyder, Omar; Marsh, J Wallis; Sotiropoulos, Georgios C; Paul, Andreas; Alexandrescu, Sorin; Marques, Hugo; Pulitano, Carlo; Barroso, Eduardo; Aldrighetti, Luca; Geller, David A; Sempoux, Christine; Herlea, Vlad; Popescu, Irinel; Anders, Robert; Rubbia-Brandt, Laura; Gigot, Jean-Francois; Mentha, Giles; Pawlik, Timothy M

    2013-04-01

    The objective of this report was to determine the prevalence of underlying nonalcoholic steatohepatitis in resectable intrahepatic cholangiocarcinoma. Demographics, comorbidities, clinicopathologic characteristics, surgical treatments, and outcomes from patients who underwent resection of intrahepatic cholangiocarcinoma at one of eight hepatobiliary centers between 1991 and 2011 were reviewed. Of 181 patients who underwent resection for intrahepatic cholangiocarcinoma, 31 (17.1 %) had underlying nonalcoholic steatohepatitis. Patients with nonalcoholic steatohepatitis were more likely obese (median body mass index, 30.0 vs. 26.0 kg/m(2), p < 0.001) and had higher rates of diabetes mellitus (38.7 vs. 22.0 %, p = 0.05) and the metabolic syndrome (22.6 vs. 10.0 %, p = 0.05) compared with those without nonalcoholic steatohepatitis. Presence and severity of hepatic steatosis, lobular inflammation, and hepatocyte ballooning were more common among nonalcoholic steatohepatitis patients (all p < 0.001). Macrovascular (35.5 vs. 11.3 %, p = 0.01) and any vascular (48.4 vs. 26.7 %, p = 0.02) tumor invasion were more common among patients with nonalcoholic steatohepatitis. There were no differences in recurrence-free (median, 17.0 versus 19.4 months, p = 0.42) or overall (median, 31.5 versus 36.3 months, p = 0.97) survival after surgical resection between patients with and without nonalcoholic steatohepatitis. Nonalcoholic steatohepatitis affects up to 20 % of patients with resectable intrahepatic cholangiocarcinoma.

  4. PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail

    PubMed Central

    Zhang, Jie; Li, Xiang-An; Evers, B. Mark; Zhu, Haining; Jia, Jianhang

    2016-01-01

    In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo. PMID:26863604

  5. Lower incidence of complications in endoscopic nasobiliary drainage for hilar cholangiocarcinoma.

    PubMed

    Kawakubo, Kazumichi; Kawakami, Hiroshi; Kuwatani, Masaki; Haba, Shin; Kudo, Taiki; Taya, Yoko A; Kawahata, Shuhei; Kubota, Yoshimasa; Kubo, Kimitoshi; Eto, Kazunori; Ehira, Nobuyuki; Yamato, Hiroaki; Onodera, Manabu; Sakamoto, Naoya

    2016-05-10

    To identify the most effective endoscopic biliary drainage technique for patients with hilar cholangiocarcinoma. In total, 118 patients with hilar cholangiocarcinoma underwent endoscopic management [endoscopic nasobiliary drainage (ENBD) or endoscopic biliary stenting] as a temporary drainage in our institution between 2009 and 2014. We retrospectively evaluated all complications from initial endoscopic drainage to surgery or palliative treatment. The risk factors for biliary reintervention, post-endoscopic retrograde cholangiopancreatography (post-ERCP) pancreatitis, and percutaneous transhepatic biliary drainage (PTBD) were also analyzed using patient- and procedure-related characteristics. The risk factors for bilateral drainage were examined in a subgroup analysis of patients who underwent initial unilateral drainage. In total, 137 complications were observed in 92 (78%) patients. Biliary reintervention was required in 83 (70%) patients. ENBD was significantly associated with a low risk of biliary reintervention [odds ratio (OR) = 0.26, 95%CI: 0.08-0.76, P = 0.012]. Post-ERCP pancreatitis was observed in 19 (16%) patients. An absence of endoscopic sphincterotomy was significantly associated with post-ERCP pancreatitis (OR = 3.46, 95%CI: 1.19-10.87, P = 0.023). PTBD was required in 16 (14%) patients, and Bismuth type III or IV cholangiocarcinoma was a significant risk factor (OR = 7.88, 95%CI: 1.33-155.0, P = 0.010). Of 102 patients with initial unilateral drainage, 49 (48%) required bilateral drainage. Endoscopic sphincterotomy (OR = 3.24, 95%CI: 1.27-8.78, P = 0.004) and Bismuth II, III, or IV cholangiocarcinoma (OR = 34.69, 95%CI: 4.88-736.7, P < 0.001) were significant risk factors for bilateral drainage. The endoscopic management of hilar cholangiocarcinoma is challenging. ENBD should be selected as a temporary drainage method because of its low risk of complications.

  6. Untangling the Complexity of Liver Fluke Infection and Cholangiocarcinoma in NE Thailand Through Transdisciplinary Learning.

    PubMed

    Ziegler, A D; Echaubard, P; Lee, Y T; Chuah, C J; Wilcox, B A; Grundy-Warr, C; Sithithaworn, P; Petney, T N; Laithevewat, L; Ong, X; Andrews, R H; Ismail, T; Sripa, B; Khuntikeo, N; Poonpon, K; Tungtang, P; Tuamsuk, K

    2016-06-01

    This study demonstrates how a transdisciplinary learning approach provided new insights for explaining persistent Opisthorchis viverrini infection in northern Thailand, as well as elucidating problems of focusing solely on the parasite as a means of addressing high prevalence of cholangiocarcinoma. Researchers from diverse backgrounds collaborated to design an investigative homestay program for 72 Singaporean and Thai university students in five northeast Thai villages. The students explored how liver fluke infection and potential cholangiocarcinoma development are influenced by local landscape dynamics, aquatic ecology, livelihoods, food culture and health education. Qualitative fieldwork was guided daily by the researchers in a collaborative, co-learning process that led to viewing this health issue as a complex system, influenced by interlinked multidimensional factors. Our transdisciplinary experience has led us to believe that an incomplete understanding of these linkages may reduce the efficacy of interventions. Further, viewing liver fluke infection and cholangiocarcinoma as the same issue is inadvisable. Although O. viverrini infection is an established risk factor for the development of cholangiocarcinoma, multiple factors are known to influence the likelihood of acquiring either. Understanding the importance of the current livelihood transition, landscape modification and the resulting mismatch between local cultures and new socio-ecological settings on cholangiocarcinoma initiation and liver fluke transmission is of critical importance as it may help readjust our view of the respective role of O. viverrini and other socioeconomic risk factors in cholangiocarcinoma etiology and refine intervention strategies. As demonstrated in this study, transdisciplinary approaches have the potential to yield more nuanced perspectives to complex diseases than research that focuses on specific aspects of their epidemiology. They may therefore be valuable when designing

  7. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels.

    PubMed

    Chen, Xingxiang; Shi, Xiuli; Gan, Fang; Huang, Da; Huang, Kehe

    2015-03-18

    Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.

  8. Gab1 regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma.

    PubMed

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2015-11-01

    Intrahepatic cholangiocarcinoma is the second most common primary malignant tumor of the liver, and it originates from the intrahepatic biliary duct epithelium. Prognosis is poor due to lack of effective comprehensive treatments. In this study, we assessed the expression of Gab1, VEGFR-2, and MMP-9 in intrahepatic cholangiocarcinoma solid tumors by immunohistochemistry and determined whether their expression was associated with clinical and pathological features. We found that expression of Gab1, VEGFR-2, and MMP-9 was highly and positively correlated with each other and with lymph node metastasis and TNM stage in intrahepatic cholangiocarcinoma tissues. Interference of Gab1 and VEGFR-2 expression via siRNA in the intrahepatic cholangiocarcinoma cell line RBE resulted in decreased PI3K/Akt pathway activity. Inhibition of Gab1 and VEGFR-2 expression also caused decreased cell proliferation, cell cycle arrested in G1 phase, increased apoptosis, and decreased invasion in RBE cells. These results suggest that Gab1, VEGFR-2, and MMP-9 contribute significantly to the highly malignant behavior of intrahepatic cholangiocarcinoma. The regulation of growth, apoptosis, and invasion by Gab1 through the VEGFR-2/Gab1/PI3K/Akt signaling pathway may represent potential targets for improving the treatment of intrahepatic cholangiocarcinoma.

  9. Hepatitis B virus-associated intrahepatic cholangiocarcinoma: a malignancy of distinctive characteristics between hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

    PubMed

    Jeong, Seogsong; Tong, Ying; Sha, Meng; Gu, Jinyang; Xia, Qiang

    2017-03-07

    It has been a decade since hepatitis B virus infection was identified as an etiological factor for the development of intrahepatic cholangiocarcinoma (ICC). In recent years, several studies have elucidated the critical impact of hepatitis B virus in ICC that significantly influenced the clinicopathological characteristics of ICC patients with intrahepatic cholangiocarcinoma. Distinctive features of patients with hepatitis B virus-associated ICC included younger age, preponderance of male patients, frequent elevation of alpha-fetoprotein, and infrequent lymph node metastasis. Furthermore, several studies indicated that the presence of hepatitis B virus is a favorable prognostic factor in terms of overall survival and relapse-free survival. However, there are also a few studies demonstrating that hepatitis B virus negatively influenced or showed no significant association with survival outcomes of patients with ICC. At present, there are no consensus on diagnostic procedures and treatments for such population. Therefore, we elucidated current knowledge and recent identifications of HBV-associated ICC to clarify the impact of chronic HBV infection on patients with ICC and to precisely conduct diagnostic procedures and curative treatments for HBV-associated ICC.

  10. Serum p53 antibody as a potential tumor marker in extrahepatic cholangiocarcinoma.

    PubMed

    Okada, Rei; Shimada, Hideaki; Otsuka, Yuichiro; Tsuchiya, Masaru; Ishii, Jun; Katagiri, Toshio; Maeda, Tetsuya; Kubota, Yoshihisa; Nemoto, Tetsuo; Kaneko, Hironori

    2017-12-01

    Only a few studies have evaluated the clinicopathological significance of the p53 protein expression and s-p53-Abs level in patients with cholangiocarcinoma. We therefore analyzed the clinicopathological and prognostic significance of s-p53-Abs in patients with extrahepatic cholangiocarcinoma. We prospectively evaluated s-p53-Abs levels before and after surgery in 61 patients with extrahepatic cholangiocarcinoma to determine the relationship between clinicopathological factors and the prognostic significance of s-p53-Abs. Among a total of 61 primary extrahepatic cholangiocarcinoma cases, 23% were positive for s-p53-Abs. Combination of s-p53-Abs with the conventional serum markers carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) significantly increased the rate of positive extrahepatic cholangiocarcinoma cases (57% for CEA and/or CA19-9 vs. 75% for CEA and/or CA19-9 and/or s-p53-Abs, P = 0.035). There were no significant differences in clinicopathological factors between the p53-seropositive and p53-seronegative patients. An immunohistochemical analysis showed the presence of significant associations between the intensity (P = 0.003) and extent (P = 0.001) of p53 immunoreactivity and p53-seropositivitly. Although s-p53-Abs was not a significant prognostic factor for the survival in either univariate or multivariate analyses, p53 immunoreactivity was independently associated with a poor survival. Among patients positive for s-p53-Abs before surgery, the s-p53-Abs levels were reduced after surgery in most. These findings suggested that s-p53-Abs might be associated with p53 immunoreactivity. In addition, s-p53-Abs may be useful for a diagnosis, but was not useful for predicting tumor recurrence or the survival. This study was registered as UMIN000014530.

  11. Intrahepatic, peri-hilar and distal cholangiocarcinoma: Three different locations of the same tumor or three different tumors?

    PubMed

    Ercolani, G; Dazzi, A; Giovinazzo, F; Ruzzenente, A; Bassi, C; Guglielmi, A; Scarpa, A; D'Errico, A; Pinna, A D

    2015-09-01

    Few papers deal with pathologic characteristics and outcome of the 3 different cholangiocarcinomas based on location (intrahepatic, peri-hilar, distal). There is little evidence regarding similarity and differences. From two tertiary referral Italian Centers (in Bologna and Verona), 479 patients with cholangiocarcinoma were evaluated between 1980 and 2011. Several pathologic characteristics and their impact on survival were analyzed among resected patients for cholangiocarcinomas depending on the site of origin. Tumour location was intrahepatic in 172 cases (36%), peri-hilar in 243 (51) and distal in 64(13%). Curative resection was performed in 339 (70%) patients. Intrahepatic cholangiocarcinoma showed higher probability to achieve R0 resection (81%), but was more frequently associated with presence of microvascular invasion (71%). Distal cholangiocarcinoma presented less R0 resections (58%), higher lymphnode involvement (60%) and lower microvascular invasion (49%). Hilar cholangiocarcinoma had intermediate characteristics (R0: 65% of cases). Median follow up was 30.2 ± 38 months; the 5 years overall survival was 31% in the resected population. Overall survival curves were similar among the three groups. At univariate analysis surgical margins, lymphnode status, perineural invasion, T category, TNM stage, microvascular invasion, tumour grading had significant impact on survival. At multivariate analysis, only microvascular invasion was significantly related to long term results (HR = 1,7; 95% CI = 1,0-2,5)". Micro-vascular invasion has the strongest impact on survival in all three types of cholangiocarcinoma. In case of comparable pathologic characteristics and stage, the three tumors show similar outcome; depending on location, it shows a different tendency to invade bordering structures which affect the outcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Intrahepatic cholangiocarcinoma after Fontan procedure in an adult with visceral heterotaxy.

    PubMed

    Wang, Dehua; Marshall, Darren; Veldtman, Gruschen; Gupta, Anita; Trout, Andrew T; Villafane, Juan; Bove, Kevin

    2018-06-01

    Hepatic dysfunction, including development of hepatocellular carcinoma and other liver lesions has been increasingly reported following Fontan procedure for congenital heart disease. We report a unique case of intrahepatic cholangiocarcinoma 28 years after a Fontan procedure in a 31year old female with heterotaxy syndrome. The subcapsular mass-forming tumor was composed of poorly differentiated tumor cells arranged in small vague glandular or slit-lumen nests, and focally fused or anastomosing large trabecular patterns within the prominent fibrotic stroma. The tumor cells with immunoreactivity to CK7, CK19, Cam5.2, COX2, EMA, BCL-2, MOC-31 and AE1/AE3, supported a diagnosis of intrahepatic cholangiocarcinoma. Focal atypical ductular proliferation within the background liver may represent a precursor lesion to this tumor. Dysmorphic cilia observed by electron microscopy examination in the background liver may suggest cholangiociliopathy in heterotaxy. MYST3 mutation at Q1388H detected in intrahepatic cholangiocarcinoma is reported for the first time. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation

    PubMed Central

    Huang, Y; Thoms, JAI; Tursky, ML; Knezevic, K; Beck, D; Chandrakanthan, V; Suryani, S; Olivier, J; Boulton, A; Glaros, EN; Thomas, SR; Lock, RB; MacKenzie, KL; Bushweller, JH; Wong, JWH; Pimanda, JE

    2018-01-01

    Aberrant ERG (v-ets avian erythroblastosis virus E26 oncogene homolog) expression drives leukemic transformation in mice and high expression is associated with poor patient outcomes in acute myeloid leukemia (AML) and T-acute lymphoblastic leukemia (T-ALL). Protein phosphorylation regulates the activity of many ETS factors but little is known about ERG in leukemic cells. To characterize ERG phosphorylation in leukemic cells, we applied liquid chromatography coupled tandem mass spectrometry and identified five phosphorylated serines on endogenous ERG in T-ALL and AML cells. S283 was distinct as it was abundantly phosphorylated in leukemic cells but not in healthy hematopoietic stem and progenitor cells (HSPCs). Overexpression of a phosphoactive mutant (S283D) increased expansion and clonogenicity of primary HSPCs over and above wild-type ERG. Using a custom antibody, we screened a panel of primary leukemic xenografts and showed that ERG S283 phosphorylation was mediated by mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling and in turn regulated expression of components of this pathway. S283 phosphorylation facilitates ERG enrichment and transactivation at the ERG +85 HSPC enhancer that is active in AML and T-ALL with poor prognosis. Taken together, we have identified a specific post-translational modification in leukemic cells that promotes progenitor proliferation and is a potential target to modulate ERG-driven transcriptional programs in leukemia. PMID:27055868

  14. Oxidative stress balance is dysregulated and represents an additional target for treating cholangiocarcinoma.

    PubMed

    Uchida, Daisuke; Takaki, Akinobu; Ishikawa, Hisashi; Tomono, Yasuko; Kato, Hironari; Tsutsumi, Koichiro; Tamaki, Naofumi; Maruyama, Takayuki; Tomofuji, Takaaki; Tsuzaki, Ryuichiro; Yasunaka, Tetsuya; Koike, Kazuko; Matsushita, Hiroshi; Ikeda, Fusao; Miyake, Yasuhiro; Shiraha, Hidenori; Nouso, Kazuhiro; Yoshida, Ryuichi; Umeda, Yuzo; Shinoura, Susumu; Yagi, Takahito; Fujiwara, Toshiyoshi; Morita, Manabu; Fukushima, Masaki; Yamamoto, Kazuhide; Okada, Hiroyuki

    2016-07-01

    Pancreatico-biliary malignancies exhibit similar characteristics, including obesity-related features and poor prognosis, and require new treatment strategies. Oxidative stress is known to induce DNA damage and carcinogenesis, and its reduction is viewed as being favorable. However, it also has anti-infection and anti-cancer functions that need to be maintained. To reveal the effect of oxidative stress on cancer progression, we evaluated oxidative stress and anti-oxidative balance in pancreatic cancer (PC) and cholangiocarcinoma (CC) patients, as well as the effect of add-on antioxidant treatment to chemotherapy in a mouse cholangiocarcinoma model. We recruited 84 CC and 80 PC patients who were admitted to our hospital. Serum levels of reactive oxygen metabolites (ROM) and the anti-oxidative OXY-adsorbent test were determined and the balance of these tests was defined as an oxidative index. A diabetic mouse-based cholangiocarcinoma model was utilized to evaluate the effects of add-on antioxidant therapy on cholangiocarcinoma chemotherapy. Serum ROM was higher and anti-oxidant OXY was lower in CC patients with poor outcomes. These parameters were not significantly different in PC patients. In mice, vitamin E administration induced antioxidant hemeoxygenase (HO)-1 protein expression in cancer tissue, while the number of stem-like cells increased. l-carnitine administration improved intestinal microbiome and biliary acid balance, upregulated the hepatic mitochondrial membrane uptake related gene Cpt1 in non-cancerous tissue, and did not alter stem-like cell numbers. Oxidative stress balance was dysregulated in cholangiocarcinoma with poor outcome. The mitochondrial function-supporting agent l-carnitine is a good candidate to control oxidative stress conditions.

  15. The challenge of cholangiocarcinoma: dissecting the molecular mechanisms of an insidious cancer

    PubMed Central

    Zabron, Abigail; Edwards, Robert J.; Khan, Shahid A.

    2013-01-01

    Cholangiocarcinoma is a fatal cancer of the biliary epithelium and has an incidence that is increasing worldwide. Survival beyond a year of diagnosis is less than 5%, and therapeutic options are few. Known risk factors include biliary diseases such as primary sclerosing cholangitis and parasitic infestation of the biliary tree, but most cases are not associated with any of these underlying diseases. Numerous in vitro and in vivo models, as well as novel analytical techniques for human samples, are helping to delineate the many pathways implicated in this disease, albeit at a frustratingly slow pace. As yet, however, none of these studies has been translated into improved patient outcome and, overall, the pathophysiology of cholangiocarcinoma is still poorly understood. There remains an urgent need for new approaches and models to improve management of this insidious and devastating disease. In this review, we take a bedside-to-bench approach to discussing cholangiocarcinoma and outline research opportunities for the future in this field. PMID:23520144

  16. Regulators of apoptosis in cholangiocarcinoma.

    PubMed

    Jhala, Nirag C; Vickers, Selwyn M; Argani, Pedram; McDonald, Jay M

    2005-04-01

    Dysregulation of mediators of apoptosis is associated with carcinogenesis. For biliary duct cancers, p53 gene mutation is an important contributor to carcinogenesis. Mutations in the p53 gene affect transcription of the Fas gene, resulting in lack of Fas expression on cell membrane. It has been previously shown that cloned Fas-negative but not Fas-positive human cholangiocarcinoma cells are resistant to anti-Fas-mediated apoptosis and develop tumors in nude mice. In addition, interferon gamma induces Fas expression in Fas-negative cholangiocarcinoma cells and makes them susceptible to apoptosis. Therefore, it becomes important to characterize immunophenotypic expression of p53 and Fas in normal and neoplastic human tissues of the biliary tract to further understand the pathogenesis of the disease. To date, human studies to characterize differences in immunophenotypic expression of the Fas protein between intrahepatic and extrahepatic biliary duct cancers and in their precursor lesions have not been performed. To report the immunophenotypic expression of p53 and Fas expression in various stages in the development of bile duct cancers (intrahepatic and extrahepatic tumor location) and their association with tumor differentiation. Thirty bile duct cancer samples (13 intrahepatic and 17 extrahepatic) from 18 men and 12 women who ranged in age from 44 to 77 years (mean age, 65.6 years) were retrieved from the surgical pathology files. Hematoxylin-eosin-stained slides were evaluated for the type and grade of tumor and dysplastic changes in the biliary tract epithelium. Additional slides were immunohistochemically stained with p53 and anti-Fas mouse monoclonal antibody. The pattern of Fas distribution and percentage of cells positive for p53 and Fas expression were determined. The percentage of Fas-expressing cells is significantly (P = .01) more frequently noted in extrahepatic tumors compared with intrahepatic tumors. Furthermore, Fas expression decreased from

  17. SPARCL1 is a novel predictor of tumor recurrence and survival in hilar cholangiocarcinoma.

    PubMed

    Yu, Yang; Chen, Yan; Ma, Jianxia; Yu, Xiaofeng; Yu, Guanzhen; Li, Zhaoshen

    2016-03-01

    Secreted protein acidic and rich in cysteines-like protein 1 (SPARCL1) has been implicated in tumor initiation, formation, and progression of various cancers, yet its role in hilar cholangiocarcinoma remains largely uncharacterized. In the present study, tissue microarrays containing resected hilar cholangiocarcinoma specimens from 92 patients were used to evaluate the expression of SPARCL1 protein by immunohistochemistry (IHC). In vitro assays were used to determine the effect of SPARCL1 overexpression on cell growth and migration. Loss of SPARCL1 expression was observed in 46 (50.0 %) of the 92 primary tumors. SPARCL1 expression is inversely associated with poorly or undifferentiation specimens (P = 0.030) in addition to lymph node metastasis (P = 0.047). Survival analysis demonstrated that SPARCL1 is an independent factor in predicting the outcome of patients with hilar cholangiocarcinoma. SPARCL1 overexpression suppressed tumor cell migration in vitro by inhibiting MMP-9, MMP-2, Vimentin, and Fibronectin expression, whereas did not inhibit cell proliferation in vitro. Our results suggest that loss of SPARCL1 is involved in the tumorigenesis of hilar cholangiocarcinoma and may serve as a novel molecular biomarker for patients' outcome.

  18. Expression and prognostic value of soluble CD97 and its ligand CD55 in intrahepatic cholangiocarcinoma.

    PubMed

    Meng, Ze-Wu; Liu, Min-Chao; Hong, Hai-Jie; Du, Qiang; Chen, Yan-Ling

    2017-03-01

    The incidence rate of intrahepatic cholangiocarcinoma is rising, and treatment options are limited. Therefore, new biological markers of intrahepatic cholangiocarcinoma are needed. Immunohistochemistry and enzyme-linked immunosorbent assay were applied to analyze the expressions of CD97, CD55, and soluble CD97 in 71 patients with intrahepatic cholangiocarcinoma and 10 patients with hepatolithiasis. CD97 and CD55 were not expressed in hepatolithiatic tissues, but positive expression was observed in 76.1% (54/71) and 70.4% (50/71) of intrahepatic cholangiocarcinoma patients. The univariate analyses indicated that the positive expressions of CD97 and CD55 were related to short intrahepatic cholangiocarcinoma survival of patients (both p = 0.001). Furthermore, CD97 and CD55 expressions and biliary soluble CD97 levels were significantly associated with histological grade (p = 0.004, 0.002, and 0.012, respectively), lymph node metastases (p = 0.020, 0.038, and 0.001, respectively), and venous invasion (p = 0.003, 0.002, and 0.001, respectively). The multivariate analyses indicated that lymph node metastases (hazard ratio: 2.407, p = 0.003), positive CD55 expression (hazard ratio: 4.096, p = 0.003), and biliary soluble CD97 levels (hazard ratio: 2.434, p = 0.002) were independent risk factors for the intrahepatic cholangiocarcinoma survival. The receiver operating characteristic (ROC) curve analysis indicated that when the cutoff values of biliary soluble CD97 were 1.15 U/mL, the diagnostic value for predicting lymph node metastasis had a sensitivity of 87.5% and a specificity of 51.3%. For intrahepatic cholangiocarcinoma patient death within 60 months at a cutoff value of 0.940 U/mL, the diagnostic value sensitivity was 89.3% and the specificity was 93.3%. Biliary soluble CD97 may be a new biological marker for early diagnosis, prediction of lymph node metastasis and poor prognosis, and discovery of a therapeutic target.

  19. Effect of verteporfin-PDT on epithelial growth factor receptor (EGFR) signaling pathway in cholangiocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Andreola, Fausto; Cerec, Virginie; Pereira, Stephen P.

    2009-06-01

    EGFR, a member of the ERBB family, plays a pivotal role in carcinogenesis. EGFR overexpression is implicated in DNA repair and synergistic interactions between EGFR-targeting drugs and conventional chemo/radiotherapy have been reported in preclinical studies for different cancers but not cholangiocarcinoma (CCA). To date there are no in vitro data available on the cellular response and effect of either photodynamic therapy (PDT) or EGFR-targeting drugs on CCA. Therefore, we aimed to study the: (i) response to Verteporfin PDT and to EGFR-targeting drugs, as single agents; (ii) effect of PDT on ERBBs expression, phosporylation status and activation of its signaling pathways; (iii) response to combination of PDT and EGFR-targeting agents. We showed that two cholangiocarcinoma cell lines (HuCCT1 and TFK1 cells, intra- and extrahepatic, respectively) differentially respond to verteporfin-PDT treatment and are resistant to EGFR-targeting agents. A constitutive activation of EGFR in both cell lines was also observed, which could partly account for the observed resistance to EGFR-targeting drugs. In addition, verteporfin-PDT induced further phosphorylation of both EGFR and other Receptor Tyrosine Kinases. Mitochondria-independent apoptosis was induced by PDT in both CCA cell lines; in particular, PDT modulated the expression of members of the Inhibitor of Apoptosis (IAP) family of proteins. Interestingly, there was a PDT-induced EGFR nuclear translocation in both cell lines; co-treatment with either an EGFR-inhibitor (Cetuximab) or a nuclear import blocking agent (Wheat Germ Agglutinin) had an additive effect on PDT cell killing, thus implying a role of EGFR in repairing the potential PDT-induced DNA damage.

  20. Complementary Phosphorylation Sites in the Adaptor Protein SLP-76 Promote Synergistic Activation of Natural Killer Cells

    PubMed Central

    Kim, Hun Sik; Long, Eric O.

    2013-01-01

    The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require the induction of synergistic signals from co-activation receptors, such as CD314 (NKG2D) and CD244 (2B4), which bind to ligands expressed on target cells. Synergy is required to overcome inhibition of the guanine nucleotide exchange factor (GEF) Vav1, a central regulator of NK cell activation, by the E3 ubiquitin ligase c-Cbl. However, the molecular basis for this synergy is unknown. Here, we showed that the adaptor protein Src homology 2 (SH2) domain–containing leukocyte phosphoprotein of 76 kD (SLP-76) was required for this synergy, and that distinct tyrosine residues in SLP-76 were phosphorylated by each receptor of a synergistic pair. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76, each of which enables binding of SLP-76 to Vav1, was unique to receptors that stimulate ligand-dependent target cell killing, because antibody-dependent stimulation by Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that complementation of separate phospho-tyrosine targets in SLP-76 forms the basis of synergistic NK cell activation. PMID:22786724

  1. Role of hilar resection in the treatment of hilar cholangiocarcinoma.

    PubMed

    Otani, Kazuhiro; Chijiiwa, Kazuo; Kai, Masahiro; Ohuchida, Jiro; Nagano, Motoaki; Kondo, Kazuhiro

    2012-05-01

    The aim of this study was to clarify the role of bile duct resection without hepatectomy (hilar resection) in hilar cholangiocarcinoma. We retrospectively compared surgical results for hilar cholangiocarcinoma between 8 patients treated with hilar resection and 21 patients treated with hepatectomy. All hilar resections were performed for Bismuth type I or II tumors with T2 or less lesions, whereas hepatectomy was done for type III or IV tumors excluding one type II tumor. R0 resection was equally achieved in both groups (62.5% in hilar resection group and 76.2% in hepatectomy group, p=0.469) and overall 5-year survival rates were comparable (21.9% vs. 23.6%, p=0.874). With respect to gross tumor appearance, R0 resection was achieved in all patients with papillary tumor in both groups with the excellent 5-year survivals (100% vs. 100%). In patients with nodular and flat tumors, R0 resection was achieved less frequently in the hilar resection vs. hepatectomy group (50% vs. 77.8%) mainly due to failure to clear the proximal ductal margin, resulting in poorer 5-year survival (0% vs. 18.7%). Hilar resection may be indicated for papillary T1 or 2 tumors in Bismuth type I or II cholangiocarcinoma.

  2. Inhibition of l-type amino acid transporter 1 activity as a new therapeutic target for cholangiocarcinoma treatment.

    PubMed

    Yothaisong, Supak; Dokduang, Hasaya; Anzai, Naohiko; Hayashi, Keitaro; Namwat, Nisana; Yongvanit, Puangrat; Sangkhamanon, Sakkarn; Jutabha, Promsuk; Endou, Hitoshi; Loilome, Watcharin

    2017-03-01

    Unlike normal cells, cancer cells undergo unlimited growth and multiplication, causing them to require massive amounts of amino acid to support their continuous metabolism. Among the amino acid transporters expressed on the plasma membrane, l-type amino acid transporter-1, a Na + -independent neutral amino acid transporter, is highly expressed in many types of human cancer including cholangiocarcinoma. Our previous study reported that l-type amino acid transporter-1 and its co-functional protein CD98 were highly expressed and implicated in cholangiocarcinoma progression and carcinogenesis. Therefore, this study determined the effect of JPH203, a selective inhibitor of l-type amino acid transporter-1 activity, on cholangiocarcinoma cell inhibition both in vitro and in vivo. JPH203 dramatically suppressed [ 14 C]l-leucine uptake as well as cell growth in cholangiocarcinoma cell lines along with altering the expression of l-type amino acid transporter-1 and CD98 in response to amino acid depletion. We also demonstrated that JPH203 induced both G2/M and G0/G1 cell cycle arrest, as well as reduced the S phase accompanied by altered expression of the proteins in cell cycle progression: cyclin D1, CDK4, and CDK6. There was also cell cycle arrest of the related proteins, P21 and P27, in KKU-055 and KKU-213 cholangiocarcinoma cells. Apoptosis induction, detected by an increase in trypan blue-stained cells along with a cleaved caspase-3/caspase-3 ratio, occurred in JPH203-treated cholangiocarcinoma cells at the highest concentration tested (100 µM). As expected, daily intravenous administration of JPH203 (12.5 and 25 mg/kg) significantly inhibited tumor growth in KKU-213 cholangiocarcinoma cell xenografts in the nude mice model in a dose-dependent manner with no statistically significant change in the animal's body weight and with no differences in the histology and appearance of the internal organs compared with the control group. Our study demonstrates that

  3. Prognostic impacts of postoperative complications in patients with intrahepatic cholangiocarcinoma after curative operations.

    PubMed

    Miyata, Tatsunori; Yamashita, Yo-Ichi; Yamao, Takanobu; Umezaki, Naoki; Tsukamoto, Masayo; Kitano, Yuki; Yamamura, Kensuke; Arima, Kota; Kaida, Takayoshi; Nakagawa, Shigeki; Imai, Katsunori; Hashimoto, Daisuke; Chikamoto, Akira; Ishiko, Takatoshi; Baba, Hideo

    2017-06-01

    The postoperative complication is one of an indicator of poor prognosis in patients with several gastroenterological cancers after curative operations. We, herein, examined prognostic impacts of postoperative complications in patients with intrahepatic cholangiocarcinoma after curative operations. We retrospectively analyzed 60 patients with intrahepatic cholangiocarcinoma who underwent primary curative operations from June 2002 to February 2016. Prognostic impacts of postoperative complications were analyzed using log-rank test and Cox proportional hazard model. Postoperative complications (Clavien-Dindo classification grade 3 or more) occurred in 13 patients (21.7%). Overall survival of patients without postoperative complications was significantly better than that of patients with postoperative complications (p = 0.025). Postoperative complications are independent prognostic factor of overall survival (hazard ratio 3.02; p = 0.030). In addition, bile duct resection and reconstruction (Odds ratio 59.1; p = 0.002) and hepatitis C virus antibody positive (Odds ratio 7.14; p= 0.022), and lymph node dissection (Odds ratio 6.28; p = 0.040) were independent predictors of postoperative complications. Postoperative complications may be an independent predictor of poorer survival in patients with intrahepatic cholangiocarcinoma after curative operations. Lymph node dissection and bile duct resection and reconstruction were risk factors for postoperative complications, therefore we should pay attentions to perform lymph node dissections, bile duct resection and reconstruction in patients with intrahepatic cholangiocarcinoma.

  4. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation.

    PubMed

    Qu, Xinli; Li, Xueling; Zheng, Yaowu; Ren, Yi; Puelles, Victor G; Caruana, Georgina; Nikolic-Paterson, David J; Li, Jinhua

    2014-04-01

    Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease. Copyright © 2014. Published by Elsevier Inc.

  5. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  6. Tyrosinase Overexpression Promotes ATM-Dependent p53 Phosphorylation by Quercetin and Sensitizes Melanoma Cells to Dacarbazine

    PubMed Central

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269

  7. Serum and biliary MMP-9 and TIMP-1 concentrations in the diagnosis of cholangiocarcinoma

    PubMed Central

    İnce, Ali Tüzün; Yıldız, Kemal; Gangarapu, Venkatanarayana; Kayar, Yusuf; Baysal, Birol; Karatepe, Oğuzhan; Kemik, Ahu Sarbay; Şentürk, Hakan

    2015-01-01

    Aim: Cholangiocarcinoma is generally detected late in the course of disease, and current diagnostic techniques often fail to differentiate benign from malignant disease. Ongoing biomarker studies for early diagnosis of cholangiocarcinoma are still continues. By this study, we analyzed the roles of serum and biliary MMP-9 and TIMP-1 concentrations in the diagnosis of cholangiocarcinoma. Materials and methods: The 113 patients (55 males, 58 females) were included; 33 diagnosed with cholangiocarcinoma (malignant group) and 80 diagnosed with choledocholithiasis (benign group). MMP-9 and TIMP-1 concentrations were analyzed in serum and bile and compared in the malignant and benign groups. Results were evaluated statistically. Results: Biliary MMP-9 concentrations were significantly higher (576 ± 209 vs. 403 ± 140 ng/ml, p < 0.01) and biliary TIMP-1 concentrations were significantly lower (22.4 ± 4.9 vs. 29.4 ± 6.1 ng/ml, p < 0.01) in the malignant than in the benign group. In contrast, serum MMP-9 and TIMP-1 concentrations were similar in the two groups. Receiver operating curve analysis revealed that the areas under the curve of bile MMP-9 and TIMP-1 were significantly higher than 0.5 (p < 0.001). The sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios and accuracy were 0.94, 0.32, 0.36, 0.93, 1.40, 0.19 and 0.5 for biliary MMP-9, respectively, and 0.97, 0.36, 0.39, 0.97, 1.5, 0.08 and 0.54 for biliary TIMP-1, respectively. Conclusion: Serum and biliary MMP-9 and TIMP-1 tests do not appear to be useful in the diagnosis of cholangiocarcinoma. PMID:25932227

  8. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis

    PubMed Central

    Peng, F; Jiang, J; Yu, Y; Tian, R; Guo, X; Li, X; Shen, M; Xu, M; Zhu, F; Shi, C; Hu, J; Wang, M; Qin, R

    2013-01-01

    Background: The multidrug resistance and distant metastasis of cholangiocarcinoma result in high postoperative recurrence and low long-term survival rates. It has been demonstrated that the ectopic expression of miR-200 suppresses the multidrug resistance and metastasis of cancer. However, the expression and function of miR-200 in cholangiocarcinoma has not yet been described. Methods: In this study, we identified dysregulated microRNAs (miRNAs, miR) in cholangiocarcinoma tissue by microarray analysis, and subsequent real-time PCR and northern blot analyses validated the expression of candidate miR. We performed functional analyses and investigated the relationship between miR-200b/c expression and the properties of cholangiocarcinoma cells. A dual luciferase assay was applied to examine the effect of miRNAs on the 3′-UTR of target genes, and we demonstrated the function of the target gene by siRNA transfection identifying the downstream pathway via western blotting. Results: We found significantly downregulated expression of four miR-200 family members (miR-200a/b/c/429) and then confirmed that ectopic miR-200b/200c inhibits the migration and invasion of cholangiocarcinoma cells both in vitro and in vivo. We found that miR-200b/c influenced the tumourigenesis of cholangiocarcinoma cells including their tumour-initiating capacity, sphere formation, and drug resistance. We further found that miR-200b/c regulated migration and invasion capacities by directly targeting rho-kinase 2 and regulated tumorigenic properties by directly targeting SUZ12 (a subunit of a polycomb repressor complex). Conclusion: Our study shows that miR-200b/c has a critical role in the regulation of the tumorigenic and metastatic capacity of cholangiocarcinoma and reveals the probable underlying mechanisms. PMID:24169343

  9. Effects of thymidine phosphorylase on tumor aggressiveness and 5-fluorouracil sensitivity in cholangiocarcinoma

    PubMed Central

    Thanasai, Jongkonnee; Limpaiboon, Temduang; Jearanaikoon, Patcharee; Sripa, Banchob; Pairojkul, Chawalit; Tantimavanich, Srisurang; Miwa, Masanao

    2010-01-01

    AIM: To evaluate the role of thymidine phosphorylase (TP) in cholangiocarcinoma using small interfering RNA (siRNA). METHODS: A human cholangiocarcinoma-derived cell line KKU-M139, which has a naturally high level of endogenous TP, had TP expression transiently knocked down using siRNA. Cell growth, migration, in vitro angiogenesis, apoptosis, and cytotoxicity were assayed in TP knockdown and wild-type cell lines. RESULTS: TP mRNA and protein expression were decreased by 87.1% ± 0.49% and 72.5% ± 3.2%, respectively, compared with control cells. Inhibition of TP significantly decreased migration of KKU-M139, and suppressed migration and tube formation of human umbilical vein endothelial cells. siRNA also reduced the ability of TP to resist hypoxia-induced apoptosis, while suppression of TP reduced the sensitivity of KKU-M139 to 5-fluorouracil. CONCLUSION: Inhibition of TP may be beneficial in decreasing angiogenesis-dependent growth and migration of cholangiocarcinoma but may diminish the response to 5-fluorouracil chemotherapy. PMID:20355241

  10. Blocking of the EGFR-STAT3 signaling pathway through afatinib treatment inhibited the intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Changhe; Xu, Hong; Zhou, Zhenping; Tian, Ye; Cao, Xiaofei; Cheng, Guochang; Liu, Qinghong

    2018-01-01

    Epidermal growth factor receptor (EGFR) and downstream signal transducer and activator of transcription 3 (STAT3) signaling have been extensively implicated in various human neoplasms. Recently, a novel EGFR inhibitor, known as afatinib, has exhibited broad antitumor activities in a variety of tumors. Therefore, the present study attempted to investigate the impact of this agent on intrahepatic cholangiocarcinoma (ICC). Initially, immunohistochemical assays were performed on 15 human ICC specimens and their adjacent tissues in order to assess the protein levels of phosphorylated EGFR (pEGFR) and pSTAT3. Subsequently, the human ICC cell lines JCK and OZ were exposed to different doses of afatinib, and then cell viability and apoptosis were determined by MTT assay and flow cytometry, respectively. Furthermore, immunoblotting was applied to detect any variations in the phosphorylated protein levels of EGFR and STAT3 in afatinib-treated ICC cells. The results of the current study demonstrated that ICC specimens had evidently increased pEGFR and pSTAT3 protein levels as compared with the adjacent noncancerous tissues. Further in vitro experiments indicated that afatinib evidently blocked ICC cell growth and induced cell apoptosis. At the protein level, pEGFR and pSTAT3 were evidently attenuated by afatinib-administration. In conclusion, the present study clearly determined that afatinib exerts an antitumor effect on ICC cells by silencing the EGFR-STAT3 signaling pathway. This novel agent deserves further investigation as a potential therapeutic strategy for ICC. PMID:29805522

  11. TRAIL Enhances Shikonin Induced Apoptosis through ROS/JNK Signaling in Cholangiocarcinoma Cells.

    PubMed

    Zhou, Guangyao; Yang, Zuqin; Wang, Xiaodong; Tao, Ran; Zhou, Yuanping

    2017-01-01

    Cholangiocarcinoma (CCA), arising from varying locations within the biliary tree, is the second most common primary liver malignancy worldwide. Shikonin, an active compound extracted from the Chinese herb Zicao, holds anti-bacterial, anti-inflammatory, and anti-tumor activities. However, the effect of shikonin on human cholangiocarcinoma and detailed mechanisms of TRAIL enhancement remains to be elucidated. The purpose of the study was to investigate the protective functions of TRAIL enhancement for shikonin induced apoptosis in cholangiocarcinoma cells. We use MTT assay, apoptosis assay, caspase activity assay, flow cytometry assay, real time PCR and Western blot to observe the effects of TRAIL on shikonin induced cholangiocarcinoma cells apoptosis and its mechanism. Shikonin inhibited cell viability and induced apoptosis of CCA cells, effects enhanced by TRAIL treatment via activation of caspase-3, -8, -9. Furhermore, TRAIL enhanced anti-proliferation of shikonin and shikonin induced apoptosis through induction of ROS mediated JNK activation, while AKT activation had an effect on shikonin anti-proliferation activity, but not in the TRAIL enhanced counterparts. Finally, shikonin upregulated DR5 expression, an effect essential for TRAIL-enhanced activities of shikonin in RBE cells. Our results revealed that shikonin could inhibit cells viability and induce apoptosis of CCA cells, effects enhanced by TRAIL treatment via ROS mediated JNK signalling pathways, involving up-regulation of DR5 expression. Our results provide further insight into the mechanism underlying the anti-tumor effects of shikonin by TRAIL enhanced in CCA and a new therapeutic strategy to CCA treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. [Clinical value of MRI united-sequences examination in diagnosis and differentiation of morphological sub-type of hilar and extrahepatic big bile duct cholangiocarcinoma].

    PubMed

    Yin, Long-Lin; Song, Bin; Guan, Ying; Li, Ying-Chun; Chen, Guang-Wen; Zhao, Li-Ming; Lai, Li

    2014-09-01

    To investigate MRI features and associated histological and pathological changes of hilar and extrahepatic big bile duct cholangiocarcinoma with different morphological sub-types, and its value in differentiating between nodular cholangiocarcinoma (NCC) and intraductal growing cholangiocarcinoma (IDCC). Imaging data of 152 patients with pathologically confirmed hilar and extrahepatic big bile duct cholangiocarcinoma were reviewed, which included 86 periductal infiltrating cholangiocarcinoma (PDCC), 55 NCC, and 11 IDCC. Imaging features of the three morphological sub-types were compared. Each of the subtypes demonstrated its unique imaging features. Significant differences (P < 0.05) were found between NCC and IDCC in tumor shape, dynamic enhanced pattern, enhancement degree during equilibrium phase, multiplicity or singleness of tumor, changes in wall and lumen of bile duct at the tumor-bearing segment, dilatation of tumor upstream or downstream bile duct, and invasion of adjacent organs. Imaging features reveal tumor growth patterns of hilar and extrahepatic big bile duct cholangiocarcinoma. MRI united-sequences examination can accurately describe those imaging features for differentiation diagnosis.

  13. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes.

    PubMed

    Dey, Aditi; Hao, Shuai; Wosiski-Kuhn, Marlena; Stranahan, Alexis M

    2017-09-01

    Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae

    PubMed Central

    Zimnicka, Adriana M.; Husain, Yawer S.; Shajahan, Ayesha N.; Sverdlov, Maria; Chaga, Oleg; Chen, Zhenlong; Toth, Peter T.; Klomp, Jennifer; Karginov, Andrei V.; Tiruppathi, Chinnaswamy; Malik, Asrar B.; Minshall, Richard D.

    2016-01-01

    Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or “spreading” of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane. PMID:27170175

  15. Deregulated Methionine Adenosyltransferase α1, c-Myc and Maf Proteins Interplay Promotes Cholangiocarcinoma Growth in Mice and Humans

    PubMed Central

    Yang, Heping; Liu, Ting; Wang, Jiaohong; Li, Tony W.H.; Fan, Wei; Peng, Hui; Krishnan, Anuradha; Gores, Gregory J.; Mato, Jose M.; Lu, Shelly C.

    2016-01-01

    We reported c-Myc induction drives cholestatic liver injury and cholangiocarcinoma (CCA) in mice. We also showed induction of Maf proteins (MafG and c-Maf) contributed to cholestatic liver injury, whereas S-adenosylmethionine (SAMe) administration was protective. Here we determined whether there is interplay between c-Myc, Maf proteins and methionine adenosyltransferase α1 (MATα1), which is responsible for SAMe biosynthesis in liver. We used bile duct ligation (BDL) and lithocholic acid (LCA) treatment in mice as chronic cholestasis models, a murine CCA model, human CCA cell lines KMCH and Huh-28, human liver cancer HepG2, and human CCA specimens to study gene and protein expression, protein-protein interactions, molecular mechanisms and functional outcomes. We found c-Myc, MATα1 (encoded by MAT1A), MafG and c-Maf interact with each other directly. MAT1A expression fell in hepatocytes and bile duct epithelial cells during chronic cholestasis and in murine and human CCA. The opposite occurred with c-Myc, MafG and c-Maf expression. MATα1 interacts mainly with Mnt in normal liver but this switches to c-Maf, MafG and c-Myc in cholestatic livers and CCA. Promoter regions of these genes have E-boxes that are bound by MATα1 and Mnt in normal liver and benign bile duct epithelial cells that switched to c-Myc, c-Maf and MafG in cholestasis and CCA cells. E-box positively regulates c-Myc, MafG and c-Maf, but it negatively regulates MAT1A. MATα1 represses whereas c-Myc, MafG and c-Maf enhance E-box-driven promoter activity. Knocking down MAT1A or overexpressing MafG or c-Maf enhanced CCA growth and invasion in vivo. Conclusion We have uncovered a novel interplay between MATα1, c-Myc and Maf proteins and their deregulation during chronic cholestasis may facilitate CCA oncogenesis. PMID:26969892

  16. Infiltration of peritumoural but tumour-free parenchyma with IgG4-positive plasma cells in hilar cholangiocarcinoma and pancreatic adenocarcinoma.

