Science.gov

Sample records for phosphorylation site database

  1. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching.

    PubMed

    Jaffe, H; Veeranna; Shetty, K T; Pant, H C

    1998-03-17

    Hyperphosphorylated high molecular weight neurofilament protein (NF-H) exhibits extensive phosphorylation on lysine-serine-proline (KSP) repeats in the C-terminal domain of the molecule. Specific phosphorylation sites in human NF-H were identified by proteolytic digestion and analysis of the resulting digests by a combination of microbore liquid chromatography, electrospray ionization tandem (MS/MS) ion trap mass spectrometry, and database searching. The computer programs utilized (PEPSEARCH and SEQUEST) are capable of identifying peptides and phosphorylation sites from uninterpreted MS/MS spectra, and by use of these methods, 27 phosphopeptides and their phosphorylated residues were identified. On the basis of these phosphopeptides, 38 phosphorylation sites in human NF-H were characterized. These include 33 KSP, lysine-threonine-proline (KTP) or arginine-serine-proline (RSP) sites and four unphosphorylated sites, all of which occur in the KSP repeat domain (residues 502-823); and one threonine phosphorylation site observed in a KVPTPEK motif. Six KSP sites were not characterized because of the failure to isolate and identify corresponding phosphopeptides. Heterogeneity in serine and threonine phosphorylation was observed at three sites or deduced to occur at three sites on the basis of enzyme specificity. As a result of the phosphorylated motifs identified (KSPAKEE, KSPVKEE, KS/TPEKAK, KSPEKEE, KSPVKAE, KSPAEAK, KSPPEAK, KSPEAKT, KSPAEVK, and KVPTPEK), human NF-H tail domain is postulated to be a substrate of proline-directed kinases. The threonine-phosphorylated KVPTPEK motif suggested the existence of a novel proline-directed kinase. PMID:9521714

  2. Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites

    PubMed Central

    Saunders, Neil FW; Brinkworth, Ross I; Huber, Thomas; Kemp, Bruce E; Kobe, Bostjan

    2008-01-01

    Background We have previously described an approach to predicting the substrate specificity of serine-threonine protein kinases. The method, named Predikin, identifies key conserved substrate-determining residues in the kinase catalytic domain that contact the substrate in the region of the phosphorylation site and so determine the sequence surrounding the phosphorylation site. Predikin was implemented originally as a web application written in Javascript. Results Here, we describe a new version of Predikin, completely revised and rewritten as a modular framework that provides multiple enhancements compared with the original. Predikin now consists of two components: (i) PredikinDB, a database of phosphorylation sites that links substrates to kinase sequences and (ii) a Perl module, which provides methods to classify protein kinases, reliably identify substrate-determining residues, generate scoring matrices and score putative phosphorylation sites in query sequences. The performance of Predikin as measured using receiver operator characteristic (ROC) graph analysis equals or surpasses that of existing comparable methods. The Predikin website has been redesigned to incorporate the new features. Conclusion New features in Predikin include the use of SQL queries to PredikinDB to generate predictions, scoring of predictions, more reliable identification of substrate-determining residues and putative phosphorylation sites, extended options to handle protein kinase and substrate data and an improved web interface. The new features significantly enhance the ability of Predikin to analyse protein kinases and their substrates. Predikin is available at . PMID:18501020

  3. Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology.

    PubMed

    Arsova, Borjana; Schulze, Waltraud X

    2012-01-01

    As the most studied post-translational modification, protein phosphorylation is analyzed in a growing number of proteomic experiments. These high-throughput approaches generate large datasets, from which specific spectrum-based information can be hard to find. In 2007, the PhosPhAt database was launched to collect and present Arabidopsis phosphorylation sites identified by mass spectrometry from and for the scientific community. At present, PhosPhAt 3.0 consolidates phosphoproteomics data from 19 published proteomic studies. Out of 5460 listed unique phosphoproteins, about 25% have been identified in at least two independent experimental setups. This is especially important when considering issues of false positive and false negative identification rates and data quality (Durek etal., 2010). This valuable data set encompasses over 13205 unique phosphopeptides, with unambiguous mapping to serine (77%), threonine (17%), and tyrosine (6%). Sorting the functional annotations of experimentally found phosphorylated proteins in PhosPhAt using Gene Ontology terms shows an over-representation of proteins in regulatory pathways and signaling processes. A similar distribution is found when the PhosPhAt predictor, trained on experimentally obtained plant phosphorylation sites, is used to predict phosphorylation sites for the Arabidopsis genome. Finally, the possibility to insert a protein sequence into the PhosPhAt predictor allows species independent use of the prediction resource. In practice, PhosPhAt also allows easy exploitation of proteomic data for design of further targeted experiments. PMID:22723801

  4. Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology

    PubMed Central

    Arsova, Borjana; Schulze, Waltraud X.

    2012-01-01

    As the most studied post-translational modification, protein phosphorylation is analyzed in a growing number of proteomic experiments. These high-throughput approaches generate large datasets, from which specific spectrum-based information can be hard to find. In 2007, the PhosPhAt database was launched to collect and present Arabidopsis phosphorylation sites identified by mass spectrometry from and for the scientific community. At present, PhosPhAt 3.0 consolidates phosphoproteomics data from 19 published proteomic studies. Out of 5460 listed unique phosphoproteins, about 25% have been identified in at least two independent experimental setups. This is especially important when considering issues of false positive and false negative identification rates and data quality (Durek etal., 2010). This valuable data set encompasses over 13205 unique phosphopeptides, with unambiguous mapping to serine (77%), threonine (17%), and tyrosine (6%). Sorting the functional annotations of experimentally found phosphorylated proteins in PhosPhAt using Gene Ontology terms shows an over-representation of proteins in regulatory pathways and signaling processes. A similar distribution is found when the PhosPhAt predictor, trained on experimentally obtained plant phosphorylation sites, is used to predict phosphorylation sites for the Arabidopsis genome. Finally, the possibility to insert a protein sequence into the PhosPhAt predictor allows species independent use of the prediction resource. In practice, PhosPhAt also allows easy exploitation of proteomic data for design of further targeted experiments. PMID:22723801

  5. Phosphorylation site prediction in plants.

    PubMed

    Yao, Qiuming; Schulze, Waltraud X; Xu, Dong

    2015-01-01

    Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community. PMID:25930706

  6. Prioritizing functional phosphorylation sites based on multiple feature integration

    PubMed Central

    Xiao, Qingyu; Miao, Benpeng; Bi, Jie; Wang, Zhen; Li, Yixue

    2016-01-01

    Protein phosphorylation is an important type of post-translational modification that is involved in a variety of biological activities. Most phosphorylation events occur on serine, threonine and tyrosine residues in eukaryotes. In recent years, many phosphorylation sites have been identified as a result of advances in mass-spectrometric techniques. However, a large percentage of phosphorylation sites may be non-functional. Systematically prioritizing functional sites from a large number of phosphorylation sites will be increasingly important for the study of their biological roles. This study focused on exploring the intrinsic features of functional phosphorylation sites to predict whether a phosphosite is likely to be functional. We found significant differences in the distribution of evolutionary conservation, kinase association, disorder score, and secondary structure between known functional and background phosphorylation datasets. We built four different types of classifiers based on the most representative features and found that their performances were similar. We also prioritized 213,837 human phosphorylation sites from a variety of phosphorylation databases, which will be helpful for subsequent functional studies. All predicted results are available for query and download on our website (Predict Functional Phosphosites, PFP, http://pfp.biosino.org/). PMID:27090940

  7. dbPAF: an integrative database of protein phosphorylation in animals and fungi.

    PubMed

    Ullah, Shahid; Lin, Shaofeng; Xu, Yang; Deng, Wankun; Ma, Lili; Zhang, Ying; Liu, Zexian; Xue, Yu

    2016-01-01

    Protein phosphorylation is one of the most important post-translational modifications (PTMs) and regulates a broad spectrum of biological processes. Recent progresses in phosphoproteomic identifications have generated a flood of phosphorylation sites, while the integration of these sites is an urgent need. In this work, we developed a curated database of dbPAF, containing known phosphorylation sites in H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe and S. cerevisiae. From the scientific literature and public databases, we totally collected and integrated 54,148 phosphoproteins with 483,001 phosphorylation sites. Multiple options were provided for accessing the data, while original references and other annotations were also present for each phosphoprotein. Based on the new data set, we computationally detected significantly over-represented sequence motifs around phosphorylation sites, predicted potential kinases that are responsible for the modification of collected phospho-sites, and evolutionarily analyzed phosphorylation conservation states across different species. Besides to be largely consistent with previous reports, our results also proposed new features of phospho-regulation. Taken together, our database can be useful for further analyses of protein phosphorylation in human and other model organisms. The dbPAF database was implemented in PHP + MySQL and freely available at http://dbpaf.biocuckoo.org. PMID:27010073

  8. dbPAF: an integrative database of protein phosphorylation in animals and fungi

    PubMed Central

    Ullah, Shahid; Lin, Shaofeng; Xu, Yang; Deng, Wankun; Ma, Lili; Zhang, Ying; Liu, Zexian; Xue, Yu

    2016-01-01

    Protein phosphorylation is one of the most important post-translational modifications (PTMs) and regulates a broad spectrum of biological processes. Recent progresses in phosphoproteomic identifications have generated a flood of phosphorylation sites, while the integration of these sites is an urgent need. In this work, we developed a curated database of dbPAF, containing known phosphorylation sites in H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe and S. cerevisiae. From the scientific literature and public databases, we totally collected and integrated 54,148 phosphoproteins with 483,001 phosphorylation sites. Multiple options were provided for accessing the data, while original references and other annotations were also present for each phosphoprotein. Based on the new data set, we computationally detected significantly over-represented sequence motifs around phosphorylation sites, predicted potential kinases that are responsible for the modification of collected phospho-sites, and evolutionarily analyzed phosphorylation conservation states across different species. Besides to be largely consistent with previous reports, our results also proposed new features of phospho-regulation. Taken together, our database can be useful for further analyses of protein phosphorylation in human and other model organisms. The dbPAF database was implemented in PHP + MySQL and freely available at http://dbpaf.biocuckoo.org. PMID:27010073

  9. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    SciTech Connect

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  10. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects.

    PubMed

    Smith, Kyle P; Gifford, Kathleen M; Waitzman, Joshua S; Rice, Sarah E

    2015-01-01

    While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins. PMID:24833420

  11. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects

    PubMed Central

    Smith, Kyle P.; Gifford, Kathleen M.; Waitzman, Joshua S.; Rice, Sarah E.

    2014-01-01

    While it is currently estimated that 40–50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. 322/453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132/453 (29%) of those, the phosphorylation site is within 12Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs vs. those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins. PMID:24833420

  12. A grammar inference approach for predicting kinase specific phosphorylation sites.

    PubMed

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  13. A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites

    PubMed Central

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  14. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    SciTech Connect

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon; Jo, Su-Hyun; Seo, Su Ryeon

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  15. Mapping of phosphorylation sites in polyomavirus large T antigen

    SciTech Connect

    Hassauer, M.; Scheidtmann, K.H.; Walter, G.

    1986-06-01

    The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, /sup 32/P/sub i/-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.

  16. Predicting and analyzing protein phosphorylation sites in plants using musite.

    PubMed

    Yao, Qiuming; Gao, Jianjiong; Bollinger, Curtis; Thelen, Jay J; Xu, Dong

    2012-01-01

    Although protein phosphorylation sites can be reliably identified with high-resolution mass spectrometry, the experimental approach is time-consuming and resource-dependent. Furthermore, it is unlikely that an experimental approach could catalog an entire phosphoproteome. Computational prediction of phosphorylation sites provides an efficient and flexible way to reveal potential phosphorylation sites and provide hypotheses in experimental design. Musite is a tool that we previously developed to predict phosphorylation sites based solely on protein sequence. However, it was not comprehensively applied to plants. In this study, the phosphorylation data from Arabidopsis thaliana, B. napus, G. max, M. truncatula, O. sativa, and Z. mays were collected for cross-species testing and the overall plant-specific prediction as well. The results show that the model for A. thaliana can be extended to other organisms, and the overall plant model from Musite outperforms the current plant-specific prediction tools, Plantphos, and PhosphAt, in prediction accuracy. Furthermore, a comparative study of predicted phosphorylation sites across orthologs among different plants was conducted to reveal potential evolutionary features. A bipolar distribution of isolated, non-conserved phosphorylation sites, and highly conserved ones in terms of the amino acid type was observed. It also shows that predicted phosphorylation sites conserved within orthologs do not necessarily share more sequence similarity in the flanking regions than the background, but they often inherit protein disorder, a property that does not necessitate high sequence conservation. Our analysis also suggests that the phosphorylation frequencies among serine, threonine, and tyrosine correlate with their relative proportion in disordered regions. Musite can be used as a web server (http://musite.net) or downloaded as an open-source standalone tool (http://musite.sourceforge.net/). PMID:22934099

  17. Determining in vivo Phosphorylation Sites using Mass Spectrometry

    PubMed Central

    Breitkopf, Susanne B.; Asara, John M.

    2012-01-01

    Phosphorylation is the most studied protein post-translational modification (PTM) in biological systems since it controls cell growth, proliferation, survival, etc. High resolution/high mass accuracy mass spectrometers are used to identify protein phosphorylation sites due to their speed, sensitivity, selectivity and throughput. The protocol described here focuses on two common strategies: 1) Identifying phosphorylation sites from individual proteins and small protein complexes, and 2) Identifying global phosphorylation sites from whole cell and tissue extracts. For the first, endogenous or epitope tagged proteins are typically immunopurified (IP) from cell lysates, purified via gel electrophoresis or precipitation and enzymatically digested into peptides. Samples can be optionally enriched for phosphopeptides using immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) and then analyzed by microcapillary liquid chromatography/tandem mass spectrometry (LC-MS/MS). Global phosphorylation site analyses that capture pSer/pThr/pTyr sites from biological sources sites are more resource and time-consuming and involve digesting the whole cell lysate, followed by peptide fractionation by strong cation exchange chromatography (SCX), phosphopeptide enrichment by IMAC or TiO2 and LC-MS/MS. Alternatively, one can fractionate the protein lysate by SDS-PAGE, followed by digestion, phosphopeptide enrichment and LC-MS/MS. One can also IP only phospho-tyrosine peptides using a pTyr antibody followed by LC-MS/MS. PMID:22470061

  18. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  19. Methods for generating phosphorylation site-specific immunological reagents

    DOEpatents

    Anderson, Carl W.; Appella, Ettore; Sakaguchi, Kazuyasu

    2001-01-01

    The present invention provides methods for generating phosphorylation site-specific immunological reagents. More specifically, a phosphopeptide mimetic is incorporated into a polypeptide in place of a phosphorylated amino acid. The polypeptide is used as antigen by standard methods to generate either monoclonal or polyclonal antibodies which cross-react with the naturally phosphorylated polypeptide. The phosphopeptide mimetic preferably contains a non-hydrolyzable linkage from the appropriate carbon atom of the amino acid residue to a phosphate group. A preferred linkage is a CF.sub.2 group. Such a linkage is used to generate the phosphoserine mimetic F.sub.2 Pab, which is incorporated into a polypeptide sequence derived from p53 to produce antibodies which recognize a specific phosphorylation state of p53. A CF.sub.2 group linkage is also used to produce the phosphothreonine mimetic F.sub.2 Pmb, and to produce the phosphotyrosine mimetic, F.sub.2 Pmp.

  20. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan

    2016-06-01

    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor. PMID:27101376

  1. Immunodetection of phosphorylation sites gives new insights into the mechanisms underlying phospholamban phosphorylation in the intact heart.

    PubMed

    Mundiña-Weilenmann, C; Vittone, L; Ortale, M; de Cingolani, G C; Mattiazzi, A

    1996-12-27

    Phosphorylation site-specific antibodies, quantification of 32P incorporation into phospholamban, and simultaneous measurements of mechanical activity were used in Langendorff-perfused rat hearts to provide further insights into the underlying mechanisms of phospholamban phosphorylation. Immunological detection of phospholamban phosphorylation sites showed that the isoproterenol concentration-dependent increase in phospholamban phosphorylation was due to increases in phosphorylation of both Ser16 and Thr17 residues. When isoproterenol concentration was increased at extremely low Ca2+ supply to the myocardium, phosphorylation of Thr17 was virtually absent. Under these conditions, 32P incorporation into phospholamban, due to Ser16, decreased by 50%. Changes in Ca2+ supply to the myocardium either at constant beta-adrenergic stimulation or in the presence of okadaic acid, a phosphatase inhibitor, exclusively modified Thr17 phosphorylation. Changes in phospholamban phosphorylation due to either Ser16 and/or Thr17 were paralleled by changes in myocardial relaxation. The results indicate that cAMP- (Ser16) and Ca2+-calmodulin (Thr17)-dependent pathways of phospholamban phosphorylation can occur independently of each other. However, in the absence of beta-adrenergic stimulation, phosphorylation of Thr17 could only be detected after simultaneous activation of Ca2+-calmodulin-dependent protein kinase and inactivation of phosphatase. It is suggested that under physiological conditions, this requisite is only filled by cAMP-dependent mechanisms. PMID:8969222

  2. Early Site Permit Demonstration Program: Nuclear Power Plant Siting Database

    Energy Science and Technology Software Center (ESTSC)

    1994-01-28

    This database is a repository of comprehensive licensing and technical reviews of siting regulatory processes and acceptance criteria for advanced light water reactor (ALWR) nuclear power plants. The program is designed to be used by applicants for an early site permit or combined construction permit/operating license (10CFRR522, Subparts A and C) as input for the development of the application. The database is a complete, menu-driven, self-contained package that can search and sort the supplied datamore » by topic, keyword, or other input. The software is designed for operation on IBM compatible computers with DOS.« less

  3. Computational Analysis of the Predicted Evolutionary Conservation of Human Phosphorylation Sites

    PubMed Central

    Trost, Brett; Kusalik, Anthony; Napper, Scott

    2016-01-01

    Protein kinase-mediated phosphorylation is among the most important post-translational modifications. However, few phosphorylation sites have been experimentally identified for most species, making it difficult to determine the degree to which phosphorylation sites are conserved. The goal of this study was to use computational methods to characterize the conservation of human phosphorylation sites in a wide variety of eukaryotes. Using experimentally-determined human sites as input, homologous phosphorylation sites were predicted in all 432 eukaryotes for which complete proteomes were available. For each pair of species, we calculated phosphorylation site conservation as the number of phosphorylation sites found in both species divided by the number found in at least one of the two species. A clustering of the species based on this conservation measure was concordant with phylogenies based on traditional genomic measures. For a subset of the 432 species, phosphorylation site conservation was compared to conservation of both protein kinases and proteins in general. Protein kinases exhibited the highest degree of conservation, while general proteins were less conserved and phosphorylation sites were least conserved. Although preliminary, these data tentatively suggest that variation in phosphorylation sites may play a larger role in explaining phenotypic differences among organisms than differences in the complements of protein kinases or general proteins. PMID:27046079

  4. An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins.

    PubMed

    Hegeman, Adrian D; Harms, Amy C; Sussman, Michael R; Bunner, Anne E; Harper, Jeffrey F

    2004-05-01

    A procedure for determining the extent of phosphorylation at individual sites of multiply phosphorylated proteins was developed and applied to two polyphosphorylated proteins. The protocol, using simple chemical (Fischer methyl-esterification) and enzymatic (phosphatase) modification steps and an accessible isotopic labeling reagent (methyl alcohol-d(4)), is described in detail. Site-specific phosphorylation stoichiometries are derived from the comparison of chemically identical but isotopically distinct peptide species analyzed by microspray liquid chromatography-mass spectrometry (microLC-MS) using a Micromass Q-TOF2 mass spectrometer. Ten phosphorylation sites were unambiguously identified in tryptic digests of both proteins, and phosphorylation stoichiometries were determined for eight of the ten sites using the isotope-coded strategy. The extent of phosphorylation was also estimated from the mass spectral peak areas for the phosphorylated and unmodified peptides, and these estimates, when compared with stoichiometries determined using the isotope-coded technique, differed only marginally (within approximately 20%). PMID:15121193

  5. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites

    PubMed Central

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2016-01-01

    Phosphorylation is the most widespread and well studied reversible posttranslational modification. Discovering tissue-specific preferences of phosphorylation sites is important as phosphorylation plays a role in regulating almost every cellular activity and disease state. Here we present a comprehensive analysis of global and tissue-specific sequence and structure properties of phosphorylation sites utilizing recent proteomics data. We identified tissue-specific motifs in both sequence and spatial environments of phosphorylation sites. Target site preferences of kinases across tissues indicate that, while many kinases mediate phosphorylation in all tissues, there are also kinases that exhibit more tissue-specific preferences which, notably, are not caused by tissue-specific kinase expression. We also demonstrate that many metabolic pathways are differentially regulated by phosphorylation in different tissues. PMID:27332813

  6. Functional phosphorylation sites in cardiac myofilament proteins are evolutionarily conserved in skeletal myofilament proteins.

    PubMed

    Gross, Sean M; Lehman, Steven L

    2016-06-01

    Protein phosphorylation plays an important role in regulating cardiac contractile function, but phosphorylation is not thought to play a regulatory role in skeletal muscle. To examine how myofilament phosphorylation arose in the human heart, we analyzed the amino acid sequences of 25 cardiac phosphorylation sites in animals ranging from fruit flies to humans. These analyses indicated that of the 25 human phosphorylation sites examined, 11 have been conserved across vertebrates and four have been sporadically present in vertebrates. Furthermore, all 11 of the cardiac sites found across vertebrates were present in skeletal muscle isoforms, along with three sites that were sporadically present. Based on the conservation of amino acid sequences between cardiac and skeletal contractile proteins, we tested for phosphorylation in mammalian skeletal muscle using several biochemical techniques and found evidence that multiple myofilament proteins were phosphorylated. Several of these phosphorylation sites were validated using mass spectrometry, including one site that is present in slow- and fast-twitch troponin I (TnI), but was lost in cardiac TnI. Thus, several myofilament phosphorylation sites present in the human heart likely arose in invertebrate muscle, have been evolutionarily conserved in skeletal muscle, and potentially have functional effects in both skeletal and cardiac muscle. PMID:26993364

  7. Identifying Human Kinase-Specific Protein Phosphorylation Sites by Integrating Heterogeneous Information from Various Sources

    PubMed Central

    Li, Tingting; Du, Pufeng; Xu, Nanfang

    2010-01-01

    Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (avaiable at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates. PMID:21085571

  8. Phosphorylation in vitro of human fibrinogen with casein kinase TS and characterization of phosphorylated sites

    SciTech Connect

    Heldin, P.

    1987-09-01

    Human fibrinogen was phosphorylated by casein kinase TS. The (/sup 32/P)phosphate incorporated varied between 0.5 and 1 mol of phosphate per mole of fibrinogen. The phosphate was localized to Ser523 and Ser590 and serine and threonine residues between amino acids 259 and 268 in the A alpha-chain. In addition, Thr416 and Ser420 were phosphorylated in the gamma'-chain, which is a variant of the gamma-chain, constituting 7-10% of the gamma-chain population. The functional significance of casein kinase TS-induced phosphorylation of fibrinogen remains unknown; however, a slight but consistent increase of the turbidity in a gelation assay was observed for phosphorylated compared to unphosphorylated fibrinogen.

  9. Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication.

    PubMed

    Chong, Weng Man; Hsu, Shih-Chin; Kao, Wei-Ting; Lo, Chieh-Wen; Lee, Kuan-Ying; Shao, Jheng-Syuan; Chen, Yi-Hung; Chang, Justin; Chen, Steve S-L; Yu, Ming-Jiun

    2016-02-19

    The non-structural protein 5A (NS5A) is a hepatitis C virus (HCV) protein indispensable for the viral life cycle. Many prior papers have pinpointed several serine residues in the low complexity sequence I region of NS5A responsible for NS5A phosphorylation; however, the functions of specific phosphorylation sites remained obscure. Using phosphoproteomics, we identified three phosphorylation sites (serines 222, 235, and 238) in the NS5A low complexity sequence I region. Reporter virus and replicon assays using phosphorylation-ablated alanine mutants of these sites showed that Ser-235 dominated over Ser-222 and Ser-238 in HCV replication. Immunoblotting using an Ser-235 phosphorylation-specific antibody showed a time-dependent increase in Ser-235 phosphorylation that correlated with the viral replication activity. Ser-235 phosphorylated NS5A co-localized with double-stranded RNA, consistent with its role in HCV replication. Mechanistically, Ser-235 phosphorylation probably promotes the replication complex formation via increasing NS5A interaction with the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein. Casein kinase Iα (CKIα) directly phosphorylated Ser-235 in vitro. Inhibition of CKIα reduced Ser-235 phosphorylation and the HCV RNA levels in the infected cells. We concluded that NS5A Ser-235 phosphorylated by CKIα probably promotes HCV replication via increasing NS5A interaction with the 33-kDa vesicle-associated membrane protein-associated protein. PMID:26702051

  10. Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana

    PubMed Central

    2009-01-01

    Background Under conditions of salt stress, plants respond by initiating phosphorylation cascades. Many key phosphorylation events occur at the membrane. However, to date only limited sites have been identified that are phosphorylated in response to salt stress in plants. Results Membrane fractions from three-day and 200 mM salt-treated Arabidopsis suspension plants were isolated, followed by protease shaving and enrichment using Zirconium ion-charged magnetic beads, and tandem mass spectrometry analyses. From this isolation, 18 phosphorylation sites from 15 Arabidopsis proteins were identified. A unique phosphorylation site in 14-3-3-interacting protein AHA1 was predominately identified in 200 mM salt-treated plants. We also identified some phosphorylation sites in aquaporins. A doubly phosphorylated peptide of PIP2;1 as well as a phosphopeptide containing a single phosphorylation site (Ser-283) and a phosphopeptide containing another site (Ser-286) of aquaporin PIP2;4 were identified respectively. These two sites appeared to be novel of which were not reported before. In addition, quantitative analyses of protein phosphorylation with either label-free or stable-isotope labeling were also employed in this study. The results indicated that level of phosphopeptides on five membrane proteins such as AHA1, STP1, Patellin-2, probable inactive receptor kinase (At3g02880), and probable purine permease 18 showed at least two-fold increase in comparison to control in response to 200 mM salt-stress. Conclusion In this study, we successfully identified novel salt stress-responsive protein phosphorylation sites from membrane isolates of abiotic-stressed plants by membrane shaving followed by Zr4+-IMAC enrichment. The identified phosphorylation sites can be important in the salt stress response in plants. PMID:19900291

  11. Biochemical and biological analysis of Mek1 phosphorylation site mutants.

    PubMed Central

    Huang, W; Kessler, D S; Erikson, R L

    1995-01-01

    Recently, we described the constitutive activation of Mek1 by mutation of its two serine phosphorylation sites. We have now characterized the biochemical properties of these Mek1 mutants and performed microinjection experiments to investigate the effect of an activated Mek on oocyte maturation. Single acidic substitution of either serine 218 or 222 activated Mek1 by 10-50 fold. The double acidic substitutions, [Asp218, Asp222] and [Asp218, Glu222], activated Mek1 over 6000-fold. The specific activity of the [Asp218, Asp222] and [Asp218, Glu222] Mek1 mutants, 29 nanomole phosphate per minute per milligram, is similar to that of wild-type Mek1 activated by Raf-1 in vitro. Although the mutants with double acidic substitutions could not be further activated by Raf-1, three of those with single acidic substitution were activated by Raf-1 to the specific activity of activated wild-type Mek1. Injection of the [Asp218, Asp222] Mek1 mutant into Xenopus oocytes activated both MAP kinase and histone H1 kinase and induced germinal vesicle breakdown, an effect that was only partially blocked by inhibition of protein synthesis. These data provide a measure of Mek's potential to influence cell functions and a quantitative basis to assess the biological effects of Mek1 mutants in a variety of circumstances. Images PMID:7612960

  12. Crosstalk between signaling pathways provided by single and multiple protein phosphorylation sites

    PubMed Central

    Nishi, Hafumi; Demir, Emek; Panchenko, Anna R.

    2014-01-01

    Cellular fate depends on the spatio-temporal separation and integration of signaling processes which can be provided by phosphorylation events. In this study we identify the crucial points in signaling crosstalk which can be triggered by discrete phosphorylation events on a single target protein. We integrated the data on individual human phosphosites with the evidence on their corresponding kinases, the functional consequences on phosphorylation on activity of the target protein and corresponding pathways. Our results show that there is a substantial fraction of phosphosites that can play critical roles in crosstalk between alternative or redundant pathways and regulatory outcome of phosphorylation can be linked to a type of phosphorylated residue. These regulatory phosphosites can serve as hubs in the signal flow and their functional roles are directly connected to their specific properties. Namely, phosphosites with similar regulatory functions are phosphorylated by the same kinases and participate in regulation of similar biochemical pathways. Such sites are more likely to cluster in sequence and space unlike sites with antagonistic outcomes of their phosphorylation on a target protein. In addition we found that in silico phosphorylation of sites with similar functional consequences have comparable outcomes on a target protein stability. An important role of phosphorylation sites in biological crosstalk is evident from the analysis of their evolutionary conservation. PMID:25451034

  13. Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies.

    PubMed Central

    Safran, A; Neumann, D; Fuchs, S

    1986-01-01

    Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms. Images Fig. 2. Fig. 4. Fig. 5. PMID:3816758

  14. Whi5 Regulation by Site Specific CDK-Phosphorylation in Saccharomyces cerevisiae

    PubMed Central

    Wagner, Michelle V.; Smolka, Marcus B.; de Bruin, Rob A. M.; Zhou, Huilin; Wittenberg, Curt; Dowdy, Steven F.

    2009-01-01

    The Whi5 transcriptional repressor is a negative regulator of G1 cell cycle progression in Saccharomyces cerevisiae and is functionally equivalent to the Retinoblastoma (Rb) tumor suppressor protein in mammals. In early G1, Whi5 binds to and inhibits SBF (Swi4/Swi6) transcriptional complexes. At Start, Cln:Cdc28 kinases phosphorylate and inactivate Whi5, causing its dissociation from SBF promoters and nuclear export, allowing activation of SBF transcription and entry into late G1. In an analysis of Whi5 phosphorylation, we found that 10 of the 12 putative CDK phosphorylation sites on Whi5 were occupied in vivo in asynchronously growing cells. In addition, we identified 6 non-CDK Whi5 phosphorylation sites. Whi5 CDK and non-CDK phosphorylation mutants were functional and able to rescue the small cell size of whi5Δ cells. However, the Whi5 CDK mutant with all 12 putative CDK sites changed to alanine causes a dramatic cell cycle phenotype when expressed with a Swi6 CDK phosphorylation mutant. Mutational analysis of Whi5 determined that only four C-terminal CDK sites were necessary and sufficient for Whi5 inactivation when Swi6 CDK sites were also mutated. Although these four Whi5 CDK sites do not wholly determine Whi5 nuclear export, they do impact regulation of cell size. Taken together, these observations begin to dissect the regulatory role of specific phosphorylation sites on Whi5. PMID:19172996

  15. Site-specific Proteasome Phosphorylation Controls Cell Proliferation and Tumorigenesis

    PubMed Central

    Guo, Xing; Wang, Xiaorong; Wang, Zhiping; Banerjee, Sourav; Yang, Jing; Huang, Lan; Dixon, Jack E.

    2015-01-01

    Despite the fundamental importance of proteasomal degradation in cells, little is known about whether and how the 26S proteasome itself is regulated in coordination with various physiological processes. Here we show that the proteasome is dynamically phosphorylated during cell cycle at Thr25 of the 19S subunit Rpt3. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrate that blocking Rpt3-Thr25 phosphorylation markedly impairs proteasome activity and impedes cell proliferation. Through a kinome-wide screen, we have identified dual-specificity tyrosine-regulated kinase 2 (DYRK2) as the primary kinase that phosphorylates Rpt3-Thr25, leading to enhanced substrate translocation and degradation. Importantly, loss of the single phosphorylation of Rpt3-Thr25 or knockout of DYRK2 significantly inhibits tumor formation by proteasome-addicted human breast cancer cells in mice. These findings define an important mechanism for proteasome regulation and demonstrate the biological significance of proteasome phosphorylation in regulating cell proliferation and tumorigenesis. PMID:26655835

  16. Phosphorylation sites of the B2 chain of bovine alpha-crystallin

    SciTech Connect

    Chiesa, R.; Gawinowicz-Kolks, M.A.; Kleiman, N.J.; Spector, A.

    1987-05-14

    The B2 chain of bovine lens alpha-crystallin is phosphorylated in a cAMP-dependent reaction. By analysis of /sup 32/P-labelled chymotryptic peptides isolated from alpha-crystallin obtained from lenses labelled in organ culture, two phosphorylated B2 chain fragments were found. Sequence analysis of the fragments gave the following results: Arg-Ala-Pro-Ser-Trp-Ile-Asp-Thr-Gly-Leu and Ser-Leu-Ser-Pro-Phe corresponding to residues 56 to 65 and 43 to 47, respectively. It is established by this work that B1 is a phosphorylated post-translational product of B2. Both the A2 and B2 chains of alpha-crystallin are phosphorylated at a similar site with the sequence Arg-(X)-Pro-Ser. This is an unusual site for cAMP-phosphorylation since the phosphorylated serine is preceded by a proline residue. It may also be of significance that the other B2 chain phosphorylation site even more radically differs from previously reported cAMP-dependent phosphorylation sites.

  17. An ensemble method approach to investigate kinase-specific phosphorylation sites.

    PubMed

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2014-01-01

    Protein phosphorylation is one of the most significant and well-studied post-translational modifications, and it plays an important role in various cellular processes. It has made a considerable impact in understanding the protein functions which are involved in revealing signal transductions and various diseases. The identification of kinase-specific phosphorylation sites has an important role in elucidating the mechanism of phosphorylation; however, experimental techniques for identifying phosphorylation sites are labor intensive and expensive. An exponentially increasing number of protein sequences generated by various laboratories across the globe require computer-aided procedures for reliably and quickly identifying the phosphorylation sites, opening a new horizon for in silico analysis. In this regard, we have introduced a novel ensemble method where we have selected three classifiers (least square support vector machine, multilayer perceptron, and k-Nearest Neighbor) and three different feature encoding parameters (dipeptide composition, physicochemical properties of amino acids, and protein-protein similarity score). Each of these classifiers is trained on each of the three different parameter systems. The final results of the ensemble method are obtained by fusing the results of all the classifiers by a weighted voting algorithm. Extensive experiments reveal that our proposed method can successfully predict phosphorylation sites in a kinase-specific manner and performs significantly better when compared with other existing phosphorylation site prediction methods. PMID:24872686

  18. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  19. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  20. Identification of the sites for CaMK-II-dependent phosphorylation of GABA(A) receptors.

    PubMed

    Houston, Catriona M; Lee, Henry H C; Hosie, Alastair M; Moss, Stephen J; Smart, Trevor G

    2007-06-15

    Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons. PMID:17442679

  1. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A.

    PubMed

    Hegedus, Tamás; Aleksandrov, Andrei; Mengos, April; Cui, Liying; Jensen, Timothy J; Riordan, John R

    2009-06-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) plays a critical role in transcellular ion transport and when defective, results in the genetic disease cystic fibrosis. CFTR is novel in the ATP-binding cassette superfamily as an ion channel that is enabled by a unique unstructured regulatory domain. This R domain contains multiple protein kinase A sites, which when phosphorylated allow channel gating. Most of the sites have been indicated to stimulate channel activity, while two of them have been suggested to be inhibitory. It is unknown whether individual sites act coordinately or distinctly. To address this issue, we raised monoclonal antibodies recognizing the unphosphorylated, but not the phosphorylated states of four functionally relevant sites (700, 737, 768, and 813). This enabled simultaneous monitoring of their phosphorylation and dephosphorylation and revealed that both processes occurred rapidly at the first three sites, but more slowly at the fourth. The parallel phosphorylation rates of the stimulatory 700 and the putative inhibitory 737 and 768 sites prompted us to reexamine the role of the latter two. With serines 737 and 768 reintroduced individually into a PKA insensitive variant, in which serines at 15 sites had been replaced by alanines, a level of channel activation by PKA was restored, showing that these sites can mediate stimulation. Thus, we have provided new tools to study the CFTR regulation by phosphorylation and found that sites proposed to inhibit channel activity can also participate in stimulation. PMID:19328185

  2. RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest

    PubMed Central

    Ismail, Hamid D.; Jones, Ahoi; Kim, Jung H.; Newman, Robert H.; KC, Dukka B.

    2016-01-01

    Protein phosphorylation is one of the most widespread regulatory mechanisms in eukaryotes. Over the past decade, phosphorylation site prediction has emerged as an important problem in the field of bioinformatics. Here, we report a new method, termed Random Forest-based Phosphosite predictor 2.0 (RF-Phos 2.0), to predict phosphorylation sites given only the primary amino acid sequence of a protein as input. RF-Phos 2.0, which uses random forest with sequence and structural features, is able to identify putative sites of phosphorylation across many protein families. In side-by-side comparisons based on 10-fold cross validation and an independent dataset, RF-Phos 2.0 compares favorably to other popular mammalian phosphosite prediction methods, such as PhosphoSVM, GPS2.1, and Musite. PMID:27066500

  3. Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44

    SciTech Connect

    Silva, Laurie A.; Strang, Blair L.; Lin, Eric W.; Kamil, Jeremy P.; Coen, Donald M.

    2011-09-01

    The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.

  4. Distinct and Site-Specific Phosphorylation of the Retinoblastoma Protein at Serine 612 in Differentiated Cells

    PubMed Central

    Hattori, Takayuki; Uchida, Chiharu; Takahashi, Hirotaka; Yamamoto, Naoki; Naito, Mikihiko; Taya, Yoichi

    2014-01-01

    The retinoblastoma susceptibility protein (pRB) is a phosphoprotein that regulates cell cycle progression at the G1/S transition. In quiescent and early G1 cells, pRB predominantly exists in the active hypophosphorylated form. The cyclin/cyclin-dependent protein kinase complexes phosphorylate pRB at the late G1 phase to inactivate pRB. This event leads to the dissociation and activation of E2F family transcriptional factors. At least 12 serine/threonine residues in pRB are phosphorylated in vivo. Although there have been many reports describing bulk phosphorylation of pRB, detail research describing the function of each phosphorylation site remains unknown. Besides its G1/S inhibitory function, pRB is involved in differentiation, prevention of cell death and control of tissue fate. To uncover the function of phosphorylation of pRB in various cellular conditions, we have been investigating phosphorylation of each serine/threonine residue in pRB with site-specific phospho-serine/threonine antibodies. Here we demonstrate that pRB is specifically phosphorylated at Ser612 in differentiated cells in a known kinase-independent manner. We also found that pRB phosphorylated at Ser612 still associates with E2F-1 and tightly binds to nuclear structures including chromatin. Moreover, expression of the Ser612Ala mutant pRB failed to induce differentiation. The findings suggest that phosphorylation of Ser612 provides a distinct function that differs from the function of phosphorylation of other serine/threonine residues in pRB. PMID:24466208

  5. GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy *S⃞

    PubMed Central

    Xue, Yu; Ren, Jian; Gao, Xinjiao; Jin, Changjiang; Wen, Longping; Yao, Xuebiao

    2008-01-01

    Identification of protein phosphorylation sites with their cognate protein kinases (PKs) is a key step to delineate molecular dynamics and plasticity underlying a variety of cellular processes. Although nearly 10 kinase-specific prediction programs have been developed, numerous PKs have been casually classified into subgroups without a standard rule. For large scale predictions, the false positive rate has also never been addressed. In this work, we adopted a well established rule to classify PKs into a hierarchical structure with four levels, including group, family, subfamily, and single PK. In addition, we developed a simple approach to estimate the theoretically maximal false positive rates. The on-line service and local packages of the GPS (Group-based Prediction System) 2.0 were implemented in Java with the modified version of the Group-based Phosphorylation Scoring algorithm. As the first stand alone software for predicting phosphorylation, GPS 2.0 can predict kinase-specific phosphorylation sites for 408 human PKs in hierarchy. A large scale prediction of more than 13,000 mammalian phosphorylation sites by GPS 2.0 was exhibited with great performance and remarkable accuracy. Using Aurora-B as an example, we also conducted a proteome-wide search and provided systematic prediction of Aurora-B-specific substrates including protein-protein interaction information. Thus, the GPS 2.0 is a useful tool for predicting protein phosphorylation sites and their cognate kinases and is freely available on line. PMID:18463090

  6. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit

    PubMed Central

    Huang, Haomin; Hittle, James; Zappacosta, Francesca; Annan, Roland S.; Hershko, Avram; Yen, Timothy J.

    2008-01-01

    BubR1 kinase is essential for the mitotic checkpoint and also for kinetochores to establish microtubule attachments. In this study, we report that BubR1 is phosphorylated in mitosis on four residues that differ from sites recently reported to be phosphorylated by Plk1 (Elowe, S., S. Hummer, A. Uldschmid, X. Li, and E.A. Nigg. 2007. Genes Dev. 21:2205–2219; Matsumura, S., F. Toyoshima, and E. Nishida. 2007. J. Biol. Chem. 282:15217–15227). S670, the most conserved residue, is phosphorylated at kinetochores at the onset of mitosis and dephosphorylated before anaphase onset. Unlike the Plk1-dependent S676 phosphorylation, S670 phosphorylation is sensitive to microtubule attachments but not to kinetochore tension. Functionally, phosphorylation of S670 is essential for error correction and for kinetochores with end-on attachments to establish tension. Furthermore, in vitro data suggest that the phosphorylation status of BubR1 is important for checkpoint inhibition of the anaphase-promoting complex/cyclosome. Finally, RNA interference experiments show that Mps1 is a major but not the exclusive kinase that specifies BubR1 phosphorylation in vivo. The combined data suggest that BubR1 may be an effector of multiple kinases that are involved in discrete aspects of kinetochore attachments and checkpoint regulation. PMID:19015317

  7. Identification of in vivo protein phosphorylation sites in human pathogen Schistosoma japonicum by a phosphoproteomic approach.

    PubMed

    Luo, Rong; Zhou, Chunjing; Lin, Jiaojiao; Yang, Dehao; Shi, Yaojun; Cheng, Guofeng

    2012-01-01

    Schistosome is the causative agent of human schistosomiasis and related animal disease. Reversible protein phosphorylation plays a key role in signaling processing that are vital for a cell and organism. However, it remains to be undercharacterized in schistosomes. In the present study, we characterized in vivo protein phosphorylation events in different developmental stages (schistosomula and adult worms) of Schistosoma japonicum by using microvolume immobilized metal-ion affinity chromatography (IMAC) pipette tips coupled to nanoLC-ESI-MS/MS. In total, 127 distinct phosphorylation sites were identified in 92 proteins in S. japonicum. A comparison of the phosphopeptides identified between the schistosomula and the adult worms revealed 30 phosphoproteins co-detected in both of the two worms. These proteins included several signal molecules and enzymes such as 14-3-3 protein, cysteine string protein, heat shock protein 90, epidermal growth factor receptor pathway substrate 8, proliferation-associated protein 2G4, peptidyl-prolyl isomerase G, phosphofructokinase and thymidylate kinase. Additionally, the phosphorylation sites were examined for phosphorylation specific motif and evolutionarily conservation. The study represents the first attempt to determine in vivo protein phosphorylation in S. japonicum by using a phosphoproteomic approach. The results by providing an inventory of phosphorylated proteins may facilitate to further understand the mechanisms involved in schistosome development and growth, and then may result in the development of novel vaccine candidates and drug targets for schistosomiasis control. PMID:22036931

  8. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2.

    PubMed Central

    Lees, J A; Buchkovich, K J; Marshak, D R; Anderson, C W; Harlow, E

    1991-01-01

    The retinoblastoma gene product (pRB) is a nuclear phosphoprotein that is thought to play a key role in the negative regulation of cellular proliferation. pRB is phosphorylated in a cell cycle dependent manner, and studies in both actively dividing and differentiated cells suggest that this modification may be essential for cells to progress through the cell cycle. Using tryptic phosphopeptide mapping we have shown that pRB is phosphorylated on multiple serine and threonine residues in vivo and that many of these phosphorylation events can be mimicked in vitro using purified p34cdc2. Using synthetic peptides corresponding to potential cdc2 phosphorylation sites, we have developed a strategy which has allowed the identification of five sites. S249, T252, T373, S807 and S811 are phosphorylated in vivo, and in each case these sites correspond closely to the consensus sequence for phosphorylation by p34cdc2. This and the observation that pRB forms a specific complex with p34cdc2 in vivo suggests that p34cdc2 or a p34cdc2-related protein is a major pRB kinase. Images PMID:1756735

  9. Impairments in Site-Specific AS160 Phosphorylation and Effects of Exercise Training

    PubMed Central

    Consitt, Leslie A.; Van Meter, Jessica; Newton, Christopher A.; Collier, David N.; Dar, Moahad S.; Wojtaszewski, Jørgen F.P.; Treebak, Jonas T.; Tanner, Charles J.; Houmard, Joseph A.

    2013-01-01

    The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult life span (18–84 years of age) and if endurance- and/or strength-oriented exercise training could rescue decrements in insulin action and skeletal muscle AS160 phosphorylation. A euglycemic-hyperinsulinemic clamp and skeletal muscle biopsies were performed in 73 individuals encompassing a wide age range (18–84 years of age), and insulin-stimulated AS160 phosphorylation was determined. Decrements in whole-body insulin action were associated with impairments in insulin-induced phosphorylation of skeletal muscle AS160 on sites Ser-588, Thr-642, Ser-666, and phospho-Akt substrate, but not Ser-318 or Ser-751. Twelve weeks of endurance- or strength-oriented exercise training increased whole-body insulin action and reversed impairments in AS160 phosphorylation evident in insulin-resistant aged individuals. These findings suggest that a dampening of insulin-induced phosphorylation of AS160 on specific sites in skeletal muscle contributes to the insulin resistance evident in a sedentary aging population and that exercise training is an effective intervention for treating these impairments. PMID:23801578

  10. Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18.

    PubMed

    Kakade, Poonam S; Budnar, Srikanth; Kalraiya, Rajiv D; Vaidya, Milind M

    2016-06-01

    Keratins 8/18 (K8/18) are phosphoglycoproteins and form the major intermediate filament network of simple epithelia. The three O-GlcNAcylation (Ser(29), Ser(30), and Ser(48)) and two phosphorylation (Ser(33) and Ser(52)) serine sites on K18 are well characterized. Both of these modifications have been reported to increase K18 solubility and regulate its filament organization. In this report, we investigated the site-specific interplay between these two modifications in regulating the functional properties of K18, like solubility, stability, and filament organization. An immortalized hepatocyte cell line (HHL-17) stably expressing site-specific single, double, and triple O-GlcNAc and phosphomutants of K18 were used to identify the site(s) critical for regulating these functions. Keratin 18 mutants where O-GlcNAcylation at Ser(30) was abolished (K18-S30A) exhibited reduced phosphorylation induced solubility, increased stability, defective filament architecture, and slower migration. Interestingly, K18-S30A mutants also showed loss of phosphorylation at Ser(33), a modification known to regulate the solubility of K18. Further to this, the K18 phosphomutant (K18-S33A) mimicked K18-S30A in its stability, filament organization, and cell migration. These results indicate that O-GlcNAcylation at Ser(30) promotes phosphorylation at Ser(33) to regulate the functional properties of K18 and also impact cellular processes like migration. O-GlcNAcylation and phosphorylation on the same or adjacent sites on most proteins antagonize each other in regulating protein functions. Here we report a novel, positive interplay between O-GlcNAcylation and phosphorylation at adjacent sites on K18 to regulate its fundamental properties. PMID:27059955

  11. Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2

    PubMed Central

    2009-01-01

    Background Estrogen receptor α (ERα) phosphorylation is important for estrogen-dependent transcription of ER-dependent genes, ligand-independent receptor activation and endocrine therapy response in breast cancer. However ERα phosphorylation at the previously identified sites does not fully account for these receptor functions. To determine if additional ERα phosphorylation sites exist, COS-1 cells expressing human ERα were labeled with [32P]H3PO4 in vivo and ERα tryptic phosphopeptides were isolated to identify phosphorylation sites. Results Previously uncharacterized phosphorylation sites at serines 46/47, 282, 294, and 559 were identified by manual Edman degradation and phosphoamino acid analysis and confirmed by mutagenesis and phospho-specific antibodies. Antibodies detected phosphorylation of endogenous ERα in MCF-7, MCF-7-LCC2, and Ishikawa cancer cell lines by immunoblot. Mutation of Ser-282 and Ser-559 to alanine (S282A, S559A) resulted in ligand independent activation of ERα as determined by both ERE-driven reporter gene assays and endogenous pS2 gene expression in transiently transfected HeLa cells. Mutation of Ser-46/47 or Ser-294 to alanine markedly reduced estradiol dependent reporter activation. Additionally protein kinase CK2 was identified as a kinase that phosphorylated ERα at S282 and S559 using motif analysis, in vitro kinase assays, and incubation of cells with CK2 kinase inhibitor. Conclusion These novel ERα phosphorylation sites represent new means for modulation of ERα activity. S559 represents the first phosphorylation site identified in the extreme C-terminus (F domain) of a steroid receptor. PMID:20043841

  12. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies.

    PubMed

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  13. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    PubMed Central

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  14. Creation of geographic information database of subsatellite calibration test site

    NASA Astrophysics Data System (ADS)

    Zyelyk, Ya. I.; Semeniv, O. V.

    2014-12-01

    The prototype of geographic information database (DB) of the sub-satellite calibration test site has been created, to which user can be accessed from the free open-source geographic information system Quantum GIS (QGIS) environment. QGIS is used as an integrator of all data and applications and visualizer of the satellite imagery and vector layers of test sites in the cartographic interface. Conversion of the database from the local representation in the MS Access to the server representation in the PostgreSQL environment has been performed. Dynamic application to QGIS for user interaction from QGIS environment with the object-relational database and to display information from the database has been created. Functional-algorithmic part of these application and the interface for user interaction with the database has been developed.

