Science.gov

Sample records for phoswich detector assembly

  1. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, J.R.

    1996-05-07

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.

  2. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, James R.

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.

  3. Beam Test of a Prototype Phoswich Detector Assembly forthe PoGOLite Astronomical Soft Gamma-ray Polarimeter

    SciTech Connect

    Kanai, Y.; Ueno, M.; Kataoka, J.; Arimoto, M.; Kawai, N.; Yamamoto, K.; Mizuno, T.; Fukazawa, Y.; Kiss, M.; Ylinen, T.; Bettolo, C.Marini; Carlson, P.; P.Chen d, B.Craig d, T.Kamae d, G.Madejski d, J.S.T.Ng; Rogers, R.; Tajima, H.; Thurston, T.S.; Saito, Y.; Takahashi, T. Gunji, S.; Bjornsson, C-I.; Larsson, S.; /Stockholm U. /Ecole Polytechnique /KEK, Tsukuba

    2007-01-17

    We report about the beam test on a prototype of the balloon-based astronomical soft gamma-ray polarimeter, PoGOLite (Polarized Gamma-ray Observer--Light Version) conducted at KEK Photon Factory, a synchrotron radiation facility in Japan. The synchrotron beam was set at 30, 50, and 70 keV and its polarization was monitored by a calibrated polarimeter. The goal of the experiment was to validate the flight design of the polarimeter. PoGOLite is designed to measure polarization by detecting a Compton scattering and the subsequent photo-absorption in an array of 217 well-type phoswich detector cells (PDCs). The test setup included a first flight model PDC and a front-end electronics to select and reconstruct valid Compton scattering events. The experiment has verified that the flight PDC can detect recoil electrons and select valid Compton scattering events down to 30 keV from background. The measure azimuthal modulations (34.4 %, 35.8 % and 37.2 % at 30, 50, and 70 keV, respectively) agreed within 10% (relative) with the predictions by Geant4 implemented with dependence on the initial and final photon polarizations.

  4. A phoswich well detector for radioxenon monitoring

    NASA Astrophysics Data System (ADS)

    Hennig, Wolfgang; Tan, Hui; Fallu-Labruyere, Anthony; Warburton, William K.; McIntyre, Justin I.; Gleyzer, Anshel

    2007-08-01

    One of several methods used to detect nuclear weapons testing is the monitoring of radioactive xenon in the atmosphere. For high sensitivity, monitoring stations use a complex system of separate beta and gamma detectors to detect beta-gamma coincidences from characteristic radioxenon isotopes in small amounts of xenon extracted from large volumes of air. We report a simpler approach that uses a single phoswich detector, comprising optically coupled plastic and CsI scintillators to absorb beta particles and gamma rays, respectively, and then detect coincidences by pulse shape analysis of the detector signal. Previous studies with a planar prototype detector have shown that the technique can clearly separate beta only, gamma only and coincidence events, does not degrade the energy resolution, and has an error rate for detecting coincidences of less than 0.1%. In this paper, we will present a new phoswich well detector design, consisting of a 1'' diameter plastic cell enclosed in a 3'' CsI crystal. Based on Monte Carlo modeling and experimental results, the design will be characterized in terms of energy resolution and its ability to separate beta and gamma only, and coincidence events.

  5. MCNP Analysis of a Phoswich Detector

    SciTech Connect

    Nathan Childress; William H. Miller

    2002-06-12

    A series of triple crystal phosphor sandwich detectors have been developed and constructed for testing at the University of Missouri-Columbia [1-7]. These detectors can simultaneously measure alpha, beta, and gamma radiation and utilize digital pulse shape discrimination to identify and separate radiation events coming from each of the separate phosphors. The research reported here uses Monte Carlo [8] software analysis to determine operating parameters for this detector system and optimizes its design for measuring trace amounts of alpha, beta and gamma-ray activity in effluent streams from nuclear waste cleanup processes. The previously designed, fabricated and tested phoswich detector [5] consisted of three scintillators placed on top of each other with a common diameter of 5.08 cm and viewed with a single photomultiplier tube. The scintillators (ZnS-0.00376 cm, CaF{sub 2}-0.254 cm and NaI-2.54 cm) interact preferentially with alpha, beta and gamma-ray radiation, respectively. This design allows preferential, but not exclusive, interaction of various radiations with specific layers. Taking into account and correcting for events that can occur in the ''wrong'' phosphor, this system was experimentally shown to have a 99% accuracy for properly identifying radiation coming from a mixed alpha/beta/gamma-ray source. In an attempt to better understand this system and provide design guidance for a detector system to be used in monitoring effluents from nuclear waste treatment facilities, this detector was modeled using MCNP [8]. This analysis [9] indicated that the thin ZnS layer adequately stops alpha particle energy, but greatly reduces beta detection efficiency to essentially zero at beta E{sub max} energies below 300 keV. The CaF{sub 2} layer, designed to keep any beta particle energy from entering the NaI detector results in an incorrect gamma-ray response that is approximately 23% of the NaI's response and is variable with energy. High energy beta events in the Ca

  6. Novel Beta-Gamma Coincidence Measurements Using Phoswich Detectors

    SciTech Connect

    Ely, James H.; Aalseth, Craig E.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Miley, Harry S.; Panisko, Mark E.; Ripplinger, Mike D.

    2003-09-30

    The PNNL has developed an Automated Radio-xenon Sampler/Analyzer (ARSA) for the CTBT to measure four radio-xenon isotopes using a beta-gamma coincidence counting detector. A novel method to measure beta-gamma coincidences using a phoswich detector with state-of-the-art pulse shape discrimination techniqueses has been investigated.

  7. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    SciTech Connect

    William H. Miller; Manuel Diaz de Leon

    2003-04-15

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  8. Development of a phoswich detector system for radioxenon monitoring

    SciTech Connect

    Hennig, Wolfgang; Warburton, William K.; Fallu-Labruyere, A.; Sabourov, K.; Cooper, Matthew W.; McIntyre, Justin I.; Gleyzer, A.; Bean, Marc; Korpach, E.; Ungar, R. Kurt; Zhang, W.; Mekarski, P.

    2009-12-03

    Abstract Measurement of radioactive xenon in the atmosphere is one of several techniques to detect nuclear weapons testing. For high sensitivity, some existing systems use beta/gamma coincidence detection to suppress background, which is very effective, but increases complexity due to separate beta and gamma detectors that require careful calibration and gain matching. In this paper, we will describe the development and evaluation of a simpler detector system, named PhosWatch, consisting of a CsI(Tl)/ BC-404 phoswich well detector, digital readout electronics, and pulse shape analysis algorithms implemented in a digital signal processor on the electronics, and compare its performance to existing multi-detector systems.

  9. DESIGN OF A PHOSWICH WELL DETECTOR FOR RADIOXENON MONITORING

    SciTech Connect

    Hennig, Wolfgang; Tan, Hui; Fallu-Labruyere, A; Warburton, William K.; McIntyre, Justin I.; Gleyzer, A

    2006-09-19

    The network of monitoring stations established through the Comprehensive Nuclear-Test-Ban Treaty includes systems to detect radioactive xenon released into the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory. For high sensitivity, the ARSA system currently uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from characteristic radioxenon isotopes in small samples of xenon extracted from large volumes of air. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes requires careful calibration. A simplified approach is to use a single phoswich detector, consisting of optically coupled plastic and CsI scintillators. In the phoswich detector, most beta particles are absorbed in the plastic scintillator and most gamma rays are absorbed in the CsI, and pulse shape analysis of the detector signal is used to detect coincidences. As only a single detector and electronics readout channel is used, the complexity of the system is greatly reduced. Previous studies with a planar detector have shown that the technique can clearly separate beta only, gamma only and coincidence events, does not degrade the energy resolution, and has an error rate for detecting coincidences of less than 0.1%. In this paper, we will present the design of a phoswich well detector, consisting of a 1'' diameter plastic cell enclosed in a 3'' CsI crystal. Several variations of the well detector geometry have been studied using Monte Carlo modeling and evaluated for detection efficiency, effects on energy resolution, and ease of manufacturing. One prototype detector has been built and we will present here some preliminary experimental results characterizing the detector in terms of energy resolution and its ability to separate beta only, gamma only, and coincidence events.