    PubMed

    Resheq, Yazid J; Quaas, Alexander; von Renteln, Daniel; Schramm, Christoph; Lohse, Ansgar W; Lüth, Stefan

    2013-10-01

    Recently, new guidelines for diagnosing IgG4-associated cholangitis have been published devaluing the diagnostic significance of IgG4-positive plasma cells and steroid trials. We sought to evaluate the utility of IgG4-positive plasma cells in discriminating IgG4-associated cholangitis from hilar cholangiocarcinoma and autoimmune pancreatitis from pancreatic adenocarcinoma under conditions when malignancy is likely to be missed. Resection specimens obtained from patients with hilar cholangiocarcinoma, pancreatic adenocarcinoma or hepatocellular carcinoma were re-evaluated for IgG4-positivity. Histological analysis focussed on peritumoural but tumour-free sections. Perioperative biochemical and clinical data were reviewed. Nineteen patients with hilar cholangiocarcinoma and 29 patients with pancreatic adenocarcinoma were eligible for histological re-evaluation. Six of 19 (32%) patients with hilar cholangiocarcinoma and 5 of 29 (17%) patients with pancreatic adenocarcinoma were IgG4-positive (≥20 IgG4-positive plasma cells per high power field). Patients with IgG4-positive hilar cholangiocarcinoma showed significantly higher levels of serum total bilirubin (3.6mg/dl vs. 1.8mg/dl; P<0.05) and serum alanine-aminotransferase (median 343U/l vs. 63U/l, P<0.05) compared to IgG4-negative patients with hilar cholangiocarcinoma. IgG4-positive plasma cells are of limited utility especially in distinguishing hilar cholangiocarcinoma from IgG4-associated cholangitis even when combined with clinical parameters and may be misleading under conditions when malignancy is missed. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  17. Prognostic value of lymph nodes count on survival of patients with distal cholangiocarcinomas

    PubMed Central

    Lin, Hua-Peng; Li, Sheng-Wei; Liu, Ye; Zhou, Shi-Ji

    2018-01-01

    AIM To evaluate the prognostic value of the number of retrieved lymph nodes (LNs) and other prognostic factors for patients with distal cholangiocarcinomas, and to determine the optimal retrieved LNs cut-off number. METHODS The Surveillance, Epidemiology and End Results database was used to screen for patients with distal cholangiocarcinoma. Patients with different numbers of retrieved LNs were divided into three groups by the X-tile program. X-tile from Yale University is a useful tool for outcome-based cut-point optimization. The Kaplan-Meier method and Cox regression analysis were utilized for survival analysis. RESULTS A total of 449 patients with distal cholangiocarcinoma met the inclusion criteria. The Kaplan-Meier survival analysis for all patients and for N1 patients revealed no significant differences among patients with different retrieved LN counts in terms of overall and cancer-specific survival. In patients with node-negative distal cholangiocarcinoma, patients with four to nine retrieved LNs had a significantly better overall (P = 0.026) and cancer-specific survival (P = 0.039) than others. In the subsequent multivariate analysis, the number of retrieved LNs was evaluated to be independently associated with survival. Additionally, patients with four to nine retrieved LNs had a significantly lower overall mortality risk [hazard ratio (HR) = 0.39; 95% confidence interval (CI): 0.20-0.74] and cancer cause-specific mortality risk (HR = 0.32; 95%CI: 0.15-0.66) than other patients. Additionally, stratified survival analyses showed persistently better overall and cancer-specific survival when retrieving four to nine LNs in patients with any T stage of tumor, a tumor between 20 and 50 mm in diameter, or a poorly differentiated or undifferentiated tumor, and in patients who were ≤ 70-years-old. CONCLUSION The number of retrieved LNs was an important independent prognostic factor for patients with node-negative distal cholangiocarcinoma. Additionally

  18. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation

    PubMed Central

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK

    2015-01-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of

  19. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.

    PubMed

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan M F; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul M K

    2015-08-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin

  20. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein.

    PubMed

    Wang, Yu; Ding, Xiwei; Wang, Shaoqing; Moser, Catherine D; Shaleh, Hassan M; Mohamed, Essa A; Chaiteerakij, Roongruedee; Allotey, Loretta K; Chen, Gang; Miyabe, Katsuyuki; McNulty, Melissa S; Ndzengue, Albert; Barr Fritcher, Emily G; Knudson, Ryan A; Greipp, Patricia T; Clark, Karl J; Torbenson, Michael S; Kipp, Benjamin R; Zhou, Jie; Barrett, Michael T; Gustafson, Michael P; Alberts, Steven R; Borad, Mitesh J; Roberts, Lewis R

    2016-09-28

    Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Proteomics detection of S100A6 in tumor tissue interstitial fluid and evaluation of its potential as a biomarker of cholangiocarcinoma.

    PubMed

    Onsurathum, Sudarat; Haonon, Ornuma; Pinlaor, Porntip; Pairojkul, Chawalit; Khuntikeo, Narong; Thanan, Raynoo; Roytrakul, Sittiruk; Pinlaor, Somchai

    2018-04-01

    Tumor interstitial fluid contains tumor-specific proteins that may be useful biomarkers for cancers. In this study, we identified proteins present in cholangiocarcinoma interstitial fluid. Proteins derived from three samples of tumor interstitial fluid and paired samples of adjacent normal interstitial fluid from cholangiocarcinoma patients were subjected to two-dimensional liquid chromatography with tandem mass spectrometry. Candidate proteins were selected based on a greater than twofold change in expression levels between tumor interstitial fluid and normal interstitial fluid. Upregulation of six proteins in tumor interstitial fluid, including S100 calcium binding protein A6 (S100A6), S100 calcium binding protein A9, aldo-keto reductase family 1 member C4, neuropilin-1, 14-3-3 zeta/delta, and triosephosphate isomerase was assessed by western blot and immunohistochemistry. Their potential as markers was evaluated in human cholangiocarcinoma tissue arrays, and in serum using enzyme-linked immunosorbent assay. Expression of S100A6 was higher in tumor interstitial fluid than in normal interstitial fluid and showed the highest positive rate (98.96%) in cholangiocarcinoma tissues. Serum levels of S100A6 did not differ between cholangitis and cholangiocarcinoma patients, but were significantly higher than in healthy individuals ( p < 0.0001). In cholangiocarcinoma cases, S100A6 level was associated with vascular invasion ( p = 0.007) and could distinguish cholangiocarcinoma patients from healthy individuals as effectively as the carbohydrate antigen 19-9. In addition, potential for drug treatment targeting S100A6 and other candidate proteins was also demonstrated using STITCH analysis. In conclusion, proteomics analysis of tumor interstitial fluid could be a new approach for biomarker discovery, and S100A6 is a potential risk marker for screening of cholangiocarcinoma.

  2. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.

    PubMed

    Qu, Xianzhi; Sheng, Jiyao; Shen, Luyan; Su, Jing; Xu, Yunjie; Xie, Qi; Wu, Yao; Zhang, Xuewen; Sun, Liankun

    2017-01-01

    The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.

  3. Warts phosphorylates Mud to promote Pins-mediated mitotic spindle orientation in Drosophila independent of Yorkie

    PubMed Central

    Dewey, Evan B.; Sanchez, Desiree; Johnston, Christopher A.

    2015-01-01

    SUMMARY Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily-conserved cell proliferation pathway. PMID:26592339

  4. Warts phosphorylates mud to promote pins-mediated mitotic spindle orientation in Drosophila, independent of Yorkie.

    PubMed

    Dewey, Evan B; Sanchez, Desiree; Johnston, Christopher A

    2015-11-02

    Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cell death/proliferation roles for nc886, a non-coding RNA, in the Protein Kinase R pathway in cholangiocarcinoma

    PubMed Central

    Kunkeaw, Nawapol; Jeon, Sung Ho; Lee, Kwanbok; Johnson, Betty H.; Tanasanvimon, Suebpong; Javle, Milind; Pairojkul, Chawalit; Chamgramol, Yaovalux; Wongfieng, Wipaporn; Gong, Bin; Leelayuwat, Chanvit; Lee, Yong Sun

    2013-01-01

    We have recently identified nc886 (pre-miR-886 or vtRNA2-1) as a novel type of non-coding RNA that inhibits activation of PKR (Protein Kinase RNA-activated). PKR's pro-apoptotic role through eIF2α phosphorylation is well established in the host defense against viral infection. Paradoxically, some cancer patients have elevated PKR activity; however, its cause and consequence are not understood. Initially we evaluated the expression of nc886, PKR and eIF2α in non-malignant cholangiocyte and cholangiocarcinoma (CCA) cells. nc886 is repressed in CCA cells and this repression is the cause of PKR's activation therein. nc886 alone is necessary and sufficient for suppression of PKR via direct physical interaction. Consistently, artificial suppression of nc886 in cholangiocyte cells activates the canonical PKR/eIF2α cell death pathway, suggesting a potential significance of the nc886 suppression and the consequent PKR activation in eliminating pre-malignant cells during tumorigenesis. In comparison, active PKR in CCA cells does not induce phospho-eIF2α nor apoptosis, but promotes the pro-survival NF-κB pathway. Thus, PKR plays a dual life or death role during tumorigenesis. Similarly to the CCA cell lines, nc886 tends to be decreased but PKR tends to be activated in our clinical samples from CCA patients. Collectively from our data, we propose a tumor surveillance model for nc886's role in the PKR pathway during tumorigenesis. PMID:22926522

  6. 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice.

    PubMed

    Mukai, Rie; Horikawa, Hitomi; Lin, Pei-Yi; Tsukumo, Nao; Nikawa, Takeshi; Kawamura, Tomoyuki; Nemoto, Hisao; Terao, Junji

    2016-12-01

    8-Prenylnaringenin (8-PN) is a prenylflavonoid that originates from hop extracts and is thought to help prevent disuse muscle atrophy. We hypothesized that 8-PN affects muscle plasticity by promoting muscle recovery under disuse muscle atrophy. To test the promoting effect of 8-PN on muscle recovery, we administered an 8-PN mixed diet to mice that had been immobilized with a cast to one leg for 14 days. Intake of the 8-PN mixed diet accelerated recovery from muscle atrophy, and prevented reductions in Akt phosphorylation. Studies on cell cultures of mouse myotubes in vitro demonstrated that 8-PN activated the PI3K/Akt/P70S6K1 pathway at physiological concentrations. A cell-culture study using an inhibitor of estrogen receptors and an in vivo experiment with ovariectomized mice suggested that the estrogenic activity of 8-PN contributed to recovery from disuse muscle atrophy through activation of an Akt phosphorylation pathway. These data strongly suggest that 8-PN is a naturally occurring compound that could be used as a nutritional supplement to aid recovery from disuse muscle atrophy. Copyright © 2016 the American Physiological Society.

  7. Lymph Node Micrometastases are Associated with Worse Survival in Patients with Otherwise Node-Negative Hilar Cholangiocarcinoma.

    PubMed

    Mantel, Hendrik T J; Wiggers, Jim K; Verheij, Joanne; Doff, Jan J; Sieders, Egbert; van Gulik, Thomas M; Gouw, Annette S H; Porte, Robert J

    2015-12-01

    Lymph node metastases on routine histology are a strong negative predictor for survival after resection of hilar cholangiocarcinoma. Additional immunohistochemistry can detect lymph node micrometastases in patients who are otherwise node negative, but the prognostic value is unsure. The objective of this study was to assess the effect on survival of immunohistochemically detected lymph node micrometastases in patients with node-negative (pN0) hilar cholangiocarcinoma on routine histology. Between 1990 and 2010, a total of 146 patients underwent curative-intent resection of hilar cholangiocarcinoma with regional lymphadenectomy at two university medical centers in the Netherlands. Ninety-one patients (62 %) without lymph node metastases at routine histology were included. Micrometastases were identified by multiple sectioning of all lymph nodes and additional immunostaining with an antibody against cytokeratin 19 (K19). The association with overall survival was assessed in univariable and multivariable analysis. Median follow-up was 48 months. Micrometastases were identified in 16 (5 %) of 324 lymph nodes, corresponding to 11 (12 %) of 91 patients. There were no differences in clinical variables between K19 lymph node-positive and -negative patients. Five-year survival rates in patients with lymph node micrometastases were significantly lower compared to patients without micrometastases (27 vs. 54 %, P = 0.01). Multivariable analysis confirmed micrometastases as an independent prognostic factor for survival (adjusted Hazard ratio 2.4, P = 0.02). Lymph node micrometastases are associated with worse survival after resection of hilar cholangiocarcinoma. Immunohistochemical detection of lymph node micrometastases leads to better staging of patients who were initially diagnosed with node-negative (pN0) hilar cholangiocarcinoma on routine histology.

  8. In-vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study.

    PubMed

    Woo, Hyunsik; Han, Joon Koo; Kim, Jung Hoon; Hong, Sung-Tae; Uddin, Md Hafiz; Jang, Ja-June

    2017-04-01

    The purpose of this study is to evaluate high-resolution ultrasound and magnetic resonance imaging (MRI) in monitoring of cholangiocarcinoma in the hamsters with C. sinensis infection and N-nitrosodimethylamine (NDMA). Twenty-four male Syrian golden hamsters of were divided into four groups composed of five hamsters as control, five hamsters receiving 30 metacercariae of C. sinensis per each hamster, five hamsters receiving NDMA in drinking water, and nine hamsters receiving both metacercariae and NDMA. Ultrasound was performed every other week from baseline to the 12th week of infection. MRI and histopathologic examination was done from the 4th week to 12th week. Cholangiocarcinomas appeared as early as the 6th week of infection. There were 12 cholangiocarcinomas, nine and ten of which were demonstrated by ultrasound and MRI, respectively. Ultrasound and MRI findings of cholangiocarcinomas in the hamsters were similar to those of the mass-forming intrahepatic cholangiocarcinomas in humans. Ultrasound and MRI also showed other findings of disease progression such as periductal increased echogenicity or signal intensity, ductal dilatation, complicated cysts, and sludges in the gallbladder. High-resolution ultrasound and MRI can monitor and detect the occurrence of cholangiocarcinoma in the hamsters non-invasively. • High-resolution ultrasound and MRI can monitor occurrence of cholangiocarcinoma in the hamsters. • Cholangiocarcinomas were detected as early as the 6th week after C. sinensis infection. • Axial T2-weighted MRI demonstrated cholangiocarcinomas and various inflammatory findings in the hamsters.

  9. Notch3 drives development and progression of cholangiocarcinoma

    PubMed Central

    Guest, Rachel V.; Dwyer, Benjamin J.; Kendall, Timothy J.; Man, Tak-Yung; Minnis-Lyons, Sarah E.; Lu, Wei-Yu; Robson, Andrew J.; Gonzalez, Sofia Ferreira; Raven, Alexander; Wojtacha, Davina; Morton, Jennifer P.; Komuta, Mina; Roskams, Tania; Wigmore, Stephen J.; Sansom, Owen J.; Forbes, Stuart J.

    2016-01-01

    The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent. PMID:27791012

  10. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation

    PubMed Central

    Whalley, Helen J.; Porter, Andrew P.; Diamantopoulou, Zoi; White, Gavin R. M.; Castañeda-Saucedo, Eduardo; Malliri, Angeliki

    2015-01-01

    Centrosome separation is critical for bipolar spindle formation and the accurate segregation of chromosomes during mammalian cell mitosis. Kinesin-5 (Eg5) is a microtubule motor essential for centrosome separation, and Tiam1 and its substrate Rac antagonize Eg5-dependent centrosome separation in early mitosis promoting efficient chromosome congression. Here we identify S1466 of Tiam1 as a novel Cdk1 site whose phosphorylation is required for the mitotic function of Tiam1. We find that this phosphorylation of Tiam1 is required for the activation of group I p21-activated kinases (Paks) on centrosomes in prophase. Further, we show that both Pak1 and Pak2 counteract centrosome separation in a kinase-dependent manner and demonstrate that they act downstream of Tiam1. We also show that depletion of Pak1/2 allows cells to escape monopolar arrest by Eg5 inhibition, highlighting the potential importance of this signalling pathway for the development of Eg5 inhibitors as cancer therapeutics. PMID:26078008

  11. Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingqing; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province; Tao, Tao

    As an essential post-translational modification, O-GlcNAcylation has been thought to be able to modulate various nuclear and cytoplasmic proteins and is emerging as a key regulator of multiple biological processes, such as transcription, cell growth, signal transduction, and cell motility. Recently, authoritative glycomics analyses have reported extensive crosstalk between O-GlcNAcylation and phosphorylation, which always dynamically interplay with each other and regulate signaling, transcription, and other cellular processes. Also, plentiful studies have shown close correlation between YB-1 phosphorylation and tumorigenesis. Therefore, our study aimed to determine whether YB-1 was O-GlcNAc modified and whether such modification could interact with its phosphorylation duringmore » the process of HCC development. Western blot and immunohistochemistry were firstly conducted to reveal obvious up-regulation of YB-1, OGT and O-GlcNAc modification in HCC tissues. What is more, not only YB-1 was identified to be O-GlcNAcylated but hyper-O-GlcNAcylation was demonstrated to facilitate HCC cell proliferation in a YB-1 dependent manner. Moreover, we detected four specific O-GlcNAc sites and confirmed T126A to be the most effective mutant in HCC cell proliferation via close O-GlcNAcylation-phosphorylation interaction. Even more interestingly, we discovered that T126A-induced HCC cell retardation and subdued transcriptional activity of YB-1 could be partially reversed by T126A/S102E mutant. From all above, it is not difficult to find that glycosylated-YB-1 mainly enhanced cell proliferation through congenerous actions with YB-1 phosphorylation and thus played indispensable roles in fine-tuning cell proliferation and procession of HCC. - Highlights: • YB-1 and OGT are associated with HCC prognosis. • YB-1 is O-GlcNAc modified in HCC. • Hyper-O-GlcNAcylation promotes HCC cell proliferation in dependent of YB-1. • The proliferating role of O-GlcNAcylation is based on Ser

  12. Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering

    PubMed Central

    Shiba-Fukushima, Kahori; Arano, Taku; Matsumoto, Gen; Inoshita, Tsuyoshi; Yoshida, Shigeharu; Ishihama, Yasushi; Ryu, Kwon-Yul; Nukina, Nobuyuki; Hattori, Nobutaka; Imai, Yuzuru

    2014-01-01

    The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin's ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. PMID:25474007

  13. Cholangiocarcinoma: Lessons from Thailand

    PubMed Central

    Sripa, Banchob; Pairojkul, Chawalit

    2014-01-01

    Purpose of the review To present the background of liver fluke-associated cholangiocarcinoma (CCA) in Thailand focusing on recent epidemiological data and pathogenesis of this bile duct cancer. Recent findings More systematic tumor registration in Thailand nowadays uncovers new high incidence areas that do not confine to only in the northeastern part but also some provinces in the northern Thailand. The link between the liver fluke, Opisthorchis viverrini, and CCA, particularly in the cellular and molecular pathogenesis is more elucidated. Summary Thailand is still the country with highest incidence of CCA in the world. Liver fluke induces chronic inflammation leading to oxidative DNA damage of the infected biliary epithelium and malignant transformation. Eradication of the fluke and identification of high risk population are urgently needed. PMID:18408464

  14. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.

    PubMed

    Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L

    2009-05-01

    Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.

  15. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway.

    PubMed

    Jung, Dawoon E; Park, Soo Been; Kim, Kahee; Kim, Chanyang; Song, Si Young

    2017-09-07

    Cholangiocarcinoma is a devastating malignancy with fatal complications that exhibits low response and resistance to chemotherapy. Here, we evaluated the anticancer effects of CG200745, a novel histone deacetylase inhibitor, either alone or in combination with standard chemotherapy drugs in cholangiocarcinoma cells. CG200745 dose-dependently reduced the viability of cholangiocarcinoma cells in vitro and decreased tumour volume and weight in a xenograft model. Administering CG200745 along with other chemotherapeutic agents including gemcitabine, 5-fluorouracil (5-FU), cisplatin, oxaliplatin, or gemcitabine plus cisplatin further decreased cholangiocarcinoma cell viability, with a combination index < 1 that indicated synergistic action. CG200745 also enhanced the sensitivity of gemcitabine-resistant cells to gemcitabine and 5-FU, thereby decreasing cell viability and inducing apoptosis. This was accompanied by downregulation of YAP, TEAD4, TGF-β2, SMAD3, NOTCH3, HES5, Axl, and Gas6 and upregulation of the miRNAs miR-22-3p, miR-22-5p, miR-194-5p, miR-194-3p, miR-194-5p, miR-210-3p, and miR-509-3p. The Ingenuity Pathway Analysis revealed that CG200745 mainly targets the Hippo signalling pathway by inducing miR-509-3p expression. Thus, CG200745 inhibits cholangiocarcinoma growth in vitro and in vivo, and acts synergistically when administered in combination with standard chemotherapeutic agents, enabling dose reduction. CG200745 is therefore expected to improve the outcome of cholangiocarcinoma patients who exhibit resistance to conventional therapies.

  16. Intrahepatic Cholangiocarcinoma: expert consensus statement

    PubMed Central

    Weber, Sharon M; Ribero, Dario; O=Reilly, Eileen M; Kokudo, Norihiro; Miyazaki, Masaru; Pawlik, Timothy M

    2015-01-01

    An American Hepato-Pancreato-Biliary Association (AHPBA)-sponsored consensus meeting of expert panellists met on 15 January 2014 to review current evidence on the management of intrahepatic cholangiocarcinoma (ICC) in order to establish practice guidelines and to agree on consensus statements. The treatment of ICC requires a coordinated, multidisciplinary approach to optimize survival. Biopsy is not necessary if the surgeon suspects ICC and is planning curative resection, although biopsy should be obtained before systemic or locoregional therapies are initiated. Assessment of resectability is best accomplished using cross-sectional imaging [computed tomography (CT) or magnetic resonance imaging (MRI)], but the role of positron emission tomography (PET) is unclear. Resectability in ICC is defined by the ability to completely remove the disease while leaving an adequate liver remnant. Extrahepatic disease, multiple bilobar or multicentric tumours, and lymph node metastases beyond the primary echelon are contraindications to resection. Regional lymphadenectomy should be considered a standard part of surgical therapy. In patients with high-risk features, the routine use of diagnostic laparoscopy is recommended. The preoperative diagnosis of combined hepatocellular carcinoma and cholangiocarcinoma (cHCC–CC) by imaging studies is extremely difficult. Surgical resection remains the mainstay of treatment, but survival is worse than in HCC alone. There are no adequately powered, randomized Phase III trials that can provide definitive recommendations for adjuvant therapy for ICC. Patients with high-risk features (lymphovascular invasion, multicentricity or satellitosis, large tumours) should be encouraged to enrol in clinical trials and to consider adjuvant therapy. Cisplatin plus gemcitabine represents the standard-of-care, front-line systemic therapy for metastatic ICC. Genomic analyses of biliary cancers support the development of targeted therapeutic interventions

  17. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo.

  18. Long-term obesity promotes alterations in diastolic function induced by reduction of phospholamban phosphorylation at serine-16 without affecting calcium handling.

    PubMed

    Lima-Leopoldo, Ana Paula; Leopoldo, André S; da Silva, Danielle C T; do Nascimento, André F; de Campos, Dijon H S; Luvizotto, Renata A M; de Deus, Adriana F; Freire, Paula P; Medeiros, Alessandra; Okoshi, Katashi; Cicogna, Antonio C

    2014-09-15

    Few studies have evaluated the relationship between the duration of obesity, cardiac function, and the proteins involved in myocardial calcium (Ca(2+)) handling. We hypothesized that long-term obesity promotes cardiac dysfunction due to a reduction of expression and/or phosphorylation of myocardial Ca(2+)-handling proteins. Thirty-day-old male Wistar rats were distributed into two groups (n = 10 each): control (C; standard diet) and obese (Ob; high-fat diet) for 30 wk. Morphological and histological analyses were assessed. Left ventricular cardiac function was assessed in vivo by echocardiographic evaluation and in vitro by papillary muscle. Cardiac protein expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), calsequestrin, L-type Ca(2+) channel, and phospholamban (PLB), as well as PLB serine-16 phosphorylation (pPLB Ser(16)) and PLB threonine-17 phosphorylation (pPLB Thr(17)) were determined by Western blot. The adiposity index was higher (82%) in Ob rats than in C rats. Obesity promoted cardiac hypertrophy without alterations in interstitial collagen levels. Ob rats had increased endocardial and midwall fractional shortening, posterior wall shortening velocity, and A-wave compared with C rats. Cardiac index, early-to-late diastolic mitral inflow ratio, and isovolumetric relaxation time were lower in Ob than in C. The Ob muscles developed similar baseline data and myocardial responsiveness to increased extracellular Ca(2+). Obesity caused a reduction in cardiac pPLB Ser(16) and the pPLB Ser(16)/PLB ratio in Ob rats. Long-term obesity promotes alterations in diastolic function, most likely due to the reduction of pPLB Ser(16), but does not impair the myocardial Ca(2+) entry and recapture to SR. Copyright © 2014 the American Physiological Society.

  19. Palliative treatment with radiation-emitting metallic stents in unresectable Bismuth type III or IV hilar cholangiocarcinoma.

    PubMed

    Lu, Jian; Guo, Jin-He; Zhu, Hai-Dong; Zhu, Guang-Yu; Wang, Yong; Zhang, Qi; Chen, Li; Wang, Chao; Pan, Tian-Fan; Teng, Gao-Jun

    2017-01-01

    The emerging data for stenting in combination with brachytherapy in unresectable hilar cholangiocarcinoma are encouraging. The aim of this study was to evaluate the efficacy and safety of radiation-emitting metallic stents (REMS) for unresectable Bismuth type III or IV hilar cholangiocarcinoma. Consecutive patients who underwent percutaneous placement with REMS or uncovered self-expandable metallic stent (SEMS) for unresectable Bismuth type III or IV hilar cholangiocarcinoma between September 2011 and April 2016 were identified into this retrospective study. Data on patient demographics and overall survival, functional success, stent patency and complications were collected at the authors' hospital. A total of 59 patients were included: 33 (55.9%) in the REMS group and 26 (44.1%) in the SEMS group. The median overall survival was 338 days in the REMS group and 141 days in the SEMS group (p<0.001). The median stent patency time was 385 days for REMS and 142 days for SEMS (p<0.001). The functional success rate (87.9% vs 84.6%, p=0.722) and incidence of overall complications (27.3% vs 26.9%, p=0.999) did not differ in the two groups. Placement with REMS is safe and effective in palliation for unresectable Bismuth type III or IV hilar cholangiocarcinoma, and seems to prolong survival as well as patency of stent in these patients.

  20. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment

    PubMed Central

    Fang, Ling; Choudhary, Sanjeev; Zhao, Yingxin; Edeh, Chukwudi B; Yang, Chunying; Boldogh, Istvan; Brasier, Allan R.

    2014-01-01

    Ataxia-telangiectasia mutated (ATM), a member of the phosphatidylinositol 3 kinase-like kinase family, is a master regulator of the double strand DNA break-repair pathway after genotoxic stress. Here, we found ATM serves as an essential regulator of TNF-induced NF-kB pathway. We observed that TNF exposure of cells rapidly induced DNA double strand breaks and activates ATM. TNF-induced ROS promote nuclear IKKγ association with ubiquitin and its complex formation with ATM for nuclear export. Activated cytoplasmic ATM is involved in the selective recruitment of the E3-ubiquitin ligase β-TrCP to phospho-IκBα proteosomal degradation. Importantly, ATM binds and activates the catalytic subunit of protein kinase A (PKAc), ribosmal S6 kinase that controls RelA Ser 276 phosphorylation. In ATM knockdown cells, TNF-induced RelA Ser 276 phosphorylation is significantly decreased. We further observed decreased binding and recruitment of the transcriptional elongation complex containing cyclin dependent kinase-9 (CDK9; a kinase necessary for triggering transcriptional elongation) to promoters of NF-κB-dependent immediate-early cytokine genes, in ATM knockdown cells. We conclude that ATM is a nuclear damage-response signal modulator of TNF-induced NF-κB activation that plays a key scaffolding role in IκBα degradation and RelA Ser 276 phosphorylation. Our study provides a mechanistic explanation of decreased innate immune response associated with A-T mutation. PMID:24957606

  1. Bile Duct Cancer (Cholangiocarcinoma) Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Bile duct cancer (also called cholangiocarcinoma) can occur in the bile ducts in the liver (intrahepatic) or outside the liver (perihilar or distal extrahepatic). Learn about the types of bile duct cancer, risk factors, clinical features, staging, and treatment for bile duct cancer in this expert-reviewed summary.

  2. Staging of intrahepatic cholangiocarcinoma

    PubMed Central

    Ronnekleiv-Kelly, Sean M.

    2017-01-01

    Intrahepatic cholangiocarcinoma (ICC) comprises approximately 5−30% of primary liver tumors, however it has been increasing over the last several decades. Up to and including the 6th edition of the American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) edition staging system, ICC was staged the same as hepatocellular carcinoma. In the 7th edition AJCC/UICC manual, the staging system of ICC was revised such that a distinct classification was proposed. Pathologic features for prognosis included vascular invasion, tumor multiplicity, local extension, periductal infiltration and lymph nodal metastasis. Over the last decade, as the incidence of ICC has increased and surgery for this indication has become more common, more data has been published on the prognostic factors associated with long-term survival. PMID:28261593

  3. PKCε phosphorylates α4β2 nicotinic ACh receptors and promotes recovery from desensitization

    PubMed Central

    Lee, A M; Wu, D-F; Dadgar, J; Wang, D; McMahon, T; Messing, R O

    2015-01-01

    Background and Purpose Nicotinic (ACh) receptor recovery from desensitization is modulated by PKC, but the PKC isozymes and the phosphorylation sites involved have not been identified. We investigated whether PKCε phosphorylation of α4β2 nAChRs regulates receptor recovery from desensitization. Experimental Approach Receptor recovery from desensitization was investigated by electrophysiological characterization of human α4β2 nAChRs. Phosphorylation of the α4 nAChR subunit was assessed by immunoblotting of mouse synaptosomes. Hypothermia induced by sazetidine-A and nicotine was measured in Prkce−/− and wild-type mice. Key Results Inhibiting PKCε impaired the magnitude of α4β2 nAChR recovery from desensitization. We identified five putative PKCε phosphorylation sites in the large intracellular loop of the α4 subunit, and mutating four sites to alanines also impaired recovery from desensitization. α4 nAChR subunit phosphorylation was reduced in synaptosomes from Prkce−/− mice. Sazetidine-A-induced hypothermia, which is mediated by α4β2 nAChR desensitization, was more severe and prolonged in Prkce−/− than in wild-type mice. Conclusions and Implications PKCε phosphorylates the α4 nAChR subunit and regulates recovery from receptor desensitization. This study illustrates the importance of phosphorylation in regulating α4β2 receptor function, and suggests that reducing phosphorylation prolongs receptor desensitization and decreases the number of receptors available for activation. PMID:26103136

  4. Claudin-7-positive synchronous spontaneous intrahepatic cholangiocarcinoma, adenocarcinoma and adenomas of the gallbladder in a Bearded dragon (Pogona vitticeps).

    PubMed

    Jakab, Csaba; Rusvai, Miklós; Szabó, Zoltán; Gálfi, Péter; Marosán, Miklós; Kulka, Janina; Gál, János

    2011-03-01

    In this study, synchronous spontaneous, independent liver and gallbladder tumours were detected in a Bearded dragon (Pogona vitticeps). The multiple tumours consisted of intrahepatic cholangiocarcinoma as well as in situ adenocarcinoma and two adenomas of the gallbladder. The biliary epithelial cells and the cholangiocarcinoma showed membranous cross-immunoreactivity for claudin-7. The gallbladder epithelial cells, its adenoma and adenocarcinoma showed basolateral cross-reactivity for claudin-7. We think that the humanised anti-claudin-7 antibody is a good marker for the detection of different primary cholangiocellular and gallbladder tumours in Bearded dragons. The cholangiocytes, the cholangiocarcinoma, the endothelial cells of the liver and the epithelial cells and gallbladder tumours all showed claudin-5 cross-reactivity. The humanised anti-cytokeratin AE1-AE3 antibody showed cross-reactivity in the biliary epithelial cells, cholangiocarcinoma cells, epithelial cells and tumour cells of the gallbladder. It seems that this humanised antibody is a useful epithelial marker for the different neoplastic lesions of epithelial cells in reptiles. The humanised anti-α-smooth muscle actin (α-SMA) antibody showed intense cross-reactivity in the smooth muscle cells of the hepatic vessels and in the muscle layer of the gallbladder. The portal myofibroblasts, the endothelial cells of the sinusoids and the stromal cells of the cholangiocarcinoma and gallbladder tumours were positive for α-SMA. The antibovine anti-vimentin and humanised anti-Ki-67 antibodies did not show crossreactivity in the different samples from the Bearded dragon.

  5. Overexpression of karyopherin-α2 in cholangiocarcinoma correlates with poor prognosis and gemcitabine sensitivity via nuclear translocation of DNA repair proteins

    PubMed Central

    Tsukagoshi, Mariko; Araki, Kenichiro; Yokobori, Takehiko; Altan, Bolag; Suzuki, Hideki; Kubo, Norio; Watanabe, Akira; Ishii, Norihiro; Hosouchi, Yasuo; Nishiyama, Masahiko; Shirabe, Ken; Kuwano, Hiroyuki

    2017-01-01

    Cholangiocarcinoma is a highly malignant tumor, and the development of new therapeutic strategies is critical. Karyopherin-α2 (KPNA2) functions as an adaptor that mediates nucleocytoplasmic transport. Specifically, KPNA2 transports one of the important DNA repair machineries, the MRE11-RAD50-NBS1 (MRN) complex, to the nucleus. In this study, we clarified the significance of KPNA2 in cholangiocarcinoma. KPNA2 expression evaluated by immunohistochemical analysis was common in malignant tissue but rare in adjacent noncancerous tissues. KPNA2 overexpression was significantly correlated with poor prognosis and was an independent prognostic factor after surgery. In patients with cholangiocarcinoma who received gemcitabine after surgery, KPNA2 overexpression tended to be a prognostic indicator of poor overall survival. In KPNA2-depleted cholangiocarcinoma cells, proliferation was significantly decreased and gemcitabine sensitivity was enhanced in vitro and in vivo. Expression of KPNA2 and the MRN complex displayed colocalization in the nucleus. In addition, nuclear localization of the MRN complex was regulated by KPNA2 in vitro. These results suggest that KPNA2 expression may be a useful prognostic and predictive marker of gemcitabine sensitivity and survival. The regulation of KPNA2 expression may be a new therapeutic strategy for cholangiocarcinoma. PMID:28178675

  6. Overexpression of karyopherin-α2 in cholangiocarcinoma correlates with poor prognosis and gemcitabine sensitivity via nuclear translocation of DNA repair proteins.

    PubMed

    Tsukagoshi, Mariko; Araki, Kenichiro; Yokobori, Takehiko; Altan, Bolag; Suzuki, Hideki; Kubo, Norio; Watanabe, Akira; Ishii, Norihiro; Hosouchi, Yasuo; Nishiyama, Masahiko; Shirabe, Ken; Kuwano, Hiroyuki

    2017-06-27

    Cholangiocarcinoma is a highly malignant tumor, and the development of new therapeutic strategies is critical. Karyopherin-α2 (KPNA2) functions as an adaptor that mediates nucleocytoplasmic transport. Specifically, KPNA2 transports one of the important DNA repair machineries, the MRE11-RAD50-NBS1 (MRN) complex, to the nucleus. In this study, we clarified the significance of KPNA2 in cholangiocarcinoma. KPNA2 expression evaluated by immunohistochemical analysis was common in malignant tissue but rare in adjacent noncancerous tissues. KPNA2 overexpression was significantly correlated with poor prognosis and was an independent prognostic factor after surgery. In patients with cholangiocarcinoma who received gemcitabine after surgery, KPNA2 overexpression tended to be a prognostic indicator of poor overall survival. In KPNA2-depleted cholangiocarcinoma cells, proliferation was significantly decreased and gemcitabine sensitivity was enhanced in vitro and in vivo. Expression of KPNA2 and the MRN complex displayed colocalization in the nucleus. In addition, nuclear localization of the MRN complex was regulated by KPNA2 in vitro. These results suggest that KPNA2 expression may be a useful prognostic and predictive marker of gemcitabine sensitivity and survival. The regulation of KPNA2 expression may be a new therapeutic strategy for cholangiocarcinoma.

  7. Ursodeoxycholic acid-conjugated chitosan for photodynamic treatment of HuCC-T1 human cholangiocarcinoma cells.

    PubMed

    Lee, Hye Myeong; Jeong, Young-Il; Kim, Do Hyung; Kwak, Tae Won; Chung, Chung-Wook; Kim, Cy Hyun; Kang, Dae Hwan

    2013-09-15

    Chitosan was hydrophobically modified with ursodeoxycholic acid (UDCA) to fabricate nano-photosensitizer for photodynamic therapy (PDT) of HuCC-T1 cholangiocarcinoma cells. Synthesis of UDCA-conjugated chitosan (ChitoUDCA) was confirmed using (1)H NMR spectra. Chlorin E6 (Ce6) was used as a photosensitizer and incorporated into ChitoUDCA nanoparticles through formation of ion complexes. Morphology of Ce6-incorporated ChitoUDCA nanoparticles was observed using TEM and their shapes were spherical with sizes around 200-400 nm. The PDT potential of Ce6-incorporated ChitoUDCA nanoparticles were studied with HuCC-T1 human cholangiocarcinoma cells. The results showed that ChitoUDCA nanoparticles enhances of Ce6 uptake into tumor cells, phototoxicity, and ROS generation compared to Ce6 itself. Furthermore, Ce6-incorporated ChitoUDCA nanoparticles showed quenching in aqueous solution and sensing at tumor cells. We suggest that Ce6-incorporated ChitoUDCA nanoparticles are promising candidates for PDT of cholangiocarcinoma cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Overexpression of long noncoding RNA H19 indicates a poor prognosis for cholangiocarcinoma and promotes cell migration and invasion by affecting epithelial-mesenchymal transition.

    PubMed

    Xu, Yi; Wang, Zhidong; Jiang, Xingming; Cui, Yunfu

    2017-08-01

    Cholangiocarcinoma (CCA) is a deadly disease that poorly responds to chemotherapy and radiotherapy and whose incidence has increased worldwide. Furthermore, long noncoding RNAs (lncRNAs) play important roles in multiple biological processes, including tumorigenesis. Specifically, H19, the first discovered lncRNA, has been reported to be overexpressed in diverse human carcinomas, but the overall biological role and clinical significance of H19 in CCA remains unknown. In the present study, expression levels of H19 were investigated in CCA tissues and cell lines and were correlated with clinicopathological features. Moreover, we explored the functional roles of H19 depletion in QBC939 and RBE cells, including cell proliferation, apoptosis, migration, invasion and epithelial-to-mesenchymal transition (EMT). The results indicated that H19 was upregulated in CCA tissue samples and cell lines, and this upregulation was associated with tumor size, TNM stage, postoperative recurrence and overall survival in 56 patients with CCA. Moreover, knockdown of H19 followed by RNA silencing restrained cell proliferation and promoted apoptosis. In addition, H19 suppression impaired migration and invasion potential by reversing EMT. Overall, our findings may help to develop diagnostic biomarkers and therapeutics that target H19 for the treatment of CCA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Delivery of miR-200c Mimic with Poly(amido amine) CXCR4 Antagonists for Combined Inhibition of Cholangiocarcinoma Cell Invasiveness.

    PubMed

    Xie, Ying; Wehrkamp, Cody J; Li, Jing; Wang, Yan; Wang, Yazhe; Mott, Justin L; Oupický, David

    2016-03-07

    Cholangiocarcinoma is the second most common primary liver malignancy with extremely poor prognosis due to early invasion and widespread metastasis. The invasion and metastasis are regulated by multiple factors including CXCR4 chemokine receptor and multiple microRNAs. The goal of this study was to test the hypothesis that inhibition of CXCR4 combined with the action of miR-200c mimic will cooperatively enhance the inhibition of the invasion of human cholangiocarcinoma cells. The results show that CXCR4-inhibition polycation PCX can effectively deliver miR-200c mimic and that the combination treatment consisting of PCX and miR-200c results in cooperative antimigration activity, most likely by coupling the CXCR4 axis blockade with epithelial-to-mesenchymal transition inhibition in the cholangiocarcinoma cells. The ability of the combined PCX/miR-200c treatment to obstruct two migratory pathways represents a promising antimetastatic strategy in cholangiocarcinoma.

  10. Impact of specialized multi-disciplinary approach and an integrated pathway on outcomes in hilar cholangiocarcinoma.

    PubMed

    Gomez, D; Patel, P B; Lacasia-Purroy, C; Byrne, C; Sturgess, R P; Palmer, D; Fenwick, S; Poston, G J; Malik, H Z

    2014-01-01

    To assess the outcomes of patients with hilar cholangiocarcinoma following referral to a specialist multi-disciplinary team. Over an 11-year period, patients referred with hilar cholangiocarcinoma were identified from a prospectively maintained registry. Collated data included demographics, operative findings and histo-pathological data. Survival differences and prognostic factors were determined. 345 patients were referred with hilar cholangiocarcinoma, of which 57 (16.5%) patients had surgery. Prior to 2008, of 143 patients referred, only 17 (11.9%) patients underwent surgery, compared to 40 (19.8%) of 202 patients referred from 2008 onwards (p = 0.051). In the surgery group, the majority of patients underwent left hemi-hepatectomy (n = 19). In addition, portal vein (n = 5), hepatic artery (n = 2) and inferior vena cava (n = 3) resections were performed. The R0 resection rate was 73.7%. The morbidity and mortality rates were 59.6% and 14.0%, respectively. The median disease-free survival was 16 (4-101) months. The presence of lymph node metastasis (p = 0.002) was the only predictor of poorer disease-free survival. The 5-year overall survival was 39.5% and was significantly better than that of the palliative group (p < 0.001). Surgery is the optimal treatment option for patients with hilar cholangiocarcinoma and is associated with better overall survival. Prompt referral to tertiary centres with a core team of clinicians to manage this difficult condition may allow more patients to come to potentially curative surgical resections. Copyright © 2013. Published by Elsevier Ltd.

  11. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation.

    PubMed

    Leng, Yan; Zhang, Jinyi; Badour, Karen; Arpaia, Enrico; Freeman, Spencer; Cheung, Pam; Siu, Michael; Siminovitch, Katherine

    2005-01-25

    WAVE2 is a member of the Wiskott-Aldrich syndrome protein family of cytoskeletal regulatory proteins shown to link Rac activation to actin remodeling via induction of Arp 2/3 activity. WAVE2 is thought to be regulated by its positioning in a macromolecular complex also containing the Abelson-(Abl) interactor-1 (Abi-1) adaptor, but the molecular basis and biologic relevance of WAVE2 inclusion in this complex are ill defined. Here we show that Abi-1 binding to WAVE2 is mediated by discrete motifs in the Abi-1 coiled-coil and WAVE2 WAVE-homology domains and increases markedly in conjunction with Abi-1-WAVE2 translocation and colocalization at the leading edge in B16F1 cells after fibronectin stimulation. Abi-1 also couples WAVE2 to Abl after cell stimulation, an interaction that triggers Abl membrane translocation with WAVE2, Abi-1, and activated Rac, as well as Abl-mediated tyrosine phosphorylation and WAVE2 activation. By contrast, mutation of tyrosine residue Y150, identified here as the major site of Abl-mediated WAVE2 tyrosine phosphorylation, as well as disruption of WAVE2-Abi-1 binding, impairs induction of WAVE2-driven actin polymerization and its membrane translocation in association with activated Rac. Similarly, WAVE2 tyrosine phosphorylation and induction of membrane actin rearrangement are abrogated in fibroblasts lacking the Abl family kinase. Together, these data reveal that Abi-1-mediated coupling of Abl to WAVE2 promotes Abl-evoked WAVE2 tyrosine phosphorylation required to link WAVE2 with activated Rac and with actin polymerization and remodeling at the cell periphery.

  12. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon

    PubMed Central

    Wang, Zhe; Yan, Wei; Sun, Huimin; Xue, Peipei; Fan, Xiaoming; Zeng, Xiaoyu; Chen, Juan; Shao, Chen; Zhu, Feng

    2016-01-01

    T-LAK cell-originated protein kinase (TOPK), a serine/threonine protein kinase, is highly expressed in a variety of tumors and associated with a poor prognosis of human malignancies. However, the activation mechanism of TOPK is still unrevealed. Herein, first we found that Src directly bound with and phosphorylated TOPK at Y74 and Y272 in vitro. Anti-phospho-TOPK at Y74 was prepared, the endogenous phosphorylation of TOPK at Y74 was detected in colon cancer cells, and the phosphorylation was inhibited in cells expressing low levels of Src. Subsequently, we stably transfected Y74 and Y272 double mutated TOPK (TOPK-FF) into JB6 or SW480 cells, and observed that both the anchorage-independent growth ability and tumorigenesis of TOPK-FF cells were suppressed compared with those of wild type TOPK (TOPK-WT) ex vivo and in vivo. The phosphorylation level of TOPK substrate, Histone H3 at Ser10 also decreased dramatically ex vivo or in vivo. Moreover, we showed that Src could inhibit the ubiquitination of TOPK. Transiently expressed TOPK-WT was more stable than TOPK-FF in pause and chase experiment. Endogenous TOPK was more stable in Src wild type (Src+/+) MEFs than in Src knockout (Src−/−). Taken together, our results indicate that Src is a novel upstream kinase of TOPK. The phosphorylation of TOPK at Y74 and Y272 by Src increases the stability and activity of TOPK, and promotes the tumorigenesis of colon cancer. It may provide opportunities for TOPK based prognosis and targeted therapy for colon cancer patients. PMID:27016416

  13. Cyclin-dependent kinase 5-mediated phosphorylation of CHIP promotes the tAIF-dependent death pathway in rotenone-treated cortical neurons.

    PubMed

    Kim, Chiho; Lee, Juhyung; Ko, Yeon Uk; Oh, Young J

    2018-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase. Its dysregulation has been implicated in various neurodegenerative diseases. We previously reported that phosphorylation of the C-terminus of the Hsc70-interacting protein (CHIP) by Cdk5 promotes truncated apoptosis-inducing factor (tAIF)-mediated neuronal death induced by oxidative stress. Here, we determined whether this Cdk5-dependent cell death signaling pathway is present in experimental models of Parkinson's disease. First, we showed that rotenone activates Cdk5 in primary cultures of cortical neurons and causes tAIF-dependent neuronal cell death. This event was attenuated by negative regulation of endogenous Cdk5 activity by the pharmacological Cdk5 inhibitor, roscovitine, or by lentiviral knockdown of Cdk5. Cdk5 phosphorylates CHIP at Ser20 in rotenone-treated neurons. Consequently, overexpression of CHIP S20A , but not CHIP WT , attenuates tAIF-induced cell death in rotenone-treated cortical neurons. Taken together, these results indicate that phosphorylation of CHIP at Ser20 by Cdk5 activation inhibits CHIP-mediated tAIF degradation, thereby contributing to tAIF-induced neuronal cell death following rotenone treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma.