  15. Site-specific IGFBP-1 hyper-phosphorylation in fetal growth restriction: clinical and functional relevance.

    PubMed

    Abu Shehab, Majida; Khosravi, Javad; Han, Victor K M; Shilton, Brian H; Gupta, Madhulika B

    2010-04-01

    Phosphorylation enhances IGFBP-1 binding to IGF-I, thereby limiting the bioavailability of IGF-I that may be important in fetal growth. Our goal in this study was to determine whether changes in site-specific IGFBP-1 phosphorylation were unique to fetal growth restriction. To establish a link, we compared IGFBP-1 phosphorylation (sites and degree) in amniotic fluid from FGR (N = 10) and controls (N = 12). The concentration of serine phosphorylated IGFBP-1 showed a negative correlation with birth weight in FGR (P = 0.049). LC-MS/MS analysis revealed all four previously identified phosphorylation sites (Ser98, Ser101, Ser119, and Ser169) to be common to FGR and control groups. Relative phosphopeptide intensities (LC-MS) between FGR and controls demonstrated 4-fold higher intensity for Ser101 (P = 0.026), 7-fold for Ser98/Ser101 (P = 0.02), and 23-fold for Ser169 (P = 0.002) in the FGR group. Preliminary BIAcore data revealed 4-fold higher association and 1.7-fold lower dissociation constants for IGFBP-1/IGF-I in FGR. A structural model of IGFBP-1 bound to IGF-I indicates that all the phosphorylation sites are on relatively mobile regions of the IGFBP-1 sequence. Residues Ser98, Ser101, and Ser169 are close to structured regions that are involved in IGF-I binding and, therefore, could potentially make direct contact with IGF-I. On the other hand, residue Ser119 is in the middle of the unstructured linker that connects the N- and C-terminal domains of IGFBP-1. The model is consistent with the assumption that residues Ser98, Ser101, and Ser169 could directly interact with IGF-I, and therefore phosphorylation at these sites could change IGF-I interactions. We suggest that site-specific increase in IGFBP-1 phosphorylation limits IGF-I bioavailability, which directly contributes to the development of FGR. This study delineates the potential role of higher phosphorylation of IGFBP-1 in FGR and provides the basis to substantiate these findings with larger sample size. PMID

  16. Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization.

    PubMed

    Chen, Chongguang; Chiu, Yi-Ting; Wu, Wenman; Huang, Peng; Mann, Anika; Schulz, Stefan; Liu-Chen, Lee-Yuan

    2016-02-15

    Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated

  17. Functions of the major tyrosine phosphorylation site of the PDGF receptor beta subunit.

    PubMed Central

    Kazlauskas, A; Durden, D L; Cooper, J A

    1991-01-01

    Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis. Images PMID:1653029

  18. Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity

    PubMed Central

    Rinehart, Jesse; Maksimova, Yelena D.; Tanis, Jessica E.; Stone, Kathryn L.; Hodson, Caleb A.; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M.; Forbush, Biff; Joiner, Clinton H.; Gulcicek, Erol E.; Gallagher, Patrick G.; Lifton, Richard P.

    2010-01-01

    Summary Modulation of intracellular chloride concentration ([Cl−]i) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl− exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl−]I; however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl−]i and have implications for control of cell volume and neuronal function. PMID:19665974

  19. Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit.

    PubMed

    Rogers, Samuel; McCloy, Rachael; Watkins, D Neil; Burgess, Andrew

    2016-07-01

    Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit. PMID:27417119

  20. Artificial phosphorylation sites modulate the activity of a voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-03-01

    The KvAP potassium channel is representative of a family of voltage-gated ion channels where the membrane potential is sensed by a transmembrane helix containing several positively charged arginines. Previous work by Wang and Zocchi [A. Wang and G. Zocchi, PLoS ONE 6, e18598 (2011), 10.1371/journal.pone.0018598] showed how a negatively charged polyelectrolyte attached in proximity to the voltage sensing element can bias the opening probability of the channel. Here we introduce three phosphorylation sites at the same location and show that the response curve of the channel shifts by about 20 mV upon phosphorylation, while other characteristics such as the single-channel conductance are unaffected. In summary, we construct an artificial phosphorylation site which confers allosteric regulation to the channel.

  1. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    SciTech Connect

    Waldron, Richard T. . E-mail: rwaldron@mednet.ucla.edu; Whitelegge, Julian P.; Faull, Kym F.; Rozengurt, Enrique

    2007-05-04

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic {sup 32}P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate into Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains.

  2. Rictor Phosphorylation on the THR-1135 Site Does Not Require Mammalian Target of Rapamycin Complex 2

    PubMed Central

    Boulbes, Delphine; Chen, Chien-Hung; Shaikenov, Tattym; Agarwal, Nitin K.; Peterson, Timothy R.; Addona, Terri A.; Keshishian, Hasmik; Carr, Steven A.; Magnuson, Mark A.; Sabatini, David M.; Sarbassov, Dos D.

    2010-01-01

    In animal cells growth factors coordinate cell proliferation and survival by regulating the PI3K/Akt signaling pathway. Deregulation of this signaling pathway is common in a variety of human cancers. The PI3K dependent signaling kinase complex defined as mTORC2 functions as a regulatory Ser-473 kinase of Akt. We find that activation of mTORC2 by growth factor signaling is linked to the specific phosphorylation of its component rictor on Thr-1135. The phosphorylation of this site is induced by the growth factor stimulation and expression of the oncogenic forms of ras or PI3K. Rictor phosphorylation is sensitive to inhibition of PI3K, mTOR, or expression of ILK. The substitution of wild-type rictor with its specific phospho-mutants in rictor null mouse embryonic fibroblasts did not alter the growth factor-dependent phosphorylation of Akt indicating that the rictor Thr-1135 phosphorylation is not critical in regulation of the mTORC2 kinase activity. We found that this rictor phosphorylation takes place in the mTORC2-deficient cells suggesting that this modification might play a role in regulation not only mTORC2 but also the mTORC2-independent function of rictor. PMID:20501647

  3. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites.

    PubMed

    Yang, J; Song, H; Walsh, S; Bardes, E S; Kornbluth, S

    2001-02-01

    Entry into mitosis is regulated by the Cdc2 kinase complexed to B-type cyclins. We and others recently reported that cyclin B1/Cdc2 complexes, which appear to be constitutively cytoplasmic during interphase, actually shuttle continually into and out of the nucleus, with the rate of nuclear export exceeding the import rate (). At the time of entry into mitosis, the import rate is increased, whereas the export rate is decreased, leading to rapid nuclear accumulation of Cdc2/cyclin B1. Although it has recently been reported that phosphorylation of 4 serines within cyclin B1 promotes the rapid nuclear translocation of Cdc2/cyclin B1 at G(2)/M, the role that individual phosphorylation sites play in this process has not been examined (, ). We report here that phosphorylation of a single serine residue (Ser(113) of Xenopus cyclin B1) abrogates nuclear export of cyclin B1. This serine lies directly within the cyclin B1 nuclear export sequence and, when phosphorylated, prevents binding of the nuclear export factor, CRM1. In contrast, analysis of phosphorylation site mutants suggests that coordinate phosphorylation of all 4 serines (94, 96, 101, and 113) is required for the accelerated nuclear import of cyclin B1/Cdc2 characteristic of G(2)/M. Additionally, binding of cyclin B1 to importin-beta, the factor known to be responsible for the slow interphase nuclear entry of cyclin B1, appears to be unaffected by the phosphorylation state of cyclin B. These data suggest that a distinct import factor must be recruited to enhance nuclear entry of Cdc2/cyclin B1 at the G(2)/M transition. PMID:11060306

  4. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.

    PubMed

    Yamano, Koji; Queliconi, Bruno B; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki

    2015-10-16

    Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser(65) by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794

  5. Identification of phosphorylation sites in Hansenula polymorpha Pex14p by mass spectrometry.

    PubMed

    Tanaka, Katsuhiro; Soeda, Maiko; Hashimoto, Yoichiro; Takenaka, Shigeo; Komori, Masayuki

    2013-01-01

    Pex14p is a peroxisomal membrane protein that is involved in both peroxisome biogenesis and selective peroxisome degradation. Previously, we showed that Hansenula polymorpha Pex14p was phosphorylated in vivo. In this study, we identified its phosphorylation site by mass spectrometry. Recombinant His-tagged Pex14p (H6-Pex14p) was overexpressed and purified from the yeast. The protein band corresponding to H6-Pex14p was in-gel digested with trypsin and subjected to LC/MS. As a result of LC/MS, Thr(248) and Ser(258) were identified as the phosphorylated sites. To confirm the phosphorylation sites and explore its functions, we made Ala mutants of the candidate amino acids. In the western blot analysis with anti-Pex14p, S258A mutant gave doublet bands while wild type (WT) and T248A mutants gave triplet bands. Moreover, the double mutant (T248A/S258A) gave a single band. WT and all mutant Pex14p labeled with [(32)P] orthophosphate were immunoprecipitated and analyzed by autoradiography. The phosphorylation of Pex14p was suppressed in S258A mutant, but enhanced in T248A mutant compared to WT. Moreover, the phosphorylated Pex14p was not detected in the T248A/S258A double mutant. All mutants were able to grow on methanol and their matrix proteins (alcohol oxidase and amine oxidase) were mostly localized in peroxisomes. Furthermore all mutants showed selective degradation of peroxisome like WT during the glucose-induced macropexophagy. PMID:23847754

  6. Identification of phosphorylation sites in Hansenula polymorpha Pex14p by mass spectrometry

    PubMed Central

    Tanaka, Katsuhiro; Soeda, Maiko; Hashimoto, Yoichiro; Takenaka, Shigeo; Komori, Masayuki

    2012-01-01

    Pex14p is a peroxisomal membrane protein that is involved in both peroxisome biogenesis and selective peroxisome degradation. Previously, we showed that Hansenula polymorpha Pex14p was phosphorylated in vivo. In this study, we identified its phosphorylation site by mass spectrometry. Recombinant His-tagged Pex14p (H6-Pex14p) was overexpressed and purified from the yeast. The protein band corresponding to H6-Pex14p was in-gel digested with trypsin and subjected to LC/MS. As a result of LC/MS, Thr248 and Ser258 were identified as the phosphorylated sites. To confirm the phosphorylation sites and explore its functions, we made Ala mutants of the candidate amino acids. In the western blot analysis with anti-Pex14p, S258A mutant gave doublet bands while wild type (WT) and T248A mutants gave triplet bands. Moreover, the double mutant (T248A/S258A) gave a single band. WT and all mutant Pex14p labeled with [32P] orthophosphate were immunoprecipitated and analyzed by autoradiography. The phosphorylation of Pex14p was suppressed in S258A mutant, but enhanced in T248A mutant compared to WT. Moreover, the phosphorylated Pex14p was not detected in the T248A/S258A double mutant. All mutants were able to grow on methanol and their matrix proteins (alcohol oxidase and amine oxidase) were mostly localized in peroxisomes. Furthermore all mutants showed selective degradation of peroxisome like WT during the glucose-induced macropexophagy. PMID:23847754

  7. Research Resource: Identification of Novel Growth Hormone-Regulated Phosphorylation Sites by Quantitative Phosphoproteomics

    PubMed Central

    Ray, Bridgette N.; Kweon, Hye Kyong; Argetsinger, Lawrence S.; Fingar, Diane C.; Andrews, Philip C.

    2012-01-01

    GH and GH receptors are expressed throughout life, and GH elicits a diverse range of responses, including growth and altered metabolism. It is therefore important to understand the full spectrum of GH signaling pathways and cellular responses. We applied mass spectrometry-based phosphoproteomics combined with stable isotope labeling with amino acids in cell culture to identify proteins rapidly phosphorylated in response to GH in 3T3-F442A preadipocytes. We identified 132 phosphosites in 95 proteins that exhibited rapid (5 or 15 min) GH-dependent statistically significant increases in phosphorylation by more than or equal to 50% and 96 phosphosites in 46 proteins that were down-regulated by GH by more than or equal to 30%. Several of the GH-stimulated phosphorylation sites were known (e.g. regulatory Thr/Tyr in Erks 1 and 2, Tyr in signal transducers and activators of transcription (Stat) 5a and 5b, Ser939 in tuberous sclerosis protein (TSC) 2 or tuberin). The remaining 126 GH-stimulated sites were not previously associated with GH. Kyoto Encyclopedia of Genes and Genomes pathway analysis of GH-stimulated sites indicated enrichment in proteins associated with the insulin and mammalian target of rapamycin (mTOR) pathways, regulation of the actin cytoskeleton, and focal adhesions. Akt/protein kinase A consensus sites (RXRXXS/T) were the most commonly phosphorylated consensus sites. Immunoblotting confirmed GH-stimulated phosphorylation of all seven novel GH-dependent sites tested [regulatory sites in proline-rich Akt substrate, 40 kDA (PRAS40), regulatory associated protein of mTOR, ATP-citrate lyase, Na+/H+ exchanger-1, N-myc downstream regulated gene 1, and Shc]). The immunoblot results suggest that many, if not most, of the GH-stimulated phosphosites identified in this large-scale quantitative phosphoproteomics analysis, including sites in multiple proteins in the Akt/ mTOR complex 1 pathway, are phosphorylated in response to GH. Their identification significantly

  8. Comparison of alternative MS/MS and bioinformatics approaches for confident phosphorylation site localization.

    PubMed

    Wiese, Heike; Kuhlmann, Katja; Wiese, Sebastian; Stoepel, Nadine S; Pawlas, Magdalena; Meyer, Helmut E; Stephan, Christian; Eisenacher, Martin; Drepper, Friedel; Warscheid, Bettina

    2014-02-01

    Over the past years, phosphoproteomics has advanced to a prime tool in signaling research. Since then, an enormous amount of information about in vivo protein phosphorylation events has been collected providing a treasure trove for gaining a better understanding of the molecular processes involved in cell signaling. Yet, we still face the problem of how to achieve correct modification site localization. Here we use alternative fragmentation and different bioinformatics approaches for the identification and confident localization of phosphorylation sites. Phosphopeptide-enriched fractions were analyzed by multistage activation, collision-induced dissociation and electron transfer dissociation (ETD), yielding complementary phosphopeptide identifications. We further found that MASCOT, OMSSA and Andromeda each identified a distinct set of phosphopeptides allowing the number of site assignments to be increased. The postsearch engine SLoMo provided confident phosphorylation site localization, whereas different versions of PTM-Score integrated in MaxQuant differed in performance. Based on high-resolution ETD and higher collisional dissociation (HCD) data sets from a large synthetic peptide and phosphopeptide reference library reported by Marx et al. [Nat. Biotechnol. 2013, 31 (6), 557-564], we show that an Andromeda/PTM-Score probability of 1 is required to provide an false localization rate (FLR) of 1% for HCD data, while 0.55 is sufficient for high-resolution ETD spectra. Additional analyses of HCD data demonstrated that for phosphotyrosine peptides and phosphopeptides containing two potential phosphorylation sites, PTM-Score probability cutoff values of <1 can be applied to ensure an FLR of 1%. Proper adjustment of localization probability cutoffs allowed us to significantly increase the number of confident sites with an FLR of <1%.Our findings underscore the need for the systematic assessment of FLRs for different score values to report confident modification site

  9. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro

    SciTech Connect

    White, M.F.; Takayama, S.; Kahn, C.R.

    1985-08-05

    Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of (TSP)phosphoserine or (TSP)phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with (gamma-TSP)ATP and MnS , very little phosphorylation occurred in the absence of insulin.

  10. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting

    PubMed Central

    Kim, Kyung Lock; Kim, Daehyung; Lee, Seongsil; Kim, Su-Jeong; Noh, Jung Eun; Kim, Joung-Hun; Chae, Young Chan; Lee, Jong-Bong; Ryu, Sung Ho

    2016-01-01

    Post-translational modifications (PTMs) of receptor tyrosine kinases (RTKs) at the plasma membrane (PM) determine the signal transduction efficacy alone and in combination. However, current approaches to identify PTMs provide ensemble results, inherently overlooking combinatorial PTMs in a single polypeptide molecule. Here, we describe a single-molecule blotting (SiMBlot) assay that combines biotinylation of cell surface receptors with single-molecule fluorescence microscopy. This method enables quantitative measurement of the phosphorylation status of individual membrane receptor molecules and colocalization analysis of multiple immunofluorescence signals to directly visualize pairwise site-specific phosphorylation patterns at the single-molecule level. Strikingly, application of SiMBlot to study ligand-dependent epidermal growth factor receptor (EGFR) phosphorylation, which is widely thought to be multi-phosphorylated, reveals that EGFR on cell membranes is hardly multi-phosphorylated, unlike in vitro autophosphorylated EGFR. Therefore, we expect SiMBlot to aid understanding of vast combinatorial PTM patterns, which are concealed in ensemble methods, and to broaden knowledge of RTK signaling. PMID:27009355

  11. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation.

    PubMed

    Gao, Wenqing; Yang, Jieling; Liu, Wang; Wang, Yupeng; Shao, Feng

    2016-08-16

    Pyrin, encoded by the MEFV gene, is best known for its gain-of-function mutations causing familial Mediterranean fever (FMF), an autoinflammatory disease. Pyrin forms a caspase-1-activating inflammasome in response to inactivating modifications of Rho GTPases by various bacterial toxins or effectors. Pyrin-mediated innate immunity is unique in that it senses bacterial virulence rather than microbial molecules, but its mechanism of activation is unknown. Here we show that Pyrin was phosphorylated in bone marrow-derived macrophages and dendritic cells. We identified Ser-205 and Ser-241 in mouse Pyrin whose phosphorylation resulted in inhibitory binding by cellular 14-3-3 proteins. The two serines underwent dephosphorylation upon toxin stimulation or bacterial infection, triggering 14-3-3 dissociation, which correlated with Pyrin inflammasome activation. We developed antibodies specific for phosphorylated Ser-205 and Ser-241, which confirmed the stimuli-induced dephosphorylation of endogenous Pyrin. Mutational analyses indicated that both phosphorylation and signal-induced dephosphorylation of Ser-205/241 are important for Pyrin activation. Moreover, microtubule drugs, including colchicine, commonly used to treat FMF, effectively blocked activation of the Pyrin inflammasome. These drugs did not affect Pyrin dephosphorylation and 14-3-3 dissociation but inhibited Pyrin-mediated apoptosis-associated Speck-like protein containing CARD (ASC) aggregation. Our study reveals that site-specific (de)phosphorylation and microtubule dynamics critically control Pyrin inflammasome activation, illustrating a fine and complex mechanism in cytosolic immunity. PMID:27482109

  12. Small Molecule Substrate Phosphorylation Site Inhibitors of Protein Kinases: Approaches and Challenges

    PubMed Central

    2015-01-01

    Protein kinases are important mediators of cellular communication and attractive drug targets for many diseases. Although success has been achieved with developing ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors have led to increased interest in targeting sites outside of the ATP binding pocket. Kinase inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising due to the possibility of increased selectivity and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors has resulted in significantly fewer small molecule substrate phosphorylation site inhibitors being reported compared to ATP-competitive inhibitors. This review surveys reported substrate phosphorylation site inhibitors and methods that can be applied to the discovery of such inhibitors, including a discussion of the challenges inherent to these screening methods. PMID:25494294

  13. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2.

    PubMed

    Piserchio, Andrea; Ramakrishan, Venkatesh; Wang, Hsin; Kaoud, Tamer S; Arshava, Boris; Dutta, Kaushik; Dalby, Kevin N; Ghose, Ranajeet

    2015-01-01

    The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS. PMID:26054059

  14. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2

    PubMed Central

    Piserchio, Andrea; Ramakrishan, Venkatesh; Wang, Hsin; Kaoud, Tamer S.; Arshava, Boris; Dutta, Kaushik; Dalby, Kevin N.; Ghose, Ranajeet

    2015-01-01

    The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS. PMID:26054059

  15. Genetic mapping of a major site of phosphorylation in adenovirus type 2 E1A proteins

    SciTech Connect

    Tsukamotot, A.S.; Ponticelli, A.; Berk, A.J.; Gaynor, R.B.

    1986-07-01

    Adenovirus early region 1A (E1A) encodes two acidic phosphoproteins which are required for transactivation of viral transcription, efficient viral DNA replication in phase G/sub 0/-arrested human cells, and oncogenic transformation of rodent cells. Biochemical analysis of in vivo /sup 32/P-labeled adenovirus type 2 E1A proteins purified with monoclonal antibodies demonstrated that these proteins were phosphorylated at multiple serine residues. Two-dimensional phosphotryptic peptide maps of wild-type and mutant E1A proteins were used to locate a major site of E1A protein phosphorylation at serine-219 of the large E1A protein. Although this serine fell within a consensus sequence for phosphorylation by the cyclic AMP-dependent protein kinases, experiments with mutant CHO cells defective in these enzymes indicated that it was not. Oligonucleotide-directed mutagenesis was used to substitute an alanine for serine-219. This mutation prevented phosphorylation at this site. Nonetheless, the mutant was indistinguishable from the wild type for early gene transactivation, replication on G/sub 0/-arrested WI-38 cells, and transformation of cloned rat embryo fibroblast cells.

  16. Membrane protein assembly: two cytoplasmic phosphorylated serine sites of Vpu from HIV-1 affect oligomerization

    PubMed Central

    Chen, Chin-Pei; Lin, Meng-Han; Chan, Ya-Ting; Chen, Li-Chyong; Ma, Che; Fischer, Wolfgang B.

    2016-01-01

    Viral protein U (Vpu) encoded by human immunodeficiency virus type 1 (HIV-1) is a short integral membrane protein which is known to self-assemble within the lipid membrane and associate with host factors during the HIV-1 infectivity cycle. In this study, full-length Vpu (M group) from clone NL4-3 was over-expressed in human cells and purified in an oligomeric state. Various single and double mutations were constructed on its phosphorylation sites to mimic different degrees of phosphorylation. Size exclusion chromatography of wild-type Vpu and mutants indicated that the smallest assembly unit of Vpu was a dimer and over time Vpu formed higher oligomers. The rate of oligomerization increased when (i) the degree of phosphorylation at serines 52 and 56 was decreased and (ii) when the ionic strength was increased indicating that the cytoplasmic domain of Vpu affects oligomerization. Coarse-grained molecular dynamic simulations with models of wild-type and mutant Vpu in a hydrated lipid bilayer supported the experimental data in demonstrating that, in addition to a previously known role in downregulation of host factors, the phosphorylation sites of Vpu also modulate oligomerization. PMID:27353136

  17. DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.

    PubMed

    Huang, Dongqing; Piening, Brian D; Kennedy, Jacob J; Lin, Chenwei; Jones-Weinert, Corey W; Yan, Ping; Paulovich, Amanda G

    2016-05-01

    In response to replication stress, a phospho-signaling cascade is activated and required for coordination of DNA repair and replication of damaged templates (intra-S-phase checkpoint) . How phospho-signaling coordinates the DNA replication stress response is largely unknown. We employed state-of-the-art liquid chromatography tandem-mass spectrometry (LC-MS/MS) approaches to generate high-coverage and quantitative proteomic and phospho-proteomic profiles during replication stress in yeast, induced by continuous exposure to the DNA alkylating agent methyl methanesulfonate (MMS) . We identified 32,057 unique peptides representing the products of 4296 genes and 22,061 unique phosphopeptides representing the products of 3183 genes. A total of 542 phosphopeptides (mapping to 339 genes) demonstrated an abundance change of greater than or equal to twofold in response to MMS. The screen enabled detection of nearly all of the proteins known to be involved in the DNA damage response, as well as many novel MMS-induced phosphorylations. We assessed the functional importance of a subset of key phosphosites by engineering a panel of phosphosite mutants in which an amino acid substitution prevents phosphorylation. In total, we successfully mutated 15 MMS-responsive phosphorylation sites in seven representative genes including APN1 (base excision repair); CTF4 and TOF1 (checkpoint and sister-chromatid cohesion); MPH1 (resolution of homologous recombination intermediates); RAD50 and XRS2 (MRX complex); and RAD18 (PRR). All of these phosphorylation site mutants exhibited MMS sensitivity, indicating an important role in protecting cells from DNA damage. In particular, we identified MMS-induced phosphorylation sites on Xrs2 that are required for MMS resistance in the absence of the MRX activator, Sae2, and that affect telomere maintenance. PMID:27017623

  18. The delayed neurotoxic effect of some organophosphorus compounds. Identification of the phosphorylation site as an esterase

    PubMed Central

    Johnson, M. K.

    1969-01-01

    1. Organophosphorus compounds that produce a delayed neurotoxic effect in hens phosphorylate a specific site in the brain soon after administration. 2. Phosphorylation of the specific site by di-isopropyl [32P]phosphorofluoridate in vitro is blocked by the prior addition of phenyl phenylacetate. 3. A small proportion of the total activity of hen brain hydrolysing phenyl phenylacetate in vitro was shown to be due to an enzyme different from two others previously described. 4. This enzyme is only slightly inhibited in vitro by concentrations of tetraethyl pyrophosphate and paraoxon (diethyl 4-nitrophenyl phosphate) up to 64μm and is completely inhibited by 6μm-di-isopropyl phosphorofluoridate and 128μm-mipafox. 5. It is also inhibited in vivo by effective doses of neurotoxic organophosphorus compounds but not by high doses of non-neurotoxic analogues. 6. It is deduced that the active site of this enzyme is the phosphorylation site associated with the genesis of delayed neurotoxicity. PMID:4310054

  19. CPhos: a program to calculate and visualize evolutionarily conserved functional phosphorylation sites.

    PubMed

    Zhao, Boyang; Pisitkun, Trairak; Hoffert, Jason D; Knepper, Mark A; Saeed, Fahad

    2012-11-01

    Profiling using high-throughput MS has discovered an overwhelming number of novel protein phosphorylation sites ("phosphosites"). However, the functional relevance of these sites is not always clear. In light of recent studies on the evolutionary mechanism of phosphorylation, we have developed CPhos, a Java program that can assess the conservation of phosphosites among species using an information theory-based approach. The degree of conservation established using CPhos can be used to assess the functional significance of phosphosites. CPhos has a user friendly graphical user interface and is available both as a web service and as a standalone Java application to assist phosphoproteomic researchers in analyzing and prioritizing lists of phosphosites for further experimental validation. CPhos can be accessed or downloaded at http://helixweb.nih.gov/CPhos/. PMID:23001821

  20. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction.

    PubMed

    Zeymer, Cathleen; Werbeck, Nicolas D; Zimmermann, Sabine; Reinstein, Jochen; Hansen, D Flemming

    2016-09-12

    States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side-chains were quantified by NMR spin-relaxation methods. In addition to apo and ligand-bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side-chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions. PMID:27534930

  1. Identification of Phosphorylation Sites within the Signaling Adaptor APPL1 by Mass Spectrometry

    PubMed Central

    Gant-Branum, Randi L.; Broussard, Joshua A.; Mahsut, Ablatt; Webb, Donna J.; McLean, John A.

    2010-01-01

    APPL1 is a membrane-associated adaptor protein implicated in various cellular processes, including apoptosis, proliferation, and survival. Although there is increasing interest in the biological roles as well as the protein and membrane interactions of APPL1, a comprehensive phosphorylation profile has not been generated. In this study, we use mass spectrometry (MS) to identify 13 phosphorylated residues within APPL1. By using multiple proteases (trypsin, chymotrypsin, and Glu C) and replicate experiments of linear ion trap (LTQ) MS and LTQ-Orbitrap-MS, a combined sequence coverage of 99.6% is achieved. Four of the identified sites are located in important functional domains, suggesting a potential role in regulating APPL1. One of these sites is within the BAR domain, two cluster near the edge of the PH domain, and one is located within the PTB domain. These phosphorylation sites may control APPL1 function by regulating the ability of APPL1 domains to interact with other proteins and membranes. PMID:20095645

  2. Identification and Functional Characterization of Phosphorylation Sites on GTP Cyclohydrolase I

    PubMed Central

    Du, Jianhai; Wei, Na; Xu, Hao; Ge, Ying; Vásquez-Vivar, Jeannette; Guan, Tongju; Oldham, Keith T.; Pritchard, Kirkwood A.; Shi, Yang

    2009-01-01

    Objective The post-translational regulation of GTP cyclohydrolase I (GCH-1), the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, remains elusive. Here, we identified specific phosphorylation sites on GCH-1 and characterized the function of these sites. Methods and Results Mass spectrometry studies showed overexpressed rat GCH-1 was phosphorylated at serine (S) 51, S167 and threonine (T) 231 in HEK293 cells whereas a computational analysis of GCH-1 revealed 8 potential phosphorylation sites [S51, S72, T85, T91, T103, S130, S167 and T231]. GCH-1 activity and BH4 were significantly decreased in cells transfected with the phospho-defective mutants (S72A, T85A, T91A, T103A or S130A) and increased in cells transfected with the T231A mutant. BH4 and BH2 were increased in cells transfected with S51E, S72E, T85E, T91E, T103D or T130D mutants, but decreased in cells transfected with the T231D mutant, while cells transfected with the S167A or the S167E mutant had increased BH2. Additionally, cells transfected with the T231A mutant had reduced GCH-1 nuclear localization and nuclear GCH-1 activity. Conclusion Our data suggest GCH-1 activity is regulated either positively by phosphorylation S51, S72, T85, T91, T103 and S130, or negatively at T231. Such information might be useful in designing new therapies aiming at improving BH4 bioavailability. PMID:19762783

  3. Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site.

    PubMed

    Yokoyama, Charles T; Myers, Scott J; Fu, Jian; Mockus, Susan M; Scheuer, Todd; Catterall, William A

    2005-01-01

    Ca(v)2.1 and Ca(v)2.2 channels conduct P/Q-type and N-type Ca(2+) currents that initiate neurotransmission and bind SNARE proteins through a synaptic protein interaction (synprint) site. PKC and CaMKII phosphorylate the synprint site and inhibit SNARE protein binding in vitro. Here we identify two separate microdomains that each bind syntaxin 1A and SNAP-25 in vitro and are regulated by PKC phosphorylation at serines 774 and 898 and CaMKII phosphorylation at serines 784 and 896. Activation of PKC resulted in its recruitment to and phosphorylation of Ca(V)2.2 channels, but PKC phosphorylation did not dissociate Ca(V)2.2 channel/syntaxin 1A complexes. Chimeric Ca(V)2.1a channels containing the synprint site of Ca(v)2.2 gain modulation by syntaxin 1A, which is blocked by PKC phosphorylation at the sites identified above. Our results support a bipartite model for the synprint site in which each SNARE-binding microdomain is controlled by a separate PKC and CaMKII phosphorylation site that regulates channel modulation by SNARE proteins. PMID:15607937

  4. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    PubMed

    Koland, John G

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  5. Reevaluation of Phosphorylation Sites in the Parkinson Disease-associated Leucine-rich Repeat Kinase 2*

    PubMed Central

    Li, Xiaojie; Moore, Darren J.; Xiong, Yulan; Dawson, Ted M.; Dawson, Valina L.

    2010-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an important cause of late-onset, autosomal dominant familial Parkinson disease and contribute to sporadic Parkinson disease. LRRK2 is a large complex protein with multiple functional domains, including a Roc-GTPase, protein kinase, and multiple protein-protein interaction domains. Previous studies have suggested an important role for kinase activity in LRRK2-induced neuronal toxicity and inclusion body formation. Disease-associated mutations in LRRK2 also tend to increase kinase activity. Thus, enhanced kinase activity may therefore underlie LRRK2-linked disease. Similar to the closely related mixed-lineage kinases, LRRK2 can undergo autophosphorylation in vitro. Three putative autophosphorylation sites (Thr-2031, Ser-2032, and Thr-2035) have been identified within the activation segment of the LRRK2 kinase domain based on sequence homology to mixed-lineage kinases. Phosphorylation at one or more of these sites is critical for the kinase activity of LRRK2. Sensitive phopho-specific antibodies to each of these three sites have been developed and validated by ELISA, dot-blot, and Western blot analysis. Using these antibodies, we have found that all three putative sites are phosphorylated in LRRK2, and Ser-2032 and Thr-2035 are the two important sites that regulate LRRK2 kinase activity. PMID:20595391

  6. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  7. New partners and phosphorylation sites of focal adhesion kinase identified by mass spectrometry.

    PubMed

    Masdeu, Maria del Mar; Armendáriz, Beatriz G; Soriano, Eduardo; Ureña, Jesús Mariano; Burgaya, Ferran

    2016-07-01

    The regulation of focal adhesion kinase (FAK) involves phosphorylation and multiple interactions with other signaling proteins. Some of these pathways are relevant for nervous system functions such as branching, axonal guidance, and plasticity. In this study, we screened mouse brain to identify FAK-interactive proteins and phosphorylatable residues as a first step to address the neuronal functions of this kinase. Using mass spectrometry analysis, we identified new phosphorylated sites (Thr 952, Thr 1048, and Ser 1049), which lie in the FAT domain; and putative new partners for FAK, which include cytoskeletal proteins such as drebrin and MAP 6, adhesion regulators such as neurabin-2 and plakophilin 1, and synapse-associated proteins such as SynGAP and a NMDA receptor subunit. Our findings support the participation of brain-localized FAK in neuronal plasticity. PMID:27033120

  8. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC.

    PubMed

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-12-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC. PMID:22966159

  9. Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis

    PubMed Central

    Makhmoudova, Amina; Williams, Declan; Brewer, Dyanne; Massey, Sarah; Patterson, Jenelle; Silva, Anjali; Vassall, Kenrick A.; Liu, Fushan; Subedi, Sanjeena; Harauz, George; Siu, K. W. Michael; Tetlow, Ian J.; Emes, Michael J.

    2014-01-01

    Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application. PMID:24550386

  10. CEOS database of worldwide calibration facilities and validation test sites

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Wanchoo, Lalit; Le, Truong

    2001-02-01

    12 Since 1995, the CEOS Calibration/Validation (Cal/Val) Database has provided the international Earth remote sensing science community with a) a central repository for information on current and planned Calibration/Validation activities and b) a means to foster collaboration on common Cal/Val issues. The Cal/Val Database uses an ORACLE relation database management system to store the data and is accessed via the World Wide Web (WWW) using PERL scripts to search and query the database. The search queries are structured such that users can define any combination of fields, either through selection of valids, or by directly typing the information. All query results are displayed in the text form. The text displays are interactive allowing the user to point and click to access more detailed information. System functionality provides an on-line form of all of the three questionnaires for submitting new information and allows a user with the assigned password to edit archived information for their facility. This functionality allows users to update information, as it becomes available. In 2000, the Cal/Val database was updated through a process of additional surveying of existing and planned Cal/Val capabilities to support the NASA's Earth Science Enterprise (ESE) and other international Earth observing missions. A set of three updated questionnaires was prepared: one for calibration laboratories, one for test sites, and one for field instruments. The information requested included: a description of the facility, instruments available, instrument characteristics, types of measurements performed, programs/projects that have used the facility, etc. These questionnaires with cover letter were mailed to over 250 research groups that included CEOS members and facilities within the USA. The information collected from worldwide facilities was used to construct and update this on-line database for use not only by the CEOS members, but also the broader international Earth

  11. The Hanford Site generic component failure-rate database compared with other generic failure-rate databases

    SciTech Connect

    Reardon, M.F.; Zentner, M.D.

    1992-11-01

    The Risk Assessment Technology Group, Westinghouse Hanford Company (WHC), has compiled a component failure rate database to be used during risk and reliability analysis of nonreactor facilities. Because site-specific data for the Hanford Site are generally not kept or not compiled in a usable form, the database was assembled using information from a variety of other established sources. Generally, the most conservative failure rates were chosen from the databases reviewed. The Hanford Site database has since been used extensively in fault tree modeling of many Hanford Site facilities and systems. The purpose of this study was to evaluate the reasonableness of the data chosen for the Hanford Site database by comparing the values chosen with the values from the other databases.

  12. Phosphorylation of IGFBP-1 at discrete sites elicits variable effects on IGF-I receptor autophosphorylation.

    PubMed

    Abu Shehab, Majida; Iosef, Cristiana; Wildgruber, Robert; Sardana, Girish; Gupta, Madhulika B

    2013-03-01

    We previously demonstrated that hypoxia and leucine deprivation cause hyperphosphorylation of IGF-binding protein-1 (IGFBP-1) at discrete sites that markedly enhanced IGF-I affinity and inhibited IGF-I-stimulated cell growth. In this study we investigated the functional role of these phosphorylation sites using mutagenesis. We created three IGFBP-1 mutants in which individual serine (S119/S169/S98) residues were substituted with alanine and S101A was recreated for comparison. The wild-type (WT) and mutant IGFBP-1 were expressed in Chinese hamster ovary cells and IGFBP-1 in cell media was isolated using isoelectric-focusing-free-flow electrophoresis. BIACore analysis indicated that the changes in IGF-I affinity for S98A and S169A were moderate, whereas S119A greatly reduced the affinity of IGFBP-1 for IGF-I (100-fold, P < .0001). Similar results were obtained with S101A. The IGF-I affinity changes of the mutants were reflected in their ability to inhibit IGF-I-induced receptor autophosphorylation. Employing receptor-stimulation assay using IGF-IR-overexpressing P6 cells, we found that WT-IGFBP-1 inhibited IGF-IRβ autophosphorylation (~2-fold, P < .001), possibly attributable to sequestration of IGF-I. Relative to WT, S98A and S169A mutants did not inhibit receptor autophosphorylation. S119A, on the other hand, greatly stimulated the receptor (2.3-fold, P < .05). The data with S101A matched S119A. In summary, we show that phosphorylation at S98 and S169 resulted in milder changes in IGF-I action; nonetheless most dramatic inhibitory effects on the biological activity of IGF-I were due to IGFBP-1 phosphorylation at S119. Our results provide novel demonstration that IGFBP-1 phosphorylation at S119 can enhance affinity for IGF-I possibly through stabilization of the IGF-IGFBP-1 complex. These data also propose that the synergistic interaction of distinct phosphorylation sites may be important in eliciting more pronounced effects on IGF-I affinity that needs further

  13. Identification of Light-Sensitive Phosphorylation Sites on PERIOD That Regulate the Pace of Circadian Rhythms in Drosophila.

    PubMed

    Yildirim, Evrim; Chiu, Joanna C; Edery, Isaac

    2016-03-01

    The main components regulating the pace of circadian (≅24 h) clocks in animals are PERIOD (PER) proteins, transcriptional regulators that undergo daily changes in levels and nuclear accumulation by means of complex multisite phosphorylation programs. In the present study, we investigated the function of two phosphorylation sites, at Ser826 and Ser828, located in a putative nuclear localization signal (NLS) on the Drosophila melanogaster PER protein. These sites are phosphorylated by DOUBLETIME (DBT; Drosophila homolog of CK1δ/ε), the key circadian kinase regulating the daily changes in PER stability and phosphorylation. Mutant flies in which phosphorylation at Ser826/Ser828 is blocked manifest behavioral rhythms with periods slightly longer than 1 h and with altered temperature compensation properties. Intriguingly, although phosphorylation at these sites does not influence PER stability, timing of nuclear entry, or transcriptional autoinhibition, the phospho-occupancy at Ser826/Ser828 is rapidly stimulated by light and blocked by TIMELESS (TIM), the major photosensitive clock component in Drosophila and a crucial binding partner of PER. Our findings identify the first phosphorylation sites on core clock proteins that are acutely regulated by photic cues and suggest that some phosphosites on PER proteins can modulate the pace of downstream behavioral rhythms without altering central aspects of the clock mechanism. PMID:26711257

  14. Complete topographical distribution of both the in vivo and in vitro phosphorylation sites of bone sialoprotein and their biological implications.

    PubMed

    Salih, Erdjan; Flückiger, Rudolf

    2004-05-01

    Bone sialoprotein (BSP) is a multifunctional, highly phosphorylated, and glycosylated protein with key roles in biomineralization and tissue remodeling. This work identifies the complete topographical distribution and precise location of both the in vitro and in vivo phosphorylation sites of bovine BSP by a combination of state-of-the-art techniques and approaches. In vitro phosphorylation of native and deglycosylated BSPs by casein kinase II identified seven phosphorylation sites by solid-phase N-terminal peptide sequencing that were within peptides 12-22 (LEDS(P)EENGVFK), 42-62 (FAVQSSSDSS(P)EENGNGDS(P)S(P)EE), 80-91 (EDS(P)DENEDEES(P)E), and 135-145 (EDES(P)DEEEEEE). The in vivo phosphorylation regions and sites were identified by use of a novel thiol reagent, 1-S-mono[(14)C]carboxymethyldithiothreitol. This approach identified all of the phosphopeptides defined by in vitro phosphorylation, but two additional phosphopeptides were defined at residues, 250-264 (DNGYEIYES(P)ENGDPR), and 282-289 (GYDS(P)YDGQ). Furthermore, use of native BSP and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified several of the above peptides, including an additional phosphopeptide at residues 125-130 (AGAT(P)GK) that was not defined in either of the in vitro and in vivo studies described above. Overall, 7 in vitro and 11 in vivo phosphorylation sites were identified unequivocally, with natural variation in the quantitative extent of phosphorylation at each in vivo phosphorylation site. PMID:15004024

  15. Evolution of nuclear retinoic acid receptor alpha (RARα) phosphorylation sites. Serine gain provides fine-tuned regulation.

    PubMed

    Samarut, Eric; Amal, Ismail; Markov, Gabriel V; Stote, Roland; Dejaegere, Annick; Laudet, Vincent; Rochette-Egly, Cécile

    2011-07-01

    The human nuclear retinoic acid (RA) receptor alpha (hRARα) is a ligand-dependent transcriptional regulator, which is controlled by a phosphorylation cascade. The cascade starts with the RA-induced phosphorylation of a serine residue located in the ligand-binding domain, S(LBD), allowing the recruitment of the cdk7/cyclin H/MAT1 subcomplex of TFIIH through the docking of cyclin H. It ends by the subsequent phosphorylation by cdk7 of an other serine located in the N-terminal domain, S(NTD). Here, we show that this cascade relies on an increase in the flexibility of the domain involved in cyclin H binding, subsequently to the phosphorylation of S(LBD). Owing to the functional importance of RARα in several vertebrate species, we investigated whether the phosphorylation cascade was conserved in zebrafish (Danio rerio), which expresses two RARα genes: RARα-A and RARα-B. We found that in zebrafish RARαs, S(LBD) is absent, whereas S(NTD) is conserved and phosphorylated. Therefore, we analyzed the pattern of conservation of the phosphorylation sites and traced back their evolution. We found that S(LBD) is most often absent outside mammalian RARα and appears late during vertebrate evolution. In contrast, S(NTD) is conserved, indicating that the phosphorylation of this functional site has been under ancient high selection constraint. This suggests that, during evolution, different regulatory circuits control RARα activity. PMID:21297158

  16. PeptiSite: a structural database of peptide binding sites in 4D.

    PubMed

    Acharya, Chayan; Kufareva, Irina; Ilatovskiy, Andrey V; Abagyan, Ruben

    2014-03-21

    We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include: (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a multimeric protein assembly with cofactors and metal ions and (3) analysis of consensus interaction motifs within the ensembles and identification of conserved determinants of these interactions. Currently the database contains 585 proteins with 650 peptide-binding sites. http://peptisite.ucsd.edu/ link allows searching for the sites of interest and interactive visualization of the ensembles using the ActiveICM web-browser plugin. This structural database for protein-peptide interactions enables understanding of structural principles of these interactions and may assist the development of an efficient peptide docking benchmark. PMID:24406170

  17. Simultaneous Identification of Tyrosine Phosphorylation and Sulfation Sites Utilizing Tyrosine-Specific Bromination

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Seo; Song, Si-Uk; Kim, Hie-Joon

    2011-11-01

    Tyrosine phosphorylation and sulfation play many key roles in the cell. Isobaric phosphotyrosine and sulfotyrosine residues in peptides were determined by mass spectrometry using phosphatase or sulfatase to remove the phosphate or the sulfate group. Unique Br signature was introduced to the resulting tyrosine residues by incubation with 32% HBr at -20 °C for 20 min. MS/MS analysis of the brominated peptide enabled unambiguous determination of the phosphotyrosine and the sulfotyrosine sites. When phosphotyrosine and sulfotyrosine as well as free tyrosine were present in the same peptide, they could be determined simultaneously using either phosphatase or sulfatase following acetylation of the free tyrosine.

  18. ERISdb: a database of plant splice sites and splicing signals.

    PubMed

    Szcześniak, Michał Wojciech; Kabza, Michał; Pokrzywa, Rafał; Gudyś, Adam; Makałowska, Izabela

    2013-02-01

    Splicing is one of the major contributors to observed spatiotemporal diversification of transcripts and proteins in metazoans. There are numerous factors that affect the process, but splice sites themselves along with the adjacent splicing signals are critical here. Unfortunately, there is still little known about splicing in plants and, consequently, further research in some fields of plant molecular biology will encounter difficulties. Keeping this in mind, we performed a large-scale analysis of splice sites in eight plant species, using novel algorithms and tools developed by us. The analyses included identification of orthologous splice sites, polypyrimidine tracts and branch sites. Additionally we identified putative intronic and exonic cis-regulatory motifs, U12 introns as well as splice sites in 45 microRNA genes in five plant species. We also provide experimental evidence for plant splice sites in the form of expressed sequence tag and RNA-Seq data. All the data are stored in a novel database called ERISdb and are freely available at http://lemur.amu.edu.pl/share/ERISdb/. PMID:23299413

  19. Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis.

    PubMed

    Horstmann, Nicola; Saldaña, Miguel; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Thompson, Erika; Koller, Antonius; Shelburne, Samuel A

    2014-05-01

    Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that Cov

  20. Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis

    PubMed Central

    Horstmann, Nicola; Saldaña, Miguel; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Thompson, Erika; Koller, Antonius; Shelburne, Samuel A.

    2014-01-01

    Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that Cov

  1. Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase

    PubMed Central

    Prakash, Aishwarya; Cao, Vy Bao; Doublié, Sylvie

    2016-01-01

    The NEIL1 DNA glycosylase is one of eleven mammalian DNA glycosylases that partake in the first step of the base excision repair (BER) pathway. NEIL1 recognizes and cleaves mainly oxidized pyrimidines from DNA. The past decade has witnessed the identification of an increasing number of post-translational modifications (PTMs) in BER enzymes including phosphorylation, acetylation, and sumoylation, which modulate enzyme function. In this work, we performed the first comprehensive analysis of phosphorylation sites in human NEIL1 expressed in human cells. Mass spectrometry (MS) analysis revealed phosphorylation at three serine residues: S207, S306, and a third novel site, S61. We expressed, purified, and characterized phosphomimetic (glutamate) and phosphoablating (alanine) mutants of the three phosphorylation sites in NEIL1 revealed by the MS analysis. All mutant enzymes were active and bound tightly to DNA, indicating that phosphorylation does not affect DNA binding and enzyme activity at these three serine sites. We also characterized phosphomimetic mutants of two other sites of phosphorylation, Y263 and S269, reported previously, and observed that mutation of Y263 to E yielded a completely inactive enzyme. Furthermore, based on sequence motifs and kinase prediction algorithms, we identified the c-Jun N-terminal kinase 1 (JNK1) as the kinase involved in the phosphorylation of NEIL1. JNK1, a member of the mitogen activated protein kinase (MAPK) family, was detected in NEIL1 immunoprecipitates, interacted with NEIL1 in vitro, and was able to phosphorylate the enzyme at residues S207, S306, and S61. PMID:27518429

  2. Novel Phosphorylation Sites in the S. cerevisiae Cdc13 Protein Reveal New Targets for Telomere Length Regulation

    PubMed Central

    Wu, Yun; DiMaggio, Peter A.; Perlman, David H.; Zakian, Virginia A.; Garcia, Benjamin A.

    2013-01-01

    The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics. PMID:23181431

  3. Interactions between Multiple Phosphorylation Sites in the Inactivation Particle of a K+ Channel

    PubMed Central

    Beck, Edward J.; Sorensen, Roger G.; Slater, Simon J.; Covarrubias, Manuel

    1998-01-01

    Protein kinase C inhibits inactivation gating of Kv3.4 K+ channels, and at least two NH2-terminal serines (S15 and S21) appeared involved in this interaction (Covarrubias et al. 1994. Neuron. 13:1403–1412). Here we have investigated the molecular mechanism of this regulatory process. Site-directed mutagenesis (serine → alanine) revealed two additional sites at S8 and S9. The mutation S9A inhibited the action of PKC by ∼85%, whereas S8A, S15A, and S21A exhibited smaller reductions (41, 35, and 50%, respectively). In spite of the relatively large effects of individual S → A mutations, simultaneous mutation of the four sites was necessary to completely abolish inhibition of inactivation by PKC. Accordingly, a peptide corresponding to the inactivation domain of Kv3.4 was phosphorylated by specific PKC isoforms, but the mutant peptide (S[8,9,15,21]A) was not. Substitutions of negatively charged aspartate (D) for serine at positions 8, 9, 15, and 21 closely mimicked the effect of phosphorylation on channel inactivation. S → D mutations slowed the rate of inactivation and accelerated the rate of recovery from inactivation. Thus, the negative charge of the phosphoserines is an important incentive to inhibit inactivation. Consistent with this interpretation, the effects of S8D and S8E (E = Glu) were very similar, yet S8N (N = Asn) had little effect on the onset of inactivation but accelerated the recovery from inactivation. Interestingly, the effects of single S → D mutations were unequal and the effects of combined mutations were greater than expected assuming a simple additive effect of the free energies that the single mutations contribute to impair inactivation. These observations demonstrate that the inactivation particle of Kv3.4 does not behave as a point charge and suggest that the NH2-terminal phosphoserines interact in a cooperative manner to disrupt inactivation. Inspection of the tertiary structure of the inactivation domain of Kv3.4 revealed the

  4. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    PubMed Central

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.

    2013-01-01

    Cell signaling systems transmit information by post-translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-protein coupled receptor (GPCR). We used published mass spectrometry-based proteomics data to identify putative sites of phosphorylation on pheromone pathway components, and we used evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of putative phosphorylation events that contribute to adjust the input-output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results suggest that relatively small quantitative influences from individual phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes. PMID:23554854

  5. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    SciTech Connect

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  6. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    PubMed

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism. PMID:25887881

  7. Identification of protein functions from a molecular surface database, eF-site.

    PubMed

    Kinoshita, Kengo; Furui, Jun'ichi; Nakamura, Haruki

    2002-01-01

    A bioinformatics method was developed to identify the protein surface around the functional site and to estimate the biochemical function, using a newly constructed molecular surface database named the eF-site (electrostatic surface of Functional site. Molecular surfaces of protein molecules were computed based on the atom coordinates, and the eF-site database was prepared by adding the physical properties on the constructed molecular surfaces. The electrostatic potential on each molecular surface was individually calculated solving the Poisson-Boltzmann equation numerically for the precise continuum model, and the hydrophobicity information of each residue was also included. The eF-site database is accessed by the internet (http://pi.protein.osaka-u.ac.jp/eF-site/). We have prepared four different databases, eF-site/antibody, eF-site/prosite, eF-site/P-site, and eF-site/ActiveSite, corresponding to the antigen binding sites of antibodies with the same orientations, the molecular surfaces for the individual motifs in PROSITE database, the phosphate binding sites, and the active site surfaces for the representatives of the individual protein family, respectively. An algorithm using the clique detection method as an applied graph theory was developed to search of the eF-site database, so as to recognize and discriminate the characteristic molecular surfaces of the proteins. The method identifies the active site having the similar function to those of the known proteins. PMID:12836670

  8. Effects of kinase inhibitors and potassium phosphate (KPi) on site-specific phosphorylation of branched chain. cap alpha. -ketoacid dehydrogenase (BCKDH)

    SciTech Connect

    Kuntz, M.J.; Shimomura, Y.; Ozawa, T.; Harris, R.A.