  10. Comparison of Phoswich and ARSA-type detectors for Radioxenon Measurements

    SciTech Connect

    Ward, Rebecca; Biegalski, Steven R.; Haas, Derek A.; Hennig, Wolfgang

    2009-12-01

    The monitoring of atmospheric radioxenon to ensure compliance with the Comprehensive Nuclear Test Ban Treaty has driven the development of improved detectors for measuring xenon, including the development of a phoswich detector. This detector uses only one PMT to detect beta-gamma coincidence, thus greatly reducing the bulk and electronics of the detector in comparison to the ARSA-type detector. In this experiment, 135Xe was produced through neutron activation and a phoswich detector was used to attain spectra from the gas. These results were compared to similar results from an ARSA-type beta-gamma coincidence spectrum. The spectral characteristics and resolution were compared for the coincidence and beta spectra. Using these metrics, the overall performance of the phoswich detector for beta-gamma coincidence of radioxenon was evaluated.

  11. Timing performance measurements of Si-PM-based LGSO phoswich detectors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Okumura, Satoshi; Yeom, Jung Yeol

    2016-06-01

    Since the timing resolution was significantly improved using silicon photomultipliers (Si-PMs) combined with fast scintillators, we expect that phoswich detectors will be used in future TOF-PET systems. However, no practical phoswich detector has been proposed for TOF-PET detectors. We conducted timing performance measurements of phoswich detectors comprised of two types of Ce-doped LGSO scintillators with different decay times coupled to Si-PMs and digitized the output signals using a high bandwidth digital oscilloscope. We prepared three types of LGSOs (LGSO-fast, LGSO-standard, and LGSO-slow) with different Ce concentrations. After measuring the decay time, the energy performance, and the timing performance of each LGSO, we conducted pulse shape analysis and timing resolution measurements for two versions of phoswich LGSOs: LGSO-standard/LGSO-fast and LGSO-slow/LGSO-fast combinations. The pulse shape spectra for a 10-mm-long crystal LGSO-slow/LGSO-fast combination showed good separation of the front and back crystals with a peak-to-valley ratio of 2.0. The timing resolutions for the 20-mm-long crystal LGSO-slow/LGSO-fast combination were ~300 ps FWHM. The timing resolutions for the phoswich LGSOs were slightly inferior than that measured with the individual LGSO fast, but the acquired timing resolution for the phoswich configuration, ~300 ps with a LGSO-slow/LGSO-fast combination, is adequate for TOF-PET systems. We conclude that LGSO phoswich detectors are promising for TOF-DOI-PET systems.

  12. Neutron generator yield measurements using a phoswich detector with the digital pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip; Heinze, Julian

    2012-03-01

    The phoswich detector designed as a combination of two scintillators with dissimilar pulse shape characteristics that are optically coupled to each other and to a common photomultiplier is used for the simultaneous detection of fast and thermal neutrons. The digital signal processing of detector signals is used. The pulse shape analysis distinguishes the scintillation signals produced by photons, fast neutrons, and thermal neutrons. The phoswich was tested using the photon and neutron sources. We discuss neutron yield measurements for a pulse DT neutron generator. The spatial distribution of fast neutron flux and thermal neutron flux was evaluated for the generator in presence of neutron moderating materials.

  13. A Hybrid Gas Detector/Phoswich for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.

    1993-01-01

    A hybrid detector, which combines an optical avalanche chamber with a phoswich, is currently under development. The optical avalanche chamber - a proportional counter designed to give large quantities of light photons during charge multiplication, mounts on the front of the scintillator and gives response at low energies, while the solid scintillator takes over at energies where the gas becomes transparent (greater than 90 keV). Both sections of the hybrid will be read out by a common set of photomultipliers under the phoswich. The addition of the gas section to the phoswich improves the energy resolution of the instrument by a factor of 2.5 at 25 keV and the spatial resolution by a factor of 10 at the same energy. The net result is an instrument with broad band coverage and high sensitivity which will be used for coded aperture imaging on long duration balloon flights.

  14. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves

    NASA Astrophysics Data System (ADS)

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-01

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  15. Digital Pulse Shape Analysis with Phoswich Detectors to Simplify Coincidence Measurements of Radioactive Xenon

    SciTech Connect

    Hennig, Wolfgang; Tan, Hui; Warburton, William K.; McIntyre, Justin I.

    2005-08-31

    The Comprehensive Nuclear-Test-Ban Treaty establishes a network of monitoring stations to detect radioactive Xenon in the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory, which uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from the Xe isotopes of interest. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes require careful calibration which makes the system hard to use. It has been suggested that beta-gamma coincidences could be detected with only a single photomultiplier tube and electronics channel by using a phoswich detector consisting of optically coupled beta and gamma detectors (Ely, 2003). In that work, rise time analysis of signals from a phoswich detector was explored as a method to determine if interactions occurred in either the beta or the gamma detector or in both simultaneously. However, this approach was not able to detect coincidences with the required sensitivity or to measure the beta and gamma energies with sufficient precision for Xenon monitoring. In this paper, we present a new algorithm to detect coincidences by pulse shape analysis of the signals from a BC-404/CsI(Tl) phoswich detector. Implemented on fast digital readout electronics, the algorithm achieves clear separation of beta only, gamma only and coincidence events, accurate measurement of both beta and gamma energies, and has an error rate for detecting coincidences of less than 0.1%. Monte Carlo simulations of radiation transport and light collection were performed to optimize design parameters for a replacement detector module for the ARSA system, obtaining an estimated coincidence detection efficiency of 82-92% and a background rejection rate better than 99%. The new phoswich/pulse shape analysis method is thus suitable to simplify the existing ARSA

  16. Development of a Hybrid Gas Detector/Phoswich for Hard X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Pimperl, M. M.; Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.

    1994-01-01

    A hybrid detector is under development for use as a balloon-borne instrument in hard x-ray astronomy. The detector provides broad band coverage by coupling an optical avalanche chamber to a phoswich. The optical avalanche chamber yields superior instrument response at low energies while the scintillator takes over at the higher energies where the gas becomes transparent: at 25 keV, the addition of the gas chamber improves the energy resolution by a factor of 2.5 and the spatial resolution by a factor of 10 as compared to the stand-alone response of the phoswich. A half-scale prototype instrument is being constructed for test purposes and to help resolve a number of design questions involving the coupling of the two components.

  17. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.

    PubMed

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-01

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities. PMID:21828901

  18. Wavelength Shifting Phoswich Detectors for Superior Depth-of-Interaction Resolution

    SciTech Connect

    Melcher, Charles L; Eriksson, Lars

    2012-10-25

    In order to simultaneously achieve both high spatial resolution and high sensitivity in small Positron Emission Tomography (PET) systems, scintillation detectors must be long in the radial direction as well as able to provide depth-of-interaction (DOI) information. DOI information is typically provided by constructing detectors from two or more layers of scintillators that are identifiable due to their different decay times. This approach has worked well in tomographs such as the High Resolution Research Tomograph (HRRT, CTI PET Systems, Inc.) in which the emission and excitation bands of the scintillator layers do not overlap each other. However, many potentially important pairs of scintillator crystals exist in which the emission of one crystal is, in fact, absorbed and re-emitted by the second crystal, thus impacting the pulse shape discrimination process used to identify the scintillator layers. These potentially useful pairs of scintillators are unlikely to be implemented in phoswich detectors without a comprehensive understanding of the complex emission that results when the light of one crystal is absorbed by the second crystal and then reemitted. Our objective is to develop a fundamental understanding of the optical phenomena that occur in phoswich detectors and to exploit these phenomena to achieve improved spatial resolution in small high sensitivity PET scanners.