    PubMed

    Dong, Liang-Qing; Shi, Yang; Ma, Li-Jie; Yang, Liu-Xiao; Wang, Xiao-Ying; Zhang, Shu; Wang, Zhi-Chao; Duan, Meng; Zhang, Zhao; Liu, Long-Zi; Zheng, Bo-Hao; Ding, Zhen-Bin; Ke, Ai-Wu; Gao, Da-Ming; Yuan, Ke; Zhou, Jian; Fan, Jia; Xi, Ruibin; Gao, Qiang

    2018-07-01

    Intrahepatic cholangiocarcinoma (ICC) is the second-most lethal primary liver cancer. Little is known about intratumoral heterogeneity (ITH) and its impact on ICC progression. We aimed to investigate the ITH of ICC in the hope of helping to develop new therapeutic strategies. We obtained 69 spatially distinct regions from six operable ICCs. Patient-derived primary cancer cells (PDPCs) were established for each region, followed by whole-exome sequencing (WES) and multi-level validation. We observed widespread ITH for both somatic mutations and clonal architecture, shaped by multiple mechanisms, like clonal "illusion", parallel evolution and chromosome instability. A median of 60.3% of mutations were heterogeneous, among which 85% of the driver mutations were located on the branches of tumor phylogenetic trees. Many truncal and clonal driver mutations occurred in tumor suppressor genes, such as TP53, SMARCB1 and PBRM1 that are involved in DNA repair and chromatin-remodeling. Genome doubling occurred in most cases (5/6) after the accumulation of truncal mutations and was shared by all intratumoral sub-regions. In all cases, ongoing chromosomal instability is evident throughout the evolutionary trajectory of ICC. The recurrence of ICC1239 provided evidence to support the polyclonal metastatic seeding in ICC. The change of mutation landscape and internal diversity among subclones during metastasis, such as the loss of chemoresistance mediator, can be used for new treatment strategies. Targeted therapy against truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, was developed in 5/6 patients. Integrated investigations of spatial ITH and clonal evolution may provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ICC. We applied multiregional whole-exome sequencing to investigate the evolution of intrahepatic cholangiocarcinoma (ICC). The results revealed that many factors, such as parallel

  15. Combination of anti-L1 cell adhesion molecule antibody and gemcitabine or cisplatin improves the therapeutic response of intrahepatic cholangiocarcinoma.

    PubMed

    Cho, Seulki; Lee, Tae Sup; Song, In Ho; Kim, A-Ram; Lee, Yoon-Jin; Kim, Haejung; Hwang, Haein; Jeong, Mun Sik; Kang, Seung Goo; Hong, Hyo Jeong

    2017-01-01

    Cholangiocarcinoma has a poor prognosis and is refractory to conventional chemotherapy and radiation therapy. Improving survival of patients with advanced cholangiocarcinoma urgently requires the development of new effective targeted therapies in combination with chemotherapy. We previously developed a human monoclonal antibody (mAb) Ab417 that binds to both the human and mouse L1 cell adhesion molecule (L1CAM) with high affinities. In the present study, we observed that Ab417 exhibited tumor targeting ability in biodistribution studies and dose-dependent tumor growth inhibition in an intrahepatic cholangiocarcinoma (Choi-CK) xenograft mouse model. Regarding the mechanism of action, Ab417 was internalized into the tumor cells and thereby down-regulated membrane L1CAM, and inhibited tumor growth by reducing tumor cell proliferation in vivo. Gemcitabine inhibited the tumor growth in a dose-dependent manner in the Choi-CK xenograft model. However, cisplatin inhibited the tumor growth moderately and not in a dose-dependent way, suggesting that the tumors may have developed resistance to apoptosis induced by cisplatin. Combined treatment with Ab417 and gemcitabine or cisplatin exerted enhanced tumor growth inhibition compared to treatment with antibody or drug alone. The results suggest that Ab417 in combination with chemotherapy may have potential as a new therapeutic regimen for cholangiocarcinoma. Our study is the first to show an enhanced therapeutic effect of a therapeutic antibody targeting L1CAM in combination with chemotherapy in cholangiocarcinoma models.

  16. The expression of MUC mucin in cholangiocarcinoma.

    PubMed

    Mall, Anwar S; Tyler, Marilyn G; Ho, Sam B; Krige, Jake E J; Kahn, Delawir; Spearman, Wendy; Myer, Landon; Govender, Dhirendra

    2010-12-15

    Cholangiocarcinoma (CC) is a highly malignant epithelial cancer of the biliary tract, the cellular and molecular pathogenesis of which remains unclear. Malignant transformation of glandular epithelial cells is associated with the altered expression of mucin. We investigated the type of mucins expressed in CC. Twenty-six patients with histologically confirmed CC were included in this study. The expression of mucin was studied by immunohistochemistry using antibodies to MUC1, MUC1 core, MUC2, MUC3, MUC4, MUC5AC, and MUC6. There was extensive (>50%) expression of mucin, mainly MUC1 in 11/25 and MUC5AC in 12/26 cases. In the case of MUC3, 6/26 cases expressed mucin extensively, whilst only 1/26 had MUC2, MUC4, and MUC6 expression. Well-differentiated tumors significantly expressed MUC3 extensively compared to poor or moderately differentiated tumors (p=0.003). Fifteen of 25 cases had metastatic disease. MUC1 was extensively expressed in 9/15 cases with metastatic disease. In contrast, MUC1 expression was present in 2/10 cases where metastases were absent. Hilar lesions were less likely to express MUC1, but this was not statistically significant. Fifteen of 25 cases had metastatic disease. Extensive MUC3 expression was significantly associated with well-differentiated tumors, whilst there was an approaching significance between the extensive expression of MUC1 and metastasis in cholangiocarcinoma. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination

    PubMed Central

    Dubois, Jean-Christophe; Yates, Maïlyn; Gaudreau-Lapierre, Antoine; Clément, Geneviève; Cappadocia, Laurent; Gaudreau, Luc

    2017-01-01

    Abstract RPA-coated single-stranded DNA (RPA–ssDNA), a nucleoprotein structure induced by DNA damage, promotes ATR activation and homologous recombination (HR). RPA is hyper-phosphorylated and ubiquitylated after DNA damage. The ubiquitylation of RPA by PRP19 and RFWD3 facilitates ATR activation and HR, but how it is stimulated by DNA damage is still unclear. Here, we show that RFWD3 binds RPA constitutively, whereas PRP19 recognizes RPA after DNA damage. The recruitment of PRP19 by RPA depends on PIKK-mediated RPA phosphorylation and a positively charged pocket in PRP19. An RPA32 mutant lacking phosphorylation sites fails to recruit PRP19 and support RPA ubiquitylation. PRP19 mutants unable to bind RPA or lacking ubiquitin ligase activity also fail to support RPA ubiquitylation and HR. These results suggest that RPA phosphorylation enhances the recruitment of PRP19 to RPA–ssDNA and stimulates RPA ubiquitylation through a process requiring both PRP19 and RFWD3, thereby triggering a phosphorylation-ubiquitylation circuitry that promotes ATR activation and HR. PMID:28666352

  18. Phosphorylation of RACK1 in plants

    DOE PAGES

    Chen, Jay -Gui

    2015-08-31

    Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. In conclusion, these findings promote a new regulatory systemmore » in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.« less

  19. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

    PubMed

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude; Newton, Yulia; Shih, Juliann; Robertson, A Gordon; Hinoue, Toshinori; Hoadley, Katherine A; Gibb, Ewan A; Roszik, Jason; Covington, Kyle R; Wu, Chia-Chin; Shinbrot, Eve; Stransky, Nicolas; Hegde, Apurva; Yang, Ju Dong; Reznik, Ed; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Hess, Julian M; Auman, J Todd; Rhie, Suhn K; Bowlby, Reanne; Borad, Mitesh J; Zhu, Andrew X; Stuart, Josh M; Sander, Chris; Akbani, Rehan; Cherniack, Andrew D; Deshpande, Vikram; Mounajjed, Taofic; Foo, Wai Chin; Torbenson, Michael S; Kleiner, David E; Laird, Peter W; Wheeler, David A; McRee, Autumn J; Bathe, Oliver F; Andersen, Jesper B; Bardeesy, Nabeel; Roberts, Lewis R; Kwong, Lawrence N

    2017-03-14

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Analysis of different ways of drainage for obstructive jaundice caused by hilar cholangiocarcinoma.

    PubMed

    Xu, Chuan; Lv, Peng-Hua; Huang, Xin-En; Wang, Shu-Xiang; Sun, Ling; Wang, Fu-An

    2014-01-01

    To evaluate the prognosis of different ways of drainage for patients with obstructive jaundice caused by hilar cholangiocarcinoma. During the period of January 2006- March 2012, percutaneous transhepatic catheter drainage (PTCD)/ percutaneous transhepatic biliary stenting (PTBS) were performed for 89 patients. According to percutaneous transhepatic cholangiography (PTC), external drainage was selected if the region of obstruction could not be passed by guide wire or a metallic stent was inserted if it could. External drainage was the first choice if infection was diagnosed before the procedure, and a metallic stent was inserted in one week after the infection was under control. Selection by new infections, the degree of bilirubin decrease, the change of ALT, the time of recurrence of obstruction, and the survival time of patients as the parameters was conducted to evaluate the methods of different interventional treatments regarding prognosis of patients with hilar obstruction caused by hilar cholangiocarcinoma. PTCD was conducted in 6 patients and PTBS in 7 (p<0.05). Reduction of bilirubin levels and ALT levels was obvious after the procedures (p<0.05). The average survival time with PTCD was 161 days and with PTBS was 243 days (p<0.05). With both drainage procedures for obstructive jaundice caused by hilar cholangiocarcinoma improvement in liver function was obvious. PTBS was found to be better than PTCD for prolonging the patient survival.

  1. Stage of hilar cholangiocarcinoma predicts recurrence of biliary obstruction in patients with metal stents.

    PubMed

    Siddiqui, Ali; Shahid, Haroon; Sarkar, Avik; Cox, Kristen; Kowalski, Thomas E; Loren, David E; Sharma, Ashish; Laing, Patrick; Birch, Madeline; Adler, Douglas G

    2013-09-01

    Most patients with hilar cholangiocarcinomas present with unresectable tumors, so only palliative biliary drainage with self-expanding metal stents (SEMS) is possible. Stents eventually cease to function because of tumor overgrowth and/or other causes, so it is important to identify factors that affect stent patency and failure. We examined the patency of endoscopically placed SEMS in patients with hilar cholangiocarcinoma and factors associated with patency. We performed a retrospective study of 120 consecutive patients (mean age, 67 ± 14.6 years; 74 male) who presented with obstructive jaundice from hilar cholangiocarcinoma and underwent bilateral SEMS from September 2006 through April 2012 at 2 US tertiary medical centers. We collected data on patient demographics and survival, success of stent placement and function, and immediate adverse events. The primary outcome was duration of stent patency (time from insertion to failure). Thirty-eight patients had stage 1 hilar cholangiocarcinomas, 45 had stage 2, 12 had stage 3, and 25 had stage 4. The median length of the hilar stricture was 9 mm (range, 8-50 mm). The stent was successfully passaged across the stricture in all patients and was functional in 115; its median length was 8 mm (range, 8-10 mm), and diameter was 80 mm (range, 60-100 mm). Fourteen patients had immediate adverse events, including perforation (n = 2), bleeding (n = 2), pancreatitis (n = 9), and cholangitis (n = 1). Median survival was 17 weeks (range, 1-211 weeks), and 50 patients had stent occlusion. On Kaplan-Meier analysis, the median time from stent placement to occlusion was 17 weeks (range, 1-104 weeks). More patients with stage 3 or 4 tumors (64%) had SEMS occlusion than patients with stage 1 or 2 tumors (28%) in univariate analysis (P = .017). In multivariate analysis, only cancer stage was independently and significantly associated with patency (P = .006; hazard ratio, 2.77); age, sex, length of stricture, and SEMS diameter and

  2. Hilar cholangiocarcinoma: Cross sectional evaluation of disease spectrum

    PubMed Central

    Mahajan, Mangal S; Moorthy, Srikanth; Karumathil, Sreekumar P; Rajeshkannan, R; Pothera, Ramchandran

    2015-01-01

    Although hilar cholangiocarcinoma is relatively rare, it can be diagnosed on imaging by identifying its typical pattern. In most cases, the tumor appears to be centered on the right or left hepatic duct with involvement of the ipsilateral portal vein, atrophy of hepatic lobe on that side, and invasion of adjacent liver parenchyma. Multi-detector computed tomography (MDCT) and magnetic resonance cholangiopancreatography (MRCP) are commonly used imaging modalities to assess the longitudinal and horizontal spread of tumor. PMID:25969643

  3. Prognostic factors in patients with advanced cholangiocarcinoma: Role of surgery, chemotherapy and body mass index

    PubMed Central

    Farhat, Mirna H; Shamseddine, Ali I; Tawil, Ayman N; Berjawi, Ghina; Sidani, Charif; Shamseddeen, Wael; Barada, Kassem A

    2008-01-01

    AIM: To study the factors that may affect survival of cholangiocarcinoma in Lebanon. METHODS: A retrospective review of the medical records of 55 patients diagnosed with cholangio-carcinoma at the American University of Beirut between 1990 and 2005 was conducted. Univariate and multivariate analyses were performed to determine the impact of surgery, chemotherapy, body mass index, bilirubin level and other factors on survival. RESULTS: The median survival of all patients was 8.57 mo (0.03-105.2). Univariate analysis showed that low bilirubin level (< 10 mg/dL), radical surgery and chemotherapy administration were significantly associated with better survival (P = 0.012, 0.038 and 0.038, respectively). In subgroup analysis on patients who had no surgery, chemotherapy administration prolonged median survival significantly (17.0 mo vs 3.5 mo, P = 0.001). Multivariate analysis identified only low bilirubin level < 10 mg/dL and chemotherapy administration as independent predictors associated with better survival (P < 0.05). CONCLUSION: Our data show that palliative and postoperative chemotherapy as well as a bilirubin level < 10 mg/dL are independent predictors of a significant increase in survival in patients with cholangiocarcinoma. PMID:18506930

  4. IL-33 overexpression reflects less aggressive tumour features in large-duct type cholangiocarcinomas.

    PubMed

    Sawada, Ryuichiro; Ku, Yuna; Akita, Masayuki; Otani, Kyoko; Fujikura, Kohei; Itoh, Tomoo; Ajiki, Tetsuo; Fukumoto, Takumi; Kakeji, Yoshihiro; Zen, Yoh

    2018-04-19

    The present study aimed to elucidate the clinicopathological significance of IL-6 and IL-33 expression in intrahepatic cholangiocarcinomas (iCCAs) and perihilar cholangiocarcinomas (pCCAs). IL-6 and IL-33 mRNA expression was examined in iCCAs (n=55) and pCCAs (n=32) using quantitative real-time PCR and a highly sensitive in situ hybridization protocol (RNAscope ® ), and expression values were correlated with clinicopathological features. According to a recently proposed classification scheme, iCCAs were separated into small- (n=33) and large-duct types (n=22). IL-6 and IL-33 expression levels were higher in large-duct iCCAs and pCCAs than in small-duct iCCAs, with a positive correlation between the values of these cytokines. In double in situ hybridization/immunostaining, IL-6 mRNA was expressed in actin-positive (myo)fibroblasts, while IL-33 was mainly produced by CD31-positive endothelial cells. Based on the average expression value as a cut-off point, cases were classified as IL-6 high and IL-6 low or IL-33 high and IL-33 low . In the combined cohort of large-duct iCCAs and pCCAs, IL-6 high and IL-6 low cholangiocarcinomas shared many features, while IL-33 high cases had less aggressive characteristics than IL-33 low cases as evidenced by lower tumour marker concentrations, smaller tumour sizes, less common vascular invasion, lower pT stages, and higher lymphocyte-to-monocyte ratios in blood. KRAS mutations were slightly less common in IL-33 high cases than in IL-33 low cancers (9% vs 29%; p=0.061). The strong expression of IL-33 in tissue appeared to be an independent favourable prognostic factor. IL-33 high cholangiocarcinomas may represent a unique, less aggressive carcinogenetic process of the large bile ducts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Use of an autologous liver round ligament flap zeros postoperative bile leak after curative resection of hilar cholangiocarcinoma.

    PubMed

    Sun, Da-Xin; Tan, Xiao-Dong; Gao, Feng; Xu, Jin; Cui, Dong-Xu; Dai, Xian-Wei

    2015-01-01

    Postoperative bile leak is a major surgical morbidity after curative resection with hepaticojejunostomy for hilar cholangiocarcinoma, especially in Bismuth-Corlette types III and IV. This retrospective study assessed the effectiveness and safety of an autologous hepatic round ligament flap (AHRLF) for reducing bile leak after hilar hepaticojejunostomy. Nine type III and IV hilar cholangiocarcinoma patients were consecutively hospitalized for elective perihilar partial hepatectomy with hilar hepaticojejunostomy using an AHRLF between October 2009 and September 2013. The AHRLF was harvested to reinforce the perihilar hepaticojejunostomy. Main outcome measures included operative time, blood loss, postoperative recovery times, morbidity, bile leak, R0 resection rate, and overall survival. All patients underwent uneventful R0 resection with hilar hepaticojejunostomy. No patient experienced postoperative bile leak. The AHRLF was associated with lack of bile leak after curative perihilar hepatectomy with hepaticojejunostomy for hilar cholangiocarcinoma, without compromising oncologic safety, and is recommended in selected patients.

  6. Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laszlo, A.; Radke, K.; Chin, S.

    1981-10-01

    We have investigated the effect of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the synthesis and modification of polypeptides in normal avian cells and cells infected by wild-type and temperature-sensitive Rous sarcoma virus (RSV). Using two-dimensional gel electrophoresis, we have detected alterations in both the abundance of cellular polypeptides and in their phosphorylation that seem unique to TPA treatment. However, the state of phosphorylation of the major putative substrate for the action of the src gene-associated protein kinase, the 34- to 36-kilodalton protein, was not altered. Moreover, examination of the phosphorylated amino acid content of total cellular phosphoproteins revealed that the response tomore » TPA was not associated with detectable increases in their phosphotyrosine content. These results make it unlikely that TPA acts by the activation of the phosphorylating activity of the cellular proto-src gene or by the activation of other cellular phosphotyrosine-specific kinases. We have shown previously that temperature-sensitive RSV-infected cells at nonpermissive temperature demonstrate an increased sensitivity to TPA treatment (Bissell, M.J., Hatie, C. and Calfin, M. (1979) Proc. Natl. Acad. Sci. USA 76, 348-352). Our present results indicate that this is not due to reactivation of the phosphorylating activity of the defective src gene product or to its leakiness, and they lend support to the notion of multistep viral carcinogenesis.« less

  7. Current management of cholangiocarcinoma.

    PubMed

    Singh, Manoj K; Facciuto, Marcelo E

    2012-01-01

    Cholangiocarcinoma is the second most common primary hepatobiliary malignancy after hepatocellular carcinoma and remains among the most difficult management problems faced by surgeons. Curative surgery is achieved in only 25% to 30% of patients. Local tumor extent, such as portal vein invasion and hepatic lobar atrophy, does not preclude resection. Long-term survival has been seen only in patients who underwent extensive liver resections, suggesting that bile-duct excision alone is less effective. The majority of patients have unresectable disease, with 20% to 30% incidence of distant metastasis at presentation. Unresectable patients should be referred for nonsurgical biliary decompression, and in potential curative resection candidates the use of biliary stents should be reduced. Liver transplantation provides the option of wide resection margins, expanding the indication of surgical intervention for selected patients who otherwise are not surgical candidates due to lack of functional hepatic reserve. © 2012 Mount Sinai School of Medicine.

  8. Haloperidol Regulates the State of Phosphorylation of Ribosomal Protein S6 via Activation of PKA and Phosphorylation of DARPP-32

    PubMed Central

    Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto

    2011-01-01

    Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187

  9. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    PubMed Central

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  10. Neutrophil-lymphocyte ratio predicts survival in patients with advanced cholangiocarcinoma on chemotherapy.

    PubMed

    Lee, Ban Seok; Lee, Sang Hyub; Son, Jun Hyuk; Jang, Dong Kee; Chung, Kwang Hyun; Lee, Yoon Suk; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2016-02-01

    The blood neutrophil-to-lymphocyte ratio (NLR) is reported to be a prognostic marker in several cancers. However, the prognostic role of NLR in patients with advanced cholangiocarcinoma on chemotherapy is unknown. A total of 221 patients with pathologically confirmed locally advanced or metastatic cholangiocarcinoma receiving first-line palliative chemotherapy were enrolled. Associations between baseline clinical and laboratory variables including NLR and survival were investigated. Patients were classified into two groups according to the NLR level (≤ 5 vs. >5). Median overall survival (OS) and time to progression (TTP) in patients with NLR ≤ 5 were 10.9 and 6.7 months, respectively, and 6.8 and 4.1 months in patients with NLR > 5 (P < 0.001, P = 0.002, respectively). In multivariate analysis, number of cycles of chemotherapy was a significant predictor of longer OS (HR 0.86, P < 0.001), whereas adverse prognostic factors for OS were CA 19-9 > 300 (HR 1.43, P = 0.025), CEA > 5 (HR 1.44, P = 0.029), higher stage (HR 1.69, P = 0.004), and NLR > 5 (HR 1.87, P < 0.001). NLR > 5 was also associated with reduced TTP (HR 1.66, P = 0.007). Among 50 patients with initial NLR > 5, 33 patients had NLR ≤ 5 after two cycles of chemotherapy and they had significantly better survival than the others (HR 0.48, P = 0.015). NLR independently predicts survival in patients with advanced cholangiocarcinoma undergoing chemotherapy. Considering cost-effectiveness and easy availability, NLR may be a useful biomarker for prognosis prediction.

  11. NBS1 Phosphorylation Status Dictates Repair Choice of Dysfunctional Telomeres.

    PubMed

    Rai, Rekha; Hu, Chunyi; Broton, Cayla; Chen, Yong; Lei, Ming; Chang, Sandy

    2017-03-02

    Telomeres employ TRF2 to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), thereby repressing ATM-dependent DNA damage checkpoint responses. How TRF2 prevents MRN activation at dysfunctional telomeres is unclear. Here, we show that the phosphorylation status of NBS1 determines the repair pathway choice of dysfunctional telomeres. The crystal structure of the TRF2-NBS1 complex at 3.0 Å resolution shows that the NBS1 429 YQLSP 433 motif interacts specifically with the TRF2 TRFH domain. Phosphorylation of NBS1 serine 432 by CDK2 in S/G2 dissociates NBS1 from TRF2, promoting TRF2-Apollo/SNM1B complex formation and the protection of leading-strand telomeres. Classical-NHEJ-mediated repair of telomeres lacking TRF2 requires phosphorylated NBS1 S432 to activate ATM, while interaction of de-phosphorylated NBS1 S432 with TRF2 promotes alternative-NHEJ repair of telomeres lacking POT1-TPP1. Our work advances understanding of how the TRF2 TRFH domain orchestrates telomere end protection and reveals how the phosphorylation status of the NBS1 S432 dictates repair pathway choice of dysfunctional telomeres. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effectiveness of repeat hepatic resection for patients with recurrent intrahepatic cholangiocarcinoma: Factors associated with long-term outcomes.

    PubMed

    Si, Anfeng; Li, Jun; Xing, Xianglei; Lei, Zhengqing; Xia, Yong; Yan, Zhenlin; Wang, Kui; Shi, Lehua; Shen, Feng

    2017-04-01

    Tumor recurrence after liver resection for intrahepatic cholangiocarcinoma is common. The effective treatment for recurrent intrahepatic cholangiocarcinoma remains to be established. This study evaluated the short- and long-term prognoses of patients after repeat hepatic resection for recurrent intrahepatic cholangiocarcinoma. Data for 72 patients who underwent R0 repeat hepatic resection for recurrent intrahepatic cholangiocarcinoma at the Eastern Hepatobiliary Surgery Hospital between 2005 and 2013 were analyzed. Tumor re-recurrence, recurrence-to-death survival, and overall survival were calculated and compared using the Kaplan-Meier method and the log-rank test. Independent risk factors were identified by Cox regression analysis. Operative morbidity and mortality rates were 18.1% and 1.4%, respectively. The 1-, 2-, and 3-year re-recurrence rates were 53.2%, 80.2%, and 92.6%, respectively, and the corresponding recurrence-to-death survival was 82.9%, 53.0%, and 35.3%, respectively. The 1-, 3-, and 5-year overall survival was 97.2%, 67.0%, and 41.9%, respectively. Patients with a time to recurrence of >1 year from the initial hepatectomy achieved higher 1-, 2-, and 3-year recurrence-to-death survival than patients with a time to recurrence of ≤1 year (92.5%, 61.7%. and 46.6% vs 70.4%, 42.2%, and 23.0%, P = .022). Multivariate analysis identified that recurrent tumor >3 cm (hazard ratio: 2.346; 95% confidence interval: 1.288-4.274), multiple recurrent nodules (2.304; 1.049-5.059), cirrhosis (3.165; 1.543-6.491), and a time to recurrence of ≤1 year (1.872; 1.055-3.324) were independent risk factors of recurrence-to-death survival. Repeat hepatic resection for recurrent intrahepatic cholangiocarcinoma was safe and produced long-term survival outcomes in selected patients based on prognostic stratification with the presence of the independent risk factors of recurrence-to-death survival. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis.

    PubMed

    Jendrek, Sebastian Torben; Gotthardt, Daniel; Nitzsche, Thomas; Widmann, Laila; Korf, Tobias; Michaels, Maike Anna; Weiss, Karl-Heinz; Liaskou, Evaggelia; Vesterhus, Mette; Karlsen, Tom Hemming; Mindorf, Swantje; Schemmer, Peter; Bär, Florian; Teegen, Bianca; Schröder, Torsten; Ehlers, Marc; Hammers, Christoph Matthias; Komorowski, Lars; Lehnert, Hendrik; Fellermann, Klaus; Derer, Stefanie; Hov, Johannes Roksund; Sina, Christian

    2017-01-01

    Pancreatic autoantibodies (PABs), comprising antibodies against glycoprotein 2 (anti-GP2), are typically associated with complicated phenotypes in Crohn's disease, but have also been observed with variable frequencies in patients with UC. In a previous study, we observed a high frequency of primary sclerosing cholangitis (PSC) in patients with anti-GP2-positive UC. We therefore aimed to characterise the role of anti-GP2 in PSC. In an evaluation phase, sera from 138 well-characterised Norwegian patients with PSC were compared with healthy controls (n=52), and patients with UC without PSC (n=62) for the presence of PABs by indirect immunofluorescence. Further, 180 German patients with PSC served as a validation cohort together with 56 cases of cholangiocarcinoma without PSC, 20 of secondary sclerosing cholangitis (SSC) and 18 of autoimmune hepatitis. Anti-GP2 IgA specifically occurred at considerable rates in large bile duct diseases (cholangiocarcinoma=36%, PSC and SSC about 50%). In PSC, anti-GP2 IgA consistently identified patients with poor survival during follow-up (Norwegian/German cohort: p Log Rank=0.016/0.018). Anti-GP2 IgA was associated with the development of cholangiocarcinoma in both PSC cohorts, yielding an overall OR of cholangiocarcinoma in patients with anti-GP2 IgA-positive PSC of 5.0 (p=0.001). Importantly, this association remained independent of disease duration, bilirubin level and age. Anti-GP2 IgA can be hypothesised as a novel marker in large bile duct diseases. In particular, in PSC, anti-GP2 IgA identified a subgroup of patients with severe phenotype and poor survival due to cholangiocarcinoma. Anti-GP2 IgA may therefore be a clinically valuable tool for risk stratification in PSC. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Significance of immunoglobulin G4 (IgG4)-positive cells in extrahepatic cholangiocarcinoma: molecular mechanism of IgG4 reaction in cancer tissue.

    PubMed

    Harada, Kenichi; Shimoda, Shinji; Kimura, Yasushi; Sato, Yasunori; Ikeda, Hiroko; Igarashi, Saya; Ren, Xiang-Shan; Sato, Hirohide; Nakanuma, Yasuni

    2012-07-01

    IgG4 reactions consisting of marked infiltration by immunoglobulin G4 (IgG4)-positive plasma cells in affected organs is found in cancer patients as well as patients with IgG4-related diseases. Notably, extrahepatic cholangiocarcinomas accompanying marked IgG4 reactions clinicopathologically mimic IgG4-related sclerosing cholangitis. The regulatory cytokine interleukin (IL)-10 is thought to induce the differentiation of IgG4-positive cells. In this study, to clarify the mechanism of the IgG4 reaction in extrahepatic cholangiocarcinoma, we investigated nonprofessional antigen-presenting cells (APCs) generating IL-10-producing regulatory T cells (anergy T cells) and Foxp3-positive regulatory cells producing IL-10. Immunohistochemistry targeting IgG4, HLA-DR, CD80, CD86, and Foxp3 was performed using 54 cholangiocarcinoma specimens from 24 patients with gallbladder cancer, 22 patients with common bile duct cancer, and eight patients with cancer of the Papilla of Vater. Moreover, a molecular analysis of Foxp3 and IL-10 was performed using a cultured human cholangiocarcinoma cell line. Consequently, 43% of the cholangiocarcinomas were found to be abundant in IgG4. Those expressing HLA-DR but lacking costimulatory molecules (CD80 and CD86) and those expressing Foxp3 detected by an antibody recognizing the N terminus accounted for 54% and 39% of cases, respectively. Moreover, the number of IgG4-positive cells was larger in these cases than in other groups. In cultured cells, the presence of a splicing variant of Foxp3 messenger RNA and the expression of IL-10 were demonstrated. Extrahepatic cholangiocarcinoma is often accompanied by significant infiltration of IgG4-positive cells. Cholangiocarcinoma cells could play the role of nonprofessional APCs and Foxp3-positive regulatory cells, inducing IgG4 reactions via the production of IL-10 indirectly and directly, respectively. Copyright © 2012 American Association for the Study of Liver Diseases.

  15. STATs profiling reveals predominantly-activated STAT3 in cholangiocarcinoma genesis and progression.

    PubMed

    Dokduang, Hasaya; Techasen, Anchalee; Namwat, Nisana; Khuntikeo, Narong; Pairojkul, Chawalit; Murakami, Yoshinori; Loilome, Watcharin; Yongvanit, Puangrat

    2014-10-01

    We investigated the aberrant expression of the STAT family in humans and liver fluke (Opisthorchis viverrini, Ov)-induced hamster cholangiocarcinoma (CCA) tissues. The expression and phosphorylation of STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6 in human hamster CCA tissues were immunohistochemistry-profiled. Localizations of STAT5 in macrophages and lipopolysaccharide (LPS)-induced macrophage-conditioned media mediated STAT3 activation in CCA cells were demonstrated. The expressions of STAT 1-4 and 6 were detected in the cytoplasm of hyperplastic bile ducts and tumor cells, whereas STAT5a and STAT5b were observed in macrophages and connective tissues surrounding tumor, respectively. The expressions of STAT3 and STAT5b were significantly observed in tumors with a poorer histological differentiation. STAT3 expression was significantly associated with shorter survival of CCA patients and was predominately activated in CCA cell lines. In the CCA-hamsters, STATs expression was gradually increased along the carcinogenesis, especially at 30 days post-infection in which the inflammatory response was markedly observed, showing the correlation between the inflammation and STATs activation. Moreover, LPS-induced macrophage-conditioned media could mediate STAT3 activation in CCA cells. STAT3 is the major STAT, which plays roles in the inflammation that contributes to CCA carcinogenesis and progression and may serve as a marker for a poor prognosis of CCA. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. Use of an Autologous Liver Round Ligament Flap Zeros Postoperative Bile Leak after Curative Resection of Hilar Cholangiocarcinoma

    PubMed Central

    Sun, Da-Xin; Tan, Xiao-Dong; Gao, Feng; Xu, Jin; Cui, Dong-Xu; Dai, Xian-Wei

    2015-01-01

    Background Postoperative bile leak is a major surgical morbidity after curative resection with hepaticojejunostomy for hilar cholangiocarcinoma, especially in Bismuth-Corlette types III and IV. This retrospective study assessed the effectiveness and safety of an autologous hepatic round ligament flap (AHRLF) for reducing bile leak after hilar hepaticojejunostomy. Methods Nine type III and IV hilar cholangiocarcinoma patients were consecutively hospitalized for elective perihilar partial hepatectomy with hilar hepaticojejunostomy using an AHRLF between October 2009 and September 2013. The AHRLF was harvested to reinforce the perihilar hepaticojejunostomy. Main outcome measures included operative time, blood loss, postoperative recovery times, morbidity, bile leak, R0 resection rate, and overall survival. Results All patients underwent uneventful R0 resection with hilar hepaticojejunostomy. No patient experienced postoperative bile leak. Conclusions The AHRLF was associated with lack of bile leak after curative perihilar hepatectomy with hepaticojejunostomy for hilar cholangiocarcinoma, without compromising oncologic safety, and is recommended in selected patients. PMID:25938440

  17. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability

    PubMed Central

    Fricker, M; O'Prey, J; Tolkovsky, A M; Ryan, K M

    2010-01-01

    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first time, evidence that Puma is subject to post-translational control through phosphorylation. We show that Puma is phosphorylated at multiple sites, with the major site of phosphorylation being serine 10. Replacing serine 10 with alanine causes reduced Puma turnover and enhanced cell death. Interestingly, Puma turnover occurs through the proteasome, and substitution of serine 10 causes elevated Puma levels independently of macroautophagy, Bcl-2 family member binding, caspase activity and apoptotic death. We conclude, therefore, that phosphorylation of Puma at serine 10 promotes Puma turnover, represses Puma's cell death potential and promotes cell survival. Owing to the highly pro-apoptotic nature of Puma, these studies highlight an important additional regulatory step in the determination of cellular life or death. PMID:21364664

  18. Adult bile duct strictures: differentiating benign biliary stenosis from cholangiocarcinoma.

    PubMed

    Nguyen Canh, Hiep; Harada, Kenichi

    2016-12-01

    Biliary epithelial cells preferentially respond to various insults under chronic pathological conditions leading to reactively atypical changes, hyperplasia, or the development of biliary neoplasms (such as biliary intraepithelial neoplasia, intraductal papillary neoplasm of the bile duct, and cholangiocarcinoma). Moreover, benign biliary strictures can be caused by a variety of disorders (such as IgG4-related sclerosing cholangitis, eosinophilic cholangitis, and follicular cholangitis) and often mimic malignancies, despite their benign nature. In addition, primary sclerosing cholangitis is a well-characterized precursor lesion of cholangiocarcinoma and many other chronic inflammatory disorders increase the risk of malignancies. Because of these factors and the changes in biliary epithelial cells, biliary strictures frequently pose a diagnostic challenge. Although the ability to differentiate neoplastic from non-neoplastic biliary strictures has markedly progressed with the advance in radiological modalities, brush cytology and bile duct biopsy examination remains effective. However, no single modality is adequate to diagnose benign biliary strictures because of the low sensitivity. Therefore, understanding the underlying causes by compiling the entire clinical, laboratory, and imaging data; considering the under-recognized causes; and collaborating between experts in various fields including cytopathologists with multiple approaches is necessary to achieve an accurate diagnosis.

  19. Inflammation-based prognostic score is a useful predictor of postoperative outcome in patients with extrahepatic cholangiocarcinoma.

    PubMed

    Oshiro, Yukio; Sasaki, Ryoko; Fukunaga, Kiyoshi; Kondo, Tadashi; Oda, Tatsuya; Takahashi, Hideto; Ohkohchi, Nobuhiro

    2013-03-01

    Recent studies have revealed that the Glasgow prognostic score (GPS), an inflammation-based prognostic score, is useful for predicting outcome in a variety of cancers. This study sought to investigate the significance of GPS for prognostication of patients who underwent surgery with extrahepatic cholangiocarcinoma. We retrospectively analyzed a total of 62 patients who underwent resection for extrahepatic cholangiocarcinoma. We calculated the GPS as follows: patients with both an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (<35 g/L) were allocated a score of 2; patients with one or none of these abnormalities were allocated a s ore of 1 or 0, respectively. Prognostic significance was analyzed by the log-rank test and a Cox proportional hazards model. Overall survival rate was 25.5 % at 5 years for all 62 patients. Venous invasion (p = 0.01), pathological primary tumor category (p = 0.013), lymph node metastasis category (p < 0.001), TNM stage (p < 0.001), and GPS (p = 0.008) were significantly associated with survival by univariate analysis. A Cox model demonstrated that increased GPS was an independent predictive factor with poor prognosis. The preoperative GPS is a useful predictor of postoperative outcome in patients with extrahepatic cholangiocarcinoma.

  20. Clinical significance of isolated biliary candidiasis in patients with unresectable cholangiocarcinoma.

    PubMed

    Kim, In-Ho; Choi, Jae-Ki; Lee, Dong-Gun; Lee, In Seok; Hong, Tae Ho; You, Young Kyoung; Chun, Ho Jong; Lee, Myung Ah

    2016-10-01

    The frequency of isolated biliary candidiasis is increasing in cancer patients. The clinical significance of isolated biliary candidiasis remains unclear. We analyzed the risk factors of biliary candidiasis and outcomes of the patients with unresectable cholangiocarcinoma after percutaneous transhepatic biliary drainage (PTBD). Among 430 patients who underwent PTBD between January 2012 and March 2015, 121 patients had unresectable cholangiocarcinoma. Bile and blood samples were collected for consecutive fungal culture. The study cohort included 49 women and 72 men with a median age of 71 years. Multivariate analysis showed that cancer progression (P=0.013), concurrent presence of another microorganism (P=0.010), and previous long-term (>7 days) antibiotic use (P=0.011) were potential risk factors of biliary candidiasis. Chemotherapy was not associated with overall biliary candidiasis (P=0.196), but was significantly related to repeated biliary candidiasis (P=0.011). Patients with isolated biliary candidiasis showed remarkably reduced survival compared with those without [median overall survival (OS): 32 vs 62 days, P=0.011]. Subgroup analysis was also performed. Patients with repeated candidiasis had markedly decreased survival compared with those with transient candidiasis (median OS: 30 vs 49 days, P=0.046). Biliary candidiasis was identified as a poor prognostic factor by univariate and multivariate analyses (P=0.033). Four cases of repeated candidiasis (4/19, 21%) showed Candida species in consecutive blood culture until the end of the study, but others showed no candidemia. Isolated biliary candidiasis may be associated with poor prognosis in patients with unresectable cholangiocarcinoma. Especially, repeated biliary candidiasis may have the possibility of progression to candidemia. We suggest that biliary dilatation treatment or antifungal agents might be helpful for patients with biliary candidiasis.

  1. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  2. De-novo cholangiocarcinoma in native common bile duct remnant following OLT for primary sclerosing cholangitis.

    PubMed

    Landaverde, Carmen; Ng, Vivian; Sato, Alisa; Tabibian, James; Durazo, Francisco; Busuttil, Ronald

    2009-01-01

    Primary sclerosing cholangitis (PSC) is a chronic, progressive, inflammatory and obstructive disease of the intra- and extra-hepatic bile ducts of unknown etiology. Currently, orthotopic liver transplantation (OLT) is the only definitive treatment for PSC-related end-stage liver disease. However, PSC has been known to recur in the grafted liver. Roux-en-Y hepaticojejunostomy is more commonly performed than choledochocholedochostomy for PSC, although choledochocholedochostomy has been found to be safe and efficacious for PSC if the distal common bile duct is uninvolved at the time of OLT. Our case is unique in that it describes a patient who developed de-novo cholangiocarcinoma in the remnant portion of the native common bile duct six years after OLT with choledochocholedochostomy for PSC-associated end-stage liver disease without having PSC recurrence. In conclusion, our case report indicates that choledochocholedochostomy may not be desirable in PSC due to an increased risk of developing cholangiocarcinoma in the native common bile duct. This risk exists as well with a Roux-en-Y hepaticojejunostomy in the remaining intra-duodenal and intra-pancreatic biliary epithelium, although in theory to a lesser extent. Therefore, the risk of developing cholangiocarcinoma in the recipient common bile duct can only be completely eliminated by performing a Whipple procedure at the time of OLT.

  3. Cholangiocarcinoma in a middle-aged patient working at a printing plant.

    PubMed

    Tanaka, Shogo; Fukumoto, Nobusuke; Ohno, Kohichi; Tanaka, Sayaka; Ohsawa, Masahiko; Yamamoto, Takatsugu; Nakanuma, Yasuni; Kuboo, Shoji

    2014-06-01

    A 39-year-old male with elevated serum transferases consulted our hospital in September 2010. Since 1999, he had worked at a printing company using organic solvents. Cholangiography revealed stenosis of the left hepatic duct with peripheral dilation, stricture of the right hepatic duct, and irregularity of the extrahepatic bile duct. As a preoperative diagnosis of sclerosing cholangitis and cholangiocarcinoma was made, extended left hepatectomy with resection of the extrahepatic bile duct and anastomosis of the anterior and posterior branches of the bile duct and the jejunum (Roux-en Y reconstruction) were performed. A histological examination showed papillary carcinoma of the medial hepatic bile duct with intraductal growth, and biliary intraepithelial neoplasia-2/3 lesions from the medial hepatic bile duct to the right hepatic and the common bile ducts. Chronic cholangitis was shown around the tumors. Postoperatively, the patient was treated with adjuvant chemo-radiation, and he is doing well 30 months after the operation, without recurrence. Unknown causes, including exposure to organic solvents, might have induced chronic bile duct injury and contributed to the development of cholangiocarcinoma.

  4. Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation.

    PubMed

    Schofield, Alice V; Gamell, Cristina; Suryadinata, Randy; Sarcevic, Boris; Bernard, Ora

    2013-03-15

    Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.

  5. Regulation of N-formyl peptide-mediated degranulation by receptor phosphorylation.

    PubMed

    Vines, Charlotte M; Xue, Mei; Maestas, Diane C; Cimino, Daniel F; Prossnitz, Eric R

    2002-12-15

    One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.

  6. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility.

    PubMed

    Shlevkov, Evgeny; Kramer, Tal; Schapansky, Jason; LaVoie, Matthew J; Schwarz, Thomas L

    2016-10-11

    The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy.

  7. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility

    PubMed Central

    Shlevkov, Evgeny; Kramer, Tal; Schapansky, Jason; LaVoie, Matthew J.; Schwarz, Thomas L.

    2016-01-01

    The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy. PMID:27679849

  8. Left hepatectomy combined with hepatic artery resection for hilar cholangiocarcinoma: A retrospective cohort study.

    PubMed

    Peng, Chihan; Li, Chuan; Wen, Tianfu; Yan, Lvnan; Li, Bo

    2016-08-01

    To investigate the efficacy of our technique and policy on left hepatectomy (LH) with hepatic artery resection but without arterial reconstruction (HAR) in selected patients with hilar cholangiocarcinoma. From May 2005 to May 2012, 61 patients with hilar cholangiocarcinoma underwent left hepatectomy. These patients were divided into two groups: the LH with HAR group (n = 26) and the LH alone group (n = 35), based on whether hepatic artery resection was performed. We evaluated the serum total and direct bilirubin on postoperative day 7, length of hospital stay after surgery, postoperative complications, long-term postoperative survival and disease-free survival. The improvement in jaundice after surgery was comparable between the two groups (P = 0.837). There were no significant differences in the rates of postoperative complications or mortality between the LH with HAR group and the LH group (P = 0.654 and no assessment, respectively). The cumulative 1-, 2-, 3- and 5-year survival rates were 61.5%, 49%, 40.8% and 30.6% and 71.4%, 58.7%, 51.3% and 38.5%, respectively, in the LH with HAR group and the LH group (P = 0.383, including perioperative deaths). The cumulative 1-, 2-, 3- and 5-year disease-free survival rates were 61.9%, 41.6%, 29.7% and 14.8% and 58.2%, 50.7%, 44.3% and 23.6% in the LH with HAR group and the LH group, respectively (P = 0.695, including perioperative deaths). The postoperative complication rate was higher in patients with severe jaundice than those with non-severe jaundice, but no significant difference was detected (56.3% (9/16) vs. 46.7% (46.7%), P = 0.804). Similarly, 18.8% (3/16) postoperative mortality was found in patients with severe jaundice, compared to 4.4% (2/45) in those with non-severe jaundice. The difference was not significant (P = 0.139). For the cumulative 1-, 2-, 3- and 5-year survival and cumulative 1-, 2-, 3- and 5-year disease-free survival rates, patients with severe jaundice had poorer outcomes than

  9. Hybrid Capture-Based Tumor Sequencing and Copy Number Analysis to Confirm Origin of Metachronous Metastases in BRCA1-Mutant Cholangiocarcinoma Harboring a Novel YWHAZ-BRAF Fusion.

    PubMed

    Lim, Huat C; Montesion, Meagan; Botton, Thomas; Collisson, Eric A; Umetsu, Sarah E; Behr, Spencer C; Gordan, John D; Stephens, Phil J; Kelley, Robin K

    2018-04-05

    Biliary tract cancers such as cholangiocarcinoma represent a heterogeneous group of cancers that can be difficult to diagnose. Recent comprehensive genomic analyses in large cholangiocarcinoma cohorts have defined important molecular subgroups within cholangiocarcinoma that may relate to anatomic location and etiology [1-4] and may predict responsiveness to targeted therapies in development [5-7]. These emerging data highlight the potential for tumor genomics to inform diagnosis and treatment options in this challenging tumor type. We report the case of a patient with a germline BRCA1 mutation who presented with a cholangiocarcinoma driven by the novel YWHAZ-BRAF fusion. Hybrid capture-based DNA sequencing and copy number analysis performed as part of clinical care demonstrated that two later-occurring tumors were clonally derived from the primary cholangiocarcinoma rather than distinct new primaries, revealing an unusual pattern of late metachronous metastasis. We discuss the clinical significance of these genetic alterations and their relevance to therapeutic strategies. Hybrid capture-based next-generation DNA sequencing assays can provide diagnostic clarity in patients with unusual patterns of metastasis and recurrence in which the pathologic diagnosis is ambiguous.To our knowledge, this is the first reported case of a YWHAZ-BRAF fusion in pancreaticobiliary cancer, and a very rare case of cholangiocarcinoma in the setting of a germline BRCA1 mutation.The patient's BRCA1 mutation and YWHAZ-BRAF fusion constitute potential targets for future therapy. © AlphaMed Press 2018.

  10. Regulation of Catalytic and Non-catalytic Functions of the Drosophila Ste20 Kinase Slik by Activation Segment Phosphorylation.

    PubMed

    Panneton, Vincent; Nath, Apurba; Sader, Fadi; Delaunay, Nathalie; Pelletier, Ariane; Maier, Dominic; Oh, Karen; Hipfner, David R

    2015-08-21

    Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. PKA-regulated VASP phosphorylation promotes extrusion of transformed cells from the epithelium

    PubMed Central

    Anton, Katarzyna A.; Sinclair, John; Ohoka, Atsuko; Kajita, Mihoko; Ishikawa, Susumu; Benz, Peter M.; Renne, Thomas; Balda, Maria; Matter, Karl; Fujita, Yasuyuki

    2014-01-01

    ABSTRACT At the early stages of carcinogenesis, transformation occurs in single cells within tissues. In an epithelial monolayer, such mutated cells are recognized by their normal neighbors and are often apically extruded. The apical extrusion requires cytoskeletal reorganization and changes in cell shape, but the molecular switches involved in the regulation of these processes are poorly understood. Here, using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry, we have identified proteins that are modulated in transformed cells upon their interaction with normal cells. Phosphorylation of VASP at serine 239 is specifically upregulated in RasV12-transformed cells when they are surrounded by normal cells. VASP phosphorylation is required for the cell shape changes and apical extrusion of Ras-transformed cells. Furthermore, PKA is activated in Ras-transformed cells that are surrounded by normal cells, leading to VASP phosphorylation. These results indicate that the PKA–VASP pathway is a crucial regulator of tumor cell extrusion from the epithelium, and they shed light on the events occurring at the early stage of carcinogenesis. PMID:24963131

  12. Stent Placement With or Without Photodynamic Therapy Using Porfimer Sodium as Palliative Treatment in Treating Patients With Stage III or Stage IV Cholangiocarcinoma That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2013-04-02

    Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer

  13. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thusmore » releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.« less

  14. A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters

    PubMed Central

    Bruck, Nathalie; Vitoux, Dominique; Ferry, Christine; Duong, Vanessa; Bauer, Annie; de Thé, Hughes; Rochette-Egly, Cécile

    2009-01-01

    The nuclear retinoic acid (RA) receptor alpha (RARα) is a transcriptional transregulator that controls the expression of specific gene subsets through binding at response elements and dynamic interactions with coregulators, which are coordinated by the ligand. Here, we highlighted a novel paradigm in which the transcription of RARα target genes is controlled by phosphorylation cascades initiated by the rapid RA activation of the p38MAPK/MSK1 pathway. We demonstrate that MSK1 phosphorylates RARα at S369 located in the ligand-binding domain, allowing the binding of TFIIH and thereby phosphorylation of the N-terminal domain at S77 by cdk7/cyclin H. MSK1 also phosphorylates histone H3 at S10. Finally, the phosphorylation cascade initiated by MSK1 controls the recruitment of RARα/TFIIH complexes to response elements and subsequently RARα target gene activation. Cancer cells characterized by a deregulated p38MAPK/MSK1 pathway, do not respond to RA, outlining the essential contribution of the RA-triggered phosphorylation cascade in RA signalling. PMID:19078967

  15. Establishment of cholangiocarcinoma cell lines from patients in the endemic area of liver fluke infection in Thailand.