    1987-05-01

    BCKDH is phosphorylated by a copurifying kinase at two serine residues on the El..cap alpha.. subunit. Phosphorylation of both sites occurs at about the same rate initially, but inactivation is believed associated only with site 1 phosphorylation. The effects of KPi and known inhibitors of BCKDH kinase, ..cap alpha..-chloroisocaproate (CIC) and branched chain ..cap alpha..-ketoacids (BCKA), on the phosphorylation of purified rat liver BCKDH were studied. Site-specific phosphorylation was quantitated by thin-layer electrophoresis of tryptic peptides followed by densitometric scanning of autoradiograms. Addition of 5 mM KPi was found necessary to stabilize the BCKDH activity at 37/sup 0/C. Increasing the KPi to 50 mM dramatically increased the CIC and BCKA inhibition of site 1 and site 2 phosphorylation. The finding of enhanced sensitivity of inhibitors with 50 mM KPi may facilitate identification of physiologically important kinase effectors. Regardless of the KPi concentration, CIC and the BCKA showed much more effective inhibition of site 2 than site 1 phosphorylation. Although site 1 is the primary inactivating site, predominant inhibition of site 2 phosphorylation may provide a means of modulating kinase/phosphatase control of BCKDH activity under steady state conditions.

  9. Histone phosphorylation

    PubMed Central

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-01-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes. PMID:22948226

  10. Uncertainty in site inspection and tracking database estimates of savings

    SciTech Connect

    Sonnenblick, R.; Eto, J.

    1988-12-31

    The authors systematically analyze impact evaluation results of three commercial lighting rebate DSM programs. The research includes (1) analysis of ex ante and ex post estimates of program performance, broken down into critical program parameters: hours of operation, watts saved per measure, and measures installed per site; (2) construction of probability distributions of program performance, both in the aggregate and for these critical program parameters; and (3) use of these analyses and distributions to draw conclusions about the accuracy of savings estimates from a variety of evaluation methods. The analysis suggests that realization rates (a ratio of metered savings estimates to tracking database savings estimates) for the sample of participants they examine are subject to tremendous variability, calling into question the usefulness of a point estimate of the realization rate. Discrepancies in estimates of hours of operation are responsible for most of the uncertainty in the realization rate. Finally, the impact of shorter measure lifetimes on savings estimates suggest that persistence studies should be an evaluation priority.

  11. Systematic Mapping of Posttranslational Modifications in Human Estrogen Receptor-α with Emphasis on Novel Phosphorylation Sites*S⃞

    PubMed Central

    Atsriku, Christian; Britton, David J.; Held, Jason M.; Schilling, Birgit; Scott, Gary K.; Gibson, Bradford W.; Benz, Christopher C.; Baldwin, Michael A.

    2009-01-01

    A systematic study of posttranslational modifications of the estrogen receptor isolated from the MCF-7 human breast cancer cell line is reported. Proteolysis with multiple enzymes, mass spectrometry, and tandem mass spectrometry achieved very high sequence coverage for the full-length 66-kDa endogenous protein from estradiol-treated cell cultures. Nine phosphorylated serine residues were identified, three of which were previously unreported and none of which were previously observed by mass spectrometry by any other laboratory. Two additional modified serine residues were identified in recombinant protein, one previously reported but not observed here in endogenous protein and the other previously unknown. Although major emphasis was placed on identifying new phosphorylation sites, N-terminal loss of methionine accompanied by amino acetylation and a lysine side chain acetylation (or possibly trimethylation) were also detected. The use of both HPLC-ESI and MALDI interfaced to different mass analyzers gave higher sequence coverage and identified more sites than could be achieved by either method alone. The estrogen receptor is critical in the development and progression of breast cancer. One previously unreported phosphorylation site identified here was shown to be strongly dependent on estradiol, confirming its potential significance to breast cancer. Greater knowledge of this array of posttranslational modifications of estrogen receptor, particularly phosphorylation, will increase our understanding of the processes that lead to estradiol-induced activation of this protein and may aid the development of therapeutic strategies for management of hormone-dependent breast cancer. PMID:18984578

  12. Incorporating substrate sequence motifs and spatial amino acid composition to identify kinase-specific phosphorylation sites on protein three-dimensional structures

    PubMed Central

    2013-01-01

    Background Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in cellular processes. Given the high-throughput mass spectrometry-based experiments, the desire to annotate the catalytic kinases for in vivo phosphorylation sites has motivated. Thus, a variety of computational methods have been developed for performing a large-scale prediction of kinase-specific phosphorylation sites. However, most of the proposed methods solely rely on the local amino acid sequences surrounding the phosphorylation sites. An increasing number of three-dimensional structures make it possible to physically investigate the structural environment of phosphorylation sites. Results In this work, all of the experimental phosphorylation sites are mapped to the protein entries of Protein Data Bank by sequence identity. It resulted in a total of 4508 phosphorylation sites containing the protein three-dimensional (3D) structures. To identify phosphorylation sites on protein 3D structures, this work incorporates support vector machines (SVMs) with the information of linear motifs and spatial amino acid composition, which is determined for each kinase group by calculating the relative frequencies of 20 amino acid types within a specific radial distance from central phosphorylated amino acid residue. After the cross-validation evaluation, most of the kinase-specific models trained with the consideration of structural information outperform the models considering only the sequence information. Furthermore, the independent testing set which is not included in training set has demonstrated that the proposed method could provide a comparable performance to other popular tools. Conclusion The proposed method is shown to be capable of predicting kinase-specific phosphorylation sites on 3D structures and has been implemented as a web server which is freely accessible at http://csb.cse.yzu.edu.tw/PhosK3D/. Due to the difficulty of identifying the kinase-specific phosphorylation

  13. High LET - induced H2AX phosphorylation at sites of DNA double strand breaks

    NASA Astrophysics Data System (ADS)

    Desai, N.; Cucinotta, F.; Wu, H.

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  14. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites.

    PubMed Central

    Sørensen, E. S.; Højrup, P.; Petersen, T. E.

    1995-01-01

    Osteopontin (OPN) is a multiphosphorylated glycoprotein found in bone and other normal and malignant tissues, as well as in the physiological fluids urine and milk. The present study demonstrates that bovine milk osteopontin is phosphorylated at 27 serine residues and 1 threonine residue. Phosphoamino acids were identified by a combination of amino acid analysis, sequence analysis of S-ethylcysteine-derivatized phosphopeptides, and mass spectrometric analysis. Twenty-five phosphoserines and one phosphothreonine were located in Ser/Thr-X-Glu/Ser(P)/Asp motifs, and two phosphoserines were found in the sequence Ser-X-X-Glu/Ser(P). These sequence motifs are identical with the recognition sequences of mammary gland casein kinase and casein kinase II, respectively. Examination of the phosphorylation pattern revealed that the phosphorylations were clustered in groups of approximately three spanned by unphosphorylated regions of 11-32 amino acids. This pattern is probably of importance in the multiple functions of OPN involving interaction with Ca2+ and inorganic calcium salts. Furthermore, three O-glycosylated threonines (Thr 115, Thr 124, and Thr 129) have been identified in a threonine- and proline-rich region of the protein. Three putative N-glycosylation sites (Asn 63, Asn 85, and Asn 193) are present in bovine osteopontin, but sequence and mass spectrometric analysis showed that none of these asparagines were glycosylated in bovine mammary gland osteopontin. Alignment analysis showed that the majority of the phosphorylation sites in bovine osteopontin as well as all three O-glycosylation sites were conserved in other mammalian sequences. This conservation of serines, even in otherwise less well-conserved regions of the protein, indicates that the phosphorylation of osteopontin at specific sites is essential for the function of the protein. PMID:8535240

  15. Site-specific anti-phosphopeptide antibodies: use in assessing insulin receptor serine/threonine phosphorylation state and identification of serine-1327 as a novel site of phorbol ester-induced phosphorylation.

    PubMed Central

    Coghlan, M P; Pillay, T S; Tavaré, J M; Siddle, K

    1994-01-01

    Rabbit antisera were raised against synthetic phosphopeptides corresponding to defined or putative sites of insulin receptor serine/threonine phosphorylation (Ser-1305, Ser-1327, Thr-1348). All of these antibodies bound specifically to the immunogenic phosphopeptide but not to the non-phosphorylated form of the peptide or to other phosphopeptides, in a microtitre plate competition enzyme-linked immunosorbent assay. Anti-PS1327 antibody reacted well with native insulin receptor prepared from phorbol ester-treated transfected CHO.T cells, but showed little reaction with receptor from untreated cells. Anti-PT1348 antibody in crude form reacted substantially with receptor from both phorbol 12-myristate 13-acetate-treated and untreated cells, but displayed specificity for phosphoreceptor after adsorption to remove antibodies reactive with dephosphopeptide. The ability to discriminate between receptor from cells treated with or without phorbol ester was retained when these antibodies were used to probe denatured receptor on Western blots. Thus anti-PS1327 and anti-PT1348 react with insulin receptor in a site-specific and phosphorylation-state-dependent manner. Anti-PT1348, but not anti-PS1327, also showed increased reactivity with receptor prepared from insulin-treated cells. The third antibody, anti-PS1305, did not react with intact insulin receptor under any conditions. It is concluded that serine 1327 is a major, previously unrecognized, site of phorbol ester-induced receptor phosphorylation, and that anti-phosphopeptide antibodies will be valuable reagents with which to examine the serine/threonine phosphorylation state of receptor extracted from tissues. Images Figure 3 Figure 4 PMID:7980459

  16. Design and implementation of the site and engineering properties database; Yucca Mountain Site Characterzation Project

    SciTech Connect

    Krebs-Jespersen, M.L.

    1992-02-01

    The Yucca Mountain Site Characterization Project (YMP) is conducting studies to determine whether the Yucca Mountain site in southern Nevada will meet regulatory criteria for a potential mined geologic disposal system for high-level radioactive waste. Data gathered as part of these studies must be compiled and tabulated in a controlled manner for use in design and performance analyses. An integrated data management system has been developed to facilitate this process; this system relies on YMP participants to share in the development of the database and to ensure the integrity of the data. The site and Engineering Properties Database (SEPDB) is unique in that, unlike most databases where one data set is stored for use by one defined user, the SEPDB stores different sets of data which must be structured so that a variety of users can be given access to the information. All individuals responsible for activities supporting the license application should, to the extent possible,work with the same data and the same assumptions. For this reason, it is important that these data sets are readily accessible, comprehensive, and current. The SEPDB contains scientific and engineering data for use in performance assessment and design activities. These data sets currently consist of geologic, hydrologic, and rock properties information from drill holes and field measurements. The users of the SEPDB include engineers and scientists from several government research laboratories (Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories), the US Geological Survey, and several government contractors. This manuscript describes the detailed requirements, contents, design, and status of the SEPDB, the procedures for submitting data to and/or requesting data from the SEPDB, and a SEPDB data dictionary (Appendix A) for defining the present contents.

  17. Identification of a novel phosphorylation site in adipose triglyceride lipase as a regulator of lipid droplet localization.

    PubMed

    Xie, Xitao; Langlais, Paul; Zhang, Xiaodong; Heckmann, Bradlee L; Saarinen, Alicia M; Mandarino, Lawrence J; Liu, Jun

    2014-06-15

    Adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triacylglycerol (TG) hydrolysis, has long been known to be a phosphoprotein. However, the potential phosphorylation events that are involved in the regulation of ATGL function remain incompletely defined. Here, using a combinatorial proteomics approach, we obtained evidence that at least eight different sites of ATGL can be phosphorylated in adipocytes. Among them, Thr³⁷² resides within the hydrophobic region known to mediate lipid droplet (LD) targeting. Although it had no impact on the TG hydrolase activity, substitution of phosphorylation-mimic Asp for Thr³⁷² eliminated LD localization and LD-degrading capacity of ATGL expressed in HeLa cells. In contrast, mutation of Thr³⁷² to Ala gave a protein that bound LDs and functioned the same as the wild-type protein. In nonstimulated adipocytes, the Asp mutation led to decreased LD association and basal lipolytic activity of ATGL, whereas the Ala mutation produced opposite effects. Moreover, the LD translocation of ATGL upon β-adrenergic stimulation was also compromised by the Asp mutation. In accord with these findings, the Ala mutation promoted and the Asp mutation attenuated the capacity of ATGL to mediate lipolysis in adipocytes under both basal and stimulated conditions. Collectively, these studies identified Thr³⁷² as a novel phosphorylation site that may play a critical role in determining subcellular distribution as well as lipolytic action of ATGL. PMID:24801391

  18. Putative phosphorylation sites on WCA domain of HA2 is essential for Helicoverpa armigera single nucleopolyhedrovirus replication.

    PubMed

    Lv, Yi-pin; Wang, Qian; Wu, Chun-chen; Pei, Rong-juan; Zhou, Yuan; Wang, Yun; Chen, Xin-wen

    2011-08-01

    Protein phosphorylation is one of the most common post-translational modification processes that play an essential role in regulating protein functionality. The Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) orf2-encoded nucleocapsid protein HA2 participates in orchestration of virus-induced actin polymerization through its WCA domain, in which phosphorylation status are supposed to be critical in respect to actin polymerization. In the present study, two putative phosphorylation sites ((232)Thr and (250)Ser) and a highly conserved Serine ((245)Ser) on the WCA domain of HA2 were mutated, and their phenotypes were characterized by reintroducing the mutated HA2 into the HearNPV genome. Viral infectivity assays demonstrated that only the recombinant HearNPV bearing HA2 mutation at (245)Ser can produce infectious virions, both (232)Thr and (250)Ser mutations were lethal to the virus. However, actin polymerization assay demonstrated that all the three viruses bearing HA2 mutations were still capable of initiating actin polymerization in the host nucleus, which indicated the putative phosphorylation sites on HA2 may contribute to HearNPV replication through another unidentified pathway. PMID:21847755

  19. P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation

    PubMed Central

    Li, Tingting; Zhang, Jishuai; Zhu, Feng; Wen, Weihong; Zykova, Tatyana; Li, Xiang; Liu, Kangdong; Peng, Cong; Ma, Weiya; Shi, Guozheng; Dong, Ziming; Bode, Ann M.; Dong, Zigang

    2011-01-01

    The oncoprotein c-Jun is one of the components of the activator protein-1 (AP-1) transcription factor complex. AP-1 regulates the expression of many genes and is involved in a variety of biological functions such as cell transformation, proliferation, differentiation and apoptosis. AP-1 activates a variety of tumor-related genes and therefore promotes tumorigenesis and malignant transformation. Here, we found that epidermal growth factor (EGF) induces phosphorylation of c-Jun by P21-activated kinase (PAK) 2. Our data showed that PAK2 binds and phosphorylates c-Jun at five threonine sites (Thr2, Thr8, Thr89, Thr93 and Thr286) in vitro and ex vivo. Knockdown of PAK2 in JB6 Cl41 (P+) cells had no effect on c-Jun phosphorylation at Ser63 or Ser73 but resulted in decreases in EGF-induced anchorage-independent cell transformation, proliferation and AP-1 activity. Mutation at all five c-Jun threonine sites phosphorylated by PAK2 decreased the transforming ability of JB6 cells. Knockdown of PAK2 in SK-MEL-5 melanoma cells also decreased colony formation, proliferation and AP-1 activity. These results indicated that PAK2/c-Jun signaling plays an important role in EGF-induced cell proliferation and transformation. PMID:21177766

  20. Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites

    PubMed Central

    Wu, Qian; Paul, Atanu; Su, Dan; Mehmood, Shahid; Foo, Tzeh Keong; Ochi, Takashi; Bunting, Emma L.; Xia, Bing; Robinson, Carol V.; Wang, Bin; Blundell, Tom L.

    2016-01-01

    Summary BRCA1 accumulation at DNA damage sites is an important step for its function in the DNA damage response and in DNA repair. BRCA1-BRCT domains bind to proteins containing the phosphorylated serine-proline-x-phenylalanine (pSPxF) motif including Abraxas, Bach1/FancJ, and CtIP. In this study, we demonstrate that ionizing radiation (IR)-induces ATM-dependent phosphorylation of serine 404 (S404) next to the pSPxF motif. Crystal structures of BRCT/Abraxas show that phosphorylation of S404 is important for extensive interactions through the N-terminal sequence outside the pSPxF motif and leads to formation of a stable dimer. Mutation of S404 leads to deficiency in BRCA1 accumulation at DNA damage sites and cellular sensitivity to IR. In addition, two germline mutations of BRCA1 are found to disrupt the dimer interface and dimer formation. Thus, we demonstrate a mechanism involving IR-induced phosphorylation and dimerization of the BRCT/Abraxas complex for regulating Abraxas-mediated recruitment of BRCA1 in response to IR. PMID:26778126

  1. Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation.

    PubMed

    Feng, Yuchen; Backues, Steven K; Baba, Misuzu; Heo, Jin-Mi; Harper, J Wade; Klionsky, Daniel J

    2016-04-01

    Macroautophagy is primarily a degradative process that cells use to break down their own components to recycle macromolecules and provide energy under stress conditions, and defects in macroautophagy lead to a wide range of diseases. Atg9, conserved from yeast to mammals, is the only identified transmembrane protein in the yeast core macroautophagy machinery required for formation of the sequestering compartment termed the autophagosome. This protein undergoes dynamic movement between the phagophore assembly site (PAS), where the autophagosome precursor is nucleated, and peripheral sites that may provide donor membrane for expansion of the phagophore. Atg9 is a phosphoprotein that is regulated by the Atg1 kinase. We used stable isotope labeling by amino acids in cell culture (SILAC) to identify phosphorylation sites on this protein and identified an Atg1-independent phosphorylation site at serine 122. A nonphosphorylatable Atg9 mutant showed decreased autophagy activity, whereas the phosphomimetic mutant enhanced activity. Electron microscopy analysis suggests that the different levels of autophagy activity reflect differences in autophagosome formation, correlating with the delivery of Atg9 to the PAS. Finally, this phosphorylation regulates Atg9 interaction with Atg23 and Atg27. PMID:27050455

  2. Nerve Agent Exposure Elicits Site-Specific Changes in Protein Phosphorylation in Mouse Brain

    PubMed Central

    Zhu, Hongwen; O’Brien, Jennifer J.; O’Callaghan, James P.; Miller, Diane B.; Zhang, Qiang; Rana, Minal; Tsui, Tiffany; Peng, Youyi; Tomesch, John; Hendrick, Joseph P.; Wennogle, Lawrence P; Snyder, Gretchen L.

    2010-01-01

    Organophosphorus (OP) compounds cause toxic symptoms, including convulsions, coma, and death, as the result of irreversible inhibition of acetylcholinesterase (AChE). The development of effective treatments to block these effects and attenuate long-term cognitive and motor disabilities that result from OP intoxication is hampered by a limited understanding of the CNS pathways responsible for these actions. We employed a candidate method (called CNSProfile™) to identify changes in the phosphorylation state of key neuronal phosphoproteins evoked by the OP compound, diisopropyl fluorophosphate (DFP). Focused microwave fixation was used to preserve the phosphorylation state of phosphoproteins in brains of DFP-treated mice; hippocampus and striatum were analyzed by immunoblotting with a panel of phospho-specific antibodies. DFP exposure elicited comparable effects on phosphorylation of brain phosphoproteins in both C57BL/6 and FVB mice. DFP treatment significantly altered phosphorylation at regulatory residues on glutamate receptors, including Serine897 (S897) of the NR1 NMDA receptor. NR1 phosphorylation was bi-directionally regulated after DFP in striatum versus hippocampus. NR1 phosphorylation was reduced in striatum, but elevated in hippocampus, compared with controls. DARPP-32 phosphorylation in striatum was selectively increased at the Cdk5 kinase substrate, Threonine75 (T75). Phencynonate hydrochloride, a muscarinic cholinergic antagonist, prevented seizure-like behaviors and the observed changes in phosphorylation induced by DFP. The data reveal region-specific effects of nerve agent exposure on intracellular signaling pathways that correlate with seizure-like behavior and which are reversed by the muscarinic receptor blockade. This approach identifies specific targets for nerve agents, including substrates for Cdk5 kinase, which may be the basis for new anti-convulsant therapies. PMID:20423708

  3. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  4. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1

    PubMed Central

    Lai, Shenshen; Pelech, Steven

    2016-01-01

    The catalytic domains of most eukaryotic protein kinases are highly conserved in their primary structures. Their phosphorylation within the well-known activation T-loop, a variable region between protein kinase catalytic subdomains VII and VIII, is a common mechanism for stimulation of their phosphotransferase activities. Extracellular signal–regulated kinase 1 (ERK1), a member of the extensively studied mitogen-activated protein kinase (MAPK) family, serves as a paradigm for regulation of protein kinases in signaling modules. In addition to the well-documented T202 and Y204 stimulatory phosphorylation sites in the activation T-loop of ERK1 and its closest relative, ERK2, three additional flanking phosphosites have been confirmed (T198, T207, and Y210 from ERK1) by high-throughput mass spectrometry. In vitro kinase assays revealed the functional importance of T207 and Y210, but not T198, in negatively regulating ERK1 catalytic activity. The Y210 site could be important for proper conformational arrangement of the active site, and a Y210F mutant could not be recognized by MEK1 for phosphorylation of T202 and Y204 in vitro. Autophosphorylation of T207 reduces the catalytic activity and stability of activated ERK1. We propose that after the activation of ERK1 by MEK1, subsequent slower phosphorylation of the flanking sites results in inhibition of the kinase. Because the T207 and Y210 phosphosites of ERK1 are highly conserved within the eukaryotic protein kinase family, hyperphosphorylation within the kinase activation T-loop may serve as a general mechanism for protein kinase down-regulation after initial activation by their upstream kinases. PMID:26823016

  5. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry.

    PubMed

    Rinalducci, Sara; Larsen, Martin R; Mohammed, Shabaz; Zolla, Lello

    2006-04-01

    In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon illumination at 100 micromol m(-2) s(-1), two novel phosphopeptides belonging to the N-terminal region of Lhcb1 light-harvesting protein were detected: NVSSGS(p)PWYGPDR and T(p)VQSSSPWYGPDR. Moreover, three new threonine residues in CP43 (Thr-6, Thr-8, and Thr-346) and, for the first time, two amino acid residues of the N-terminus of Rieske Fe-S protein of the cytochrome b(6)f complex (Thr-2 and Ser-3) were revealed to be phosphorylated. Since Lhcb1 and CP43 have been reported as mobile proteins, it may be suggested that illumination derived phosphorylation, and consequently the addition of negatively charged groups to the protein, is a necessary condition to induce a significant protein structural change. PMID:16602705

  6. CDK phosphorylates the polarisome scaffold Spa2 to maintain its localization at the site of cell growth.

    PubMed

    Wang, Haitao; Huang, Zhen-Xing; Au Yong, Jie Ying; Zou, Hao; Zeng, Guisheng; Gao, Jiaxin; Wang, Yanming; Wong, Ada Hang-Heng; Wang, Yue

    2016-07-01

    Polarisome is a protein complex that plays an important role in polarized growth in fungi by assembling actin cables towards the site of cell growth. For proper morphogenesis, the polarisome must localize to the right place at the right time. However, the mechanisms that control polarisome localization remain poorly understood. In this study, using the polymorphic fungus Candida albicans as a model, we have discovered that the cyclin-dependent kinase (CDK) Cdc28 phosphorylates the polarisome scaffold protein Spa2 to govern polarisome localization during both yeast and hyphal growth. In a yeast cell cycle, Cdc28-Clb2 phosphorylates Spa2 and controls the timing of polarisome translocation from the bud tip to the bud neck. And during hyphal development, Cdc28-Clb2 and the hyphal-specific Cdc28-Hgc1 cooperate to enhance Spa2 phosphorylation to maintain the polarisome at the hyphal tip. Blocking the CDK phosphorylation causes premature tip-to-neck translocation of Spa2 during yeast growth and inappropriate septal localization of Spa2 in hyphae and abnormal hyphal morphology under certain inducing conditions. Together, our results generate new insights into the mechanisms by which fungi regulate polarisome localization in the control of polarized growth. PMID:27061942

  7. PD Trafficking of Potato Leaf Roll Virus Movement Protein in Arabidopsis Depends on Site-specific Protein Phosphorylation

    PubMed Central

    Sonnewald, Uwe

    2011-01-01

    Many plant viruses encode for specialized movement proteins (MP) to facilitate passage of viral material to and through plasmodesmata (PD). To analyze intracellular trafficking of potato leaf roll virus (PLRV) movement protein (MP17) we performed GFP fusion experiments with distinct deletion variants of MP17. These studies revealed that the C-terminus of MP17 is essential but not sufficient for PD targeting. Interestingly, fusion of GFP to three C-terminal MP17 deletion variants resulted in the accumulation of GFP in chloroplasts. This indicates that MP17 harbors hidden plastid targeting sequences. Previous studies showed that posttranslational protein phosphorylation influences PD targeting of MP and virus spread. Analysis of MP17-derived phospho-peptides by mass spectrometry revealed four phosphorylated serine residues (S71, S79, S137, and S140). Site-directed mutagenesis of S71/S79 and S137/S140 showed that the C-terminal serine residues S137/S140 are dispensable for PD targeting. However, exchange of S71/S79 to A71/A79 abolished PD targeting of the mutated MP17 protein. To mimic phosphorylation of S71/S79 both amino acids were substituted by aspartic acid. The resulting D71/D79 variant of MP17 was efficiently targeted to PD. Further deletion analysis showed that PD targeting of MP17 is dependent on the C-terminus, phosphorylation of S71 and/or S79 and a N-terminal domain. PMID:22645527

  8. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice.

    PubMed

    Watanabe, Shigeru; Yamamori, Saori; Otsuka, Shintaro; Saito, Masanori; Suzuki, Eiji; Kataoka, Masakazu; Miyaoka, Hitoshi; Takahashi, Masami

    2015-09-01

    Snap25(S187A/S187A) mouse is a knock-in mouse with a single amino acid substitution at a protein kinase C-dependent phosphorylation site of the synaptosomal-associated protein of 25 kDa (SNAP-25), which is a target-soluble NSF attachment protein receptor (t-SNARE) protein essential for neurotransmitter release. Snap25(S187A/S187A) mice exhibit several distinct phenotypes, including reductions in dopamine and serotonin release in the brain, anxiety-like behavior, and cognitive dysfunctions. Homozygous mice show spontaneous epileptic convulsions, and about 15% of the mice die around three weeks after birth. The remaining mice survive for almost two years and exhibit spontaneous recurrent seizures throughout their lifetime. Here, we conducted long-term continuous video electroencephalogram recording of the mice and analyzed the process of epileptogenesis and epileptic maturation in detail. Spikes and slow-wave discharges (SWDs) were observed in the cerebral cortex and thalamus before epileptic convulsions began. SWDs showed several properties similar to those observed in absence seizures including (1) lack of in the hippocampus, (2) movement arrest during SWDs, and (3) inhibition by ethosuximide. Multiple generalized seizures occurred in all homozygous mice around three weeks after birth. However, seizure generation stopped within several days, and a seizure-free latent period began. Following a spike-free quiet period, the number of spikes increased gradually, and epileptic seizures reappeared. Subsequently, spontaneous seizures occurred cyclically throughout the life of the mice, and several progressive changes in seizure frequency, seizure duration, seizure cycle interval, seizure waveform, and the number and waveform of epileptic discharges during slow-wave sleep occurred with different time courses over 10 weeks. Anxiety-related behaviors appeared suddenly within three days after epileptic seizures began and were delayed markedly by oral administration of

  9. Identification of the in vitro phosphorylation sites on Gs alpha mediated by pp60c-src.

    PubMed

    Moyers, J S; Linder, M E; Shannon, J D; Parsons, S J

    1995-01-15

    Overexpression of pp60c-src in mouse fibroblasts potentiates both agonist-induced signalling through beta-adrenergic receptors and cyclic AMP accumulation in response to cholera toxin [Bushman, Wilson, Luttrell, Moyers and Parsons (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7462-7466; Moyers, Bouton and Parsons (1993) Mol. Cell. Biol. 13, 2391-2400]. In reconstitution experiments in vitro, phosphorylation of Gs alpha by immune-complexed pp60c-src resulted in enhanced rates of receptor-mediated guanosine 5'-[gamma-thio]triphosphate (GTP[S]) binding and GTP hydrolysis [Hausdorff, Pitcher, Luttrell, Linder, Kurose, Parsons, Caron and Lefkowitz (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 5720-5724]. These results suggest that one mechanism by which pp60c-src affects signalling through the beta-adrenergic receptor is by phosphorylation and functional alteration of the G protein. To elucidate how phosphorylation of Gs alpha might affect its function, we subjected phosphorylated, recombinant Gs alpha to tryptic phosphopeptide analysis. Phosphotryptic peptides were purified by h.p.l.c. and analysed by Edman degradation to determine the cycle numbers at which radiolabelled phosphotyrosine was released. Candidate peptides that contained Tyr residues at the corresponding positions were synthesized, phosphorylated in vitro by pp60c-src, and their migrations in two-dimensional electrophoresis/t.l.c. were compared with those of tryptic phosphopeptides from intact Gs alpha. We report here that Gs alpha is phosphorylated on two residues by pp60c-src, namely, Tyr-37 and Tyr-377. Tyr-37 lies near the site of beta gamma binding in the N-terminus, within a region postulated to modulate GDP dissociation and activation by GTP [Johnson, Dhanasekaran, Gupta, Lowndes, Vaillancourt and Ruoho (1991) J. Cell Biochem. 47, 136-146], while Tyr-377 is located in the extreme C-terminus, within a region of Gs alpha important for receptor interaction [Sullivan, Miller, Masters, Beiderman, Heideman and

  10. Replication stress induced site-specific phosphorylation targets WRN to the ubiquitin-proteasome pathway

    PubMed Central

    Su, Fengtao; Bhattacharya, Souparno; Abdisalaam, Salim; Mukherjee, Shibani; Yajima, Hirohiko; Yang, Yanyong; Mishra, Ritu; Srinivasan, Kalayarasan; Ghose, Subroto; Chen, David J.; Yannone, Steven M.; Asaithamby, Aroumougame

    2016-01-01

    Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability. PMID:26695548

  11. GENISES: A GIS Database for the Yucca Mountain Site Characterization Project

    SciTech Connect

    Beckett, J.

    1991-12-31

    This paper provides a general description of the Geographic Nodal Information Study and Evaluation System (GENISES) database design. The GENISES database is the Geographic Information System (GIS) component of the Yucca Mountain Site Characterization Project Technical Database (TDB). The GENISES database has been developed and is maintained by EG & G Energy Measurements, Inc., Las Vegas, NV (EG & G/EM). As part of the Yucca Mountain Project (YMP) Site Characterization Technical Data Management System, GENISES provides a repository for geographically oriented technical data. The primary objective of the GENISES database is to support the Yucca Mountain Site Characterization Project with an effective tool for describing, analyzing, and archiving geo-referenced data. The database design provides the maximum efficiency in input/output, data analysis, data management and information display. This paper provides the systematic approach or plan for the GENISES database design and operation. The paper also discusses the techniques used for data normalization or the decomposition of complex data structures as they apply to GIS database. ARC/INFO and INGRES files are linked or joined by establishing ``relate`` fields through the common attribute names. Thus, through these keys, ARC can allow access to normalized INGRES files greatly reducing redundancy and the size of the database.

  12. SITES 2006 User Guide for the International Database. Second Information Technology in Education Study

    ERIC Educational Resources Information Center

    Brese, Falk, Ed.; Carstens, Ralph, Ed.

    2009-01-01

    To support and promote secondary analyses, the International Association for the Evaluation of Educational Achievement (IEA) is making the SITES 2006 international database and accompanying User Guide available to researchers, analysts, and public users. The database comprises national contexts and school- and teacher-level data from 23 education…

  13. The Transcription Factor Bach2 Is Phosphorylated at Multiple Sites in Murine B Cells but a Single Site Prevents Its Nuclear Localization.

    PubMed

    Ando, Ryo; Shima, Hiroki; Tamahara, Toru; Sato, Yoshihiro; Watanabe-Matsui, Miki; Kato, Hiroki; Sax, Nicolas; Motohashi, Hozumi; Taguchi, Keiko; Yamamoto, Masayuki; Nio, Masaki; Maeda, Tatsuya; Ochiai, Kyoko; Muto, Akihiko; Igarashi, Kazuhiko

    2016-01-22

    The transcription factor Bach2 regulates the immune system at multiple points, including class switch recombination (CSR) in activated B cells and the function of T cells in part by restricting their terminal differentiation. However, the regulation of Bach2 expression and its activity in the immune cells are still unclear. Here, we demonstrated that Bach2 mRNA expression decreased in Pten-deficient primary B cells. Bach2 was phosphorylated in primary B cells, which was increased upon the activation of the B cell receptor by an anti-immunoglobulin M (IgM) antibody or CD40 ligand. Using specific inhibitors of kinases, the phosphorylation of Bach2 in activated B cells was shown to depend on the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. The complex of mTOR and Raptor phosphorylated Bach2 in vitro. We identified multiple new phosphorylation sites of Bach2 by mass spectrometry analysis of epitope-tagged Bach2 expressed in the mature B cell line BAL17. Among the sites identified, serine 535 (Ser-535) was critical for the regulation of Bach2 because a single mutation of Ser-535 abolished cytoplasmic accumulation of Bach2, promoting its nuclear accumulation in pre-B cells, whereas Ser-509 played an auxiliary role. Bach2 repressor activity was enhanced by the Ser-535 mutation in B cells. These results suggest that the PI3K-Akt-mTOR pathway inhibits Bach2 by both repressing its expression and inducing its phosphorylation in B cells. PMID:26620562

  14. RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site.

    PubMed

    Peterson, Celeste N; Ruiz, Natividad; Silhavy, Thomas J

    2004-11-01

    In Escherichia coli the response regulator SprE (RssB) facilitates degradation of the sigma factor RpoS by delivering it to the ClpXP protease. This process is regulated: RpoS is degraded in logarithmic phase but becomes stable upon carbon starvation, resulting in its accumulation. Because SprE contains a CheY domain with a conserved phosphorylation site (D58), the prevailing model posits that this control is mediated by phosphorylation. To test this model, we mutated the conserved response regulator phosphorylation site (D58A) of the chromosomal allele of sprE and monitored RpoS levels in response to carbon starvation. Though phosphorylation contributed to the SprE basal activity, we found that RpoS proteolysis was still regulated upon carbon starvation. Furthermore, our results indicate that phosphorylation of wild-type SprE occurs by a mechanism that is independent of acetyl phosphate. PMID:15489452

  15. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.

    PubMed

    Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel; Thomas, David D

    2016-03-22

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility. PMID:26908877

  16. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  17. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  18. Site on the human erythrocyte glucose transporter phosphorylated by protein kinase C resides on the protein's hydrophilic domain

    SciTech Connect

    Deziel, M.R.; McReynolds, J.H.; Lippes, H.A.; Jung, C.Y.

    1986-05-01

    A recently published model of the human erythrocyte hexose transporter deduced from the protein's primary structure proposes that the transporter is organized into two membrane domains comprising 77% of the protein's mass and three hydrophilic domains, a short segment that includes the polypeptide's N-terminus and two larger segments, one lying between the membrane domains and the other at the protein's C-terminus. Limited tryptic digestion of the transporter produces two membrane-bound fragments corresponding to the proposed membrane domains and releases a number of soluble peptides. Fast Atom Bombardment Mass Spectroscopic analysis of the released peptides and comparison of the peptide's masses with the transporter's amino acid sequence revealed that tryptic peptides corresponding to at least 63% of the hydrophilic domains' mass were recovered. The site of phosphorylation by protein kinase C, tagged using (/sup 32/P)-ATP, was also released from the transporter under these conditions, (in contrast to sites located within the protein's membrane domains), indicating that this site is located within one of the hydrophilic domains. Tryptic digestion at elevated ionic strength or cleavage with S. Aureus V8 protease results in the recovery of the /sup 32/P label on the carbohydrate-bearing membrane domain that is located near the protein's N-terminus, thus eliminating the C-terminal hydrophilic segment as a possible site of phosphorylation.

  19. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase

    PubMed Central

    Chen, Shaolin; Ehrhardt, David W.; Somerville, Chris R.

    2010-01-01

    The CESA1 component of cellulose synthase is phosphorylated at sites clustered in two hypervariable regions of the protein. Mutations of the phosphorylated residues to Ala (A) or Glu (E) alter anisotropic cell expansion and cellulose synthesis in rapidly expanding roots and hypocotyls. Expression of T166E, S686E, or S688E mutants of CESA1 fully rescued the temperature sensitive cesA1-1 allele (rsw1) at a restrictive temperature whereas mutations to A at these positions caused defects in anisotropic cell expansion. However, mutations to E at residues surrounding T166 (i.e., S162, T165, and S167) caused opposite effects. Live-cell imaging of fluorescently labeled CESA showed close correlations between tissue or cell morphology and patterns of bidirectional motility of CESA complexes in the plasma membrane. In the WT, CESA complexes moved at similar velocities in both directions along microtubule tracks. By contrast, the rate of movement of CESA particles was directionally asymmetric in mutant lines that exhibited abnormal tissue or cell expansion, and the asymmetry was removed upon depolymerizing microtubules with oryzalin. This suggests that phosphorylation of CESA differentially affects a polar interaction with microtubules that may regulate the length or quantity of a subset of cellulose microfibrils and that this, in turn, alters microfibril structure in the primary cell wall resulting in or contributing to the observed defect in anisotropic cell expansion. PMID:20855602

  20. Multiple phosphorylation sites at the C-terminus regulate nuclear import of HCMV DNA polymerase processivity factor ppUL44

    SciTech Connect

    Alvisi, Gualtiero; Marin, Oriano; Pari, Gregory; Mancini, Manuela; Avanzi, Simone; Loregian, Arianna; Jans, David A.; Ripalti, Alessandro

    2011-09-01

    The processivity factor of human cytomegalovirus DNA polymerase, phosphoprotein ppUL44, is essential for viral replication. During viral infection ppUL44 is phosphorylated by the viral kinase pUL97, but neither the target residues on ppUL44 nor the effect of phosphorylation on ppUL44's activity are known. We report here that ppUL44 is phosphorylated when transiently expressed in mammalian cells and coimmunoprecipitates with cellular kinases. Of three potential phosphorylation sites (S413, S415, S418) located upstream of ppUL44's nuclear localization signal (NLS) and one (T427) within the NLS itself, protein kinase CK2 (CK2) specifically phosphorylates S413, to trigger a cascade of phosphorylation of S418 and S415 by CK1 and CK2, respectively. Negative charge at the CK2/CK1 target serine residues facilitates optimal nuclear accumulation of ppUL44, whereas negative charge on T427, a potential cyclin-dependent 1 phosphorylation site, strongly decreases nuclear accumulation. Thus, nuclear transport of ppUL44 is finely tuned during viral infection through complex phosphorylation events.

  1. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation

    PubMed Central

    Sedgwick, Chantelle; Rawluk, Matthew; Decesare, James; Raithatha, Sheetal; Wohlschlegel, James; Semchuk, Paul; Ellison, Michael; Yates, John; Stuart, David

    2006-01-01

    The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb–Cdc28 inhibitor Sic1. In proliferating cells Cln–Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCFCdc4 and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCFCdc4 was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCFCdc4. In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation. PMID:16776651

  2. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA.

    PubMed

    Chappe, V; Hinkson, D A; Zhu, T; Chang, X-B; Riordan, J R; Hanrahan, J W

    2003-04-01

    Activation of the cystic fibrosis transmembrane conductance regulator (CFTR) channel by protein kinase A (PKA) is enhanced by protein kinase C (PKC). However, the mechanism of modulation is not known and it remains uncertain whether PKC acts directly on CFTR or through phosphorylation of an ancillary protein. Using excised patches that had been pre-treated with phosphatases, we found that PKC exposure results in much larger PKA-activated currents and shifts the PKA concentration dependence. To examine if these effects are mediated by direct PKC phosphorylation of CFTR, a mutant was constructed in which serines or threonines at nine PKC consensus sequences on CFTR were replaced by alanines (i.e. the '9CA' mutant T582A/T604A/S641A/T682A/S686A/S707A/S790A/T791A/S809A). In excised patches, 9CA channels had greatly reduced responses to PKA (i.e. 5-10 % that of wild-type), which were not enhanced by PKC pre-treatment, although the mutant channels were still functional according to iodide efflux assays. Stimulation of iodide efflux by chlorophenylthio-cAMP (cpt-cAMP) was delayed in cells expressing 9CA channels, and a similar delay was observed when cells expressing wild-type CFTR were treated with the PKC inhibitor chelerythrine. This suggests that weak activation by PKA in excised patches and slow stimulation of iodide efflux from intact cells are specifically due to the loss of PKC phosphorylation. Finally, PKC caused a slight activation of wild-type channels when added to excised patches after phosphatase pre-treatment but had no effect on the mutant. We conclude that direct phosphorylation of CFTR at one or more of the nine sites mutated in 9CA is required for both the partial activation by PKC and for its modulation of CFTR responses to PKA. PMID:12588899

  3. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA

    PubMed Central

    Chappe, V; Hinkson, D A; Zhu, T; Chang, X-B; Riordan, J R; Hanrahan, J W

    2003-01-01

    Activation of the cystic fibrosis transmembrane conductance regulator (CFTR) channel by protein kinase A (PKA) is enhanced by protein kinase C (PKC). However, the mechanism of modulation is not known and it remains uncertain whether PKC acts directly on CFTR or through phosphorylation of an ancillary protein. Using excised patches that had been pre-treated with phosphatases, we found that PKC exposure results in much larger PKA-activated currents and shifts the PKA concentration dependence. To examine if these effects are mediated by direct PKC phosphorylation of CFTR, a mutant was constructed in which serines or threonines at nine PKC consensus sequences on CFTR were replaced by alanines (i.e. the ‘9CA’ mutant T582A/T604A/S641A/T682A/S686A/S707A/S790A/T791A/S809A). In excised patches, 9CA channels had greatly reduced responses to PKA (i.e. 5–10 % that of wild-type), which were not enhanced by PKC pre-treatment, although the mutant channels were still functional according to iodide efflux assays. Stimulation of iodide efflux by chlorophenylthio-cAMP (cpt-cAMP) was delayed in cells expressing 9CA channels, and a similar delay was observed when cells expressing wild-type CFTR were treated with the PKC inhibitor chelerythrine. This suggests that weak activation by PKA in excised patches and slow stimulation of iodide efflux from intact cells are specifically due to the loss of PKC phosphorylation. Finally, PKC caused a slight activation of wild-type channels when added to excised patches after phosphatase pre-treatment but had no effect on the mutant. We conclude that direct phosphorylation of CFTR at one or more of the nine sites mutated in 9CA is required for both the partial activation by PKC and for its modulation of CFTR responses to PKA. PMID:12588899

  4. Mutation of potential phosphorylation sites in the recombinant R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on domain conformation.

    PubMed

    Dulhanty, A M; Chang, X B; Riordan, J R

    1995-01-01

    Mutation of potential cAMP dependent protein kinase sites in the R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on protein function. Mutation of the potential phosphorylation sites from serine to alanine, to abolish the site, reduced sensitivity to activation, or to glutamic acid, to mimic phosphorylation, caused some constitutive activity. To explore the structural effects of these mutations, recombinant R domain peptides were studied: the wild type, a mutant with nine serine residues changed to alanine, and a mutant with eight serine residues changed to glutamic acid. As assessed by C.D. spectroscopy, the mutants have substantially different secondary structure than the wild type, in agreement with the predictive algorithm of Gascuel and Golmard. The results show that mutagenesis of residues alters the polypeptide structurally as well as preventing it from serving as a phosphorylation substrate. Hence, the functional consequences of the mutations may not be entirely due to effects on phosphorylation. PMID:7529497

  5. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases. PMID:26577786

  6. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis.

    PubMed

    Kesseler, A; Brand, M D

    1994-11-01

    The aim of this study was to identify the significant sites of action of cadmium on oxidative phosphorylation in potato tuber mitocondria. We simplified the system to three convenient subsystems linked via the production or consumption of a common intermediate, namely protonmotive force. The three subsystems were substrate oxidation, which produces protonmotive force, and the proton leak reactions and the phosphorylation reactions, which consume protonmotive force. By measuring the effect of cadmium on the kinetic response of each subsystem to protonmotive force (top-down elasticity analysis), we found that cadmium stimulated proton leak reactions and strongly inhibited substrate oxidation, but had no measurable effect on the phosphorylation reactions. Cadmium therefore decreases the amount of ATP produced/oxygen consumed (the effective P/O ratio) not by inhibiting the phosphorylation reactions directly, but by inhibiting the production of protonmotive force and by diverting proton flux from phosphorylation reactions to the proton leak reactions. PMID:7957227

  7. Transition to a Unified System: Using Perl To Drive Library Databases and Enhance Web Site Functionality.

    ERIC Educational Resources Information Center

    Fagan, Judy Condit

    2001-01-01

    Discusses the need for libraries to routinely redesign their Web sites, and presents a case study that describes how a Perl-driven database at Southern Illinois University's library improved Web site organization and patron access, simplified revisions, and allowed staff unfamiliar with HTML to update content. (Contains 56 references.) (Author/LRW)

  8. Preliminary Safety Analysis of the Gorleben Site: Geological Database - 13300

    SciTech Connect

    Weber, Jan Richard; Mrugalla, Sabine; Dresbach, Christian; Hammer, Joerg

    2013-07-01

    The Gorleben salt dome is 4 km wide and nearly 15 km long. It is composed of different salt rock types of the Zechstein (Upper Permian) series and extends to the Zechstein basis in a depth of more than 3 km. In the course of the salt dome formation the salt was moved several kilometers. During the uplift of the salt the initially plane-bedded strata of the Zechstein series were extensively folded. In this process anhydrite as a competent layer was broken to isolated blocks. In the core of the salt dome the Hauptsalz, which is characterized by a particularly high creeping capacity, forms a homogeneous halite body with a volume of several cubic kilometres. The Hauptsalz contains gaseous and liquid hydrocarbons in separated zones of decimeter to meter dimensions. The overall hydrocarbon content is far below 0.01 %. At the flanks the salt dome consists of salt rocks with lower creeping capacities. Brine reservoirs with fluid volumes in the range of liters to hundreds of cubic meters exist in certain regions of this part of the salt dome. The water content of the Hauptsalz is below 0.02 %. Interconnected pores do not exist in the salt rock outside of fluid bearing or fractured areas, i.e. the salt rock is impermeable. The exploration of the Gorleben site as a potential site for a HLW-repository started in 1979 and is still in progress. To date no scientific findings contest the suitability of the site for a safe HLW-repository. (authors)

  9. A vitellogenin polyserine cleavage site: highly disordered conformation protected from proteolysis by phosphorylation.

    PubMed

    Havukainen, Heli; Underhaug, Jarl; Wolschin, Florian; Amdam, Gro; Halskau, Øyvind

    2012-06-01

    Vitellogenin (Vg) is an egg-yolk precursor protein in most oviparous species. In honeybee (Apis mellifera), the protein (AmVg) also affects social behavior and life-span plasticity. Despite its manifold functions, the AmVg molecule remains poorly understood. The subject of our structure-oriented AmVg study is its polyserine tract - a little-investigated repetitive protein segment mostly found in insects. We previously reported that AmVg is tissue specifically cleaved in the vicinity of this tract. Here, we show that, despite its potential for an open, disordered structure, AmVg is unexpectedly resistant to trypsin/chymotrypsin digestion at the tract. Our findings suggest that multiple phosphorylation plays a role in this resilience. Sequence variation is highly pronounced at the polyserine region in insect Vgs. We demonstrate that sequence differences in this region can lead to structural variation, as NMR and circular dichroism (CD) evidence assign different conformational propensities to polyserine peptides from the honeybee and the jewel wasp Nasonia vitripennis; the former is extended and disordered and the latter more compact and helical. CD analysis of the polyserine region of bumblebee Bombus ignitus and wasp Pimpla nipponica supports a random coil structure in these species. The spectroscopic results strengthen our model of the AmVg polyserine tract as a flexible domain linker shielded by phosphorylation. PMID:22573762

  10. A vitellogenin polyserine cleavage site: highly disordered conformation protected from proteolysis by phosphorylation

    PubMed Central

    Havukainen, Heli; Underhaug, Jarl; Wolschin, Florian; Amdam, Gro; Halskau, Øyvind

    2012-01-01

    SUMMARY Vitellogenin (Vg) is an egg-yolk precursor protein in most oviparous species. In honeybee (Apis mellifera), the protein (AmVg) also affects social behavior and life-span plasticity. Despite its manifold functions, the AmVg molecule remains poorly understood. The subject of our structure-oriented AmVg study is its polyserine tract — a little-investigated repetitive protein segment mostly found in insects. We previously reported that AmVg is tissue specifically cleaved in the vicinity of this tract. Here, we show that, despite its potential for an open, disordered structure, AmVg is unexpectedly resistant to trypsin/chymotrypsin digestion at the tract. Our findings suggest that multiple phosphorylation plays a role in this resilience. Sequence variation is highly pronounced at the polyserine region in insect Vgs. We demonstrate that sequence differences in this region can lead to structural variation, as NMR and circular dichroism (CD) evidence assign different conformational propensities to polyserine peptides from the honeybee and the jewel wasp Nasonia vitripennis; the former is extended and disordered and the latter more compact and helical. CD analysis of the polyserine region of bumblebee Bombus ignitus and wasp Pimpla nipponica supports a random coil structure in these species. The spectroscopic results strengthen our model of the AmVg polyserine tract as a flexible domain linker shielded by phosphorylation. PMID:22573762

  11. Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells.