  19. A YSO/LSO phoswich array detector for single and coincidence photon imaging

    SciTech Connect

    Dahlbom, M.; MacDonald, L.R.; Schmand, M.; Eriksson, L.; Andreaco, M.; Williams, C.

    1998-06-01

    The performance of a phoswich array detector module for possible use in a combined single and coincidence photon imaging system has been evaluated. The assumption is that this detection module would allow the construction of a combined SPECT/PET imaging system with better count rate performance in the coincidence mode compared to current dual headed scintillation cameras. The detector consist of a linear array of discrete 4 x 4 x 15 mm{sup 3} YSO elements coupled to a combined detector array/light guide of LSO, 10 mm thick. Since the scintillation light decay time is different in YSO and LSO (70 and 40 ns, respectively), events originating from the two detector materials can be separated by pulse shape discrimination. The front layer of YSO could then be used for detection of low energy, single photon events and the LSO layer for coincidence detection of annihilation radiation. The light collection of the PMTs coupled to the detector was found to be adequate to accurately identify each detector element in the array using the same positioning logic used in conventional BGO block detectors. The average energy resolution of the YSO elements at 140 keV for the block detector was found to be 14.5% FWHM, ranging from 13.8 to 15.4%. Spatial resolution of the detector block in single photon mode, using a high resolution collimator (geometric resolution 6.5 mm at 10 cm) was measured by scanning a {sup 99m}Tc line source. The resolution at 5 and 10 cm from the collimator face was found to be 5.9 and 8.5 mm FWHM, respectively.

  20. Prediction of background in low-energy spectrum of Phoswich detector.

    PubMed

    Arun, B; Manohari, M; Mathiyarasu, R; Rajagopal, V; Jose, M T

    2014-12-01

    In vivo monitoring of actinides in occupational workers is done using Phoswich detector by measuring the low-energy X ray and gamma rays. Quantification of actinides like plutonium and americium in the lungs is extremely difficult due to higher background in the low-energy regions, which is from ambient background as well as from the subject. In the latter case, it is mainly due to the Compton scattering of body potassium, which varies person-to-person. Hence, an accurate prediction of subject-specific background counts in the lower-energy regions is an essential element in the in vivo measurement of plutonium and americium. Empirical equations are established for the prediction of background count rate in (239)Pu and (241)Am lower-energy regions, called 'target regions', as a function of count rate in the monitoring region (97-130 keV)/(40)K region in the high-energy spectrum, weight-to-height ratio of the subject (scattering parameter) and the gender. PMID:24300341

  1. Imaging phoswich anger camera

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sood, R. K.

    1991-08-01

    High angular resolution and low background are the primary requisites for detectors for future astronomy experiments in the low energy gamma-ray region. Scintillation counters are still the only available large area detector for studies in this energy range. Preliminary details of a large area phoswich anger camera designed for coded aperture imaging is described and its background and position characteristics are discussed.

  2. A High Resolution Phoswich Detector: LaBr3(Ce) Coupled With LaCl3(Ce)

    NASA Astrophysics Data System (ADS)

    Carmona-Gallardo, M.; Borge, M. J. G.; Briz, J. A.; Gugliermina, V.; Perea, A.; Tengblad, O.; Turrión, M.

    2010-04-01

    An innovative solution for the forward end-cap CALIFA calorimeter of R3B is under investigation consisting of two scintillation crystals, LaBr3 and LaCl3, stacked together in a phoswich configuration with one readout only. This dispositive should be capable of a good determination of the energy of protons and gamma radiation. This composite detector allows to deduce the initial energy of charged particles by ΔE1+ΔE2 identification. For gammas, the simulations show that there is a high probability that the first interaction occurs inside the scintillator at few centimeters, with a second layer, the rest of the energy is absorbed, or it can be used as veto event in case of no deposition in the first layer. One such a detector has been tested at the Centro de MicroAnálisis de Materiales (CMAM) in Madrid. Good resolution and time signal separation have been achieved.

  3. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    SciTech Connect

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ({sup 10}B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where {sup 3}He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector`s response and filtering based on the presence of a simultaneous energy deposition corresponding to the {sup 10}B(n,alpha) reaction products in the plastic scintillator (93 keV{sub ee}) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including {sup 137}Cs, {sup 54}Mn, AmLi, and {sup 252}Cf. Results of this study indicate that a neutron-capture probability of {approximately}10% and a die-away time of {approximately}10 {micro}s are possible with a 4-detector array with a detector volume of 1600 cm{sup 3}. Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 {micro}s are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this

  4. Characterization of PARIS LaBr3(Ce)-NaI(Tl) phoswich detectors up to Eγ ~ 22 MeV

    NASA Astrophysics Data System (ADS)

    Ghosh, C.; Nanal, V.; Pillay, R. G.; Anoop, K. V.; Dokania, N.; Pal, Sanjoy; Pose, M. S.; Mishra, G.; Rout, P. C.; Kumar, Suresh; Pandit, Deepak; Mondal, Debasish; Pal, Surajit; Banerjee, S. R.; Napiorkowski, P. J.; Dorvaux, O.; Kihel, S.; Mathieu, C.; Maj, A.

    2016-05-01

    In order to understand the performance of the PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) detector, detailed characterization of two individual phoswich (LaBr3(Ce)-NaI(Tl)) elements has been carried out. The detector response is investigated over a wide range of Eγ = 0.6 to 22.6 MeV using radioactive sources and employing 11B(p,γ) reaction at Ep = 163 keV and Ep = 7.2 MeV . The linearity of energy response of the LaBr3(Ce) detector is tested upto 22.6 MeV using three different voltage dividers. The data acquisition system using CAEN digitizers is set up and optimized to get the best energy and time resolution. The energy resolution of ~ 2.1% at Eγ = 22.6 MeV is measured for the configuration giving best linearity up to high energy. Time resolution of the phoswich detector is measured with a 60Co source after implementing CFD algorithm for the digitized pulses and is found to be excellent (FWHM ~ 315 ps). In order to study the effect of count rate on detectors, the centroid position and width of the Eγ = 835 keV peak were measured upto 220 kHz count rate. The measured efficiency data with radioactive sources are in good agreement with GEANT4 based simulations. The total energy spectrum after the add-back of energy signals in phoswich components is also presented.

  5. Development of a three-layer phoswich alpha-beta-gamma imaging detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ishibashi, Hiroyuki

    2015-06-01

    For radiation monitoring at the sites of such nuclear power plant accidents as Fukushima Daiichi, radiation detectors are needed not only for gamma photons but also for alpha and beta particles because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. In some applications, imaging detectors are required to detect the distribution of plutonium particles that emit alpha particles and radiocesium in foods that emits beta particles and gamma photons. To solve these requirements, we developed an imaging detector that can measure the distribution of alpha and beta particles as well as gamma photons. The imaging detector consists of three-layer scintillators optically coupled to each other and to a position sensitive photomultiplier tube (PSPMT). The first layer, which is made of a thin plastic scintillator (decay time: ~5 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol% Ce (decay time: 70 ns) detects gamma photons. Using pulse shape discrimination, the images of these layers can be separated. The position information is calculated by the Anger principle from 8×8 anode signals from the PSPMT. The images for the alpha and beta particles and the gamma photons are individually formed by the pulse shape discriminations for each layer. We detected alpha particle images in the first layer and beta particle images in the second layer. Gamma photon images were detected in the second and third layers. The spatial resolution for the alpha and beta particles was ~1.25 mm FWHM and less than 2 mm FWHM for the gamma photons. We conclude that our developed alpha-beta-gamma imaging detector is promising for imaging applications not only for the environmental monitoring of radionuclides but also for medical and molecular imaging.