    PubMed

    Saensa-Ard, Sunitta; Leuangwattanawanit, Saman; Senggunprai, Laddawan; Namwat, Nisana; Kongpetch, Sarinya; Chamgramol, Yaovalux; Loilome, Watcharin; Khansaard, Walaiporn; Jusakul, Apinya; Prawan, Auemduan; Pairojkul, Chawalit; Khantikeo, Narong; Yongvanit, Puangrat; Kukongviriyapan, Veerapol

    2017-11-01

    Cholangiocarcinoma is a rare type of cancer which is an increasingly discernible health threat. The disease is usually very difficult in diagnosis and various treatment modalities are typically not effective. Cholangiocarcinoma is a complex and very heterogeneous malignancy characterized by tumor location, different risk factors, molecular profiling, and prognosis. Cancer cell lines represent an important tool for investigation in various aspects of tumor biology and molecular therapeutics. We established two cell lines, KKU-452 and KKU-023, which were derived from patients residing in the endemic area of liver fluke infection in Thailand. Both of tumor tissues have gross pathology of perihilar and intrahepatic mass-forming cholangiocarcinoma. Two cell lines were characterized for their biological, molecular and genetic properties. KKU-452 and KKU-023 cells are both adherent cells with epithelium morphology, but have some differences in their growth pattern (a doubling time of 17.9 vs 34.8 h, respectively) and the expression of epithelial bile duct markers, CK7 and CK19. Cytogenetic analysis of KKU-452 and KKU-023 cells revealed their highly complex karyotypes; hypertriploid and hypotetraploid, respectively, with multiple chromosomal aberrations. Both cell lines showed mutations in p53 but not in KRAS. KKU-452 showed a very rapid migration and invasion properties in concert with low expression of E-cadherin and high expression of N-cadherin, whereas KKU-023 showed opposite characters. KKU-023, but not KKU-452, showed in vivo tumorigenicity in xenografted nude mice. Those two established cholangiocarcinoma cell lines with unique characters may be valuable for better understanding the process of carcinogenesis and developing new therapeutics for the patients.

  16. Overexpression of pig selenoprotein S blocks OTA-induced promotion of PCV2 replication by inhibiting oxidative stress and p38 phosphorylation in PK15 cells.

    PubMed

    Gan, Fang; Hu, Zhihua; Huang, Yu; Xue, Hongxia; Huang, Da; Qian, Gang; Hu, Junfa; Chen, Xingxiang; Wang, Tian; Huang, Kehe

    2016-04-12

    Porcine circovirus type 2 (PCV2) is the primary cause of porcine circovirus disease, and ochratoxin A (OTA)-induced oxidative stress promotes PCV2 replication. In humans, selenoprotein S (SelS) has antioxidant ability, but it is unclear whether SelS affects viral infection. Here, we stably transfected PK15 cells with pig pCDNA3.1-SelS to overexpress SelS. Selenium (Se) at 2 or 4 μM and SelS overexpression blocked the OTA-induced increases of PCV2 DNA copy number and infected cell numbers. SelS overexpression also increased glutathione (GSH), NF-E2-related factor 2 (Nrf2) mRNA, and γ-glutamyl-cysteine synthetase mRNA levels; decreased reactive oxygen species (ROS) levels; and inhibited p38 phosphorylation in PCV2-infected PK15 cells, regardless of OTA treatment. Buthionine sulfoximine reversed all of the above SelS-induced changes. siRNA-mediated SelS knockdown decreased Nrf2 mRNA and GSH levels, increased ROS levels, and promoted PCV2 replication in OTA-treated PK15 cells. These data indicate that pig SelS blocks OTA-induced promotion of PCV2 replication by inhibiting the oxidative stress and p38 phosphorylation in PK15 cells.

  17. Overexpression of pig selenoprotein S blocks OTA-induced promotion of PCV2 replication by inhibiting oxidative stress and p38 phosphorylation in PK15 cells

    PubMed Central

    Gan, Fang; Hu, Zhihua; Huang, Yu; Xue, Hongxia; Huang, Da; Qian, Gang; Hu, Junfa; Chen, Xingxiang; Wang, Tian; Huang, Kehe

    2016-01-01

    Porcine circovirus type 2 (PCV2) is the primary cause of porcine circovirus disease, and ochratoxin A (OTA)-induced oxidative stress promotes PCV2 replication. In humans, selenoprotein S (SelS) has antioxidant ability, but it is unclear whether SelS affects viral infection. Here, we stably transfected PK15 cells with pig pCDNA3.1-SelS to overexpress SelS. Selenium (Se) at 2 or 4 μM and SelS overexpression blocked the OTA-induced increases of PCV2 DNA copy number and infected cell numbers. SelS overexpression also increased glutathione (GSH), NF-E2-related factor 2 (Nrf2) mRNA, and γ-glutamyl-cysteine synthetase mRNA levels; decreased reactive oxygen species (ROS) levels; and inhibited p38 phosphorylation in PCV2-infected PK15 cells, regardless of OTA treatment. Buthionine sulfoximine reversed all of the above SelS-induced changes. siRNA-mediated SelS knockdown decreased Nrf2 mRNA and GSH levels, increased ROS levels, and promoted PCV2 replication in OTA-treated PK15 cells. These data indicate that pig SelS blocks OTA-induced promotion of PCV2 replication by inhibiting the oxidative stress and p38 phosphorylation in PK15 cells. PMID:26943035

  18. Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization.

    PubMed

    Zhao, Miao; Spiess, Matthias; Johansson, Henrik J; Olofsson, Helene; Hu, Jianjiang; Lehtiö, Janne; Strömblad, Staffan

    2017-09-29

    p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.

  19. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    PubMed Central

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han; Lim, Jing Quan; Huang, Mi Ni; Padmanabhan, Nisha; Nellore, Vishwa; Kongpetch, Sarinya; Ng, Alvin Wei Tian; Ng, Ley Moy; Choo, Su Pin; Myint, Swe Swe; Thanan, Raynoo; Nagarajan, Sanjanaa; Lim, Weng Khong; Ng, Cedric Chuan Young; Boot, Arnoud; Liu, Mo; Ong, Choon Kiat; Rajasegaran, Vikneswari; Lie, Stefanus; Lim, Alvin Soon Tiong; Lim, Tse Hui; Tan, Jing; Loh, Jia Liang; McPherson, John R.; Khuntikeo, Narong; Bhudhisawasdi, Vajaraphongsa; Yongvanit, Puangrat; Wongkham, Sopit; Totoki, Yasushi; Nakamura, Hiromi; Arai, Yasuhito; Yamasaki, Satoshi; Chow, Pierce Kah-Hoe; Chung, Alexander Yaw Fui; Ooi, London Lucien Peng Jin; Lim, Kiat Hon; Dima, Simona; Duda, Dan G.; Popescu, Irinel; Broet, Philippe; Hsieh, Sen-Yung; Yu, Ming-Chin; Scarpa, Aldo; Lai, Jiaming; Luo, Di-Xian; Carvalho, André Lopes; Vettore, André Luiz; Rhee, Hyungjin; Park, Young Nyun; Alexandrov, Ludmil B.; Gordân, Raluca; Rozen, Steven G.; Shibata, Tatsuhiro; Pairojkul, Chawalit; Teh, Bin Tean; Tan, Patrick

    2017-01-01

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters – Fluke-Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3′UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation of H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores – mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer. PMID:28667006

  20. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  1. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    DOE PAGES

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han; ...

    2017-06-30

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  2. Impact of incidental/misdiagnosed intrahepatic cholangiocarcinoma and combined hepatocellular cholangiocarcinoma on the outcomes of liver transplantation: an institutional case series and literature review.

    PubMed

    Gupta, Rahul; Togashi, Junichi; Akamatsu, Nobuhisa; Sakamoto, Yoshihiro; Kokudo, Norihiro

    2017-08-01

    Intrahepatic cholangiocarcinoma (ICC) or combined hepatocellular cholangiocarcinoma (cHCC-CC) is considered to be contraindications for liver transplantation (LT); however, recent studies have shown that the outcomes of LT in small incidental ICC/cHCC-CC tumors are comparable to those in HCC. Studies reporting the survival outcome of patient(s) undergoing LT and found to have incidental or misdiagnosed ICC and/or cHCC-CC in liver explants were reviewed. Our institutional data were also included in the review analysis. In this review, 21 studies reporting 19865 cases of liver transplantation were included. The incidence of misdiagnosed/incidental ICC/cHCC-CC in liver explants was found to be 0.7% (136/19636). Hepatitis B and C virus infection was reported in 19 and 47% of the cases, respectively. The recurrence rate after LT was 42%. The most common site for recurrence was extrahepatic (73%). The disease free survival rate at 3 years was reported to range 33-86%. The 3-year overall survival rate was reported be 22-70%. The outcome of LT in patients with incidental/misdiagnosed ICC/cHCC-CC was found to be poorer than that of matched patients with HCC in five studies; however, the outcome becomes equivalent to those of HCC in cases of small (<2 cm), well-differentiated ICC/cHCC-CC tumors without vascular invasion.

  3. Expression of connective tissue growth factor is a prognostic marker for patients with intrahepatic cholangiocarcinoma.

    PubMed

    Gardini, A; Corti, B; Fiorentino, M; Altimari, A; Ercolani, G; Grazi, G L; Pinna, A D; Grigioni, W F; D'Errico Grigioni, A

    2005-04-01

    Connective tissue growth factor is a member of the 'CCN' protein family. Consistent with its profibrotic properties, it is over-expressed in several human epithelial malignancies. We have retrospectively evaluated by immunohistochemistry the presence of connective tissue growth factor in archival tissues from 55 resected intrahepatic cholangiocarcinomas and compared its expression to the main pathological parameters, disease free and overall survival. Tumours were scored as high and low/absent expressers (> or =50%, 0-50% cells, respectively). Thirty-three of 55 cholangiocarcinomas (60%) were high and 22 (40%) low expressers. No significant correlation was found between connective tissue growth factor and tumour grade, tumour location, vascular and perineural invasion. Eighteen of 22 (82%) low/absent expressers and 12/33 (36%) high expressers had recurrence of disease (P=0.001). Low/absent expressers showed a poor disease free and overall survival compared with the higher expressers (P<0.001). Vascular invasion was related to tumour recurrence (P=0.025) and to decreased disease free survival (P<0.05). During proportional hazard regression analysis, only connective tissue growth factor was found to influence disease free survival (P=0.01). Expression of connective tissue growth factor is an independent prognostic indicator of both tumour recurrence and overall survival for intrahepatic cholangiocarcinoma patients regardless of tumour location, tumour grade, vascular and perineural invasion.

  4. Histopathology of a benign bile duct lesion in the liver: Morphologic mimicker or precursor of intrahepatic cholangiocarcinoma.

    PubMed

    Lee, Kyoung-Bun

    2016-09-01

    A bile duct lesion originating from intrahepatic bile ducts is generally regarded as an incidental pathologic finding in liver specimens. However, a recent study on the molecular classification of intrahepatic cholangiocarcinoma has focused on the heterogeneity of this carcinoma and has suggested that the cells of different origins present in the biliary tree may have a major role in the mechanism of oncogenesis. In this review, benign intrahepatic bile duct lesions-regarded in the past as reactive changes or remnant developmental anomalies and now noted to have potential for developing precursor lesions of intrahepatic cholangiocarcinoma-are discussed by focusing on the histopathologic features and its implications in clinical practice.

  5. An interesting case of inflammatory myofibroblastic tumor presenting as cholangiocarcinoma.

    PubMed

    Karimi, Mehrdad; Tizmaghz, Adnan; Shabestanipour, Ghazaal

    2018-04-06

    Inflammatory myofibroblastic tumor (IMT) is a reactive or inflammatory state mostly affecting the pulmonary system and commonly occurs in children and young adults. IMT presentation in the hepatic duct bifurcation is very rare and has sporadically been reported before. A 12-year-old girl presented with jaundice, pruritus which had begun 5 weeks previously. Ultrasound revealed intrahepatic biliary ductal dilation and an isoechoic 25*30 mm lesion at or near the confluence of the right and left hepatic ducts that were suggestive of a hilar cholangiocarcinoma. Limited resection was decided intraoperatively because the intraoperative frozen section assessment of the CBD, right and left hepatic duct wall samples and porta hepatis lymph nodes was normal. Histologically the tumor proved an inflammatory myofibroblastic tumor (IMT). Almost all patients with resectable IMT should be managed with radical surgical resection or single nonsteroidal anti-inflammatory drugs. In addition, conservative treatments with NSAIDs, corticosteroids or chemotherapeutic agents could not be started in many cases due to the lack of definitive diagnosis of the mass preoperatively. Thus, surgical removal is frequently unavoidable. Biliary IBT is extremely rare and should be considered by all hepatobiliary surgeons dealing with the teens with cholangiocarcinoma, to avoid unnecessary major surgical resections. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Differentiation of infiltrative cholangiocarcinoma from benign common bile duct stricture using three-dimensional dynamic contrast-enhanced MRI with MRCP.

    PubMed

    Yu, X-R; Huang, W-Y; Zhang, B-Y; Li, H-Q; Geng, D-Y

    2014-06-01

    To retrospectively evaluate the criteria for discriminating infiltrative cholangiocarcinoma from benign common bile duct (CBD) stricture using three-dimensional dynamic contrast-enhanced (3D-DCE) magnetic resonance imaging (MRI) combined with magnetic resonance cholangiopancreatography (MRCP) imaging and to determine the predictors for cholangiocarcinoma versus benign CBD stricture. 3D-DCE MRI and MRCP images in 28 patients with infiltrative cholangiocarcinoma and 23 patients with benign causes of CBD stricture were reviewed retrospectively. The final diagnosis was based on surgical or biopsy records. Two radiologists analysed the MRI images for asymmetry, including the wall thickness, length, and enhancement pattern of the narrowed CBD segment, and upstream CBD dilatation. MRI findings that could be used as predictors were identified by univariate analysis and multivariable stepwise logistic regression analysis. Malignant strictures were significantly thicker (4.4 ± 1.2 mm) and longer (16.7 ± 7.7 mm) than the benign strictures (p < 0.05), and upstream CBD dilatation was larger in the infiltrative cholangiocarcinoma cases (20.7 ± 5.7 mm) than in the benign cases (16.5 ± 5.2 mm; p = 0.018). During both the portal venous and equilibrium phases, hyperenhancement was more frequently observed in malignant cases than in benign cases (p < 0.001). The results of the multivariable stepwise logistic regression analysis showed that both hyperenhancement of the involved CBD during the equilibrium phase and the ductal thickness were significant predictors for malignant strictures. When two diagnostic predictive values were used in combination, almost all patients with malignant strictures (n = 26, 92.9%) and benign strictures (n = 21, 91.3%) were correctly identified; the overall accuracy was 92.2% with correct classifications in 47 of the 51 patients. Infiltrative cholangiocarcinoma and benign CBD strictures could be effectively differentiated using DCE-MRI and MRCP based

  8. Endoscopic transpapillary brush cytology and forceps biopsy in patients with hilar cholangiocarcinoma.

    PubMed

    Weber, Andreas; von Weyhern, Claus; Fend, Falko; Schneider, Jochen; Neu, Bruno; Meining, Alexander; Weidenbach, Hans; Schmid, Roland M; Prinz, Christian

    2008-02-21

    To evaluate the sensitivity of brush cytology and forceps biopsy in a homogeneous patient group with hilar cholangiocarcinoma. Brush cytology and forceps biopsy were routinely performed in patients with suspected malignant biliary strictures. Fifty-eight consecutive patients undergoing endoscopic retrograde cholangio-pancreatography (ERCP) including forceps biopsy and brush cytology in patients with hilar cholangiocarcinoma between 1995-2005. Positive results for malignancy were obtained in 24/58 patients (41.4%) by brush cytology and in 31/58 patients (53.4%) by forceps biopsy. The combination of both techniques brush cytology and forceps biopsy resulted only in a minor increase in diagnostic sensitivity to 60.3% (35/58 patients). In 20/58 patients (34.5%), diagnosis were obtained by both positive cytology and positive histology, in 11/58 (19%) by positive histology (negative cytology) and only 4/58 patients (6.9%) were confirmed by positive cytology (negative histology). Brush cytology and forceps biopsy have only limited sensitivity for the diagnosis of malignant hilar tumors. In our eyes, additional diagnostic techniques should be evaluated and should become routine in patients with negative cytological and histological findings.

  9. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    PubMed

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Bile Duct Cancer (Cholangiocarcinoma) Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version

    Cancer.gov

    Bile duct cancer, or cholangiocarcinoma, is rare. Bile ducts are tubes that carry bile between the liver, gallbladder, and small intestine. Bile duct cancer can occur in the intrahepatic, perihilar (Klatskin tumor), or distal extrahepatic area. Learn about tests to diagnose and the stages of bile duct cancer.

  11. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    PubMed

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-02-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  12. PD-L1 expression in extrahepatic cholangiocarcinoma.

    PubMed

    Walter, Dirk; Herrmann, Eva; Schnitzbauer, Andreas A; Zeuzem, Stefan; Hansmann, Martin Leo; Peveling-Oberhag, Jan; Hartmann, Sylvia

    2017-09-01

    To investigate the expression of the programmed cell death 1 (PD-1) receptor-programmed cell death ligand 1 (PD-L1) pathway and the clinicopathological characteristics in extrahepatic cholangiocarcinoma (eCCA). Tissue samples from patients with eCCA [n = 69; perihilar cholangiocarcinoma (CCA), 40; and distal CCA, 29] who underwent surgical resection in the period from 2007 to 2015 were evaluated for PD-1, PD-L1, CD3 and CD163 expression, and correlations with clinicopathological characteristics, including survival data, were determined. PD-L1 was found on both tumour cells of eCCA (8/69, 11.6%) and tumour-associated macrophages (21/69, 30.4%). Significant correlations of PD-L1 expression on cancer cells with venous invasion (P = 0.031) and poor differentiation of the tumour (P = 0.048) were observed. In 19 of 69 (27.5%) samples, tumour-infiltrating lymphocytes (TILs) expressed PD-1, whereas infiltration with CD3-positive and CD163-positive cells was found in 63 of 69 (91.3%) and 68 of 69 (98.6%) cases, respectively. The presence of fewer than five CD3-positive cells per high-power field was significantly correlated with poorer differentiation (P = 0.015) and venous invasion (P < 0.001) of CCA. PD-L1 expression was not correlated with patient survival, but PD-L1 expression on tumour cells combined with low infiltration of CD3-positive TILs was associated with an unfavourable outcome (P = 0.027). Only a small number of eCCA patients are PD-L1-positive, which might be important for future application of PD-1/PD-L1-targeted immune-modulating therapy in these patients. A small subgroup of eCCAs with PD-L1 expression and low lymphocytic infiltration showed more invasive growth and worse overall survival. © 2017 John Wiley & Sons Ltd.

  13. Endoscopic and Photodynamic Therapy of Cholangiocarcinoma.

    PubMed

    Meier, Benjamin; Caca, Karel

    2016-12-01

    Most patients with cholangiocarcinoma (CCA) have unresectable disease. Endoscopic bile duct drainage is one of the major objectives of palliation of obstructive jaundice. Stent implantation using endoscopic retrograde cholangiography is considered to be the standard technique. Unilateral versus bilateral stenting is associated with different advantages and disadvantages; however, a standard approach is still not defined. As there are various kinds of stents, there is an ongoing discussion on which stent to use in which situation. Palliation of obstructive jaundice can be augmented through the use of photodynamic therapy (PDT). Studies have shown a prolonged survival for the combinations of PDT and different stent applications as well as combinations of PDT and additional systemic chemotherapy. More well-designed studies are needed to better evaluate and standardize endoscopic treatment of unresectable CCA.

  14. PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing.

    PubMed

    Espert, Antonio; Uluocak, Pelin; Bastos, Ricardo Nunes; Mangat, Davinderpreet; Graab, Philipp; Gruneberg, Ulrike

    2014-09-29

    The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC. © 2014 Espert et al.

  15. Gab2 Phosphorylation by RSK Inhibits Shp2 Recruitment and Cell Motility

    PubMed Central

    Zhang, Xiaocui; Lavoie, Genevieve; Fort, Loic; Huttlin, Edward L.; Tcherkezian, Joseph; Galan, Jacob A.; Gu, Haihua; Gygi, Steven P.; Carreno, Sebastien

    2013-01-01

    The scaffolding adapter protein Gab2 (Grb2-associated binder) participates in the signaling response evoked by various growth factors and cytokines. Gab2 is overexpressed in several human malignancies, including breast cancer, and was shown to promote mammary epithelial cell migration. The role of Gab2 in the activation of different signaling pathways is well documented, but less is known regarding the feedback mechanisms responsible for its inactivation. We now demonstrate that activation of the Ras/mitogen-activated protein kinase (MAPK) pathway promotes Gab2 phosphorylation on basic consensus motifs. More specifically, we show that RSK (p90 ribosomal S6 kinase) phosphorylates Gab2 on three conserved residues, both in vivo and in vitro. Mutation of these phosphorylation sites does not alter Gab2 binding to Grb2, but instead, we show that Gab2 phosphorylation inhibits the recruitment of the tyrosine phosphatase Shp2 in response to growth factors. Expression of an unphosphorylatable Gab2 mutant in mammary epithelial cells promotes an invasion-like phenotype and increases cell motility. Taken together, these results suggest that RSK is part of a negative-feedback loop that restricts Gab2-dependent epithelial cell motility. On the basis of the widespread role of Gab2 in receptor signaling, these findings also suggest that RSK plays a regulatory function in diverse receptor systems. PMID:23401857

  16. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma

    PubMed Central

    Liang, Winnie S.; Fonseca, Rafael; Bryce, Alan H.; McCullough, Ann E.; Barrett, Michael T.; Hunt, Katherine; Patel, Maitray D.; Young, Scott W.; Collins, Joseph M.; Silva, Alvin C.; Condjella, Rachel M.; Block, Matthew; McWilliams, Robert R.; Lazaridis, Konstantinos N.; Klee, Eric W.; Bible, Keith C.; Harris, Pamela; Oliver, Gavin R.; Bhavsar, Jaysheel D.; Nair, Asha A.; Middha, Sumit; Asmann, Yan; Kocher, Jean-Pierre; Schahl, Kimberly; Kipp, Benjamin R.; Barr Fritcher, Emily G.; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Phillips, Lori; McDonald, Jackie; Adkins, Jonathan; Mastrian, Stephen D.; Placek, Pamela; Watanabe, Aprill T.; LoBello, Janine; Han, Haiyong; Von Hoff, Daniel; Craig, David W.; Stewart, A. Keith; Carpten, John D.

    2014-01-01

    Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations. PMID:24550739

  17. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death.

    PubMed

    Reimer, Lasse; Vesterager, Louise Buur; Betzer, Cristine; Zheng, Jin; Nielsen, Lærke Dalsgaard; Kofoed, Rikke Hahn; Lassen, Louise Berkhoudt; Bølcho, Ulrik; Paludan, Søren Riis; Fog, Karina; Jensen, Poul Henning

    2018-07-01

    Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy comprise a group of neurodegenerative diseases termed synucleinopathies. Synucleinopathie are, characterized by presence of inclusion bodies in degenerating brain cells which contain aggregated α-synuclein phosphorylated on Ser129. Although the inflammation-associated serine-threonine kinase, PKR (EIF2AK2), promotes cellular protection against infection, we demonstrate a pro-degenerative role of activated PKR in an α-synuclein-dependent cell model of multiple system atrophy, where inhibition and silencing of PKR decrease cellular degeneration. In vitro phosphorylation demonstrates that PKR can directly bind and phosphorylate monomeric and filamenteous α-synuclein on Ser129. Inhibition and knockdown of PKR reduce Ser129 phosphorylation in different models (SH-SY5Y ASYN cells, OLN-AS7 cells, primary mouse hippocampal neurons, and acute brain slices), while overexpression of constitutively active PKR increases Ser129 α-syn phosphorylation. Treatment with pre-formed α-synuclein fibrils, proteostatic stress-promoting MG-132 and known PKR activators, herpes simplex virus-1-∆ICP34.5 and LPS, as well as PKR inducer, IFN-β-1b, lead to increased levels of phosphorylated Ser129 α-synuclein that is completely blocked by simultaneous PKR inhibition. These results reveal a direct link between PKR and the phosphorylation and toxicity of α-synuclein, and they support that neuroinflammatory processes play a role in modulating the pathogenicity of α-synuclein. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  19. Carbon Monoxide and Nitric Oxide Mediate Cytoskeletal Reorganization in Microvascular Cells via Vasodilator-Stimulated Phosphoprotein Phosphorylation

    PubMed Central

    Li Calzi, Sergio; Purich, Daniel L.; Chang, Kyung Hee; Afzal, Aqeela; Nakagawa, Takahiko; Busik, Julia V.; Agarwal, Anupam; Segal, Mark S.; Grant, Maria B.

    2008-01-01

    OBJECTIVE— We examined the effect of the vasoactive agents carbon monoxide (CO) and nitric oxide (NO) on the phosphorylation and intracellular redistribution of vasodilator-stimulated phosphoprotein (VASP), a critical actin motor protein required for cell migration that also controls vasodilation and platelet aggregation. RESEARCH DESIGN AND METHODS— We examined the effect of donor-released CO and NO in endothelial progenitor cells (EPCs) and platelets from nondiabetic and diabetic subjects and in human microvascular endothelial cells (HMECs) cultured under low (5.5 mmol/l) or high (25 mmol/l) glucose conditions. VASP phosphorylation was evaluated using phosphorylation site-specific antibodies. RESULTS— In control platelets, CO selectively promotes phosphorylation at VASP Ser-157, whereas NO promotes phosphorylation primarily at Ser-157 and also at Ser-239, with maximal responses at 1 min with both agents on Ser-157 and at 15 min on Ser-239 with NO treatment. In diabetic platelets, neither agent resulted in VASP phosphorylation. In nondiabetic EPCs, NO and CO increased phosphorylation at Ser-239 and Ser-157, respectively, but this response was markedly reduced in diabetic EPCs. In endothelial cells cultured under low glucose conditions, both CO and NO induced phosphorylation at Ser-157 and Ser-239; however, this response was completely lost when cells were cultured under high glucose conditions. In control EPCs and in HMECs exposed to low glucose, VASP was redistributed to filopodia-like structures following CO or NO exposure; however, redistribution was dramatically attenuated under high glucose conditions. CONCLUSIONS— Vasoactive gases CO and NO promote cytoskeletal changes through site- and cell type–specific VASP phosphorylation, and in diabetes, blunted responses to these agents may lead to reduced vascular repair and tissue perfusion. PMID:18559661

  20. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.

    PubMed

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han; Lim, Jing Quan; Huang, Mi Ni; Padmanabhan, Nisha; Nellore, Vishwa; Kongpetch, Sarinya; Ng, Alvin Wei Tian; Ng, Ley Moy; Choo, Su Pin; Myint, Swe Swe; Thanan, Raynoo; Nagarajan, Sanjanaa; Lim, Weng Khong; Ng, Cedric Chuan Young; Boot, Arnoud; Liu, Mo; Ong, Choon Kiat; Rajasegaran, Vikneswari; Lie, Stefanus; Lim, Alvin Soon Tiong; Lim, Tse Hui; Tan, Jing; Loh, Jia Liang; McPherson, John R; Khuntikeo, Narong; Bhudhisawasdi, Vajaraphongsa; Yongvanit, Puangrat; Wongkham, Sopit; Totoki, Yasushi; Nakamura, Hiromi; Arai, Yasuhito; Yamasaki, Satoshi; Chow, Pierce Kah-Hoe; Chung, Alexander Yaw Fui; Ooi, London Lucien Peng Jin; Lim, Kiat Hon; Dima, Simona; Duda, Dan G; Popescu, Irinel; Broet, Philippe; Hsieh, Sen-Yung; Yu, Ming-Chin; Scarpa, Aldo; Lai, Jiaming; Luo, Di-Xian; Carvalho, André Lopes; Vettore, André Luiz; Rhee, Hyungjin; Park, Young Nyun; Alexandrov, Ludmil B; Gordân, Raluca; Rozen, Steven G; Shibata, Tatsuhiro; Pairojkul, Chawalit; Teh, Bin Tean; Tan, Patrick

    2017-10-01

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analyzed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined 4 CCA clusters-fluke-positive CCAs (clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations; conversely, fluke-negative CCAs (clusters 3/4) exhibit high copy-number alterations and PD-1 / PD-L2 expression, or epigenetic mutations ( IDH1/2, BAP1 ) and FGFR / PRKA -related gene rearrangements. Whole-genome analysis highlighted FGFR2 3' untranslated region deletion as a mechanism of FGFR2 upregulation. Integration of noncoding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation of H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores-mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Our results exemplify how genetics, epigenetics, and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer. Significance: Integrated whole-genome and epigenomic analysis of CCA on an international scale identifies new CCA driver genes, noncoding promoter mutations, and structural variants. CCA molecular landscapes differ radically by etiology, underscoring how distinct cancer subtypes in the same organ may arise through different extrinsic and intrinsic carcinogenic processes. Cancer Discov; 7(10); 1116-35. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 1047 . ©2017 American Association for Cancer Research.

  1. B7-H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma.

    PubMed

    Cheng, Rui; Chen, Yongqin; Zhou, Haohui; Wang, Bi; Du, Qiang; Chen, Yanling

    2018-05-01

    This study was designed to explore the expression of B7-H3 in human intrahepatic cholangiocarcinoma (ICC) and its association with the clinicopathologic factors. In the current study, the expression of B7-H3 in 45 patients with intrahepatic cholangiocarcinoma and 8 patients with hepatolithiasis was analyzed by immunohistochemistry, which revealed that B7-H3 was not expressed in hepatolithiatic tissues, but positively expressed in 57.8% (26/45) of the ICC cases. The expression of B7-H3 was significantly associated with lymph node metastases and venous invasion. A positive correlation was also observed between the expression of B7-H3 and MVD, an index for tumor angiogenesis. Further survival analysis indicated that patients with B7-H3 negative expression had higher overall survival (OS) and cancer-specific survival (CSS) rates than those with B7-H3 positive expression. Multivariate analysis revealed that B7-H3 expression was an independent prognostic indicator for poor OS and CSS of ICC patients. Our results suggest that B7-H3 may be a valuable biomarker in determining tumor progression and prognosis of intrahepatic cholangiocarcinoma. It is also a potential target for antivascular therapy of ICC. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  2. Delayed response to maintenance therapy after first-line chemotherapy in metastatic intrahepatic cholangiocarcinoma: a case report.

    PubMed

    Marciano, Roberta; Servetto, Alberto; Bianco, Cataldo; Bianco, Roberto

    2017-09-26

    Intrahepatic cholangiocarcinoma is an aggressive tumor originating in the epithelium of the bile duct, often associated with distant dissemination. The prognosis is poor and treatment is challenging due to low response rate to standard chemotherapy and lack of targeted therapies. Here we report the case of a 74-year-old white woman affected by intrahepatic cholangiocarcinoma with metastatic involvement of spleen, lung, peritoneum, and intra-abdominal lymph nodes. As first-line chemotherapy, she was given cisplatin-gemcitabine chemotherapy. The treatment was well tolerated with the exception of grade 1 constipation and a single episode of grade 4 thrombocytopenia occurring after the fourth course. After the first three courses of chemotherapy a computed tomography scan evaluation demonstrated no change; her CA19-9 levels were slightly decreased. However, after the sixth course of chemotherapy a computed tomography scan revealed a dimensional enlargement of the lung metastases; her CA19-9 levels increased. She was then treated with gemcitabine alone. After 2 months of gemcitabine monotherapy a significant regression of lung and spleen metastases, as well a CA19-9 level reduction, occurred. Eight months after the start of gemcitabine monotherapy no signs of progression were reported. Treatment of metastatic intrahepatic cholangiocarcinoma with gemcitabine as maintenance therapy after first-line chemotherapy could be continued until clear evidence of disease progression since delayed responses are possible.

  3. In vivo phosphorylation of a peptide tag for protein purification.

    PubMed

    Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles

    2016-05-01

    To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

  4. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.

    PubMed

    Singh, Amit Kumar; Rastogi, Shivangi; Shukla, Harish; Asalam, Mohd; Rath, Srikanta Kumar; Akhtar, Md Sohail

    2017-03-31

    In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown. Here we have identified Cdc15 as a potential kinase phosphorylating Ser-2 and Ser-5 of CTD for transcription during mitosis in the budding yeast. The phosphorylation of CTD by Cdc15 is independent of any prior Ser phosphorylation(s). The inactivation of Cdc15 causes reduction of global CTD phosphorylation during mitosis and affects the expression of genes whose transcript levels peak during mitosis. Cdc15 also influences the complete transcription of clb2 gene and phosphorylates Ser-5 at the promoter and Ser-2 toward the 3' end of the gene. The observation that Cdc15 could phosphorylate Ser-5, as well as Ser-2, during transcription in mitosis is in contrast to the phosphorylation marks put by the kinases in interphase (G 1 , S, and G 2 ), where Cdck7/Kin28 phosphorylates Ser-5 at promoter and Bur1/Ctk1 phosphorylates Ser-2 at the 3' end of the genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. ADAM-17 is a poor prognostic indicator for patients with hilar cholangiocarcinoma and is regulated by FoxM1.

    PubMed

    Jiao, Xiaodong; Yu, Wenlong; Qian, Jianxin; Chen, Ying; Wei, Peilian; Fang, Wenzheng; Yu, Guanzhen

    2018-05-18

    A-disintegrin and metalloproteinases (ADAMs) are members of a family of multidomain transmembrane and secreted proteins. Specific ADAMs are upregulated in human cancers and correlated with tumor progression and poor outcome, but rarely studied in human hilar cholangiocarcinoma (HC). This study aimed to explore the expression profiles of ADAMs and their potential underlying mechanisms promoting cancer progression. mRNA expression of ADAM-9, - 10, - 11, - 12, - 15, - 17, - 28, and - 33 was analyzed in human hilar cholangiocarcinoma (HC) samples. Immunohistochemical (IHC) analysis was used to detect the expression of ADAM-10, - 17, - 28, and FoxM1 in HC. The regulation of ADAM-17 by FoxM1 and their functional study was investigated in vivo and in vitro. ADAM-10, - 17, and - 28 were upregulated in tumors compared with matched non-cancerous tissues. IHC analysis revealed increased expression of ADAM-10, - 17, and - 28 in HC cells, and ADAM17 seems to be an independent prognostic factor. ADAM-17 is regulated by FoxM1. A decrease in the expression of ADAM-17 by silencing FoxM1 led to an inhibition of cell proliferation, tumor growth, and the production of tumor necrosis factor α. IHC analysis showed co-expression of FoxM1 and ADAM-17 in HC specimens. The findings of the present study show an important role of the cross-talk among FoxM1, ADAM-17, and TNFa in HC development and progression.

  6. The neural cell adhesion molecule promotes FGFR-dependent phosphorylation and membrane targeting of the exocyst complex to induce exocytosis in growth cones.

    PubMed

    Chernyshova, Yana; Leshchyns'ka, Iryna; Hsu, Shu-Chan; Schachner, Melitta; Sytnyk, Vladimir

    2011-03-09

    The exocyst complex is an essential regulator of polarized exocytosis involved in morphogenesis of neurons. We show that this complex binds to the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes FGF receptor-mediated phosphorylation of two tyrosine residues in the sec8 subunit of the exocyst complex and is required for efficient recruitment of the exocyst complex to growth cones. NCAM at the surface of growth cones induces Ca(2+)-dependent vesicle exocytosis, which is blocked by an inhibitor of L-type voltage-dependent Ca(2+) channels and tetanus toxin. Preferential exocytosis in growth cones underlying neurite outgrowth is inhibited in NCAM-deficient neurons as well as in neurons transfected with phosphorylation-deficient sec8 and dominant-negative peptides derived from the intracellular domain of NCAM. Thus, we reveal a novel role for a cell adhesion molecule in that it regulates addition of the new membrane to the cell surface of growth cones in developing neurons.

  7. Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma

    PubMed Central

    Murata, Miki; Yoshida, Katsunori; Yamaguchi, Takashi; Matsuzaki, Koichi

    2014-01-01

    Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future. PMID:25386050

  8. Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma.

    PubMed

    Murata, Miki; Yoshida, Katsunori; Yamaguchi, Takashi; Matsuzaki, Koichi

    2014-11-07

    Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future.

  9. Phosphorylation of Dopamine Transporter Serine 7 Modulates Cocaine Analog Binding*

    PubMed Central

    Moritz, Amy E.; Foster, James D.; Gorentla, Balachandra K.; Mazei-Robison, Michelle S.; Yang, Jae-Won; Sitte, Harald H.; Blakely, Randy D.; Vaughan, Roxanne A.

    2013-01-01

    As an approach to elucidating dopamine transporter (DAT) phosphorylation characteristics, we examined in vitro phosphorylation of a recombinant rat DAT N-terminal peptide (NDAT) using purified protein kinases. We found that NDAT becomes phosphorylated at single distinct sites by protein kinase A (Ser-7) and calcium-calmodulin-dependent protein kinase II (Ser-13) and at multiple sites (Ser-4, Ser-7, and Ser-13) by protein kinase C (PKC), implicating these residues as potential sites of DAT phosphorylation by these kinases. Mapping of rat striatal DAT phosphopeptides by two-dimensional thin layer chromatography revealed basal and PKC-stimulated phosphorylation of the same peptide fragments and comigration of PKC-stimulated phosphopeptide fragments with NDAT Ser-7 phosphopeptide markers. We further confirmed by site-directed mutagenesis and mass spectrometry that Ser-7 is a site for PKC-stimulated phosphorylation in heterologously expressed rat and human DATs. Mutation of Ser-7 and nearby residues strongly reduced the affinity of rat DAT for the cocaine analog (−)-2β-carbomethoxy-3β-(4-fluorophenyl) tropane (CFT), whereas in rat striatal tissue, conditions that promote DAT phosphorylation caused increased CFT affinity. Ser-7 mutation also affected zinc modulation of CFT binding, with Ala and Asp substitutions inducing opposing effects. These results identify Ser-7 as a major site for basal and PKC-stimulated phosphorylation of native and expressed DAT and suggest that Ser-7 phosphorylation modulates transporter conformational equilibria, shifting the transporter between high and low affinity cocaine binding states. PMID:23161550

  10. Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution*

    PubMed Central

    Mamais, Adamantios; Chia, Ruth; Beilina, Alexandra; Hauser, David N.; Hall, Christine; Lewis, Patrick A.; Cookson, Mark R.; Bandopadhyay, Rina

    2014-01-01

    Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser910/Ser935 mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser910/Ser935 phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function. PMID:24942733

  11. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2

    PubMed Central

    Zhou, Yue; Yamada, Naoki; Tanaka, Tomohiro; Hori, Takashi; Yokoyama, Satoru; Hayakawa, Yoshihiro; Yano, Seiji; Fukuoka, Junya; Koizumi, Keiichi; Saiki, Ikuo; Sakurai, Hiroaki

    2015-01-01

    Crosstalk between inflammatory signalling pathways and receptor tyrosine kinases has been revealed as an indicator of cancer malignant progression. In the present study, we focus on EphA2 receptor tyrosine kinase, which is overexpressed in many human cancers. It has been reported that ligand-independent phosphorylation of EphA2 at Ser-897 is induced by Akt. We show that inflammatory cytokines promote RSK-, not Akt-, dependent phosphorylation of EphA2 at Ser-897. In addition, the RSK–EphA2 signalling pathway controls cell migration and invasion of metastatic breast cancer cells. Moreover, Ser-897-phosphorylated EphA2 co-localizes with phosphorylated active form of RSK in various human tumour specimens, and this double positivity is related to poor survival in lung cancer patients, especially those with a smoking history. Taken together, these results indicate that the phosphorylation of EphA2 at Ser-897 is controlled by RSK and the RSK–EphA2 axis might contribute to cell motility and promote tumour malignant progression. PMID:26158630

  12. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2.

    PubMed

    Zhou, Yue; Yamada, Naoki; Tanaka, Tomohiro; Hori, Takashi; Yokoyama, Satoru; Hayakawa, Yoshihiro; Yano, Seiji; Fukuoka, Junya; Koizumi, Keiichi; Saiki, Ikuo; Sakurai, Hiroaki

    2015-07-09

    Crosstalk between inflammatory signalling pathways and receptor tyrosine kinases has been revealed as an indicator of cancer malignant progression. In the present study, we focus on EphA2 receptor tyrosine kinase, which is overexpressed in many human cancers. It has been reported that ligand-independent phosphorylation of EphA2 at Ser-897 is induced by Akt. We show that inflammatory cytokines promote RSK-, not Akt-, dependent phosphorylation of EphA2 at Ser-897. In addition, the RSK-EphA2 signalling pathway controls cell migration and invasion of metastatic breast cancer cells. Moreover, Ser-897-phosphorylated EphA2 co-localizes with phosphorylated active form of RSK in various human tumour specimens, and this double positivity is related to poor survival in lung cancer patients, especially those with a smoking history. Taken together, these results indicate that the phosphorylation of EphA2 at Ser-897 is controlled by RSK and the RSK-EphA2 axis might contribute to cell motility and promote tumour malignant progression.

  13. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  14. Preoperative Platelet to Albumin Ratio Predicts Outcome of Patients with Cholangiocarcinoma.

    PubMed

    Saito, Nobuhiro; Shirai, Yoshihiro; Horiuchi, Takashi; Sugano, Hiroshi; Shiba, Hiroaki; Sakamoto, Taro; Uwagawa, Tadashi; Yanaga, Katsuhiko

    2018-02-01

    The purpose of this study was to evaluate the prognostic index of the preoperative platelet to albumin ratio (PAR) in patients who underwent primary resection for cholangiocarcinoma. A total of 59 patients were divided into two groups: those with PAR ≥72.6×10 3 or <72.6×10 3 according to the area under the receiver operating characteristics curve. PAR was significantly inversely associated with overall (OS) and disease-free (DFS) survival on univariate analysis. PAR showed significance on multivariate analysis for OS (hazard ratio=6.232, 95% confidence interval=1.283-30.279, p=0.023), along with tumor differentiation (p=0.009), nodal involvement (p=0.001), intraoperative blood loss (p=0.001), and serum carcinoembryonic antigen (CEA) (p=0.012). High PAR was also significantly associated poor DFS on multivariate analysis (hazard ratio(HR)=4.422, 95% confidence interval(CI)=1.168-16.732, p=0.029), along with tumor differentiation (p=0.009). PAR is a useful prognostic index for OS and DFS in patients with cholangiocarcinoma after primary resection. By accumulating cases prospectively, this new index may be a reference for use before neoadjuvant chemotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Endoscopic and Photodynamic Therapy of Cholangiocarcinoma

    PubMed Central

    Meier, Benjamin; Caca, Karel

    2016-01-01

    Background Most patients with cholangiocarcinoma (CCA) have unresectable disease. Endoscopic bile duct drainage is one of the major objectives of palliation of obstructive jaundice. Methods/Results Stent implantation using endoscopic retrograde cholangiography is considered to be the standard technique. Unilateral versus bilateral stenting is associated with different advantages and disadvantages; however, a standard approach is still not defined. As there are various kinds of stents, there is an ongoing discussion on which stent to use in which situation. Palliation of obstructive jaundice can be augmented through the use of photodynamic therapy (PDT). Studies have shown a prolonged survival for the combinations of PDT and different stent applications as well as combinations of PDT and additional systemic chemotherapy. Conclusion More well-designed studies are needed to better evaluate and standardize endoscopic treatment of unresectable CCA. PMID:28229075

  16. Evidence for a hepatocellular lineage in a combined hepatocellular-cholangiocarcinoma of transitional type.

    PubMed

    Fisher, H P; Doppl, W; Osborn, M; Altmannsberger, M

    1988-01-01

    A combined hepatocellular-cholangiocarcinoma (CHC) of transitional subtype and the surrounding cirrhotic liver tissue were investigated immunocytochemically by monoclonal antibodies specific for each of the keratin polypeptides 7, 8, 18 and 19. Different keratin subsets were found in different parts of the tumour. The hepatocellular component reveals keratins 8 and 18, with the bordering cells of trabecular formations additionally expressing keratins 7 and 19. The same keratins i.e. 7, 8, 18, 19 were found in normal bile duct epithelium as well as in cholangiocarcinomatous and transitional areas of hepatocellular and cholangiocellular differentiation. Normal hepatocytes express only keratin 8 and 18. In cirrhotic liver some modified hepatocytes additionally express keratin 7. When ductal transformation is observed in the marginal parts of portal tracts and fibrous septa the keratin polypeptide pattern mimics that of bile duct epithelium. The cholangiocellular metaplasia of hepatocytes observed here correlates well with findings in hepato-organogenesis and hepatocarcinogenesis and suggests that the transitional subtype of combined hepatocellular-cholangiocarcinoma is a variant of hepatocellular carcinoma.

  17. Endoscopic transpapillary brush cytology and forceps biopsy in patients with hilar cholangiocarcinoma

    PubMed Central

    Weber, Andreas; von Weyhern, Claus; Fend, Falko; Schneider, Jochen; Neu, Bruno; Meining, Alexander; Weidenbach, Hans; Schmid, Roland M; Prinz, Christian

    2008-01-01

    AIM: To evaluate the sensitivity of brush cytology and forceps biopsy in a homogeneous patient group with hilar cholangiocarcinoma. METHODS: Brush cytology and forceps biopsy were routinely performed in patients with suspected malignant biliary strictures. Fifty-eight consecutive patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) including forceps biopsy and brush cytology in patients with hilar cholangiocarcinoma between 1995-2005. RESULTS: Positive results for malignancy were obtained in 24/58 patients (41.4%) by brush cytology and in 31/58 patients (53.4%) by forceps biopsy. The combination of both techniques brush cytology and forceps biopsy resulted only in a minor increase in diagnostic sensitivity to 60.3% (35/58 patients). In 20/58 patients (34.5%), diagnosis were obtained by both positive cytology and positive histology, in 11/58 (19%) by positive histology (negative cytology) and only 4/58 patients (6.9%) were confirmed by positive cytology (negative histology). CONCLUSION: Brush cytology and forceps biopsy have only limited sensitivity for the diagnosis of malignant hilar tumors. In our eyes, additional diagnostic techniques should be evaluated and should become routine in patients with negative cytological and histological findings. PMID:18286693

  18. MiR-204 down-regulation elicited perturbation of a gene target signature common to human cholangiocarcinoma and gastric cancer.

    PubMed

    Canu, Valeria; Sacconi, Andrea; Lorenzon, Laura; Biagioni, Francesca; Lo Sardo, Federica; Diodoro, Maria Grazia; Muti, Paola; Garofalo, Alfredo; Strano, Sabrina; D'Errico, Antonietta; Grazi, Gian Luca; Cioce, Mario; Blandino, Giovanni

    2017-05-02

    There is high need of novel diagnostic and prognostic tools for tumors of the digestive system, such as gastric cancer and cholangiocarcinoma. We recently found that miR-204 was deeply downregulated in gastric cancer tissues. Here we investigated whether this was common to other tumors of the digestive system and whether this elicited a miR-204-dependent gene target signature, diagnostically and therapeutically relevant. Finally, we assessed the contribution of the identified target genes to the cell cycle progression and clonogenicity of gastric cancer and cholangiocarcinoma cell lines. We employed quantitative PCR and Affymetrix profiling for gene expression studies. In silico analysis aided us to identifying a miR-204 target signature in publicly available databases (TGCA). We employed transient transfection experiments, clonogenic assays and cell cycle profiling to evaluate the biological consequences of miR-204 perturbation. We identified a novel miR-204 gene target signature perturbed in gastric cancer and in cholangiocarcinoma specimens. We validated its prognostic relevance and mechanistically addressed its biological relevance in GC and CC cell lines. We suggest that restoring the physiological levels of miR-204 in some gastrointestinal cancers might be exploited therapeutically.