    PubMed

    Nimnual, A S; Chang, W; Chang, N S; Ross, A F; Gelman, M S; Prives, J M

    1998-10-20

    The innervation of embryonic skeletal muscle cells is marked by the redistribution of nicotinic acetylcholine receptors (AChRs) on muscle surface membranes into high-density patches at nerve-muscle contacts. To investigate the role of protein phosphorylation pathways in the regulation of AChR surface distribution, we have identified the sites on AChR delta-subunits that undergo phosphorylation associated with AChR cluster dispersal in cultured myotubes. We found that PKC-catalyzed AChR phosphorylation is targeted to Ser378, Ser393, and Ser450, all located in the major intracellular domain of the AChR delta-subunit. Adjacent to one of these sites is a PKA consensus target site (Ser377) that was efficiently phosphorylated by purified PKA in vitro. The PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA) and the phosphoprotein phosphatase inhibitor okadaic acid (OA) produced increased phosphorylation of AChR delta-subunits on the three serine residues that were phosphorylated by purified PKC in vitro. In contrast, treatment of these cells with the PKA activator forskolin, or with the cell-permeable cAMP analogue 8-bromo-cAMP, did not alter the phosphorylation state of surface AChR, suggesting that PKA does not actively phosphorylate the delta-subunit in intact chick myotubes. The effects of TPA and OA included an increase in the proportion of surface AChR that is extracted in Triton X-100, as well as the spreading of AChR from cluster regions to adjacent areas of the muscle cell surface. These findings suggest that PKC-catalyzed phosphorylation on the identified serine residues of AChR delta-subunits may play a role in the surface distribution of these receptors. PMID:9778356

  12. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    SciTech Connect

    Loots, G; Ovcharenko, I

    2006-08-08

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. We have created a database of evolutionary conserved regions (ECRs) in vertebrate genomes entitled ECRbase that is constructed from a collection of pairwise vertebrate genome alignments produced by the ECR Browser database. ECRbase features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a collection of promoters in all vertebrate genomes presented in the database. The database also contains a collection of annotated transcription factor binding sites (TFBS) in all ECRs and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and two pufferfish genomes. It is freely accessible at http://ECRbase.dcode.org.

  13. Serine-15 is the regulatory seryl-phosphorylation site in C sub 4 -leaf phosphoenolpyruvate carboxylase (PEPCase) from maize

    SciTech Connect

    Jiao, Jinan; Chollet, R. )

    1990-05-01

    The {sup 32}P-labeled regulatory site phosphopeptide was purified from a tryptic digest of in vitro phosphorylated/activated dark-form PEPCase by metal ion affinity and reversed-phase chromatography and subjected to automated Edman degradation analysis. The amino acid sequence of this phosphoseryl peptide is His-His-Ser(P)-Ile-Asp-Ala-Gln-Leu-Arg. This nonapeptide, which corresponds exactly to residues 13-21 in the deduced primary sequence of the maize leaf carboxylase, is far removed from a recently identified active-site cysteine (Cys-553) in the C-terminal region of the primary structure. Comparative analysis of the deduced N-terminal sequences of C{sub 3}, C{sub 4}, and CAM leaf PEPCases suggests that the motif of Lys/Arg-X-X-Ser is an important structural requirement of the C{sub 4}- and CAM-leaf protein-serine kinases.

  14. Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    PubMed Central

    Nebl, Thomas; Prieto, Judith Helena; Kapp, Eugene; Smith, Brian J.; Williams, Melanie J.; Yates, John R.; Cowman, Alan F.; Tonkin, Christopher J.

    2011-01-01

    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. PMID:21980283

  15. Identification of the chicken MARCKS phosphorylation site specific for differentiating neurons as Ser 25 using a monoclonal antibody and mass spectrometry.

    PubMed

    Zolessi, Flavio R; Durán, Rosario; Engström, Ulla; Cerveñansky, Carlos; Hellman, Ulf; Arruti, Cristina

    2004-01-01

    MARCKS is an actin-modulating protein that can be phosphorylated in multiple sites by PKC and proline-directed kinases. We have previously described a phosphorylated form of this protein specific for differentiating chick neurons, detected with mAb 3C3. Here, we show that this antibody binds to MARCKS only when it is phosphorylated at Ser 25. These and previous data provide hints for a possible answer to the question of why this ubiquitous protein seems to be essential only for neural development. PMID:14998167

  16. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    DOE Data Explorer

    Loots, Gabriela G. [LLNL; Ovcharenko, I. [LLNL

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. This database of evolutionary conserved regions (ECRs) in vertebrate genomes features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a comprehensive collection of promoters in all vertebrate genomes generated using multiple sources of gene annotation. The database also contains a collection of annotated transcription factor binding sites (TFBSs) in evolutionary conserved and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and fugu genomes. (taken from paper in Journal: Bioinformatics, November 7, 2006, pp. 122-124

  17. Nuclear transition protein 1 from ram elongating spermatids. Mass spectrometric characterization, primary structure and phosphorylation sites of two variants.

    PubMed

    Chirat, F; Martinage, A; Briand, G; Kouach, M; Van Dorsselaer, A; Loir, M; Sautière, P

    1991-05-23

    The ram transition protein 1 (TP1) is present in spermatid cell nuclei in the nonphosphorylated, monophosphorylated and diphosphorylated forms. Its primary structure was determined by automated Edman degradation of S-carboxamidomethylated protein and of peptides generated by cleavage with thermolysin and endoproteinase Lys-C. The ram TP1 is a small basic protein of 54 residues and structurally very close to other mammalian TP1. The mass spectrometric data obtained from the protein and its fragments reveal that ram TP1 is indeed a mixture (approximately 5:1) of two structural variants (Mr 6346 and 6300). These variants differ only by the nature of the residue at position 27 (Cys in the major variant and Gly in the minor variant). The study of phosphorylation sites has shown that four different serine residues could be phosphorylated in the monophosphorylated TP1, at positions 8, 35, 36 or 39. From previous physical studies, it has been postulated that the Tyr32 surrounded by two highly conserved basic clusters was responsible for the destabilization of chromatin by intercalation of its phenol ring between the bases of double-stranded DNA. The presence of three phosphorylatable serine residues in the very conserved sequence 29-42 is another argument for the involvement of this region in the interaction with DNA. PMID:2040274

  18. The Plastid Casein Kinase 2 Phosphorylates Rubisco Activase at the Thr-78 Site but Is Not Essential for Regulation of Rubisco Activation State

    PubMed Central

    Kim, Sang Y.; Bender, Kyle W.; Walker, Berkley J.; Zielinski, Raymond E.; Spalding, Martin H.; Ort, Donald R.; Huber, Steven C.

    2016-01-01

    Rubisco activase (RCA) is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is composed of a large RCAα and small RCAβ isoform that are formed by alternative splicing of a single gene (At2g39730). The activity of Rubisco is controlled in response to changes in irradiance by regulation of RCA activity, which is known to involve a redox-sensitive disulfide bond located in the carboxy-terminal extension of the RCAα subunit. Additionally, phosphorylation of RCA threonine-78 (Thr-78) has been reported to occur in the dark suggesting that phosphorylation may also be associated with dark-inactivation of RCA and deactivation of Rubisco. In the present study, we developed site-specific antibodies to monitor phosphorylation of RCA at the Thr-78 site and used non-reducing SDS-PAGE to monitor the redox status of the RCAα subunit. By immunoblotting, phosphorylation of both RCA isoforms occurred at low light and in the dark and feeding peroxide or DTT to leaf segments indicated that redox status of the chloroplast stroma was a critical factor controlling RCA phosphorylation. Use of a knockout mutant identified the plastid-targeted casein kinase 2 (cpCK2α) as the major protein kinase involved in RCA phosphorylation. Studies with recombinant cpCK2α and synthetic peptide substrates identified acidic residues at the –1, +2, and +3 positions surrounding Thr-78 as strong positive recognition elements. The cpck2 knockout mutant had strongly reduced phosphorylation at the Thr-78 site but was similar to wild type plants in terms of induction kinetics of photosynthesis following transfer from darkness or low light to high light, suggesting that if phosphorylation of RCA Thr-78 plays a direct role it would be redundant to redox regulation for control of Rubisco activation state under normal conditions. PMID:27064346

  19. Soil Characterization Database for the Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    R. D. Van Remortel; Y. J. Lee; K. E. Snyder

    2005-01-01

    Soils were characterized in an investigation at the Area 3 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates, and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data.

  20. Soil Characterization Database for the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Y. J. Lee; R. D. Van Remortel; K. E. Snyder

    2005-01-01

    Soils were characterized in an investigation at the Area 5 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates,and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data.

  1. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    PubMed

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-01

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples. PMID:25403019

  2. A novel phosphorylation site at Ser130 adjacent to the pseudosubstrate domain contributes to the activation of protein kinase C-δ.

    PubMed

    Gong, Jianli; Holewinski, Ronald J; Van Eyk, Jennifer E; Steinberg, Susan F

    2016-02-01

    Protein kinase C-δ (PKCδ) is a signalling kinase that regulates many cellular responses. Although most studies focus on allosteric mechanisms that activate PKCδ at membranes, PKCδ also is controlled via multi-site phosphorylation [Gong et al. (2015) Mol. Cell. Biol. 35: , 1727-1740]. The present study uses MS-based methods to identify PKCδ phosphorylation at Thr(50) and Ser(645) (in resting and PMA-treated cardiomyocytes) as well as Thr(37), Thr(38), Ser(130), Thr(164), Thr(211), Thr(215), Ser(218), Thr(295), Ser(299) and Thr(656) (as sites that increase with PMA). We focused on the consequences of phosphorylation at Ser(130) and Thr(141) (sites just N-terminal to the pseudosubstrate domain). We show that S130D and T141E substitutions co-operate to increase PKCδ's basal lipid-independent activity and that Ser(130)/Thr(141) di-phosphorylation influences PKCδ's substrate specificity. We recently reported that PKCδ preferentially phosphorylates substrates with a phosphoacceptor serine residue and that this is due to constitutive phosphorylation at Ser(357), an ATP-positioning G-loop site that limits PKCδ's threonine kinase activity [Gong et al. (2015) Mol. Cell. Biol. 35: , 1727-1740]. The present study shows that S130D and T141E substitutions increase PKCδ's threonine kinase activity indirectly by decreasing G loop phosphorylation at Ser(357). A S130F substitution [that mimics a S130F single-nt polymorphism (SNP) identified in some human populations] also increases PKCδ's maximal lipid-dependent catalytic activity and confers threonine kinase activity. Finally, we show that Ser(130)/Thr(141) phosphorylations relieve auto-inhibitory constraints that limit PKCδ's activity and substrate specificity in a cell-based context. Since phosphorylation sites map to similar positions relative to the pseudosubstrate domains of other PKCs, our results suggest that phosphorylation in this region of the enzyme may constitute a general mechanism to control PKC isoform

  3. A novel phosphorylation site at Ser130 adjacent to the pseudosubstrate domain contributes to the activation of protein kinase C-δ

    PubMed Central

    Gong, Jianli; Holewinski, Ronald J.; Van Eyk, Jennifer E.; Steinberg, Susan F.

    2016-01-01

    Protein kinase C-δ (PKCδ) is a signalling kinase that regulates many cellular responses. Although most studies focus on allosteric mechanisms that activate PKCδ at membranes, PKCδ also is controlled via multi-site phosphorylation [Gong et al. (2015) Mol. Cell. Biol. 35, 1727–1740]. The present study uses MS-based methods to identify PKCδ phosphorylation at Thr50 and Ser645 (in resting and PMA-treated cardiomyocytes) as well as Thr37, Thr38, Ser130, Thr164, Thr211, Thr215, Ser218, Thr295, Ser299 and Thr656 (as sites that increase with PMA). We focused on the consequences of phosphorylation at Ser130 and Thr141 (sites just N-terminal to the pseudosubstrate domain).We show that S130D and T141E substitutions co-operate to increase PKCδ’s basal lipid-independent activity and that Ser130/Thr141 di-phosphorylation influences PKCδ’s substrate specificity. We recently reported that PKCδ preferentially phosphorylates substrates with a phosphoacceptor serine residue and that this is due to constitutive phosphorylation at Ser357, an ATP-positioning G-loop site that limits PKCδ’s threonine kinase activity [Gong et al. (2015) Mol. Cell. Biol. 35, 1727–1740]. The present study shows that S130D and T141E substitutions increase PKCδ’s threonine kinase activity indirectly by decreasing G loop phosphorylation at Ser357. A S130F substitution [that mimics a S130F single-nt polymorphism (SNP) identified in some human populations] also increases PKCδ’s maximal lipid-dependent catalytic activity and confers threonine kinase activity. Finally, we show that Ser130/Thr141 phosphorylations relieve auto-inhibitory constraints that limit PKCδ’s activity and substrate specificity in a cell-based context. Since phosphorylation sites map to similar positions relative to the pseudosubstrate domains of other PKCs, our results suggest that phosphorylation in this region of the enzyme may constitute a general mechanism to control PKC isoform activity. PMID:26546672

  4. Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots.

    PubMed

    Nguyen, Thao T; Volkening, Jeremy D; Rose, Christopher M; Venkateshwaran, Muthusubramanian; Westphall, Michael S; Coon, Joshua J; Ané, Jean-Michel; Sussman, Michael R

    2015-08-01

    In plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells. PMID:26188545

  5. The Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylation

    PubMed Central

    Wang, Shuo; Cao, Yang

    2015-01-01

    Random effect in cellular systems is an important topic in systems biology and often simulated with Gillespie’s stochastic simulation algorithm (SSA). Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role. PMID:26263559

  6. DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks.

    PubMed

    Yu, Yaping; Mahaney, Brandi L; Yano, Ken-Ichi; Ye, Ruiqiong; Fang, Shujuan; Douglas, Pauline; Chen, David J; Lees-Miller, Susan P

    2008-10-01

    Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo. PMID:18644470

  7. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability.

    PubMed

    Cerny, Alexander C; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-05-31

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  8. Mutation of Light-dependent Phosphorylation Sites of the Drosophila Transient Receptor Potential-like (TRPL) Ion Channel Affects Its Subcellular Localization and Stability*

    PubMed Central

    Cerny, Alexander C.; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-01-01

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  9. The InterPro database, an integrated documentation resource for protein families, domains and functional sites.

    PubMed

    Apweiler, R; Attwood, T K; Bairoch, A; Bateman, A; Birney, E; Biswas, M; Bucher, P; Cerutti, L; Corpet, F; Croning, M D; Durbin, R; Falquet, L; Fleischmann, W; Gouzy, J; Hermjakob, H; Hulo, N; Jonassen, I; Kahn, D; Kanapin, A; Karavidopoulou, Y; Lopez, R; Marx, B; Mulder, N J; Oinn, T M; Pagni, M; Servant, F; Sigrist, C J; Zdobnov, E M

    2001-01-01

    Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1,000,000 hits from 462,500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk. PMID:11125043

  10. The InterPro database, an integrated documentation resource for protein families, domains and functional sites

    PubMed Central

    Apweiler, R.; Attwood, T. K.; Bairoch, A.; Bateman, A.; Birney, E.; Biswas, M.; Bucher, P.; Cerutti, L.; Corpet, F.; Croning, M. D. R.; Durbin, R.; Falquet, L.; Fleischmann, W.; Gouzy, J.; Hermjakob, H.; Hulo, N.; Jonassen, I.; Kahn, D.; Kanapin, A.; Karavidopoulou, Y.; Lopez, R.; Marx, B.; Mulder, N. J.; Oinn, T. M.; Pagni, M.; Servant, F.; Sigrist, C. J. A.; Zdobnov, E. M.

    2001-01-01

    Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1 000 000 hits from 462 500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk. PMID:11125043

  11. A phosphorylation site in brain and the delayed neurotoxic effect of some organophosphorus compounds

    PubMed Central

    Johnson, M. K.

    1969-01-01

    1. It is proposed that part of a neurotoxic dose of di-isopropyl phosphorofluoridate will be covalently bound in vivo to a specific component in the brain and spinal cord as the initial biochemical event in the genesis of the lesion. 2. A test system in vitro was devised that removes many di-isopropyl phosphorofluoridate-binding sites and indicates that the specific component may be a protein present in brain at a concentration comparable with that of the cholinesterases. 3. The site was found to be present and capable of binding di-isopropyl phosphorofluoridate in vitro in brain samples taken from either normal hens or those dosed with organophosphorus esterase inhibitors that are not neurotoxic. 4. Very little of the specific binding activity was found in brain samples from hens pre-dosed with a variety of neurotoxic organophosphorus compounds. 5. A solubilized preparation of the active brain component was obtained, suitable for further purification and study. PMID:5774473

  12. Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-Bridge Cycle's Elementary Steps in a Site-Specific Manner

    PubMed Central

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases. PMID:25420047

  13. Repair of chromosomal RAG-mediated DNA breaks by mutant RAG proteins lacking phosphatidylinositol 3-like kinase consensus phosphorylation sites.

    PubMed

    Gapud, Eric J; Lee, Baeck-Seung; Mahowald, Grace K; Bassing, Craig H; Sleckman, Barry P

    2011-08-15

    Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) are members of the phosphatidylinositol 3-like family of serine/threonine kinases that phosphorylate serines or threonines when positioned adjacent to a glutamine residue (SQ/TQ). Both kinases are activated rapidly by DNA double-strand breaks (DSBs) and regulate the function of proteins involved in DNA damage responses. In developing lymphocytes, DSBs are generated during V(D)J recombination, which is required to assemble the second exon of all Ag receptor genes. This reaction is initiated through a DNA cleavage step by the RAG1 and RAG2 proteins, which together comprise an endonuclease that generates DSBs at the border of two recombining gene segments and their flanking recombination signals. This DNA cleavage step is followed by a joining step, during which pairs of DNA coding and signal ends are ligated to form a coding joint and a signal joint, respectively. ATM and DNA-PKcs are integrally involved in the repair of both signal and coding ends, but the targets of these kinases involved in the repair process have not been fully elucidated. In this regard, the RAG1 and RAG2 proteins, which each have several SQ/TQ motifs, have been implicated in the repair of RAG-mediated DSBs. In this study, we use a previously developed approach for studying chromosomal V(D)J recombination that has been modified to allow for the analysis of RAG1 and RAG2 function. We show that phosphorylation of RAG1 or RAG2 by ATM or DNA-PKcs at SQ/TQ consensus sites is dispensable for the joining step of V(D)J recombination. PMID:21742970

  14. Structures of KaiC Circadian Clock Mutant Proteins: A New Phosphorylation Site at T426 and Mechanisms of Kinase, ATPase and Phosphatase

    SciTech Connect

    Pattanayek, Rekha; Mori, Tetsuya; Xu, Yao; Pattanayek, Sabuj; Johnson, Carl H.; Egli, Martin

    2010-09-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS {yields} pTS {yields} pTpS {yields} TpS {yields} TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC. The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP {gamma}-phosphate. T432 is phosphorylated first because it lies consistently closer to P{gamma}. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation. We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.

  15. Identification of Novel Protein Kinase A Phosphorylation Sites in the M-domain of Human and Murine Cardiac Myosin Binding Protein-C Using Mass Spectrometry Analysis

    PubMed Central

    Jia, Weitao; Shaffer, Justin F.; Harris, Samantha P.; Leary, Julie A.

    2010-01-01

    Cardiac myosin binding protein-C (cMyBP-C) is a large multi-domain accessory protein bound to myosin thick filaments in striated muscle sarcomeres. It plays an important role in the regulation of muscle contraction and mutations in the gene encoding cMyBP-C are a common cause of familial hypertrophic cardiomyopathy, the leading cause of sudden cardiac death in young people1. The N-terminal domains including the C0, C1, cMyBP-C motif, and C2 domains play a crucial role in maintaining and modulating actomyosin interactions (keeping normal cardiac function) in a phosphorylation dependent manner. The cMyBP-C motif or “M-domain” is a highly conserved linker domain in the N-terminus of cMyBP-C that contains three to five protein kinase A (PKA) phosphorylation sites, depending on species. For the human isoform, three PKA sites were previously identified (Ser275, Ser284, and Ser304), while three homologous sites exist in the murine isoform (Ser273, Ser282, and Ser302). The murine cMyBP-C isoform contains an additional conserved consensus site, Ser307 that is not present in the human isoform. In this study, we investigated sites of PKA phosphorylation of murine and human cMyBP-C by treating the recombinant protein C0C2 (~50 KDa, which contains the N-terminal C0, C1, M, and C2 domains) and C1C2 (~35 KDa, contains C1, M and C2 domains) with PKA and assessing the phosphorylation states using SDS-PAGE with ProQ Diamond staining, and powerful hybrid mass spectrometric analyses. Both high-accuracy bottom-up and measurements of intact proteins mass spectrometric approaches were used to determine the phosphorylation states of C0C2 and C1C2 proteins with or without PKA treatment. Herein, we report for the first time that there are four PKA phosphorylation sites in both murine and human M-domains; both murine Ser307 and a novel human Ser311 can be phosphorylated in vitro by PKA. Future studies are needed to investigate the phosphorylation state of murine and human cMyBP-C in vivo

  16. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    SciTech Connect

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.; Mosimann, W.F.; Yanagihara, N.; Weiner, N.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin are independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.

  17. A novel protein kinase D phosphorylation site in the tumor suppressor Rab interactor 1 is critical for coordination of cell migration

    PubMed Central

    Ziegler, Susanne; Eiseler, Tim; Scholz, Rolf-Peter; Beck, Alexander; Link, Gisela; Hausser, Angelika

    2011-01-01

    The multifunctional signal adapter protein Ras and Rab interactor 1 (RIN1) is a Ras effector protein involved in the regulation of epithelial cell processes such as cell migration and endocytosis. RIN1 signals via two downstream pathways, namely the activation of Rab5 and Abl family kinases. Protein kinase D (PKD) phosphorylates RIN1 at serine 351 in vitro, thereby regulating interaction with 14–3-3 proteins. Here, we report the identification of serine 292 in RIN1 as an in vivo PKD phosphorylation site. PKD-mediated phosphorylation at this site was confirmed with a phospho-specific antibody and by mass spectrometry. We demonstrate that phosphorylation at serine 292 controls RIN1-mediated inhibition of cell migration by modulating the activation of Abl kinases. We further provide evidence that RIN1 in vivo phosphorylation at serine 351 occurs independently of PKD. Collectively, our data identify a novel PKD signaling pathway through RIN1 and Abl kinases that is involved in the regulation of actin remodeling and cell migration. PMID:21209314

  18. A novel phosphorylation site of N-methyl-D-aspartate receptor GluN2B at S1284 is regulated by Cdk5 in neuronal ischemia.

    PubMed

    Lu, Wen; Ai, Heng; Peng, Lin; Wang, Jie-jie; Zhang, Bin; Liu, Xiao; Luo, Jian-hong

    2015-09-01

    N-methyl-D-aspartate receptors (NMDARs) are a key player in synaptic and several neurological diseases, such as stroke. Phosphorylation of NMDAR subunits at their cytoplasmic carboxyl termini has been considered to be an important mechanism to regulate the receptor function. Cyclin-dependent kinase 5 (Cdk5) has been demonstrated to be responsible for regulating phosphorylation and function of NMDARs. Besides, it is also suggested that Cdk5 is involved in ischemic insult. In the present study, we showed that GluN2B subunit serine 1284 at its cytoplasmic carboxyl termini was regulated by Cdk5 in neuronal ischemia. Interestingly, both oxygen glucose deprivation (OGD) in cultured hippocampal neurons and transient global ischemia in mice induce dramatic changes in the phosphorylated level of GluN2B at S1284. However, no significant changes in the phosphorylation of this site are found neither in chemical LTP stimulation in cultured hippocampal neurons nor fear conditioning in adult mice. Taken together, our study identified NMDAR GluN2B S1284 as a novel phosphorylation site regulated by Cdk5 with implication in neuronal ischemia. PMID:26093036

  19. ARM Quick-looks Database for North Slope Alaska (NSA) sites

    DOE Data Explorer

    Stamnes, Knut [NSA Site Scientist

    From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

  20. MinChem: A Prototype Petrologic Database for Hanford Site Sediments

    SciTech Connect

    Mackley, Rob D.; Last, George V.; Serkowski, John A.; Middleton, Lisa A.; Cantrell, Kirk J.

    2010-09-01

    A prototype petrologic database (MinChem) has been under continual development for several years. MinChem contains petrologic, mineralogical, and bulk-rock geochemical data for Hanford Site sediments collected over multiple decades. The database is in relational form and consists of a series of related tables modeled after the Hanford Environmental Information System HEIS (BHI 2002) structures. The HEIS-compatible tables were created in anticipation of eventual migration into HEIS, or some future form of HEIS (e.g. HEIS-GEO). There are currently a total of 13,129 results in MinChem from 521 samples collected at 381 different sampling sites. These data come from 19 different original source documents published and unpublished (e.g. letter reports) between 1976 and 2009. The data in MinChem consist of results from analytical methods such as optical and electron microscopy, x-ray diffraction, x-ray fluorescence, and electron probe microanalysis.

  1. Phosphorylation and RLK signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant genomes encode hundreds of receptor-like kinases (RLKs) with an organization of functional domains similar to that of animal receptor kinases. Ligand-dependent phosphorylation has now been demonstrated for several plant RLKs and identification of specific phosphorylation sites followed by thei...

  2. Binding of cGMP to both allosteric sites of cGMP-binding cGMP-specific phosphodiesterase (PDE5) is required for its phosphorylation.

    PubMed Central

    Turko, I V; Francis, S H; Corbin, J D

    1998-01-01

    cGMP-binding phosphodiesterases contain two homologous allosteric cGMP-binding sites (sites a and b) that are arranged in tandem; they constitute a superfamily of mammalian cyclic nucleotide receptors distinct from the cyclic nucleotide-dependent protein kinases/cation channels family. The functional role of each of these two sites in the phosphodiesterases is not known. The cGMP-binding sites of one of these phosphodiesterases, the cGMP-binding cGMP-specific phosphodiesterase (cGB-PDE, PDE5), have been analysed by using site-directed mutagenesis. Mutations that affect cGMP binding to either one or both allosteric sites do not influence cGMP hydrolysis in the catalytic site under the conditions used. However, compared with wild-type enzyme, the D289A, D478A and D289A/D478A mutants, which are defective in cGMP binding to either site a or site b, or both allosteric sites, require much higher cGMP concentrations for the allosteric stimulation of phosphorylation by the catalytic subunit of cAMP-dependent protein kinase. The cGMP effect is on the cGB-PDE rather than on the catalytic subunit of the protein kinase because the latter enzyme does not require cGMP for activity. The D289N mutant, which has higher binding affinity for cGMP than does the wild-type enzyme, is phosphorylated at lower concentrations of cGMP than is the wild-type enzyme. It is concluded that cGMP binding to the allosteric sites of cGB-PDE does not directly affect catalysis, but binding to both of these sites regulates phosphorylation of this enzyme. PMID:9445376

  3. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  4. PlantDHS: a database for DNase I hypersensitive sites in plants

    PubMed Central

    Zhang, Tao; Marand, Alexandre P.; Jiang, Jiming

    2016-01-01

    Gene expression is regulated by orchestrated binding of regulatory proteins to promoters and other cis-regulatory DNA elements (CREs). Several plant databases have been developed for mapping promoters or DNA motifs associated with promoters. However, there is a lack of databases that allow investigation for all CREs. Here we present PlantDHS (http://plantdhs.org), a plant DNase I hypersensitive site (DHS) database that integrates histone modification, RNA sequencing, nucleosome positioning/occupancy, transcription factor binding sites, and genomic sequence within an easily navigated user interface. DHSs are indicative of all CREs, including promoters, enhancers, silencers, insulators and transcription factor binding sites; all of which play immense roles in global gene expression regulation. PlantDHS provides a platform to predict all CREs associated with individual genes from three model plant species, including Arabidopsis thaliana, Brachypodium distachyon and rice (Oryza sativa). PlantDHS is especially valuable in the detection of distant CREs that are located away from promoters. PMID:26400163

  5. Phosphorylation of Simian Cytomegalovirus Assembly Protein Precursor (pAPNG.5) and Proteinase Precursor (pAPNG1): Multiple Attachment Sites Identified, Including Two Adjacent Serines in a Casein Kinase II Consensus Sequence

    PubMed Central

    Plafker, Scott M.; Woods, Amina S.; Gibson, Wade

    1999-01-01

    The assembly protein precursor (pAP) of cytomegalovirus (CMV), and its homologs in other herpesviruses, functions at several key steps during the process of capsid formation. This protein, and the genetically related maturational proteinase, is distinguished from the other capsid proteins by posttranslational modifications, including phosphorylation. The objective of this study was to identify sites at which pAP is phosphorylated so that the functional significance of this modification and the enzyme(s) responsible for it can be determined. In the work reported here, we used peptide mapping, mass spectrometry, and site-directed mutagenesis to identify two sets of pAP phosphorylation sites. One is a casein kinase II (CKII) consensus sequence that contains two adjacent serines, both of which are phosphorylated. The other site(s) is in a different domain of the protein, is phosphorylated less frequently than the CKII site, does not require preceding CKII-site phosphorylation, and causes an electrophoretic mobility shift when phosphorylated. Transfection/expression assays for proteolytic activity showed no gross effect of CKII-site phosphorylation on the enzymatic activity of the proteinase or on the substrate behavior of pAP. Evidence is presented that both the CKII sites and the secondary sites are phosphorylated in virus-infected cells and plasmid-transfected cells, indicating that these modifications can be made by a cellular enzyme(s). Apparent compartmental differences in phosphorylation of the CKII-site (cytoplasmic) and secondary-site (nuclear) serines suggest the involvement of more that one enzyme in these modifications. PMID:10516011

  6. Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ß-arrestins.

    PubMed

    Bouzo-Lorenzo, Monica; Santo-Zas, Icía; Lodeiro, Maria; Nogueiras, Rubén; Casanueva, Felipe F; Castro, Marian; Pazos, Yolanda; Tobin, Andrew B; Butcher, Adrian J; Camiña, Jesús P

    2016-01-01

    The growth hormone secretagogue receptor, GHSR1a, mediates the biological activities of ghrelin, which includes the secretion of growth hormone, as well as the stimulation of appetite, food intake and maintenance of energy homeostasis. Mapping phosphorylation sites on GHSR1a and knowledge of how these sites control specific functional consequences unlocks new strategies for the development of therapeutic agents targeting individual functions. Herein, we have identified the phosphorylation of different sets of sites within GHSR1a which engender distinct functionality of ß-arrestins. More specifically, the Ser(362), Ser(363) and Thr(366) residues at the carboxyl-terminal tail were primarily responsible for ß-arrestin 1 and 2 binding, internalization and ß-arrestin-mediated proliferation and adipogenesis. The Thr(350) and Ser(349) are not necessary for ß-arrestin recruitment, but are involved in the stabilization of the GHSR1a-ß-arrestin complex in a manner that determines the ultimate cellular consequences of ß-arrestin signaling. We further demonstrated that the mitogenic and adipogenic effect of ghrelin were mainly dependent on the ß-arrestin bound to the phosphorylated GHSR1a. In contrast, the ghrelin function on GH secretion was entirely mediated by G protein signaling. Our data is consistent with the hypothesis that the phosphorylation pattern on the C terminus of GHSR1a determines the signaling and physiological output. PMID:26935831

  7. Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ß-arrestins

    PubMed Central

    Bouzo-Lorenzo, Monica; Santo-Zas, Icía; Lodeiro, Maria; Nogueiras, Rubén; Casanueva, Felipe F.; Castro, Marian; Pazos, Yolanda; Tobin, Andrew B; Butcher, Adrian J.; Camiña, Jesús P.

    2016-01-01

    The growth hormone secretagogue receptor, GHSR1a, mediates the biological activities of ghrelin, which includes the secretion of growth hormone, as well as the stimulation of appetite, food intake and maintenance of energy homeostasis. Mapping phosphorylation sites on GHSR1a and knowledge of how these sites control specific functional consequences unlocks new strategies for the development of therapeutic agents targeting individual functions. Herein, we have identified the phosphorylation of different sets of sites within GHSR1a which engender distinct functionality of ß-arrestins. More specifically, the Ser362, Ser363 and Thr366 residues at the carboxyl-terminal tail were primarily responsible for ß-arrestin 1 and 2 binding, internalization and ß-arrestin-mediated proliferation and adipogenesis. The Thr350 and Ser349 are not necessary for ß-arrestin recruitment, but are involved in the stabilization of the GHSR1a-ß-arrestin complex in a manner that determines the ultimate cellular consequences of ß-arrestin signaling. We further demonstrated that the mitogenic and adipogenic effect of ghrelin were mainly dependent on the ß-arrestin bound to the phosphorylated GHSR1a. In contrast, the ghrelin function on GH secretion was entirely mediated by G protein signaling. Our data is consistent with the hypothesis that the phosphorylation pattern on the C terminus of GHSR1a determines the signaling and physiological output. PMID:26935831

  8. STarMirDB: A database of microRNA binding sites.

    PubMed

    Rennie, William; Kanoria, Shaveta; Liu, Chaochun; Mallick, Bibekanand; Long, Dang; Wolenc, Adam; Carmack, C Steven; Lu, Jun; Ding, Ye

    2016-06-01

    microRNAs (miRNAs) are an abundant class of small endogenous non-coding RNAs (ncRNAs) of ∼22 nucleotides (nts) in length. These small regulatory molecules are involved in diverse developmental, physiological and pathological processes. miRNAs target mRNAs (mRNAs) for translational repression and/or mRNA degradation. Predictions of miRNA binding sites facilitate experimental validation of miRNA targets. Models developed with data from CLIP studies have been used for predictions of miRNA binding sites in the whole transcriptomes of human, mouse and worm. The prediction results have been assembled into STarMirDB, a new database of miRNA binding sites available at http://sfold.wadsworth.org/starmirDB.php . STarMirDB can be searched by miRNAs or mRNAs separately or in combination. The search results are categorized into seed and seedless sites in 3' UTR, CDS and 5' UTR. For each predicted site, STarMirDB provides a comprehensive list of sequence, thermodynamic and target structural features that are known to influence miRNA: target interaction. A high resolution PDF diagram of the conformation of the miRNA:target hybrid is also available for visualization and publication. The results of a database search are available through both an interactive viewer and downloadable text files. PMID:27144897

  9. STarMirDB: A database of microRNA binding sites

    PubMed Central

    Rennie, William; Kanoria, Shaveta; Liu, Chaochun; Mallick, Bibekanand; Long, Dang; Wolenc, Adam; Carmack, C. Steven; Lu, Jun; Ding, Ye

    2016-01-01

    ABSTRACT microRNAs (miRNAs) are an abundant class of small endogenous non-coding RNAs (ncRNAs) of ∼22 nucleotides (nts) in length. These small regulatory molecules are involved in diverse developmental, physiological and pathological processes. miRNAs target mRNAs (mRNAs) for translational repression and/or mRNA degradation. Predictions of miRNA binding sites facilitate experimental validation of miRNA targets. Models developed with data from CLIP studies have been used for predictions of miRNA binding sites in the whole transcriptomes of human, mouse and worm. The prediction results have been assembled into STarMirDB, a new database of miRNA binding sites available at http://sfold.wadsworth.org/starmirDB.php. STarMirDB can be searched by miRNAs or mRNAs separately or in combination. The search results are categorized into seed and seedless sites in 3′ UTR, CDS and 5′ UTR. For each predicted site, STarMirDB provides a comprehensive list of sequence, thermodynamic and target structural features that are known to influence miRNA: target interaction. A high resolution PDF diagram of the conformation of the miRNA:target hybrid is also available for visualization and publication. The results of a database search are available through both an interactive viewer and downloadable text files. PMID:27144897

  10. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-01

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA. PMID:25205850

  11. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1

    PubMed Central

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2016-01-01

    Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions. PMID:26340317

  12. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates

    PubMed Central

    Cieplak, Piotr

    2015-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. The CaspDB database is publicly available at http://caspdb.sanfordburnham.org for all users and no login or registering is required. PMID:25578647

  13. MeRNA: a Database of Metal Ion Binding Sites in RNAStructures

    SciTech Connect

    Stefan, Liliana R.; Zhang, Rui; Levitan, Aaron G.; Hendrix, DonnaF.; Brenner, Steven E.; Holbrook, Stephen R.

    2005-10-05

    Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA three-dimensional structures available from the Protein Data Bank (PDB) and Nucleic Acid Database (NDB). Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements; in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure, and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering.

  14. Identification of tyrosines 154 and 307 in the extracellular domain and 653 and 766 in the intracellular domain as phosphorylation sites in the heparin-binding fibroblast growth factor receptor tyrosine kinase (flg).

    PubMed Central

    Hou, J.; McKeehan, K.; Kan, M.; Carr, S. A.; Huddleston, M. J.; Crabb, J. W.; McKeehan, W. L.

    1993-01-01

    Four tyrosine residues have been identified as phosphorylation sites in the tyrosine kinase isoform of the heparin-binding fibroblast growth factor receptor flg (FGF-R1). Baculoviral-insect cell-derived recombinant FGF-R1 was phosphorylated and fragmented with trypsin while immobilized on heparin-agarose beads. Phosphotyrosine peptides were purified by chromatography on immobilized anti-phosphotyrosine antibody and analyzed by Edman degradation and electrospray tandem mass spectrometry. Tyrosine residue 653, which is in a homologous spatial position to major autophosphorylation sites in the catalytic domain of the src and insulin receptor kinases, is the major intracellular FGF-R1 phosphorylation site. Residue 766 in the COOH-terminus outside the kinase domain is a secondary site. Tyrosine residues 154 and 307, which are in the extracellular domain of transmembrane receptor isoforms and are in an unusual sequence context for tyrosine phosphorylation, were also phosphorylated. PMID:8443592

  15. Phosphorylation of eIF2α is responsible for the failure of the picornavirus internal ribosome entry site to direct translation from Sindbis virus replicons.

    PubMed

    Sanz, Miguel Angel; Redondo, Natalia; García-Moreno, Manuel; Carrasco, Luis

    2013-04-01

    Translation directed by the poliovirus (PV) or encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) is very inefficient when expressed from Sindbis virus (SV) replicons. This inhibition can be rescued by co-expression of PV 2A protease (2A(pro)). Inhibition correlates with the extensive phosphorylation of eukaryotic initiation factor (eIF) 2α induced by SV replication. Confirmation that PV or EMCV IRES-driven translation can function when eIF2α is not phosphorylated was obtained in dsRNA-activated protein kinase knockout mouse embryonic fibroblasts (PKR(-/-) MEFs), where SV replication cannot induce eIF2α phosphorylation, and in variant S51A MEFs that express an unphosphorylatable eIF2α. In these cells, PV or EMCV IRES-dependent translation operated more efficiently than in wild-type MEFs. However, this translation was potently blocked when eIF2α was phosphorylated by the addition of thapsigargin to PKR(-/-) MEFs. In addition, when wild-type eIF2α was expressed in S51A MEFs or PKR was expressed in PKR(-/-) MEFs, PV IRES-dependent translation decreased. In both cases, the decrease in PV IRES-dependent translation correlated with the phosphorylation of eIF2α. Notably, PV 2A(pro) expression rescued PV IRES-driven translation in thapsigargin-treated PKR(-/-) MEFs. Taken together, these results demonstrated that PV IRES-driven translation can take place from SV replicons if eIF2α remains unphosphorylated. Remarkably, PV IRES-dependent translation was fully functional in this system when PV 2A(pro) was present, even if eIF2α was phosphorylated. PMID:23255624

  16. The conserved dual phosphorylation sites of the Candida albicans Hog1 protein are crucial for white-opaque switching, mating, and pheromone-stimulated cell adhesion.

    PubMed

    Chang, Wen-Han; Liang, Shen-Huan; Deng, Fu-Sheng; Lin, Ching-Hsuan

    2016-08-01

    Candida albicans is an opportunistic human pathogen capable of causing life-threatening infections in immunocompromised patients. C. albicans has a unique morphological transition between white and opaque phases. These two cells differ in virulence, mating capability, biofilm formation, and host-cell interaction. Previous studies revealed that deletion of the SSK2, PBS2, or HOG1 gene resulted in 100% opaque cell formation and suppressed the mating response. Thr-174 and Tyr-176 of the Hog1 protein are important phosphoacceptors and can be activated in response to stimuli. In this study, we first demonstrated the importance of two conserved phosphorylation sites in white-opaque switching, mating, and pheromone-stimulated cell adhesion. Six Hog1 point-mutated strains were generated, including nonphosphorylated strains (Hog1(T174A), Hog1(Y176F), and Hog1(T174A,Y176F)) and negatively charged phosphorylated strains (Hog1(T174D), Hog1(Y176D), and Hog1(T174D,Y176D)). Point mutation on Thr-174, Tyr-176 or in combination with the Hog1 protein in C. albicans MTL homozygous strains stimulated opaque cell formation at a frequency of 100%. Furthermore, mating projections of point-mutated strains were significantly shorter and their mating efficiencies and pheromone-stimulated cell adhesive numbers were lower than those of the wild-type. By investigating the effects of Hog1 phosphorylation in ssk1Δ and sln1Δ, we also demonstrate that the phosphorylation intensity of Hog1p is directly involved in the white-opaque switching. Taken together, the results of our study demonstrate that dual phosphorylation sites of C. albicans are crucial for white-opaque transition, sexual mating, and pheromone-induced cell adhesion. PMID:27118797

  17. The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Chia, Yeong-Chit Joel; Catimel, Bruno; Lio, Daisy Sio Seng; Ang, Ching-Seng; Peng, Benjamin; Wu, Hong; Zhu, Hong-Jian; Cheng, Heung-Chin

    2015-12-01

    Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN. These findings suggest that coordinated inhibition of the upstream protein kinases and activation of the protein phosphatases targeting the four sites are needed to fully activate PTEN phosphatase activity. Second, PI(4,5)P2 cannot activate the phosphopeptide phosphatase activity of PTEN, suggesting that PI(4,5)P2 can only activate the phospholipid phosphatase activity but not the phosphoprotein phosphatase activity of PTEN. Third, dephosphorylation of all four sites significantly decreases the affinity of PTEN for PI(4,5)P2. Since PI(4,5)P2 is a major phospholipid co-localizing with the phospholipid- and phosphoprotein-substrates in plasma membrane, we hypothesise that the reduced affinity facilitates PTEN to "hop" on the plasma membrane to dephosphorylate these substrates. PMID:26471078

  18. Monocular deprivation delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.

    PubMed

    Fu, Tao; Su, Qing; Xi, Ping; Han, Song; Li, Junfa

    2015-03-01

    Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21-26% of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71-74% at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35-60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21-42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice. PMID:25576091

  19. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates.

    PubMed

    Kumar, Sonu; van Raam, Bram J; Salvesen, Guy S; Cieplak, Piotr

    2014-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. PMID:25330111

  20. SpBase: the sea urchin genome database and web site

    PubMed Central

    Cameron, R. Andrew; Samanta, Manoj; Yuan, Autumn; He, Dong; Davidson, Eric

    2009-01-01

    SpBase is a system of databases focused on the genomic information from sea urchins and related echinoderms. It is exposed to the public through a web site served with open source software (http://spbase.org/). The enterprise was undertaken to provide an easily used collection of information to directly support experimental work on these useful research models in cell and developmental biology. The information served from the databases emerges from the draft genomic sequence of the purple sea urchin, Strongylocentrotus purpuratus and includes sequence data and genomic resource descriptions for other members of the echinoderm clade which in total span 540 million years of evolutionary time. This version of the system contains two assemblies of the purple sea urchin genome, associated expressed sequences, gene annotations and accessory resources. Search mechanisms for the sequences and the gene annotations are provided. Because the system is maintained along with the Sea Urchin Genome resource, a database of sequenced clones is also provided. PMID:19010966

  1. Caspase Cleavage Sites in the Human Proteome: CaspDB, a Database of Predicted Substrates

    PubMed Central

    Kumar, Sonu; van Raam, Bram J.; Salvesen, Guy S.; Cieplak, Piotr

    2014-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. PMID:25330111

  2. Identification of the site on calcineurin phosphorylated by Ca sup + /CaM-dependent kinase II: Modification of the CaM-binding domain

    SciTech Connect

    Martensen, T.M.; Kincaid, R.L. ); Martin, B.M. )

    1989-11-28

    The catalytic subunit of the Ca{sup 2+}/calmodulin- (CaM) dependent phosphoprotein phosphatase calcineurin (CN) was phosphorylated by an activated form of Ca{sup 2+}/CaM-dependent protein kinase II (CaM-kinase II) incorporating approximately 1 mol of phosphoryl group/mol of catalytic subunit, in agreement with a value previously reported. Cyanogen bromide cleavage of radiolabeled CN followed by peptide fractionation using reverse-phase high-performance liquid chromatography yielded a single labeled peptide that contained a phosphoserine residue. Microsequencing of the peptide allowed both the determination of the cleavage cycle that released ({sup 32}P)phosphoserine and the identity of amino acids adjacent to it. Comparison of this sequence with the sequences of methionyl peptides deduced from the cDNA structure of CN allowed the phosphorylated serine to be uniquely identified. Interestingly, the phosphoserine exists in the sequence Met-Ala-Arg-Val-Phe-Ser(P)-Val-Leu-Arg-Glu, part of which lies within the putative CaM-binding sites. The phosphorylated serine residue was resistant to autocatalytic dephosphorylation, yet the slow rate of hydrolysis could be powerfully stimulated by effectors of CN phosphatase activity. The mechanism of dephosphorylation may be intramolecular since the initial rate was the same at phosphoCN concentrations of 2.5-250 nM.

  3. The database of observational results at PRAO ASC LPI sites and on-line pre-processing of the data by their monitoring in the database

    NASA Astrophysics Data System (ADS)

    Samodurov, V. A.; Kitaeva, M. A.; Isaev, E. A.; Pugachev, V. D.; Dumskiy, D. V.; Zaitsev, A. Y.; Logvinenko, S. V.; Ovchinnikov, I. L.; Lapaev, K. A.; Nikolenko, A. A.; Ladejshchikov, D. A.

    2010-01-01

    The site ''Electronic database of observation results from radio telescopes of PRAO ASC LPI'' (http://observations.prao.ru/) was launched in 2006. This database provides access to observational instruments and telescope descriptions, techniques of making data samples per instruments, information about types of observations, observers and dates of observations and so on. As of August 2009, the observational result database contained more than 126000 data files. Data from PRAO instruments and radio telescopes are continuously being stored to this database. The statistical analysis of the data and its pre-processing facilities are available on-line from this database. Facilities for graphical display information and statistical analysis of data of some kinds of celestial radio sources were added to this system, and work on widening of sampling this sources with the aim of accounting every kinds of radio sources is carried out. The development of new facilities for on-line processing of monitoring data from PRAO radio telescopes is performed also. It works on the base of common postgresql database. All observed data of our observatories are written on a special 2-terabyte raid-array.

  4. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2 + 2a) phosphorylation

    PubMed Central

    Birk, Jesper B.; Richter, Erik A.; Ribel-Madsen, Rasmus; Pehmøller, Christian; Hansen, Bo Falck; Beck-Nielsen, Henning; Hirshman, Michael F.; Goodyear, Laurie J.; Vaag, Allan; Poulsen, Pernille; Wojtaszewski, Jørgen F. P.

    2013-01-01

    Type 2 diabetes is characterized by reduced muscle glycogen synthesis. The key enzyme in this process, glycogen synthase (GS), is activated via proximal insulin signaling, but the exact molecular events remain unknown. Previously, we demonstrated that phosphorylation of Thr308 on Akt (p-Akt-Thr308), Akt2 activity, and GS activity in muscle were positively associated with insulin sensitivity. Here, in the same study population, we determined the influence of several upstream elements in the canonical PI3K signaling on muscle GS activation. One-hundred eighty-one nondiabetic twins were examined with the euglycemic hyperinsulinemic clamp combined with excision of muscle biopsies. Insulin signaling was evaluated at the levels of the insulin receptor, IRS-1-associated PI3K (IRS-1-PI3K), Akt, and GS employing activity assays and phosphospecific Western blotting. The insulin-stimulated GS activity was positively associated with p-Akt-Thr308 (P = 0.01) and Akt2 activity (P = 0.04) but not p-Akt-Ser473 or IRS-1-PI3K activity. Furthermore, p-Akt-Thr308 and Akt2 activity were negatively associated with NH2-terminal GS phosphorylation (P = 0.001 for both), which in turn was negatively associated with insulin-stimulated GS activity (P < 0.001). We found no association between COOH-terminal GS phosphorylation and Akt or GS activity. Employing whole body Akt2-knockout mice, we validated the necessity for Akt2 in insulin-mediated GS activation. However, since insulin did not affect NH2-terminal phosphorylation in mice, we could not use this model to validate the observed association between GS NH2-terminal phosphorylation and Akt activity in humans. In conclusion, our study suggests that although COOH-terminal dephosphorylation is likely necessary for GS activation, Akt2-dependent NH2-terminal dephosphorylation may be the site for “fine-tuning” insulin-mediated GS activation in humans. PMID:23321478

  5. Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor 4E-binding protein 1 on the rapamycin-insensitive site (serine-111).