  6. "Phoswich Wall": A charged-particle detector array for inverse-kinematic reactions with the Gretina/GRETA γ-ray arrays

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Reviol, W.; Elson, J. M.; Kinnison, J. E.; Izzo, C. J.; Manfredi, J.; Liu, J.; Jung, H. S.; Goerres, J.

    2015-08-01

    A high-efficiency, forward-hemisphere detector system for light charged particles and low-Z heavy ions, as obtained in an accelerator experiment, is described. It consists of four 8×8 pixel multianode photomultiplier tubes with 2.2-mm thick CsI(Tl) and 12 -μm thick fast-plastic scintillation detectors. Its phoswich structure allows individual Z resolution for 1H, 4He, 7Li, 4He+4He, 9Be, 11B, 12C, and 14N ions, which are target-like fragments detected in strongly inverse kinematics. The device design has been optimized for use with a 4π γ-ray array, and the main applications are transfer reactions and Coulomb excitation. A high-angular resolution for the detection of the target-like fragments is achieved which permits angular distributions to be measured in the rest frame of the projectile-like fragment with a resolution of ~ 2 °.

  7. Beta-gamma coincidence counting efficiency and energy resolution optimization by Geant4 Monte Carlo simulations for a phoswich well detector.

    PubMed

    Zhang, Weihua; Mekarski, Pawel; Ungar, Kurt

    2010-12-01

    A single-channel phoswich well detector has been assessed and analysed in order to improve beta-gamma coincidence measurement sensitivity of (131m)Xe and (133m)Xe. This newly designed phoswich well detector consists of a plastic cell (BC-404) embedded in a CsI(Tl) crystal coupled to a photomultiplier tube (PMT). It can be used to distinguish 30.0-keV X-ray signals of (131m)Xe and (133m)Xe using their unique coincidence signatures between the conversion electrons (CEs) and the 30.0-keV X-rays. The optimum coincidence efficiency signal depends on the energy resolutions of the two CE peaks, which could be affected by relative positions of the plastic cell to the CsI(Tl) because the embedded plastic cell would interrupt scintillation light path from the CsI(Tl) crystal to the PMT. In this study, several relative positions between the embedded plastic cell and the CsI(Tl) crystal have been evaluated using Monte Carlo modeling for its effects on coincidence detection efficiency and X-ray and CE energy resolutions. The results indicate that the energy resolution and beta-gamma coincidence counting efficiency of X-ray and CE depend significantly on the plastic cell locations inside the CsI(Tl). The degraded X-ray and CE peak energy resolutions due to light collection efficiency deterioration by the embedded cell can be minimised. The optimum of CE and X-ray energy resolution, beta-gamma coincidence efficiency as well as the ease of manufacturing could be achieved by varying the embedded plastic cell positions inside the CsI(Tl) and consequently setting the most efficient geometry. PMID:20598559

  8. Flat structure cooled detector assembly

    NASA Astrophysics Data System (ADS)

    Reeb, Nathalie; Coutures, Bernard; Gerin, Nicolas; Reale, S.; Guille, B.

    1994-07-01

    Long wavelength IR detectors need to be cooled at cryogenic temperature to achieve high performances. This specific need makes it difficult to integrate the detector because of high cost of dewar and cooling device designed to fulfill severe vibration conditions. A new era for IR detection could begin with flat structures allowing intrinsic vibration resistance for detectors to be plugged on electronics board. Sofradir has carried out a study about feasibility of detector dewar assembly including a flat Joule-Thomson cooler with porous heat exchanger in cooperation with Air Liquide. The aim of this paper is to put forward the interest of such a product. The very good results achieved demonstrate a promising future for such flat structure detector assembly.

  9. Development of a Plastic Phoswich for Reaction Studies

    NASA Astrophysics Data System (ADS)

    Thornsberry, C.; Jones, K. L.; Partington, D.; Smith, K.; Febbraro, M.; O'Malley, P.; Kolata, J.; Becchetti, F.; TwinSol Collaboration

    2015-10-01

    In inverse kinematics, proton transfer reactions, such as (d,n), may be used to add a proton to a short-lived ion beam. By detecting the outgoing neutron, it is possible to extract spectroscopic information about the recoil nucleus. Plastic scintillators may be used for detecting these neutrons but are sensitive to gamma rays as well as neutrons, usually resulting in a large background. A clean tag on the recoil particle is often necessary for the removal of significant unwanted background from reactions with low cross sections. A plastic scintillator phoswich (phosphor-sandwich) was developed in order to separate the recoil nucleus from a radioactive ion beam cocktail. This phoswich is comprised of two layers of plastic scintillator, with two different pulse shape characteristics, fused together to produce a single assembly viewed by a PMT. Using pulse shape discrimination (PSD) on the resultant digitized light pulses allows for Z separation at rates of up to 1x106 pps. Since the recoil particle has one extra proton than the beam particle, it is only necessary to have separation in Z. This detector was successfully tested during a development experiment at the University of Notre Dame. An overview of the motivation, development, and analysis of this detector will be present.

  10. Performance of the Well-type phoswich counters in the balloon experiments

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Gunji, S.; Hirayama, M.; Kamae, T.; Miyazaki, S.; Seikimoto, Y.; Takahashi, T.; Tanaka, M.; Yamaoka, N.; Yamagami, T.

    We have developed a low background hard X-ray/gamma-ray detector in the energy range from approx. 60 keV to approx. 850 keV. The detector called Welcome-1 (Well-type Compound Eye detector-1) employs newly developed well-type phoswich counters. The main scintillation counter of GSO(Ce) crystal (34x34x10 cu mm) is mounted in the center of the well-shaped scintillation counter of CsI(Tl) crystal. The well-shaped CsI(Tl) counter works not only as the active shield but also as the active collimator. In order to increase the effective area, 64 units of the well-type phoswich counters are assembled in 8 x 8 matrix configuration. Additional 36 CsI(Tl) active shield counters surround them. The effective area of the detector amounts to 740 sq cm at 122 keV. Using the well-type phoswich counter as a unit of the hard X-ray/gamma-ray telescope, the background from external and internal (radio active material) sources are reduced significantly. The performance of the detector was verified by the balloon borne experiments in Brazil. The data obtained at an altitude of 4 g/sq cm shows that the Welcome-1 detector in fact has the 3 sigma sensitivity of approx. a few times 10(exp -6)/sq cm/s/keV and approx. 10(exp -4)/sq cm/s by 10(exp 4)s observation for the continuum spectrum and line spectrum, respectively. The data from the detector is taken by the versatile data acquisition system based on the VME computer specially designed for balloon-borne experiments. In the system, the arrival time of each event is recorded by the precise clock system calibrated by signals from Global Positioning System (GPS) satellites. A brief summary of the performance of the Welcome-1 detector will be presented.

  11. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    NASA Astrophysics Data System (ADS)

    Lu, P. H.; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A. W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments.

  12. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.

    PubMed

    Yamamoto, Seiichi

    2013-07-01

    The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems. PMID:23271446

  13. A Multi-Layer Phoswich Radioxenon Detection System

    SciTech Connect

    David M. Hamby

    2008-07-14

    Laboratory radioactive sources were used to characterize the phoswich detector. The CaF{sub 2} scintillator has a low light-yield and slow decay time, thus produces very small signals due to low-energy gamma rays or X-rays. Therefore, detection of 30 keV X-rays (from the xenon radioisotopes) using this layer and discriminating its very small signals from electronic noise was a challenging task. Several solutions were considered and experimentally evaluated. We found that the best solution would be extending the fast triangular filter from 10 taps to 30 taps. This will extend the peaking time of this filter from 25 nsec to 75 nsec. The digital filter is implemented in FPGA on our DPP2.0 and is used to trigger the detection system. Functionality of the new filter in capturing and discriminating 30 keV X-rays was confirmed by using a {sup 133}Ba gamma-ray source. Development of the DPP GUI software has continued with the addition of two new panels to display histograms of beta/gamma and beta/x-ray coincidence events. This includes coincidence events from a single channel, as well as two-channel, coincidence event. A pileup rejection algorithm has been implemented in the FPGA code, and controls to adjust its sensitivity have been added to the GUI. Work has begun on a new prototype system to develop a USB host interface between the PC and the FPGA to end reliance on Opal Kelly prototyping boards; the hardware for this system has been completely assembled, and the PC-side software is currently in development.