  19. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression

    PubMed Central

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  20. Arterio-biliary fistula as rare complication of chemoradiation therapy for intrahepatic cholangiocarcinoma

    PubMed Central

    Hayano, Koichi; Miura, Fumihiko; Amano, Hodaka; Toyota, Naoyuki; Wada, Keita; Kato, Kenichiro; Takada, Tadahiro; Asano, Takehide

    2010-01-01

    Significant hemobilia due to arterio-biliary fistula is a very rare complication of chemoradiation therapy (CRT) for unresectable intrahepatic cholangiocarcinoma (ICC). Here we report a case of arterio-biliary fistula after CRT for unresectable ICC demonstrated by angiographic examinations. This fistula was successfully treated by endovascular embolization. Hemobilia is a rare complication, but arterio-biliary fistula should be considered after CRT of ICC. PMID:21160700

  1. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma.

    PubMed

    Fontugne, Jacqueline; Augustin, Jérémy; Pujals, Anaïs; Compagnon, Philippe; Rousseau, Benoit; Luciani, Alain; Tournigand, Christophe; Cherqui, Daniel; Azoulay, Daniel; Pawlotsky, Jean-Michel; Calderaro, Julien

    2017-04-11

    Cholangiocarcinoma is an aggressive biliary neoplasm lacking effective therapeutic agents. Immunotherapies targeting the PD-L1/PD-1 immune checkpoint have shown encouraging results in solid and hematologic cancers in clinical trials. Response to these immunomodulators is correlated with PD-L1 expression. Our goal was to characterize PD-L1 expression in intra-hepatic (iCCA) and perihilar (pCCA) cholangiocarcinomas, and to correlate our results with clinicopathological features, density of tumor-infiltrating lymphocytes (TILs) and PD-1 expression.A series of 58 iCCAs and 41 pCCAs was included in the study. PD-L1, PD-1 and CD3 expression was investigated using immunohistochemistry. Density of TILs was evaluated by immunohistochemistry using a quantitative score of CD3-stained intratumoral lymphocytes.PD-L1 expression by neoplastic cells was observed in 9 cases (9%, 5 iCCAs and 4 pCCAs). PD-L1 positive inflammatory cell aggregates were identified in 46% (n = 46) of the cases (31 iCCAs and 15 pCCAs). PD-L1 expression by either neoplastic or inflammatory cells was associated to high density of CD3-positive TILs (p = 0.01 and p = 0.005, respectively). The number of PD-L1 positive inflammatory cell aggregates was higher in tumors with high PD-1 expression (p < 0.0001).Altogether, PD-L1 in iCCA and pCCA is mainly expressed in tumors with high density of TILs. Our results suggest that CCAs with dense intratumoral lymphocytic infiltration might represent good candidates for PD-L1/PD-1 blocking agents.

  2. Surgical and Palliative Management and Outcome in 184 Patients With Hilar Cholangiocarcinoma

    PubMed Central

    Witzigmann, Helmut; Berr, Frieder; Ringel, Ulrike; Caca, Karel; Uhlmann, Dirk; Schoppmeyer, Konrad; Tannapfel, Andrea; Wittekind, Christian; Mossner, Joachim; Hauss, Johann; Wiedmann, Marcus

    2006-01-01

    Objective: First, to analyze the strategy for 184 patients with hilar cholangiocarcinoma seen and treated at a single interdisciplinary hepatobiliary center during a 10-year period. Second, to compare long-term outcome in patients undergoing surgical or palliative treatment, and third to evaluate the role of photodynamic therapy in this concept. Summary Background Data: Tumor resection is attainable in a minority of patients (<30%). When resection is not possible, radiotherapy and/or chemotherapy have been found to be an ineffective palliative option. Recently, photodynamic therapy (PDT) has been evaluated as a palliative and neoadjuvant modality. Methods: Treatment and outcome data of 184 patients with hilar cholangiocarcinoma were analyzed prospectively between 1994 and 2004. Sixty patients underwent resection (8 after neoadjuvant PDT); 68 had PDT in addition to stenting and 56 had stenting alone. Results: The 30-day death rate after resection was 8.3%. Major complications occurred in 52%. The overall 1-, 3-, and 5-year survival rates were 69%, 30%, and 22%, respectively. R0, R1, and R2 resection resulted in 5-year survival rates of 27%, 10%, and 0%, respectively. Multivariate analysis identified R0 resection (P < 0.01), grading (P < 0.05), and on the limit to significance venous invasion (P = 0.06) as independent prognostic factors for survival. PDT and stenting resulted in longer median survival (12 vs. 6.4 months, P < 0.01), lower serum bilirubin levels (P < 0.05), and higher Karnofsky performance status (P < 0.01) as compared with stenting alone. Median survival after PDT and stenting, but not after stenting alone, did not differ from that after both R1 and R2 resection. Conclusion: Only complete tumor resection, including hepatic resection, enables long-term survival for patients with hilar cholangiocarcinoma. Palliative PDT and subsequent stenting resulted in longer survival than stenting alone and has a similar survival time compared with incomplete R1 and

  3. Phosphorylation promotes activation-induced cytidine deaminase activity at the Myc oncogene

    PubMed Central

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a mutator enzyme that targets immunoglobulin (Ig) genes to initiate antibody somatic hypermutation (SHM) and class switch recombination (CSR). Off-target AID association also occurs, which causes oncogenic mutations and chromosome rearrangements. However, AID occupancy does not directly correlate with DNA damage, suggesting that factors beyond AID association contribute to mutation targeting. CSR and SHM are regulated by phosphorylation on AID serine38 (pS38), but the role of pS38 in off-target activity has not been evaluated. We determined that lithium, a clinically used therapeutic, induced high AID pS38 levels. Using lithium and an AID-S38 phospho mutant, we compared the role of pS38 in AID activity at the Ig switch region and off-target Myc gene. We found that deficient pS38 abated AID chromatin association and CSR but not mutation at Myc. Enhanced pS38 elevated Myc translocation and mutation frequency but not CSR or Ig switch region mutation. Thus, AID activity can be differentially targeted by phosphorylation to induce oncogenic lesions. PMID:29122947

  4. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; College of Food Safety, Guizhou Medical University, Guiyang 550025; Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes thatmore » are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.« less

  5. Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome

    PubMed Central

    Skinner, John J.; Wang, Sheng; Lee, Jiyoung; Ong, Colin; Sommese, Ruth; Koelmel, Wolfgang; Hirschbeck, Maria; Kisker, Caroline; Lorenz, Kristina; Sosnick, Tobin R.; Rosner, Marsha Rich

    2017-01-01

    Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or “theft” mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein–coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein–Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change. PMID:29208709

  6. Olaparib in Treating Patients With Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations

    ClinicalTrials.gov

    2018-06-13

    Advanced Malignant Solid Neoplasm; Glioblastoma; IDH1 Gene Mutation; IDH2 Gene Mutation; Recurrent Cholangiocarcinoma; Recurrent Glioma; Recurrent Malignant Solid Neoplasm; WHO Grade II Glioma; WHO Grade III Glioma

  7. A rare case of non-metastatic cholangiocarcinoma in a long standing choledochal cyst

    PubMed Central

    Goukassian, ID; Kussman, SR; Toribo, Y; McAneny, DB; Rosen, JE

    2012-01-01

    Choledochal cysts are rare benign growths that can develop into cancerous lesions if left untreated. The cysts are commonly discovered incidentally during imaging procedures for other reasons. Surgical resection is recommended to avoid risk of cancer or metastatic disease. A rare case of a non-metastatic cholangiocarcinoma in a longstanding choledochal cyst is presented in this case report. PMID:24960829

  8. A rare case of non-metastatic cholangiocarcinoma in a long standing choledochal cyst.

    PubMed

    Goukassian, Id; Kussman, Sr; Toribo, Y; McAneny, Db; Rosen, Je

    2012-04-01

    Choledochal cysts are rare benign growths that can develop into cancerous lesions if left untreated. The cysts are commonly discovered incidentally during imaging procedures for other reasons. Surgical resection is recommended to avoid risk of cancer or metastatic disease. A rare case of a non-metastatic cholangiocarcinoma in a longstanding choledochal cyst is presented in this case report. © JSCR.

  9. A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition.

    PubMed

    Li, Lian; Guo, Hui-Jun; Zhu, Ling-Yan; Zheng, Limin; Liu, Xin

    2016-05-15

    Ganoderma lucidum (G. lucidum) is an oriental medical mushroom that has been widely used in Asian countries for centuries to prevent and treat different diseases, including cancer. The objective of this study was to investigate the effect of A supercritical-CO2 extract of G. lucidum spores on the transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of cholangiocarcinoma cells. This was an in vitro study with human cholangiocarcinoma TFK-1 cells treated with varying concentrations of G. lucidum. A supercritical-CO2 extract of G. lucidum spores (GLE) was obtained from completely sporoderm-broken germinating G. lucidum spores by supercritical fluid carbon dioxide (SCF-CO2) extraction. GLE pre-incubated with human cholangiocarcinoma TFK-1 cells prior to TGF-β1 treatment (2ng/ml) for 48h. Changes in EMT markers were analyzed by western blotting and immunofluorescence. The formation of F-actin stress fibers was assessed via immunostaining with phalloidin and examined using confocal microscopy. Additionally, the effect of the GLE on TGF-β1-induced migration was investigated by a Boyden chamber assay. TGF-β1-induced reduction in E-cadherin expression was associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin and Fibronectin were evident in predominantly elongated fibroblast-like cells. The GLE suppressed the TGF-β1-induced morphological changes and the changes in cadherin expression, and also inhibited the formation of F-actin stress fibers, which are a hallmark of EMT. The GLE also inhibited TGF-β1-induced migration of TFK-1 cells. Our findings provide new evidence that GLE suppress cholangiocarcinoma migration in vitro through inhibition of TGF-β1-induced EMT. The GLE may be clinically applied in the prevention and/or treatment of cancer metastasis. Copyright © 2016. Published by Elsevier GmbH.

  10. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II

    PubMed Central

    Zheng, Yupeng; John, Sam; Pesavento, James J.; Schultz-Norton, Jennifer R.; Schiltz, R. Louis; Baek, Sonjoon; Nardulli, Ann M.; Hager, Gordon L.; Kelleher, Neil L.

    2010-01-01

    Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants. PMID:20439994

  12. Combined hepatocellular-cholangiocarcinoma in a Yellow-headed Amazon (Amazona oratrix).

    PubMed

    Tennakoon, Anusha Hemamali; Izawa, Takeshi; Fujita, Daisuke; Denda, Yuki; Seto, Eiko; Sasai, Hiroshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2013-11-01

    A 9-year-old male Yellow-headed Amazon (Amazona oratrix) with a history of anorexia and vomiting died of a liver tumor. The tumor consisted of neoplastic cells with hepatocellular and cholangiocellular differentiations and their intermingled areas. Neoplastic hepatocytes showed islands or trabecular growth with vacuolated eosinophilic cytoplasm. Cells showing biliary differentiation formed ducts or tubules lined by cytokeratin AE1/AE3-positive epithelia, accompanied by desmoplasia consisting of myofibroblasts reacting to α-smooth muscle actin and desmin. The tumor was diagnosed as a combined hepatocellular-cholangiocarcinoma, which is very rare in the avian.

  13. Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.

    PubMed

    Zhou, X Edward; He, Yuanzheng; de Waal, Parker W; Gao, Xiang; Kang, Yanyong; Van Eps, Ned; Yin, Yanting; Pal, Kuntal; Goswami, Devrishi; White, Thomas A; Barty, Anton; Latorraca, Naomi R; Chapman, Henry N; Hubbell, Wayne L; Dror, Ron O; Stevens, Raymond C; Cherezov, Vadim; Gurevich, Vsevolod V; Griffin, Patrick R; Ernst, Oliver P; Melcher, Karsten; Xu, H Eric

    2017-07-27

    G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. P2X7, NMDA and BDNF receptors converge on GSK3 phosphorylation and cooperate to promote survival in cerebellar granule neurons.

    PubMed

    Ortega, Felipe; Pérez-Sen, Raquel; Morente, Verónica; Delicado, Esmerilda G; Miras-Portugal, Maria Teresa

    2010-05-01

    Glycogen synthase kinase-3 (GSK3) is a key player in the regulation of neuronal survival. Herein, we report evidence of an interaction between P2X7 receptors with NMDA and BDNF receptors at the level of GSK3 signalling and neuroprotection. The activation of these receptors in granule neurons led to a sustained pattern of GSK3 phosphorylation that was mainly PKC-dependent. BDNF was the most potent at inducing GSK3 phosphorylation, which was also dependent on PI3K. The P2X7 agonist, BzATP, exhibited additive effects with both NMDA and BDNF to rescue granule neurons from cell death induced by PI3K inhibition. This survival effect was mediated by the PKC-dependent GSK3 pathway. In addition, ERK1/2 proteins were also involved in BDNF protective effect. These results show the function of ATP in amplifying neuroprotective actions of glutamate and neurotrophins, and support the role of GSK3 as an important convergence point for these survival promoting factors in granule neurons.

  15. Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity

    PubMed Central

    Panayiotou, Richard; Miralles, Francesc; Pawlowski, Rafal; Diring, Jessica; Flynn, Helen R; Skehel, Mark; Treisman, Richard

    2016-01-01

    The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A. DOI: http://dx.doi.org/10.7554/eLife.15460.001 PMID:27304076

  16. Novel Silicone-Coated 125I Seeds for the Treatment of Extrahepatic Cholangiocarcinoma

    PubMed Central

    Zhang, Weixing; Cai, Xiaobo; Chen, Dafan; Wan, Xinjian

    2016-01-01

    125I seeds coated with titanium are considered a safe and effective interstitial brachytherapy for tumors, while the cost of 125I seeds is a major problem for the patients implanting lots of seeds. The aim of this paper was to develop a novel silicone coating for 125I seeds with a lower cost. In order to show the radionuclide utilization ratio, the silicone was coated onto the seeds using the electro-spinning method and the radioactivity was evaluated, then the anti-tumor efficacy of silicone 125I seeds was compared with titanium 125I seeds. The seeds were divided into four groups: A (control), B (pure silicone), C (silicone 125I), D (titanium 125I) at 2 Gy or 4 Gy. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human extrahepatic cholangiocarcinoma cell line FRH-0201 and tumor-bearing BALB/c nude mice. The silicone 125I seeds showed higher radioactivity; the rate of cell apoptosis in vitro and the histopathology in vivo demonstrated that the silicone 125I seeds shared similar anti-tumor efficacy with the titanium 125I seeds for the treatment of extrahepatic cholangiocarcinoma, while they have a much lower cost. PMID:26840346

  17. Sorafenib Tosylate and Erlotinib Hydrochloride in Treating Patients With Locally Advanced, Unresectable, or Metastatic Gallbladder Cancer or Cholangiocarcinoma

    ClinicalTrials.gov

    2015-06-03

    Extrahepatic Bile Duct Adenocarcinoma; Gallbladder Adenocarcinoma; Gallbladder Adenocarcinoma With Squamous Metaplasia; Hilar Cholangiocarcinoma; Recurrent Extrahepatic Bile Duct Carcinoma; Recurrent Gallbladder Carcinoma; Undifferentiated Gallbladder Carcinoma; Unresectable Extrahepatic Bile Duct Carcinoma; Unresectable Gallbladder Carcinoma

  18. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effectsmore » of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus

  19. Different carcinogenic process in cholangiocarcinoma cases epidemically developing among workers of a printing company in Japan.

    PubMed

    Sato, Yasunori; Kubo, Shoji; Takemura, Shigekazu; Sugawara, Yasuhiko; Tanaka, Shogo; Fujikawa, Masahiro; Arimoto, Akira; Harada, Kenichi; Sasaki, Motoko; Nakanuma, Yasuni

    2014-01-01

    Recently, cholangiocarcinoma has epidemically developed among young adult workers of a printing company in Japan. Exposure to organic solvents including 1,2-dichloropropane and/or dichloromethane is supposed to be associated with the carcinoma development. The metabolism of dichloromethane proceeds through a Theta-class glutathione S-transferase (GST) T1-1-catalyzed pathway, where its reactive intermediates have been implicated in genotoxicity and carcinogenicity. This study examined features of the carcinogenic process of the cholangiocarcinoma developed in the printing company. Surgically resected specimens of the cholangiocarcinoma cases were analyzed, where all cases were associated with precursor lesions such as biliary intraepithelial neoplasia (BilIN) and/or intraductal papillary neoplasm of the bile duct (IPNB). Immunohistochemical analysis confirmed constitutional expression of GST T1-1 in normal hepatobiliary tract. Immunostaining of γ-H2AX, a marker of DNA double strand break, showed that its expression was significantly increased in foci of BilIN, IPNB and invasive carcinoma as well as in non-neoplastic biliary epithelial cells of the printing company cases when compared to that of control groups. In the printing company cases, immunohistochemical expression of p53 was observed in non-neoplastic biliary epithelial cells and BilIN-1. Mutations of KRAS and GNAS were detected in foci of BilIN in one out of 3 cases of the printing company. These results revealed different carcinogenic process of the printing company cases, suggesting that the exposed organic solvents might act as a carcinogen for biliary epithelial cells by causing DNA damage, thereby contributing to the carcinoma development.

  20. Trefoil factors: Tumor progression markers and mitogens via EGFR/MAPK activation in cholangiocarcinoma

    PubMed Central

    Kosriwong, Kanuengnuch; Menheniott, Trevelyan R; Giraud, Andrew S; Jearanaikoon, Patcharee; Sripa, Banchob; Limpaiboon, Temduang

    2011-01-01

    AIM: To investigate trefoil factor (TFF) gene copy number, mRNA and protein expression as potential biomarkers in cholangiocarcinoma (CCA). METHODS: TFF mRNA levels, gene copy number and protein expression were determined respectively by quantitative reverse transcription polymerase chain reaction (PCR), quantitative PCR and immunohistochemistry in bile duct epithelium biopsies collected from individuals with CCA, precancerous bile duct dysplasia and from disease-free controls. The functional impact of recombinant human (rh)TFF2 peptide treatment on proliferation and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling was assessed in the CCA cell line, KMBC, by viable cell counting and immunoblotting, respectively. RESULTS: TFF1, TFF2 and TFF3 mRNA expression was significantly increased in CCA tissue compared to disease-free controls, and was unrelated to gene copy number. TFF1 immunoreactivity was strongly increased in both dysplasia and CCA, whereas TFF2 immunoreactivity was increased only in CCA compared to disease-free controls. By contrast, TFF3 immunoreactivity was moderately decreased in dysplasia and further decreased in CCA. Kaplan-Meier analysis found no association of TFF mRNA, protein and copy number with age, gender, histological subtype, and patient survival time. Treatment of KMBC cells with rhTFF2 stimulated proliferation, triggered phosphorylation of EGFR and downstream extracellular signal related kinase (ERK), whereas co-incubation with the EGFR tyrosine kinase inhibitor, PD153035, blocked rhTFF2-dependent proliferation and EGFR/ERK responses. CONCLUSION: TFF mRNA/protein expression is indicative of CCA tumor progression, but not predictive for histological sub-type or survival time. TFF2 is mitogenic in CCA via EGFR/MAPK activation. PMID:21472131

  1. Huntingtin-Interacting Protein 1 Phosphorylation by Receptor Tyrosine Kinases

    PubMed Central

    Ames, Heather M.; Wang, Anmin A.; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W.; Soyombo, Abigail A.

    2013-01-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine “HIP1 phosphorylation motif” (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival. PMID:23836884

  2. Huntingtin-interacting protein 1 phosphorylation by receptor tyrosine kinases.

    PubMed

    Ames, Heather M; Wang, Anmin A; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W; Soyombo, Abigail A; Ross, Theodora S

    2013-09-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine "HIP1 phosphorylation motif" (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.

  3. E-cadherin and, in its absence, N-cadherin promotes Nanog expression in mouse embryonic stem cells via STAT3 phosphorylation.

    PubMed

    Hawkins, Kate; Mohamet, Lisa; Ritson, Sarah; Merry, Catherine L R; Ward, Christopher M

    2012-09-01

    We have recently shown that loss of E-cadherin in mouse embryonic stem cells (mESCs) results in significant alterations to both the transcriptome and hierarchy of pluripotency-associated signaling pathways. Here, we show that E-cadherin promotes kruppel-like factor 4 (Klf4) and Nanog transcript and protein expression in mESCs via STAT3 phosphorylation and that β-catenin, and its binding region in E-cadherin, is required for this function. To further investigate the role of E-cadherin in leukemia inhibitory factor (LIF)-dependent pluripotency, E-cadherin null (Ecad(-/-)) mESCs were cultured in LIF/bone morphogenetic protein supplemented medium. Under these conditions, Ecad(-/-) mESCs exhibited partial restoration of cell-cell contact and STAT3 phosphorylation and upregulated Klf4, Nanog, and N-cadherin transcripts and protein. Abrogation of N-cadherin using an inhibitory peptide caused loss of phospho STAT3, Klf4, and Nanog in these cells, demonstrating that N-cadherin supports LIF-dependent pluripotency in this context. We therefore identify a novel molecular mechanism linking E- and N-cadherin to the core circuitry of pluripotency in mESCs. This mechanism may explain the recently documented role of E-cadherin in efficient induced pluripotent stem cell reprogramming. Copyright © 2012 AlphaMed Press.

  4. Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde

    2004-02-15

    The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment withmore » insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.« less

  5. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Hong-Bin; Li, Tao; Ma, Dong-Zhou; Zhi, Hua

    2018-06-22

    association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.

  6. Human Cytomegalovirus pUL97 Regulates the Viral Major Immediate Early Promoter by Phosphorylation-Mediated Disruption of Histone Deacetylase 1 Binding

    PubMed Central

    Bigley, Tarin M.; Reitsma, Justin M.; Mirza, Shama P.

    2013-01-01

    Human cytomegalovirus (HCMV) is a common agent of congenital infection and causes severe disease in immunocompromised patients. Current approved therapies focus on inhibiting viral DNA replication. The HCMV kinase pUL97 contributes to multiple stages of viral infection including DNA replication, controlling the cell cycle, and virion maturation. Our studies demonstrate that pUL97 also functions by influencing immediate early (IE) gene expression during the initial stages of infection. Inhibition of kinase activity using the antiviral compound maribavir or deletion of the UL97 gene resulted in decreased expression of viral immediate early genes during infection. Expression of pUL97 was sufficient to transactivate IE1 gene expression from the viral genome, which was dependent on viral kinase activity. We observed that pUL97 associates with histone deacetylase 1 (HDAC1). HDAC1 is a transcriptional corepressor that acts to silence expression of viral genes. We observed that inhibition or deletion of pUL97 kinase resulted in increased HDAC1 and decreased histone H3 lysine 9 acetylation associating with the viral major immediate early (MIE) promoter. IE expression during pUL97 inhibition or deletion was rescued following inhibition of deacetylase activity. HDAC1 associates with chromatin by protein-protein interactions. Expression of active but not inactive pUL97 kinase decreased HDAC1 interaction with the transcriptional repressor protein DAXX. Finally, using mass spectrometry, we found that HDAC1 is uniquely phosphorylated upon expression of pUL97. Our results support the conclusion that HCMV pUL97 kinase regulates viral immediate early gene expression by phosphorylation-mediated disruption of HDAC1 binding to the MIE promoter. PMID:23616659

  7. β-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-κB activation

    PubMed Central

    Luan, Bing; Zhang, Zhenning; Wu, Yalan; Kang, Jiuhong; Pei, Gang

    2005-01-01

    NF-κB activation is an important mechanism of mammalian UV response to protect cells. UV-induced NF-κB activation depends on the casein kinase II (CK2) phosphorylation of IκBα at a cluster of C-terminal sites, but how it is regulated remains unclear. Here we demonstrate that β-arrestin2 can function as an effective suppressor of UV-induced NF-κB activation through its direct interaction with IκBα. CK2 phosphorylation of β-arrestin2 blocks its interaction with IκBα and abolishes its suppression of NF-κB activation, indicating that the β-arrestin2 phosphorylation is critical. Moreover, stimulation of β2-adrenergic receptors, a representative of G-protein-coupled receptors in epidermal cells, promotes dephosphorylation of β-arrestin2 and its suppression of NF-κB activation. Consequently, the β-arrestin2 suppression leads to promotion of UV-induced cell death, which is also under regulation of β-arrestin2 phosphorylation. Thus, β-arrestin2 is identified as a phosphorylation-regulated suppressor of UV response and this may play a functional role in the response of epidermal cells to UV. PMID:16308565

  8. Phosphorylation of MgrA and its effect on expression of the NorA and NorB efflux pumps of Staphylococcus aureus.

    PubMed

    Truong-Bolduc, Que Chi; Hooper, David C

    2010-05-01

    MgrA is a global regulator in Staphylococcus aureus that controls the expression of diverse genes encoding virulence factors and multidrug resistance (MDR) efflux transporters. We identified pknB, which encodes the (Ser/Thr) kinase PknB, in the S. aureus genome. PknB was able to autophosphorylate as well as phosphorylate purified MgrA. We demonstrated that rsbU, which encodes a Ser/Thr phosphatase and is involved in the activation of the SigB regulon, was able to dephosphorylate MgrA-P but not PknB-P. Serines 110 and 113 of MgrA were found to be phosphorylated, and Ala substitutions at these positions resulted in reductions in the level of phosphorylation of MgrA. DNA gel shift binding assays using norA and norB promoters showed that MgrA-P was able to bind the norB promoter but not the norA promoter, a pattern which was the reverse of that for unphosphorylated MgrA. The double mutant MgrA(S110A-S113A) bound to the norA promoter but not the norB promoter. The double mutant led to a 2-fold decrease in norA transcripts and a 2-fold decrease in the MICs of norfloxacin and ciprofloxacin in strain RN6390. Thus, phosphorylation of MgrA results in loss of binding to the norA promoter, but with a gain of the ability to bind the norB promoter. Loss of the ability to phosphorylate MgrA by Ala substitution resulted in increased repression of norA expression and in reductions in susceptibilities to NorA substrates.

  9. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  10. CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment.

    PubMed

    Thanee, Malinee; Loilome, Watcharin; Techasen, Anchalee; Sugihara, Eiji; Okazaki, Shogo; Abe, Shinya; Ueda, Shiho; Masuko, Takashi; Namwat, Nisana; Khuntikeo, Narong; Titapun, Attapol; Pairojkul, Chawalit; Saya, Hideyuki; Yongvanit, Puangrat

    2016-07-01

    Expression of CD44, especially the variant isoforms (CD44v) of this major cancer stem cell marker, contributes to reactive oxygen species (ROS) defense through stabilizing xCT (a cystine-glutamate transporter) and promoting glutathione synthesis. This enhances cancer development and increases chemotherapy resistance. We investigate the role of CD44v in the regulation of the ROS defense system in cholangiocarcinoma (CCA). Immunohistochemical staining of CD44v and p38(MAPK) (a major ROS target) expression in Opisthorchis viverrini-induced hamster CCA tissues (at 60, 90, 120, and 180 days) reveals a decreased phospho-p38(MAPK) signal, whereas the CD44v signal was increased during bile duct transformation. Patients with CCA showed CD44v overexpression and negative-phospho-p38(MAPK) patients a significantly shorter survival rate than the low CD44v signal and positive-phospho-p38(MAPK) patients (P = 0.030). Knockdown of CD44 showed that xCT and glutathione levels were decreased, leading to a high level of ROS. We examined xCT-targeted CD44v cancer stem cell therapy using sulfasalazine. Glutathione decreased and ROS increased after the treatment, leading to inhibition of cell proliferation and induction of cell death. Thus, the accumulation of CD44v leads to the suppression of p38(MAPK) in transforming bile duct cells. The redox status regulation of CCA cells depends on the expression of CD44v to contribute the xCT function and is a link to the poor prognosis of patients. Thus, an xCT inhibitor could inhibit cell growth and activate cell death. This suggests that an xCT-targeting drug may improve CCA therapy by sensitization to the available drug (e.g. gemcitabine) by blocking the mechanism of the cell's ROS defensive system. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation.

    PubMed

    Liu, Jing; Qu, Xinyu; Shao, Liwei; Hu, Yuan; Yu, Xin; Lan, Peixiang; Guo, Qie; Han, Qiuju; Zhang, Jian; Zhang, Cai

    2018-03-04

    Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.

  12. Deubiquitinylase USP47 Promotes RelA Phosphorylation and Survival in Gastric Cancer Cells.

    PubMed

    Naghavi, Lara; Schwalbe, Martin; Ghanem, Ahmed; Naumann, Michael

    2018-05-22

    Every year, gastric cancer causes around 819,000 deaths worldwide. The incidence of gastric cancer in the western world is slowly declining, but the prognosis is unpromising. In Germany, the 5-year-survival rate is around 32%, and the average life span after diagnosis is 6 to 9 months. Therapy of gastric cancer patients comprises a gastrectomy and perioperative or adjuvant chemotherapy. However, resistance of gastric cancer cells to these agents is widespread; thus, improved chemotherapeutic approaches are required. Nuclear factor kappa B (NF-κB) transcription factors are associated with anti-apoptosis, carcinogenesis, and chemoresistance, and thus, constitute attractive targets for therapeutic intervention. In immunoblots, we show that ubiquitin specific protease 47 (USP47) promotes β-transducin repeat-containing protein (βTrCP) stability and phosphorylation of RelA. Furthermore, after knockdown of USP47 by RNA interference, we analyzed in gastric cancer cell lines metabolic activity/viability in an MTT assay, and apoptotic cell death by Annexin V staining and poly(ADP-Ribose) polymerase (PARP)-1, caspase 3, and caspase 8 cleavage, respectively. We found that USP47 contributes to cell viability and chemoresistance in NCI-N87 gastric carcinoma cells treated with etoposide and camptothecin. Inhibition of USP47 might be a suitable strategy to downregulate NF-κB activity, and to overcome chemoresistance in gastric cancer.

  13. Potential diagnostic performance of contrast-enhanced ultrasound and tumor markers in differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma.

    PubMed

    Huang, Xiao-Wen; Huang, Yang; Chen, Li-da; Wang, Zhu; Yang, Zheng; Liu, Jin-Ya; Xie, Xiao-Yan; Lu, Ming-De; Shen, Shun-Li; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of the combination of tumor markers [alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9)] and imaging features in differentiating combined hepatocellular-cholangiocarcinoma (CHC) from hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). Forty consecutive patients with pathologically proven CHC were retrospectively evaluated with contrast-enhanced ultrasound (CEUS). Additionally, 40 HCC and 40 CC patients who were randomly selected from the same period served as a control group. Images were classified as HCC-like or CC-like pattern according to CEUS guidelines recommended by World and European Federation for Ultrasound in Medicine and Biology (WFUMB-EFSUMB). The diagnostic criteria of CHC were defined as follows: (1) both AFP and CA19-9 are simultaneously elevated (AFP > 20 ng/ml and CA19-9 > 100 units/ml); or (2) elevated AFP with a CC-like pattern on CEUS and without elevated CA19-9 level; or (3) elevated CA19-9 with an HCC-like pattern on CEUS and without elevated AFP level. The diagnostic tests were performed with calculation of the sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). For the 40 CHC patients, the rates of elevated AFP and CA19-9 serology were 55.0 and 30.0%, respectively. Twenty-three (57.5%) patients exhibited an HCC-like pattern, and 15 (37.5%) showed a CC-like pattern. After applying the above diagnostic criteria of CHC in the 120 patients, the sensitivity, specificity, PPV, NPV, accuracy, and AUC were 32.5, 93.8, 72.2, 73.5, 73.3, and 0.631%, respectively. When the actual prevalence rate (0.4-14.3%) was taken into account, the PPV and NPV were modified from 2.1 to 46.7% and 89.3 to 99.7%, respectively. The combination of enhancement patterns on CEUS and serum tumor markers (AFP and CA19-9) may be a potentially specific diagnostic method to differentiate CHC from HCC

  14. Influence of phosphorylation of THR-3, SER-11, and SER-15 on deoxycytidine kinase activity and stability.

    PubMed

    Smal, C; Ntamashimikiro, S; Arts, A; Van Den Neste, E; Bontemps, F

    2010-06-01

    Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxyribonucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We have recently shown that dCK is a phosphoprotein. Four in vivo phosphorylation sites were identified: Thr-3, Ser-11, Ser-15, and Ser-74. Site-directed mutagenesis demonstrated that phosphorylation of Ser-74, the major phosphorylated residue, strongly influences dCK activity in eucaryotic cells. Here, we show that phosphorylation of the three other sites, located in the N-terminal extremity of the protein, does not significantly modify dCK activity, but phosphorylation of Thr-3 could promote dCK stability.

  15. Silicate-Promoted Phosphorylation of Glycerol in Non-Aqueous Solvents: A Prebiotically Plausible Route to Organophosphates

    PubMed Central

    Gull, Maheen; Cafferty, Brian J.; Hud, Nicholas V.; Pasek, Matthew A.

    2017-01-01

    Phosphorylation reactions of glycerol were studied using different inorganic phosphates such as sodium phosphate, trimetaphosphate (a condensed phosphate), and struvite. The reactions were carried out in two non-aqueous solvents: formamide and a eutectic solvent consisting of choline-chloride and glycerol in a ratio of 1:2.5. The glycerol reacted in formamide and in the eutectic solvent with phosphate to yield its phosphorylated derivatives in the presence of silicates such as quartz sand and kaolinite clay. The reactions were carried out by heating glycerol with a phosphate source at 85 °C for one week and were analyzed by 31P-nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The yield of the phosphorylated glycerol was improved by the presence of silicates, and reached 90% in some experiments. Our findings further support the proposal that non-aqueous solvents are advantageous for the prebiotic synthesis of biomolecules, and suggest that silicates may have aided in the formation of organophosphates on the prebiotic earth. PMID:28661422

  16. Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth.

    PubMed

    Meng, Fanyin; DeMorrow, Sharon; Venter, Julie; Frampton, Gabriel; Han, Yuyan; Francis, Heather; Standeford, Holly; Avila, Shanika; McDaniel, Kelly; McMillin, Matthew; Afroze, Syeda; Guerrier, Micheleine; Quezada, Morgan; Ray, Debolina; Kennedy, Lindsey; Hargrove, Laura; Glaser, Shannon; Alpini, Gianfranco

    2014-05-01

    Substance P (SP) promotes cholangiocyte growth during cholestasis by activating its receptor, NK1R. SP is a proteolytic product of tachykinin (Tac1) and is deactivated by membrane metalloendopeptidase (MME). This study aimed to evaluate the functional role of SP in the regulation of cholangiocarcinoma (CCA) growth. NK1R, Tac1, and MME expression and SP secretion were assessed in human CCA cells and nonmalignant cholangiocytes. The proliferative effects of SP (in the absence/presence of the NK1R inhibitor, L-733,060) and of L-733,060 were evaluated. In vivo, the effect of L-733,060 treatment or MME overexpression on tumor growth was evaluated by using a xenograft model of CCA in nu/nu nude mice. The expression of Tac1, MME, NK1R, PCNA, CK-19, and VEGF-A was analyzed in the resulting tumors. Human CCA cell lines had increased expression of Tac1 and NK1R, along with reduced levels of MME compared with nonmalignant cholangiocytes, resulting in a subsequent increase in SP secretion. SP treatment increased CCA cell proliferation in vitro, which was blocked by L-733,060. Treatment with L-733,060 alone inhibited CCA proliferation in vitro and in vivo. Xenograft tumors derived from MME-overexpressed human Mz-ChA-1 CCA cells had a slower growth rate than those derived from control cells. Expression of PCNA, CK-19, and VEGF-A decreased, whereas MME expression increased in the xenograft tumors treated with L-733,060 or MME-overexpressed xenograft tumors compared with controls. The study suggests that SP secreted by CCA promotes CCA growth via autocrine pathway. Blockade of SP secretion and NK1R signaling may be important for the management of CCA.

  17. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388.

    PubMed

    Zhang, Deyi; Wang, Wei; Sun, Xiujie; Xu, Daqian; Wang, Chenyao; Zhang, Qian; Wang, Huafei; Luo, Wenwen; Chen, Yan; Chen, Huaiyong; Liu, Zhixue

    2016-09-01

    Macroautophagy/autophagy is a conserved catabolic process that recycles cytoplasmic material during low energy conditions. BECN1/Beclin1 (Beclin 1, autophagy related) is an essential protein for function of the class 3 phosphatidylinositol 3-kinase (PtdIns3K) complexes that play a key role in autophagy nucleation and elongation. Here, we show that AMP-activated protein kinase (AMPK) regulates autophagy by phosphorylating BECN1 at Thr388. Phosphorylation of BECN1 is required for autophagy upon glucose withdrawal. BECN1(T388A), a phosphorylation defective mutant, suppresses autophagy through decreasing the interaction between PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3) and ATG14 (autophagy-related 14). The BECN1(T388A) mutant has a higher affinity for BCL2 than its wild-type counterpart; the mutant is more prone to dimer formation. Conversely, a BECN1 phosphorylation mimic mutant, T388D, has stronger binding to PIK3C3 and ATG14, and promotes higher autophagy activity than the wild-type control. These findings uncover a novel mechanism of autophagy regulation.

  18. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools

    PubMed Central

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan

    2016-01-01

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. SIGNIFICANCE STATEMENT Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for

  19. Combined Hepatocellular-Cholangiocarcinoma in a Yellow-Headed Amazon (Amazona oratrix)

    PubMed Central

    TENNAKOON, Anusha Hemamali; IZAWA, Takeshi; FUJITA, Daisuke; DENDA, Yuki; SETO, Eiko; SASAI, Hiroshi; KUWAMURA, Mitsuru; YAMATE, Jyoji

    2013-01-01

    ABSTRACT A 9-year-old male Yellow-headed Amazon (Amazona oratrix) with a history of anorexia and vomiting died of a liver tumor. The tumor consisted of neoplastic cells with hepatocellular and cholangiocellular differentiations and their intermingled areas. Neoplastic hepatocytes showed islands or trabecular growth with vacuolated eosinophilic cytoplasm. Cells showing biliary differentiation formed ducts or tubules lined by cytokeratin AE1/AE3-positive epithelia, accompanied by desmoplasia consisting of myofibroblasts reacting to α-smooth muscle actin and desmin. The tumor was diagnosed as a combined hepatocellular-cholangiocarcinoma, which is very rare in the avian. PMID:23800973

  20. The Complete Loss of Tyrosine Kinase Receptors MET and RON Is a Poor Prognostic Factor in Patients with Extrahepatic Cholangiocarcinoma.

    PubMed

    Hayashi, Yuki; Yamaguchi, Junpei; Kokuryo, Toshio; Ebata, Tomoki; Yokoyama, Yukihiro; Igami, Tsuyoshi; Sugawara, Gen; Nagino, Masato

    2016-12-01

    Although the survival of patients with cholangiocarcinoma has improved, the prognosis remains unfavorable. The overexpression of mesenchymal-epithelial transition factor (MET) and recepteur d'origine nantais (RON) has been considered to be indicative of a poor prognosis in some types of cancer. On the other hand, some studies have shown that the expression of MET and RON is a favorable prognostic factor in certain types of tumors. Based on the immunohistochemical analysis of MET and RON, 290 patients who underwent resection for extrahepatic cholangiocarcinoma were divided into three groups: MET/RON-negative, -intermediate, and -positive. The associations between MET/RON expression and clinicopathological features, including prognosis, were analyzed. MET/RON-negativity was associated with nodal metastasis and advanced pathological stage. The overall 5-year survival rates were significantly lower in the MET/RON-negative and MET/RON-positive groups than in the MET/RON-intermediate group (28.3%, 32.4% and 48.5%, respectively; p=0.01). The complete loss of one or both MET and RON, as well as their overexpression, is a poor prognostic factor in patients with extrahepatic cholangiocarcinoma, probably due to the high rate of lymph-node metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Oxidized Phospholipid Species Promote in Vivo Differential Cx43 Phosphorylation and Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Johnstone, Scott R.; Ross, Jeremy; Rizzo, Michael J.; Straub, Adam C.; Lampe, Paul D.; Leitinger, Norbert; Isakson, Brant E.

    2009-01-01

    Regulation of both the expression and function of connexins in the vascular wall is important during atherosclerosis. Progression of the disease state is marked by vascular smooth muscle cell (VSMC) proliferation, which coincides with the reduced expression levels of connexin 43 (Cx43). However, nothing is currently known about the factors that regulate post-translational modifications of Cx43 in atherogenesis, which could be of particular importance, due to the association between site-specific Cx43 phosphorylation and cellular proliferation. We compared the effects of direct carotid applications of two oxidized phospholipid derivatives, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), on Cx43 expression and phosphorylation, and on cell proliferation. Since both POVPC and PGPC have been shown to act through different intracellular pathways, we hypothesized that each oxidized phospholipid species could induce differential Cx43 phosphorylation events in the cytoplasmically located carboxyl-terminal region of the protein, which could potentially enhance cell proliferation. Application of POVPC caused a reduction in VSMC Cx43 levels, enhanced its phosphorylation at serine (pS) 279/282, and increased VSMC proliferation both in vivo and in vitro. Treatment with PGPC enhanced VSMC pS368 levels with no associated change in proliferation. These oxidized phospholipid-induced Cx43 post-translational changes in VSMCs were consistent with those identified in ApoE−/− mice. Taken together, these results demonstrate that post-translational phosphorylation of Cx43 could be a key factor in the pathogenesis of atherosclerosis. PMID:19608875

  2. The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration

    PubMed Central

    Mathavan, Ketan; Khedgikar, Vikram; Bartolo, Vanessa

    2017-01-01

    During development, a multi-potent group of cells known as the cranial neural crest (CNC) migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3) is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors. PMID:29190819

  3. Hepatic Artery Resection for Bismuth Type III and IV Hilar Cholangiocarcinoma: Is Reconstruction Always Required?

    PubMed

    Hu, Hai-Jie; Jin, Yan-Wen; Zhou, Rong-Xing; Shrestha, Anuj; Ma, Wen-Jie; Yang, Qin; Wang, Jun-Ke; Liu, Fei; Cheng, Nan-Sheng; Li, Fu-Yu

    2018-03-06

    The objective of the study is to examine the feasibility of hepatic artery resection (HAR) without subsequent reconstruction (RCS) in specified patients of Bismuth type III and IV hilar cholangiocarcinoma. We retrospectively reviewed 63 patients who underwent hepatic artery resection for Bismuth type III and IV hilar cholangiocarcinoma. These patients were subsequently enrolled into two groups based on whether the artery reconstruction was conducted. Postoperative morbidity and mortality, and long-term survival outcome were compared between the two groups. There were 29 patients in HAR group and 34 patients in the HAR + RCS group. Patients with hepatic artery reconstruction tended to have longer operative time (545.6 ± 143.1 min vs. 656.3 ± 192.8 min; P = 0.013) and smaller tumor size (3.0 ± 1.1 cm vs. 2.5 ± 0.9 cm; P = 0.036). The R0 resection margin was comparable between the HAR group and HAR + RCS group (86.2 vs. 85.3%; P > 0.05). Twelve patients (41.4%) with 24 complications in HAR group and 13 patients (38.2%) with 25 complications in HAR + RCS group were recorded (P = 0.799). The postoperative hepatic failure rate (13.8 vs. 5.9%) and postoperative mortality rate (3.4% vs. 2.9%) were also comparable between the two groups. In the HAR group, the overall 1-, 3-, and 5-year survival rates were 72, 41, and 19%, respectively; while in the HAR + RCS group, the overall 1-, 3-, and 5-year survival rates were 79, 45, and 25%, respectively (P = 0.928). Hepatic artery resection without reconstruction is also a safe and feasible surgical procedure for highly selected cases of Bismuth type III and IV hilar cholangiocarcinoma.

  4. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival.

    PubMed

    Song, Bin; Lai, Bingquan; Zheng, Zhihao; Zhang, Yuying; Luo, Jingyan; Wang, Chong; Chen, Yuan; Woodgett, James R; Li, Mingtao

    2010-12-24

    Glycogen synthase kinase-3 (GSK-3) plays a critical role in neuronal apoptosis. The two mammalian isoforms of the kinase, GSK-3α and GSK-3β, are inhibited by phosphorylation at Ser-21 and Ser-9, respectively. Depolarization, which is vital for neuronal survival, causes both an increase in Ser-21/9 phosphorylation and an inhibition of GSK-3α/β. However, the role of GSK-3 phosphorylation in depolarization-dependent neuron survival and the signaling pathway contributing to GSK-3 phosphorylation during depolarization remain largely unknown. Using several approaches, we showed that both isoforms of GSK-3 are important for mediating neuronal apoptosis. Nonphosphorylatable GSK-3α/β mutants (S21A/S9A) promoted apoptosis, whereas a peptide encompassing Ser-9 of GSK-3β protected neurons in a phosphorylation-dependent manner; these results indicate a critical role for Ser-21/9 phosphorylation on depolarization-dependent neuron survival. We found that Ser-21/9 phosphorylation of GSK-3 was mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not by Akt/PKB, PKA, or p90(RSK). CaMKII associated with and phosphorylated GSK-3α/β. Furthermore, the pro-survival effect of CaMKII was mediated by GSK-3 phosphorylation and inactivation. These findings identify a novel Ca(2+)/calmodulin/CaMKII/GSK-3 pathway that couples depolarization to neuronal survival.

  5. Prognostic significance of contrast-enhanced CT attenuation value in extrahepatic cholangiocarcinoma.

    PubMed

    Asayama, Yoshiki; Nishie, Akihiro; Ishigami, Kousei; Ushijima, Yasuhiro; Takayama, Yukihisa; Okamoto, Daisuke; Fujita, Nobuhiro; Ohtsuka, Takao; Yoshizumi, Tomoharu; Aishima, Shinichi; Oda, Yoshinao; Honda, Hiroshi

    2017-06-01

    To determine whether washout characteristics of dynamic contrast-enhanced computed tomography (CT) could predict survival in patients with extrahepatic cholangiocarcinoma (EHC). This study collected 46 resected cases. All cases were examined by dynamic contrast study on multidetector-row CT. Region-of-interest measurements were obtained at the non-enhanced, portal venous phase and delayed phase in the tumour and were used to calculate the washout ratio as follows: [(attenuation value at portal venous phase CT - attenuation value at delayed enhanced CT)/(attenuation value at portal venous phase CT - attenuation value at unenhanced CT)] × 100. On the basis of the median washout ratio, we classified the cases into two groups, a high-washout group and low-washout group. Associations between overall survival and various factors including washout rates were analysed. The median washout ratio was 29.4 %. Univariate analysis revealed that a lower washout ratio, venous invasion, lymphatic permeation and lymph node metastasis were associated with shorter survival. Multivariate analysis identified the lower washout ratio as an independent prognostic factor (hazard ratio, 3.768; p value, 0.027). The washout ratio obtained from the contrast-enhanced CT may be a useful imaging biomarker for the prediction of survival of patients with EHC. • Dynamic contrast study can evaluate the aggressiveness of extrahepatic cholangiocarcinoma. • A lower washout ratio was an independent prognostic factor for overall survival. • CT can predict survival and inform decisions on surgical options or chemotherapy.