    PubMed Central

    Heesom, K J; Avison, M B; Diggle, T A; Denton, R M

    1998-01-01

    The effects of insulin and rapamycin on the phosphorylation of the translation regulator, initiation factor 4E-binding protein 1 (4E-BP1) have been studied in rat fat cells by following changes in the incorporation of 32P from [32P]Pi under steady-state conditions. Both unbound 4E-BP1 and 4E-BP1 bound to eukaryotic initiation factor 4E (eIF4E) were isolated from the cells and then digested with trypsin and other proteases; the radiolabelled phosphopeptides were then separated by two-dimensional thin- layer analysis and HPLC. The results provide confirmation of the conclusion of Fadden, Haystead and Lawrence [J. Biol. Chem. (1997) 272, 10240-10247] that insulin increases the phosphorylation of four sites that fit a Ser/Thr-Pro motif (Thr-36, Thr-45, Ser-64 and Thr-69) and that taken together these phosphorylations result in the dissociation of 4E-BP1 from eIF4E. The effects of insulin on the phosphorylation of these sites, and hence dissociation from eIF4E, are blocked by rapamycin. However, the present study also provides evidence that insulin increases the phosphorylation of 4E-BP1 bound to eIF4E on a further site (Ser-111) and that this is by a rapamycin-insensitive mechanism. Extraction of rat epididymal fat cells followed by chromatography on Mono-S and Superose 12 columns resulted in the separation of both an insulin-stimulated eIF4E kinase and an apparently novel kinase that is highly specific for Ser-111 of 4E-BP1. The 4E-BP1 kinase was activated more than 10-fold by incubation of the cells with insulin and was markedly more active towards 4E-BP1 bound to eIF4E than towards unbound 4E-BP1. The effects of insulin were blocked by wortmannin, but not by rapamycin. A 14-mer peptide based on the sequence surrounding Ser-111 of 4E-BP1 was also a substrate for the kinase, but peptide substrates for other known protein kinases were not. The kinase is quite distinct from casein kinase 2, which also phosphorylates Ser-111 of 4E-BP1. The possible importance of these

  6. SMRT-mediated co-shuttling enables export of class IIa HDACs independent of their CaM kinase phosphorylation sites

    PubMed Central

    Soriano, Francesc X; Chawla, Sangeeta; Skehel, Paul; Hardingham, Giles E

    2013-01-01

    The Class IIa histone deacetylases (HDAC)4 and HDAC5 play a role in neuronal survival and behavioral adaptation in the CNS. Phosphorylation at 2/3 N-terminal sites promote their nuclear export. We investigated whether non-canonical signaling routes to Class IIa HDAC export exist because of their association with the co-repressor Silencing Mediator Of Retinoic And Thyroid Hormone Receptors (SMRT). We found that, while HDAC5 and HDAC4 mutants lacking their N-terminal phosphorylation sites (HDAC4MUT, HDAC5MUT) are constitutively nuclear, co-expression with SMRT renders them exportable by signals that trigger SMRT export, such as synaptic activity, HDAC inhibition, and Brain Derived Neurotrophic Factor (BDNF) signaling. We found that SMRT's repression domain 3 (RD3) is critical for co-shuttling of HDAC5MUT, consistent with the role for this domain in Class IIa HDAC association. In the context of BDNF signaling, we found that HDAC5WT, which was more cytoplasmic than HDAC5MUT, accumulated in the nucleus after BDNF treatment. However, co-expression of SMRT blocked BDNF-induced HDAC5WT import in a RD3-dependent manner. In effect, SMRT-mediated HDAC5WT export was opposing the BDNF-induced HDAC5 nuclear accumulation observed in SMRT's absence. Thus, SMRT's presence may render Class IIa HDACs exportable by a wider range of signals than those which simply promote direct phosphorylation. PMID:23083128

  7. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins

    PubMed Central

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements. PMID:21087992

  8. Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database

    SciTech Connect

    Loper, Susan A.; Sandusky, William F.

    2010-12-31

    Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stock is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.

  9. Quantification of gel-separated proteins and their phosphorylation sites by LC-MS using unlabeled internal standards: analysis of phosphoprotein dynamics in a B cell lymphoma cell line.

    PubMed

    Cutillas, Pedro R; Geering, Barbara; Waterfield, Mike D; Vanhaesebroeck, Bart

    2005-08-01

    Protein phosphorylation plays a critical role in normal cellular function and is often subverted in disease. Although major advances have recently been made in identification and quantitation of protein phosphorylation sites by MS, current methodological limitations still preclude routine, easily usable, and comprehensive quantitative analysis of protein phosphorylation. Here we report a simple LC-MS method to quantify gel-separated proteins and their sites of phosphorylation; in this approach, integrated chromatographic peak areas of peptide analytes from proteins under study are normalized to those of a non-isotopically labeled internal standard protein spiked into the excised gel samples just prior to in-gel digestion. The internal standard intensities correct for differences in enzymatic activities and sample losses that may occur during the processes of in-gel digestion and peptide extraction from the gel pieces. We used this method of peak area measurement with an internal standard to investigate the effects of pervanadate on protein phosphorylation in the WEHI-231 B cell lymphoma cell line and to assess the role of phosphoinositide 3-kinase (PI3K) in these phosphorylation events. Phosphoproteins, isolated from total cell lysates using IMAC or by immunoprecipitation using Tyr(P) antibodies, were analyzed using this method, leading to identification of >400 proteins, several of which were found at higher levels in phosphoprotein fractions after pervanadate treatment. Pretreatment of cells with the PI3K inhibitor wortmannin reduced the phosphorylation level of certain proteins (e.g. STAT1 and phospholipase Cgamma2) while increasing the phosphorylation of several others. Peak area measurement with an internal standard was also used to follow the dynamics of PI3K-dependent and -independent changes in the post-translational modification of both known and novel phospholipase Cgamma2 phosphorylation sites. Our results illustrate the capacity of this conceptually

  10. Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1.

    PubMed Central

    Moon, Byoung; Duddy, Noreen; Ragolia, Louis; Begum, Najma

    2003-01-01

    Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3

  11. Detection of Phospho-Sites Generated by Protein Kinase CK2 in CFTR: Mechanistic Aspects of Thr1471 Phosphorylation

    PubMed Central

    Venerando, Andrea; Franchin, Cinzia; Cant, Natasha; Cozza, Giorgio; Pagano, Mario A.; Tosoni, Kendra; Al-Zahrani, Ateeq; Arrigoni, Giorgio; Ford, Robert C.; Mehta, Anil; Pinna, Lorenzo A.

    2013-01-01

    By mass spectrometry analysis of mouse Cystic Fibrosis Transmembrane-conductance Regulator (mCFTR) expressed in yeast we have detected 21 phosphopeptides accounting for 22 potential phospho-residues, 12 of which could be unambiguously assigned. Most are conserved in human CFTR (hCFTR) and the majority cluster in the Regulatory Domain, lying within consensus sequences for PKA, as identified in previous mammalian studies. This validates our yeast expression model. A number of phospho-residues were novel and human conserved, notably mouse Ser670, Ser723, Ser737, and Thr1467, that all lie in acidic sequences, compatible with their phosphorylation by protein kinase CK2. Thr1467 is localized in the C-terminal tail, embedded in a functionally important and very acidic sequence (EETEEE) which displays an optimal consensus for protein kinase CK2. Herein, we show that Thr1467, homologous to human Thr1471 is readily phosphorylated by CK2. Indeed a 42 amino acid peptide encompassing the C-terminal segment of human CFTR is readily phosphorylated at Thr1471 with favorable kinetics (Km 1.7 µM) by CK2 holoenzyme, but neither by its isolated catalytic subunit nor by other acidophilic Ser/Thr kinases (CK1, PLK2/3, GCK/FAM20C). Our finding that by treating CFTR expressing BHK cells with the very specific CK2 inhibitor CX4945, newly synthesized wild type CFTR (and even more its Phe508del mutant) accumulates more abundantly than in the absence of CK2 inhibitor, supports the conclusion that phosphorylation of CFTR by CK2 correlates with decreased stability of the protein. PMID:24058532

  12. Pdx1 Is Post-Translationally Modified In vivo and Serine 61 Is the Principal Site of Phosphorylation

    PubMed Central

    Frogne, Thomas; Sylvestersen, Kathrine Beck; Kubicek, Stefan; Nielsen, Michael Lund; Hecksher-Sørensen, Jacob

    2012-01-01

    Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We employed a novel technique called Nanofluidic Proteomic Immunoassay to characterize the post-translational profile of Pdx1. Following isoelectric focusing in nano-capillaries, this technology relies on a pan specific antibody for detection and it therefore allows the relative abundance of differently charged protein species to be examined simultaneously. In all eukaryotic cells tested we find that the Pdx1 protein separates into four distinct peaks whereas Pdx1 protein from bacteria only produces one peak. Of the four peaks in eukaryotic cells we correlate one of them to a phosphorylation Using alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis but is not required for pancreas development. PMID:22509401

  13. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin–sensitizing effects of metformin

    PubMed Central

    Fullerton, Morgan D.; Galic, Sandra; Marcinko, Katarina; Sikkema, Sarah; Pulinilkunnil, Thomas; Chen, Zhi–Ping; O’Neill, Hayley M.; Ford, Rebecca J.; Palanivel, Rengasamy; O’Brien, Matthew; Hardie, D. Grahame; Macaulay, S. Lance; Schertzer, Jonathan D.; Dyck, Jason R. B.; van Denderen, Bryce J.; Kemp, Bruce E.; Steinberg, Gregory R.

    2016-01-01

    The obesity epidemic has led to an increased incidence of non–alcoholic fatty liver disease (NAFLD) and type 2 diabetes. AMP–activated protein kinase (Ampk) regulates energy homeostasis and is activated by cellular stress, hormones and the widely prescribed anti–type 2 diabetic drug metformin1,2. Ampk phosphorylates murine acetyl–CoA carboxylase3,4 (Acc) 1 at Ser79 and Acc2 at Ser212, inhibiting the conversion of acetyl–CoA to malonyl–CoA, a precursor in fatty acid synthesis5 as well as an allosteric inhibitor of fatty acid transport into mitochondria for oxidation6. To test the physiological impact of these phosphorylation events we generated mice with alanine knock–in mutations in both Acc1 (Ser79) and Acc2 (Ser212) (Acc double knock–in, AccDKI). These mice have elevated lipogenesis and lower fatty acid oxidation compared to wild–type (WT) mice, which contribute to the progression of insulin resistance, glucose intolerance and NAFLD, but not obesity. Remarkably, AccDKI mice made obese by high–fat feeding, are refractory to the lipid–lowering and insulin–sensitizing effects of metformin. These findings establish that inhibitory phosphorylation of Acc by Ampk is essential for the control of lipid metabolism, and in the setting of obesity, for metformin–induced improvements in insulin action. PMID:24185692

  14. Importance of the Ser-132 phosphorylation site in cell transformation and apoptosis induced by the adenovirus type 5 E1A protein.

    PubMed Central

    Whalen, S G; Marcellus, R C; Barbeau, D; Branton, P E

    1996-01-01

    The 289-residue (289R) and 243R early region 1A (E1A) proteins of human adenovirus type 5 induce cell transformation in cooperation with either E1B or activated ras. Here we report that Ser-132 in both E1A products is a site of phosphorylation in vivo and is the only site phosphorylated in vitro by purified casein kinase II. Ser-132 is located in conserved region 2 near the primary binding site for the pRB tumor suppressor and, in 289R, just upstream of the conserved region 3 transactivation domain involved in regulation of early viral gene expression. Mutants containing alanine or glycine in place of Ser-132 interacted with pRB-related proteins at somewhat reduced efficiency; however, all Ser-132 mutants transformed primary rat cells in cooperation with E1B as well as or better than the wild type when both major E1A proteins were expressed. Such was not the case with mutants expressing only 289R. In cooperation with E1B, the Asp-132 and Gly-132 mutants yielded reduced numbers of smaller transformed foci. With activated ras, all Ser-132 mutants were significantly defective for transformation and the rare foci produced were small and contained extensive areas populated by low densities of flat cells. In the absence of E1B, all Ser-132 mutants induced p53-independent cell death more readily than virus expressing wild-type 289R. These results suggested that phosphorylation at Ser-132 may enhance the binding of pRB and related proteins and also reduce the toxicity of E1A 289R, thus increasing transforming activity. PMID:8764048

  15. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    SciTech Connect

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-10-05

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and)2numberSPO4/mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the TUPO4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro.

  16. New sources for alternative methods on the Internet: the objectives of databases and web sites.

    PubMed

    Grune, Barbara; Dörendahl, Antje; Köhler-Hahn, Dorothea; Feuerstein, Céline; Box, Rainer; Wohlgemuth, Heinz; Spielmann, Horst

    2004-06-01

    One of the main requirements of the current animal welfare legislation in Europe is to prove the necessity of performing a given experiment with animals. Thus, a study using animals should not proceed, if another scientifically reliable method is available to obtain the desired results that either avoids animal experiments altogether, minimises pain and suffering of animals or reduces the number of animals needed. Scientists are legally required to search the literature and other relevant sources for alternatives prior to any experimental study with animals. Access to information has become much easier since the introduction of the Internet as a standard tool. Today, a variety of online sources is available, e.g. web-based bibliographic databases and specialised web sites providing details about alternatives to animal studies. However, scientists still need to determine the most appropriate searching strategies, depending on the objectives of the relevant web sites and their own line of research. A critical discussion of this issue takes into account the objectives of both the information providers and the information retrieval systems. PMID:23581139

  17. PRECISE: a Database of Predicted and Consensus Interaction Sites in Enzymes

    PubMed Central

    Sheu, Shu-Hsien; Lancia, David R.; Clodfelter, Karl H.; Landon, Melissa R.; Vajda, Sandor

    2005-01-01

    PRECISE (Predicted and Consensus Interaction Sites in Enzymes) is a database of interactions between the amino acid residues of an enzyme and its ligands (substrate and transition state analogs, cofactors, inhibitors and products). It is available online at http://precise.bu.edu/. In the current version, all information on interactions is extracted from the enzyme–ligand complexes in the Protein Data Bank (PDB) by performing the following steps: (i) clustering homologous enzyme chains such that, in each cluster, the proteins have the same EC number and all sequences are similar; (ii) selecting a representative chain for each cluster; (iii) selecting ligand types; (iv) finding non-bonded interactions and hydrogen bonds; and (v) summing the interactions for all chains within the cluster. The output of the search is the color-coded sequence of the representative. The colors indicate the total number of interactions found at each amino acid position in all chains of the cluster. Clicking on a residue displays a detailed list of interactions for that residue. Optional filters allow restricting the output to selected chains in the cluster, to non-bonded or hydrogen bonding interactions, and to selected ligand types. The binding site information is essential for understanding and altering substrate specificity and for the design of enzyme inhibitors. PMID:15608178

  18. Development of an Integrated Natural Barrier Database System for Site Evaluation of a Deep Geologic Repository in Korea - 13527

    SciTech Connect

    Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong; Lee, Jeong-Hwan

    2013-07-01

    Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel and other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)

  19. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    PubMed

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html . PMID:27338257

  20. Ultra-high field NMR studies of antibody binding and site-specific phosphorylation of {alpha}-synuclein

    SciTech Connect

    Sasakawa, Hiroaki |; Sakata, Eri; Yamaguchi, Yoshiki; Masuda, Masami |; Mori, Tetsuya; Kurimoto, Eiji; Iguchi, Takeshi; Hisanaga, Shin-ichi; Iwatsubo, Takeshi; Hasegawa, Masato; Kato, Koichi |

    2007-11-23

    Although biological importance of intrinsically disordered proteins is becoming recognized, NMR analyses of this class of proteins remain as tasks with more challenge because of poor chemical shift dispersion. It is expected that ultra-high field NMR spectroscopy offers improved resolution to cope with this difficulty. Here, we report an ultra-high field NMR study of {alpha}-synuclein, an intrinsically disordered protein identified as the major component of the Lewy bodies. Based on NMR spectral data collected at a 920 MHz proton frequency, we performed epitope mapping of an anti-{alpha}-synuclein monoclonal antibody, and furthermore, characterized conformational effects of phosphorylation at Ser129 of {alpha}-synuclein.

  1. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons.

    PubMed

    Pougnet, Johan-Till; Compans, Benjamin; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2016-01-01

    Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression. PMID:27624155

  2. Deoxycholate induced tetramer of αA-crystallin and sites of phosphorylation: Fluorescence correlation spectroscopy and femtosecond solvation dynamics

    NASA Astrophysics Data System (ADS)

    Chowdhury, Aritra; Mojumdar, Supratik Sen; Choudhury, Aparajita; Banerjee, Rajat; Das, Kali Pada; Sasmal, Dibyendu Kumar; Bhattacharyya, Kankan

    2012-04-01

    Structure and dynamics of acrylodan labeled αA-crystallin tetramer formed in the presence of a bile salt (sodium deoxycholate, NaDC) has been studied using fluorescence correlation spectroscopy (FCS) and femtosecond up-conversion techniques. Using FCS it is shown that, the diffusion constant (Dt) of the αA-crystallin oligomer (mass ˜800 kDa) increases from ˜35 μm2 s-1 to ˜68 μm2 s-1. This corresponds to a decrease in hydrodynamic radius (rh) from ˜6.9 nm to ˜3.3 nm. This corresponds to about 10-fold decrease in molecular mass to ˜80 kDa and suggests formation of a tetramer (since mass of αA-crystallin monomer is ˜20 kDa). The steady state emission maximum and average solvation time (<τs>) of acrylodan labeled at cysteine 131 position of αA-crystallin is markedly affected on addition of NaDC, while the tryptophan (trp-9) becomes more exposed. This suggests that NaDC binds near the cys-131 and makes the terminal region of αA-crystallin exposed. This may explain the enhanced auto-phosphorylation activity of αA-crystallin near the terminus of the 173 amino acid protein (e.g., at the threonine 13, serine 45, or serine 169 and 172) and suggests that phosphorylation at ser-122 (close to cys-131) is relatively less important.

  3. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    PubMed

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle. PMID:26405031

  4. DISSS/PSDB - Personnel Security Database Modernization Project: Compilation of data gathered from DOE Operations Office`s site visits

    SciTech Connect

    Carpenter, R.; Sweeney, D.

    1995-03-15

    This document is a compilation of the information gathered from visits to the DOE Operations Offices. The purpose of these visits was to gather requirements for the modernization of the personnel security database. The initial phase of visits were to sites which had known local systems to augment CPCI. They were; Rocky Flats, Richland, Las Vegas, Savannah River, Oak Ridge, and Oakland. The second phase of site visits were to; Headquarters, Schenectady, Pittsburgh, Idaho Falls, Chicago, and Albuquerque. We also visited the NRC. At each site we reviewed the current clearance process in use at the field office. If the site had a local personnel security database (PSDB), we also reviewed the current PSDB processing. Each meeting was began with the a discussion on the purpose of the meeting and the background of the redesign effort.

  5. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  6. Identifying opportune landing sites in degraded visual environments with terrain and cultural databases

    NASA Astrophysics Data System (ADS)

    Moody, Marc; Fisher, Robert; Little, J. Kristin

    2014-06-01

    Boeing has developed a degraded visual environment navigational aid that is flying on the Boeing AH-6 light attack helicopter. The navigational aid is a two dimensional software digital map underlay generated by the Boeing™ Geospatial Embedded Mapping Software (GEMS) and fully integrated with the operational flight program. The page format on the aircraft's multi function displays (MFD) is termed the Approach page. The existing work utilizes Digital Terrain Elevation Data (DTED) and OpenGL ES 2.0 graphics capabilities to compute the pertinent graphics underlay entirely on the graphics processor unit (GPU) within the AH-6 mission computer. The next release will incorporate cultural databases containing Digital Vertical Obstructions (DVO) to warn the crew of towers, buildings, and power lines when choosing an opportune landing site. Future IRAD will include Light Detection and Ranging (LIDAR) point cloud generating sensors to provide 2D and 3D synthetic vision on the final approach to the landing zone. Collision detection with respect to terrain, cultural, and point cloud datasets may be used to further augment the crew warning system. The techniques for creating the digital map underlay leverage the GPU almost entirely, making this solution viable on most embedded mission computing systems with an OpenGL ES 2.0 capable GPU. This paper focuses on the AH-6 crew interface process for determining a landing zone and flying the aircraft to it.

  7. Sulfonium Ion Derivatization, Isobaric Stable Isotope Labeling and Data Dependent CID- and ETD-MS/MS for Enhanced Phosphopeptide Quantitation, Identification and Phosphorylation Site Characterization

    NASA Astrophysics Data System (ADS)

    Lu, Yali; Zhou, Xiao; Stemmer, Paul M.; Reid, Gavin E.

    2012-04-01

    An amine specific peptide derivatization strategy involving the use of novel isobaric stable isotope encoded `fixed charge' sulfonium ion reagents, coupled with an analysis strategy employing capillary HPLC, ESI-MS, and automated data dependent ion trap CID-MS/MS, -MS3, and/or ETD-MS/MS, has been developed for the improved quantitative analysis of protein phosphorylation, and for identification and characterization of their site(s) of modification. Derivatization of 50 synthetic phosphopeptides with S, S'-dimethylthiobutanoylhydroxysuccinimide ester iodide (DMBNHS), followed by analysis using capillary HPLC-ESI-MS, yielded an average 2.5-fold increase in ionization efficiencies and a significant increase in the presence and/or abundance of higher charge state precursor ions compared to the non-derivatized phosphopeptides. Notably, 44% of the phosphopeptides (22 of 50) in their underivatized states yielded precursor ions whose maximum charge states corresponded to +2, while only 8% (4 of 50) remained at this maximum charge state following DMBNHS derivatization. Quantitative analysis was achieved by measuring the abundances of the diagnostic product ions corresponding to the neutral losses of `light' (S(CH3)2) and `heavy' (S(CD3)2) dimethylsulfide exclusively formed upon CID-MS/MS of isobaric stable isotope labeled forms of the DMBNHS derivatized phosphopeptides. Under these conditions, the phosphate group stayed intact. Access for a greater number of peptides to provide enhanced phosphopeptide sequence identification and phosphorylation site characterization was achieved via automated data-dependent CID-MS3 or ETD-MS/MS analysis due to the formation of the higher charge state precursor ions. Importantly, improved sequence coverage was observed using ETD-MS/MS following introduction of the sulfonium ion fixed charge, but with no detrimental effects on ETD fragmentation efficiency.

  8. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans.

    PubMed Central

    Bockmühl, D P; Ernst, J F

    2001-01-01

    Efg1p in the human fungal pathogen Candida albicans is a member of the conserved APSES class of proteins regulating morphogenetic processes in fungi. We have analyzed the importance for hyphal morphogenesis of a putative phosphorylation site for protein kinase A (PKA), threonine-206, within an Efg1p domain highly conserved among APSES proteins. Alanine substitution of T206, but not of the adjacent T207 and T208 residues, led to a block of hypha formation on solid and in liquid media, while a T206E exchange caused hyperfilamentation. The extent of the morphogenetic defect caused by the T206A mutation depended on hypha-induction conditions. Extragenous suppression of mutations in signaling components, including tpk2 and cek1 mutations, was achieved by wild-type- and T206E-, but not by the T206A-variant-encoding allele of EFG1. All muteins tested were produced at equal levels and at high production levels supported pseudohyphal formation. The results are consistent with a role of Efg1p as a central downstream component of a PKA-signaling pathway including Tpk2p or other PKA isoforms. Threonine-206 of Efg1p is essential as a putative phosphorylation target to promote hyphal induction by a subset of environmental cues. PMID:11290709

  9. THE ECOTOX DATABASE AND ECOLOGICAL SOIL SCREENING LEVEL (ECO-SSL) WEB SITES

    EPA Science Inventory

    The EPA's ECOTOX database (http://www.epa.gov/ecotox/) provides a web browser search interface for locating aquatic and terrestrial toxic effects information. Data on more than 8100 chemicals and 5700 terrestrial and aquatic species are included in the database. Information is ...

  10. Geologic structure mapping database Spent Fuel Test - Climax, Nevada Test Site

    SciTech Connect

    Yow, J.L. Jr.

    1984-12-04

    Information on over 2500 discontinuities mapped at the SFT-C is contained in the geologic structure mapping database. Over 1800 of these features include complete descriptions of their orientations. This database is now available for use by other researchers. 6 references, 3 figures, 2 tables.

  11. [PKA-regulated phosphorylation status of S149 and S321 sites of CDC25B inhibits mitosis of fertilized mouse eggs].

    PubMed

    Xiao, Jian-Ying; Liu, Chao; Sun, Xiao-Han; Yu, Bing-Zhi

    2012-02-25

    To further test whether protein kinase A (PKA) can affect the mitotic cell cycle, one-cell stage mouse embryos at S phase (22 h after hCG injection) were incubated in M16 medium containing various concentrations of H-89, a PKA inhibitor. With increasing concentrations of H-89 (0-50 μmol/L), the G(2) phase of eggs was decreased and the cleavage rate was accelerated. A concentration of 40 μmol/L H-89 led to all of the mouse eggs entering the M phase of mitosis. Furthermore, to study the role of PKA in regulating the phosphorylation status of S149 and S321 sites of cell division cycle 25B (CDC25B) on one-cell stage fertilized mouse eggs, pBSK-CDC25B-WT, pBSK-CDC25B-S149A, pBSK-CDC25B-S321A and pBSK-CDC25B-S149A/S321A were transcribed into mRNAs in vitro, then mRNAs were microinjected into S phase of mouse fertilized eggs and cultured in M16 medium pretreated with H-89. Then, the cleavage of fertilized eggs, maturation promoting factor (MPF) activity and phosphorylation status of CDC2-Tyr15 were observed. In the presence of 40 μmol/L H-89, the cleavage rate of fertilized eggs in CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups was significantly higher than that in the control groups, and the peak of MPF activity appeared in the CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups earlier than that in the control groups. CDC2-Tyr15 phosphorylation state was consistent with MPF activity. In conclusion, the present study suggests that PKA regulates the early development of mouse embryos by phosphorylation of S149 and S321 of CDC25B, which plays an important role in the regulation of G(2)/M transition in the mitotic cell cycle of fertilized mouse eggs. PMID:22348958

  12. Evaluating, Migrating, and Consolidating Databases and Applications for Long-Term Surveillance and Maintenance Activities at the Rocky Flats Site

    SciTech Connect

    Surovchak, S.; Marutzky, S.; Thompson, B.; Miller, K.; Labonte, E.

    2006-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is assuming responsibilities for long-term surveillance and maintenance (LTS and M) activities at the Rocky Flats Environmental Technology Site (RFETS) during fiscal year 2006. During the transition, LM is consolidating databases and applications that support these various functions into a few applications which will streamline future management and retrieval of data. This paper discussed the process of evaluating, migrating, and consolidating these databases and applications for LTS and M activities and provides lessons learned that will benefit future transitions. (authors)

  13. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode.

    PubMed

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J

    2015-01-01

    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype. PMID:26344213

  14. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor beta subunit and are required for binding of phospholipase C gamma and a 64-kilodalton protein, respectively.

    PubMed Central

    Valius, M; Bazenet, C; Kazlauskas, A

    1993-01-01

    Binding of platelet-derived growth factor (PDGF) to the PDGF receptor (PDGFR) beta subunit triggers receptor tyrosine phosphorylation and the stable association of a number of signal transduction molecules, including phospholipase C gamma (PLC gamma), the GTPase activating protein of ras (GAP), and phosphatidylinositol-3 kinase (PI3K). Previous reports have identified three PDGFR tyrosine phosphorylation sites in the kinase insert domain that are important for stable association of GAP and PI3K. Two of them, tyrosine (Y) 740, and Y-751 are required for the stable association of PI3K, while Y-771 is required for binding of GAP. Here we present data for two additional tyrosine phosphorylation sites, Y-1009 and Y-1021, that are both in the carboxy-terminal region of the PDGFR. Characterization of PDGFR mutants in which these phosphorylation sites are substituted with phenylalanine (F) indicated that Y-1021 and Y-1009 were required for the stable association of PLC gamma and a 64-kDa protein, respectively. An F-1009/F-1021 double mutant selectively failed to bind both PLC gamma and the 64-kDa protein, whereas all of the carboxy-terminal mutants bound wild-type levels of GAP and PI3K. The carboxy terminus encodes the complete binding site for PLC gamma, since a phosphorylated carboxy-terminal fusion protein selectively bound PLC gamma. To determine the biological consequences of failure to associate with PLC gamma, we measured PDGF-dependent inositol phosphate production and initiation of DNA synthesis. The PDGFR mutants that failed to associate with PLC gamma were not able to mediate the PDGF-dependent production of inositol phosphates. Since tyrosine phosphorylation of PLC gamma enhances its enzymatic activity, we speculated that PDGFR mutants that failed to activate PLC gamma were unable to mediate its tyrosine phosphorylation. Surprisingly, the F-1021 receptor mediated readily detectable levels of PDGF-dependent PLC gamma tyrosine phosphorylation. Thus, the

  15. Modification in hydrophobic packing of HAMP domain induces a destabilization of the auto-phosphorylation site in the histidine kinase CpxA.

    PubMed

    Martinez, Marlet; Duclert-Savatier, Nathalie; Betton, Jean-Michel; Alzari, Pedro M; Nilges, Michael; Malliavin, Thérèse E

    2016-10-01

    The histidine kinases belong to the family of two-component systems, which serves in bacteria to couple environmental stimuli to adaptive responses. Most of the histidine kinases are homodimers, in which the HAMP and DHp domains assemble into an elongated helical region flanked by two CA domains. Recently, X-ray crystallographic structures of the cytoplasmic region of the Escherichia coli histidine kinase CpxA were determined and a phosphotransferase-defective mutant, M228V, located in HAMP, was identified. In the present study, we recorded 1 μs molecular dynamics trajectories to compare the behavior of the WT and M228V protein dimers. The M228V modification locally induces the appearance of larger voids within HAMP as well as a perturbation of the number of voids within DHp, thus destabilizing the HAMP and DHp hydrophobic packing. In addition, a disruption of the stacking interaction between F403 located in the lid of the CA domain involved in the auto-phosphorylation and R296 located in the interacting DHp region, is more often observed in the presence of the M228V modification. Experimental modifications R296A and R296D of CpxA have been observed to reduce also the CpxA activity. These observations agree with the destabilization of the R296/F403 stacking, and could be the sign of the transmission of a conformational event taking place in HAMP to the auto-phosphorylation site of histidine kinase. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 670-682, 2016. PMID:27124288

  16. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1.

    PubMed Central

    Mohammadi, M; Honegger, A M; Rotin, D; Fischer, R; Bellot, F; Li, W; Dionne, C A; Jaye, M; Rubinstein, M; Schlessinger, J

    1991-01-01

    Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown. Images PMID:1656221

  17. SELEX_DB: a database on in vitro selected oligomers adapted for recognizing natural sites and for analyzing both SNPs and site-directed mutagenesis data.

    PubMed

    Ponomarenko, Julia V; Orlova, Galina V; Frolov, Anatoly S; Gelfand, Mikhail S; Ponomarenko, Mikhail P

    2002-01-01

    SELEX_DB is an online resource containing both the experimental data on in vitro selected DNA/RNA oligomers (aptamers) and the applets for recognition of these oligomers. Since in vitro experimental data are evidently system-dependent, the new release of the SELEX_DB has been supplemented by the database SYSTEM storing the experimental design. In addition, the recognition applet package, SELEX_TOOLS, applying in vitro selected data to annotation of the genome DNA, is accompanied by the cross-validation test database CROSS_TEST discriminating the sites (natural or other) related to in vitro selected sites out of random DNA. By cross-validation testing, we have unexpectedly observed that the recognition accuracy increases with the growth of homology between the training and test sets of protein binding sequences. For natural sites, the recognition accuracy was lower than that for the nearest protein homologs and higher than that for distant homologs and non-homologous proteins binding the common site. The current SELEX_DB release is available at http://wwwmgs.bionet.nsc.ru/mgs/systems/selex/. PMID:11752291

  18. Database of groundwater levels and hydrograph descriptions for the Nevada Test Site area, Nye County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Fenelon, Joseph M.

    2010-01-01

    Water levels in the database were quality assured and analyzed. Multiple conditions were assigned to each water‑level measurement to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed to each water-level measurement.

  19. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes

    PubMed Central

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B.

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5′→3′, 3′ →5′ or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically. Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm PMID:27515825

  20. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes.

    PubMed

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5'→3', 3' →5' or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically.Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm. PMID:27515825

  1. Interphase phosphorylation of lamin A.

    PubMed

    Kochin, Vitaly; Shimi, Takeshi; Torvaldson, Elin; Adam, Stephen A; Goldman, Anne; Pack, Chan-Gi; Melo-Cardenas, Johanna; Imanishi, Susumu Y; Goldman, Robert D; Eriksson, John E

    2014-06-15

    Nuclear lamins form the major structural elements that comprise the nuclear lamina. Loss of nuclear structural integrity has been implicated as a key factor in the lamin A/C gene mutations that cause laminopathies, whereas the normal regulation of lamin A assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 20 prime interphase phosphorylation sites, of which eight were high-turnover sites. We examined the roles of these latter sites by site-directed mutagenesis, followed by detailed microscopic analysis - including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and nuclear extraction techniques. The results reveal three phosphorylation regions, each with dominant sites, together controlling lamin A structure and dynamics. Interestingly, two of these interphase sites are hyper-phosphorylated in mitotic cells and one of these sites is within the sequence that is missing in progerin of the Hutchinson-Gilford progeria syndrome. We present a model where different phosphorylation combinations yield markedly different effects on the assembly, subunit turnover and the mobility of lamin A between, and within, the lamina, the nucleoplasm and the cytoplasm of interphase cells. PMID:24741066

  2. Casein Kinase 2 Binds to the C Terminus of Na+/H+ exchanger 3 (NHE3) and Stimulates NHE3 Basal Activity by Phosphorylating a Separate Site in NHE3

    PubMed Central

    Sarker, Rafiquel; Grønborg, Mads; Cha, Boyoung; Mohan, Sachin; Chen, Yueping; Pandey, Akhilesh; Litchfield, David

    2008-01-01

    Na+/H+ exchanger 3 (NHE3) is the epithelial-brush border isoform responsible for most intestinal and renal Na+ absorption. Its activity is both up- and down-regulated under normal physiological conditions, and it is inhibited in most diarrheal diseases. NHE3 is phosphorylated under basal conditions and Ser/Thr phosphatase inhibitors stimulate basal exchange activity; however, the kinases involved are unknown. To identify kinases that regulate NHE3 under basal conditions, NHE3 was immunoprecipitated; LC-MS/MS of trypsinized NHE3 identified a novel phosphorylation site at S719 of the C terminus, which was predicted to be a casein kinase 2 (CK2) phosphorylation site. This was confirmed by an in vitro kinase assay. The NHE3-S719A mutant but not NHE3-S719D had reduced NHE3 activity due to less plasma membrane NHE3. This was due to reduced exocytosis plus decreased plasma membrane delivery of newly synthesized NHE3. Also, NHE3 activity was inhibited by the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole DMAT when wild-type NHE3 was expressed in fibroblasts and Caco-2 cells, but the NHE3-S719 mutant was fully resistant to DMAT. CK2 bound to the NHE3 C-terminal domain, between amino acids 590 and 667, a site different from the site it phosphorylates. CK2 binds to the NHE3 C terminus and stimulates basal NHE3 activity by phosphorylating a separate single site on the NHE3 C terminus (S719), which affects NHE3 trafficking. PMID:18614797

  3. There must be a better way! Managing a corporate web site dynamically from a database

    SciTech Connect

    j.z. cohen

    1998-10-21

    This document is a set of slides available from http://www1.y12.org/lmes_sti/html/ycsdinf-98-8/index.htm that describes limitations of static web pages for conveying information, a plan for overcoming these limitations by generating web pages dynamically from a database, expected advantages and disadvantages of this method, design for a system using the method, and future plans.

  4. DBASS3 and DBASS5: databases of aberrant 3′- and 5′-splice sites

    PubMed Central

    Chivers, Martin; Hwang, Gyulin; Vorechovsky, Igor

    2011-01-01

    DBASS3 and DBASS5 provide comprehensive repositories of new exon boundaries that were induced by pathogenic mutations in human disease genes. Aberrant 5′- and 3′-splice sites were activated either by mutations in the consensus sequences of natural exon–intron junctions (cryptic sites) or elsewhere (‘de novo’ sites). DBASS3 and DBASS5 currently contain approximately 900 records of cryptic and de novo 3′- and 5′-splice sites that were produced by over a thousand different mutations in approximately 360 genes. DBASS3 and DBASS5 data can be searched by disease phenotype, gene, mutation, location of aberrant splice sites in introns and exons and their distance from authentic counterparts, by bibliographic references and by the splice-site strength estimated with several prediction algorithms. The user can also retrieve reference sequences of both aberrant and authentic splice sites with the underlying mutation. These data will facilitate identification of introns or exons frequently involved in aberrant splicing, mutation analysis of human disease genes and study of germline or somatic mutations that impair RNA processing. Finally, this resource will be useful for fine-tuning splice-site prediction algorithms, better definition of auxiliary splicing signals and design of new reporter assays. DBASS3 and DBASS5 are freely available at http://www.dbass.org.uk/. PMID:20929868

  5. Polo Kinase Phosphorylates Miro to Control ER-Mitochondria Contact Sites and Mitochondrial Ca(2+) Homeostasis in Neural Stem Cell Development.

    PubMed

    Lee, Seongsoo; Lee, Kyu-Sun; Huh, Sungun; Liu, Song; Lee, Do-Yeon; Hong, Seung Hyun; Yu, Kweon; Lu, Bingwei

    2016-04-18

    Mitochondria play central roles in buffering intracellular Ca²⁺ transients. While basal mitochondrial Ca²⁺ (Ca²⁺ mito) is needed to maintain organellar physiology, Ca²⁺ mito overload can lead to cell death. How Ca²⁺ mito homeostasis is regulated is not well understood. Here we show that Miro, a known component of the mitochondrial transport machinery, regulates Drosophila neural stem cell (NSC) development through Ca²⁺ mito homeostasis control, independent of its role in mitochondrial transport. Miro interacts with Ca²⁺ transporters at the ER-mitochondria contact site (ERMCS). Its inactivation causes Ca²⁺ mito depletion and metabolic impairment, whereas its overexpression results in Ca²⁺ mito overload, mitochondrial morphology change, and apoptotic response. Both conditions impaired NSC lineage progression. Ca²⁺ mito homeostasis is influenced by Polo-mediated phosphorylation of a conserved residue in Miro, which positively regulates Miro localization to, and the integrity of, ERMCS. Our results elucidate a regulatory mechanism underlying Ca²⁺ mito homeostasis and how its dysregulation may affect NSC metabolism/development and contribute to disease. PMID:27093086

  6. The abandoned surface mining sites in the Czech Republic: mapping and creating a database with a GIS web application

    NASA Astrophysics Data System (ADS)

    Pokorný, Richard; Tereza Peterková, Marie

    2016-05-01

    Based on the vectorization of the 55-volume book series the Quarry Inventories of the Czechoslovak Republic/Czechoslovak Socialist Republic, published in the years 1932-1961, a new comprehensive database was built comprising 9958 surface mining sites of raw materials, which were active in the first half of the 20th century. The mapped area covers 40.9 % of the territory of the Czech Republic. For the purposes of visualization, a map application, the Quarry Inventories Online, was created that enables the data visualization.

  7. 65-kilodalton protein phosphorylated by interleukin 2 stimulation bears two putative actin-binding sites and two calcium-binding sites

    SciTech Connect

    Zu, Youli; Shigesada, Katsuya; Hanaoka, Masao; Namba, Yuziro ); Nishida, Eisuke ); Kubota, Ichiro ); Kohno, Michiaki )

    1990-09-11

    The authors have previously characterized a 65-kilodalton protein (p65) as an interleukin 2 stimulated phosphoprotein in human T cells and showed that three endopeptide sequences of p65 are present in the sequence of l-plastin. In this paper, they present the complete primary structure of p65 based on the cDNA isolated from a human T lymphocyte (KUT-2) cDNA library. Analysis of p65 sequences and the amino acid composition of cleaved p65 N-terminal peptide indicated that the deduced p65 amino acid sequence exactly coincides with that of l-plastin over the C-terminal 580 residues and has a 57-residue extension at the N-terminus to l-plastin. Computer-assisted structural analysis revealed that p65 is a multidomain molecule involving at least three intriguing functional domains: two putative calcium-binding sites along the N-terminal 80 amino acid residues; a putative calmodulin-binding site following the calcium-binding region; and two tandem repeats of putative actin-binding domains in its middle and C-terminal parts, each containing approximately 240 amino acid residues. These results suggest that p65 belongs to actin-binding proteins.

  8. RESOPS: A Database for Analyzing the Correspondence of RNA Editing Sites to Protein Three-Dimensional Structures

    PubMed Central

    Yura, Kei; Sulaiman, Sintawee; Hatta, Yosuke; Shionyu, Masafumi; Go, Mitiko

    2009-01-01

    Transcripts from mitochondrial and chloroplast DNA of land plants often undergo cytidine to uridine conversion-type RNA editing events. RESOPS is a newly built database that specializes in displaying RNA editing sites of land plant organelles on protein three-dimensional (3D) structures to help elucidate the mechanisms of RNA editing for gene expression regulation. RESOPS contains the following information: unedited and edited cDNA sequences with notes for the target nucleotides of RNA editing, conceptual translation from the edited cDNA sequence in pseudo-UniProt format, a list of proteins under the influence of RNA editing, multiple amino acid sequence alignments of edited proteins, the location of amino acid residues coded by codons under the influence of RNA editing in protein 3D structures and the statistics of biased distributions of the edited residues with respect to protein structures. Most of the data processing procedures are automated; hence, it is easy to keep abreast of updated genome and protein 3D structural data. In the RESOPS database, we clarified that the locations of residues switched by RNA editing are significantly biased to protein structural cores. The integration of different types of data in the database also help advance the understanding of RNA editing mechanisms. RESOPS is accessible at http://cib.cf.ocha.ac.jp/RNAEDITING/. PMID:19808808

  9. Prototype Database and User's Guide of Saturated Zone Hydraulic Properties forthe Hanford Site

    SciTech Connect

    Thorne, Paul D.; Newcomer, Darrell R.

    2002-09-01

    Predicting the movement of contaminants in groundwater beneath the Hanford Site is important for both understanding the impacts of these contaminants and for planning effective cleanup activities. These predictions are based on knowledge of the distribution of hydraulic properties within the aquifers underlying the Hanford Site. The Characterization of Systems (CoS) Task, under the Groundwater/Vadose Integration Project, is responsible for establishing a consistent set of data, parameters, and conceptual models to support estimates contaminant migration and impact.

  10. Properties of phosphorylated thymidylate synthase.

    PubMed

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. PMID:26315778

  11. REFERENCE AREA DATABASE FOR THE SAN FRANCISCO DEEP OCEAN DISPOSAL SITE (SF-DODS)

    EPA Science Inventory

    In order for a dredging project to be authorized to dispose of dredged material at the San Francisco Deep Ocean Disposal Site (SF-DODS), sediment evaluations (including, as appropriate, physical, chemical, and biological testing) must first be conducted. EPA determines the suita...

  12. An autophosphorylation site database for leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a family-wide study to identify and characterize sites of autophosphorylation in 73 representative LRR RLKs of the 223 member LRR RLK family in Arabidopsis thaliana. His-tagged constructs of intact cytoplasmic domains (CDs) for 73 of 223 A. thaliana LRR RLKs were cloned into E. coli BL-...

  13. Endothelial CD47 promotes Vascular Endothelial-cadherin tyrosine phosphorylation and participates in T-cell recruitment at sites of inflammation in vivo

    PubMed Central

    Azcutia, Veronica; Stefanidakis, Michael; Tsuboi, Naotake; Mayadas, Tanya; Croce, Kevin J.; Fukuda, Daiju; Aikawa, Masanori; Newton, Gail; Luscinskas, Francis W.

    2012-01-01

    At sites of inflammation, endothelial adhesion molecules bind leukocytes and transmit signals required for transendothelial migration (TEM). We previously reported that adhesive interactions between endothelial cell CD47 and leukocyte Signal Regulatory Proteinγ (SIRPγ) regulate human T-cell TEM. The role of endothelial CD47 in T-cell TEM in vivo, however, has not been explored. Here, CD47−/− mice showed reduced recruitment of blood T-cells as well as neutrophils and monocytes in a dermal air pouch model of TNF-α induced inflammation. Reconstitution of CD47−/− mice with wild type bone marrow (BM) cells did not restore leukocyte recruitment to the air pouch, indicating a role for endothelial CD47. The defect in leukocyte TEM in the CD47−/− endothelium was corroborated by intravital microscopy of inflamed cremaster muscle microcirculation in BM chimera mice. In an in vitro human system, CD47 on both HUVEC and T-cells were required for TEM. Although previous studies showed CD47-dependent signaling required Gαi coupled pathways, this was not the case for endothelial CD47 because pertussis toxin (PTX), which inactivates Gαi, had no inhibitory effect, whereas Gαi was required by the T-cell for TEM. We next investigated the endothelial CD47-dependent signaling events that accompany leukocyte TEM. Antibody-induced crosslinking of CD47 revealed robust actin cytoskeleton reorganization and Src and Pyk-2 kinase dependent tyrosine phosphorylation of the VE-cadherin cytoplasmic tail. This signaling was PTX insensitive suggesting that endothelial CD47 signaling is independent of Gαi. These findings suggest that engagement of endothelial CD47 by its ligands triggers “outside-in” signals in endothelium that facilitate leukocyte TEM. PMID:22815286

  14. Mycobacterium tuberculosis supports protein tyrosine phosphorylation

    PubMed Central

    Kusebauch, Ulrike; Ortega, Corrie; Ollodart, Anja; Rogers, Richard S.; Sherman, David R.; Moritz, Robert L.; Grundner, Christoph

    2014-01-01

    Reversible protein phosphorylation determines growth and adaptive decisions in Mycobacterium tuberculosis (Mtb). At least 11 two-component systems and 11 Ser/Thr protein kinases (STPKs) mediate phosphorylation on Asp, His, Ser, and Thr. In contrast, protein phosphorylation on Tyr has not been described previously in Mtb. Here, using a combination of phospho-enrichment and highly sensitive mass spectrometry, we show extensive protein Tyr phosphorylation of diverse Mtb proteins, including STPKs. Several STPKs function as dual-specificity kinases that phosphorylate Tyr in cis and in trans, suggesting that dual-specificity kinases have a major role in bacterial phospho-signaling. Mutation of a phosphotyrosine site of the essential STPK PknB reduces its activity in vitro and in live Mtb, indicating that Tyr phosphorylation has a functional role in bacterial growth. These data identify a previously unrecognized phosphorylation system in a human pathogen that claims ∼1.4 million lives every year. PMID:24927537

  15. A Novel Phosphorylation Site, Serine 199, in the C-Terminus of Cardiac Troponin I Regulates Calcium Sensitivity and Susceptibility to Calpain-Induced Proteolysis

    PubMed Central

    Wijnker, Paul J.M.; Li, Yuejin; Zhang, Pingbo; Foster, D. Brian; dos Remedios, Cris; Van Eyk, Jennifer E.; Stienen, Ger J.M.; Murphy, Anne M.; van der Velden, Jolanda

    2015-01-01

    Phosphorylation of cardiac troponin I (cTnI) by protein kinase C (PKC) is implicated in cardiac dysfunction. Recently, Serine 199 (Ser199) was identified as a target for PKC phosphorylation and increased Ser199 phosphorylation occurs in end-stage failing compared with non-failing human myocardium. The functional consequences of cTnI-Ser199 phosphorylation in the heart are unknown. Therefore, we investigated the impact of phosphorylation of cTnI-Ser199 on myofilament function in human cardiac tissue and the susceptibility of cTnI to proteolysis. cTnI-Ser199 was replaced by aspartic acid (199D) or alanine (199A) to mimic phosphorylation and dephosphorylation, respectively, with recombinant wild-type (Wt) cTn as a negative control. Force development was measured at various [Ca2+] and at sarcomere lengths of 1.8 and 2.2 μm in demembranated cardiomyocytes in which endogenous cTn complex was exchanged with the recombinant human cTn complexes. In idiopathic dilated cardiomyopathy samples, myofilament Ca2+-sensitivity (pCa50) at 2.2 μm was significantly higher in 199D (pCa50=5.79±0.01) compared to 199A (pCa50=5.65±0.01) and Wt (pCa50=5.66±0.02) at ~63% cTn exchange. Myofilament Ca2+-sensitivity was significantly higher even with only 5.9±2.5% 199D exchange compared to 199A, and saturated at 12.3±2.6% 199D exchange. Ser199 pseudo-phosphorylation decreased cTnI binding to both actin and actin-tropomyosin. Moreover, altered susceptibility of cTnI to proteolysis by calpain I was found when Ser199 was pseudo-phosphorylated. Our data demonstrate that low levels of cTnI-Ser199 pseudo-phosphorylation (~6%) increase myofilament Ca2+-sensitivity in human cardiomyocytes, most likely by decreasing the binding affinity of cTnI for actin-tropomyosin. In addition, cTnI-Ser199 pseudo-phosphorylation or mutation regulates calpain I mediated proteolysis of cTnI. PMID:25771144

  16. Studies on the autophosphorylation of the insulin receptor from human placenta. Analysis of the sites phosphorylated by two-dimensional peptide mapping.

    PubMed Central

    Tavaré, J M; Denton, R M

    1988-01-01

    1. A partially purified preparation of human placental insulin receptors was incubated with [gamma-32P]ATP in the presence or absence of insulin. The 32P-labelled insulin-receptor beta-subunits were then isolated, cleaved with trypsin followed by protease V8 and the [32P]phosphopeptides generated were analysed by thin layer electrophoresis and chromatography. This approach revealed that insulin stimulates autophosphorylation of the insulin-receptor beta-subunit in vitro on at least seven tyrosine residues distributed among three distinct domains. 2. One domain (domain 2), containing tyrosine residues 1146, 1150 and 1151 was the most rapidly phosphorylated and could be recovered as mono-, di- and triphosphorylated peptides cleaved by trypsin at Arg-1143 and either Lys-1153 or Lys-1156. Multiple phosphorylation of this domain appears to partially inhibit the cleavage at Lys-1153 by trypsin. 3. In a second domain (domain 3) containing two phosphorylated tyrosine residues at positions 1316 and 1322 the tyrosines were phosphorylated more slowly than those in domain 2. This domain is close to the C-terminus of the beta-subunit polypeptide chain. 4. At least two further tyrosine residues appeared to be phosphorylated after those in domains 2 and 3. These residues probably residue within a domain lying in close proximity to the inner face of the plasma membrane containing tyrosines 953, 960 and 972, but conclusive evidence is still required. 5. The two-dimensional thin-layer analysis employed in this study to investigate insulin-receptor phosphorylation has several advantages over previous methods based on reverse-phase chromatography. It allows greater resolution of 32P-labelled tryptic peptides and, when coupled to radioautography, is considerably more sensitive. The approach can be readily adapted to study phosphorylation of the insulin receptor within intact cells. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3166375

  17. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells.

    PubMed

    Cobb, Melanie M; Austin, Daniel C; Sack, Jon T; Trimmer, James S

    2015-12-01

    The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation. PMID:26442584

  18. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation

    PubMed Central

    Rawlings, Neil D.

    2016-01-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  19. Digital geologic map database of the Nevada Test Site area, Nevada

    SciTech Connect

    Wahl, Ronald R.; Sawyer, David A.; Minor, Scott A.; Carr, Michael D.; Cole, James C.; Swadley, W.C.; Laczniak, Randell J.; Warren, Richard G.; Green, Katryn S.; Engle, Colin M.