  14. Beta-cell Assembly for the Quad Gas Sampling Detector

    SciTech Connect

    Cooper, Matthew W.; Bowyer, Ted W.; McIntyre, Justin I.; Hayes, James C.; Heimbigner, Tom R.; Ripplinger, Michael D.; Thompson, Robert C.

    2008-05-05

    The beta-cells used in the beta-gamma detector have taken time to develop and to standardize the assembly of them. In making the assembly routine it is important to have step by step assembly instructions as well as a list of potential problems and their solutions. This document attempts to accomplish these goals.

  15. Gravity Probe B Detector Mount Assembly

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) detector mount assembly is shown in comparison to the size of a dime. The assembly is used to detect exactly how much starlight is coming through different beams from the beam splitter in the telescope. The measurements from the tiny chips inside are what keeps GP-B aimed at the guide star. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Paul Ehrensberger, Stanford University.)

  16. Detector Assembly and the Ultralow-Temperature Refrigerator for XRS

    NASA Technical Reports Server (NTRS)

    Porter, F. S.; Dipirro, M. J.; Kelley, R. L.; Pham, T.; Stahle, C. K.; Szymkowiak, A. E.; Tuttle, J. G.; Audley, M. D.; Gendraau, K. C.; Brekosky, R. P.; Gysax, J. D.

    1999-01-01

    The X-ray spectrometer (XRS) on the Japanese Astro-E Spacecraft is the first ultra low temperature space borne instrument. The system utilizes a 900g Ferric Ammonium Alum (FAA) Adiabatic Demagnetization Refrigerator (ADR) with a helium-3 gas gap heat switch to cool the detector assembly to 0.060K. The system operates in a "single shot" configuration allowing the system to remain at its operating temperature for about 40 hours in the lab. The on-orbit performance is expected to be about 35 hours with a 97% duty cycle. The detector assembly for XRS consists of a 32 channel microcalorimeter array bias electronics, thermometry, and an anti-coincidence detector that are attached to the cold stage of the ADR. To thermally Isolate the detector system from the superfluid helium reservoir, the detector system is suspended by Kevlar cords and electrical connection in made by L30, 17-micron diameter, tensioned NbTi leads. The detectors are read out in a source-follower arrangement using FET amplifiers operating at 130K mounted in multiply-thermally-isolated assemblies that also use Kevlar and stainless steel wiring. The design and thermal performance of this system will be discussed and compared to the theoretical limits.

  17. Assembly and Installation of the Daya Bay Antineutrino Detectors

    NASA Astrophysics Data System (ADS)

    Band, H. R.; Brown, R. L.; Carr, R.; Chen, X. C.; Chen, X. H.; Cherwinka, J. J.; Chu, M. C.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Goett, J.; Greenler, L. S.; Gu, W. Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hsiung, Y. B.; Jin, Y.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Lewis, C. A.; Li, G. S.; Li, N.; Li, S. F.; Li, X. N.; Lin, C. J.; Littlejohn, B. R.; Liu, J. L.; Luk, K. B.; Luo, X. L.; Ma, X. Y.; McFarlane, M. C.; McKeown, R. D.; Nakajima, Y.; Ochoa-Ricoux, J. P.; Pagac, A.; Qian, X.; Seilhan, B.; Shih, K.; Steiner, H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Virostek, S.; Wang, L.; Wang, W.; Wang, Z. M.; Webber, D. M.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Wilhelmi, J.; Wingert, M.; Wise, T.; Wong, H. L. H.; Wu, F. F.; Xiao, Q.; Yang, L.; Zhang, Z. J.; Zhong, W. L.; Zhuang, H. L.

    2013-11-01

    The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle θ13, and recently made the definitive discovery of its non-zero value. It utilizes a set of eight, functionally identical antineutrino detectors to measure the reactor flux and spectrum at baselines of ~ 300-2000 m from the Daya Bay and Ling Ao Nuclear Power Plants. The Daya Bay antineutrino detectors were built in an above-ground facility and deployed side-by-side at three underground experimental sites near and far from the nuclear reactors. This configuration allows the experiment to make a precision measurement of reactor antineutrino disappearance over km-long baselines and reduces relative systematic uncertainties between detectors and nuclear reactors. This paper describes the assembly and installation of the Daya Bay antineutrino detectors.

  18. A Multi-Layer Phoswich Radioxenon Detection System, Reporting Period 07/01/07 - 09/30/07

    SciTech Connect

    David M. Hamby

    2007-10-25

    During this quarter, the detector manufacturer (Saint-Gobain) delivered one side of the prototype two-channel phoswich detector (XEPHWICH). Once received, our Digital Pulse Processor (DPP1, 12-bit/100 MHz) was employed to capture and digitally process phoswich pulses from laboratory radioactive sources. Our previous pulse shape discrimination algorithm was modified by utilizing three trapezoidal digital filters. This algorithm provides a two-dimensional plot in which the pulse shapes of interest are classified and then can be well identified. The preliminary experimental results will be presented at the 2007 Informal Xenon Monitoring Workshop. The DPP2 (two-channel, 12-bit/ 250 MHz Digital Pulse Processor) is at the prototyping stage. The analog sections have been designed, prototyped and tested. A 6-layer Printed Circuit Board (PCB) was designed, ordered and delivered. The board components were ordered and are now being assembled and examined for proper functionality. In addition, the related FPGA hardware description code (using VHDL) is under development and simulation. Additionally, our researchers have been studying materials regarding wavelet transforms for incorporation into the project. Wavelet transform is an interesting tool for signal processing; one use for our purpose would be to de-noise the detector signal and to express the signal in a few coefficients for signal compression and increased speed. Light capture efficiency modeling and analysis was performed on the XEPHWICH design. Increased understanding of the modeling software was obtained by the discovery of a bug and successful workaround techniques with the DETECT2000 software. Further modeling and plot generation experience was had by the continued use of CERN's ROOT and GEANT4 software packages. Simulations have been performed to compare the output of points versus planes in light capture efficiency. An additional simulation was made with a runtime that was an order-of-magnitude greater than

  19. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    SciTech Connect

    Collier, Michael

    2002-12-17

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  20. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  1. Warm-up calorimetry of Dewar-Detector Assemblies

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Shlomovich, B.; Tuito, A.

    2015-12-01

    Boil-off isothermal calorimetry of Dewar-Detector Assemblies (DDA) is a routine part of their Acceptance Testing Procedure. In this approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil-off from the Dewar well to the atmosphere through a mass flow meter; the parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate. An inherent major limitation of this technique is that it may be performed only at the fixed boiling temperature of the chosen liquid coolant. A further drawback is related to the explosive nature of "last drop" boiling, manifesting itself as an uneven flow rate. This especially holds true for advanced High Operational Temperature Dewar-Detector Assemblies, typically featuring short cold fingers and working at 150 K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate heat load evaluation may be performed by comparing the slopes of the warm-up thermal transients under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  2. Users guide to E859 phoswich analysis

    SciTech Connect

    Costales, J.B.