  6. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3

    PubMed Central

    Reid, Michael A.; Lowman, Xazmin H.; Pan, Min; Tran, Thai Q.; Warmoes, Marc O.; Ishak Gabra, Mari B.; Yang, Ying; Locasale, Jason W.; Kong, Mei

    2016-01-01

    Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability. PMID:27585591

  7. Extensive Crosstalk Between O-GlcNAcylation and Phosphorylation Regulates Cytokinesis

    PubMed Central

    Wang, Zihao; Udeshi, Namrata D.; Slawson, Chad; Compton, Philip D.; Sakabe, Kaoru; Cheung, Win D.; Shabanowitz, Jeffrey; Hunt, Donald F.; Hart, Gerald W.

    2010-01-01

    Like phosphorylation, the addition of O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous, reversible process that modifies serine and threonine residues on nuclear and cytoplasmic proteins. Overexpression of the enzyme that adds O-GlcNAc to target proteins, O-GlcNAc transferase (OGT), perturbs cytokinesis and promotes polyploidy, but the molecular targets of OGT that are important for its cell cycle functions are unknown. Here, we identify 141 previously unknown O-GlcNAc sites on proteins that function in spindle assembly and cytokinesis. Many of these O-GlcNAcylation sites are either identical to known phosphorylation sites or in close proximity to them. Furthermore, we found that O-GlcNAcylation altered the phosphorylation of key proteins associated with the mitotic spindle and midbody. Forced overexpression of OGT increased the inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1) and reduced the phosphorylation of CDK1 target proteins. The increased phosphorylation of CDK1 is explained by increased activation of its upstream kinase, MYT1, and by a concomitant reduction in the transcript for the CDK1 phosphatase, CDC25C. OGT overexpression also caused a reduction in both messenger RNA expression and protein abundance of Polo-like kinase 1, which is upstream of both MYT1 and CDC25C. The data not only illustrate the crosstalk between O-GlcNAcylation and phosphorylation of proteins that are regulators of crucial signaling pathways, but also uncover a mechanism for the role of O-GlcNAcylation in regulation of cell division. PMID:20068230

  8. Internal papillomatosis with intrahepatic cholangiocarcinoma and gastrointestinal adenocarcinoma in a peach-fronted conure (Aratinga aurea).

    PubMed

    Gibbons, Paul M; Busch, Martin D; Tell, Lisa A; Graham, Jennifer E; Lowenstine, Linda J

    2002-01-01

    A 17-yr-old pet female peach-fronted conure (Aratinga aurea) was presented with the chief complaints of mild lethargy and weight loss with increased appetite. Antemortem diagnostics included complete blood count, plasma biochemistry, and radiography. Abnormal findings included elevated inflammatory parameters (hyperfibrinogenemia) and a space-occupying mass in the region of the liver. Histologic examination of a liver biopsy sample indicated bile duct hyperplasia leading to a presumptive diagnosis of hepatoxicosis. The bird initially showed moderate improvement with supportive care, but its condition declined 9 days after the liver biopsy. Supportive care was attempted a second time, but the bird did not improve and euthanasia was elected. Abnormal gross necropsy findings were confined to the liver, which contained multiple tan nodules that exuded yellowish fluid on cut section. Histopathologic examination revealed multicentric bile duct hyperplasia and cholangiocarcinoma as well as segmental papillary hyperplasia and adenocarcinoma in the proventriculus, ventriculus, and throughout the intestinal tract. This is the first report of concurrent internal papillomatosis, gastrointestinal adenocarcinoma, and cholangiocarcinoma in a peach-fronted conure.

  9. Percutaneous intraductal radiofrequency ablation in the management of unresectable Bismuth types III and IV hilar cholangiocarcinoma.

    PubMed

    Wang, Yu; Cui, Wei; Fan, Wenzhe; Zhang, Yingqiang; Yao, Wang; Huang, Kunbo; Li, Jiaping

    2016-08-16

    To assess the feasibility and safety of percutaneous intraductal radiofrequency ablation (RFA) for unresectable Bismuth types III and IV hilar cholangiocarcinoma. Percutaneous intraductal RFA combined with metal stent placement was successful in all patients without any technical problems; the technical success rate was 100%. Chemotherapy was administered to two patients. After treatment, serum direct bilirubin levels were notably decreased. Six patients died during the follow-up period. Median stent patency from the time of the first RFA and survival from the time of diagnosis were 100 days (95% confidence interval (CI), 85-115 days) and 5.3 months (95% CI, 2.5-8.1 months), respectively. No acute pancreatitis, bile duct bleeding and perforation, bile leakage, or other severe complications occurred. Four cases of procedure-related cholangitis, three cases of postoperative abdominal pain, and five cases of asymptomatic transient increase in serum amylase were observed. One patient who presented with stent blockage 252 days' post-procedure underwent repeat ablation. Between September 2013 and May 2015, nine patients with unresectable Bismuth types III and IV hilar cholangiocarcinoma who were treated with percutaneous intraductal RFA combined with metal stent placement after the percutaneous transhepatic cholangial drainage were included in the retrospective analysis. Procedure-related complications, stent patency, and survival after treatment were investigated. Percutaneous intraductal RFA combined with metal stent placement is a technically safe and feasible therapeutic option for the palliative treatment of unresectable Bismuth types III and IV hilar cholangiocarcinoma. Its long-term efficacy and safety is promising, but needs further study via randomized and prospective trials that include a greater number of patients.

  10. Effect of histone deacetylase inhibitor in combination with 5-fluorouracil on pancreas cancer and cholangiocarcinoma cell lines.

    PubMed

    Iwahashi, Shuichi; Ishibashi, Hiroki; Utsunomiya, Tohru; Morine, Yuji; Ochir, Tovuu Lkhaguva; Hanaoka, Jun; Mori, Hiroki; Ikemoto, Tetsuya; Imura, Satoru; Shimada, Mitsuo

    2011-02-01

    Histone deacetylase (HDAC) is well known to be associated with tumorigenesis through epigenetic regulation, and its inhibitors (HDACIs) induce differentiation and apoptosis of tumor cells. We examined the therapeutic effects of valproic acid (VPA, a HDACI) with a combination of 5-fluorouracil (5-FU) in vitro. A human pancreas cancer cell line (SUIT-2) and a cholangiocarcinoma cell line (HuCCT1) were used. Cell viabilities were evaluated by a cell proliferation assay. We determined the anticancer effects of VPA combined with 5-FU in these cell lines. Pancreas cancer (SUIT-2): No effect of 5-FU (1.0 µM) was observed, but 17% and 30% of proliferation-inhibitory effects were recognized in a dose of 2.5 or 5.0 µM, respectively. Cell viability was only weakly reduced by VPA (0.5 mM). However, in combination of 5-FU (1.0 µM) with VPA (0.5 mM), 19% of inhibitory effect was observed. Cholangiocarcinoma (HuCCT1): 5-FU (1.0 µM) did not suppress the cell viability, but 5-FU (2.5 µM) suppressed by 23%. VPA (0.5 mM) did not suppress the cell viability, while VPA (1.0 mM) weakly decreased it by 11%. Combination of 5-FU (1.0 µM) and VPA (0.5 mM) markedly reduced the cell viability by 30%. VPA augmented the anti-tumor effects of 5-FU in cancer cell lines. Therefore, a combination therapy of 5-FU plus VPA may be a promising therapeutic option for patients with pancreas cancer and cholangiocarcinoma.

  11. Expression of an intestine-specific transcription factor (CDX1) in intestinal metaplasia and in subsequently developed intestinal type of cholangiocarcinoma in rat liver.

    PubMed

    Ren, P; Silberg, D G; Sirica, A E

    2000-02-01

    CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478-486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats.

  12. Palliation: Hilar cholangiocarcinoma

    PubMed Central

    Goenka, Mahesh Kr; Goenka, Usha

    2014-01-01

    Hilar cholangiocarcinomas are common tumors of the bile duct that are often unresectable at presentation. Palliation, therefore, remains the goal in the majority of these patients. Palliative treatment is particularly indicated in the presence of cholangitis and pruritus but is often also offered for high-grade jaundice and abdominal pain. Endoscopic drainage by placing stents at endoscopic retrograde cholangio-pancreatography (ERCP) is usually the preferred modality of palliation. However, for advanced disease, percutaneous stenting has been shown to be superior to endoscopic stenting. Endosonography-guided biliary drainage is emerging as an alternative technique, particularly when ERCP is not possible or fails. Metal stents are usually preferred over plastic stents, both for ERCP and for percutaneous biliary drainage. There is no consensus as to whether it is necessary to place multiple stents within advanced hilar blocks or whether unilateral stenting would suffice. However, recent data have suggested that, contrary to previous belief, it is useful to drain more than 50% of the liver volume for favorable long-term results. In the presence of cholangitis, it is beneficial to drain all of the obstructed biliary segments. Surgical bypass plays a limited role in palliation and is offered primarily as a segment III bypass if, during a laparotomy for resection, the tumor is found to be unresectable. Photodynamic therapy and, more recently, radiofrequency ablation have been used as adjuvant therapies to improve the results of biliary stenting. The exact technique to be used for palliation is guided by the extent of the biliary involvement (Bismuth class) and the availability of local expertise. PMID:25232449

  13. Aberrant phosphorylation of SMAD4 Thr277-mediated USP9x-SMAD4 interaction by free fatty acids promotes breast cancer metastasis

    PubMed Central

    Wu, Yong; Yu, Xiaoting; Yi, Xianghua; Wu, Ke; Dwabe, Sami; Atefi, Mohammad; Elshimali, Yahya; Kemp, Kevin T.; Bhat, Kruttika; Haro, Jesse; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2017-01-01

    Obesity increases the risk of distant metastatic recurrence and reduces breast cancer (BC) survival. However, the mechanisms behind this pathology and identification of relevant therapeutic targets are poorly defined. Plasma free fatty acids (FFA) levels are elevated in obese individuals. Here we report that TGF-β transiently activates ERK and subsequently phosphorylates SMAD4 at Thr277, which facilitates a SMAD4-USP9x interaction, SMAD4 nuclear retention, and stimulates TGF-β /SMAD3-mediated transcription of Twist and Snail. USP9x inhibited the E3 ubiquitin-protein ligase TIF1γ from binding and monoubiquitinating SMAD4, hence maintaining SMAD4 nuclear retention. FFA further facilitated TGF-β-induced ERK activation, SMAD4 phosphorylation and nuclear retention, promoting TGF-β-dependent cancer progression. Inhibition of ERK and USP9x suppressed obesity-induced metastasis. Additionally, clinical data indicated that phospho-ERK and -SMAD4 levels correlate with activated TGF-β signaling and metastasis in overweight/obese patient BC specimens. Altogether, we demonstrate the vital interaction of USP9x and SMAD4 for governing TGF-β signaling and dyslipidemia-induced, aberrant TGF-β activation during BC metastasis. PMID:28115363

  14. A case of hepatoblastoma misdiagnosed as combined hepatocellular carcinoma and cholangiocarcinoma in an adult.

    PubMed

    Park, Keun Woo; Seo, Chang Jin; Yun, Dae Young; Kim, Min Keun; Kim, Byung Seok; Han, Young Seok; Oh, Hoon Kyu; Lee, Chang Hyeong

    2015-09-01

    Hepatoblastoma usually occurs in children under the age of 2 years, with very few cases reported in adults. We experienced a case of adult hepatoblastoma in a 36-year-old female with chronic hepatitis B. She had experienced sudden onset abdominal pain. Her serum alpha-fetoprotein level was markedly elevated, and abdominal CT showed a 9-cm mass with internal hemorrhage in the right hepatic lobe with hemoperitoneum, so an emergency hepatic central bisectionectomy was performed. The initial histologic examination revealed that the mass mimicked combined hepatocellular carcinoma and cholangiocarcinoma with spindle-cell metaplasia of the cholangiocarcinoma element. Follow-up abdominal CT performed 3 months later showed a 5.5-cm metastatic mass in the left subphrenic area. Laparoscopic splenectomy with mass excision was performed, and hepatoblastoma was confirmed histologically. A histologic re-examination of previously obtained surgical specimens also confirmed the presence of hepatoblastoma. Metastatic hepatoblastoma was found at multiple sites of the abdomen during follow-up, and so chemotherapy with cisplatin, 5-fluorouracil (5-FU), and vincristine was applied, followed by carboplatin and doxorubicin. Despite surgery and postoperative chemotherapy, she died 12 months after symptom onset.

  15. A case of hepatoblastoma misdiagnosed as combined hepatocellular carcinoma and cholangiocarcinoma in an adult

    PubMed Central

    Park, Keun Woo; Seo, Chang Jin; Yun, Dae Young; Kim, Min Keun; Kim, Byung Seok; Han, Young Seok; Oh, Hoon Kyu

    2015-01-01

    Hepatoblastoma usually occurs in children under the age of 2 years, with very few cases reported in adults. We experienced a case of adult hepatoblastoma in a 36-year-old female with chronic hepatitis B. She had experienced sudden onset abdominal pain. Her serum alpha-fetoprotein level was markedly elevated, and abdominal CT showed a 9-cm mass with internal hemorrhage in the right hepatic lobe with hemoperitoneum, so an emergency hepatic central bisectionectomy was performed. The initial histologic examination revealed that the mass mimicked combined hepatocellular carcinoma and cholangiocarcinoma with spindle-cell metaplasia of the cholangiocarcinoma element. Follow-up abdominal CT performed 3 months later showed a 5.5-cm metastatic mass in the left subphrenic area. Laparoscopic splenectomy with mass excision was performed, and hepatoblastoma was confirmed histologically. A histologic re-examination of previously obtained surgical specimens also confirmed the presence of hepatoblastoma. Metastatic hepatoblastoma was found at multiple sites of the abdomen during follow-up, and so chemotherapy with cisplatin, 5-fluorouracil (5-FU), and vincristine was applied, followed by carboplatin and doxorubicin. Despite surgery and postoperative chemotherapy, she died 12 months after symptom onset. PMID:26523273

  16. [The possibility of local control of cancer by neoadjuvant chemoradiation therapy with gemcitabine and surgical resection for advanced cholangiocarcinoma].

    PubMed

    Nakagawa, Kei; Katayose, Yu; Rikiyama, Toshiki; Okaue, Adoru; Unno, Michiaki

    2009-11-01

    Surgical resection is the gold standard of treatment for cholangiocarcinoma. However, there are also many recurrences after operation, because of the anatomical background and the tendency of invasion. We thought that eliminating the remnant of the cancer could yield a better prognosis. Therefore, an introduction of the neoadjuvant chemoradiation therapy with gemcitabine and surgical resection for advanced cholangiocarcinoma patient (NACRAC) was planned. The safety of NACRAC was confirmed by a pilot study. The recommended dose of gemcitabine (600 mg/m2) was determined by a phase I study. A phase II study is now being performed for evaluating the effectiveness and safety. NACRAC may control the frontal part of the tumor with difficult distinctions made by MDCT, and abolishing the cancer remnant is expected. The possibility of extended prognosis by NACRAC can be considered.

  17. IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma.

    PubMed

    Gao, Yuanyuan; Yang, Michelle; Jiang, Zhong; Woda, Bruce A; Mercurio, Arthur M; Qin, Jianjie; Huang, Xinli; Zhang, Feng

    2014-06-01

    IMP3 is a fetal protein not expressed in normal adult tissues. IMP3 is an oncoprotein and a useful biomarker for a variety of malignancies and is associated with reduced overall survival of a number of them. IMP3 expression and its prognostic value for patients with intrahepatic cholangiocarcinoma (ICC) have not been well investigated. The molecular mechanism underlying IMP3 expression in human cancer cells remains to be elucidated. Here we investigated IMP3 expression in ICC and adjacent nonneoplastic liver in 72 unifocal primary ICCs from a single institute by immunohistochemistry, immunoblotting, and real-time polymerase chain reaction. IMP3 was specifically expressed in cancer cells but not in the surrounding normal tissue, and 59 (82%) of 72 ICCs were IMP3 positive by immunohistochemistry. Among 35 cases with lymphovascular invasion, 26 (74%) showed IMP3 positivity in lymph node metastases. IMP3 expression was significantly correlated with tumor size, pathological grade, metastasis, and clinical stage. Kaplan-Meier analysis demonstrated an inverse correlation between IMP3 expression and overall survival rate. Multivariate analysis revealed that IMP3 was the only risk factor associated with survival. To further explore the mechanism of IMP3 expression in cancers, we identified 2 CpG islands at IMP3 proximal promoter. Interestingly, the IMP3 promoter was almost completely demethylated in ICCs in contrast to densely methylated promoter in normal liver tissues. IMP3 expression is a useful biomarker for ICCs and can provide an independent prognostic value for patients with ICC. To our knoweldge, this is the first direct evidence of epigenetic deregulation of IMP3 in human cancer. Copyright © 2014 The Auhtors. Published by Elsevier Inc. All rights reserved.

  18. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which themore » {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.« less

  19. Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization.

    PubMed

    Qiang, Li; Banks, Alexander S; Accili, Domenico

    2010-08-27

    The activity of transcription factor FoxO1 is regulated by phosphorylation-dependent nuclear exclusion and deacetylation-dependent nuclear retention. It is unclear whether and how these two post-translational modifications affect each other. To answer this question, we expressed FoxO1 cDNAs with combined mutations of phosphorylation and acetylation sites in HEK-293 cells and analyzed their subcellular localization patterns. We show that mutations mimicking the acetylated state (KQ series) render FoxO1 more sensitive to Akt-mediated phosphorylation and nuclear exclusion and can reverse the constitutively nuclear localization of phosphorylation-defective FoxO1. Conversely, mutations mimicking the deacetylated state (KR series) promote FoxO1 nuclear retention. Oxidative stress and the Sirt1 activator resveratrol are thought to promote FoxO1 deacetylation and nuclear retention, thus increasing its activity. Accordingly, FoxO1 deacetylation was required for the effect of oxidative stress (induced by H(2)O(2)) to retain FoxO1 in the nucleus. H(2)O(2) also inhibited FoxO1 phosphorylation on Ser-253 and Thr-24, the key insulin-regulated sites, irrespective of its acetylation. In contrast, the effect of resveratrol was independent of FoxO1 acetylation and its phosphorylation on Ser-253 and Thr-24, suggesting that resveratrol acts on FoxO1 in a Sirt1- and Akt-independent manner. The dissociation of deacetylation from dephosphorylation in H(2)O(2)-treated cells indicates that the two modifications can occur independently of each other. It can be envisaged that FoxO1 exists in multiple nuclear forms with distinct activities depending on the balance of acetylation and phosphorylation.

  20. Phosphorylation of CHIP at Ser20 by Cdk5 promotes tAIF-mediated neuronal death

    PubMed Central

    Kim, C; Yun, N; Lee, J; Youdim, M B H; Ju, C; Kim, W-K; Han, P-L; Oh, Y J

    2016-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase and its dysregulation is implicated in neurodegenerative diseases. Likewise, C-terminus of Hsc70-interacting protein (CHIP) is linked to neurological disorders, serving as an E3 ubiquitin ligase for targeting damaged or toxic proteins for proteasomal degradation. Here, we demonstrate that CHIP is a novel substrate for Cdk5. Cdk5 phosphorylates CHIP at Ser20 via direct binding to a highly charged domain of CHIP. Co-immunoprecipitation and ubiquitination assays reveal that Cdk5-mediated phosphorylation disrupts the interaction between CHIP and truncated apoptosis-inducing factor (tAIF) without affecting CHIP's E3 ligase activity, resulting in the inhibition of CHIP-mediated degradation of tAIF. Lentiviral transduction assay shows that knockdown of Cdk5 or overexpression of CHIPS20A, but not CHIPWT, attenuates tAIF-mediated neuronal cell death induced by hydrogen peroxide. Thus, we conclude that Cdk5-mediated phosphorylation of CHIP negatively regulates its neuroprotective function, thereby contributing to neuronal cell death progression following neurotoxic stimuli. PMID:26206088

  1. Aim44p regulates phosphorylation of Hof1p to promote contractile ring closure during cytokinesis in budding yeast

    PubMed Central

    Wolken, Dana M. Alessi; McInnes, Joseph; Pon, Liza A.

    2014-01-01

    Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p. PMID:24451263

  2. Heat shock of Escherichia coli increases binding of dnaK (the hsp70 homolog) to polypeptides by promoting its phosphorylation.

    PubMed Central

    Sherman, M Y; Goldberg, A L

    1993-01-01

    The "molecular chaperone", dnaK, is induced in Escherichia coli upon heat shock and promotes ATP-dependent refolding or degradation of damaged proteins. When cells were grown at 25 degrees C and disrupted, a small fraction of the dnaK bound to affinity columns containing unfolded polypeptides (e.g., a fusion protein named CRAG or casein) and could be dissociated by ATP-Mg2+. After shifting cells to 42 degrees C for 30 min, up to 5-fold more dnaK bound to these columns than after growth at 25 degrees C. This enhanced binding capacity was reversed after shifting cells back to 25 degrees C. It resulted from a covalent modification, which decreases dnaK's electrophoretic mobility and isoelectric point. This modification appears to be phosphorylation; after treatment with phosphatases, the ATP-eluted dnaK resembled the predominant form in electrophoretic and binding properties. In addition, after incubating cells with [32P]orthophosphate at 42 degrees C, the 32P-labeled dnaK bound quantitatively to the CRAG column, unlike the nonlabeled protein. Thus, the phosphorylated dnaK is a special form of the chaperone with enhanced affinity for unfolded proteins. Its accumulation at high temperatures may account for dnaK's function as the "cellular thermometer." Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8378342

  3. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    PubMed Central

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  4. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    PubMed

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    PubMed Central

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  6. [Clinical application of combined hepatic artery resection and reconstruction in surgical treatment for hilar cholangiocarcinoma].

    PubMed

    Dai, H S; Bie, P; Wang, S G; He, Y; Li, D J; Tian, F; Zhao, X; Chen, Z Y

    2018-01-01

    Objective: To clarify whether the surgical treatment for hilar cholangiocarcinoma combined with artery reconstruction is optimistic to the patients with hilar cholangiocarcinoma with hepatic artery invasion. Methods: There were 384 patients who received treatment in the First Affiliated Hospital to Army Medical University from January 2008 to January 2016 analyzed retrospectively. There were 27 patients underwent palliative operation, 245 patients underwent radical operation, radical resection account for 63.8%. Patients were divided into four groups according to different operation method: routine radical resection group( n =174), portal vein reconstruction group ( n =47), hepatic artery reconstruction group ( n =24), palliative group( n =27). General information of patients who underwent radical operation treatment was analyzed by chi-square test and analysis of variance. The period of operation time, blood loss, the length of hospital stay and hospitalization expenses of the radical operation patients were analyzed by one-way ANOVA. Comparison among groups was analyzed by LSD- t test. Results: The follow-up ended up in June first, 2016. Each of patients followed for 6 to 60 months, the median follow-up period was 24 months. 1-, 3-, and 5-year survival rates were 81.3%, 44.9% and 13.5% of routine radical operation group, and were 83.0%, 44.7% and 15.1% of portal vein reconstruction group, and were 70.8%, 27.7% and 6.9% of hepatic artery reconstruction group, respectively. And 1-, 3-, and 5-year survival rates of hepatic artery reconstruction group was lower than routine radical group and portal vein reconstruction group significantly ( P <0.05). However, the rate of postoperative complications of the hepatic artery reconstruction group and the routine radical operation group and the portal vein reconstruction group were 62.5%(15/24), 55.3%(96/174) and 51.5%(24/47), respectively. There was no significant difference among them ( P >0.05). The data shows that the

  7. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  8. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Kim, Yong-Hoon; Hynx, Debby; Wang, Yanning; Yang, Keum-Jin; Ryu, Dongryeol; Kim, Kyung Seok; Yoo, Eun-Kyung; Kim, Jeong-Sun; Koo, Seung-Hoi; Lee, In-Kyu; Chae, Ho-Zoon; Park, Jongsun; Lee, Chul-Ho; Biddinger, Sudha B; Hemmings, Brian A; Choi, Hueng-Sik

    2014-12-01

    Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.

  9. Mammalian Polo-like Kinase 1 (Plk1) Promotes Proper Chromosome Segregation by Phosphorylating and Delocalizing the PBIP1·CENP-Q Complex from Kinetochores

    PubMed Central

    Park, Chi Hoon; Park, Jung-Eun; Kim, Tae-Sung; Kang, Young Hwi; Soung, Nak-Kyun; Zhou, Ming; Kim, Nam-Hyung; Bang, Jeong Kyu; Lee, Kyung S.

    2015-01-01

    Mammalian Plk1 is critically required for proper M phase progression. Plk1 is self-recruited to prekinetochores/kinetochores by phosphorylating and binding to the Thr-78 motif of a kinetochore scaffold protein, PBIP1 (also called CENP-U/50), which forms a stable complex with another kinetochore component, CENP-Q. However, the mechanism regulating Plk1 localization to this site remains largely unknown. Here, we demonstrate that the PBIP1·CENP-Q complex became hyperphosphorylated and rapidly delocalized from kinetochores as cells entered mitosis. Plk1 phosphorylated the CENP-Q subunit of the PBIP1·CENP-Q complex at multiple sites, and mutation of nine Plk1-dependent phosphorylation sites to Ala (9A) enhanced CENP-Q association with chromatin and prolonged CENP-Q localization to kinetochores. Conversely, mutation of the nine sites to phospho-mimicking Asp/Glu (9D/E) residues dissociated CENP-Q from chromatin and kept the CENP-Q(9D/E) mutant from localizing to interphase prekinetochores. Strikingly, both the 9A and 9D/E mutants induced a defect in proper chromosome segregation, suggesting that both timely localization of the PBIP1·CENP-Q complex to prekinetochores and delocalization from kinetochores are critical for normal M phase progression. Notably, although Plk1 did not alter the level of PBIP1 and CENP-Q ubiquitination, Plk1-dependent phosphorylation and delocalization of these proteins from kinetochores appeared to indirectly lead to their degradation in the cytosol. Thus, we propose that Plk1 regulates the timing of the delocalization and ultimate destruction of the PBIP1·CENP-Q complex and that these processes are important not only for promoting Plk1-dependent mitotic progression, but also for resetting the timing of Plk1 recruitment to prekinetochores in the next cell cycle. PMID:25670858

  10. Angiographic Assessment of the Right Hepatic Artery for Encasement by Hilar Cholangiocarcinoma: Comparison Between Antero-Posterior and Right Anterior Oblique Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Hiroyoshi; Iwata, Ryoko; Moriyama, Noriyuki

    Purpose: To evaluate the usefulness of right anterior oblique (RAO) arteriography for evaluating encasement of the right hepatic artery (RHA) by hilar cholangiocarcinoma.Methods: Celiac arteriography was performed in both the antero-posterior (AP) and RAO projection in ten patients with cholangiocarcinoma. The lengths of the arteries between the bifurcation of the anterior and posterior branch of the liver and the following points were measured: (a) the bifurcation of the left and right hepatic artery (AP-LR), (b) the bifurcation of the proper hepatic artery and the gastroduodenal artery (AP-PG). Additionally, image quality in investigating the invasion of the RHA was evaluated.Results: Onmore » the AP images, the average lengths of AP-LR and AP-PG were 24.5 {+-} 5.1 mm and 30.0 {+-} 4.9 mm, respectively. On RAO images, the lengths were 28.2 {+-} 4.6 mm and 32.7 {+-} 4.8 mm, respectively. Every length was different between the two projections (p < 0.01). In 6 of 10 patients with hilar cholangiocarcinoma, images in RAO projections were superior to AP images for evaluation of encasement.Conclusion: We conclude that angiography obtained in the RAO projection yields images that are superior to those obtained in the conventional AP projection for assessment of RHA encasement.« less

  11. Cdk1 phosphorylates SPAT-1/Bora to trigger PLK-1 activation and drive mitotic entry in C. elegans embryos

    PubMed Central

    Tavernier, Nicolas; Noatynska, Anna; Panbianco, Costanza; Martino, Lisa; Van Hove, Lucie; Schwager, Françoise; Léger, Thibaut

    2015-01-01

    The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho–SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing. PMID:25753036

  12. Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover

    PubMed Central

    Hammer, Alan; Oladimeji, Peter; De Las Casas, Luis E.; Diakonova, Maria

    2015-01-01

    The p21-activated serine-threonine kinase (PAK1) regulates cell motility and adhesion. We have previously shown that the prolactin (PRL)-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo and in vitro and identified tyrosines 153, 201, and 285 in PAK1 as sites of JAK2 tyrosyl phosphorylation. Here, we further investigate the role of the tyrosyl phosphorylated PAK1 (pTyr-PAK1) in regulation of cell adhesion. We use human breast cancer T47D cell lines that stably overexpress PAK1 wild type or PAK1 Y3F mutant in which these 3 JAK2 phosphorylation sites were mutated to phenylalanine. We demonstrate that PRL/JAK2-dependent phosphorylation of these tyrosines promotes a motile phenotype in the cells upon adhesion, participates in regulation of cell adhesion on collagen IV, and is required for maximal PAK1 kinase activity. Down-regulation of PAK1 abolishes the effect of PAK1 on cell adhesion. We show that the tyrosyl phosphorylation of PAK1 promotes PAK1 binding to β-PAK1-interacting guanine-nucleotide exchange factor (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), phosphorylation of paxillin on Ser273, and formation and distribution of adhesion complexes. Using phosphospecific antibodies (Abs) directed to single phosphorylated tyrosines on PAK1, we identified Tyr285 as a site of PRL-dependent phosphorylation of PAK1 by JAK2. Furthermore, using PAK1 Y285F mutant, we provide evidence for a role of pTyr285 in cell adhesion, enhanced βPIX/GIT1 binding, and adhesion turnover. Our immunohistochemistry analysis demonstrates that pTyr285- PAK1 may modulate PAK1 signaling during tumor progression.—Hammer, A., Oladimeji, P., De La Casas, L. E., Diakonova, M. Phosphorylation of tyrosine 285 of PAK1 facilitates bPIX/GIT1 binding and adhesion turnover. PMID:25466889

  13. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons.

    PubMed

    Djakovic, Stevan N; Marquez-Lona, Esther M; Jakawich, Sonya K; Wright, Rebecca; Chu, Carissa; Sutton, Michael A; Patrick, Gentry N

    2012-04-11

    It has become increasingly evident that protein degradation via the ubiquitin proteasome system plays a fundamental role in the development, maintenance and remodeling of synaptic connections in the CNS. We and others have recently described the activity-dependent regulation of proteasome activity and recruitment of proteasomes into spine compartments involving the phosphorylation of the 19S ATPase subunit, Rpt6, by the plasticity kinase Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) (Bingol and Schuman, 2006; Djakovic et al., 2009; Bingol et al, 2010). Here, we investigated the role of Rpt6 phosphorylation on proteasome function and synaptic strength. Utilizing a phospho-specific antibody we verified that Rpt6 is phosphorylated at Serine 120 (S120) by CaMKIIα. In addition, we found that Rpt6 is phosphorylated by CaMKIIα in an activity-dependent manner. Furthermore, we showed that a serine 120 to aspartic acid phospho-mimetic mutant of Rpt6 (S120D) increases its resistance to detergent extraction in rat hippocampal dendrites, indicating phosphorylated Rpt6 may promote the tethering of proteasomes to scaffolds and cytoskeletal components. Expression of Rpt6 S120D decreased miniature EPSC (mEPSC) amplitude, while expression of a phospho-dead mutant (S120A) increased mEPSC amplitude. Surprisingly, homeostatic scaling of mEPSC amplitude produced by chronic application of bicuculline or tetrodotoxin is both mimicked and occluded by altered Rpt6 phosphorylation. Together, these data suggest that CaMKII-dependent phosphorylation of Rpt6 at S120 may be an important regulatory mechanism for proteasome-dependent control of synaptic remodeling in slow homeostatic plasticity.

  14. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons

    PubMed Central

    Djakovic, Stevan N.; Marquez-Lona, Esther M.; Jakawich, Sonya K.; Wright, Rebecca; Chu, Carissa; Sutton, Michael A.; Patrick, Gentry N.

    2012-01-01

    It has become increasingly evident that protein degradation via the ubiquitin proteasome system plays a fundamental role in the development, maintenance and remodeling of synaptic connections in the central nervous system. We and others have recently described the activity-dependent regulation of proteasome activity (Djakovic et al., 2009) and recruitment of proteasomes into spine compartments (Bingol and Schuman, 2006) involving the phosphorylation of the 19S ATPase subunit, Rpt6, by the plasticity kinase Ca2+/calmodulin-dependent protein kinases II alpha CaMKIIα) (Bingol et al., 2010). Here, we investigated the role of Rpt6 phosphorylation on proteasome function and synaptic strength. Utilizing a phospho-specific antibody we verified that Rpt6 is phosphorylated at Serine 120 (S120) by CaMKIIα. In addition, we found that Rpt6 is phosphorylated by CaMKIIα in an activity-dependent manner. In addition, we showed that a serine 120 to aspartic acid phospho-mimetic mutant of Rpt6 (S120D) increases its resistance to detergent extraction in rat hippocampal dendrites, indicating phosphorylated Rpt6 may promote the tethering of proteasomes to scaffolds and cytoskeletal components. Interestingly, expression of Rpt6 S120D decreased miniature excitatory postsynaptic current (mEPSC) amplitude, while expression of a phospho-dead mutant (S120A) increased mEPSC amplitude. Surprisingly, homeostatic scaling of mEPSC amplitude produced by chronic application of bicuculline or tetrodotoxin is both mimicked and occluded by altered Rpt6 phosphorylation. Together these data suggest that CaMKII-dependent phosphorylation of Rpt6 at S120 may be an important regulatory mechanism for proteasome-dependent control of synaptic remodeling in slow homeostatic plasticity. PMID:22496558

  15. PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation.

    PubMed

    Inagaki, Yuichiro; Hayakawa, Fumihiko; Hirano, Daiki; Kojima, Yuki; Morishita, Takanobu; Yasuda, Takahiko; Naoe, Tomoki; Kiyoi, Hitoshi

    2016-06-24

    Plasma cell differentiation is initiated by antigen stimulation of the B cell receptor (BCR) and is regulated by BLIMP1. Prior to the stimulation of BCR, BLIMP1 is suppressed by PAX5, which is a key transcriptional repressor that maintains B cell identity. The upregulation of BLIMP1 and subsequent suppression of PAX5 by BLIMP1 are observed after the BCR stimulation. These events are considered to trigger plasma cell differentiation; however, the mechanisms responsible currently remain unclear. We herein demonstrated that the BCR signaling component, SYK, caused PAX5 tyrosine phosphorylation in vitro and in cells. Transcriptional repression on the BLIMP1 promoter by PAX5 was attenuated by this phosphorylation. The BCR stimulation induced the phosphorylation of SYK, tyrosine phosphorylation of PAX5, and up-regulation of BLIMP1 mRNA expression in B cells. The tyrosine phosphorylation of PAX5 co-operatively functioned with PAX5 serine phosphorylation by ERK1/2, which was our previous findings, to cancel the PAX5-dependent repression of BLIMP1. This co-operation may be a trigger for plasma cell differentiation. These results imply that PAX5 phosphorylation by a BCR signal is the initial event in plasma cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance.

    PubMed

    Takeda, K; Takemoto, C; Kobayashi, I; Watanabe, A; Nobukuni, Y; Fisher, D E; Tachibana, M

    2000-01-01

    MITF (microphthalmia-associated transcription factor) is a basic-helix-loop-helix-leucine zipper (bHLHZip) factor which regulates expression of tyrosinase and other melanocytic genes via a CATGTG promoter sequence, and is involved in melanocyte differentiation. Mutations of MITF in mice or humans with Waardenburg syndrome type 2 (WS2) often severely disrupt the bHLHZip domain, suggesting the importance of this structure. Here, we show that Ser298, which locates downstream of the bHLHZip and was previously found to be mutated in individuals with WS2, plays an important role in MITF function. Glycogen synthase kinase 3 (GSK3) was found to phosphorylate Ser298 in vitro, thereby enhancing the binding of MITF to the tyrosinase promoter. The same serine was found to be phosphorylated in vivo, and expression of dominant-negative GSK3beta selectively suppressed the ability of MITF to transactivate the tyrosinase promoter. Moreover, mutation of Ser298, as found in a WS2 family, disabled phos-phorylation of MITF by GSK3beta and impaired MITF function. These findings suggest that the Ser298 is important for MITF function and is phosphorylated probably by GSK3beta.

  17. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area.

    PubMed

    Krintel, Christian; Mörgelin, Matthias; Logan, Derek T; Holm, Cecilia

    2009-09-01

    Hormone-sensitive lipase (EC 3.1.1.79; HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. HSL activity is controlled by phosphorylation of at least four serines. In rat HSL, Ser563, Ser659 and Ser660 are phosphorylated by protein kinase A (PKA) in vitro as well as in vivo, and Ser660 and Ser659 have been shown to be the activity-controlling sites in vitro. The exact molecular events of PKA-mediated activation of HSL in vitro are yet to be determined, but increases in both Vmax and S0.5 seem to be involved, as recently shown for human HSL. In this study, the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) was found to inhibit the hydrolysis of triolein by purified recombinant rat adipocyte HSL, with a decrease in the effect of bis-ANS upon PKA phosphorylation of HSL. The interaction of HSL with bis-ANS was found to have a Kd of 1 microM in binding assays. Upon PKA phosphorylation, the interactions of HSL with both bis-ANS and the alternative probe SYPRO Orange were increased. By negative stain transmission electron microscopy, phosphorylated HSL was found to have a closer interaction with phospholipid vesicles than unphosphorylated HSL. Taken together, our results show that HSL increases its hydrophobic nature upon phosphorylation by PKA. This suggests that PKA phosphorylation induces a conformational change that increases the exposed hydrophobic surface and thereby facilitates binding of HSL to the lipid substrate.

  18. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  19. Radical operation for hilar cholangiocarcinoma in comparable Eastern and Western centers: Outcome analysis and prognostic factors.

    PubMed

    Kimura, Norihisa; Young, Alastair L; Toyoki, Yoshikazu; Wyatt, Judith I; Toogood, Giles J; Hidalgo, Ernest; Prasad, K Rajendra; Kudo, Daisuke; Ishido, Keinosuke; Hakamada, Kenichi; Lodge, J Peter A

    2017-09-01

    Extensive resection for hilar cholangiocarcinoma is the most effective treatment, but high morbidity and poor prognosis remain concerns. Previous data have shown marked differences in outcomes between comparable Eastern and Western centers. We compared the outcomes of the management for hilar cholangiocarcinoma at one Japanese and one British institution with comparable experience. Of 298 consecutive patients with hilar cholangiocarcinoma evaluated at Hirosaki University Hospital, Japan and St. James's University Hospital, Leeds, UK, 183 underwent radical resection. Clinicopathologic variables and postoperative outcomes were compared. Significant differences were not observed between the Hirosaki and Leeds cohorts in overall outcomes despite several differences in the patient characteristics. Although there was a difference in 90-day mortality (2.5% vs 13.6%, respectively), disease-specific 5-year survival rates were 32.8% and 31.9%, respectively (P = .767). Multivariate analysis identified trisectionectomy (odds ratio = 2.32; P = .010), combined pancreatoduodenectomy (odds ratio = 7.88; P = .010), and perioperative blood transfusion (odds ratio = 1.88; P = .045) were associated with postoperative major complications, while preoperative biliary drainage associated with postoperative major complications, while preoperative biliary drainage (risk ratio = 2.21; P = .018), perioperative blood transfusion (risk ratio = 1.58; P = .029), lymph node metastasis (risk ratio = 2.00; P = .002), moderate/poorly differentiated tumor (risk ratio = 1.72; P = .029), microvascular invasion (risk ratio = 1.63; P = .046), and R1 resection (risk ratio = 1.90; P = .005) were risk factors for poor survival. Disease-specific survival and prognostic factors were similar in both centers. Meticulous operative technique to avoid perioperative blood transfusion may improve long-term survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Prognostic impact of the site of portal vein invasion in patients with surgically resected perihilar cholangiocarcinoma.

    PubMed

    Nakanishi, Yoshitsugu; Tsuchikawa, Takahiro; Okamura, Keisuke; Nakamura, Toru; Tamoto, Eiji; Murakami, Soichi; Ebihara, Yuma; Kurashima, Yo; Noji, Takehiro; Asano, Toshimichi; Shichinohe, Toshiaki; Hirano, Satoshi

    2016-06-01

    The aim of this study was to determine the impact of the site of portal vein invasion on survival after hepatectomy for perihilar cholangiocarcinoma. This study classified 168 patients undergoing resection for perihilar cholangiocarcinoma histologically as without portal vein resection or tumor invasion to the portal vein (PV0), with tumor invasion to unilateral branches of the portal vein (PVt3), or with tumor invasion to the main portal vein or its bilateral branches, or to unilateral second-order biliary radicals with contralateral portal vein involvement (PVt4). Patients in PVt4 were subclassified into the A-M group (cancer invasion limited to the tunica adventitia or media) or the I group (cancer invasion reaching the tunica intima). Of the patients, 121 were in PV0, 21 were in PVt3, and 26 were in PVt4. There was no difference in survival between the PV0 and PVt3 groups (P = .267). The PVt4 group had a worse prognosis than the PVt3 group (P = .046). In addition, the A-M (n = 19) and I subgroups (n = 7) of PVt4 had worse prognoses than the PV0 or PVt3 groups (P = .005 and < .001, respectively). All patients in the I subgroup of PVt4 died within 9 months after resection. On multivariate analysis, PVt4 (P = .029) was identified as an independent prognostic factor. In perihilar cholangiocarcinoma, postoperative survival was no different between patients with and without ipsilateral portal vein invasion, although patients with tumor invasion to the main or contralateral branches of the portal vein, especially with tunica intima invasion, had extremely poor prognoses. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines.

    PubMed

    Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset

    2016-01-01

    Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.

  2. Proposal for a new T-stage classification system for distal cholangiocarcinoma: a 10-institution study from the U.S. Extrahepatic Biliary Malignancy Consortium.

    PubMed

    Postlewait, Lauren M; Ethun, Cecilia G; Le, Nina; Pawlik, Timothy M; Buettner, Stefan; Poultsides, George; Tran, Thuy; Idrees, Kamran; Isom, Chelsea A; Fields, Ryan C; Krasnick, Bradley; Weber, Sharon M; Salem, Ahmed; Martin, Robert C G; Scoggins, Charles; Shen, Perry; Mogal, Harveshp D; Schmidt, Carl; Beal, Eliza; Hatzaras, Ioannis; Vitiello, Gerardo; Cardona, Kenneth; Maithel, Shishir K

    2016-10-01

    Seventh AJCC distal cholangiocarcinoma T-stage classification inadequately separates patients by survival. This retrospective study aimed to define a novel T-stage system to better stratify patients after resection. Curative-intent pancreaticoduodenectomies for distal cholangiocarcinoma (1/2000-5/2015) at 10 US institutions were included. Relationships between tumor characteristics and overall survival (OS) were assessed and incorporated into a novel T-stage classification. 176 patients (median follow-up: 24mo) were included. Current AJCC T-stage was not associated with OS (T1: 23mo, T2: 20mo, T3: 25mo, T4: 12mo; p = 0.355). Tumor size ≥3 cm and presence of lymphovascular invasion (LVI) were associated with decreased OS on univariate and multivariable analyses. Patients were stratified into 3 groups [T1: size <3 cm and (-)LVI (n = 69; 39.2%); T2: size ≥3 cm and (-)LVI or size <3 cm and (+)LVI (n = 82; 46.6%); and T3: size ≥3 cm and (+)LVI (n = 25; 14.2%)]. Each progressive proposed T-stage was associated with decreased median OS (T1: 35mo; T2: 20mo; T3: 8mo; p = 0.002). Current AJCC distal cholangiocarcinoma T-stage does not adequately stratify patients by survival. This proposed T-stage classification, based on tumor size and LVI, better differentiates patient outcomes after resection and could be considered for incorporation into the next AJCC distal cholangiocarcinoma staging system. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  3. Expression of an Intestine-Specific Transcription Factor (CDX1) in Intestinal Metaplasia and in Subsequently Developed Intestinal Type of Cholangiocarcinoma in Rat Liver

    PubMed Central

    Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.

    2000-01-01

    CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391

  4. Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion

    PubMed Central

    Gundry, Christine; Marco, Sergi; Rainero, Elena; Miller, Bryan; Dornier, Emmanuel; Mitchell, Louise; Caswell, Patrick T.; Campbell, Andrew D.; Hogeweg, Anna; Sansom, Owen J.; Morton, Jennifer P.; Norman, Jim C.

    2017-01-01

    The Rab GTPase effector, Rab-coupling protein (RCP) is known to promote invasive behaviour in vitro by controlling integrin and receptor tyrosine kinase (RTK) trafficking, but how RCP influences metastasis in vivo is unclear. Here we identify an RTK of the Eph family, EphA2, to be a cargo of an RCP-regulated endocytic pathway which controls cell:cell repulsion and metastasis in vivo. Phosphorylation of RCP at Ser435 by Lemur tyrosine kinase-3 (LMTK3) and of EphA2 at Ser897 by Akt are both necessary to promote Rab14-dependent (and Rab11-independent) trafficking of EphA2 which generates cell:cell repulsion events that drive tumour cells apart. Genetic disruption of RCP or EphA2 opposes cell:cell repulsion and metastasis in an autochthonous mouse model of pancreatic adenocarcinoma—whereas conditional knockout of another RCP cargo, α5 integrin, does not suppress pancreatic cancer metastasis—indicating a role for RCP-dependent trafficking of an Eph receptor to drive tumour dissemination in vivo. PMID:28294115

  5. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools.

    PubMed

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T

    2016-08-24

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in

  6. Case report combined hepatocellular and cholangiocarcinoma with sarcomatous transformation.

    PubMed

    Boonsakan, Paisarn; Thangnapakorn, Orathai; Tapaneeyakorn, Jiemjit; Kositchaiwat, Sawit; Bunyaratvej, Sukhum

    2007-03-01

    Combined hepatocellular and cholangiocarcinoma with sarcomatous transformation was first recognized in Ramathibodi Hospital in 2005. This variant of carcinoma has been increasingly reported particularly from Asian countries. Dedifferentiation of the epithelial component to various sarcomatous components is likely the underlying mechanism. The causative factors of hepatocarcinogenesis in Thailand include chronic viral hepatitis B or C, exposures to aflatoxin B1 and nitrosamine(s) and occasionally some certain nodular hepatocellular lesions due to arterial hyperperfusion. It is suggested that the recent change of the Thai peoples' life style to an increased consumption of fast foods containing food preservatives especially nitrate or nitrite, the nitrosamine precursor may allow heavy exposure(s) to the chemical carcinogen(s) i.e. nitrosamine(s) leading to sarcomatous transformation of the carcinoma.

  7. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity

    PubMed Central

    Coin, Frédéric; Auriol, Jérome; Tapias, Angel; Clivio, Pascale; Vermeulen, Wim; Egly, Jean-Marc

    2004-01-01

    Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. The xeroderma pigmentosum group B (XPB) helicase subunit of TFIIH functions in NER and transcription. The serine 751 (S751) residue of XPB was found to be phosphorylated in vivo. This phosphorylation inhibits NER and the microinjection of a phosphomimicking XPB-S751E mutant is unable to correct the NER defect of XP-B cells. Conversely, XPB-S751 dephosphorylation or its substitution with alanine (S751A) restores NER both in vivo and in vitro. Surprisingly, phospho/dephosphorylation of S751 spares TFIIH-dependent transcription. Finally, the phosphorylation of XPB-S751 does not impair the TFIIH unwinding of the DNA around the lesion, but rather prevents the 5′ incision triggered by the ERCC1-XPF endonuclease. These data support an additional role for XPB in promoting the incision of the damaged fragment and reveal a point of NER regulation on TFIIH without interference in its transcription activity. PMID:15549133

  8. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3

    PubMed Central

    Ferru, Emanuela; Giger, Katie; Pantaleo, Antonella; Campanella, Estela; Grey, Jesse; Ritchie, Ken; Vono, Rosa; Low, Philip S.