    1997-09-09

    Forty years of geologic investigations at the Nevada Test Site (NTS) have been digitized. These data include all geologic information that: (1) has been collected, and (2) can be represented on a map within the map borders at the map scale is included in the map digital coverages. The following coverages are included with this dataset: Coverage Type Description geolpoly Polygon Geologic outcrops geolflts line Fault traces geolatts Point Bedding attitudes, etc. geolcald line Caldera boundaries geollins line Interpreted lineaments geolmeta line Metamorphic gradients. The above coverages are attributed with numeric values and interpreted information. The entity files documented below show the data associated with each coverage.

  20. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    SciTech Connect

    Olson, R. J.; Holladay, S. K.; Cook, R. B.; Falge, E.; Baldocchi, D.; Gu, L.

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  1. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.

    PubMed

    Lua, Rhonald C; Wilson, Stephen J; Konecki, Daniel M; Wilkins, Angela D; Venner, Eric; Morgan, Daniel H; Lichtarge, Olivier

    2016-01-01

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. PMID:26590254

  2. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures

    PubMed Central

    Lua, Rhonald C.; Wilson, Stephen J.; Konecki, Daniel M.; Wilkins, Angela D.; Venner, Eric; Morgan, Daniel H.; Lichtarge, Olivier

    2016-01-01

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. PMID:26590254

  3. Cellular commitment to reentry into the cell cycle after stalled DNA is determined by site-specific phosphorylation of Chk1 and PTEN

    PubMed Central

    Martin, Sarah A.; Ouchi, Toru

    2016-01-01

    In this study, we show that depletion of Chk1 by small interfering RNA (siRNA) results in failure of reentry to the cell cycle after DNA replication has been stalled by exposure to hydroxyurea (HU). Casein kinase II (CKII) is degraded in these cells in a proteasome-dependent manner, resulting in decreased phosphorylation and PTEN levels. We show that phosphorylation of Chk1 at Ser317 but not at Ser345 is required for phosphorylation of PTEN at Thr383 by CKII, making cell cycle reentry after HU treatment possible. Like Chk1 depletion, loss of PTEN due to siRNA is followed by inability to return to the cell cycle following HU. In Chk1-siRNA cells, reintroduction of wild-type PTEN but not PTEN T383A restores the ability of the cell to reenter the G2-M phase of the cell cycle after stalled DNA replication. We conclude that, in response to stalled DNA replication, Chk1 is phosphorylated at Ser317 by ATR resulting in stabilization of CKII, which in turn leads to phosphorylation of PTEN at Thr383. PMID:18723495

  4. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    SciTech Connect

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-07-08

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V{sub s30}, etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  5. Alaska Geothermal Sites Map and Database: Bringing together legacy and new geothermal data for research, exploration and development

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Harun, N. T.; Hughes, C. A.; Weakland, J. R.; Cameron, C. E.

    2013-12-01

    Geothermal exploration activities in Alaska from the late 1970s into the 1980s generated vast quantities of scientific data that currently is in unpublished, forgotten and obscure, as well as published formats. Alaska has 61 hot springs (hotter than 50°C) and 34 'warm to cool springs' (cooler than 50°C). Thirty-seven thermal springs are located within the Aleutian and Alaska Peninsula volcanic arc into and are related to elevated heat flows in areas of arc volcanism as well as crustal scale faults associated with accretionary tectonism. The central interior belt that extends from the Seward Peninsula to Circle Hot Springs contains 37 thermal springs that formed due to mostly extensional tectonic forces. An additional 17 thermal springs are in southeast Alaska and 4 are in the Wrangell Mountains. A new cycle of geothermal exploration is underway in Alaska and is producing a wealth of new geothermal data. The Alaska Division of Geological and Geophysical Surveys (ADGGS), funded by the National Geothermal Data System, is compiling both new and legacy geothermal data into a comprehensive database accessible on the ADGGS website. ADGGS has created a new ';Geothermal Sites of Alaska Map' and associated database that includes data on geothermal hot springs, direct use of geothermal resources, volcanic vents, aqueous geochemistry, borehole temperatures, core descriptions, rock chemistry, earthquakes in proximity to hot springs, and active faults. Geothermal hot springs includes locality, temperature, flow rate, sources and related resources. Direct use of geothermal resources contains facilities, capacity, energy use, temperature, flow rate and contact information from geothermal hot springs that are or have recently been used for recreational use, space heating, agricultural or energy use. Volcanic vents records 395 volcanic vents and fumaroles throughout the state that are Holocene or younger. It includes their age, location, elevation, geologic history, composition

  6. Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database.

    PubMed

    Fay, R M; Mumtaz, M M

    1996-01-01

    Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund) section 104 mandate, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 USC 9604 (i)(2), the Agency for Toxic Substances and Disease Registry (ATSDR) is to identify individual substances and combinations of substances that pose the greatest public health hazard at hazardous waste sites. This has led to certain mandated activities of the Agency, including development of toxicological profiles, identification of data gaps, and, ultimately, establishment of a research agenda. The Agency has also developed HazDat, a database that captures pertinent information from public health assessments conducted at hazardous waste sites. As a preliminary step, data from sites have been analysed to identify the combinations of chemicals found in various environmental media. The most frequently found combinations were perchloroethylene (PERC) and trichloroethylene (TCE) in water (23.5% of sites); chromium (Cr) and lead (Pb) in soil (20.5%); benzene and toluene in air (3.5%); PERC, 1,1,1-trichloroethane (1,1,1-TCA) and TCE in water (11.6%); Cr, cadmium (Cd) and Pb in soil (12.0%); and benzene, PERC and TCE in air (2.2%). The findings of this analysis can be enhanced by factoring into the algorithm paramenters such as toxicity, source contribution, and likelihood of human exposure similar to that used for the Agency's priority list of 275 single substances. Assessment of the impact of chemical mixtures on human health is a formidable task, and estimating the toxicity of such mixtures, including the role of chemical interactions, is an equally demanding challenge. Because limited experimental data exist for chemical interactions, alternative methods such as predictive approaches and in vitro techniques are needed to address the many substances and their potential combinations. PMID:9119332

  7. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  8. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome

    PubMed Central

    Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A.

    2015-01-01

    A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. PMID:25324314

  9. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome.

    PubMed

    Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A

    2015-01-01

    A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. PMID:25324314

  10. Asp295 stabilizes the active-site loop structure of pyruvate dehydrogenase, facilitating phosphorylation of Ser292 by pyruvate dehydrogenase-kinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an invitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thaliana a2b2-hetero tetrameric pyruvate dehydrogenase (E1) plus A.thaliana E1-kinase (AtPDK). Upon addition of MgATP...

  11. The importance of intrinsic disorder for protein phosphorylation.

    PubMed

    Iakoucheva, Lilia M; Radivojac, Predrag; Brown, Celeste J; O'Connor, Timothy R; Sikes, Jason G; Obradovic, Zoran; Dunker, A Keith

    2004-01-01

    Reversible protein phosphorylation provides a major regulatory mechanism in eukaryotic cells. Due to the high variability of amino acid residues flanking a relatively limited number of experimentally identified phosphorylation sites, reliable prediction of such sites still remains an important issue. Here we report the development of a new web-based tool for the prediction of protein phosphorylation sites, DISPHOS (DISorder-enhanced PHOSphorylation predictor, http://www.ist.temple. edu/DISPHOS). We observed that amino acid compositions, sequence complexity, hydrophobicity, charge and other sequence attributes of regions adjacent to phosphorylation sites are very similar to those of intrinsically disordered protein regions. Thus, DISPHOS uses position-specific amino acid frequencies and disorder information to improve the discrimination between phosphorylation and non-phosphorylation sites. Based on the estimates of phosphorylation rates in various protein categories, the outputs of DISPHOS are adjusted in order to reduce the total number of misclassified residues. When tested on an equal number of phosphorylated and non-phosphorylated residues, the accuracy of DISPHOS reaches 76% for serine, 81% for threonine and 83% for tyrosine. The significant enrichment in disorder-promoting residues surrounding phosphorylation sites together with the results obtained by applying DISPHOS to various protein functional classes and proteomes, provide strong support for the hypothesis that protein phosphorylation predominantly occurs within intrinsically disordered protein regions. PMID:14960716

  12. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques.

    PubMed Central

    Pelton, J. G.; Torchia, D. A.; Meadow, N. D.; Roseman, S.

    1993-01-01

    IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed. PMID:8518729

  13. RLIMS-P: an online text-mining tool for literature-based extraction of protein phosphorylation information

    PubMed Central

    Torii, Manabu; Li, Gang; Li, Zhiwen; Oughtred, Rose; Diella, Francesca; Çelen, Irem; Arighi, Cecilia N.; Huang, Hongzhan; Vijay-Shanker, K.; Wu, Cathy H.

    2014-01-01

    Protein phosphorylation is central to the regulation of most aspects of cell function. Given its importance, it has been the subject of active research as well as the focus of curation in several biological databases. We have developed Rule-based Literature Mining System for protein Phosphorylation (RLIMS-P), an online text-mining tool to help curators identify biomedical research articles relevant to protein phosphorylation. The tool presents information on protein kinases, substrates and phosphorylation sites automatically extracted from the biomedical literature. The utility of the RLIMS-P Web site has been evaluated by curators from Phospho.ELM, PhosphoGRID/BioGrid and Protein Ontology as part of the BioCreative IV user interactive task (IAT). The system achieved F-scores of 0.76, 0.88 and 0.92 for the extraction of kinase, substrate and phosphorylation sites, respectively, and a precision of 0.88 in the retrieval of relevant phosphorylation literature. The system also received highly favorable feedback from the curators in a user survey. Based on the curators’ suggestions, the Web site has been enhanced to improve its usability. In the RLIMS-P Web site, phosphorylation information can be retrieved by PubMed IDs or keywords, with an option for selecting targeted species. The result page displays a sortable table with phosphorylation information. The text evidence page displays the abstract with color-coded entity mentions and includes links to UniProtKB entries via normalization, i.e. the linking of entity mentions to database identifiers, facilitated by the GenNorm tool and by the links to the bibliography in UniProt. Log in and editing capabilities are offered to any user interested in contributing to the validation of RLIMS-P results. Retrieved phosphorylation information can also be downloaded in CSV format and the text evidence in the BioC format. RLIMS-P is freely available. Database URL: http://www.proteininformationresource.org/rlimsp/ PMID:25122463

  14. A User’s Guide to the Comprehensive Water Quality Database for Groundwater in the Vicinity of the Nevada Test Site, Rev. No.: 1

    SciTech Connect

    Farnham, Irene

    2006-09-01

    This water quality database (viz.GeochemXX.mdb) has been developed as part of the Underground Test Area (UGTA) Program with the cooperation of several agencies actively participating in ongoing evaluation and characterization activities under contract to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The database has been constructed to provide up-to-date, comprehensive, and quality controlled data in a uniform format for the support of current and future projects. This database provides a valuable tool for geochemical and hydrogeologic evaluations of the Nevada Test Site (NTS) and surrounding region. Chemistry data have been compiled for groundwater within the NTS and the surrounding region. These data include major ions, organic compounds, trace elements, radionuclides, various field parameters, and environmental isotopes. Colloid data are also included in the database. The GeochemXX.mdb database is distributed on an annual basis. The extension ''XX'' within the database title is replaced by the last two digits of the release year (e.g., Geochem06 for the version released during the 2006 fiscal year). The database is distributed via compact disc (CD) and is also uploaded to the Common Data Repository (CDR) in order to make it available to all agencies with DOE intranet access. This report provides an explanation of the database configuration and summarizes the general content and utility of the individual data tables. In addition to describing the data, subsequent sections of this report provide the data user with an explanation of the quality assurance/quality control (QA/QC) protocols for this database.

  15. Exploring Site-Specific N-Glycosylation Microheterogeneity of Haptoglobin using Glycopeptide CID Tandem Mass Spectra and Glycan Database Search

    PubMed Central

    Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav

    2013-01-01

    Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http

  16. Exploring site-specific N-glycosylation microheterogeneity of haptoglobin using glycopeptide CID tandem mass spectra and glycan database search.

    PubMed

    Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav; Edwards, Nathan

    2013-08-01

    Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something that detached N-glycan and deglycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy that takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false discovery rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at a false discovery rate of 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at a false discovery rate of 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http

  17. The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4alpha activities and introduces a PKA phosphorylation site in its DNA-binding domain.

    PubMed

    Oxombre, Bénédicte; Kouach, Mostafa; Moerman, Ericka; Formstecher, Pierre; Laine, Bernard

    2004-11-01

    HNF4alpha (hepatocyte nuclear factor 4alpha) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic beta-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4alpha gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115-->Ser) HNF4alpha mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4alpha-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic beta-cell lines, this mutation resulted in strong impairments of HNF4alpha transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1alpha, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115-->Glu) mutation mimicking phosphorylation reduced HNF4alpha DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4alpha function. PMID:15233628

  18. The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4α activities and introduces a PKA phosphorylation site in its DNA-binding domain

    PubMed Central

    2004-01-01

    HNF4α (hepatocyte nuclear factor 4α) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic β-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4α gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115→Ser) HNF4α mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4α-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic β-cell lines, this mutation resulted in strong impairments of HNF4α transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1α, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115→Glu) mutation mimicking phosphorylation reduced HNF4α DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4α function. PMID:15233628

  19. Protein phosphorylation in chloroplasts - a survey of phosphorylation targets.

    PubMed

    Baginsky, Sacha

    2016-06-01

    The development of new software tools, improved mass spectrometry equipment, a suite of optimized scan types, and better-quality phosphopeptide affinity capture have paved the way for an explosion of mass spectrometry data on phosphopeptides. Because phosphoproteomics achieves good sensitivity, most studies use complete cell extracts for phosphopeptide enrichment and identification without prior enrichment of proteins or subcellular compartments. As a consequence, the phosphoproteome of cell organelles often comes as a by-product from large-scale studies and is commonly assembled from these in meta-analyses. This review aims at providing some guidance on the limitations of meta-analyses that combine data from analyses with different scopes, reports on the current status of knowledge on chloroplast phosphorylation targets, provides initial insights into phosphorylation site conservation in different plant species, and highlights emerging information on the integration of gene expression with metabolism and photosynthesis by means of protein phosphorylation. PMID:26969742

  20. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system

    PubMed Central

    Tudor, Catalina O.; Ross, Karen E.; Li, Gang; Vijay-Shanker, K.; Wu, Cathy H.; Arighi, Cecilia N.

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein–protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation

  1. Phosphorylation of Thr-948 at the C terminus of the plasma membrane H(+)-ATPase creates a binding site for the regulatory 14-3-3 protein.

    PubMed Central

    Svennelid, F; Olsson, A; Piotrowski, M; Rosenquist, M; Ottman, C; Larsson, C; Oecking, C; Sommarin, M

    1999-01-01

    The plant plasma membrane H(+)-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H(+)-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin. A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H(+)-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H(+)-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H(+)-ATPase and that is phosphorylated on Thr-948 prevents the in vitro activation of the H(+)-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin. Furthermore, binding of 14-3-3 to the H(+)-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV. Finally, by complementing yeast that lacks its endogenous H(+)-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H(+)-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H(+)-ATPase in vivo. Indeed, replacing Thr-948 in the plant H(+)-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H(+)-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H(+)-ATPase activity in the plant and thus for plant growth. PMID:10590165

  2. Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada 1957-2005.

    SciTech Connect

    Joseph M. Fenelon

    2006-08-15

    More than 1,200 water-level measurements from 1957 to 2005 in the Rainier Mesa area of the Nevada Test Site were quality assured and analyzed. Water levels were measured from 50 discrete intervals within 18 boreholes and from 4 tunnel sites. An interpretive database was constructed that describes water-level conditions for each water level measured in the Rainier Mesa area. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes hydrograph narratives that describe the water-level history of each well.

  3. Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada, 1957-2005

    USGS Publications Warehouse

    Fenelon, Joseph M.

    2006-01-01

    More than 1,200 water-level measurements from 1957 to 2005 in the Rainier Mesa area of the Nevada Test Site were quality assured and analyzed. Water levels were measured from 50 discrete intervals within 18 boreholes and from 4 tunnel sites. An interpretive database was constructed that describes water-level conditions for each water level measured in the Rainier Mesa area. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes hydrograph narratives that describe the water-level history of each well.

  4. Third year nursing students' understanding of how to find and evaluate information from bibliographic databases and Internet sites.

    PubMed

    Jacobsen, Hilary E; Andenæs, Randi

    2011-11-01

    The aim of this study was to increase undergraduate nursing students' knowledge of finding and evaluating information from selected bibliographic databases and Internet sites. A quasi-experimental design was adopted. The 2004 autumn cohort (n=480) was divided into two approximately equal groups at the beginning of their studies. One group was subjected to a greater number of assignments requiring them to find and evaluate bibliographic and Internet-based information. The assignments were spread throughout the curriculum. Questionnaires were used to collect data. The low response rate makes generalizing the findings difficult. Only small differences were demonstrated between the knowledge of the revised assignment group and that of the other students. Both groups had a poor understanding of the use of important search and evaluation techniques. The results indicate that strategies proven in one context are not necessarily as effective in a new context and that more research is needed into which learning activities best enhance the development of information literacy skills during undergraduate nursing education. PMID:21288607

  5. The sites of phosphorylation by protein kinase C and an intact SH2 domain are required for the enhanced response to beta-adrenergic agonists in cells overexpressing c-src.

    PubMed

    Moyers, J S; Bouton, A H; Parsons, S J

    1993-04-01

    Previously we demonstrated that C3H10T1/2 murine fibroblasts overexpressing avian c-src exhibit elevated levels of cyclic AMP (cAMP) in response to beta-adrenergic agonists compared with that in control cells and that this enhanced response requires c-src kinase activity (W. A. Bushman, L. K. Wilson, D. K. Luttrell, J. S. Moyers, and S. J. Parsons, Proc. Natl. Acad. Sci. USA 87:7462-7466, 1990). However, it is not yet known which components of the beta-adrenergic receptor pathway, if any, interact with pp60c-src. It has recently been shown that immune complexes of pp60c-src phosphorylate recombinant G alpha proteins in vitro to stoichiometric levels, resulting in alterations of GTP binding and GTPase activity (W. P. Hausdorff, J. A. Pitcher, D. K. Luttrell, M. E. Linder, H. Kurose, S. J. Parsons, M. G. Caron, and R. J. Lefkowitz, Proc. Natl. Acad. Sci. USA 89:5720-5724, 1992), raising the possibility that the Gs alpha protein may be an in vivo target for the interaction with pp60c-src. To further characterize the involvement of pp60c-src in the beta-adrenergic signalling pathway, we have overexpressed, in 10T1/2 cells, pp60c-src containing mutations in several domains which are believed to be important for signalling processes. In this study we show that the sites of phosphorylation by protein kinase C (PKC) (Ser-12 and Ser-48) as well as the SH2 region of pp60c-src are required for the enhanced response of c-src overexpressors to beta-agonist stimulation. Mutation at the site of myristylation (Gly-2) results in a decrease in the enhanced response, while mutation at the site of phosphorylation by cAMP-dependent protein kinase (Ser-17) has no effect. Two-dimensional phosphotryptic analyses indicate that phosphorylation on Ser-12 and Ser-48 in unstimulated cells is associated with the ability of overexpressed pp60c-src to potentiate beta-adrenergic signalling. Cells overexpressing wild-type c-src also exhibit enhanced cAMP accumulation upon treatment with cholera

  6. The EXOSAT database system. Available databases.

    NASA Astrophysics Data System (ADS)

    Barron, C.

    1991-02-01

    This User's Guide describes the databases that are currently available by remote login to the EXOSAT/ESTEC site of the EXOSAT database system. This includes where ever possible the following: brief descriptions of each observatory, telescope and instrument references to more complete observatory descriptions a list of the contents of each database and how it was generated, parameter descriptions.

  7. Drinking Water Treatability Database (Database)

    EPA Science Inventory

    The drinking Water Treatability Database (TDB) will provide data taken from the literature on the control of contaminants in drinking water, and will be housed on an interactive, publicly-available USEPA web site. It can be used for identifying effective treatment processes, rec...

  8. Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment.

    PubMed

    Wang, Hui; Tu, Zong-Cai; Liu, Guang-Xian; Zhang, Lu; Chen, Yuan

    2016-11-01

    The specific phosphorylation sites and degree of phosphorylation (DP) at each site are directly related to protein's structure and functional properties. Thus, characterizing the introduced phosphate groups is of great importance. This study was to monitor the phosphorylation sites, DP and the number of phosphorylation sites in P-Oval achieved by dry heating in the presence of pyrophosphate for 1, 2 and 5days by using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Two phosphorylation sites were found in natural ovalbumin, but the number of phosphorylation sites increased to 8, 8 and 10 after dry-heating phosphorylation for 1, 2 and 5days, respectively. In addition, dual-phosphorylated peptides were detected for samples without extensive heating. The phosphorylation sites were found to be mainly on Ser residues, which could be the preferred phosphorylation site for dry heating in the presence of pyrophosphate. PMID:27211632

  9. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity. PMID:19218245

  10. Phosphorylation-independent dual-site binding of the FHA domain of KIF13 mediates phosphoinositide transport via centaurin [alpha]1

    SciTech Connect

    Tong, Yufeng; Tempel, Wolfram; Wang, Hui; Yamada, Kaori; Shen, Limin; Senisterra, Guillermo A.; MacKenzie, Farrell; Chishti, Athar H.; Park, Hee-Won

    2011-11-07

    Phosphatidylinositol 3,4,5-triphosphate (PIP3) plays a key role in neuronal polarization and axon formation. PIP3-containing vesicles are transported to axon tips by the kinesin KIF13B via an adaptor protein, centaurin {alpha}1 (CENTA1). KIF13B interacts with CENTA1 through its forkhead-associated (FHA) domain. We solved the crystal structures of CENTA1 in ligand-free, KIF13B-FHA domain-bound, and PIP3 head group (IP4)-bound conformations, and the CENTA1/KIF13B-FHA/IP4 ternary complex. The first pleckstrin homology (PH) domain of CENTA1 specifically binds to PIP3, while the second binds to both PIP3 and phosphatidylinositol 3,4-biphosphate (PI(3,4)P2). The FHA domain of KIF13B interacts with the PH1 domain of one CENTA1 molecule and the ArfGAP domain of a second CENTA1 molecule in a threonine phosphorylation-independent fashion. We propose that full-length KIF13B and CENTA1 form heterotetramers that can bind four phosphoinositide molecules in the vesicle and transport it along the microtubule.

  11. LymPHOS 2.0: an update of a phosphosite database of primary human T cells

    PubMed Central

    Nguyen, Tien Dung; Vidal-Cortes, Oriol; Gallardo, Oscar; Abian, Joaquin; Carrascal, Montserrat

    2015-01-01

    LymPHOS is a web-oriented database containing peptide and protein sequences and spectrometric information on the phosphoproteome of primary human T-Lymphocytes. Current release 2.0 contains 15 566 phosphorylation sites from 8273 unique phosphopeptides and 4937 proteins, which correspond to a 45-fold increase over the original database description. It now includes quantitative data on phosphorylation changes after time-dependent treatment with activators of the TCR-mediated signal transduction pathway. Sequence data quality has also been improved with the use of multiple search engines for database searching. LymPHOS can be publicly accessed at http://www.lymphos.org. Database URL: http://www.lymphos.org. PMID:26708986

  12. THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS

    SciTech Connect

    Boersma, C.; Mattioda, A. L.; Allamandola, L. J.; Bauschlicher, C. W. Jr.; Ricca, A.; Cami, J.; Peeters, E.; De Armas, F. Sánchez; Saborido, G. Puerta; Hudgins, D. M.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm{sup -1}) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  13. The NASA Ames PAH IR Spectroscopic Database Version 2.00: Updated Content, Web Site, and On(Off)line Tools

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bauschlicher, C. W., Jr.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm-1) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  14. Dr.VIS v2.0: an updated database of human disease-related viral integration sites in the era of high-throughput deep sequencing.

    PubMed

    Yang, Xiaobo; Li, Ming; Liu, Qi; Zhang, Yabing; Qian, Junyan; Wan, Xueshuai; Wang, Anqiang; Zhang, Haohai; Zhu, Chengpei; Lu, Xin; Mao, Yilei; Sang, Xinting; Zhao, Haitao; Zhao, Yi; Zhang, Xiaoyan

    2015-01-01

    Dr.VIS is a database of human disease-related viral integration sites (VIS). The number of VIS has grown rapidly since Dr.VIS was first released in 2011, and there is growing recognition of the important role that viral integration plays in the development of malignancies. The updated database version, Dr.VIS v2.0 (http://www.bioinfo.org/drvis or bminfor.tongji.edu.cn/drvis_v2), represents 25 diseases, covers 3340 integration sites of eight oncogenic viruses in human chromosomes and provides more accurate information about VIS from high-throughput deep sequencing results obtained mainly after 2012. Data of VISes for three newly identified oncogenic viruses for 14 related diseases have been added to this 2015 update, which has a 5-fold increase of VISes compared to Dr.VIS v1.0. Dr.VIS v2.0 has 2244 precise integration sites, 867 integration regions and 551 junction sequences. A total of 2295 integration sites are located near 1730 involved genes. Of the VISes, 1153 are detected in the exons or introns of genes, with 294 located up to 5 kb and a further 112 located up to 10 kb away. As viral integration may alter chromosome stability and gene expression levels, characterizing VISes will contribute toward the discovery of novel oncogenes, tumor suppressor genes and tumor-associated pathways. PMID:25355513

  15. Fibronectin phosphorylation by ecto-protein kinase

    SciTech Connect

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru )

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  16. The Chemical Biology of Protein Phosphorylation

    PubMed Central

    Tarrant, Mary Katherine; Cole, Philip A.

    2011-01-01

    The explosion of scientific interest in protein kinase-mediated signaling networks has led to the infusion of new chemical methods and their applications related to the analysis of phosphorylation pathways. We highlight some of these chemical biology approaches across three areas. First, we discuss the development of chemical tools to modulate the activity of protein kinases to explore kinase mechanisms and their contributions to phosphorylation events and cellular processes. Second, we describe chemical techniques developed in the past few years to dissect the structural and functional effects of phosphate modifications at specific sites in proteins. Third, we cover newly developed molecular imaging approaches to elucidate the spatiotemporal aspects of phosphorylation cascades in live cells. Exciting advances in our understanding of protein phosphorylation have been obtained with these chemical biology approaches, but continuing opportunities for technological innovation remain. PMID:19489734

  17. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    SciTech Connect

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  18. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs

    PubMed Central

    2012-01-01

    Background Numerous single nucleotide polymorphisms (SNPs) associated with complex diseases have been identified by genome-wide association studies (GWAS) and expression quantitative trait loci (eQTLs) studies. However, few of these SNPs have explicit biological functions. Recent studies indicated that the SNPs within the 3’UTR regions of susceptibility genes could affect complex traits/diseases by affecting the function of miRNAs. These 3’UTR SNPs are functional candidates and therefore of interest to GWAS and eQTL researchers. Description We developed a publicly available online database, MirSNP (http://cmbi.bjmu.edu.cn/mirsnp), which is a collection of human SNPs in predicted miRNA-mRNA binding sites. We identified 414,510 SNPs that might affect miRNA-mRNA binding. Annotations were added to these SNPs to predict whether a SNP within the target site would decrease/break or enhance/create an miRNA-mRNA binding site. By applying MirSNP database to three brain eQTL data sets, we identified four unreported SNPs (rs3087822, rs13042, rs1058381, and rs1058398), which might affect miRNA binding and thus affect the expression of their host genes in the brain. We also applied the MirSNP database to our GWAS for schizophrenia: seven predicted miRNA-related SNPs (p < 0.0001) were found in the schizophrenia GWAS. Our findings identified the possible functions of these SNP loci, and provide the basis for subsequent functional research. Conclusion MirSNP could identify the putative miRNA-related SNPs from GWAS and eQTLs researches and provide the direction for subsequent functional researches. PMID:23173617

  19. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs.

    PubMed

    Liu, Xiaoming; Wu, Chunlei; Li, Chang; Boerwinkle, Eric

    2016-03-01

    The purpose of the dbNSFP is to provide a one-stop resource for functional predictions and annotations for human nonsynonymous single-nucleotide variants (nsSNVs) and splice-site variants (ssSNVs), and to facilitate the steps of filtering and prioritizing SNVs from a large list of SNVs discovered in an exome-sequencing study. A list of all potential nsSNVs and ssSNVs based on the human reference sequence were created and functional predictions and annotations were curated and compiled for each SNV. Here, we report a recent major update of the database to version 3.0. The SNV list has been rebuilt based on GENCODE 22 and currently the database includes 82,832,027 nsSNVs and ssSNVs. An attached database dbscSNV, which compiled all potential human SNVs within splicing consensus regions and their deleteriousness predictions, add another 15,030,459 potentially functional SNVs. Eleven prediction scores (MetaSVM, MetaLR, CADD, VEST3, PROVEAN, 4× fitCons, fathmm-MKL, and DANN) and allele frequencies from the UK10K cohorts and the Exome Aggregation Consortium (ExAC), among others, have been added. The original seven prediction scores in v2.0 (SIFT, 2× Polyphen2, LRT, MutationTaster, MutationAssessor, and FATHMM) as well as many SNV and gene functional annotations have been updated. dbNSFP v3.0 is freely available at http://sites.google.com/site/jpopgen/dbNSFP. PMID:26555599

  20. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    NASA Astrophysics Data System (ADS)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  1. Roles of subunit phosphorylation in regulating glutamate receptor function

    PubMed Central

    Wang, John Q.; Guo, Ming-Lei; Jin, Dao-Zhong; Xue, Bing; Fibuch, Eugene E.; Mao, Li-Min

    2014-01-01

    Protein phosphorylation is an important mechanism for regulating ionotropic glutamate receptors (iGluRs). Early studies have established that major iGluR subtypes, including α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and N-methyl-D-aspartate (NMDA) receptors, are subject to phosphorylation. Multiple serine, threonine, and tyrosine residues predominantly within the C-terminal regions of AMPA receptor and NMDA receptor subunits have been identified as sensitive phosphorylation sites. These distinct sites undergo either constitutive phosphorylation or activity-dependent phosphorylation induced by changing cellular and synaptic inputs as reversible events. An increasing number of synapse-enriched protein kinases have been found to phosphorylate iGluR. The common kinases include protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src/Fyn non-receptor tyrosine kinases, and cyclin dependent kinase-5. Regulated phosphorylation plays a well-documented role in modulating the biochemical, biophysical, and functional properties of the receptor. In the future, identifying the precise mechanisms how phosphorylation regulates iGluR activities and finding the link between iGluR phosphorylation and the pathogenesis of various brain diseases, including psychiatric and neurodegenerative diseases, chronic pain, stroke, Alzheimer’s disease and substance addiction, will be hot topics and could contribute to the development of novel pharmacotherapies, by targeting the defined phosphorylation process, for suppressing iGluR-related disorders. PMID:24291102

  2. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes

    PubMed Central

    2012-01-01

    Background Single nucleotide polymorphisms (SNPs) can lead to the susceptibility and onset of diseases through their effects on gene expression at the posttranscriptional level. Recent findings indicate that SNPs could create, destroy, or modify the efficiency of miRNA binding to the 3'UTR of a gene, resulting in gene dysregulation. With the rapidly growing number of published disease-associated SNPs (dSNPs), there is a strong need for resources specifically recording dSNPs on the 3'UTRs and their nucleotide distance from miRNA target sites. We present here miRdSNP, a database incorporating three important areas of dSNPs, miRNA target sites, and diseases. Description miRdSNP provides a unique database of dSNPs on the 3'UTRs of human genes manually curated from PubMed. The current release includes 786 dSNP-disease associations for 630 unique dSNPs and 204 disease types. miRdSNP annotates genes with experimentally confirmed targeting by miRNAs and indexes miRNA target sites predicted by TargetScan and PicTar as well as potential miRNA target sites newly generated by dSNPs. A robust web interface and search tools are provided for studying the proximity of miRNA binding sites to dSNPs in relation to human diseases. Searches can be dynamically filtered by gene name, miRBase ID, target prediction algorithm, disease, and any nucleotide distance between dSNPs and miRNA target sites. Results can be viewed at the sequence level showing the annotated locations for miRNA target sites and dSNPs on the entire 3'UTR sequences. The integration of dSNPs with the UCSC Genome browser is also supported. Conclusion miRdSNP provides a comprehensive data source of dSNPs and robust tools for exploring their distance from miRNA target sites on the 3'UTRs of human genes. miRdSNP enables researchers to further explore the molecular mechanism of gene dysregulation for dSNPs at posttranscriptional level. miRdSNP is freely available on the web at http://mirdsnp.ccr.buffalo.edu. PMID:22276777

  3. Protein phosphorylation during Plasmodium berghei gametogenesis.

    PubMed

    Alonso-Morales, Alberto; González-López, Lorena; Cázares-Raga, Febe Elena; Cortés-Martínez, Leticia; Torres-Monzón, Jorge Aurelio; Gallegos-Pérez, José Luis; Rodríguez, Mario Henry; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2015-09-01

    Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies. PMID:26008612

  4. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    PubMed

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied. PMID:26795486

  5. Preliminary Safety Analysis of the Gorleben Site: Safety Concept and Application to Scenario Development Based on a Site-Specific Features, Events and Processes (FEP) Database - 13304

    SciTech Connect

    Moenig, Joerg; Beuth, Thomas; Wolf, Jens; Lommerzheim, Andre; Mrugalla, Sabine

    2013-07-01

    Based upon the German safety criteria, released in 2010 by the Federal Ministry of the Environment (BMU), a safety concept and a safety assessment concept for the disposal of heat-generating high-level waste have both been developed in the framework of the preliminary safety case for the Gorleben site (Project VSG). The main objective of the disposal is to contain the radioactive waste inside a defined rock zone, which is called containment-providing rock zone. The radionuclides shall remain essentially at the emplacement site, and at the most, a small defined quantity of material shall be able to leave this rock zone. This shall be accomplished by the geological barrier and a technical barrier system, which is required to seal the inevitable penetration of the geological barrier by the construction of the mine. The safe containment has to be demonstrated for probable and less probable evolutions of the site, while evolutions with very low probability (less than 1 % over the demonstration period of 1 million years) need not to be considered. Owing to the uncertainty in predicting the real evolution of the site, plausible scenarios have been derived in a systematic manner. Therefore, a comprehensive site-specific features, events and processes (FEP) data base for the Gorleben site has been developed. The safety concept was directly taken into account, e.g. by identification of FEP with direct influence on the barriers that provide the containment. No effort was spared to identify the interactions of the FEP, their probabilities of occurrence, and their characteristics (values). The information stored in the data base provided the basis for the development of scenarios. The scenario development methodology is based on FEP related to an impairment of the functionality of a subset of barriers, called initial barriers. By taking these FEP into account in their probable characteristics the reference scenario is derived. Thus, the reference scenario describes a

  6. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    PubMed

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  7. RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals.

    PubMed

    Huang, Kai-Yao; Wu, Hsin-Yi; Chen, Yi-Ju; Lu, Cheng-Tsung; Su, Min-Gang; Hsieh, Yun-Chung; Tsai, Chih-Ming; Lin, Kuo-I; Huang, Hsien-Da; Lee, Tzong-Yi; Chen, Yu-Ju

    2014-01-01

    Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.yzu.edu.tw/RegPhos2/, was developed to explore protein phosphorylation networks in human. In this update, we not only enhance the data content in human but also investigate kinase-substrate phosphorylation networks in mouse and rat. The experimentally validated phosphorylation sites as well as their catalytic kinases were extracted from public resources, and MS/MS phosphopeptides were manually curated from research articles. RegPhos 2.0 aims to provide a more comprehensive view of intracellular signaling networks by integrating the information of metabolic pathways and protein-protein interactions. A case study shows that analyzing the phosphoproteome profile of time-dependent cell activation obtained from Liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the RegPhos deciphered not only the consistent scheme in B cell receptor (BCR) signaling pathway but also novel regulatory molecules that may involve in it. With an attempt to help users efficiently identify the candidate biomarkers in cancers, 30 microarray experiments, including 39 cancerous versus normal cells, were analyzed for detecting cancer-specific expressed genes coding for kinases and their substrates. Furthermore, this update features an improved web interface to facilitate convenient access to the exploration of phosphorylation networks for a group of genes/proteins. Database URL: http://csb.cse.yzu.edu.tw/RegPhos2/ PMID:24771658

  8. Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) receptor-like kinase intracellular domain: insights into conformation, oligomerization, and activity.

    PubMed

    Meyer, Matthew R; Lichti, Cheryl F; Townsend, R Reid; Rao, A Gururaj

    2011-03-29

    Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) that consists of an extracellular domain and an intracellular domain (ICD) with serine/threonine kinase activity. While genetic and cell biology experiments have demonstrated that ACR4 is important in cell fate specification and overall development of the plant, little is known about the biochemical properties of the kinase domain and the mechanisms that underlie the overall function of the receptor. To complement in planta studies of the function of ACR4, we have expressed the ICD in Escherichia coli as a soluble C-terminal fusion to the N-utilization substance A (NusA) protein, purified the recombinant protein, and characterized the enzymatic and conformational properties. The protein autophosphorylates via an intramolecular mechanism, prefers Mn(2+) over Mg(2+) as the divalent cation, and displays typical Michaelis-Menten kinetics with respect to ATP with an apparent K(m) of 6.67 ± 2.07 μM and a V(max) of 1.83 ± 0.18 nmol min(-1) mg(-1). Autophosphorylation is accompanied by a conformational change as demonstrated by circular dichroism, fluorescence spectroscopy, and limited proteolysis with trypsin. Analysis by nanoliquid chromatography and mass spectrometry revealed 16 confirmed sites of phosphorylation at Ser and Thr residues. Sedimentation velocity and gel filtration experiments indicate that the ICD has a propensity to oligomerize and that this property is lost upon autophosphorylation. PMID:21294549

  9. Cascadia Tsunami Deposit Database

    USGS Publications Warehouse

    Peters, Robert; Jaffe, Bruce; Gelfenbaum, Guy; Peterson, Curt

    2003-01-01

    The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have been compiled from 52 studies, documenting 59 sites from northern California to Vancouver Island, British Columbia that contain known or potential tsunami deposits. Bibliographical references are provided for all sites included in the database. Cascadia tsunami deposits are usually seen as anomalous sand layers in coastal marsh or lake sediments. The studies cited in the database use numerous criteria based on sedimentary characteristics to distinguish tsunami deposits from sand layers deposited by other processes, such as river flooding and storm surges. Several studies cited in the database contain evidence for more than one tsunami at a site. Data categories include age, thickness, layering, grainsize, and other sedimentological characteristics of Cascadia tsunami deposits. The database documents the variability observed in tsunami deposits found along the Cascadia margin.

  10. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity.

    PubMed

    Beuvink, I; Hess, D; Flotow, H; Hofsteenge, J; Groner, B; Hynes, N E

    2000-04-01

    The activity of transcription factors of the Stat family is controlled by phosphorylation of a conserved, carboxyl-terminal tyrosine residue. Tyrosine phosphorylation is essential for Stat dimerization, nuclear translocation, DNA binding, and transcriptional activation. Phosphorylation of Stats on specific serine residues has also been described. We have previously shown that in HC11 mammary epithelial cells Stat5a is phosphorylated on Tyr(694) in a prolactin-sensitive manner, whereas serine phosphorylation is constitutive (Wartmann, M., Cella, N., Hofer, P., Groner, B., Xiuwen, L., Hennighausen, L., and Hynes, N. E. (1996) J. Biol. Chem. 271, 31863-31868). By using mass spectrometry and site-directed mutagenesis, we have now identified Ser(779), located in a unique Stat5a SP motif, as the site of serine phosphorylation. By using phospho-Ser(779)-specific antiserum, we have determined that Ser(779) is constitutively phosphorylated in mammary glands taken from different developmental stages. Stat5a isolated from spleen, heart, brain, and lung was also found to be phosphorylated on Ser(779). Ser(725) in Stat5a has also been identified as a phosphorylation site (Yamashita, H., Xu, J., Erwin, R. A., Farrar, W. L., Kirken, R. A., and Rui, H. (1998) J. Biol. Chem. 273, 30218-30224). Here we show that mutagenesis of Ser(725), Ser(779), or a combination of Ser(725/779) to an Ala had no effect on prolactin-induced transcriptional activation of a beta-casein reporter construct. However, following prolactin induction the Ser(725) mutant displayed sustained DNA binding activity compared with that of wild type Stat5a. The results suggest that Ser(725) phosphorylation has an impact on signal duration. PMID:10744710

  11. Phosphorylated TDP-43 in frontotemporal lobar degeneration and ALS

    PubMed Central

    Hasegawa, Masato; Arai, Tetsuaki; Nonaka, Takashi; Kametani, Fuyuki; Yoshida, Mari; Hashizume, Yoshio; Beach, Thomas G.; Buratti, Emanuele; Baralle, Francisco; Morita, Mitsuya; Nakano, Imaharu; Oda, Tatsuro; Tsuchiya, Kuniaki; Akiyama, Haruhiko

    2009-01-01

    Objective TDP-43 is deposited as cytoplasmic and intranuclear inclusions in brains of subjects with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Previous studies reported that abnormal phosphorylation takes place in deposited TDP-43. The aim of this study was to identify the phosphorylation sites and responsible kinases, and to clarify the pathological significance of phosphorylation of TDP-43. Methods We generated multiple antibodies specific to phosphorylated TDP-43 by immunizing phosphopeptides of TDP-43, and analyzed FTLD-U and ALS brains by immunohistochemistry, immunoelectron microscopy and immunoblots. Additionally, we performed investigations aimed at identifying the responsible kinases and we assessed the effects of phosphorylation on TDP-43 oligomerization and fibrillization. Results We identified multiple phosphorylation sites in carboxyl-terminal regions of deposited TDP-43. Phosphorylation-specific antibodies stained more inclusions than antibodies to ubiquitin and, unlike existing commercially-available anti-TDP-43 antibodies, did not stain normal nuclei. Ultrastructurally, these antibodies labeled abnormal fibers of 15 nm diameter, and on immunoblots recognized hyperphosphorylated TDP-43 at 45 kDa, with additional 22–28 kDa fragments in sarkosyl-insoluble fractions from FTLD-U and ALS brains. The phosphorylated epitopes were generated by casein kinase 1 and 2, and phosphorylation led to increased oligomerization and fibrillization of TDP-43. Interpretation These results suggest that phosphorylated TDP-43 is a major component of the inclusions, and that abnormal phosphorylation of TDP-43 is a critical step in the pathogenesis of FTLD-U and ALS. Phosphorylation-specific antibodies will be powerful tools for the investigation of these disorders. PMID:18546284

  12. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity. PMID:25733667

  13. Large-scale analysis of phosphorylated proteins in maize leaf.

    PubMed

    Bi, Ying-Dong; Wang, Hong-Xia; Lu, Tian-Cong; Li, Xiao-Hui; Shen, Zhuo; Chen, Yi-Bo; Wang, Bai-Chen

    2011-02-01

    Phosphorylation is an ubiquitous regulatory mechanism governing the activity, subcellular localization, and intermolecular interactions of proteins. To identify a broad range of phosphoproteins from Zea mays, we enriched phosphopeptides from Zea mays leaves using titanium dioxide microcolumns and then extensively fractionated and identified the phosphopeptides by mass spectrometry. A total of 165 unique phosphorylation sites with a putative role in biological processes were identified in 125 phosphoproteins. Most of these proteins are involved in metabolism, including carbohydrate and protein metabolism. We identified novel phosphorylation sites on translation initiation factors, splicing factors, nucleolar RNA helicases, and chromatin-remodeling proteins such as histone deacetylases. Intriguingly, we also identified phosphorylation sites on several proteins associated with photosynthesis, and we speculate that these sites may be involved in carbohydrate metabolism or electron transport. Among these phosphoproteins, phosphoenolpyruvate carboxylase and NADH: nitrate reductase (NR) which catalyzes the rate-limiting and regulated step in the pathway of inorganic nitrogen assimilation were identified. A conserved phosphorylation site was found in the cytochrome b5 heme-binding domain of NADH: nitrate reductase, suggesting that NADH: nitrate reductase is phosphorylated by the same protein kinase or highly related kinases. These data demonstrate that the pathways that regulate diverse processes in plants are major targets of phosphorylation. PMID:21053013

  14. A key phosphorylation site in AC8 mediates regulation of Ca2+-dependent cAMP dynamics by an AC8–AKAP79–PKA signalling complex

    PubMed Central

    Willoughby, Debbie; Halls, Michelle L.; Everett, Katy L.; Ciruela, Antonio; Skroblin, Philipp; Klussmann, Enno; Cooper, Dermot M. F.

    2012-01-01

    Summary Adenylyl cyclase (AC) isoforms can participate in multimolecular signalling complexes incorporating A-kinase anchoring proteins (AKAPs). We recently identified a direct interaction between Ca2+-sensitive AC8 and plasma membrane-targeted AKAP79/150 (in cultured pancreatic insulin-secreting cells and hippocampal neurons), which attenuated the stimulation of AC8 by Ca2+ entry (Willoughby et al., 2010). Here, we reveal that AKAP79 recruits cAMP-dependent protein kinase (PKA) to mediate the regulatory effects of AKAP79 on AC8 activity. Modulation by PKA is a novel means of AC8 regulation, which may modulate or apply negative feedback to the stimulation of AC8 by Ca2+ entry. We show that the actions of PKA are not mediated indirectly via PKA-dependent activation of protein phosphatase 2A (PP2A) B56δ subunits that associate with the N-terminus of AC8. By site-directed mutagenesis we identify Ser-112 as an essential residue for direct PKA phosphorylation of AC8 (Ser-112 lies within the N-terminus of AC8, close to the site of AKAP79 association). During a series of experimentally imposed Ca2+ oscillations, AKAP79-targeted PKA reduced the on-rate of cAMP production in wild-type but not non-phosphorylatable mutants of AC8, which suggests that the protein–protein interaction may provide a feedback mechanism to dampen the downstream consequences of AC8 activation evoked by bursts of Ca2+ activity. This fine-tuning of Ca2+-dependent cAMP dynamics by targeted PKA could be highly significant for cellular events that depend on the interplay of Ca2+ and cAMP, such as pulsatile hormone secretion and memory formation. PMID:22976297

  15. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  16. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    PubMed

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J

    2016-06-01

    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  17. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  18. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling

    PubMed Central

    Kemmler, Stefan; Stach, Manuel; Knapp, Maria; Ortiz, Jennifer; Pfannstiel, Jens; Ruppert, Thomas; Lechner, Johannes

    2009-01-01

    The protein kinase Mps1 is, among others, essential for the spindle assembly checkpoint (SAC). We found that Saccharomyces cerevisiae Mps1 interacts physically with the N-terminal domain of Ndc80 (Ndc801−257), a constituent of the Ndc80 kinetochore complex. Furthermore, Mps1 effectively phosphorylates Ndc801−257 in vitro and facilitates Ndc80 phosphorylation in vivo. Mutating 14 of the phosphorylation sites to alanine results in compromised checkpoint signalling upon nocodazole treatment of mutants. Mutating the identical sites to aspartate (to simulate constitutive phosphorylation) causes a metaphase arrest with wild-type-like bipolar kinetochore–microtubule attachment. This arrest is due to a constitutively active SAC and consequently the inviable aspartate mutant can be rescued by disrupting SAC signalling. Therefore, we conclude that a putative Mps1-dependent phosphorylation of Ndc80 is important for SAC activation at kinetochores. PMID:19300438

  19. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by sup 15 N NMR spectroscopy

    SciTech Connect

    van Dijk, A.A.; de Lange, L.C.M.; Robillard, G.T. ); Bachovchin, W.W. )

    1990-09-04

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with {sup 15}N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with {sup 15}N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N{delta}1 and N{epsilon}2 positions or at only the N{delta}1 position. {sup 15}N NMR spectra of two synthesized model compound, phosphoimidazole and phosphomethylimidazole, were also recorded. The authors show that, prior to phosphorylation, the protonated His15 N{epsilon}2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N{delta}1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N{delta}1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed.

  20. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy.

    PubMed

    van Dijk, A A; de Lange, L C; Bachovchin, W W; Robillard, G T

    1990-09-01

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with 15N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with 15N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N delta 1 and N epsilon 2 positions or at only the N delta 1 position. 15N NMR spectra of two synthesized model compounds, phosphoimidazole and phosphomethylimidazole, were also recorded. We show that, prior to phosphorylation, the protonated His15 N epsilon 2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N delta 1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N delta 1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed. PMID:2261470

  1. VIEWCACHE: An incremental database access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nick; Sellis, Timoleon

    1991-01-01

    The objective is to illustrate the concept of incremental access to distributed databases. An experimental database management system, ADMS, which has been developed at the University of Maryland, in College Park, uses VIEWCACHE, a database access method based on incremental search. VIEWCACHE is a pointer-based access method that provides a uniform interface for accessing distributed databases and catalogues. The compactness of the pointer structures formed during database browsing and the incremental access method allow the user to search and do inter-database cross-referencing with no actual data movement between database sites. Once the search is complete, the set of collected pointers pointing to the desired data are dereferenced.

  2. Phosphorylated tau and the neurodegenerative foldopathies.

    PubMed

    Kosik, Kenneth S; Shimura, Hideki

    2005-01-01

    Many studies have implicated phosphorylated tau in the Alzheimer disease process. However, the cellular fate of phosphorylated tau has only recently been described. Recent work has shown that tau phosphorylation at substrate sites for the kinases Cdk5 and GSK3-beta can trigger the binding of tau to the chaperones Hsc70 and Hsp27. The binding of phosphorylated tau to Hsc70 implied that the complex may be a substrate for the E3 ligase CHIP and this possibility was experimentally verified. The presence of this system in cells suggests that phosphorylated tau may hold toxic dangers for cell viability, and the response of the cell is to harness a variety of protective mechanisms. These include binding to chaperones, which may prevent more toxic conformations of the protein, ubiquitination which will direct the protein to the proteasome, segregation of tau aggregates from the cellular machinery, and recruitment of Hsp27 which will confer anti-apoptotic properties to the cell. PMID:15615647

  3. Requirements Management Database

    Energy Science and Technology Software Center (ESTSC)

    2009-08-13

    This application is a simplified and customized version of the RBA and CTS databases to capture federal, site, and facility requirements, link to actions that must be performed to maintain compliance with their contractual and other requirements.