    1992-11-30

    In this memo the authors describe the analysis path used to transform the phoswich data from raw data banks into cross sections suitable for publication. The primary purpose of this memo is not to document each analysis step in great detail but rather to point the reader to the fortran code used and to point out the essential features of the analysis path. A flow chart which summarizes the various steps performed to massage the data from beginning to end is given. In general, each step corresponds to a fortran program which was written to perform that particular task. The automation of the data analysis has been kept purposefully minimal in order to ensure the highest quality of the final product. However, tools have been developed which ease the non--automated steps. There are two major parallel routes for the data analysis: data reduction and acceptance determination using detailed GEANT Monte Carlo simulations. In this memo, the authors will first describe the data reduction up to the point where PHAD banks (Pass 1-like banks) are created. They the will describe the steps taken in the GEANT Monte Carlo route. Note that a detailed memo describing the methodology of the acceptance corrections has already been written. Therefore the discussion of the acceptance determination will be kept to a minimum and the reader will be referred to the other memo for further details. Finally, they will describe the cross section formation process and how final spectra are extracted.

  3. Behavior of Sofradir detector dewar assembly under operational conditions

    NASA Astrophysics Data System (ADS)

    Veyrier, Jacques; Brodin, Christian; Magli, Serge

    1994-07-01

    Sofradir has built an infrared detector dewar assembly (DDA) capable of operating under various environmental conditions corresponding to various applications. In this paper it is shown that Sofradir DDA retain their performance for FLIR applications (ground vehicle, helicopter, or aircraft) as well as seeker applications. In particular, Sofradir DDAs permit the user to meet or to exceed the majority of environmental conditions defined in the US military standards such as MIL STD 81OD. Moreover, it has been shown from studies carried out at Sofradir that for components in production such as the 288 X 4 one, the reliability, thermal cycling, and operating and storage conditions are acceptable for this generation of components. Indeed, for instance, it has been demonstrated by test that the MTTF for standard operating conditions can be higher than 15,000 hours for the 288 X 4 focal plane array.

  4. Micro-Pocket Fission Detectors (MPFD) For Fuel Assembly Analysis

    SciTech Connect

    Troy Unruh; Michael Reichenberger; Phillip Ugorowski

    2013-09-01

    Neutron sensors capable of real-time measurement of thermal flux, fast flux, and temperature in a single miniaturized probe are needed in irradiation tests required to demonstrate the performance of candidate new fuels, and cladding materials. In-core ceramic-based miniature neutron detectors or “Micro-Pocket Fission Detectors” (MPFDs) have been studied at Kansas State University (KSU). The first MPFD prototypes were tested in various neutron fields at the KSU TRIGA research reactor with successful results. Currently, a United States Department of Energy-sponsored joint KSU/Idaho National Laboratory (INL) effort is underway to develop a high-temperature, high-pressure version of the MPFD using radiation-resistant, high temperature materials, which would be capable of withstanding irradiation test conditions in high performance material and test reactors (MTRs). Ultimately, this more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, existing and advanced reactor designs, high performance MTRs, and transient test reactors has the potential to lead to higher accuracy and resolution data from irradiation testing, more detailed core flux measurements and enhanced fuel assembly processing. Prior evaluations by KSU indicate that these sensors could also be used to monitor burn-up of nuclear fuel. If integrated into nuclear fuel assemblies, MPFDs offer several advantages to current spent fuel management systems.

  5. Calibration of phoswich-based lung counting system using realistic chest phantom.

    PubMed

    Manohari, M; Mathiyarasu, R; Rajagopal, V; Meenakshisundaram, V; Indira, R

    2011-03-01

    A phoswich detector, housed inside a low background steel room, coupled with a state-of-art pulse shape discrimination (PSD) electronics is recently established at Radiological Safety Division of IGCAR for in vivo monitoring of actinides. The various parameters of PSD electronics were optimised to achieve efficient background reduction in low-energy regions. The PSD with optimised parameters has reduced steel room background from 9.5 to 0.28 cps in the 17 keV region and 5.8 to 0.3 cps in the 60 keV region. The Figure of Merit for the timing spectrum of the system is 3.0. The true signal loss due to PSD was found to be less than 2 %. The phoswich system was calibrated with Lawrence Livermore National Laboratory realistic chest phantom loaded with (241)Am activity tagged lung set. Calibration factors for varying chest wall composition and chest wall thickness in terms of muscle equivalent chest wall thickness were established. (241)Am activity in the JAERI phantom which was received as a part of IAEA inter-comparison exercise was estimated. This paper presents the optimisation of PSD electronics and the salient results of the calibration. PMID:21044995

  6. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-12-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd3Al2Ga3O12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios-Ce-doped Gd3Al2.6Ga2.4O12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI detectors with the two

  7. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Voljanskij, A.; Klupák, V.; Koleška, M.; Cabalka, M.; Turek, K.

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of 235U, 238U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  8. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  9. A case study of smoke detector assembly work method intervention and evaluation.

    PubMed

    Sun, Chuan; Buchholz, Bryan; Thomas, Jeff

    2012-01-01

    The study aimed to evaluate a work method intervention in a smoke detector assembly line. High hand gripping forces and extreme wrist postures were found in the smoke detector assembly line at UTC Fire & Security Company in Maine. A fixture was introduced to replace the old assembly method. Electromyography (EMG) and electrogoniometry were used to measure the workers' hand gripping force and wrist motions with both the old and new assembly methods. Results show both hand gripping forces and wrist postures improved significantly with the new method. PMID:22317738

  10. A MULTI-LAYER PHOSWICH RADIOXENON DETECTION SYSTEM, REPORTING PERIOD 11/01/06 - 01/31/07

    SciTech Connect

    David M. Hamby, P.I.

    2007-01-31

    During the third quarter of our research we continued development of our two-channel digital pulse processor, and finalized/optimized our XEPHWICH design. We have completed a number of simulations (using MCNP) on potential design features of a two-channel phoswich detector, and have come to agreement on the most efficient design for the ARSA framework. This design will encompass two planar, triple-layer phoswich detectors positioned parallel to each other such that the gas-counting volume is a very thin disk. This approach creates a counting geometry that is very close to 4{pi}, while simplifying the manufacturing process. For the DPP2, a two-channel fast preamplifier is being designed. The preamplifier will have DC-offset and gain adjustments. As described in the proposal, valid signal pulses from two PMTs are identified and captured in the FPGA and then digitally processed in a dedicated Digital Signal Processor (DSP). The MicroBlaze processor from Xilinx is intended to be replaced with the DSP. The processor is a soft core, meaning that it is implemented using general logic primitives rather than a hard core such as DSP.

  11. Assembly and design of the germanium detectors for the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Jasinski, Ben; Majorana Collaboration

    2014-09-01

    The Majorana Demonstrator is a neutrino-less double-beta decay experiment being carried out at the Sanford Underground Research Facility, in South Dakota. The Demonstrator will consist of 30 kg of germanium detectors enriched in 76 Ge. Each P-type Point Contact detector is arranged in a string configuration, utilizing novel front-end electronics, cables, connectors, and mounts, fabricated from radio-pure materials. The assembly of the strings is carried out 4850 feet underground to reduce cosmologically induced backgrounds. To further reduce backgrounds, strings are assembled in a nitrogen-filled glovebox. This talk will give an overview of the design and the assembly of the detector strings for the Majorana Demonstrator.

  12. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    NASA Astrophysics Data System (ADS)

    Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.