    2011-01-01

    The cytoplasmic domain of band 3 serves as a center of erythrocyte membrane organization and constitutes the major substrate of erythrocyte tyrosine kinases. Tyrosine phosphorylation of band 3 is induced by several physiologic stimuli, including malaria parasite invasion, cell shrinkage, normal cell aging, and oxidant stress (thalassemias, sickle cell disease, glucose-6-phosphate dehydrogenase deficiency, etc). In an effort to characterize the biologic sequelae of band 3 tyrosine phosphorylation, we looked for changes in the polypeptide's function that accompany its phosphorylation. We report that tyrosine phosphorylation promotes dissociation of band 3 from the spectrin-actin skeleton as evidenced by: (1) a decrease in ankyrin affinity in direct binding studies, (2) an increase in detergent extractability of band 3 from ghosts, (3) a rise in band 3 cross-linkability by bis-sulfosuccinimidyl-suberate, (4) significant changes in erythrocyte morphology, and (5) elevation of the rate of band 3 diffusion in intact cells. Because release of band 3 from its ankyrin and adducin linkages to the cytoskeleton can facilitate changes in multiple membrane properties, tyrosine phosphorylation of band 3 is argued to enable adaptive changes in erythrocyte biology that permit the cell to respond to the above stresses. PMID:21474668

  9. Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function.

    PubMed

    Qi, Xiao-Jun; Wildey, Gary M; Howe, Philip H

    2006-01-13

    Bim, the Bcl-2 interacting mediator of cell death, is a member of the BH3-only family of pro-apoptotic proteins. Recent studies have demonstrated that the apoptotic activity of Bim can be regulated through a post-translational mechanism whereby ERK phosphorylation serves as a signal for Bim ubiquitination and proteasomal degradation. In this report, we investigated the signaling pathways leading to Bim phosphorylation in Ba/F3 cells, an interleukin-3 (IL-3)-dependent B-cell line. IL-3 stimulation induced phosphorylation of Bim(EL), one of the predominant isoforms of Bim expressed in cells, at multiple sites, as evidenced by the formation of at least three to four bands by Western blotting that were sensitive to phosphatase digestion. The appearance of multiple, phosphorylated species of Bim(EL) correlated with Akt, and not ERK, activation. The PI3K inhibitor, LY294002, blocked IL-3-stimulated Akt activity and partially blocked Bim(EL) phosphorylation. In vitro kinase assays showed that recombinant Akt could directly phosphorylate a GST-Bim(EL) fusion protein and identified the Akt phosphorylation site in the Bim(EL) domain as Ser(87). Further, we demonstrated that cytokine stimulation promotes Bim(EL) binding to 14-3-3 proteins. Finally, we show that mutation of Ser(87) dramatically increases the apoptotic potency of Bim(EL). We propose that Ser(87) of Bim(EL) is an important regulatory site that is targeted by Akt to attenuate the pro-apoptotic function of Bim(EL), thereby promoting cell survival.

  10. MR imaging and MR cholangiopancreatography of cholangiocarcinoma developing in printing company workers.

    PubMed

    Koyama, Koichi; Kubo, Shoji; Ueki, Ai; Shimono, Taro; Takemura, Shigekazu; Tanaka, Shogo; Kinoshita, Masahiko; Hamano, Genya; Miki, Yukio

    2017-05-01

    To retrospectively investigate magnetic resonance (MR) imaging findings of occupational cholangiocarcinoma (oCC) occurring among workers in printing companies in Japan, compared to those of non-occupational cholangiocarcinoma (nCC), primary sclerosing cholangitis (PSC), and age-matched normal controls (NORs). Participants comprised 27 consecutive patients (oCC, n = 5; nCC, n = 8; PSC, n = 6; NOR, n = 8) who underwent MR imaging between May 2009 and October 2012. MR imaging was evaluated with respect to tumor characteristics, abnormal MR cholangiographic findings (PSC-like findings), bile duct stricture, and signal changes of the hepatic parenchyma. Tumors were detected in all nCCs and four oCCs. Tumors displayed a mass-forming type in all nCCs and two oCCs, and an intraductal growth type in two oCCs. Abnormal cholangiographic findings were detected in all oCCs and PSCs, but not in any nCCs or NORs. All oCCs and seven nCCs showed biliary strictures longer than 1 cm; five PSCs showed biliary strictures shorter than 1 cm. Both intra- and extrahepatic biliary strictures were detected in three PSCs and two oCCs. Peripheral hepatic hyperintensity on T2-weighted imaging was detected in two nCCs, two PSCs, and two oCCs. These results indicated that MR imaging of oCC showed findings of both PSC and nCC.

  11. in Vitro and in Vivo Inhibitory Effects of α-Mangostin on Cholangiocarcinoma Cells and Allografts

    PubMed Central

    Aukkanimart, Ratchadawan; Boonmars, Thidarut; Sriraj, Pranee; Sripan, Panupan; Songsri, Jiraporn; Ratanasuwan, Panaratana; Laummaunwai, Porntip; Boueroy, Parichart; Khueangchaingkhwang, Sukhonthip; Pumhirunroj, Benjamabhorn; Artchayasawat, Atchara; Boonjaraspinyo, Sirintip; Wu, Zhiliang; Hahnvajanawong, Chariya; Vaeteewoottacharn, Kulthida; Wongkham, Sopit

    2017-01-01

    We investigated the anti-cholangiocarcinoma effect of α-mangostin from Garcinia mangostana pericarp extract (GM) in a human cholangiocarcinoma (CCA) cell line and a hamster CCA allograft model. In vitro, human CCA cells were treated with GM at various concentrations and for different time periods; then cell-cycle arrest and apoptosis were evaluated using flow cytometry, and metastatic potential with wound healing assays. In vivo, hamster allografts were treated with GM, gemcitabine (positive control) and a placebo (negative control) for 1 month; tumor weight and volume were then determined. Histopathological features and immunostaining (CK19 and PCNA) characteristics were examined by microscopy. The present study found that α-mangostin could: inhibit CCA cell proliferation by inducing apoptosis through the mitochondrial pathway; induce G1 cell-cycle arrest; and inhibit metastasis. Moreover, α-mangostin could inhibit CCA growth, i.e. reduce tumor mass (weight and size) and alter CCA pathology, as evidenced by reduced positive staining for CK19 and PCNA. The present study thus suggested that α-mangostin is a promising anti-CCA compound whose ready availability in tropical countries might indicate use for prevention and treatment of CCA. PMID:28441703

  12. HDAC2 phosphorylation-dependent Klf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs

    PubMed Central

    Zheng, Bin; Han, Mei; Shu, Ya-nan; Li, Ying-jie; Miao, Sui-bing; Zhang, Xin-hua; Shi, Hui-jing; Zhang, Tian; Wen, Jin-kun

    2011-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) occurs in hypertension, atherosclerosis and restenosis after angioplasty, leading to pathophysiological vascular remodeling. As an important growth arrest gene, p21 plays critical roles in vascular remodeling. Regulation of p21 expression by retinoic acid receptor (RAR) and its ligand has important implications for control of pathological vascular remodeling. Nevertheless, the mechanism of RAR-mediated p21 expression in VSMCs remains poorly understood. Here, we show that, under basal conditions, RARα forms a complex with histone deacetylase 2 (HDAC2) and Krüppel-like factor 5 (Klf5) at the p21 promoter to inhibit its expression. Upon RARα agonist stimulation, HDAC2 is phosphorylated by CK2α. Phosphorylation of HDAC2, on the one hand, promotes its dissociation from RARα, thus allowing the liganded-RARα to interact with co-activators; on the other hand, it increases its interaction with Klf5, thus leading to deacetylation of Klf5. Deacetylation of Klf5 facilitates its dissociation from the p21 promoter, relieving its repressive effect on the p21 promoter. Interference with HDAC2 phosphorylation by either CK2α knockdown or the use of phosphorylation-deficient mutant of HDAC2 prevents the dissociation of Klf5 from the p21 promoter and impairs RAR agonist-induced p21 activation. Our results reveal a novel mechanism involving a phosphorylation-deacetylation cascade that functions to remove the basal repression complex from the p21 promoter upon RAR agonist treatment, allowing for optimum agonist-induced p21 expression. PMID:21383775

  13. Preparation of a chlorophyll derivative and investigation of its photodynamic activities against cholangiocarcinoma.

    PubMed

    Wu, Zhong-Ming; Wang, Li; Zhu, Wei; Gao, Ying-Hua; Wu, Hai-Ming; Wang, Mi; Hu, Tai-Shan; Yan, Yi-Jia; Chen, Zhi-Long

    2017-08-01

    Photodynamic therapy (PDT) is emerging as a promising method for the treatment of various cancer diseases. However, the clinical application of PDT is limited due to the lack of effective photosensitizers. In this study, a novel chlorophyll derivative, N,N-bis(2-carboxyethyl)pyropheophorbide a (BPPA), had been synthesized and characterized. BPPA had a characteristic long wavelength absorption peak at 669nm and a singlet oxygen quantum yield of 0.54. To investigate the photodynamic ability of BPPA against cholangiocarcinoma (CCA), cellular uptake, subcellular location and bio-distribution, in vitro and in vivo PDT efficacy of BPPA were studied. The results showed that BPPA could rapidly accumulate in QBC-939 cells and localize in the cytoplasm. BPPA- PDT was effective in reducing the cell viability in a drug dose- and light dose-dependent manner in vitro. In CCA xenograft nude mouse model, the concentration of BPPA in the plasma lowered rapidly, and the fluorescence signal peaked at 0.5h and 2h after injection in the skin and tumor, respectively. Significant quantities could be observed in the tumor. BPPA followed by irradiation could significantly inhibit growth of tumors, and histological examination revealed necrotic damage in PDT-treated tumors. These results suggested that BPPA could be a promising drug candidate for photodynamic therapy in cholangiocarcinoma. Published by Elsevier Masson SAS.

  14. Comparison of clinicopathological characteristics between patients with occupational and non-occupational intrahepatic cholangiocarcinoma.

    PubMed

    Hamano, Genya; Kubo, Shoji; Takemura, Shigekazu; Tanaka, Shogo; Shinkawa, Hiroji; Kinoshita, Masahiko; Ito, Tokuji; Yamamoto, Takatsugu; Wakasa, Kenichi; Shibata, Toshihiko

    2016-07-01

    An outbreak of cholangiocarcinoma has been reported among workers of an offset color proof-printing department at a printing company in Japan. In this study, we compared the clinicopathological findings of this type of intrahepatic cholangiocarcinoma (occupational ICC) and non-occupational ICC. The clinical records of 51 patients with perihilar-type ICC who underwent liver resection, including five patients with occupational ICC were retrospectively reviewed. The clinicopathological features were compared. In the occupational group, the patients were significantly younger (P < 0.01), while serum γ-glutamyl transpeptidase activity and the proportions of patients with regional dilatation of the bile ducts without tumor-induced obstruction were significantly higher (P = 0.041 and P < 0.01, respectively); the indocyanine green retention rate at 15 min was significantly lower (P = 0.020). On pathological examinations, precancerous or early cancerous lesions, such as biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct, were observed at various sites of the bile ducts in all occupational ICC patients; such lesions were observed in only six patients in the control group (P < 0.01). The clinicopathological findings including age, liver function test results, diagnostic imaging findings, and pathological findings differed between the occupational and control groups. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  15. A case of unresectable combined hepatocellular cholangiocarcinoma showing favorable response to LFP therapy.

    PubMed

    Kato, Sayuri; Takeuchi, Yasuto; Wada, Nozomu; Morimoto, Yuuki; Kuwaki, Kenji; Ohnishi, Hideki; Nakamura, Shinichiro; Shiraha, Hidenori; Takaki, Akinobu; Okada, Hiroyuki

    2016-01-01

    A woman in her 50s was admitted to our hospital because of multiple tumors detected in her liver. She was diagnosed with combined hepatocellular cholangiocarcinoma using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and biopsy of the liver tumors. We judged the tumors to be unresectable because they were found in both lobes of the liver, with a tumor thrombus being found in the main left portal vein. The pathological findings showed that the tumors exhibited characteristics of hepatocellular carcinoma. Therefore, sorafenib was administered;however, 6 months later, the disease progressed. Consequently, she received second-line chemotherapy with a one-shot intra-arterial injection of cisplatin, but this too was ineffective, and her general condition worsened. As hence, we changed the regimen to 5-fluorouracil continuous infusion and consecutive low dose cisplatin (LFP) therapy. After one cycle of chemotherapy with LFP, Gd-EOB-DTPA-enhanced MRI showed markedly decreased sizes and numbers of tumors. To date, she has completed six cycles of LFP therapy, and almost all her tumors are no longer visible on MRI. She has recovered to a good state and has achieved long-term survival. Thus, this case indicates that although LFP therapy is generally selected for cases of advanced hepatocellular carcinoma, it also appears to be effective for long-term disease control in cases of hepatocellular cholangiocarcinoma.

  16. Molecular dynamics simulation reveals how phosphorylation of tyrosine 26 of phosphoglycerate mutase 1 upregulates glycolysis and promotes tumor growth.

    PubMed

    Wang, Yan; Cai, Wen-Sheng; Chen, Luonan; Wang, Guanyu

    2017-02-14

    Phosphoglycerate mutase 1 (PGAM1) catalyzes the eighth step of glycolysis and is often found upregulated in cancer cells. To test the hypothesis that the phosphorylation of tyrosine 26 residue of PGAM1 greatly enhances its activity, we performed both conventional and steered molecular dynamics simulations on the binding and unbinding of PGAM1 to its substrates, with tyrosine 26 either phosphorylated or not. We analyzed the simulated data in terms of structural stability, hydrogen bond formation, binding free energy, etc. We found that tyrosine 26 phosphorylation enhances the binding of PGAM1 to its substrates through generating electrostatic environment and structural features that are advantageous to the binding. Our results may provide valuable insights into computer-aided design of drugs that specifically target cancer cells with PGAM1 tyrosine 26 phosphorylated.

  17. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    PubMed

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  18. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress

    PubMed Central

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Kaufer, Benedikt B.; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-01-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  19. Aberrant Phosphorylation of SMAD4 Thr277-Mediated USP9x-SMAD4 Interaction by Free Fatty Acids Promotes Breast Cancer Metastasis.

    PubMed

    Wu, Yong; Yu, Xiaoting; Yi, Xianghua; Wu, Ke; Dwabe, Sami; Atefi, Mohammad; Elshimali, Yahya; Kemp, Kevin T; Bhat, Kruttika; Haro, Jesse; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2017-03-15

    Obesity increases the risk of distant metastatic recurrence and reduces breast cancer survival. However, the mechanisms behind this pathology and identification of relevant therapeutic targets are poorly defined. Plasma free fatty acids (FFA) levels are elevated in obese individuals. Here we report that TGFβ transiently activates ERK and subsequently phosphorylates SMAD4 at Thr277, which facilitates a SMAD4-USP9x interaction, SMAD4 nuclear retention, and stimulates TGFβ/SMAD3-mediated transcription of Twist and Snail. USP9x inhibited the E3 ubiquitin-protein ligase TIF1γ from binding and monoubiquitinating SMAD4, hence maintaining the SMAD4 nuclear retention. FFA further facilitated TGFβ-induced ERK activation, SMAD4 phosphorylation, and nuclear retention, promoting TGFβ-dependent cancer progression. Inhibition of ERK and USP9x suppressed obesity-induced metastasis. In addition, clinical data indicated that phospho-ERK and -SMAD4 levels correlate with activated TGFβ signaling and metastasis in overweight/obese patient breast cancer specimens. Altogether, we demonstrate the vital interaction of USP9x and SMAD4 for governing TGFβ signaling and dyslipidemia-induced aberrant TGFβ activation during breast cancer metastasis. Cancer Res; 77(6); 1383-94. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Effects of antibodies to phosphorylated and non-phosphorylated tau on in vitro tau phosphorylation at Serine-199: Preliminary report.

    PubMed

    Loeffler, David A; Smith, Lynnae M; Klaver, Andrea C; Martić, Sanela

    2015-07-01

    Phosphorylation of multiple amino acids on tau protein ("hyperphosphorylation") is required for the development of tau pathology in Alzheimer's disease. Administration of anti-tau antibodies to transgenic "tauopathy mice" has been shown to reduce their tau pathology but the mechanisms responsible are unclear. To examine the effects of anti-tau antibodies on tau phosphorylation, we used western blots to study the effects of three antibodies to phosphorylated tau (pTau), namely anti-pTau S199, T231, and S396, and three antibodies to non-phosphorylated tau on in vitro phosphorylation of recombinant human tau-441 at S199. Inclusion of an anti-pTau T231 antibody in the phosphorylation reaction reduced the intensity of monomeric pTau S199 in western blots of denaturing gels, but the other antibodies had no apparent effects on this process. Surprisingly, including all three anti-phospho-tau antibodies in the reaction did not reduce the intensity of the monomer band, possibly due to steric hindrance between the antibodies. These preliminary findings suggest that anti-tau antibodies may have minimal direct effects on tau phosphorylation. Limitations of using western blots to examine the effects of anti-tau antibodies on this process were found to include between-experiment variability in pTau band densities and poor resolution of high molecular weight pTau oligomers. The presence of bands representing immunoglobulins as well as pTau may also complicate interpretation of the western blots. Further studies are indicated to examine the effects of anti-pTau antibodies on phosphorylation of other tau amino acids in addition to S199. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. IGF-1 mediated phosphorylation of specific IRS-1 serines in Ames dwarf fibroblasts is associated with longevity.

    PubMed

    Papaconstantinou, John; Hsieh, Ching-Chyuan

    2015-11-03

    Insulin/IGF-1 signaling involves phosphorylation/dephosphorylation of serine/threonine or tyrosine residues of the insulin receptor substrate (IRS) proteins and is associated with hormonal control of longevity determination of certain long-lived mice. The stimulation of serine phosphorylations by IGF-1 suggests there is insulin/IGF-1 crosstalk that involves the phosphorylation of the same serine residues. By this mechanism, insulin and IGF-1 mediated phosphorylation of specific IRS-1 serines could play a role in longevity determination.We used fibroblasts from WT and Ames dwarf mice to examine whether: (a) IGF-1 stimulates phosphorylation of IRS-1 serines targeted by insulin; (b) the levels of serine phosphorylation differ in WT vs. Ames fibroblasts; and (c) aging affects the levels of these serine phosphorylations which are altered in the Ames dwarf mutant. We have shown that IRS-1 is a substrate for IGF-1 induced phosphorylation of Ser307, Ser612, Ser636/639, and Ser1101; that the levels of phosphorylation of these serines are significantly lower in Ames vs. WT cells; that IGF-1 mediated phosphorylation of these serines increases with age in WT cells. We propose that insulin/IGF-1 cross talk and level of phosphorylation of specific IRS-1 serines may promote the Ames dwarf longevity phenotype.

  2. A Mass Spectrometry-Based Predictive Strategy Reveals ADAP1 is Phosphorylated at Tyrosine 364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littrell, BobbiJo R

    The goal of this work was to identify phosphorylation sites within the amino acid sequence of human ADAP1. Using traditional mass spectrometry-based techniques we were unable to produce interpretable spectra demonstrating modification by phosphorylation. This prompted us to employ a strategy in which phosphorylated peptides were first predicted using peptide mapping followed by targeted MS/MS acquisition. ADAP1 was immunoprecipitated from extracts of HEK293 cells stably-transfected with ADAP1 cDNA. Immunoprecipitated ADAP1 was digested with proteolytic enzymes and analyzed by LC-MS in MS1 mode by high-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS). Peptide molecular features were extracted using an untargeted data mining algorithm.more » Extracted peptide neutral masses were matched against the ADAP1 amino acid sequence with phosphorylation included as a predicted modification. Peptides with predicted phosphorylation sites were analyzed by targeted LC-MS2. Acquired MS2 spectra were then analyzed using database search engines to confirm phosphorylation. Spectra of phosphorylated peptides were validated by manual interpretation. Further confirmation was performed by manipulating phospho-peptide abundance using calf intestinal phosphatase (CIP) and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Of five predicted phosphopeptides, one, comprised of the sequence AVDRPMLPQEYAVEAHFK, was confirmed to be phosphorylated on a Tyrosine at position 364. Pre-treatment of cells with PMA prior to immunoprecipitation increased the ratio of phosphorylated to unphosphorylated peptide as determined by area counts of extracted ion chromatograms (EIC). Addition of CIP to immunoprecipitation reactions eliminated the phosphorylated form. A novel phosphorylation site was identified at Tyrosine 364. Phosphorylation at this site is increased by treatment with PMA. PMA promotes membrane translocation and activation of protein kinase C (PKC), indicating that

  3. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    PubMed

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.

  4. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  5. Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development

    PubMed Central

    Huang, Huiqian; Lin, Xiaochen; Liang, Zhuoyi; Zhao, Teng; Du, Shengwang; Loy, Michael M. T.; Lai, Kwok-On; Fu, Amy K. Y.

    2017-01-01

    The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development. PMID:28760951

  6. Cytoplasmic Hu-Antigen R (HuR) Expression is Associated with Poor Survival in Patients with Surgically Resected Cholangiocarcinoma Treated with Adjuvant Gemcitabine-Based Chemotherapy.

    PubMed

    Toyota, Kazuhiro; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Nakagawa, Naoya; Takahashi, Shinya; Sueda, Taijiro

    2018-05-01

    Hu-antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm translocation of messenger RNAs (mRNAs). The aim of this study was to investigate the prognostic significance of HuR in cholangiocarcinoma patients who received adjuvant gemcitabine-based chemotherapy (AGC) after surgical resection. Nuclear and cytoplasmic HuR expression was investigated immunohistochemically in 131 patients with resected cholangiocarcinoma, including 91 patients administered AGC and 40 patients who did not receive adjuvant chemotherapy. The correlation between HuR expression and survival was evaluated by statistical analysis. High nuclear and cytoplasmic HuR expression was observed in 67 (51%) and 45 (34%) patients, respectively. Cytoplasmic HuR expression was significantly associated with lymph node metastasis (p < 0.01), while high cytoplasmic HuR expression was significantly associated with poor disease-free survival [DFS] (p = 0.03) and overall survival [OS] (p = 0.001) in the 91 patients who received AGC, but not in the 40 patients who did not receive AGC (DFS p = 0.17; OS p = 0.07). In the multivariate analysis of patients who received AGC, high cytoplasmic HuR expression was an independent predictor of poor DFS (hazard ratio [HR] 1.77; p = 0.04) and OS (HR 2.09; p = 0.02). Nuclear HuR expression did not affect the survival of enrolled patients. High cytoplasmic HuR expression was closely associated with the efficacy of AGC in patients with cholangiocarcinoma. The current findings warrant further investigations to optimize adjuvant chemotherapy regimens for resectable cholangiocarcinoma.

  7. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Xiaoying; Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen; Xu, Xingbo

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that highmore » inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.« less

  8. Computational Study of Pseudo-Phosphorylation and Phosphorylation of the Microtubule Associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This study focuses on the effect of pseudo-phosphorylation on the aggregation of protein tau, which is very often found interacting with microtubules in the neuron. Within the axon of the neuron, tau governs the assembly of microtubules that make up the cytoskeleton. This is important for stabilization of and transport across the microtubules. One of the indications of the Alzheimer's disease is the hyper-phosphorylation and aggregation of protein tau into neurofibrillary tangles that destroy the neurons. But even experts in the field do not know if hyper-phosphorylation directly causes the aggregation of tau. In some experiments, pseudo-phosphorylation mimics the effects of phosphorylation. It does so by mutating certain residues of the protein chain into charged residues. In this computational study, we will employ a fragment of tau called PHF43. This fragment belongs to the microtubule binding region and papers published by others have indicated that it readily aggregates. Replica exchange molecular dynamics simulations were performed on the pseudo-phosphorylated, phosphorylated, and dimerized PHF43. The program used to simulate and analyze PHF43 was AMBER14.

  9. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  10. Molecular mechanisms for the regulation of histone mRNA stem-loop–binding protein by phosphorylation

    PubMed Central

    Zhang, Jun; Tan, Dazhi; DeRose, Eugene F.; Perera, Lalith; Dominski, Zbigniew; Marzluff, William F.; Tong, Liang; Hall, Traci M. Tanaka

    2014-01-01

    Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop–binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA. PMID:25002523

  11. Molecular mechanism of APC/C activation by mitotic phosphorylation

    PubMed Central

    Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-01-01

    In eukaryotes, the anaphase-promoting complex/cyclosome (APC/C) regulates the ubiquitin-dependent proteolysis of specific cell cycle proteins to coordinate chromosome segregation in mitosis and entry into G1 (refs 1,2). The APC/C’s catalytic activity and ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits (Cdc20 and Cdh1). Coactivators recognize substrate degrons3, and enhance the APC/C’s affinity for its cognate E2 (refs 4–6). During mitosis, cyclin-dependent kinase and polo kinase control Cdc20 and Cdh1-mediated activation of the APC/C. Hyper-phosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C7–12, whereas phosphorylation of Cdh1 prevents its association with the APC/C9,13,14. Since both coactivators associate with the APC/C through their common C box15 and IR (Ile-Arg) tail motifs16,17, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy (cryo-EM) and biochemical analysis, we define the molecular basis of how APC/C phosphorylation allows for its control by Cdc20. An auto-inhibitory (AI) segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the AI segment displaces it from the C-box binding site. Efficient phosphorylation of the AI segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin-Cks to a hyper-phosphorylated loop of Apc3. We also find that the small molecule inhibitor, tosyl-L-arginine methyl ester (TAME), preferentially suppresses APC/CCdc20 rather than APC/CCdh1, and interacts with both the C-box and IR-tail binding sites. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a

  12. The impact of caudate lobe resection on margin status and outcomes in patients with hilar cholangiocarcinoma: a multi-institutional analysis from the US Extrahepatic Biliary Malignancy Consortium.

    PubMed

    Bhutiani, Neal; Scoggins, Charles R; McMasters, Kelly M; Ethun, Cecilia G; Poultsides, George A; Pawlik, Timothy M; Weber, Sharon M; Schmidt, Carl R; Fields, Ryan C; Idrees, Kamran; Hatzaras, Ioannis; Shen, Perry; Maithel, Shishir K; Martin, Robert C G

    2018-04-01

    The objective of this study was to determine the impact of caudate resection on margin status and outcomes during resection of extrahepatic hilar cholangiocarcinoma. A database of 1,092 patients treated for biliary malignancies at institutions of the Extrahepatic Biliary Malignancy Consortium was queried for individuals undergoing curative-intent resection for extrahepatic hilar cholangiocarcinoma. Patients who did versus did not undergo concomitant caudate resection were compared with regard to demographic, baseline, and tumor characteristics as well as perioperative outcomes. A total of 241 patients underwent resection for a hilar cholangiocarcinoma, of whom 85 underwent caudate resection. Patients undergoing caudate resection were less likely to have a final positive margin (P = .01). Kaplan-Meier curve of overall survival for patients undergoing caudate resection indicated no improvement over patients not undergoing caudate resection (P = .16). On multivariable analysis, caudate resection was not associated with improved overall survival or recurrence-free survival, although lymph node positivity was associated with worse overall survival and recurrence-free survival, and adjuvant chemoradiotherapy was associated with improved overall survival and recurrence-free survival. Caudate resection is associated with a greater likelihood of margin-negative resection in patients with extrahepatic hilar cholangiocarcinoma. Precise preoperative imaging is critical to assess the extent of biliary involvement, so that all degrees of hepatic resections are possible at the time of the initial operation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Value of diffusion-weighted MR imaging in the diagnosis of lymph node metastases in patients with cholangiocarcinoma.

    PubMed

    Holzapfel, Konstantin; Gaa, Jochen; Schubert, Elaine C; Eiber, Matthias; Kleeff, Joerg; Rummeny, Ernst J; Loos, Martin

    2016-10-01

    To evaluate diffusion-weighted MR imaging (DWI) in the diagnosis of lymph node metastases in patients with cholangiocarcinoma. In 24 patients with cholangiocarcinoma, MR imaging of the upper abdomen was performed prior to surgery at 1.5 T using a respiratory-triggered single-shot echo-planar imaging (SSEPI) sequence (b values: 50, 300, and 600 s/mm(2)). ADC (apparent diffusion coefficient) values and diameters of regional lymph nodes (LN) were determined. Subsequently, in all patients, surgical exploration and/or resection of the primary tumor and regional LN dissection were performed. Imaging results were correlated with results of histopathologic analysis. ADC values and diameters of benign and malignant LN were compared using the Mann-Whitney U test. In addition, a ROC (receiver operating characteristic curve) analysis was performed. The mean ADC value (×10(-3) mm(2)/s) of metastatic LN (1.21 ± 0.15) was significantly lower than that of benign LN (1.62 ± 0.33, p < 0.001) while there was no significant difference in the mean diameter of malignant (16.8 ± 5.4 mm) and benign LN (14.1 ± 4.0 mm; p = 0.09). Using an ADC value of 1.25 × 10(-3) mm(2)/s as threshold, 91.4% of LN were correctly classified as benign or malignant with a sensitivity/specificity of 83.3%/92.8% and a positive/negative predictive value of 66.7%/96.7%. The area under the ROC curve was 0.93. DWI using a respiratory-triggered SSEPI sequence, according to our preliminary experience, is a promising imaging modality in the differentiation of benign and malignant LN in patients with cholangiocarcinoma.

  14. Resection and drainage of hilar cholangiocarcinoma: an 11-year experience of a single center in mainland China.

    PubMed

    Zheng-Rong, Lian; Hai-Bo, You; Xin, Chen; Chuan-Xin, Wu; Zuo-Jin, Liu; Bing, Tu; Jian-Ping, Gong; Sheng-Wei, Li

    2011-05-01

    The purpose of this study is to provide appropriate approaches for resection and drainage of hilar cholangiocarcinomas. Surgical approaches and postoperative survival rates of the patients were analyzed retrospectively. The 1-, 3-, and 5-year cumulative survival rates for patients who underwent resection were 76.6, 36.2, and 10.6 per cent, which was higher than those of 60, 14.3, and 0 per cent, respectively, in palliative operation. Moreover, the 1-, 3-, and 5-year cumulative survival rates for patients who underwent R0 were 88.9, 44.4, and 13.9 per cent, which was improved compared with those of 36.4, 9.1, and 0 per cent, respectively, in nonR0 resection. In addition, the overall survival time of patients who underwent R0 resection combined with hemihepatectomy and caudate lobe resection was longer than of those who underwent R0 without this extra operation, especially within 3 years after operation. After endoscopic metal biliary endoprothesis for patients who were intolerant of resection, liver function was improved at 2 weeks postoperation and the 1-, 3-, and 5-year cumulative survival rates for these patients were 72.7, 18.2, and 0 per cent, respectively. Treatment should be personalized. Resection is the most efficacious therapy, and negative histologic margins should be achieved in radical operation and "skeletonized" surgical operation is the basic requirement of radical treatment of hilar cholangiocarcinoma. Portal vein resection is beneficial to long-term survival and R0 resection combined with caudate lobe resection and hemihepatectomy is more efficacious for patients with Bismuth-Corlette type III hilar cholangiocarcinoma. The preferred approach of drainage in palliative operation is endoscopic metal biliary endoprothesis, which is more appropriate than tumor resection for the patients who suffer from serious comorbidities.

  15. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  16. Quantitative Phospho-proteomic Analysis of TNFα/NFκB Signaling Reveals a Role for RIPK1 Phosphorylation in Suppressing Necrotic Cell Death.

    PubMed

    Mohideen, Firaz; Paulo, Joao A; Ordureau, Alban; Gygi, Steve P; Harper, J Wade

    2017-07-01

    TNFα is a potent inducer of inflammation due to its ability to promote gene expression, in part via the NFκB pathway. Moreover, in some contexts, TNFα promotes Caspase-dependent apoptosis or RIPK1/RIPK3/MLKL-dependent necrosis. Engagement of the TNF Receptor Signaling Complex (TNF-RSC), which contains multiple kinase activities, promotes phosphorylation of several downstream components, including TAK1, IKKα/IKKβ, IκBα, and NFκB. However, immediate downstream phosphorylation events occurring in response to TNFα signaling are poorly understood at a proteome-wide level. Here we use Tandem Mass Tagging-based proteomics to quantitatively characterize acute TNFα-mediated alterations in the proteome and phosphoproteome with or without inhibition of the cIAP-dependent survival arm of the pathway with a SMAC mimetic. We identify and quantify over 8,000 phosphorylated peptides, among which are numerous known sites in the TNF-RSC, NFκB, and MAP kinase signaling systems, as well as numerous previously unrecognized phosphorylation events. Functional analysis of S320 phosphorylation in RIPK1 demonstrates a role for this event in suppressing its kinase activity, association with CASPASE-8 and FADD proteins, and subsequent necrotic cell death during inflammatory TNFα stimulation. This study provides a resource for further elucidation of TNFα-dependent signaling pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death.

    PubMed

    Lee, C K; Yang, Y; Chen, C; Liu, J

    2016-04-14

    The transcription factor Miz1 negatively regulates TNF-induced JNK activation and cell death by suppressing TRAF2 K63-polyubiquitination; upon TNF stimulation, the suppression is relieved by Mule/ARF-BP1-mediated Miz1 ubiquitination and subsequent degradation. It is not known how Mule is activated by TNF. Here we report that TNF activates Mule by inducing the dissociation of Mule from its inhibitor ARF. ARF binds to and thereby inhibits the E3 ligase activity of Mule in the steady state. TNF induces tyrosine phosphorylation of Mule, which subsequently dissociates from ARF and becomes activated. Inhibition of Mule phosphorylation by silencing of the Spleen Tyrosine Kinase (Syk) prevents its dissociation from ARF, thereby inhibiting Mule E3 ligase activity and TNF-induced JNK activation and cell death. Our data provides a missing link in TNF signaling pathway that leads to JNK activation and cell death.

  18. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation.

    PubMed Central

    Cavigelli, M; Dolfi, F; Claret, F X; Karin, M

    1995-01-01

    Growth factors induce c-fos transcription by stimulating phosphorylation of transcription factor TCF/Elk-1, which binds to the serum response element (SRE). Under such conditions Elk-1 could be phosphorylated by the mitogen-activated protein kinases (MAPKs) ERK1 and ERK2. However, c-fos transcription and SRE activity are also induced by stimuli, such as UV irradiation and activation of the protein kinase MEKK1, that cause only an insignificant increase in ERK1/2 activity. However, both of these stimuli strongly activate two other MAPKs, JNK1 and JNK2, and stimulate Elk-1 transcriptional activity and phosphorylation. We find that the JNKs are the predominant Elk-1 activation domain kinases in extracts of UV-irradiated cells and that immunopurified JNK1/2 phosphorylate Elk-1 on the same major sites recognized by ERK1/2, that potentiate its transcriptional activity. Finally, we show that UV irradiation, but not serum or phorbol esters, stimulate translocation of JNK1 to the nucleus. As Elk-1 is most likely phosphorylated while bound to the c-fos promoter, these results suggest that UV irradiation and MEKK1 activation stimulate TCF/Elk-1 activity through JNK activation, while growth factors induce c-fos through ERK activation. Images PMID:8846788

  19. Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest

    PubMed Central

    Bastia, Deepak; Srivastava, Pankaj; Zaman, Shamsu; Choudhury, Malay; Mohanty, Bidyut K.; Bacal, Julien; Langston, Lance D.; Pasero, Philippe; O’Donnell, Michael E.

    2016-01-01

    Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1–Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2–7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2–7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2–7 had to be phosphorylated for binding to phospho-Tof1–Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2–7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1–Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1–Ter complex. PMID:27298353

  20. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways

    PubMed Central

    Watanabe, Nobumoto; Arai, Harumi; Iwasaki, Jun-ichi; Shiina, Masaaki; Ogata, Kazuhiro; Hunter, Tony; Osada, Hiroyuki

    2005-01-01

    At the onset of M phase, the activity of somatic Wee1 (Wee1A), the inhibitory kinase for cyclin-dependent kinase (CDK), is down-regulated primarily through proteasome-dependent degradation after ubiquitination by the E3 ubiquitin ligase SCFβ-TrCP. The F-box protein β-TrCP (β-transducin repeat-containing protein), the substrate recognition component of the ubiquitin ligase, binds to its substrates through a conserved binding motif (phosphodegron) containing two phosphoserines, DpSGXXpS. Although Wee1A lacks this motif, phosphorylation of serines 53 and 123 (S53 and S123) of Wee1A by polo-like kinase 1 (Plk1) and CDK, respectively, are required for binding to β-TrCP. The sequence surrounding phosphorylated S53 (DpSAFQE) is similar to the conserved β-TrCP-binding motif; however, the role of S123 phosphorylation (EEGFGSSpSPVK) in β-TrCP binding was not elucidated. In the present study, we show that phosphorylation of S123 (pS123) by CDK promoted the binding of Wee1A to β-TrCP through three independent mechanisms. The pS123 not only directly interacted with basic residues in the WD40 repeat domain of β-TrCP but also primed phosphorylation by two independent protein kinases, Plk1 and CK2 (formerly casein kinase 2), to create two phosphodegrons on Wee1A. In the case of Plk1, S123 phosphorylation created a polo box domain-binding motif (SpSP) on Wee1A to accelerate phosphorylation of S53 by Plk1. CK2 could phosphorylate S121, but only if S123 was phosphorylated first, thereby generating the second β-TrCP-binding site (EEGFGpS121). Using a specific inhibitor of CK2, we showed that the phosphorylation-dependent degradation of Wee1A is important for the proper onset of mitosis. PMID:16085715

  1. Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for presentation of transformed self

    PubMed Central

    Mohammed, Fiyaz; Cobbold, Mark; Zarling, Angela L.; Salim, Mahboob; Barrett-Wilt, Gregory A.; Shabanowitz, Jeffrey; Hunt, Donald F.; Engelhard, Victor H.; Willcox, Benjamin E.

    2008-01-01

    Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex (MHC) class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphorylated peptides on cancer cells provides an immunological signature of “transformed self”. Here, we demonstrate that phosphorylation can radically increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide–HLA-A2 complexes. These revealed a novel peptide binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting MHC binding, or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy. PMID:18836451

  2. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice.

    PubMed

    Zhang, Shanshan; Song, Xinhua; Cao, Dan; Xu, Zhong; Fan, Biao; Che, Li; Hu, Junjie; Chen, Bin; Dong, Mingjie; Pilo, Maria G; Cigliano, Antonio; Evert, Katja; Ribback, Silvia; Dombrowski, Frank; Pascale, Rosa M; Cossu, Antonio; Vidili, Gianpaolo; Porcu, Alberto; Simile, Maria M; Pes, Giovanni M; Giannelli, Gianluigi; Gordan, John; Wei, Lixin; Evert, Matthias; Cong, Wenming; Calvisi, Diego F; Chen, Xin

    2017-12-01

    Intrahepatic cholangiocarcinoma (ICC) is a lethal malignancy without effective treatment options. MLN0128, a second generation pan-mTOR inhibitor, shows efficacy for multiple tumor types. We evaluated the therapeutic potential of MLN0128 vs. gemcitabine/oxaliplatin in a novel ICC mouse model. We established a novel ICC mouse model via hydrodynamic transfection of activated forms of AKT (myr-AKT) and Yap (YapS127A) protooncogenes (that will be referred to as AKT/YapS127A). Genetic approaches were applied to study the requirement of mTORC1 and mTORC2 in mediating AKT/YapS127A driven tumorigenesis. Gemcitabine/oxaliplatin and MLN0128 were administered in AKT/YapS127A tumor-bearing mice to study their anti-tumor efficacy in vivo. Multiple human ICC cell lines were used for in vitro experiments. Hematoxylin and eosin staining, immunohistochemistry and immunoblotting were applied for the characterization and mechanistic study. Co-expression of myr-AKT and YapS127A promoted ICC development in mice. Both mTORC1 and mTORC2 complexes were required for AKT/YapS127A ICC development. Gemcitabine/oxaliplatin had limited efficacy in treating late stage AKT/YapS127A ICC. In contrast, partial tumor regression was achieved when MLN0128 was applied in the late stage of AKT/YapS127A cholangiocarcinogenesis. Furthermore, when MLN0128 was administered in the early stage of AKT/YapS127A carcinogenesis, it led to disease stabilization. Mechanistically, MLN0128 efficiently inhibited AKT/mTOR signaling both in vivo and in vitro, inducing strong ICC cell apoptosis and only marginally affecting proliferation. This study suggests that mTOR kinase inhibitors may be beneficial for the treatment of ICC, even in tumors that are resistant to standard of care chemotherapeutics, such as gemcitabine/oxaliplatin-based regimens, especially in the subset of tumors exhibiting activated AKT/mTOR cascade. Lay summary: We established a novel mouse model of intrahepatic cholangiocarcinoma (ICC). Using this

  3. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure.

    PubMed

    van Oort, Ralph J; McCauley, Mark D; Dixit, Sayali S; Pereira, Laetitia; Yang, Yi; Respress, Jonathan L; Wang, Qiongling; De Almeida, Angela C; Skapura, Darlene G; Anderson, Mark E; Bers, Donald M; Wehrens, Xander H T

    2010-12-21

    approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation by Ca(2+)/calmodulin-dependent protein kinase II is both necessary and sufficient to promote lethal ventricular arrhythmias. mice in which the S2814 Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 is constitutively activated (S2814D) develop pathological sarcoplasmic reticulum Ca(2+) release events, resulting in reduced sarcoplasmic reticulum Ca(2+) load on confocal microscopy. These Ca(2+) release events are associated with increased RyR2 open probability in lipid bilayer preparations. At baseline, young S2814D mice have structurally and functionally normal hearts without arrhythmias; however, they develop sustained ventricular tachycardia and sudden cardiac death on catecholaminergic provocation by caffeine/epinephrine or programmed electric stimulation. Young S2814D mice have a significant predisposition to sudden arrhythmogenic death after transverse aortic constriction surgery. Finally, genetic ablation of the Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 (S2814A) protects mutant mice from pacing-induced arrhythmias versus wild-type mice after transverse aortic constriction surgery. our results suggest that Ca(2+)/calmodulin-dependent protein kinase II phosphorylation of RyR2 Ca(2+) release channels at S2814 plays an important role in arrhythmogenesis and sudden cardiac death in mice with heart failure.

  4. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    PubMed

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  5. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    PubMed

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  6. Can preoperative and postoperative CA19-9 levels predict survival and early recurrence in patients with resectable hilar cholangiocarcinoma?

    PubMed

    Wang, Jun-Ke; Hu, Hai-Jie; Shrestha, Anuj; Ma, Wen-Jie; Yang, Qin; Liu, Fei; Cheng, Nan-Sheng; Li, Fu-Yu

    2017-07-11

    To investigate the predictive values of preoperative and postoperative serum CA19-9 levels on survival and other prognostic factors including early recurrence in patients with resectable hilar cholangiocarcinoma. In univariate analysis, increased preoperative and postoperative CA19-9 levels in the light of different cut-off points (37, 100, 150, 200, 400, 1000 U/ml) were significantly associated with poor survival outcomes, of which the cut-off point of 150 U/ml showed the strongest predictive value (both P < 0.001). Preoperative to postoperative increase in CA19-9 level was also correlated with poor survival outcome (P < 0.001). In multivariate analysis, preoperative CA19-9 level > 150 U/ml was significantly associated with lymph node metastasis (OR = 3.471, 95% CI 1.216-9.905; P = 0.020) and early recurrence (OR = 8.280, 95% CI 2.391-28.674; P = 0.001). Meanwhile, postoperative CA19-9 level > 150 U/ml was also correlated with early recurrence (OR = 4.006, 95% CI 1.107-14.459; P = 0.034). Ninety-eight patients who had undergone curative surgery for hilar cholangiocarcinoma between 1995 and 2014 in our institution were selected for the study. The correlations of preoperative and postoperative serum CA19-9 levels on the basis of different cut-off points with survival and various tumor factors were retrospectively analyzed with univariate and multivariate methods. In patients with resectable hilar cholangiocarcinoma, serum CA19-9 predict survival and early recurrence. Patients with increased preoperative and postoperative CA19-9 levels have poor survival outcomes and higher tendency of early recurrence.

  7. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roffe, Suzy; Hagai, Yosey; Institute of Animal Sciences, Volcani Center, Bet Dagan 50250

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of themore » phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.« less

  8. Delta-Secretase Phosphorylation by SRPK2 Enhances Its Enzymatic Activity, Provoking Pathogenesis in Alzheimer's Disease.

    PubMed

    Wang, Zhi-Hao; Liu, Pai; Liu, Xia; Manfredsson, Fredric P; Sandoval, Ivette M; Yu, Shan Ping; Wang, Jian-Zhi; Ye, Keqiang

    2017-09-07

    Delta-secretase, a lysosomal asparagine endopeptidase (AEP), simultaneously cleaves both APP and tau, controlling the onset of pathogenesis of Alzheimer's disease (AD). However, how this protease is post-translationally regulated remains unclear. Here we report that serine-arginine protein kinase 2 (SRPK2) phosphorylates delta-secretase and enhances its enzymatic activity. SRPK2 phosphorylates serine 226 on delta-secretase and accelerates its autocatalytic cleavage, leading to its cytoplasmic translocation and escalated enzymatic activities. Delta-secretase is highly phosphorylated in human AD brains, tightly correlated with SRPK2 activity. Overexpression of a phosphorylation mimetic (S226D) in young 3xTg mice strongly promotes APP and tau fragmentation and facilitates amyloid plaque deposits and neurofibrillary tangle (NFT) formation, resulting in cognitive impairment. Conversely, viral injection of the non-phosphorylatable mutant (S226A) into 5XFAD mice decreases APP and tau proteolytic cleavage, attenuates AD pathologies, and reverses cognitive defects. Our findings support that delta-secretase phosphorylation by SRPK2 plays a critical role in aggravating AD pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. © 2015 Wiley Periodicals, Inc.

  10. Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription.

    PubMed

    Lanucara, Francesco; Lam, Connie; Mann, Jelena; Monie, Tom P; Colombo, Stefano A P; Holman, Stephen W; Boyd, James; Dange, Manohar C; Mann, Derek A; White, Michael R H; Eyers, Claire E

    2016-07-01

    The NF-κB signalling module controls transcription through a network of protein kinases such as the IKKs, as well as inhibitory proteins (IκBs) and transcription factors including RelA/p65. Phosphorylation of the NF-κB subunits is critical for dictating system dynamics. Using both non-targeted discovery and quantitative selected reaction monitoring-targeted proteomics, we show that the cytokine TNFα induces dynamic multisite phosphorylation of RelA at a number of previously unidentified residues. Putative roles for many of these phosphorylation sites on RelA were predicted by modelling of various crystal structures. Stoichiometry of phosphorylation determination of Ser45 and Ser42 revealed preferential early phosphorylation of Ser45 in response to TNFα. Quantitative analyses subsequently confirmed differential roles for pSer42 and pSer45 in promoter-specific DNA binding and a role for both of these phosphosites in regulating transcription from the IL-6 promoter. These temporal dynamics suggest that RelA-mediated transcription is likely to be controlled by functionally distinct NF-κB proteoforms carrying different combinations of modifications, rather than a simple 'one modification, one effect' system. © 2016 The Authors.

  11. Upregulation of CD147 Promotes Metastasis of Cholangiocarcinoma by Modulating the Epithelial-to-Mesenchymal Transitional Process.