  4. A new user-friendly experiment visual database system application to the gas migration test (GMT) at the Grimsel test site

    SciTech Connect

    Shimura, Tomoyuki; Asano, Hidekazu; Ando, Kenichi; Okuma, Fumiko; Yamamoto, Shuichi; Vomvoris, Stratis

    2007-07-01

    Available in abstract form only. Full text of publication follows: Long-term integrated field investigations combine information from different groups (laboratory, modeling, experimental) often working in different locations and on different time scales. The results of these different groups are evaluated and integrated for decision making during the experiment execution, but at the end of the experiment a huge database exists, which may be difficult to use at a later stage - for example, for further modeling, benchmarking etc. How can one preserve the information obtained and present it in a transparent and user-friendly manner? A new visual database system developed is presented and its application to the 'Gas Migration in-situ Test (GMT)' is described. The GMT project has been conducted to assess the gas migration (for example from TRU waste) through the engineered barrier system and the adjacent geosphere. The experiment was initiated in 1997 under the auspices of RWMC and with primary funding by the Japanese Ministry of Economy, Trade and Industry. The project consists of a large-scale in-situ test, laboratory tests and numerical modeling. The in-situ test has been performed at the Grimsel Test Site (GTS) in Switzerland operated by NAGRA (National cooperative for the disposal of radioactive waste, Switzerland). Laboratory tests have been performed in facilities in Japan, Germany, Spain and Switzerland. Finally, the modeling activities, performed within the modeling group, have included teams from the US, Spain, France, Japan, Germany and Switzerland with support from organizations BGR, ENRESA, ANDRA, and RWMC. More than 250 reports document the various data and analyses. The database developed uses a three layered framework. The first (or bottom) layer is the data storage which contains all reports, publications as well as the raw data; the second layer is a data flow diagram - from material data, generation of input data to the model and output to the end

  5. Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes.

    PubMed

    Soung, George Y; Miller, Jennifer L; Koc, Hasan; Koc, Emine C

    2009-07-01

    Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in 24 Escherichia coli ribosomal proteins by tandem mass spectrometry. Detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining, and antibodies for phospho-Ser, Thr, and Tyr; or by mass spectrometry equipped with a capability to detect addition and loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, and L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given phosphorylation sites in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins. PMID:19469554

  6. Stoichiometry and phosphoisotypes of hippocampal AMPA type glutamate receptor phosphorylation

    PubMed Central

    Hosokawa, Tomohisa; Mitsushima, Dai; Kaneko, Rina; Hayashi, Yasunori

    2014-01-01

    SUMMARY It has been proposed that the AMPAR phosphorylation regulates trafficking and channel activity, thereby playing an important role in synaptic plasticity. However, the actual stoichiometry of phosphorylation, information critical to understand the role of phosphorylation, is not known because of the lack of appropriate techniques for measurement. Here, using Phos-tag SDS-PAGE, we estimated the proportion of phosphorylated AMPAR subunit GluA1. The level of phosphorylated GluA1 at S831 and S845, two major sites implicated in AMPAR regulation, is almost negligible. Less than 1% of GluA1 is phosphorylated at S831 and less than 0.1% at S845. Considering the number of AMPAR at each synapse, the majority of synapses do not contain any phosphorylated AMPAR. Also, we did not see evidence of GluA1 dually phosphorylated at S831 and S845. Neuronal stimulation and learning increased phosphorylation but the proportion was still low. Our results impel us to reconsider the mechanisms underlying synaptic plasticity. PMID:25533481

  7. Phosphorylation Regulates Functions of ZEB1 Transcription Factor.

    PubMed

    Llorens, M Candelaria; Lorenzatti, Guadalupe; Cavallo, Natalia L; Vaglienti, Maria V; Perrone, Ana P; Carenbauer, Anne L; Darling, Douglas S; Cabanillas, Ana M

    2016-10-01

    ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868487

  8. A Computerized Data-Base System for Land-Use and Land-Cover Data Collected at Ground-Water Sampling Sites in the Pilot National Water Quality Assessment Program

    USGS Publications Warehouse

    Scott, Jonathon C.

    1989-01-01

    Data-base software has been developed for the management of land-use and land-cover data collected by the U.S. Geological Survey as part of a pilot program to test and refine concepts for a National Water-Quality Assessment Program. This report describes the purpose, use, and design of the land-use and land-cover data-base software. The software provides capabilities for interactive storage and retrieval of land-use and land-cover data collected at ground-water sampling sites. Users of the software can add, update, and delete land-use and land-cover data. The software also provides capabilities to group, print, and summarize the data. The land-use and land-cover data-base software supports multiple data-base systems so that data can be accessed by persons in different offices. Data-base systems are organized in a tiered structure. Each data-base system contains all the data stored in the data-base systems located in the lower tiers of the structure. Data can be readily transmitted from lower tiers to high tiers of the structure. Therefore, the data-base system at the highest tier of the structure contains land-use and land-cover data for the entire pilot program.

  9. Isolation of regulatory-competent, phosphorylated cytochrome C oxidase.

    PubMed

    Lee, Icksoo; Salomon, Arthur R; Yu, Kebing; Samavati, Lobelia; Pecina, Petr; Pecinova, Alena; Hüttemann, Maik

    2009-01-01

    The role of posttranslational modifications, specifically reversible phosphorylation as a regulatory mechanism operating in the mitochondria, is a novel research direction. The mitochondrial oxidative phosphorylation system is a particularly interesting unit because it is responsible for the production of the vast majority of cellular energy in addition to free radicals, two factors that are aberrant in numerous human diseases and that may be influenced by reversible phosphorylation of the oxidative phosphorylation complexes. We here describe a detailed protocol for the isolation of mammalian liver and heart mitochondria and subsequently cytochrome c oxidase (CcO) under conditions maintaining the physiological phosphorylation state. The protocol employs the use of activated vanadate, an unspecific tyrosine phosphatase inhibitor, fluoride, an unspecific serine/threonine phosphatase inhibitor, and EGTA, a calcium chelator to prevent the activation of calcium-dependent protein phosphatases. CcO purified without manipulation of signaling pathways shows strong tyrosine phosphorylation on subunits II and IV, whereas tyrosine phosphorylation of subunit I can be induced by the cAMP- and TNFalpha-dependent pathways in liver. Using our protocol on cow liver tissue we further show the identification of a new phosphorylation site on CcO subunit IV tyrosine 11 of the mature protein (corresponding to tyrosine 33 of the precursor peptide) via immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS). This phosphorylation site is located close to the ATP and ADP binding site, which adjusts CcO activity to cellular energy demand, and we propose that phosphorylation of tyrosine 11 enables allosteric regulation. PMID:19426869

  10. Extracellular Ser/Thr/Tyr phosphorylated proteins of Pseudomonas aeruginosa PA14 strain.

    PubMed

    Ouidir, Tassadit; Jarnier, Frédérique; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2014-09-01

    Protein phosphorylation on serine, threonine, and tyrosine is known to be involved in a wide variety of cellular processes, signal transduction, and bacterial virulence. We characterized, for the first time, the extracellular phosphoproteins of the Pseudomonas aeruginosa PA14 strain. We identified 28 phosphoproteins (59 phosphosites) including enzymes, with various phosphorylation sites, known as potent secreted virulence factors in P. aeruginosa. The high phosphorylation level of these virulence factors might reflect a relationship between Ser/Thr/Tyr phosphorylation and virulence. PMID:24965220

  11. Doubling down on peptide phosphorylation as a variable mass modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some mass spectrometrists believe that searching for variable post-translational modifications like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false positive rates. The basis for this is the premise that the al...

  12. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions.

    PubMed

    Deutscher, Josef; Aké, Francine Moussan Désirée; Derkaoui, Meriem; Zébré, Arthur Constant; Cao, Thanh Nguyen; Bouraoui, Houda; Kentache, Takfarinas; Mokhtari, Abdelhamid; Milohanic, Eliane; Joyet, Philippe

    2014-06-01

    The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components. PMID:24847021

  13. The Bacterial Phosphoenolpyruvate:Carbohydrate Phosphotransferase System: Regulation by Protein Phosphorylation and Phosphorylation-Dependent Protein-Protein Interactions

    PubMed Central

    Aké, Francine Moussan Désirée; Derkaoui, Meriem; Zébré, Arthur Constant; Cao, Thanh Nguyen; Bouraoui, Houda; Kentache, Takfarinas; Mokhtari, Abdelhamid; Milohanic, Eliane; Joyet, Philippe

    2014-01-01

    SUMMARY The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components. PMID:24847021

  14. Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data*

    PubMed Central

    Song, Chunxia; Ye, Mingliang; Liu, Zexian; Cheng, Han; Jiang, Xinning; Han, Guanghui; Songyang, Zhou; Tan, Yexiong; Wang, Hongyang; Ren, Jian; Xue, Yu; Zou, Hanfa

    2012-01-01

    In eukaryotes, hundreds of protein kinases (PKs) specifically and precisely modify thousands of substrates at specific amino acid residues to faithfully orchestrate numerous biological processes, and reversibly determine the cellular dynamics and plasticity. Although over 100,000 phosphorylation sites (p-sites) have been experimentally identified from phosphoproteomic studies, the regulatory PKs for most of these sites still remain to be characterized. Here, we present a novel software package of iGPS for the prediction of in vivo site-specific kinase-substrate relations mainly from the phosphoproteomic data. By critical evaluations and comparisons, the performance of iGPS is satisfying and better than other existed tools. Based on the prediction results, we modeled protein phosphorylation networks and observed that the eukaryotic phospho-regulation is poorly conserved at the site and substrate levels. With an integrative procedure, we conducted a large-scale phosphorylation analysis of human liver and experimentally identified 9719 p-sites in 2998 proteins. Using iGPS, we predicted a human liver protein phosphorylation networks containing 12,819 potential site-specific kinase-substrate relations among 350 PKs and 962 substrates for 2633 p-sites. Further statistical analysis and comparison revealed that 127 PKs significantly modify more or fewer p-sites in the liver protein phosphorylation networks against the whole human protein phosphorylation network. The largest data set of the human liver phosphoproteome together with computational analyses can be useful for further experimental consideration. This work contributes to the understanding of phosphorylation mechanisms at the systemic level, and provides a powerful methodology for the general analysis of in vivo post-translational modifications regulating sub-proteomes. PMID:22798277

  15. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events. Proteins 2016; 84:565-579. © 2016 Wiley Periodicals, Inc. PMID:26817627

  16. Src kinase regulation by phosphorylation and dephosphorylation

    SciTech Connect

    Roskoski, Robert . E-mail: biocrr@lsuhsc.edu

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.

  17. A Novel Regulatory Locus of Phosphorylation in the C Terminus of the Potassium Chloride Cotransporter KCC2 That Interferes with N-Ethylmaleimide or Staurosporine-mediated Activation*♦

    PubMed Central

    Weber, Maren; Hartmann, Anna-Maria; Beyer, Timo; Ripperger, Anne; Nothwang, Hans Gerd

    2014-01-01

    The neuron-specific cation chloride cotransporter KCC2 plays a crucial role in hyperpolarizing synaptic inhibition. Transporter dysfunction is associated with various neurological disorders, raising interest in regulatory mechanisms. Phosphorylation has been identified as a key regulatory process. Here, we retrieved experimentally observed phosphorylation sites of KCC2 from public databases and report on the systematic analysis of six phosphorylated serines, Ser25, Ser26, Ser937, Ser1022, Ser1025, and Ser1026. Alanine or aspartate substitutions of these residues were analyzed in HEK-293 cells. All mutants were expressed in a pattern similar to wild-type KCC2 (KCC2WT). Tl+ flux measurements demonstrated unchanged transport activity for Ser25, Ser26, Ser1022, Ser1025, and Ser1026 mutants. In contrast, KCC2S937D, mimicking phosphorylation, resulted in a significant up-regulation of transport activity. Aspartate substitution of Thr934, a neighboring putative phosphorylation site, resulted in a comparable increase in KCC2 transport activity. Both KCC2T934D and KCC2S937D mutants were inhibited by the kinase inhibitor staurosporine and by N-ethylmaleimide, whereas KCC2WT, KCC2T934A, and KCC2S937A were activated. The inverse staurosporine effect on aspartate versus alanine substitutions reveals a cross-talk between different phosphorylation sites of KCC2. Immunoblot and cell surface labeling experiments detected no alterations in total abundance or surface expression of KCC2T934D and KCC2S937D compared with KCC2WT. These data reveal kinetic regulation of transport activity by these residues. In summary, our data identify a novel key regulatory phosphorylation site of KCC2 and a functional interaction between different conformation-changing post-translational modifications. The action of pharmacological agents aimed to modulate KCC2 activity for therapeutic benefit might therefore be highly context-specific. PMID:24849604

  18. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  19. Synaptic plasticity and phosphorylation

    PubMed Central

    Lee, Hey-Kyoung

    2009-01-01

    A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity. PMID:16904750

  20. Electronic Databases.

    ERIC Educational Resources Information Center

    Williams, Martha E.

    1985-01-01

    Presents examples of bibliographic, full-text, and numeric databases. Also discusses how to access these databases online, aids to online retrieval, and several issues and trends (including copyright and downloading, transborder data flow, use of optical disc/videodisc technology, and changing roles in database generation and processing). (JN)

  1. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  2. Guidelines for Coding and Entering Ground-Water Data into the Ground-Water Site Inventory Database Version 4.6, U.S. Geological Survey, Washington Water Science Center

    USGS Publications Warehouse

    Lane, R.C.

    2007-01-01

    This report establishes and documents the procedures used by the U.S. Geological Survey, Washington Water Science Center, to code and enter ground-water data into the Ground-Water Site Inventory database of the U.S. Geological Survey's Ground Water Site Inventory System. These guidelines are consistent with Version 4.6 of the system, but will be updated as each new version becomes available.

  3. Identification of extracellularly phosphorylated membrane proteins.

    PubMed

    Burghoff, Sandra; Willberg, Wibke; Schrader, Jürgen

    2015-10-01

    Ecto-protein kinases phosphorylate extracellular membrane proteins and exhibit similarities to casein kinases and protein kinases A and C. However, the identification of their protein substrates still remains a challenge because a clear separation from intracellular phosphoproteins is difficult. Here, we describe a straightforward method for the identification of extracellularly phosphorylated membrane proteins in human umbilical vein endothelial cells (HUVECs) and K562 cells which used the protease bromelain to selectively remove ectoproteins from intact cells and combined this with the subsequent analysis using IMAC and LC-MS/MS. A "false-positive" strategy in which cells without protease treatment served as controls was applied. Using this approach we identified novel phosphorylation sites on five ectophosphoproteins (NOTCH1, otopetrin 1, regulator of G-protein signalling 13 (RGS13), protein tyrosine phosphatase receptor type D isoform 3 (PTPRD), usherin isoform B (USH2A)). Use of bromelain appears to be a reliable technique for the further identification of phosphorylated surface-exposed peptides when extracellular adenosine-5'-triphosphate is elevated during purinergic signalling. PMID:26152529

  4. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications.

    PubMed

    Grieco, Michele; Jain, Arpit; Ebersberger, Ingo; Teige, Markus

    2016-06-01

    The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation. PMID:27117338

  5. Uncouplers of oxidative phosphorylation.

    PubMed

    Terada, H

    1990-07-01

    Uncouplers of oxidative phosphorylation in mitochondria inhibit the coupling between the electron transport and phosphorylation reactions and thus inhibit ATP synthesis without affecting the respiratory chain and ATP synthase (H(+)-ATPase). Miscellaneous compounds are known to be uncouplers, but weakly acidic uncouplers are representative because they show very potent activities. The most potent uncouplers discovered so far are the hindered phenol SF 6847, and hydrophobic salicylanilide S-13, which are active in vitro at concentrations in the 10 nM range. For induction of uncoupling, an acid dissociable group, bulky hydrophobic moiety and strong electron-withdrawing group are required. Weakly acidic uncouplers are considered to produce uncoupling by their protonophoric action in the H(+)-impermeable mitochondrial membrane. For exerting these effects, the stability of the respective uncoupler anions in the hydrophobic membrane is very important. High stability is achieved by delocalization of the polar ionic charge through uncoupler (chemical)-specific mechanisms. Such an action of weakly acidic uncouplers is characteristic of the highly efficient membrane targeting action of a nonsite-specific type of bioactive compound. PMID:2176586

  6. Uncouplers of oxidative phosphorylation.

    PubMed Central

    Terada, H

    1990-01-01

    Uncouplers of oxidative phosphorylation in mitochondria inhibit the coupling between the electron transport and phosphorylation reactions and thus inhibit ATP synthesis without affecting the respiratory chain and ATP synthase (H(+)-ATPase). Miscellaneous compounds are known to be uncouplers, but weakly acidic uncouplers are representative because they show very potent activities. The most potent uncouplers discovered so far are the hindered phenol SF 6847, and hydrophobic salicylanilide S-13, which are active in vitro at concentrations in the 10 nM range. For induction of uncoupling, an acid dissociable group, bulky hydrophobic moiety and strong electron-withdrawing group are required. Weakly acidic uncouplers are considered to produce uncoupling by their protonophoric action in the H(+)-impermeable mitochondrial membrane. For exerting these effects, the stability of the respective uncoupler anions in the hydrophobic membrane is very important. High stability is achieved by delocalization of the polar ionic charge through uncoupler (chemical)-specific mechanisms. Such an action of weakly acidic uncouplers is characteristic of the highly efficient membrane targeting action of a nonsite-specific type of bioactive compound. PMID:2176586

  7. In vivo phosphorylation of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP): CNP in brain myelin is phosphorylated by forskolin- and phorbol ester-sensitive protein kinases.

    PubMed

    Agrawal, H C; Sprinkle, T J; Agrawal, D

    1994-06-01

    2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) was phosphorylated in vivo, in brain slices and in a cell free system. Phosphoamino acid analysis of immunoprecipitated CNP labeled in vivo and in brain slices revealed phosphorylation of phosphoserine (94%) and phosphothreonine (5%) residues. Phosphorylation of CNP increased by 3-fold after brain slices were incubated with forskolin. Similarly, incubation of isolated myelin with [gamma-32]ATP with cAMP (5 microM) and cAMP (5 microM)+catalytic unit of cAMP dependent protein kinase dramatically increased CNP2 phosphorylation by 4- and 6-fold, respectively. It is feasible that CNP2 was predominantly phosphorylated on serine and/or threonine residues of the amino terminal peptide of CNP2, and this phosphorylation was catalyzed by protein kinase A. Phosphorylation of CNP1 and CNP2 increased 2-fold by incubating brain slices with phorbol ester. Forskolin and phorbol ester increased the phosphorylation of single, but distinct, CNP peptides. We present the first biochemical evidence that CNP2, on a protein mass basis, is far more heavily phosphorylated than CNP1, suggesting there are more phosphorylation sites on CNP2 than CNP1 and that at least one site is located on the 20-amino acid terminus of CNP2 and that it is likely a PKA site. PMID:8065530

  8. Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity.

    PubMed

    Huguenin-Dezot, Nicolas; De Cesare, Virginia; Peltier, Julien; Knebel, Axel; Kristaryianto, Yosua Adi; Rogerson, Daniel T; Kulathu, Yogesh; Trost, Matthias; Chin, Jason W

    2016-07-26

    Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages. PMID:27425610

  9. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  10. Protein phosphorylation in stomatal movement.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  11. Phosphorylation in protein-protein binding: effect on stability and function

    PubMed Central

    Nishi, Hafumi; Hashimoto, Kosuke; Panchenko, Anna R.

    2011-01-01

    Summary Post-translational modifications offer a dynamic way to regulate protein activity, subcellular localization and stability. Here we estimate the effect of phosphorylation on protein binding and function for different types of complexes from human proteome. We find that phosphorylation sites have a tendency to be located on binding interfaces in heterooligomeric and weak transient homooligomeric complexes. The analysis of molecular mechanisms of phosphorylation shows that phosphorylation may modulate the strength of interactions directly on interfaces and binding hotspots have a tendency to be phosphorylated in heterooligomers. Although majority of phosphosites do not show significant estimated stability differences upon attaching the phosphate groups, for about one third of all complexes it causes relatively large changes in binding energy. We discuss the cases where phosphorylation mediates the complex formation and regulates the function. We show that phosphorylation sites are not only more likely to be evolutionary conserved than surface residues but even more so than other interfacial residues. PMID:22153503

  12. Nitration of JAK-2 at the 1007Y-1008Y activation epitope impedes phosphorylation at this site: defining a GH, AKT/protein kinase B and nitric oxide synthase axis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generalized liver protein tyrosine nitration (3’-nitrotyrosine, 3’-NT) increases in vivo after GH injection with immunohistocellular patterns strikingly similar to those we observed for a specific nitration of JAK2 at its 1007Y-1008Y regulatory phosphorylation epitope following proinflammatory chall...

  13. Protein kinase CK2 phosphorylates Hsp105 alpha at Ser509 and modulates its function.

    PubMed Central

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Hatayama, Takumi

    2003-01-01

    The 105 kDa heat-shock protein (Hsp) Hsp105 alpha is a mammalian stress protein that belongs to the HSP105/HSP110 family. We have shown previously that Hsp105 alpha exists as non-phosphorylated and phosphorylated forms in vivo, and is phosphorylated by protein kinase CK2 (CK2) in vitro. In this study, to elucidate the role of phosphorylation of Hsp105 alpha, we first analysed the site of phosphorylation of Hsp105 alpha by CK2. Peptide mapping analysis of Hsp105 alpha phosphorylated by CK2 and in vitro phosphorylation experiments using various deletion and substitution mutants of Hsp105 alpha revealed that Hsp105 alpha is phosphorylated at Ser(509) in the beta-sheet domain. Furthermore, Ser(509) in Hsp105 alpha was also phosphorylated in mammalian COS-7 cells, although other sites were phosphorylated as well. Next, we examined the effects of phosphorylation of Hsp105 alpha on its functions using CK2-phosphorylated Hsp105 alpha. Interestingly, Hsp105 alpha suppressed 70 kDa heat-shock cognate protein (Hsc70)-mediated protein folding, whereas the phosphorylation of Hsp105 alpha at Ser(509) abolished the inhibitory activity of Hsp105 alpha in vitro. In accordance with these findings, wild-type Hsp105 alpha, which was thought to be phosphorylated in vivo, had no effect on Hsp70-mediated refolding of heat-denatured luciferase, whereas a non-phosphorylatable mutant of Hsp105 alpha suppressed the Hsp70-mediated refolding of heat-denatured luciferase in mammalian cells. Thus it was suggested that CK2 phosphorylates Hsp105 alpha at Ser(509) and modulates the function of Hsp105 alpha. The regulation of Hsp105 alpha function by phosphorylation may play an important role in a variety of cellular events. PMID:12558502

  14. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  15. Phosphorylated. beta. -dicarbonyl compounds

    SciTech Connect

    Liorber, B.G.; Tarzivolova, T.A.; Pavlov, V.A.; Zykova, T.V.; Kisilev, V.V.; Tumasheva, N.A.; Slizkii, A.Yu.; Shagvaleev, F.S.

    1987-08-20

    The reaction of trialkyl phosphites with alkyl malonyl chlorides leads to alkyl 3-dialkoxyphosphoryl-3-oxopropionates, which exist in the stable E-enol form. Depending on the basicities of the bases, the reactions of alkyl 3-dialkoxyphosphoryl-3-oxopropionates with nitrogen bases proceed with retention of the C-P bond and the formation of phosphorylated azomethine derivatives or with cleavage of the C-P bond and the liberation of nitrogen-containing derivatives of malonic acid. The /sup 1/H, /sup 13/C, and /sup 13/P NMR spectra were recorded with a Bruker WP-80 NMR spectrometer. The chemical shifts of the protons and carbon atoms are presented relative to tetramethylsilane (TMS). The chemical shifts of the /sup 31/P nuclei were determined relative to H/sub 3/PO/sub 4/.

  16. Whose Entropy: A Maximal Entropy Analysis of Phosphorylation Signaling

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Graeber, T. G.; Levine, R. D.

    2011-07-01

    High throughput experiments, characteristic of studies in systems biology, produce large output data sets often at different time points or under a variety of related conditions or for different patients. In several recent papers the data is modeled by using a distribution of maximal information-theoretic entropy. We pose the question: `whose entropy' meaning how do we select the variables whose distribution should be compared to that of maximal entropy. The point is that different choices can lead to different answers. Due to the technological advances that allow for the system-wide measurement of hundreds to thousands of events from biological samples, addressing this question is now part of the analysis of systems biology datasets. The analysis of the extent of phosphorylation in reference to the transformation potency of Bcr-Abl fusion oncogene mutants is used as a biological example. The approach taken seeks to use entropy not simply as a statistical measure of dispersion but as a physical, thermodynamic, state function. This highlights the dilemma of what are the variables that describe the state of the signaling network. Is what matters Boolean, spin-like, variables that specify whether a particular phosphorylation site is or is not actually phosphorylated. Or does the actual extent of phosphorylation matter. Last but not least is the possibility that in a signaling network some few specific phosphorylation sites are the key to the signal transduction even though these sites are not at any time abundantly phosphorylated in an absolute sense.

  17. Multisite phosphorylation of spinach leaf sucrose-phosphate synthase

    SciTech Connect

    Huber, J.L.; Huber, S.C. )

    1990-05-01

    Spinach leaf sucrose-phosphate synthase is phosphorylated both in vivo and in vitro on serine residues. Phosphorylation of SPS in vivo yields twelve major phosphopeptides after a tryptic digest and two dimensional mapping. The in vivo labeling of three of these SPS P-peptides is reduced in illuminated leaves where the extracted enzyme is activated relative to that of dark leaves. Two of these inhibitory sites are phosphorylated as well when SPS is inactivated in vitro using ({sup 32}P)ATP. In vivo phosphorylation of two other sites is enhanced during mannose feeding of the leaves (in light or dark) which produces the highest activation state of SPS. Overall, the results confirm that light-dark regulation of SPS activity occurs as a result of regulatory seryl-phosphorylation and involves a balance between phosphorylation of sites which inhibit or stimulate activity. Regulation of the SPS protein kinase that inhibits activity is relatively unaffected by phosphate but inhibited by G1c 6-P (IC{sub 50}{approx}5 mM), which may explain the control of SPS activation state by light-dark signals.

  18. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation.

    PubMed

    Qu, Xinli; Li, Xueling; Zheng, Yaowu; Ren, Yi; Puelles, Victor G; Caruana, Georgina; Nikolic-Paterson, David J; Li, Jinhua

    2014-04-01

    Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease. PMID:24485922

  19. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation

    PubMed Central

    Covian, Raul

    2012-01-01

    It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the

  20. National Ambient Radiation Database

    SciTech Connect

    Dziuban, J.; Sears, R.

    2003-02-25

    The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

  1. Statistical databases

    SciTech Connect

    Kogalovskii, M.R.

    1995-03-01

    This paper presents a review of problems related to statistical database systems, which are wide-spread in various fields of activity. Statistical databases (SDB) are referred to as databases that consist of data and are used for statistical analysis. Topics under consideration are: SDB peculiarities, properties of data models adequate for SDB requirements, metadata functions, null-value problems, SDB compromise protection problems, stored data compression techniques, and statistical data representation means. Also examined is whether the present Database Management Systems (DBMS) satisfy the SDB requirements. Some actual research directions in SDB systems are considered.

  2. A systems model of phosphorylation for inflammatory signaling events.

    PubMed

    Sadreev, Ildar I; Chen, Michael Z Q; Welsh, Gavin I; Umezawa, Yoshinori; Kotov, Nikolay V; Valeyev, Najl V

    2014-01-01

    Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multi-site phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell phenotype switching and production of cytokines. This study also provides a generic framework for the better understanding of a large number of multisite phosphorylation-regulated biochemical circuits. PMID:25333362

  3. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage.

    PubMed

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-03-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  4. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  5. Mumps Virus Nucleoprotein Enhances Phosphorylation of the Phosphoprotein by Polo-Like Kinase 1

    PubMed Central

    Pickar, Adrian; Zengel, James; Xu, Pei; Li, Zhuo

    2015-01-01

    ABSTRACT The viral RNA-dependent RNA polymerases (vRdRps) of nonsegmented, negative-sense viruses (NNSVs) consist of the enzymatic large protein (L) and the phosphoprotein (P). P is heavily phosphorylated, and its phosphorylation plays a critical role in viral RNA synthesis. Since NNSVs do not encode kinases, P is phosphorylated by host kinases. In this study, we investigate the roles that viral proteins play in the phosphorylation of mumps virus (MuV) P. We found that nucleoprotein (NP) enhances the phosphorylation of P. We have identified the serine/threonine kinase Polo-like kinase 1 (PLK1) as a host kinase that phosphorylates P and have found that phosphorylation of P by PLK1 is enhanced by NP. The PLK1 binding site in MuV P was mapped to residues 146 to 148 within the S(pS/T)P motif, and the phosphorylation site was identified as residues S292 and S294. IMPORTANCE It has previously been shown that P acts as a chaperone for NP, which encapsidates viral genomic RNA to form the NP-RNA complex, the functional template for viral RNA synthesis. Thus, it is assumed that phosphorylation of P may regulate NP's ability to form the NP-RNA complex, thereby regulating viral RNA synthesis. Our work demonstrates that MuV NP affects phosphorylation of P, suggesting that NP can regulate viral RNA synthesis by regulating phosphorylation of P. PMID:26608325

  6. Database Manager

    ERIC Educational Resources Information Center

    Martin, Andrew

    2010-01-01

    It is normal practice today for organizations to store large quantities of records of related information as computer-based files or databases. Purposeful information is retrieved by performing queries on the data sets. The purpose of DATABASE MANAGER is to communicate to students the method by which the computer performs these queries. This…

  7. Maize databases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is a succinct overview of maize data held in the species-specific database MaizeGDB (the Maize Genomics and Genetics Database), and selected multi-species data repositories, such as Gramene/Ensembl Plants, Phytozome, UniProt and the National Center for Biotechnology Information (NCBI), ...

  8. Database Driven Web Systems for Education.

    ERIC Educational Resources Information Center

    Garrison, Steve; Fenton, Ray

    1999-01-01

    Provides technical information on publishing to the Web. Demonstrates some new applications in database publishing. Discusses the difference between static and database-drive Web pages. Reviews failures and successes of a Web database system. Addresses the question of how to build a database-drive Web site, discussing connectivity software, Web…

  9. Phosphorylation of mouse melanopsin by protein kinase A.

    PubMed

    Blasic, Joseph R; Brown, R Lane; Robinson, Phyllis R

    2012-01-01

    The visual pigment melanopsin is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina, where it is involved in non-image forming light responses including circadian photoentrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep. It has recently been shown that the melanopsin-based light response in ipRGCs is attenuated by the neurotransmitter dopamine. Here, we use a heterologous expression system to demonstrate that mouse melanopsin can be phosphorylated by protein kinase A, and that phosphorylation can inhibit melanopsin signaling in HEK cells. Site-directed mutagenesis experiments revealed that this inhibitory effect is primarily mediated by phosphorylation of sites T186 and S287 located in the second and third intracellular loops of melanopsin, respectively. Furthermore, we show that this phosphorylation can occur in vivo using an in situ proximity-dependent ligation assay (PLA). Based on these data, we suggest that the attenuation of the melanopsin-based light response by dopamine is mediated by direct PKA phosphorylation of melanopsin, rather than phosphorylation of a downstream component of the signaling cascade. PMID:23049792

  10. Bak apoptotic function is not directly regulated by phosphorylation.

    PubMed

    Tran, V H; Bartolo, R; Westphal, D; Alsop, A; Dewson, G; Kluck, R M

    2013-01-01

    During apoptosis, Bak and Bax permeabilize the mitochondrial outer membrane by undergoing major conformational change and oligomerization. This activation process in Bak is reported to require dephosphorylation of tyrosine-108 close to an activation trigger site. To investigate how dephosphorylation of Bak contributes to its activation and conformational change, one-dimensional isoelectric focusing (1D-IEF) and mutagenesis was used to monitor Bak phosphorylation. On 1D-IEF, Bak extracted from a range of cell types migrated as a single band near the predicted isoelectric point of 5.6 both before and after phosphatase treatment, indicating that Bak is not significantly phosphorylated at any residue. In contrast, three engineered 'phosphotagged' Bak variants showed a second band at lower pI, indicating phosphorylation. Apoptosis induced by several stimuli failed to alter Bak pI, indicating little change in phosphorylation status. In addition, alanine substitution of tyrosine-108 and other putative phosphorylation sites failed to enhance Bak activation or pro-apoptotic function. In summary, Bak is not significantly phosphorylated at any residue, and Bak activation during apoptosis does not require dephosphorylation. PMID:23303126

  11. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  12. JNK phosphorylates β-catenin and regulates adherens junctions

    PubMed Central

    Lee, Meng-Horng; Koria, Piyush; Qu, Jun; Andreadis, Stelios T.

    2009-01-01

    The c-Jun amino-terminal kinase (JNK) is an important player in inflammation, proliferation, and apoptosis. More recently, JNK was found to regulate cell migration by phosphorylating paxillin. Here, we report a novel role of JNK in cell adhesion. Specifically, we provide evidence that JNK binds to E-cadherin/β-catenin complex and phosphorylates β-catenin at serine 37 and threonine 41, the sites also phosphorylated by GSK-3β. Inhibition of JNK kinase activity using dominant-negative constructs reduces phosphorylation of β-catenin and promotes localization of E-cadherin/β-catenin complex to cell-cell contact sites. Conversely, activation of JNK induces β-catenin phosphorylation and disruption of cell contacts, which are prevented by JNK siRNA. We propose that JNK binds to β-catenin and regulates formation of adherens junctions, ultimately controlling cell-to-cell adhesion.—Lee, M.-H., Koria, P., Qu, J., Andreadis, S. T. JNK phosphorylates β-catenin and regulates adherens junctions. PMID:19667122

  13. Data on the peptide mapping and MS identification for phosphorylated peptide.

    PubMed

    Wang, Hui; Tu, Zong-Cai; Liu, Guang-Xian; Zhang, Lu; Chen, Yuan

    2016-09-01

    This article contains peptides mapping, mass spectrometry and processed data related to the research "Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment" [1]. Fourier transform ion cyclotron mass spectrometry (FTICR MS) was used to investigate the specific phosphorylation sites and the degree of phosphorylation (DSP) at each site. Specifically, phosphorylated peptides were monitored through mass shift on the FTICR MS spectrum. DSP was evaluated through the relative abundance levels of the FTICR MS spectrometry. From these data, the calculation method of DSP was exemplified. PMID:27274527

  14. Phosphorylation of a neuronal-specific beta-tubulin isotype

    SciTech Connect

    Diaz-Nido, J.; Serrano, L.; Lopez-Otin, C.; Vandekerckhove, J.; Avila, J. )

    1990-08-15

    Adult rats were intracraneally injected with ({sup 32}P) phosphate and brain microtubules isolated. The electrophoretically purified, in vivo phospholabeled, beta-tubulin was digested with the V8-protease and the labeled peptide purified by reversed-phase liquid chromatography. Its amino acid sequence corresponds to the COOH-terminal sequence of a minor neuronal beta 3-tubulin isoform from chicken and human. The phosphorylation site was at serine 444. A synthetic peptide with sequence EMYEDDEEESESQGPK, corresponding to that of the COOH terminus of beta 3-tubulin, was efficiently phosphorylated in vitro by casein kinase II at the same serine 444. The functional meaning of tubulin phosphorylation is still unclear. However, the modification of the protein takes place after microtubule assembly, and phosphorylated tubulin is mainly present in the assembled microtubule protein fraction.

  15. Cysteine mutations cause defective tyrosine phosphorylation in MEGF10 myopathy

    PubMed Central

    Mitsuhashi, Satomi; Mitsuhashi, Hiroaki; Alexander, Matthew S; Sugimoto, Hiroyuki; Kang, Peter B

    2013-01-01

    Recessive mutations in MEGF10 are known to cause a congenital myopathy in humans. Two mutations in the extracellular EGF-like domains of MEGF10, C326R and C774R, were associated with decreased tyrosine phosphorylation of MEGF10 in vitro. Y1030 was identified to be the major tyrosine phosphorylation site in MEGF10 and is phosphorylated at least in part by c-Src. Overexpression of wild-type MEGF10 enhanced C2C12 myoblast proliferation, while overexpression of Y1030F mutated MEGF10 did not. We conclude that MEGF10-mediated signaling via tyrosine phosphorylation helps to regulate myoblast proliferation. Defects in this signaling pathway may contribute to the disease mechanism of MEGF10 myopathy. PMID:23954233

  16. Hawaii bibliographic database

    USGS Publications Warehouse

    Wright, T.L.; Takahashi, T.J.

    1998-01-01

    The Hawaii bibliographic database has been created to contain all of the literature, from 1779 to the present, pertinent to the volcanological history of the Hawaiian-Emperor volcanic chain. References are entered in a PC- and Macintosh-compatible EndNote Plus bibliographic database with keywords and abstracts or (if no abstract) with annotations as to content. Keywords emphasize location, discipline, process, identification of new chemical data or age determinations, and type of publication. The database is updated approximately three times a year and is available to upload from an ftp site. The bibliography contained 8460 references at the time this paper was submitted for publication. Use of the database greatly enhances the power and completeness of library searches for anyone interested in Hawaiian volcanism.

  17. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation

    PubMed Central

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK

    2015-01-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of

  18. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  19. Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin.

    PubMed Central

    Bellis, S L; Perrotta, J A; Curtis, M S; Turner, C E

    1997-01-01

    Tyrosine phosphorylation of paxillin by the focal adhesion kinase (FAK) has been implicated as a signal transduction mechanism associated with cell adhesion and cytoskeletal reorganization. The potential role of serine phosphorylation of paxillin in these events has not been well characterized. In this study we have examined the phosphorylation profile of paxillin both in vitro and in vivo. By using glutathione S-transferase-paxillin fusion proteins in precipitation-kinase assays in vitro we observed that a fusion protein spanning amino acid residues 54-313 of paxillin, and containing a FAK-binding site, precipitated substantial serine kinase activity as well as FAK activity from a smooth-muscle lysate. Together these kinases phosphorylated paxillin on tyrosine residue 118, a site that has been identified previously as a target for FAK phosphorylation, and on serine residues 188 and/or 190. The binding site for the serine kinase, the identity of which is currently unknown, was further mapped to residues 168-191 of paxillin. To assess the physiological relevance of these sites phosphorylated in vitro, the profile of paxillin phosphorylation in vivo stimulated by seeding fibroblasts on fibronectin was characterized. As expected, plating cells on fibronectin enhanced the tyrosine phosphorylation of paxillin. However, 96% of the phosphorylation of paxillin occurred on serine residues. Comparison by two-dimensional phosphopeptide analyses indicated that the major sites of tyrosine and serine phosphorylation detected in the assays in vitro co-migrate with phosphopeptides derived from paxillin phosphorylated in vivo in response to plating cells on fibronectin. These findings support a role for both tyrosine and serine kinases in the signal transduction pathway linking integrin activation to paxillin phosphorylation. PMID:9230116

  20. Regulation of peroxisome dynamics by phosphorylation.

    PubMed

    Oeljeklaus, Silke; Schummer, Andreas; Mastalski, Thomas; Platta, Harald W; Warscheid, Bettina

    2016-05-01

    Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies. PMID:26775584

  1. Phosphorylation network rewiring by gene duplication

    PubMed Central

    Freschi, Luca; Courcelles, Mathieu; Thibault, Pierre; Michnick, Stephen W; Landry, Christian R

    2011-01-01

    Elucidating how complex regulatory networks have assembled during evolution requires a detailed understanding of the evolutionary dynamics that follow gene duplication events, including changes in post-translational modifications. We compared the phosphorylation profiles of paralogous proteins in the budding yeast Saccharomyces cerevisiae to that of a species that diverged from the budding yeast before the duplication of those genes. We found that 100 million years of post-duplication divergence are sufficient for the majority of phosphorylation sites to be lost or gained in one paralog or the other, with a strong bias toward losses. However, some losses may be partly compensated for by the evolution of other phosphosites, as paralogous proteins tend to preserve similar numbers of phosphosites over time. We also found that up to 50% of kinase–substrate relationships may have been rewired during this period. Our results suggest that after gene duplication, proteins tend to subfunctionalize at the level of post-translational regulation and that even when phosphosites are preserved, there is a turnover of the kinases that phosphorylate them. PMID:21734643

  2. Use of Various Rock Physics Models Combined with a Rock Physics Database to Better Characterize Velocity Dispersion Effects in Potential Enhanced Oil Recovery, Carbon Sequestration and Hydrothermal Sites

    NASA Astrophysics Data System (ADS)

    Purcell, C. C.; Mur, A. J.; Delany, D.; Haljasmaa, I. V.; Soong, Y.; Harbert, W.

    2011-12-01

    The exploration of velocity differences in various fluid saturated rock types under reservoir conditions should prove to be useful in seismic monitoring of sequestration and hydrothermal sites. Different saturation values, along with mixtures of other common pore fluids could help delineate various areas of a CO2 flood or enhanced geothermal pressurization, in addition to estimating a minimum saturation amount needed to be seen in seismic surveys. We also explore the effects of varying parameters on the saturated velocities, including porosity, bulk frame composition, pressure, temperature, different pore filling phases, fluid mixtures, and compliant porosity. A software toolkit is currently in development that would allow exploration of these parameters to be easily achieved and visualized. Fluid substitution using Gassmann's equation (Gassmann [1]) is an important tool in the analysis of velocity dispersion in saturated rocks. Mavko and Jizba [2] created a model of squirt dispersion for elastic wave velocities at ultrasonic frequencies that predicts total dispersion for fluid filled rocks. Gurevich et al. [3] extend the Mavko-Jizba expressions to low fluid bulk modulus situations, such as gas filled rocks. These equations are typically used to calculate velocities of rocks filled with typical pore filling phases such as brine or gas. Purcell et al. [4] compared these equations to CO2 saturated limestone samples at reservoir pressures and temperatures. This paper compares the accuracy of these equations over various pressures and temperature ranges for a variety of rock types. Dry rock ultrasonic lab measurements of velocity have been made for carbonate, sandstone, rhyolite and coal and incorporated into a rock physics database. In addition, waveforms for each measurement have been used to estimate Q. Measurements were made between 2.3 and 50 MPa with generally a minimum of 40 measurements per sample completed. Various saturating phases, including supercritical CO

  3. AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.

    PubMed

    Steffens, Nils Ole; Galuschka, Claudia; Schindler, Martin; Bülow, Lorenz; Hehl, Reinhard

    2005-07-01

    The AthaMap database generates a map of cis-regulatory elements for the Arabidopsis thaliana genome. AthaMap contains more than 7.4 x 10(6) putative binding sites for 36 transcription factors (TFs) from 16 different TF families. A newly implemented functionality allows the display of subsets of higher conserved transcription factor binding sites (TFBSs). Furthermore, a web tool was developed that permits a user-defined search for co-localizing cis-regulatory elements. The user can specify individually the level of conservation for each TFBS and a spacer range between them. This web tool was employed for the identification of co-localizing sites of known interacting TFs and TFs containing two DNA-binding domains. More than 1.8 x 10(5) combinatorial elements were annotated in the AthaMap database. These elements can also be used to identify more complex co-localizing elements consisting of up to four TFBSs. The AthaMap database and the connected web tools are a valuable resource for the analysis and the prediction of gene expression regulation at http://www.athamap.de. PMID:15980498

  4. Oxidative and Photosynthetic Phosphorylation Mechanisms

    ERIC Educational Resources Information Center

    Wang, Jui H.

    1970-01-01

    Proposes a molecular mechanism for the coupling of phosphorylation to electron transport in both mitochondria and chloroplasts. Justifies the proposed reaction schemes in terms of thermodynamics and biochemical data. Suggests how areobic respiration could have evolved. (EB)

  5. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    SciTech Connect

    Pendergast, A.M.; Traugh, J.A.

    1986-05-01

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with /sup 32/P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with /sup 32/P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C.

  6. BIOMARKERS DATABASE

    EPA Science Inventory

    This database was developed by assembling and evaluating the literature relevant to human biomarkers. It catalogues and evaluates the usefulness of biomarkers of exposure, susceptibility and effect which may be relevant for a longitudinal cohort study. In addition to describing ...

  7. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis

    PubMed Central

    Jones, Danielle M.; Murray, Christian M.; Ketelaar, KassaDee J.; Thomas, Joseph J.; Villalobos, Jose A.; Wallace, Ian S.

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  8. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis.

    PubMed

    Jones, Danielle M; Murray, Christian M; Ketelaar, KassaDee J; Thomas, Joseph J; Villalobos, Jose A; Wallace, Ian S

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  9. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  10. Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System

    PubMed Central

    2016-01-01

    Multisite phosphorylation is a common pathway to regulate protein function, activity, and interaction pattern in vivo, but routine biochemical analysis is often insufficient to identify the number and order of individual phosphorylation reactions and their mechanistic impact on the protein behavior. Here, we integrate complementary mass spectrometry (MS)-based approaches to characterize a multisite phosphorylation-regulated protein system comprising Polo-like kinase 1 (Plk1) and its coactivators Aurora kinase A (Aur-A) and Bora, the interplay of which is essential for mitotic entry after DNA damage-induced cell cycle arrest. Native MS and cross-linking–MS revealed that Aur-A/Bora-mediated Plk1 activation is accompanied by the formation of Aur-A/Bora and Plk1/Bora heterodimers. We found that the Aur-A/Bora interaction is independent of the Bora phosphorylation state, whereas the Plk1/Bora interaction is dependent on extensive Bora multisite phosphorylation. Bottom-up and top-down proteomics analyses showed that Bora multisite phosphorylation proceeds via a well-ordered sequence of site-specific phosphorylation reactions, whereby we could reveal the involvement of up to 16 phosphorylated Bora residues. Ion mobility spectrometry–MS demonstrated that this multisite phosphorylation primes a substantial structural rearrangement of Bora, explaining the interdependence between extensive Bora multisite phosphorylation and Plk1/Bora complex formation. These results represent a first benchmark of our multipronged MS strategy, highlighting its potential to elucidate the mechanistic and structural implications of multisite protein phosphorylation. PMID:27504491

  11. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.

    PubMed

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane

    2015-12-01

    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation. PMID:26375013

  12. Structural basis for Mep2 ammonium transceptor activation by phosphorylation

    PubMed Central

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C.

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  13. Tonoplast-Bound Protein Kinase Phosphorylates Tonoplast Intrinsic Protein 1

    PubMed Central

    Johnson, Kenneth D.; Chrispeels, Maarten J.

    1992-01-01

    Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16653198

  14. Phospho-oligosaccharide dependent phosphorylation of ATP citrate lyase.

    PubMed

    Puerta, J; Mato, J M; Alemany, S

    1990-01-01

    The effect of insulin on ATP citrate lyase phosphorylation has been shown to be mimicked by a phospho-oligosaccharide in intact adipocytes. We demonstrate that the addition of phospho-oligosaccharide to intact adipocytes enhances the phosphorylation of ATP citrate lyase in the same tryptic peptide as insulin does. The addition of phospho-oligosaccharide to an adipocyte extract also results in an increase in ATP citrate lyase phosphorylation but in a different site than that observed in intact cells. The phospho-oligosaccharide-dependent incorporation of phosphate into ATP citrate lyase in intact cells is resistant to isopropanol and acetic acid, but the phosphoenzyme phosphorylated in cell extracts is acid labile. In cell extracts, the addition of phospho-oligosaccharide markedly inhibits ATP hydrolysis, which may explain the effect of this molecule on ATP citrate lyase phosphorylation in broken cells. These results support the hypothesis that this phospho-oligosaccharide mediates some of the effects of insulin on protein phosphorylation. They also indicate that caution should be exercised in interpreting the results obtained by adding phospho-oligosaccharide to broken cell preparations. PMID:2119547

  15. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides.

    PubMed

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P R

    2016-01-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICB(Glc), which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301

  16. Protein Phosphorylation during Coconut Zygotic Embryo Development1

    PubMed Central

    Islas-Flores, Ignacio; Oropeza, Carlos; Hernández-Sotomayor, S.M. Teresa

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. PMID:9733545

  17. Structural basis for Mep2 ammonium transceptor activation by phosphorylation.

    PubMed

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  18. Phosphorylation of bovine rod photoreceptor cyclic GMP phosphodiesterase.

    PubMed Central

    Udovichenko, I P; Cunnick, J; Gonzales, K; Takemoto, D J

    1993-01-01

    The cyclic GMP phosphodiesterase (PDE) of retinal rods plays a key role in phototransduction and consists of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Here we report that PDE alpha and PDE gamma are phosphorylated by protein kinase(s) C (PKC) from brain and rod outer segments (ROS). These same two types of PKC also phosphorylate PDE alpha in trypsin-activated PDE (without PDE gamma). In contrast, cyclic-AMP-dependent protein kinase catalytic subunit phosphorylates both PDE alpha and PDE beta, but not PDE gamma. This kinase does not phosphorylate trypsin-activated PDE. The synthetic peptides AKVISNLLGPREAAV (PDE alpha 30-44) and KQRQTRQFKSKPPKK (PDE gamma 31-45) inhibited phosphorylation of PDE by PKC from ROS. These data suggest that sites (at least one for each subunit) for phosphorylation of PDE by PKC are localized in these corresponding regions of PDE alpha and PDE gamma. Isoenzyme-specific PKC antibodies against peptides unique to the alpha, beta, gamma, delta, epsilon and zeta isoforms of protein kinase C were used to show that a major form of PKC in ROS is PKC alpha. However, other minor forms were also present. Images Figure 1 Figure 4 Figure 6 Figure 7 PMID:8216238

  19. Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region.

    PubMed

    Lemas, Dominick; Lekkas, Panagiotis; Ballif, Bryan A; Vigoreaux, Jim O

    2016-03-01

    Flightin is a myosin binding phosphoprotein that originated in the ancestor to Pancrustacea ~500 MYA. In Drosophila melanogaster, flightin is essential for length determination and flexural rigidity of thick filaments. Here, we show that among 12 Drosophila species, the N-terminal region is characterized by low sequence conservation, low pI, a cluster of phosphorylation sites, and a high propensity to intrinsic disorder (ID) that is augmented by phosphorylation. Using mass spectrometry, we identified eight phosphorylation sites within a 29 amino acid segment in the N-terminal region of D. melanogaster flightin. We show that phosphorylation of D. melanogaster flightin is modulated during flight and, through a comparative analysis to orthologs from other Drosophila species, we found phosphorylation sites that remain invariant, sites that retain the charge character, and sites that are clade-specific. While the number of predicted phosphorylation sites differs across species, we uncovered a conserved pattern that relates the number of phosphorylation sites to pI and ID. Extending the analysis to orthologs of other insects, we found additional conserved features in flightin despite the near absence of sequence identity. Collectively, our results demonstrate that structural constraints demarcate the evolution of the highly variable N-terminal region. PMID:26691840

  20. NHE3 function and phosphorylation are regulated by a calyculin A-sensitive phosphatase

    PubMed Central

    Dynia, Diane W.; Steinmetz, Amy G.