    2016-09-01

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  13. Prediction of in vivo background in phoswich lung count spectra

    SciTech Connect

    Richards, N.W. . Office of Radiation Protection)

    1999-05-01

    Phoswich scintillation counters are used to detect actinides deposited in the lungs. The resulting spectra, however, contain Compton background from the decay of [sup 40]K, which occurs naturally in the striated muscle tissue of the body. To determine the counts due to actinides in a lung count spectrum, the counts due to [sup 40]K scatter must first be subtracted out. The [sup 40]K background in the phoswich NaI(Tl) spectrum was predicted from an energy region of interest called the monitor region, which is above the [sup 238]Pu region and the [sup 241]Am region, where photopeaks from [sup 238]Pu and [sup 241]Am region, where photopeaks from [sup 238]Pu and [sup 241]Am occur. Empirical models were developed to predict the backgrounds in the [sup 238]Pu and [sup 241]Am regions by testing multiple linear and nonlinear regression models. The initial multiple regression models contain a monitor region variable as well as the variables gender, (weight/height)[sup [alpha

  14. A Student Assembled Spectrograph with a CCD Detector to Assist with Students' Understanding of Spectrometry

    ERIC Educational Resources Information Center

    Grove, T. T.; Masters, M. F.

    2007-01-01

    To help students develop an understanding of the proper use and function of spectrographs and monochromators we describe a student-assembled spectrograph using a "webcam" detector. The apparatus also works well as a low-cost demonstration, helping students make connections between an atomic spectrum observed by eye and a plot of the relative…

  15. Design and performance of an actively collimated phoswich system for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Nolan, P. L.; Paciesas, W. S.; Pelling, R. M.

    1977-01-01

    The design and performance of a phoswich type scintillation detector system having 34 sq cm effective collecting area and a sensitivity of 3 x 10 to the -5th power photons/sq cm/s/keV for balloon-borne cosmic X-ray source observations are discussed. The various shield anticoincidence systems are evaluated for effectiveness in reduction of the system background. The total background of nominally 4 x 10 to the -4th power counts/sq cm/s/keV is analyzed and found to consist of aperture flux, K-escape X-rays from the shielding, leakage, and degradation of gamma-rays through the shielding, and several particle induced effects. The background analysis suggests an ultimate practical upper limit of about 8 x 10 to the -5th power counts/sq cm/s/keV might be attainable beyond which further sensitivity improvements will require increased collecting area or a basically differing design approach.

  16. Assembly and test of the gas pixel detector for X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Li, H.; Feng, H.; Muleri, F.; Bellazzini, R.; Minuti, M.; Soffitta, P.; Brez, A.; Spandre, G.; Pinchera, M.; Sgró, C.; Baldini, L.; She, R.; Costa, E.

    2015-12-01

    The gas pixel detector (GPD) dedicated for photoelectric X-ray polarimetry is selected as the focal plane detector for the ESA medium-class mission concept X-ray Imaging and Polarimetry Explorer (XIPE). Here we show the design, assembly, and preliminary test results of a small GPD for the purpose of gas mixture optimization needed for the phase A study of XIPE. The detector is assembled in house at Tsinghua University following a design by the INFN-Pisa group. The improved detector design results in a good uniformity for the electric field. Filled with pure dimethyl ether (DME) at 0.8 atm, the measured energy resolution is 18% at 6 keV and inversely scales with the square root of the X-ray energy. The measured modulation factor is well consistent with that from simulation, up to ~0.6 above 6 keV. The residual modulation is found to be 0.30 ± 0.15 % at 6 keV for the whole sensitive area, which can be translated into a systematic error of less than 1% for polarization measurement at a confidence level of 99%. The position resolution of the detector is about 80 μm in FWHM, consistent with previous studies and sufficient for XIPE requirements.

  17. Performance evaluation of a dual-crystal APD-based detector modules for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Pepin, Catherine M.; Bérard, Philippe; Cadorette, Jules; Tétrault, Marc-André; Leroux, Jean-Daniel; Michaud, Jean-Baptiste; Robert, Stéfan; Dautet, Henri; Davies, Murray; Fontaine, Réjean; Lecomte, Roger

    2006-03-01

    Positron Emission Tomography (PET) scanners dedicated to small animal studies have seen a swift development in recent years. Higher spatial resolution, greater sensitivity and faster scanning procedures are the leading factors driving further improvements. The new LabPET TM system is a second-generation APD-based animal PET scanner that combines avalanche photodiode (APD) technology with a highly integrated, fully digital, parallel electronic architecture. This work reports on the performance characteristics of the LabPET quad detector module, which consists of LYSO/LGSO phoswich assemblies individually coupled to reach-through APDs. Individual crystals 2×2×~10 mm 3 in size are optically coupled in pair along one long side to form the phoswich detectors. Although the LYSO and LGSO photopeaks partially overlap, the good energy resolution and decay time difference allow for efficient crystal identification by pulse-shape discrimination. Conventional analog discrimination techniques result in significant misidentification, but advanced digital signal processing methods make it possible to circumvent this limitation, achieving virtually error-free decoding. Timing resolution results of 3.4 ns and 4.5 ns FWHM have been obtained for LYSO and LGSO, respectively, using analog CFD techniques. However, test bench measurements with digital techniques have shown that resolutions in the range of 2 to 4 ns FWHM can be achieved.

  18. Phase 1 Upgrade of the CMS Pixel Detector: Module Assembly and Testing

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish

    2014-03-01

    The CMS pixel detector is the innermost component of the all-silicon tracking system located closest to the interaction point and thus operates in a high-occupancy/high-radiation environment created by particle collisions. The performance of the current pixel detector has been excellent during Run 1 of the LHC. However, the foreseen increases of the instantaneous and integrated luminosities at the LHC necessitate an upgrade of the pixel detector in order to maintain the excellent tracking and physics performance of the CMS detector. The new pixel detector is expected to be installed during the extended end-of-year shutdown in 2016/17. The main new features of the upgraded pixel detector would be ultra-light mechanical design with four barrel layers and three end-caps on either side of the interaction point, digital readout chip with higher rate capability and new cooling system. These and other design improvements, along with the current status on module assembly and testing, will be discussed.

  19. Centroid Detector Assembly for the AXAF-I Alignment Test System

    NASA Technical Reports Server (NTRS)

    Glenn, Paul

    1995-01-01

    The High Resolution Mirror Assembly (HRMA) of the Advanced X-ray Astrophysics Facility (imaging) (AXAF-I) consists of four nested paraboloids and four nested hyperboloids, all of meter-class size, and all of which are to be assembled and aligned in a special 15 meter tower at Eastman Kodak Company in Rochester, NY. The goals of the alignment are (1) to make the images of the four telescopes coincident; (2) to remove coma from each image individually; and (3) to control and determine the final position of the composite focus. This will be accomplished by the HRMA Aligment Test System (HATS) which is essentially a scanning Hartmann test system. The scanning laser source and the focal plane of the HATS are part of the Centroid Detector Assembly (CDA) which also includes processing electronics and software. In this paper we discuss the design and the measured performance of the CDA.

  20. Investigation of innovative silicon detector assembling solutions for hadron calorimeter modules.

    NASA Astrophysics Data System (ADS)

    Cai, G.; Ammannati, N.

    1995-11-01

    The application of large areas of silicon detector mosaics in calorimetry for high energy particles measurement in Physics has grown in the last few years and is still in progress. The high number of mosaic units in the calorimeter implies the following main requirements to be satisfied: a simple low cost for manufacturing and assembling easy mountable/dismountabic units possibility to move or change silicon detectors easily reliability of the electrical contacts between the aluminium layer on the silicon detectors surface and the PCB breaker points In order to satisfy the above requirements several assembling solutions have been investigated and tested recently, as fixed contact by using conducting epoxy-glues, mechanical-dismountable contacts of gold-plated PCB copper to the silicon detectors, and others. The results of the tests show a general degradation of the original electrical characteristics of the contacts after of varying lengths operating times. This fact, due to corrosion phenomena assisted by chemical residuals in the contact interface, causes an irreversible damage of the detectors in the long term. In addition we found a room temperature interdiffusion of gold and copper. A promising solution to these problems can be achieved by careful removal of chemical, increase of golden layer of the PCB electrical copper contacts or aluminising them by pure aluminium vapour deposition in vacuum chamber. The estimated degradation time between the PCB copper and the aluminium film is very low in this case, and the risk of diffusion in the detector aluminium film surface is low along the whole operating life of the calorimeter.