    PubMed

    Dana, Paweena; Kariya, Ryusho; Vaeteewoottacharn, Kulthida; Sawanyawisuth, Kanlayanee; Seubwai, Wunchana; Matsuda, Kouki; Okada, Seiji; Wongkham, Sopit

    2017-08-07

    CD147 is a transmembrane protein that can induce the expression and activity of matrix metalloproteinases (MMPs). Expression of CD147 has been shown to potentiate cell migration, invasion, and metastasis of cancer. In this study, the critical role of CD147 in metastasis was elucidated using CD147-overexpressing cholangiocarcinoma (CCA) cells in vitro and in vivo. The molecular mechanism, demonstrated herein, supported the hypothesis that metastasis increased in CD147-overexpressing cells. Five CD147-overexpressing clones (Ex-CD147) were established from a low CD147-expressing CCA cell line, KKU-055, using lentivirus containing pReceiver-Lenti-CD147. The metastatic capability was determined using the tail vein injection mouse model and an in vitro 3D invasion assay. Liver colonization was assessed using anti-HLA class I immunohistochemistry. Adhesion abilities, cytoskeletal arrangements, MMP activities, the expressions of adhesion molecules, and epithelial-mesenchymal transitional markers were analyzed. All Ex-CD147 clones exhibited a high CD147 expression and high liver colonization in the tail vein-injected mouse model, whereas parental cells lacked this ability. Ex-CD147 clones exhibited metastatic phenotypes (i.e., an increase in F-actin rearrangement) and cell invasion and a decrease in cell adhesion. The molecular mechanisms were shown to be via the induction of MMP-2 activity and enhancement of epithelial-mesenchymal transitions. An increase in mesenchymal markers Slug, vimentin, and N-cadherin, and a decrease in epithelial markers E-cadherin and claudin-1, together with suppression of the adhesion molecule ICAM-1, were observed in the Ex-CD147 clones. Moreover, suppression of CD147 expression using siCD147 in two CCA cell lines with high CD147 expression significantly decreased cell migration and invasion of these CCA cells. These findings emphasize the essential role of CD147 in CCA metastasis and suggest CD147 as a promising target for the effective

  12. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages

    PubMed Central

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio; Andersen, Jesper B.; Cardinale, Vincenzo; Alvaro, Domenico; Chiorino, Giovanna; Forti, Elisa; Glaser, Shannon; Alpini, Gianfranco; Destro, Annarita; Sozio, Francesca; Di Tommaso, Luca; Roncalli, Massimo; Banales, Jesus M.; Coulouarn, Cédric; Bujanda, Luis; Torzilli, Guido; Invernizzi, Pietro

    2017-01-01

    ). Surprisingly, a significant association of IL13, IL34 and osteoactivin with sphere stem-like genes was provided by a CCA database (n = 104). In vitro combination of IL13, IL34, osteoactivin was responsible for macrophage-differentiation and invasion, as well as for in vivo tumor-promoting effect. Conclusion CCA-CSCs molded a specific subset of stem-like associated macrophages thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. Lay summary Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of the key dysregulated immune subtypes responsible for cooperating in supporting tumor initiation may facilitate the development of new therapeutic approaches. Considering that human cholangiocarcinoma represents a clinical emergency, it is essential to move to predictive models in order to understand the adaptive process of macrophage component (imprinting, polarization and maintenance) engaged by tumor stem-like compartment. PMID:27593106

  13. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.

    PubMed

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-09-01

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).

  14. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    PubMed

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    PubMed Central

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  16. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.

  17. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation.

    PubMed

    Cheng, Yuanyuan; Xia, Zhengyuan; Han, Yifan; Rong, Jianhui

    2016-01-01

    The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS) and glycogen synthase kinase 3β (GSK-3β), in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9) phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT) while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9) was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.

  18. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation

    PubMed Central

    Cheng, Yuanyuan; Xia, Zhengyuan; Han, Yifan; Rong, Jianhui

    2016-01-01

    The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS) and glycogen synthase kinase 3β (GSK-3β), in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9) phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT) while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9) was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation. PMID:27034732

  19. Cholangiocarcinoma associated with limbic encephalitis and early cerebral abnormalities detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography: a case report.

    PubMed

    Schmidt, Sergio L; Schmidt, Juliana J; Tolentino, Julio C; Ferreira, Carlos G; de Almeida, Sergio A; Alvarenga, Regina P; Simoes, Eunice N; Schmidt, Guilherme J; Canedo, Nathalie H S; Chimelli, Leila

    2016-07-20

    Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro- D -glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient's death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes. Two months before the patient's death, cerebral metastases were detected on a contrast-enhanced computed tomographic scan. Postmortem examination revealed a cholangiocarcinoma with multiple metastases including the lungs and lymph nodes. The patient's brain weighed 1300 g, and mild cortical atrophy, ex vacuo dilation of the ventricles, and mild focal thickening of the cerebellar leptomeninges, which were infiltrated by neoplastic epithelial cells, were observed. These findings support the need for continued vigilance in malignancy surveillance in patients with limbic encephalitis and early cerebral positron emission tomographic scan abnormalities. The difficulty in early

  20. High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1-dependent phosphorylation of Cdc28CDK1

    PubMed Central

    Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian

    2018-01-01

    Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. PMID:29580382

  1. 90K Glycoprotein Promotes Degradation of Mutant β-Catenin Lacking the ISGylation or Phosphorylation Sites in the N-terminus.

    PubMed

    Park, So-Yeon; Yoon, Somy; Kim, Hangun; Kim, Kyung Keun

    2016-10-01

    β-Catenin is a major transducer of the Wnt signaling pathway, which is aberrantly expressed in colorectal and other cancers. Previously, we showed that β-catenin is downregulated by the 90K glycoprotein via ISGylation-dependent degradation. However, the further mechanisms of β-catenin degradation by 90K-mediated ISGylation pathway were not investigated. This study aimed to identify the β-catenin domain responsible for the action of 90K and to compare the mechanism of 90K on β-catenin degradation with phosphorylation-dependent ubiquitinational degradation of β-catenin. The deletion mutants of β-catenin lacking N- or C-terminal domain or mutating the N-terminal lysine or nonlysine residue were employed to delineate the characteristics of β-catenin degradation by 90K-mediated ISGylation pathway. 90K induced Herc5 and ISG15 expression and reduced β-catenin levels in HeLa and CSC221 cells. The N-terminus of β-catenin is required for 90K-induced β-catenin degradation, but the N-terminus of β-catenin is not essential for interaction with Herc5. However, substituting lysine residues in the N-terminus of β-catenin with arginine or deleting serine or threonine residue containing domains from the N-terminus does not affect 90K-induced β-catenin degradation, indicating that the N-terminal 86 amino acids of β-catenin are crucial for 90K-mediated ISGylation/degradation of β-catenin in which the responsible lysine or nonlysine residues were not identified. Our present results highlight the action of 90K on promoting degradation of mutant β-catenin lacking the phosphorylation sites in the N-terminus. It provides further insights into the discrete pathway downregulating the stabilized β-catenin via acquiring mutations at the serine/threonine residues in the N-terminus. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma

    PubMed Central

    Goeppert, Benjamin; Ernst, Christina; Baer, Constance; Roessler, Stephanie; Renner, Marcus; Mehrabi, Arianeb; Hafezi, Mohammadreza; Pathil, Anita; Warth, Arne; Stenzinger, Albrecht; Weichert, Wilko; Bähr, Marion; Will, Rainer; Schirmacher, Peter; Plass, Christoph; Weichenhan, Dieter

    2016-01-01

    ABSTRACT Cholangiocarcinoma (CC) is a rare malignancy of the extrahepatic or intrahepatic biliary tract with an outstanding poor prognosis. Non-surgical therapeutic regimens result in minimally improved survival of CC patients. Global genomic analyses identified a few recurrently mutated genes, some of them in genes involved in epigenetic patterning. In a previous study, we demonstrated global DNA methylation changes in CC, indicating major contribution of epigenetic alterations to cholangiocarcinogenesis. Here, we aimed at the identification and characterization of CC-related, differentially methylated regions (DMRs) in potential microRNA promoters and of genes targeted by identified microRNAs. Twenty-seven hypermethylated and 13 hypomethylated potential promoter regions of microRNAs, known to be associated with cancer-related pathways like Wnt, ErbB, and PI3K-Akt signaling, were identified. Selected DMRs were confirmed in 2 independent patient cohorts. Inverse correlation between promoter methylation and expression suggested miR-129-2 and members of the miR-200 family (miR-200a, miR-200b, and miR-429) as novel tumor suppressors and oncomiRs, respectively, in CC. Tumor suppressor genes deleted in liver cancer 1 (DLC1), F-box/WD-repeat-containing protein 7 (FBXW7), and cadherin-6 (CDH6) were identified as presumed targets in CC. Tissue microarrays of a representative and well-characterized cohort of biliary tract cancers (n=212) displayed stepwise downregulation of CDH6 and association with poor patient outcome. Ectopic expression of CDH6 on the other hand, delayed growth in the CC cell lines EGI-1 and TFK-1, together suggesting a tumor suppressive function of CDH6. Our work represents a valuable repository for the study of epigenetically altered miRNAs in cholangiocarcinogenesis and novel putative, CC-related tumor suppressive miRNAs and oncomiRs. PMID:27593557

  3. Transhepatic Hilar Approach for Perihilar Cholangiocarcinoma: Significance of Early Judgment of Resectability and Safe Vascular Reconstruction.

    PubMed

    Kuriyama, Naohisa; Isaji, Shuji; Tanemura, Akihiro; Iizawa, Yusuke; Kato, Hiroyuki; Murata, Yasuhiro; Azumi, Yoshinori; Kishiwada, Masashi; Mizuno, Shugo; Usui, Masanobu; Sakurai, Hiroyuki

    2017-03-01

    In the most common surgical procedure for perihilar cholangiocarcinoma, the margin status of the proximal bile duct is determined at the final step. Our procedure, the transhepatic hilar approach, confirms a cancer-negative margin status of the proximal bile duct first. We first performed a partial hepatic parenchymal transection to expose the hilar plate, and then transected the proximal bile duct to confirm margin status. Then, divisions of the hepatic artery and portal vein of the future resected liver are performed, followed by the residual hepatic parenchymal transection. The transhepatic hilar approach offers a wide surgical field for safe resection and reconstruction of the portal vein in the middle of the hepatectomy. We reviewed 23 patients with perihilar cholangiocarcinoma who underwent major hepatectomy using our procedure from 2011 to 2015. A combined vascular resection and reconstruction was carried out in 14 patients (60.9%). R0 resection was achieved in 17 patients (73.9%), and the overall 3-year survival rate was 52.9% (median survival time 52.4 months). The transhepatic hilar approach is useful and practicable regardless of local tumor extension, enabling us to determine tumor resectability and perform safe resection and reconstruction of the portal vein early in the operation.

  4. Management of hilar cholangiocarcinoma in the North of England: Pathology, treatment, and outcome

    PubMed Central

    Mansfield, SD; Barakat, O; Charnley, RM; Jaques, BC; O’Suilleabhain, CB; Atherton, PJ; Manas, D

    2005-01-01

    AIM: To assess the management and outcome of hilar cholangiocarcinoma (Klatskin tumor) in a single tertiary referral center. METHODS: The notes of all patients with a diagnosis of hilar cholangiocarcinoma referred to our unit for over an 8-year period were identified and retrospectively reviewed. Presentation, management and outcome were assessed. RESULTS: Seventy-five patients were identified. The median age was 64 years (range 34-84 years). Male to female ratio was 1:1. Eighty-nine percent of patients presented with jaundice. Most patients referred were under Bismuth classification 3a, 3b or 4. Seventy patients required biliary drainage, 65 patients required 152 percutaneous drainage procedures, and 25 had other complications. Forty-one patients had 51 endoscopic drainage procedures performed (15 failed). Of these, 36 subsequently required percutaneous drainage. The median number of drainage procedures for all patients was three, 18 patients underwent resection (24%), nine had major complications and three died post-operatively. The 5-year survival rate was 4.2% for all patients, 21% for resected patients and 0% for those who did not undergo resection (P = 0.0021). The median number of admissions after diagnosis in resected patients was two and three in non-resected patients (P<0.05). Twelve patients had external-beam radiotherapy, seven brachytherapy, and eight chemotherapy. There was no significant benefit in terms of survival (P = 0.46) or hospital admissions. CONCLUSION: Resection increases survival but carries the risk of significant morbidity and mortality. Percutaneous biliary drainage is almost always necessary and endoscopic drainage should be avoided if possible. PMID:16437689

  5. [The impact of preoperative biliary drainage on surgical morbidity in hilar cholangiocarcinoma patients].

    PubMed

    Li, Shao-qiang; Chen, Dong; Liang, Li-jian; Peng, Bao-gang; Yin, Xiao-yu

    2009-08-01

    To evaluate the impact of preoperative biliary drainage on surgical morbidity in hilar cholangiocarcinoma patients underwent surgery. One hundred and eleven consecutive patients with hilar cholangiocarcinoma whose serum total bilirubin (TBIL) level > 85 micromol/L and underwent surgery in the period from June 1998 to August 2007 were enrolled. There were 67 male and 44 female patients, aged from 26 to 82 years old with a mean of 56 years old. Fifty-five patients underwent preoperative biliary drainage with a mean of 11.4 d of drainage period (drainage group), the other (n = 56) were the non-drainage group. The preoperative TBIL level of drainage group was (154 +/- 69) micromol/L, which was significantly lower than the value of pre-drainage (256 +/- 136) micromol/L (P = 0.000) and the value of non-drainage group (268 +/- 174) micromol/L (P = 0.005). ALT and GGT levels could be lowered by preoperative biliary drainage. The postoperative complications of these two groups were comparable (36.3% vs. 28.6%, P = 0.381). Four patients in drainage group and 5 patients in non-drainage group died of liver failure. Multivariate logistic regression indicated that hepatectomy (OR = 0.284, P = 0.003) was the independent risk factor associated with postoperative morbidity. Bismuth-Corlette classification (OR = 0.211, P = 0.028) was the independent risk factor linked to postoperative mortality. Preoperative biliary drainage could alleviate liver injury due to hyperbilirubin, but it could not decrease the surgical morbidity and postoperative mortality. Concomitant hepatectomy and Bismuth-Corlette classification were independent risk factors linked to surgical risks.

  6. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Alamore » (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.« less

  7. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication.

    PubMed

    Gopalakrishnan, Veena; Tan, Cherylin Ruiling; Li, Shang

    2017-07-03

    Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomere homeostasis is central to maintaining genomic integrity. In budding yeast, Cdk1 phosphorylates the telomere-specific binding protein, Cdc13, promoting the recruitment of telomerase to telomere and thereby telomere elongation. Cdc13 is also an integral part of the CST (Cdc13-Stn1-Ten1) complex that is essential for telomere capping and counteracting telomerase-dependent telomere elongation. Therefore, telomere length homeostasis is a balance between telomerase-extendable and CST-unextendable states. In our earlier work, we showed that Cdk1 also phosphorylates Stn1 which occurs sequentially following Cdc13 phosphorylation during cell cycle progression. This stabilizes the CST complex at the telomere and results in telomerase inhibition. Hence Cdk1-dependent phosphorylations of Stn1 acts like a molecular switch that drives Cdc13 to complex with Stn1-Ten1 rather than with telomerase. However, the underlying mechanism of how a single cyclin-dependent kinase phosphorylates Cdc13 and Stn1 in temporally distinct windows is largely unclear. Here, we show that S phase cyclins are necessary for telomere maintenance. The S phase and mitotic cyclins facilitate Cdc13 and Stn1 phosphorylation respectively, to exert opposing outcomes at the telomere. Thus, our results highlight a previously unappreciated role for cyclins in telomere replication.

  8. Hilar cholangiocarcinoma is pathologically similar to pancreatic duct adenocarcinoma: suggestions of similar background and development.

    PubMed

    Nakanuma, Yasuni; Sato, Yasunori

    2014-07-01

    Routine experiences suggest that cholangiocarcinomas (CCAs) show different clinicopathological behaviors along the biliary tree, and hilar CCA apparently resembles pancreatic duct adenocarcinoma (PDAC). Herein, the backgrounds for these similarities were reviewed. While all cases of PDAC, hilar CCA, intrahepatic CCA (ICCA) and CCA components of combined hepatocellular-cholangiocarcinoma (cHC-CCA) were adenocarcinomas, micropapillary patterns and columnar carcinoma cells were common in PDAC and hilar CCA, and trabecular components and cuboidal carcinoma cells were common in ICCA and CCA components of cHC-CCA. Anterior gradient protein-2 and S100P were frequently expressed in perihilar CCA and PDAC, while neural cell adhesion molecule and luminal epithelial membrane antigen were common in CCA components of c-HC-CCA. Pdx1 and Hes1 were frequently and markedly expressed aberrantly in PDAC and perihilar CCA, although their expression was rare and mild in CCA components in cHC-CCA and ICCA. Hilar CCA showed a similar postoperative prognosis to PDAC but differed from ICCA and cHC-CCA. Taken together, hilar CCA may differ from ICCA and CCA components of cHC-CCA but have a similar development to PDAC. These similarities may be explained by the unique anatomical, embryological and reactive nature of the pancreatobiliary tract. Further studies of these intractable malignancies are warranted. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  9. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area

    PubMed Central

    Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang

    2015-01-01

    Background: Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Methods: Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. Results: TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). Conclusions: fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation. PMID:26269751

  10. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area.

    PubMed

    Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang

    2015-01-01

    Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation.

  11. Clinical value of preoperative serum CA 19-9 and CA 125 levels in predicting the resectability of hilar cholangiocarcinoma.

    PubMed

    Hu, Hai-Jie; Mao, Hui; Tan, Yong-Qiong; Shrestha, Anuj; Ma, Wen-Jie; Yang, Qin; Wang, Jun-Ke; Cheng, Nan-Sheng; Li, Fu-Yu

    2016-01-01

    To examine the predictive value of tumor markers for evaluating tumor resectability in patients with hilar cholangiocarcinoma and to explore the prognostic effect of various preoperative factors on resectability in patients with potentially resectable tumors. Patients with potentially resectable tumors judged by radiologic examination were included. The receiver operating characteristic (ROC) analysis was conducted to evaluate serum carbohydrate antigenic determinant 19-9 (CA 19-9), carbohydrate antigen 125 (CA 125) and carcino embryonie antigen levels on tumor resectability. Univariate and multivariate logistic regression models were also conducted to analysis the correlation of preoperative factors with resectability. In patients with normal bilirubin levels, ROC curve analysis calculated the ideal CA 19-9 cut-off value of 203.96 U/ml in prediction of resectability, with a sensitivity of 83.7 %, specificity of 80 %, positive predictive value of 91.1 % and negative predictive value of 66.7 %. Meanwhile, the optimal cut-off value for CA 125 to predict resectability was 25.905 U/ml (sensitivity, 78.6 %; specificity, 67.5 %). In a multivariate logistic regression model, tumor size ≤3 cm (OR 4.149, 95 % CI 1.326-12.981, P = 0.015), preoperative CA 19-9 level ≤200 U/ml (OR 20.324, 95 % CI 6.509-63.467, P < 0.001), preoperative CA 125 levels ≤26 U/ml (OR 8.209, 95 % CI 2.624-25.677, P < 0.001) were independent determinants of resectability in patients diagnosed as hilar cholangiocarcinoma. Preoperative CA 19-9 and CA 125 levels predict resectability in patients with radiological resectable hilar cholangiocarcinoma. Increased preoperative CA 19-9 levels and CA 125 levels are associated with poor resectability rate.

  12. Regulation of spinogenesis in mature Purkinje cells via mGluR/PKC-mediated phosphorylation of CaMKIIβ

    PubMed Central

    Sugawara, Takeyuki; Hisatsune, Chihiro; Miyamoto, Hiroyuki; Ogawa, Naoko; Mikoshiba, Katsuhiko

    2017-01-01

    Dendritic spines of Purkinje cells form excitatory synapses with parallel fiber terminals, which are the primary sites for cerebellar synaptic plasticity. Nevertheless, how density and morphology of these spines are properly maintained in mature Purkinje cells is not well understood. Here we show an activity-dependent mechanism that represses excessive spine development in mature Purkinje cells. We found that CaMKIIβ promotes spine formation and elongation in Purkinje cells through its F-actin bundling activity. Importantly, activation of group I mGluR, but not AMPAR, triggers PKC-mediated phosphorylation of CaMKIIβ, which results in dissociation of the CaMKIIβ/F-actin complex. Defective function of the PKC-mediated CaMKIIβ phosphorylation promotes excess F-actin bundling and leads to abnormally numerous and elongated spines in mature IP3R1-deficient Purkinje cells. Thus, our data suggest that phosphorylation of CaMKIIβ through the mGluR/IP3R1/PKC signaling pathway represses excessive spine formation and elongation in mature Purkinje cells. PMID:28607044

  13. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple

    PubMed Central

    Hu, Da-Gang; Zhang, Quan-Yan; An, Jian-Ping; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants. PMID:27560976

  14. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I.

    PubMed

    Bierhoff, Holger; Dundr, Miroslav; Michels, Annemieke A; Grummt, Ingrid

    2008-08-01

    The protein kinase casein kinase 2 (CK2) phosphorylates different components of the RNA polymerase I (Pol I) transcription machinery and exerts a positive effect on rRNA gene (rDNA) transcription. Here we show that CK2 phosphorylates the transcription initiation factor TIF-IA at serines 170 and 172 (Ser170/172), and this phosphorylation triggers the release of TIF-IA from Pol I after transcription initiation. Inhibition of Ser170/172 phosphorylation or covalent tethering of TIF-IA to the RPA43 subunit of Pol I inhibits rDNA transcription, leading to perturbation of nucleolar structure and cell cycle arrest. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrate that dissociation of TIF-IA from Pol I is a prerequisite for proper transcription elongation. In support of phosphorylation of TIF-IA switching from the initiation into the elongation phase, dephosphorylation of Ser170/172 by FCP1 facilitates the reassociation of TIF-IA with Pol I, allowing a new round of rDNA transcription. The results reveal a mechanism by which the functional interplay between CK2 and FCP1 sustains multiple rounds of Pol I transcription.

  15. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    PubMed

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα

    PubMed Central

    Jensen-Urstad, Anne P. L.; Song, Haowei; Lodhi, Irfan J.; Funai, Katsuhiko; Yin, Li; Coleman, Trey; Semenkovich, Clay F.

    2013-01-01

    Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPARα target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPARα target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status. PMID:23585690

  17. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling

    PubMed Central

    Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary

    2014-01-01

    Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905

  18. Epstein-Barr Virus BGLF4 Kinase Downregulates NF-κB Transactivation through Phosphorylation of Coactivator UXT

    PubMed Central

    Chang, Ling-Shih; Wang, Jiin-Tarng; Doong, Shin-Lian; Lee, Chung-Pei; Chang, Chou-Wei; Tsai, Ching-Hwa; Yeh, Sheng-Wen; Hsieh, Ching-Yueh

    2012-01-01

    Epstein-Barr virus (EBV) BGLF4 is a member of the conserved herpesvirus kinases that regulate multiple cellular and viral substrates and play an important role in the viral lytic cycles. BGLF4 has been found to phosphorylate several cellular and viral transcription factors, modulate their activities, and regulate downstream events. In this study, we identify an NF-κB coactivator, UXT, as a substrate of BGLF4. BGLF4 downregulates not only NF-κB transactivation in reporter assays in response to tumor necrosis factor alpha (TNF-α) and poly(I·C) stimulation, but also NF-κB-regulated cellular gene expression. Furthermore, BGLF4 attenuates NF-κB-mediated repression of the EBV lytic transactivators, Zta and Rta. In EBV-positive NA cells, knockdown of BGLF4 during lytic progression elevates NF-κB activity and downregulates the activity of the EBV oriLyt BHLF1 promoter, which is the first promoter activated upon lytic switch. We show that BGLF4 phosphorylates UXT at the Thr3 residue. This modification interferes with the interaction between UXT and NF-κB. The data also indicate that BGLF4 reduces the interaction between UXT and NF-κB and attenuates NF-κB enhanceosome activity. Upon infection with short hairpin RNA (shRNA) lentivirus to knock down UXT, a spontaneous lytic cycle was observed in NA cells, suggesting UXT is required for maintenance of EBV latency. Overexpression of wild-type, but not phosphorylation-deficient, UXT enhances the expression of lytic proteins both in control and UXT knockdown cells. Taking the data together, transcription involving UXT may also be important for EBV lytic protein expression, whereas BGLF4-mediated phosphorylation of UXT at Thr3 plays a critical role in promoting the lytic cycle. PMID:22933289

  19. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival.

    PubMed

    McDonald, Paul C; Oloumi, Arusha; Mills, Julia; Dobreva, Iveta; Maidan, Mykola; Gray, Virginia; Wederell, Elizabeth D; Bally, Marcel B; Foster, Leonard J; Dedhar, Shoukat

    2008-03-15

    An unbiased proteomic screen to identify integrin-linked kinase (ILK) interactors revealed rictor as an ILK-binding protein. This finding was interesting because rictor, originally identified as a regulator of cytoskeletal dynamics, is also a component of mammalian target of rapamycin complex 2 (mTORC2), a complex implicated in Akt phosphorylation. These functions overlap with known ILK functions. Coimmunoprecipitation analyses confirmed this interaction, and ILK and rictor colocalized in membrane ruffles and leading edges of cancer cells. Yeast two-hybrid assays showed a direct interaction between the NH(2)- and COOH-terminal domains of rictor and the ILK kinase domain. Depletion of ILK and rictor in breast and prostate cancer cell lines resulted in inhibition of Akt Ser(473) phosphorylation and induction of apoptosis, whereas, in several cell lines, depletion of mTOR increased Akt phosphorylation. Akt and Ser(473)P-Akt were detected in ILK immunoprecipitates and small interfering RNA-mediated depletion of rictor, but not mTOR, inhibited the amount of Ser(473)P-Akt in the ILK complex. Expression of the NH(2)-terminal (1-398 amino acids) rictor domain also resulted in the inhibition of ILK-associated Akt Ser(473) phosphorylation. These data show that rictor regulates the ability of ILK to promote Akt phosphorylation and cancer cell survival.

  20. Liver parenchyma transection-first approach in hemihepatectomy with en bloc caudate lobectomy for hilar cholangiocarcinoma: A safe technique to secure favorable surgical outcomes.

    PubMed

    Kawabata, Yasunari; Hayashi, Hikota; Yano, Seiji; Tajima, Yoshitsugu

    2017-06-01

    Although hemihepatectomy with total caudate lobectomy (hemiHx-tc) is essential for the surgical treatment of hilar cholangiocarcinoma, the advantage of an anterior approach for hemiHx-tc has not been fully discussed technically; the significance of an anterior approach without liver mobilization for preventing infectious complications also remains unknown. The liver parenchyma transection-first approach (Hp-first) technique is an early transection of the hepatic parenchyma without mobilization of the liver that utilizes a modified liver-hanging maneuver to avoid damaging the future remnant liver. Between May 2010 and August 2016, a total of 40 consecutive patients underwent surgery for hilar cholangiocarcinoma. Of these, 19 patients underwent a conventional hemihepatectomy with total caudate lobectomy (cHx), while 21 patients received a Hp-first. The patients in the Hp-first group had significantly less intraoperative blood loss (P < 0.001) and blood transfusion (P < 0.001), a lower incidence of postoperative hyperbilirubinemia (p = 0.023), a lower incidence of liver failure (p = 0.038), a lower hospital death rate (p = 0.042), and a better 2-year disease-free survival rate (p = 0.010) than those in the cHx group. The liver parenchyma transection-first approach is the preferred technique for hemiHx-tc in hilar cholangiocarcinoma because it resulted in improved surgical outcomes as compared with the conventional approach. © 2017 Wiley Periodicals, Inc.

  1. Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation

    PubMed Central

    Ovejero, Sara; Ayala, Patricia; Bueno, Avelino; Sacristán, María P.

    2012-01-01

    The activity of Cdk1–cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1–cyclin B1 activity through Wee1 dephosphorylation. PMID:23051732

  2. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC

    PubMed Central

    Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn; Jansson, Thomas; Gupta, Madhulika B.

    2016-01-01

    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth. PMID:26733150

  3. ERK2-Mediated Phosphorylation of Transcriptional Coactivator Binding Protein PIMT/NCoA6IP at Ser298 Augments Hepatic Gluconeogenesis

    PubMed Central

    Parsa, Kishore V. L.; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K.; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser298 and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMTS298D) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMTS298D but not PIMTS298A augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser298 phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser298 is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia. PMID:24358311

  4. Clinicopathological Features and Prognosis of Intrahepatic Cholangiocarcinoma After Liver Transplantation and Resection.

    PubMed

    Jung, Dong-Hwan; Hwang, Shin; Song, Gi-Won; Ahn, Chul-Soo; Moon, Deok-Bog; Kim, Ki-Hun; Ha, Tae-Yong; Park, Gil-Chun; Hong, Seung-Mo; Kim, Wan-Jun; Kang, Woo-Hyoung; Kim, Seok-Hwan; Yu, Eun Sil; Lee, Sung-Gyu

    2017-01-26

    BACKGROUND Intrahepatic cholangiocarcinoma (ICC) can be incidentally diagnosed after liver transplantation (LT). We investigated the clinicopathological features of LT recipients with ICC and compared prognosis with that of the control group. MATERIAL AND METHODS We identified 16 recipients with ICC in our institutional database. The propensity score-matched control group comprised 100 ICC patients who underwent hepatic resection (HR). RESULTS ICC incidence was 0.5% in all adult LT patients and 1.2% in adult recipients with primary liver cancer. Mean age was 58.0±4.8 years and 15 were male. All ICCs were diagnosed incidentally in the explanted livers. Mean ICC tumor diameter was 2.5±1.1 cm and 14 recipients had a single tumor. Tumor stages were I in 9, II in 5, and IV in 2. Concurrent second primary liver cancer was detected as hepatocellular carcinoma in 7 and combined hepatocellular carcinoma-cholangiocarcinoma in 1. Tumor recurrence and patient survival rates were 56.2% and 81.3% at 1 year and 78.1% and 52.4% at 5 years, respectively. Presence of second cancer did not affect tumor recurrence (p=0.959) or patient survival (p=0.737). All 3 patients with very early ICC did not show ICC recurrence. Compared with the control group, the tumor recurrence rate was higher after LT (p=0.024), but this difference disappeared after analysis was confined to recipients with ICC alone (p=0.121). Post-recurrence survival was not different after HR and LT (p=0.082). CONCLUSIONS ICC is rarely diagnosed after LT and half of such patients have second liver cancer. Post-transplant prognosis of ICC is poor except for very early ICC; thus, strict surveillance is mandatory.

  5. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms.

    PubMed Central

    Zhao, Xiangshan; Gan, Lixia; Pan, Haiyun; Kan, Donghui; Majeski, Michael; Adam, Stephen A; Unterman, Terry G

    2004-01-01

    FOXO1, a Forkhead transcription factor, is an important target of insulin and growth factor action. Phosphorylation of Thr-24, Ser-256 and Ser-319 promotes nuclear exclusion of FOXO1, yet the mechanisms regulating nuclear/cytoplasmic shuttling of FOXO1 are poorly understood. Previous studies have identified an NLS (nuclear localization signal) in the C-terminal basic region of the DBD (DNA-binding domain), and a leucine-rich, leptomycin-B sensitive NES (nuclear export signal) located further downstream. Here, we find that other elements in the DBD also contribute to nuclear localization, and that multiple mechanisms contribute to nuclear exclusion of FOXO1. Phosphorylation of Ser-319 and a cluster of nearby residues (Ser-322, Ser-325 and Ser-329) functions co-operatively with the nearby NES to promote nuclear exclusion. The N-terminal region of FOXO1 (amino acids 1-149) also is sufficient to promote nuclear exclusion, and does so through multiple mechanisms. Amino acids 1-50 are sufficient to promote nuclear exclusion of green fluorescent protein fusion proteins, and the phosphorylation of Thr-24 is required for this effect. A leucine-rich, leptomycin B-sensitive export signal is also present nearby. Phosphorylated FOXO1 binds 14-3-3 proteins, and co-precipitation studies with tagged proteins indicate that 14-3-3 binding involves co-operative interactions with both Thr-24 and Ser-256. Ser-256 is located in the C-terminal region of the DBD, where 14-3-3 proteins may interfere both with DNA-binding and with nuclear-localization functions. Together, these studies demonstrate that multiple elements contribute to nuclear/cytoplasmic shuttling of FOXO1, and that phosphorylation and 14-3-3 binding regulate the cellular distribution and function of FOXO1 through multiple mechanisms. The presence of these redundant mechanisms supports the concept that the regulation of FOXO1 function plays a critical role in insulin and growth factor action. PMID:14664696

  6. High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1-dependent phosphorylation of Cdc28CDK1.

    PubMed

    Maya Miles, Douglas; Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian; Geli, Vincent

    2018-03-27

    Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1 WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28 CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. © 2018, Maya Miles et al.

  7. Prostaglandin E2 mediates phosphorylation and down-regulation of the tuberous sclerosis-2 tumor suppressor (tuberin) in human endometrial adenocarcinoma cells via the Akt signaling pathway.

    PubMed

    Sales, Kurt J; Battersby, Sharon; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N

    2004-12-01

    Prostaglandin (PG) E2 promotes tumor growth via interaction with its G protein-coupled receptors and activation of intracellular signaling. Tuberous sclerosis 2 (tuberin) is a tumor suppressor, which negatively regulates cell growth. Its phosphorylation results in its inactivation and targeted down- regulation, thus lifting the growth inhibition effects. This study investigated the expression and localization of tuberin in neoplastic and normal endometrium and the effect of PGE2 on phosphorylation of tuberin via the Akt pathway. Quantitative RT-PCR and Western blot analysis demonstrated reduced expression of tuberin in neoplastic tissue, compared with normal endometrial tissue. Tuberin expression was localized by immunohistochemistry to the glandular epithelial compartment in neoplastic and normal endometrium. We investigated the effect of PGE2 on phosphorylation of tuberin via the Akt pathway. Treatment of neoplastic and normal endometrium with 100 nm PGE2 enhanced phosphorylated tuberin immunoreactivity in the glandular epithelium. PGE2 also phosphorylated Akt and tuberin in Ishikawa endometrial adenocarcinoma cells, leading to a reduction in expression of total tuberin protein. Cotreatment of cells with wortmannin or LY294002 inhibited the PGE2-induced phosphorylation of Akt and tuberin. These data suggest that PGE2 signaling may promote endometrial tumorigenesis by inactivation of tuberin after its phosphorylation via the Akt signaling pathway.

  8. Molecular mechanism of APC/C activation by mitotic phosphorylation.

    PubMed

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-05-12

    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our

  9. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    PubMed Central

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  10. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis.

    PubMed

    Maddika, Subbareddy; Ande, Sudharsana Rao; Wiechec, Emilia; Hansen, Lise Lotte; Wesselborg, Sebastian; Los, Marek

    2008-04-01

    Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we report a transient nucleo-cytoplasmic shuttling of Akt during specific stages of the cell cycle, in particular during the late S and G2 phases. The Akt that is re-localized to the nucleus phosphorylates CDK2 and causes the temporary cytoplasmic localization of the CDK2-cyclin-A complex. The CDK2 cytoplasmic redistribution is required for cell progression from S to G2-M phase, because the CDK2 T39A mutant, which lacks the phosphorylation site and is defective in cytoplasmic localization, severely affects cell cycle progression at the transition from S to G2-M. Interestingly, we also show that the Akt/CDK2 pathway is constitutively activated by some anticancer drugs, such as methotrexate and docetaxel, and under these conditions it promotes, rather than represses, cell death. Thus, the constitutive activation of the Akt/CDK2 pathway and changed subcellular localization promotes apoptosis. By contrast, the transient, physiological Akt/CDK2 activation is necessary for cell cycle progression.

  11. Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos

    PubMed Central

    Sripa, Banchob; Bethony, Jeffrey M.; Sithithaworn, Paiboon; Kaewkes, Sasithorn; Mairiang, Eimorn; Loukas, Alex; Mulvenna, Jason; Laha, Thewarach; Hotez, Peter J.; Brindley, Paul J.

    2010-01-01

    Liver fluke infection caused by Opisthorchis viverrini is a major public health problem in Thailand and the Lao People’s Democratic Republic (Lao PDR; Laos). Currently, more than 600 million people are at risk of infection with these fish-borne trematodes and/or their close relatives. Opisthorchiasis has been studied extensively in Thailand, where about 8 million people are infected with the liver fluke. Here we review the pathogenesis, control and re-emergence of O. viverrini infection, in particular in Thailand and, to a lesser extent in Lao PDR given the contiguous geographical range of O. viverrini through these two regions. We also review the association of O. viverrini infection and cholangiocarcinoma, bile duct cancer, and highlight new findings on pathogenesis of liver fluke induced cholangiocarcinogenesis. Last, we comment on national control strategies in Thailand for the control of O. viverrini infection aimed at reduction in the prevalence of O. viverrini-associated liver cancer in the longer term. PMID:20655862

  12. Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos.

    PubMed

    Sripa, Banchob; Bethony, Jeffrey M; Sithithaworn, Paiboon; Kaewkes, Sasithorn; Mairiang, Eimorn; Loukas, Alex; Mulvenna, Jason; Laha, Thewarach; Hotez, Peter J; Brindley, Paul J

    2011-09-01

    Liver fluke infection caused by Opisthorchis viverrini is a major public health problem in Thailand and the Lao People's Democratic Republic (Lao PDR; Laos). Currently, more than 600 million people are at risk of infection with these fish-borne trematodes and/or their close relatives. Opisthorchiasis has been studied extensively in Thailand, where about 8 million people are infected with the liver fluke. Here we review the pathogenesis, control and re-emergence of O. viverrini infection, in particular in Thailand and, to a lesser extent in Lao PDR given the contiguous geographical range of O. viverrini through these two regions. We also review the association of O. viverrini infection and cholangiocarcinoma, bile duct cancer, and highlight new findings on pathogenesis of liver fluke-induced cholangiocarcinogenesis. Last, we comment on national control strategies in Thailand for the control of O. viverrini infection aimed at reduction in the prevalence of O. viverrini-associated liver cancer in the longer term. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Suppression of thymosin β10 increases cell migration and metastasis of cholangiocarcinoma

    PubMed Central

    2013-01-01

    Background Thymosin β10 (Tβ10) expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of Tβ10 in liver fluke-associated cholangiocarcinoma (CCA) are not fully understood. In this study, we investigated the expression of Tβ10 in CCA tumor tissues and cell lines as well as molecular mechanisms of Tβ10 in tumor metastasis of CCA cell lines. Methods Tβ10 expression was determined by real time RT-PCR or immunocytochemistry. Tβ10 silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell migration was assessed using modified Boyden chamber and wound healing assay. The effect of silencing Tβ10 on CCA tumor metastasis was determined in nude mice. Phosphorylation of ERK1/2 and the expression of EGR1, Snail and matrix metalloproteinases (MMPs) were studied. Results Ten pairs of CCA tissues (primary and metastatic tumors) and 5 CCA cell lines were studied. With real time RT-PCR and immunostaining analysis, Tβ10 was highly expressed in primary tumors of CCA; while it was relatively low in the metastatic tumors. Five CCA cell lines showed differential expression levels of Tβ10. Silence of Tβ10 significantly increased cell migration, invasion and wound healing of CCA cells in vitro; reversely, overexpression of Tβ10 reduced cell migration compared with control cells (P<0.05). In addition, silence of Tβ10 in CCA cells increased liver metastasis in a nude mouse model of CCA implantation into the spleen. Furthermore, silence of Tβ10 activated ERK1/2 and increased the expression of Snail and MMPs in CCA cell lines. Ras-GTPase inhibitor, FPT inhibitor III, effectively blocked Tβ10 silence-associated ERK1/2 activation, Snail expression and cell migration. Conclusions Low expression of Tβ10 is associated with metastatic phenotype of CCA in vitro and in vivo, which may be mediated by the activation of Ras, ERK1/2 and upregulation of Snail and MMPs. This study suggests a new molecular pathway of

  14. Oncological superiority of hilar en bloc resection for the treatment of hilar cholangiocarcinoma.

    PubMed

    Neuhaus, Peter; Thelen, Armin; Jonas, Sven; Puhl, Gero; Denecke, Timm; Veltzke-Schlieker, Wilfried; Seehofer, Daniel

    2012-05-01

    Long-term results after liver resection for hilar cholangiocarcinoma are still not satisfactory. Previously, we described a survival advantage of patients who undergo combined right trisectionectomy and portal vein resection, a procedure termed "hilar en bloc resection." The present study was conducted to analyze its oncological effectiveness compared to conventional hepatectomy. During hilar en bloc resection, the extrahepatic bile ducts were resected en bloc with the portal vein bifurcation, the right hepatic artery, and liver segments 1 and 4 to 8. With this "no-touch" technique, preparation of the hilar vessels in the vicinity of the tumor was avoided. The long-term outcome of 50 consecutive patients who underwent curative (R0) hilar en bloc resection between 1990 and 2004 was compared to that of 50 consecutive patients who received curative conventional major hepatectomy for hilar cholangiocarcinoma (perioperative deaths excluded). The 1-, 3-, and 5-year survival rates after hilar en bloc resection were 87%, 70%, and 58%, respectively, which was significantly higher than after conventional major hepatectomy. In the latter group, 1-, 3-, and 5-year survival rates were 79%, 40%, and 29%, respectively (P = 0.021). Tumor characteristics were comparable in both groups. A high number of pT3 and pT4 tumors and patients with positive regional lymph nodes were present in both groups. Multivariate analysis identified hilar en bloc resection as an independent prognostic factor for long-term survival (P = 0.036). In patients with central bile duct carcinomas, hilar en bloc resection is oncologically superior to conventional major hepatectomy, providing a chance of long-term survival even in advanced tumors.

  15. Casein Kinase 2-Mediated Phosphorylation of Respiratory Syncytial Virus Phosphoprotein P Is Essential for the Transcription Elongation Activity of the Viral Polymerase; Phosphorylation by Casein Kinase 1 Occurs Mainly at Ser215 and Is without Effect

    PubMed Central

    Dupuy, Lesley C.; Dobson, Sean; Bitko, Vira; Barik, Sailen

    1999-01-01

    The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser232 in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser232 was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser215. In vitro, P protein could be phosphorylated by purified CK1 at Ser215 but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser215, Ser232, and Ser237 were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase. PMID:10482589

  16. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake.

    PubMed

    Beg, Muheeb; Abdullah, Nazish; Thowfeik, Fathima Shazna; Altorki, Nasser K; McGraw, Timothy E

    2017-06-07

    Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake.

  17. The Centrosome-Specific Phosphorylation of Cnn by Polo/Plk1 Drives Cnn Scaffold Assembly and Centrosome Maturation

    PubMed Central

    Conduit, Paul T.; Feng, Zhe; Richens, Jennifer H.; Baumbach, Janina; Wainman, Alan; Bakshi, Suruchi D.; Dobbelaere, Jeroen; Johnson, Steven; Lea, Susan M.; Raff, Jordan W.

    2014-01-01

    Summary Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis—a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at centrosomes during mitosis. The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. Mutations that block Cnn phosphorylation strongly inhibit scaffold assembly and centrosome maturation, whereas phosphomimicking mutations allow Cnn to multimerize in vitro and to spontaneously form cytoplasmic scaffolds in vivo that organize microtubules independently of centrosomes. We conclude that Polo/Plk1 initiates the phosphorylation-dependent assembly of a Cnn scaffold around centrioles that is essential for efficient centrosome maturation in flies. PMID:24656740

  18. CA 19-9 as a Marker of Survival and a Predictor of Metastization in Cholangiocarcinoma

    PubMed Central

    Coelho, Rosa; Silva, Marco; Rodrigues-Pinto, Eduardo; Cardoso, Hélder; Lopes, Susana; Pereira, Pedro; Vilas-Boas, Filipe; Santos-Antunes, João; Costa-Maia, José; Macedo, Guilherme

    2017-01-01

    Background Cholangiocarcinoma is the second most frequent primitive liver malignancy and is responsible for 3% of the malignant gastrointestinal neoplasms. The aims of this study were to determine the association of serum levels of CA 19-9 at diagnosis with other clinical data and serum liver function tests and to identify possible factors that influence the survival rates during follow-up. Methods Retrospective observational study of 89 patients with a diagnosis of cholangiocarcinoma followed at the Department of Gastroenterology during 5 years. Statistical analyses were performed using SPSS version 20.0. Results Patients were followed up for a median time of 127 days (IQR: 48–564), and the median age at diagnosis was 71.0 years (IQR: 62.0–77.5). The median survival rate was 14.0 months (IQR: 4.3–23.7), and the mortality rate was 79%. Patients with CA 19-9 levels ≥103 U/L had lower albumin levels and higher levels of alanine aminotransferase and γ-glutamyltransferase. CA 19-9 levels ≥103 U/L were associated with a higher probability of metastization (p = 0.001) and lower rates of treatment with curative intent (p = 0.024). In a multivariate analysis, CA 19-9 levels <103 U/L and surgery were independent predictors of survival. Conclusion Predictive factors for overall survival were identified, namely presence of metastasis, surgery, and chemotherapy. CA 19-9 levels ≥103 U/L were predictive factors for survival and metastization. PMID:28848795

  19. Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells.

    PubMed Central

    Duncan, Roger F; Peterson, Hazel; Hagedorn, Curt H; Sevanian, Alex

    2003-01-01

    Dysregulated cell growth can be caused by increased activity of protein synthesis eukaryotic initiation factor (eIF) 4E. Dysregulated cell growth is also characteristic of atherosclerosis. It is postulated that exposure of vascular cells, such as endothelial cells, smooth muscle cells and monocytes/macrophages, to oxidants, such as oxidized low-density lipoprotein (oxLDL), leads to the elaboration of growth factors and cytokines, which in turn results in smooth muscle cell hyperproliferation. To investigate whether activation of eIF4E might play a role in this hyperproliferative response, vascular cells were treated with oxLDL, oxidized lipid components of oxLDL and several model oxidants, including H(2)O(2) and dimethyl naphthoquinone. Exposure to each of these compounds led to a dose- and time-dependent increase in eIF4E phosphorylation in all three types of vascular cells, correlated with a modest increase in overall translation rate. No changes in eIF4EBP, eIF2 or eIF4B modification state were observed. Increased eIF4E phosphorylation was paralleled by increased presence of eIF4E in high-molecular-mass protein complexes characteristic of its most active form. Anti-oxidants at concentrations typically employed to block oxidant-induced cell signalling likewise promoted eIF4E phosphorylation. The results of this study indicate that increased eIF4E activity may contribute to the pathophysiological events in early atherogenesis by increasing the expression of translationally inefficient mRNAs encoding growth-promoting proteins. PMID:12215171

  20. Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13.

    PubMed

    Tseng, Shun-Fu; Shen, Zih-Jie; Tsai, Hung-Ji; Lin, Yi-Hsuan; Teng, Shu-Chun

    2009-06-01

    Budding yeast telomerase is mainly activated by Tel1/Mec1 (yeast ATM/ATR) on Cdc13 from late S to G2 phase of the cell cycle. Here, we demonstrated that the telomerase-recruitment domain of Cdc13 is also phosphorylated by Cdk1 at the same cell cycle stage as the Tel1/Mec1-dependent regulation. Phosphor-specific gel analysis demonstrated that Cdk1 phosphorylates residues 308 and 336 of Cdc13. The residue T308 of Cdc13 is critical for efficient Mec1-mediated S306 phosphorylation in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13 S/TP motifs phosphorylated by Cdk1 caused cell cycle delay and telomere shortening and these phenotypes could be partially restored by the replacement with a negative charge residue. In the absence of Ku or Tel1, Cdk1-mediated phosphorylation of Cdc13 showed no effect on telomere length maintenance. Moreover, this Cdk1-mediated phosphorylation was required to promote the regular turnover of Cdc13. Together these results demonstrate that Cdk1 phosphorylates the telomerase recruitment domain of Cdc13, thereby preserves optimal function and expression level of Cdc13 for precise telomere replication and cell cycle progression.