    2010-01-01

    Na+/H+ exchanger 3 (NHE3) is phosphorylated and regulated by multiple kinases, including PKA, SGK1, and CK2; however, the role of phosphatases in the dephosphorylation and regulation of NHE3 remains unknown. The purpose of this study was to determine whether serine/threonine phosphatases alter NHE3 activity and phosphorylation and, if so, at which sites. To this end, we first examined the effects of calyculin A [a combined protein phosphatase 1 (PP1) and PP2A inhibitor] and okadaic acid (a PP2A inhibitor) on general and site-specific NHE3 phosphorylation. Calyculin A induced a phosphorylation-dependent NHE3 gel mobility shift and increased NHE3 phosphorylation at serines 552 and 605. No change in NHE3 phosphorylation was detected after okadaic acid treatment. An NHE3 gel mobility shift was also evident in calyculin A-treated COS-7 cells transfected with either wild-type or mutant (S552A, S605G, S661A, S716A) rat NHE3. Since the NHE3 gel mobility shift occurred despite mutation of known phosphorylation sites, novel sites of phosphorylation must also exist. Next, we assayed NHE3 activity in response to calyculin A and okadaic acid and found that calyculin A induced a 24% inhibition of NHE3 activity, whereas okadaic acid had no effect. When all known NHE3 phosphorylation sites were mutated, calyculin A induced a stimulation of NHE3 activity, demonstrating a functional significance for the novel phosphorylation sites. Finally, we established that the PP1 catalytic subunit can directly dephosphorylate immunopurified NHE3 in vitro. In conclusion, our data demonstrate that a calyculin A-sensitive phosphatase, most likely PP1, is involved in the regulation and dephosphorylation of NHE3 at known and novel sites. PMID:20015946

  1. Experiment Databases

    NASA Astrophysics Data System (ADS)

    Vanschoren, Joaquin; Blockeel, Hendrik

    Next to running machine learning algorithms based on inductive queries, much can be learned by immediately querying the combined results of many prior studies. Indeed, all around the globe, thousands of machine learning experiments are being executed on a daily basis, generating a constant stream of empirical information on machine learning techniques. While the information contained in these experiments might have many uses beyond their original intent, results are typically described very concisely in papers and discarded afterwards. If we properly store and organize these results in central databases, they can be immediately reused for further analysis, thus boosting future research. In this chapter, we propose the use of experiment databases: databases designed to collect all the necessary details of these experiments, and to intelligently organize them in online repositories to enable fast and thorough analysis of a myriad of collected results. They constitute an additional, queriable source of empirical meta-data based on principled descriptions of algorithm executions, without reimplementing the algorithms in an inductive database. As such, they engender a very dynamic, collaborative approach to experimentation, in which experiments can be freely shared, linked together, and immediately reused by researchers all over the world. They can be set up for personal use, to share results within a lab or to create open, community-wide repositories. Here, we provide a high-level overview of their design, and use an existing experiment database to answer various interesting research questions about machine learning algorithms and to verify a number of recent studies.

  2. Discovery of a Previously Unrecognized Ribonuclease from Escherichia coli That Hydrolyzes 5'-Phosphorylated Fragments of RNA.

    PubMed

    Ghodge, Swapnil V; Raushel, Frank M

    2015-05-12

    TrpH or YciV (locus tag b1266) from Escherichia coli is annotated as a protein of unknown function that belongs to the polymerase and histidinol phosphatase (PHP) family of proteins in the UniProt and NCBI databases. Enzymes from the PHP family have been shown to hydrolyze organophosphoesters using divalent metal ion cofactors at the active site. We found that TrpH is capable of hydrolyzing the 3'-phosphate from 3',5'-bis-phosphonucleotides. The enzyme will also sequentially hydrolyze 5'-phosphomononucleotides from 5'-phosphorylated RNA and DNA oligonucleotides, with no specificity toward the identity of the nucleotide base. The enzyme will not hydrolyze RNA or DNA oligonucleotides that are unphosphorylated at the 5'-end of the substrate, but it makes no difference whether the 3'-end of the oligonucleotide is phosphorylated. These results are consistent with the sequential hydrolysis of 5'-phosphorylated mononucleotides from oligonucleotides in the 5' → 3' direction. The catalytic efficiencies for hydrolysis of 3',5'-pAp, p(Ap)A, p(Ap)4A, and p(dAp)4dA were determined to be 1.8 × 10(5), 9.0 × 10(4), 4.6 × 10(4), and 2.9 × 10(3) M(-1) s(-1), respectively. TrpH was found to be more efficient at hydrolyzing RNA oligonucleotides than DNA oligonucleotides. This enzyme can also hydrolyze annealed DNA duplexes, albeit at a catalytic efficiency approximately 10-fold lower than that of the corresponding single-stranded oligonucleotides. TrpH is the first enzyme from E. coli that has been found to possess 5' → 3' exoribonuclease activity. We propose to name this enzyme RNase AM. PMID:25871919

  3. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  4. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    PubMed

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  5. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and Postgre

  6. Confident site localization using a simulated phosphopeptide spectral library.

    PubMed

    Suni, Veronika; Imanishi, Susumu Y; Maiolica, Alessio; Aebersold, Ruedi; Corthals, Garry L

    2015-05-01

    We have investigated if phosphopeptide identification and simultaneous site localization can be achieved by spectral library searching. This allows taking advantage of comparison of specific spectral features, which would lead to improved discrimination of differential localizations. For building a library, we propose a spectral simulation strategy where all possible single phosphorylations can be simply and accurately (re)constructed on enzymatically dephosphorylated peptides, by predicting the diagnostic fragmentation events produced in beam-type CID. To demonstrate the performance of our approach, enriched HeLa phosphopeptides were dephosphorylated with alkaline phosphatase and analyzed with higher energy collisional dissociation (HCD), which were then used for creating a spectral library of simulated phosphopeptides. Spectral library searching using SpectraST was performed on data sets of synthetic phosphopeptides and the HeLa phosphopeptides, and subsequently compared to Mascot and Sequest database searching followed by phosphoRS and Ascore afforded localization, respectively. Our approach successfully led to accurate localization, and it outperformed other methods, when phosphopeptides were covered by the library. These results suggest that the searching with simulated spectral libraries serves as a crucial approach for both supplementing and validating the phosphorylation sites obtained by database searching and localization tools. For future development, simulation of multiply phosphorylated peptides remains to be implemented. PMID:25774671

  7. Effects of phosphorylation on function of the Rad GTPase.

    PubMed Central

    Moyers, J S; Zhu, J; Kahn, C R

    1998-01-01

    Rad, Gem and Kir possess unique structural features in comparison with other Ras-like GTPases, including a C-terminal 31-residue extension that lacks typical prenylation motifs. We have recently shown that Rad and Gem bind calmodulin in a Ca2+-dependent manner via this C-terminal extension, involving residues 278-297 in human Rad. This domain also contains several consensus sites for serine phosphorylation, and Rad is complexed with calmodulin-dependent protein kinase II (CaMKII) in C2C12 cells. Here we show that Rad serves as a substrate for phosphorylation by CaMKII, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and casein kinase II (CKII) with stoichiometries in vitro of 0.2-1.3 mol of phosphate/mol of Rad. By deletion and point mutation analysis we show that phosphorylation by CaMKII and PKA occurs on a single serine residue at position 273, whereas PKC and CKII phosphorylate multiple C-terminal serine residues, including Ser214, Ser257, Ser273, Ser290 and Ser299. Incubation of Rad with PKA decreases GTP binding by 60-70%, but this effect seems to be independent of phosphorylation, as it is observed with the Ser273-->Ala mutant of Rad containing a mutation at the site of PKA phosphorylation. The remainder of the serine kinases have no effect on Rad GTP binding, intrinsic GTP hydrolysis or GTP hydrolysis stimulated by the putative tumour metastasis suppressor nm23. However, phosphorylation of Rad by PKC and CKII abolishes the interaction of Rad with calmodulin. These findings suggest that the binding of Rad to calmodulin, as well as its ability to bind GTP, might be regulated by the activation of several serine kinases. PMID:9677319

  8. Effects of phosphorylation on function of the Rad GTPase.

    PubMed

    Moyers, J S; Zhu, J; Kahn, C R

    1998-08-01

    Rad, Gem and Kir possess unique structural features in comparison with other Ras-like GTPases, including a C-terminal 31-residue extension that lacks typical prenylation motifs. We have recently shown that Rad and Gem bind calmodulin in a Ca2+-dependent manner via this C-terminal extension, involving residues 278-297 in human Rad. This domain also contains several consensus sites for serine phosphorylation, and Rad is complexed with calmodulin-dependent protein kinase II (CaMKII) in C2C12 cells. Here we show that Rad serves as a substrate for phosphorylation by CaMKII, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and casein kinase II (CKII) with stoichiometries in vitro of 0.2-1.3 mol of phosphate/mol of Rad. By deletion and point mutation analysis we show that phosphorylation by CaMKII and PKA occurs on a single serine residue at position 273, whereas PKC and CKII phosphorylate multiple C-terminal serine residues, including Ser214, Ser257, Ser273, Ser290 and Ser299. Incubation of Rad with PKA decreases GTP binding by 60-70%, but this effect seems to be independent of phosphorylation, as it is observed with the Ser273-->Ala mutant of Rad containing a mutation at the site of PKA phosphorylation. The remainder of the serine kinases have no effect on Rad GTP binding, intrinsic GTP hydrolysis or GTP hydrolysis stimulated by the putative tumour metastasis suppressor nm23. However, phosphorylation of Rad by PKC and CKII abolishes the interaction of Rad with calmodulin. These findings suggest that the binding of Rad to calmodulin, as well as its ability to bind GTP, might be regulated by the activation of several serine kinases. PMID:9677319

  9. Abundant protein phosphorylation potentially regulates Arabidopsis anther development

    PubMed Central

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-01-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana. However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4–7 and 8–12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  10. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.

    PubMed

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-09-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  11. Solubility Database

    National Institute of Standards and Technology Data Gateway

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  12. Regulation of ABC Transporter Function Via Phosphorylation by Protein Kinases

    PubMed Central

    Stolarczyk, Elzbieta I.; Reiling, Cassandra J.; Paumi, Christian M.

    2011-01-01

    ATP-binding cassette (ABC) transporters are multispanning membrane proteins that utilize ATP to move a broad range of substrates across cellular membranes. ABC transporters are involved in a number of human disorders and diseases [1]. Overexpression of a subset of the transporters has been closely linked to multidrug resistance in both bacteria and viruses and in cancer. A poorly understood and important aspect of ABC transporter biology is the role of phosphorylation as a mechanism to regulate transporter function. In this review, we summarize the current literature addressing the role of phosphorylation in regulating ABC transporter function. A comprehensive list of all the phosphorylation sites that have been identified for the human ABC transporters is presented, and we discuss the role of individual kinases in regulating transporter function. We address the potential pitfalls and difficulties associated with identifying phosphorylation sites and the corresponding kinase(s), and we discuss novel techniques that may circumvent these problems. We conclude by providing a brief perspective on studying ABC transporter phosphorylation. PMID:21118091

  13. Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst

    SciTech Connect

    Dai, Sheng; Mayes, Richard T; Fulvio, Pasquale F; Ma, Zhen

    2011-01-01

    Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

  14. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function

    PubMed Central

    Rajanala, Kalpana; Sarkar, Anshuk; Jhingan, Gagan Deep; Priyadarshini, Raina; Jalan, Manisha; Sengupta, Sagar; Nandicoori, Vinay Kumar

    2014-01-01

    ABSTRACT A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions. PMID:24938596

  15. The PROSITE database.

    PubMed

    Hulo, Nicolas; Bairoch, Amos; Bulliard, Virginie; Cerutti, Lorenzo; De Castro, Edouard; Langendijk-Genevaux, Petra S; Pagni, Marco; Sigrist, Christian J A

    2006-01-01

    The PROSITE database consists of a large collection of biologically meaningful signatures that are described as patterns or profiles. Each signature is linked to a documentation that provides useful biological information on the protein family, domain or functional site identified by the signature. The PROSITE database is now complemented by a series of rules that can give more precise information about specific residues. During the last 2 years, the documentation and the ScanProsite web pages were redesigned to add more functionalities. The latest version of PROSITE (release 19.11 of September 27, 2005) contains 1329 patterns and 552 profile entries. Over the past 2 years more than 200 domains have been added, and now 52% of UniProtKB/Swiss-Prot entries (release 48.1 of September 27, 2005) have a cross-reference to a PROSITE entry. The database is accessible at http://www.expasy.org/prosite/. PMID:16381852

  16. The PROSITE database

    PubMed Central

    Hulo, Nicolas; Bairoch, Amos; Bulliard, Virginie; Cerutti, Lorenzo; De Castro, Edouard; Langendijk-Genevaux, Petra S.; Pagni, Marco; Sigrist, Christian J. A.

    2006-01-01

    The PROSITE database consists of a large collection of biologically meaningful signatures that are described as patterns or profiles. Each signature is linked to a documentation that provides useful biological information on the protein family, domain or functional site identified by the signature. The PROSITE database is now complemented by a series of rules that can give more precise information about specific residues. During the last 2 years, the documentation and the ScanProsite web pages were redesigned to add more functionalities. The latest version of PROSITE (release 19.11 of September 27, 2005) contains 1329 patterns and 552 profile entries. Over the past 2 years more than 200 domains have been added, and now 52% of UniProtKB/Swiss-Prot entries (release 48.1 of September 27, 2005) have a cross-reference to a PROSITE entry. The database is accessible at . PMID:16381852

  17. Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2

    SciTech Connect

    Bischoff, J.R.; Marshak, D.R.; Beach, D. ); Friedman, P.N.; Prives, C. )

    1990-06-01

    The human anti-oncoprotein p53 is shown to be a substrate of cdc2. The primary site of phosphorylation is serine-315. Serine-315 is phosphorylated by both p60-cdc2 and cyclin B-cdc2 enzymes. The phosphorylation of p53 is cell cycle-dependent. The abundance of p53 also oscillates during the cell cycle. The protein is largely absent from cells that have just completed division but accumulates in cells during G{sub 1} phase. Phosphorylation by cdc2 might regulate the antiproliferative activity of p53.

  18. DAPPLE 2: a Tool for the Homology-Based Prediction of Post-Translational Modification Sites.

    PubMed

    Trost, Brett; Maleki, Farhad; Kusalik, Anthony; Napper, Scott

    2016-08-01

    The post-translational modification of proteins is critical for regulating their function. Although many post-translational modification sites have been experimentally determined, particularly in certain model organisms, experimental knowledge of these sites is severely lacking for many species. Thus, it is important to be able to predict sites of post-translational modification in such species. Previously, we described DAPPLE, a tool that facilitates the homology-based prediction of one particular post-translational modification, phosphorylation, in an organism of interest using known phosphorylation sites from other organisms. Here, we describe DAPPLE 2, which expands and improves upon DAPPLE in three major ways. First, it predicts sites for many post-translational modifications (20 different types) using data from several sources (15 online databases). Second, it has the ability to make predictions approximately 2-7 times faster than DAPPLE depending on the database size and the organism of interest. Third, it simplifies and accelerates the process of selecting predicted sites of interest by categorizing them based on gene ontology terms, keywords, and signaling pathways. We show that DAPPLE 2 can successfully predict known human post-translational modification sites using, as input, known sites from species that are either closely (e.g., mouse) or distantly (e.g., yeast) related to humans. DAPPLE 2 can be accessed at http://saphire.usask.ca/saphire/dapple2 . PMID:27367363

  19. PSEA: Kinase-specific prediction and analysis of human phosphorylation substrates

    NASA Astrophysics Data System (ADS)

    Suo, Sheng-Bao; Qiu, Jian-Ding; Shi, Shao-Ping; Chen, Xiang; Liang, Ru-Ping

    2014-03-01

    Protein phosphorylation catalysed by kinases plays crucial regulatory roles in intracellular signal transduction. With the increasing number of kinase-specific phosphorylation sites and disease-related phosphorylation substrates that have been identified, the desire to explore the regulatory relationship between protein kinases and disease-related phosphorylation substrates is motivated. In this work, we analysed the kinases' characteristic of all disease-related phosphorylation substrates by using our developed Phosphorylation Set Enrichment Analysis (PSEA) method. We evaluated the efficiency of our method with independent test and concluded that our approach is reliable for identifying kinases responsible for phosphorylated substrates. In addition, we found that Mitogen-activated protein kinase (MAPK) and Glycogen synthase kinase (GSK) families are more associated with abnormal phosphorylation. It can be anticipated that our method might be helpful to identify the mechanism of phosphorylation and the relationship between kinase and phosphorylation related diseases. A user-friendly web interface is now freely available at http://bioinfo.ncu.edu.cn/PKPred_Home.aspx.

  20. PSEA: Kinase-specific prediction and analysis of human phosphorylation substrates.

    PubMed

    Suo, Sheng-Bao; Qiu, Jian-Ding; Shi, Shao-Ping; Chen, Xiang; Liang, Ru-Ping

    2014-01-01

    Protein phosphorylation catalysed by kinases plays crucial regulatory roles in intracellular signal transduction. With the increasing number of kinase-specific phosphorylation sites and disease-related phosphorylation substrates that have been identified, the desire to explore the regulatory relationship between protein kinases and disease-related phosphorylation substrates is motivated. In this work, we analysed the kinases' characteristic of all disease-related phosphorylation substrates by using our developed Phosphorylation Set Enrichment Analysis (PSEA) method. We evaluated the efficiency of our method with independent test and concluded that our approach is reliable for identifying kinases responsible for phosphorylated substrates. In addition, we found that Mitogen-activated protein kinase (MAPK) and Glycogen synthase kinase (GSK) families are more associated with abnormal phosphorylation. It can be anticipated that our method might be helpful to identify the mechanism of phosphorylation and the relationship between kinase and phosphorylation related diseases. A user-friendly web interface is now freely available at http://bioinfo.ncu.edu.cn/PKPred_Home.aspx. PMID:24681538

  1. PSEA: Kinase-specific prediction and analysis of human phosphorylation substrates

    PubMed Central

    Suo, Sheng-Bao; Qiu, Jian-Ding; Shi, Shao-Ping; Chen, Xiang; Liang, Ru-Ping

    2014-01-01

    Protein phosphorylation catalysed by kinases plays crucial regulatory roles in intracellular signal transduction. With the increasing number of kinase-specific phosphorylation sites and disease-related phosphorylation substrates that have been identified, the desire to explore the regulatory relationship between protein kinases and disease-related phosphorylation substrates is motivated. In this work, we analysed the kinases' characteristic of all disease-related phosphorylation substrates by using our developed Phosphorylation Set Enrichment Analysis (PSEA) method. We evaluated the efficiency of our method with independent test and concluded that our approach is reliable for identifying kinases responsible for phosphorylated substrates. In addition, we found that Mitogen-activated protein kinase (MAPK) and Glycogen synthase kinase (GSK) families are more associated with abnormal phosphorylation. It can be anticipated that our method might be helpful to identify the mechanism of phosphorylation and the relationship between kinase and phosphorylation related diseases. A user-friendly web interface is now freely available at http://bioinfo.ncu.edu.cn/PKPred_Home.aspx. PMID:24681538

  2. PKC{delta}-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    SciTech Connect

    Greene, Michael W. . E-mail: michael.greene@bassett.org; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKC{delta} on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKC{delta}-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKC{delta} catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  3. Tyrosine Phosphorylation of SGEF Regulates RhoG Activity and Cell Migration

    PubMed Central

    Okuyama, Yusuke; Umeda, Kentaro; Negishi, Manabu; Katoh, Hironori

    2016-01-01

    SGEF and Ephexin4 are members of the Ephexin subfamily of RhoGEFs that specifically activate the small GTPase RhoG. It is reported that Ephexin1 and Ephexin5, two well-characterized Ephexin subfamily RhoGEFs, are tyrosine-phosphorylated by Src, and that their phosphorylation affect their activities and functions. In this study, we show that SGEF, but not Ephexin4, is tyrosine-phosphorylated by Src. Tyrosine phosphorylation of SGEF suppresses its interaction with RhoG, the elevation of RhoG activity, and SGEF-mediated promotion of cell migration. We identified tyrosine 530 (Y530), which is located within the Dbl homology domain, as a major phosphorylation site of SGEF by Src, and Y530F mutation blocked the inhibitory effect of Src on SGEF. Taken together, these results suggest that the activity of SGEF is negatively regulated by tyrosine phosphorylation of the DH domain. PMID:27437949

  4. LHCb distributed conditions database

    NASA Astrophysics Data System (ADS)

    Clemencic, M.

    2008-07-01

    The LHCb Conditions Database project provides the necessary tools to handle non-event time-varying data. The main users of conditions are reconstruction and analysis processes, which are running on the Grid. To allow efficient access to the data, we need to use a synchronized replica of the content of the database located at the same site as the event data file, i.e. the LHCb Tier1. The replica to be accessed is selected from information stored on LFC (LCG File Catalog) and managed with the interface provided by the LCG developed library CORAL. The plan to limit the submission of jobs to those sites where the required conditions are available will also be presented. LHCb applications are using the Conditions Database framework on a production basis since March 2007. We have been able to collect statistics on the performance and effectiveness of both the LCG library COOL (the library providing conditions handling functionalities) and the distribution framework itself. Stress tests on the CNAF hosted replica of the Conditions Database have been performed and the results will be summarized here.

  5. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.

    2011-01-01

    With three missions outstanding, the Shuttle Hypervelocity Impact Database has nearly 3000 entries. The data is divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. Details and insights on the contents of the database including examples of descriptive statistics will be provided. Post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will also be discussed. Potential enhancements to the database structure and availability of the data for other researchers will be addressed in the Future Work section. A related database of returned surfaces from the International Space Station will also be introduced.

  6. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James I.; Christiansen, Eric I.; Lear, Dana M.

    2011-01-01

    With three flights remaining on the manifest, the shuttle impact hypervelocity database has over 2800 entries. The data is currently divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. The paper will provide details and insights on the contents of the database including examples of descriptive statistics using the impact data. A discussion of post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will be presented. Future work to be discussed will be possible enhancements to the database structure and availability of the data for other researchers. A related database of ISS returned surfaces that are under development will also be introduced.

  7. Integrating Paleoecological Databases

    NASA Astrophysics Data System (ADS)

    Blois, Jessica; Goring, Simon; Smith, Alison

    2011-02-01

    Neotoma Consortium Workshop; Madison, Wisconsin, 23-26 September 2010 ; Paleoecology can contribute much to global change science, as paleontological records provide rich information about species range shifts, changes in vegetation composition and productivity, aquatic and terrestrial ecosystem responses to abrupt climate change, and paleoclimate reconstruction, for example. However, while paleoecology is increasingly a multidisciplinary, multiproxy field focused on biotic responses to global change, most paleo databases focus on single-proxy groups. The Neotoma Paleoecology Database (http://www.neotomadb.org) aims to remedy this limitation by integrating discipline-specific databases to facilitate cross-community queries and analyses. In September, Neotoma consortium members and representatives from other databases and data communities met at the University of Wisconsin-Madison to launch the second development phase of Neotoma. The workshop brought together 54 international specialists, including Neotoma data stewards, users, and developers. Goals for the meeting were fourfold: (1) develop working plans for existing data communities; (2) identify new data types and sources; (3) enhance data access, visualization, and analysis on the Neotoma Web site; and (4) coordinate with other databases and cooperate in tool development and sharing.

  8. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    PubMed Central

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  9. Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation.

    PubMed

    Song, Gyun Jee; Jones, Brian W; Hinkle, Patricia M

    2007-11-13

    The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355-365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization of a TRH receptor-FK506-binding protein (FKBP) fusion protein was stimulated by a dimeric FKBP ligand. The chemical dimerizer caused a large increase in TRH-dependent phosphorylation within 1 min, whereas a monomeric FKBP ligand had no effect. The dimerizer did not alter phoshorylation of receptors lacking the FKBP domain. Dimerization of receptors containing an N-terminal HA epitope also was induced with anti-HA antibody. Anti-HA IgG strongly increased TRH-induced phosphorylation, whereas monomeric Fab fragments had no effect. Anti-HA antibody did not alter phosphorylation in receptors lacking an HA tag. Furthermore, two phosphorylation-defective TRH receptors functionally complemented one another and permitted phosphorylation. Receptors with a D71A mutation in the second transmembrane domain do not signal, whereas receptors with four Ala mutations in the 355-365 region signal normally but lack phosphorylation sites. When D71A- and 4Ala-TRH receptors were expressed alone, neither underwent TRH-dependent phosphorylation. When they were expressed together, D71A receptor was phosphorylated by G protein-coupled receptor kinases in response to TRH. These results suggest that the TRH receptor is phosphorylated preferentially when it is in dimers or when preexisting receptor dimers are driven into microaggregates. Increased receptor phosphorylation may amplify desensitization. PMID:17989235

  10. CK2 Phosphorylation Inactivates DNA Binding by the Papillomavirus E1 and E2 Proteins

    PubMed Central

    Schuck, Stephen; Ruse, Cristian

    2013-01-01

    Papillomaviruses have complex life cycles that are understood only superficially. Although it is well established that the viral E1 and E2 proteins play key roles in controlling viral transcription and DNA replication, how these factors are regulated is not well understood. Here, we demonstrate that phosphorylation by the protein kinase CK2 controls the biochemical activities of the bovine papillomavirus E1 and E2 proteins by modifying their DNA binding activity. Phosphorylation at multiple sites in the N-terminal domain in E1 results in the loss of sequence-specific DNA binding activity, a feature that is also conserved in human papillomavirus (HPV) E1 proteins. The bovine papillomavirus (BPV) E2 protein, when phosphorylated by CK2 on two specific sites in the hinge, also loses its site-specific DNA binding activity. Mutation of these sites in E2 results in greatly increased levels of latent viral DNA replication, indicating that CK2 phosphorylation of E2 is a negative regulator of viral DNA replication during latent viral replication. In contrast, mutation of the N-terminal phosphorylation sites in E1 has no effect on latent viral DNA replication. We propose that the phosphorylation of the N terminus of E1 plays a role only in vegetative viral DNA replication, and consistent with such a role, caspase 3 cleavage of E1, which has been shown to be necessary for vegetative viral DNA replication, restores the DNA binding activity to phosphorylated E1. PMID:23637413

  11. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    SciTech Connect

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  12. Autophagy proteins regulate ERK phosphorylation

    PubMed Central

    Martinez-Lopez, Nuria; Athonvarangkul, Diana; Mishall, Priti; Sahu, Srabani; Singh, Rajat

    2013-01-01

    Autophagy is a conserved pathway that maintains cellular quality control. Extracellular signal-regulated kinase (ERK) controls various aspects of cell physiology including proliferation. Multiple signalling cascades, including ERK, have been shown to regulate autophagy, however whether autophagy proteins (ATG) regulate cell signalling is unknown. Here we show that growth factor exposure increases the interaction of ERK cascade components with ATG proteins in the cytosol and nucleus. ERK and its upstream kinase MEK localize to the extra-luminal face of autophagosomes. ERK2 interacts with ATG proteins via its substrate-binding domains. Deleting Atg7 or Atg5 or blocking LC3 lipidation or ATG5–ATG12 conjugation decreases ERK phosphorylation. Conversely, increasing LC3-II availability by silencing the cysteine protease ATG4B or acute trehalose exposure increases ERK phosphorylation. Decreased ERK phosphorylation in Atg5−/− cells does not occur from overactive phosphatases. Our findings thus reveal an unconventional function of ATG proteins as cellular scaffolds in the regulation of ERK phosphorylation. PMID:24240988

  13. Constitutive Phosphorylation by Protein Kinase C Regulates D1 Dopamine Receptor Signaling

    PubMed Central

    Rankin, Michele L.; Sibley, David R.

    2010-01-01

    The D1 dopamine receptor (D1DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D1DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D1DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D1DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D1DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D1DAR. Thus, constitutive or heterologous PKC phosphorylation of the D1DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell. PMID:20969574

  14. dimerization and DNA binding alter phosphorylation of Fos and Jun

    SciTech Connect

    Abate, C.; Baker, S.J.; Curran, T. ); Lees-Miller, S.P.; Anderson, C.W. ); Marshak, D.R. )

    1993-07-15

    Fos and Jun form dimeric complexes that bind to activator protein 1 (AP-1) DNA sequences and regulate gene expression. The levels of expression and activities of these proteins are regulated by a variety of extracellular stimuli. They are thought to function in nuclear signal transduction processes in many different cell types. The role of Fos and Jun in gene transcription is complex and may be regulated in several ways including association with different dimerization partners, interactions with other transcription factors, effects on DNA topology, and reduction/oxidation of a conserved cysteine residue in the DNA-binding domain. In addition, phosphorylation has been suggested to control the activity of Fos and Jun. Here the authors show that phosphorylation of Fos and Jun by several protein kinases is affected by dimerization and binding to DNA. Jun homodimers are phosphorylated efficiently by casein kinase II, whereas Fos-Jun heterodimers are not. DNA binding also reduces phosphorylation of Jun by casein kinase II, p34[sup cdc2] (cdc2) kinase, and protein kinase C. Phosphorylation of Fos by cAMP-dependent protein kinase and cdc2 is relatively insensitive to dimerization and DNA binding, whereas phosphorylation of Fos and Jun by DNA-dependent protein kinase is dramatically stimulated by binding to the AP-1 site. These results imply that different protein kinases can distinguish among Fos and Jun proteins in the form of monomers, homodimers, and heterodimers and between DNA-bound and non-DNA-bound proteins. Thus, potentially, these different states of Fos and Jun can be recognized and regulated independently by phosphorylation. 44 refs., 4 figs.

  15. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes.

    PubMed Central

    Panayotou, G; Bax, B; Gout, I; Federwisch, M; Wroblowski, B; Dhand, R; Fry, M J; Blundell, T L; Wollmer, A; Waterfield, M D

    1992-01-01

    Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed. Images PMID:1330535

  16. Phosphorylation of lamins determine their structural properties and signaling functions

    PubMed Central

    Torvaldson, Elin; Kochin, Vitaly; Eriksson, John E

    2015-01-01

    Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease. PMID:25793944

  17. Phosphorylation of Izumo1 and its role in male infertility

    PubMed Central

    Young, Samantha AM; Aitken, John; Baker, Mark A

    2015-01-01

    Izumo1 is a testis-specific gene product, whose function is essential for sperm-egg fusion. Throughout its lifespan, Izumo1 is posttranslationally modified, being both N-linked glycosylated on its extracellular domain and phosphorylated on the intracellular C-terminal tail. Within the caput regions of the rat epididymis, two phosphorylation events have been documented. However, as sperm pass through the epididymis, this cytoplasmic portion of Izumo1 has been shown to contain up to seven phosphorylation sites. Remarkably, in the rat, in correlation with these events, Izumo1 undergoes sub-cellular re-location, moving from the head/tail regions of the spermatozoa, to a predominantly equatorial segment location once they have reached the caudal end of the epididymis. PMID:25994654

  18. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    SciTech Connect

    Y Cao; X Jin; E Levin; H Huang; Y Zong; W Hendrickson; J Javitch; K Rajashankar; M Zhou; et al.

    2011-12-31

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.

  19. Phosphorylation in halobacterial signal transduction.

    PubMed Central

    Rudolph, J; Tolliday, N; Schmitt, C; Schuster, S C; Oesterhelt, D

    1995-01-01

    Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli. Images PMID:7556066

  20. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. PMID:26687707

  1. novPTMenzy: a database for enzymes involved in novel post-translational modifications

    PubMed Central

    Khater, Shradha; Mohanty, Debasisa

    2015-01-01

    With the recent discoveries of novel post-translational modifications (PTMs) which play important roles in signaling and biosynthetic pathways, identification of such PTM catalyzing enzymes by genome mining has been an area of major interest. Unlike well-known PTMs like phosphorylation, glycosylation, SUMOylation, no bioinformatics resources are available for enzymes associated with novel and unusual PTMs. Therefore, we have developed the novPTMenzy database which catalogs information on the sequence, structure, active site and genomic neighborhood of experimentally characterized enzymes involved in five novel PTMs, namely AMPylation, Eliminylation, Sulfation, Hydroxylation and Deamidation. Based on a comprehensive analysis of the sequence and structural features of these known PTM catalyzing enzymes, we have created Hidden Markov Model profiles for the identification of similar PTM catalyzing enzymatic domains in genomic sequences. We have also created predictive rules for grouping them into functional subfamilies and deciphering their mechanistic details by structure-based analysis of their active site pockets. These analytical modules have been made available as user friendly search interfaces of novPTMenzy database. It also has a specialized analysis interface for some PTMs like AMPylation and Eliminylation. The novPTMenzy database is a unique resource that can aid in discovery of unusual PTM catalyzing enzymes in newly sequenced genomes. Database URL: http://www.nii.ac.in/novptmenzy.html PMID:25931459

  2. Enhanced binding of RNAP II CTD phosphatase FCP1 to RAP74 following CK2 phosphorylation.

    PubMed

    Abbott, Karen L; Renfrow, Matthew B; Chalmers, Michael J; Nguyen, Bao D; Marshall, Alan G; Legault, Pascale; Omichinski, James G

    2005-03-01

    FCP1 (TFIIF-associated CTD phosphatase) is the first identified CTD-specific phosphatase required to recycle RNA polymerase II (RNAP II). FCP1 activity has been shown to be regulated by the general transcription factors TFIIF (RAP74) and TFIIB, protein kinase CK2 (CK2), and the HIV-1 transcriptional activator Tat. Phosphorylation of FCP1 by CK2 stimulates FCP1 phosphatase activity and enhances binding of RAP74 to FCP1. We have examined consensus CK2 phosphorylation sites (acidic residue n + 3 to serine or threonine residue) located immediately adjacent to both RAP74-binding sites of FCP1. We demonstrate that both of these consensus CK2 sites can be phosphorylated in vitro and that phosphorylation at either CK2 site results in enhanced binding of RAP74 to FCP1. The CK2 site adjacent to the RAP74-binding site in the central domain of FCP1 is phosphorylated at a single threonine site (T584). The CK2 site adjacent to the RAP74-binding site in the carboxyl-terminal domain can be phosphorylated at three successive serine residues (S942-S944), with phosphorylations at S942 and S944 both contributing to enhanced binding to RAP74. With the use of tandem Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR), we demonstrate that the phosphorylation of S942-S944 occurs in a semiordered fashion with the initial phosphorylation occurring at either S942 or S944 followed by a second phosphorylation to yield the S942/S944 diphosphorylated species. Using nuclear magnetic resonance (NMR) spectroscopy, we identify and map chemical shift changes onto the solution structure of the carboxyl-terminal domain of RAP74 (RAP74(436)(-)(517)) on complexation of RAP74(436)(-)(517) with phosphorylated FCP1 peptides. These results provide new functional and structural information on the role of phosphorylation in the recognition of acidic-rich activation domains involved in transcriptional regulation, and bring insights into how CK2 and TFIIF regulate FCP1 function. PMID:15723518

  3. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-02-27

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 {mu}m in winter to 9.7 {mu}m during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union.

  4. A trans acting ribozyme that phosphorylates exogenous RNA.

    PubMed

    Saran, Dayal; Nickens, David G; Burke, Donald H

    2005-11-15

    The structural complexity required for substrate recognition within an active site constrains the evolution of novel catalytic functions. To evaluate those constraints within populations of incipient ribozymes, we performed a selection for kinase ribozymes under conditions that allowed competition for phosphorylation at nine candidate sites. Two candidate sites are the hydroxyl groups on a "quasi-diffusible" chloramphenicol (Cam) moiety tethered to the evolving library through an inert, flexible linker. A subtractive step was included to allow only seven ribose 2' hydroxyls to compete with the two Cam hydroxyls for phosphorylation. After the library was incubated with gamma-thio-ATP (ATPgammaS), active species were recovered from a polyacrylamide gel containing [(N-acryloylamino)phenyl] mercury (APM) and amplified for further cycles of selection. Activity assays on selected isolates and truncated derivatives identified the essential secondary structure of the dominant RNA motif. Phosphorylation was independent of the Cam moiety, indicating ribose 2' phosphorylation. The dominant motif was separated into catalytic "ribozyme" and "substrate" strands. Partial alkaline digestion of the substrate strand before and after phosphorylation identified the precise modification site as the first purine (R) within the required sequence 5'-RAAAANCG-3'. The reaction shows approximately 10-fold preference for ATPgammaS over ATP and is independent of pH over a wide range (5.5-8.9), consistent with a dissociative reaction mechanism that is rate-limited by formation of a metaphosphate transition state. Divalent metal ions are required, with a slight preference of Mn(2+) > Mg(2+) > Ca(2+). Lack of reactivity in [Co(NH(3))(6)](3+) indicates a requirement for inner sphere contact with the metal ion, either for structural stabilization, catalysis, or both. PMID:16274247

  5. Intramolecular Regulation of Phosphorylation Status of the Circadian Clock Protein KaiC

    PubMed Central

    Xu, Yao; Mori, Tetsuya; Qin, Ximing; Yan, Heping; Egli, Martin; Johnson, Carl Hirschie

    2009-01-01

    Background KaiC, a central clock protein in cyanobacteria, undergoes circadian oscillations between hypophosphorylated and hyperphosphorylated forms in vivo and in vitro. Structural analyses of KaiC crystals have identified threonine and serine residues in KaiC at three residues (T426, S431, and T432) as potential sites at which KaiC is phosphorylated; mutation of any of these three sites to alanine abolishes rhythmicity, revealing an essential clock role for each residue separately and for KaiC phosphorylation in general. Mass spectrometry studies confirmed that the S431 and T432 residues are key phosphorylation sites, however, the role of the threonine residue at position 426 was not clear from the mass spectrometry measurements. Methodology and Principal Findings Mutational approaches and biochemical analyses of KaiC support a key role for T426 in control of the KaiC phosphorylation status in vivo and in vitro and demonstrates that alternative amino acids at residue 426 dramatically affect KaiC's properties in vivo and in vitro, especially genetic dominance/recessive relationships, KaiC dephosphorylation, and the formation of complexes of KaiC with KaiA and KaiB. These mutations alter key circadian properties, including period, amplitude, robustness, and temperature compensation. Crystallographic analyses indicate that the T426 site is phosphorylatible under some conditions, and in vitro phosphorylation assays of KaiC demonstrate labile phosphorylation of KaiC when the primary S431 and T432 sites are blocked. Conclusions and Significance T426 is a crucial site that regulates KaiC phosphorylation status in vivo and in vitro and these studies underscore the importance of KaiC phosphorylation status in the essential cyanobacterial circadian functions. The regulatory roles of these phosphorylation sites–including T426–within KaiC enhance our understanding of the molecular mechanism underlying circadian rhythm generation in cyanobacteria. PMID:19946629

  6. Structure-Based Function Discovery of an Enzyme for the Hydrolysis of Phosphorylated Sugar Lactones

    PubMed Central

    Xiang, Dao Feng; Kolb, Peter; Fedorov, Alexander A.; Xu, Chengfu; Fedorov, Elena V.; Narindoshivili, Tamari; Williams, Howard J.; Shoichet, Brian K.; Almo, Steven C.; Raushel, Frank M.

    2012-01-01

    Two enzymes of unknown function from the cog1735 subset of the amidohydrolase superfamily (AHS), LMOf2365_2620 (Lmo2620) from Listeria monocytogenes str. 4b F2365 and Bh0225 from Bacillus halodurans C-125, were cloned, expressed and purified to homogeneity. The catalytic functions of these two enzymes were interrogated by an integrated strategy encompassing bioinformatics, computational docking to three-dimensional crystal structures, and library screening. The three-dimensional structure of Lmo2620 was determined at a resolution of 1.6 Å with two phosphates and a binuclear zinc center in the active site. The proximal phosphate bridges the binuclear metal center and is 7.1 Å away from the distal phosphate. The distal phosphate hydrogen bonds with Lys-242, Lys-244, Arg-275 and Tyr-278. Enzymes within cog1735 of the AHS have previously been shown to catalyze the hydrolysis of substituted lactones. Computational docking of the high energy intermediate (HEI) form of the KEGG database to the three-dimensional structure of Lmo2620 highly enriched anionic lactones versus other candidate substrates. The active site structure and the computational docking results suggested that probable substrates would likely include phosphorylated sugar lactones. A small library of diacid sugar lactones and phosphorylated sugar lactones was synthesized and tested for substrate activity with Lmo2620 and Bh0225. Two substrates were identified for these enzymes, d-lyxono-1,4-lactone-5-phosphate and l-ribono-1,4-lactone-5-phosphate. The kcat/Km values for the cobalt-substituted enzymes with these substrates are ~105 M−1 s−1. PMID:22313111

  7. Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function

    PubMed Central

    Travers, Timothy; Shao, Hanshuang; Joughin, Brian A.; Lauffenburger, Douglas A.; Wells, Alan; Camacho, Carlos J.

    2015-01-01

    Phosphorylated residues occur preferentially in the intrinsically disordered regions of eukaryotic proteins. In the disordered N-terminal region of human α-actinin-4 (ACTN4), Tyr4 and Tyr31 are phosphorylated in cells stimulated with epidermal growth factor (EGF), and a mutant with phosphorylation-mimicking mutations of both tyrosines exhibits reduced interaction with actin in vitro. Cleavage of ACTN4 by m-calpain, a protease that in motile cells is predominantly activated at the rear, removes the Tyr4 site. Here, we found that introducing a phosphomimetic mutation at only Tyr31 was sufficient to inhibit the interaction with actin in vitro. However, molecular dynamics simulations predicted that Tyr31 is mostly buried and that phosphorylation of Tyr4 would increase the solvent exposure and thus kinase accessibility of Tyr31. In fibroblast cells, EGF stimulation increased tyrosine phosphorylation of a mutant form of ACTN4 with a phosphorylation-mimicking residue at Tyr4, whereas a truncation mutant representing the product of m-calpain cleavage exhibited EGF-stimulated tyrosine phosphorylation at the background amount similar to that observed for a double phosphomimetic mutant of Tyr4 and Tyr31. We also found that inhibition of the receptor tyrosine kinases of the TAM family, such as AXL, blocked EGF-stimulated tyrosine phosphorylation of ACTN4. Mathematical modeling predicted that the kinetics of phosphorylation at Tyr31 can be dictated by the kinase affinity for Tyr4. This study suggests that tandem-site phosphorylation within intrinsically disordered regions provides a mechanism for a site to function as a switch to reveal a nearby function-regulating site. PMID:26012634

  8. Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization

    SciTech Connect

    Geiss, Brian J.; Cano, Gina L.; Tavis, John E.; Morrison, Lynda A. . E-mail: morrisla@slu.edu

    2004-12-05

    Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22. Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.

  9. MIMP: predicting the impact of mutations on kinase-substrate phosphorylation.

    PubMed

    Wagih, Omar; Reimand, Jüri; Bader, Gary D

    2015-06-01

    Protein phosphorylation is important in cellular pathways and altered in disease. We developed MIMP (http://mimp.baderlab.org/), a machine learning method to predict the impact of missense single-nucleotide variants (SNVs) on kinase-substrate interactions. MIMP analyzes kinase sequence specificities and predicts whether SNVs disrupt existing phosphorylation sites or create new sites. This helps discover mutations that modify protein function by altering kinase networks and provides insight into disease biology and therapy development. PMID:25938373

  10. Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle

    SciTech Connect

    Kuga, Takahisa; Nozaki, Naohito; Matsushita, Kazuyuki; Nomura, Fumio; Tomonaga, Takeshi

    2010-08-15

    Lamins, major components of the nuclear lamina, undergo phosphorylation at multiple residues during cell cycle progression, but their detailed phosphorylation kinetics remain largely undetermined. Here, we examined changes in the phosphorylation of major phosphorylation residues (Thr14, Ser17, Ser385, Ser387, and Ser401) of lamin B2 and the homologous residues of lamin B1, A/C during the cell cycle using novel antibodies to the site-specific phosphorylation. The phosphorylation levels of these residues independently changed during the cell cycle. Thr14 and Ser17 were phosphorylated during G{sub 2}/M phase to anaphase/telophase. Ser385 was persistently phosphorylated during mitosis to G{sub 1} phase, whereas Ser387 was phosphorylated discontinuously in prophase and G{sub 1} phase. Ser401 phosphorylation was enhanced in the G{sub 1}/S boundary. Immunoprecipitation using the phospho-antibodies suggested that metaphase-phosphorylation at Thr14, Ser17, and Ser385 of lamins occurred simultaneously, whereas G{sub 1}-phase phosphorylation at Ser385 and Ser387 occurred in distinct pools or with different timings. Additionally, we showed that lamin B2 phosphorylated at Ser17, but not Ser385, Ser387 and Ser401, was exclusively non-ionic detergent soluble, depolymerized forms in growing cells, implicating specific involvement of Ser17 phosphorylation in lamin depolymerization and nuclear envelope breakdown. These results suggest that the phosphorylations at different residues of lamins might play specific roles throughout the cell cycle.

  11. Definition of smad3 phosphorylation events that affect malignant and metastatic behaviors in breast cancer cells.

    PubMed

    Bae, Eunjin; Sato, Misako; Kim, Ran-Ju; Kwak, Mi-Kyung; Naka, Kazuhito; Gim, Jungsoo; Kadota, Mitsutaka; Tang, Binwu; Flanders, Kathleen C; Kim, Tae-Aug; Leem, Sun-Hee; Park, Taesung; Liu, Fang; Wakefield, Lalage M; Kim, Seong-Jin; Ooshima, Akira

    2014-11-01

    Smad3, a major intracellular mediator of TGFβ signaling, functions as both a positive and negative regulator in carcinogenesis. In response to TGFβ, the TGFβ receptor phosphorylates serine residues at the Smad3 C-tail. Cancer cells often contain high levels of the MAPK and CDK activities, which can lead to the Smad3 linker region becoming highly phosphorylated. Here, we report, for the first time, that mutation of the Smad3 linker phosphorylation sites markedly inhibited primary tumor growth, but significantly increased lung metastasis of breast cancer cell lines. In contrast, mutation of the Smad3 C-tail phosphorylation sites had the opposite effect. We show that mutation of the Smad3 linker phosphorylation sites greatly intensifies all TGFβ-induced responses, including growth arrest, apoptosis, reduction in the size of putative cancer stem cell population, epithelial-mesenchymal transition, and invasive activity. Moreover, all TGFβ responses were completely lost on mutation of the Smad3 C-tail phosphorylation sites. Our results demonstrate a critical role of the counterbalance between the Smad3 C-tail and linker phosphorylation in tumorigenesis and metastasis. Our findings have important implications for therapeutic intervention of breast cancer. PMID:25205100

  12. An Internet enabled impact limiter material database

    SciTech Connect

    Wix, S.; Kanipe, F.; McMurtry, W.

    1998-09-01

    This paper presents a detailed explanation of the construction of an interest enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The technique used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience.

  13. Phosphorylation Controls the Nuclear-Cytoplasmic Shuttling of Influenza A Virus Nucleoprotein

    PubMed Central

    Zheng, Weinan; Li, Jing; Wang, Shanshan; Cao, Shuaishuai; Jiang, Jingwen; Chen, Can; Ding, Chan; Qin, Chuan; Ye, Xin; Gao, George F.

    2015-01-01

    ABSTRACT The nucleoprotein (NP) is a major component of the viral ribonucleoprotein (vRNP) complex. During the replication of influenza virus, the vRNP complex undergoes nuclear-cytoplasmic shuttling, during which NP serves as one of the determinants. To date, many phosphorylation sites on NP have been identified, but the biological functions of many of these phosphorylation sites remain unknown. In the present study, the functions of the phosphorylation sites S9, Y10, and Y296 were characterized. These residues are highly conserved, and their phosphorylation was essential for virus growth in cell culture and in a mouse model by regulating the activity of the viral polymerase and the nuclear-cytoplasmic shuttling of NP. The phosphorylation and dephosphorylation of S9 and Y10 controlled nuclear import of NP by affecting the binding affinity between NP and different isoforms of importin-α. In addition, the phosphorylation of Y296 caused nuclear retention of NP by reducing the interaction between NP and CRM1. Furthermore, tyrosine phosphorylation of NP during the early stage of virus infection was ablated when Y296 was mutated to F. However, at later stages of infection, it was weakened by the Y10F mutation. Taken together, the present data indicate that the phosphorylation and dephosphorylation of NP control the shuttling of NP between the nucleus and the cytoplasm during virus replication. IMPORTANCE It is well known that phosphorylation regulates the functions of viral proteins and the life cycle of influenza A virus. As NP is the most abundant protein in the vRNP complex of influenza A virus, several phosphorylation sites on this protein have been identified. However, the functions of these phosphorylation sites were unknown. The present study demonstrates that the phosphorylation status of these sites on NP can mediate its nuclear-cytoplasmic shuttling, which drives the trafficking of vRNP complexes in infected cells. The present data suggest that the

  14. Characteristics and comprehensiveness of adult HIV care and treatment programmes in Asia-Pacific, sub-Saharan Africa and the Americas: results of a site assessment conducted by the International epidemiologic Databases to Evaluate AIDS (IeDEA) Collaboration

    PubMed Central

    Duda, Stephany N; Farr, Amanda M; Lindegren, Mary Lou; Blevins, Meridith; Wester, C William; Wools-Kaloustian, Kara; Ekouevi, Didier K; Egger, Matthias; Hemingway-Foday, Jennifer; Cooper, David A; Moore, Richard D; McGowan, Catherine C; Nash, Denis

    2014-01-01

    Introduction HIV care and treatment programmes worldwide are transforming as they push to deliver universal access to essential prevention, care and treatment services to persons living with HIV and their communities. The characteristics and capacity of these HIV programmes affect patient outcomes and quality of care. Despite the importance of ensuring optimal outcomes, few studies have addressed the capacity of HIV programmes to deliver comprehensive care. We sought to describe such capacity in HIV programm