  1. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  2. YALINA-booster subcritical assembly pulsed-neutron e xperiments: detector dead time and apatial corrections.

    SciTech Connect

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    2010-10-11

    In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable model is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.

  3. Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    NASA Technical Reports Server (NTRS)

    Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; Towner, Deborah; U-Yen, Kongpop

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.

  4. Integration of wide field-of-view imagery functions in a detector dewar cooler assembly

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; de la Barriere, Florence; Guerineau, Nicolas; Lasfargues, Gilles; Fendler, Manuel; Lhermet, Nicolas; Taboury, Jean; Reibel, Yann; Moullec, Jean-Baptiste

    2012-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). A dewar is a sealed environment where the detector is cooled on a cold plate. We show in this paper that wide field of view imagery functions can be simply added to the dewar. We investigate two ways of integration and make two demonstrators. The first one called FISBI consists in replacing the window by a fish-eye lens and in integrating a lens in the cold shield. This optical system has a field of view of 180°. The second one, called IR-Cam-on-Chip, consists in integrating the optics directly on the focal plane array. This optical system has a field of view of 120°. The additional mass of the optics is sufficiently small to be compatible with the cryogenic environment of the DDCA. The performance of these cameras will be discussed and several evolutions of these cameras will be introduced too.

  5. Image quality of Medipix2 assemblies with silicon detectors of two different thicknesses

    NASA Astrophysics Data System (ADS)

    Quarati, F.; O'Shea, V.; Smith, K. M.

    2005-07-01

    Silicon pixel detectors of 300 and 700 μm thick were coupled to Medipix2 [Medipix collaboration web site: http://medipix.web.cern.ch/MEDIPIX; Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, California, 4-10 November 2001, M7-4] read-out chips and tested for use in X-ray imaging. After the evaluation of the flat-field correction gain map [Nucl. Instr. and Meth. A 460 (2001) 81; Nucl. Instr. and Meth. A 509 (2003) 146], the functionality of the Medipix2 discriminator threshold setting was investigated using an X-ray source providing a selection of monochromatic X-rays. A phantom designed for mammography and a commercial X-ray source were used to measure the response versus the radiographic dose of the different assemblies to test objects of varying, known contrast. Results are presented in terms of recorded Signal-to-Noise Ratio (SNR) and of a direct evaluation of the Detective Quantum Efficiency (DQE) of the system, for both the assemblies.

  6. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations

    ERIC Educational Resources Information Center

    Santos, Willy G.; Cavalheiro, E´der T. G.

    2015-01-01

    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  7. DPIX, an assembly of 6400 CdTe detectors for gamma-ray bursts detection with ECLAIRs

    NASA Astrophysics Data System (ADS)

    Remoué, N.; Barret, D.; Mandrou, P.; Lacombe, K.; Pons, R.; Amoros, C.; Landé, J.; Rambaud, D.; Dezalay, J. P.; Narbonne, J.; Soulié, Y.; Marty, W.; Ramon, P.; Rouaix, G.; Houret, B.; Limousin, O.; Gevin, O.; Lugiez, F.; Penquer, A.

    2008-07-01

    The French instrument ECLAIRs, to be part of the French and Chinese SVOM mission for the study of gamma-ray bursts (GRBs), will detect bursts between 4 and 250 keV. Its detector plane is an assembly of 200 elementary detection modules (XRDPIX) equipped with 32 Schottky CdTe detectors, produced by ACRORAD in Japan. The innovative concept of XRDPIX will enable a 4 keV low-energy threshold to be achieved. After introducing the SVOM payload, the ECLAIRs instrument and its detector plane, this paper presents the results of the performance evaluation of a first set of 500 detectors, and briefly describes the tests foreseen for the first XRDPIX prototypes.

  8. Ruggedizing infrared integrated Dewar-detector assemblies for harsh environmental conditions

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Ashush, Nataniel; Shlomovich, Baruch; Oppenhaim, Yaakov; Gridish, Yaakov; Kahanov, Ezra; Koifman, Alina; Tuito, Avi

    2014-06-01

    Cryogenically cooled infrared electro-optical payloads have to operate and survive frequent exposure to harsh vibrational and shock conditions typical of the modern battlefield. This necessitates the development of special approaches to ruggedizing their sensitive components. The ruggedization requirement holds true specifically for Integrated Dewar-Detector Assemblies (IDDA), where the infrared Focal Plane Array (FPA) is usually supported by a thin-walled cold finger enveloped by an evacuated tubular Dewar. Without sufficient ruggedization, harsh environmental vibration may give rise to structural resonance responses resulting in spoiled image quality and even mechanical fractures due to material fatigue. The authors present their approach for the ruggedization of the IDDA by attaching the FPA to a semi-rigid support extending from the dynamically damped Dewar envelope. A mathematical model relies on an experimentally evaluated set of frequency response functions for a reference system and a lumped model of a wideband dynamic absorber. By adding only 2% to the weight of the IDDA, the authors have managed to attenuate the relative deflection and absolute acceleration of the FPA by a factor of 3. The analytical predictions are in full agreement with experiment.

  9. Multi-slope warm-up calorimetry of Integrated Dewar-Detector Assemblies

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Shlomovich, Baruch; Tuito, Avi

    2015-05-01

    Boil-off isothermal calorimetry of Integrated Dewar-Detector Assemblies (IDDA) is a routine part of acceptance testing. In this traditional approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil off from the Dewar well to the atmosphere. The parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate monitored usually by a mass flow meter. An inherent limitation of this technique is that it is applicable only at the fixed boiling temperature of the chosen liquid coolant, for example, 77K for LN2. There is a need, therefore, to use other (often exotic) cryogenic liquids when calorimetry is needed at temperatures other than 77K. A further drawback is related to the transitional nature of last drop boiling, which manifests itself in development of enlarged bubbles, explosions and geysering. This results in an uneven flow rate and also affects the natural temperature gradient along the cold finger. Additionally, mass flow meters are known to have limited measurement accuracy. The above considerations especially hold true for advanced High Operational Temperature IDDAs, typically featuring short cold fingers and working at 150K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate calorimetry may be performed by precooling the IDDA and comparing the warm-up slopes of the thermal transient processes under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  10. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  11. Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles.

    PubMed

    Wang, Fei; Zhao, Dongxu; Guo, Zhen; Liu, Lei; Zhang, Zhenzhong; Shen, Dezhen

    2013-04-01

    Artificial leaf structures have been fabricated by the self-assembly of ZnO nanoparticles. A hydrothermal method was used to synthesize the nanoparticles. The self-assembly patterns showed asymmetric dendritic morphologies, larger surface-to-volume ratios, a broad absorption band and high resistance. A non-equilibrium two-stage-formation process included diffusion limited aggregation, and the phase-field model was introduced to explain the formation mechanism of the pattern. A high-performance ultraviolet detector was fabricated on the artificial leaf structures, which showed that the current under the irradiation of a UV lamp (1.21 mW cm(-2)) was about 10(4) times greater than in the dark. The various and functional properties of the pattern show us the vast prospects of potential applications for light harvesting systems and other optical-electric devices. PMID:23446434

  12. A logarithmic, large-solid-angle detector telescope for nuclear fragmentation

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Komisarcik, K.; Wile, J. L.; Yennello, S. J.; Fields, D. E.; Viola, V. E.; Glagola, B. G.

    1990-12-01

    Properties of a logarithmic, large-solid-angle detector telescope for measuring the spectra of light charged particles and/or complex fragments produced in intermediate-energy nuclear reactions are described. Light-ion identification with a phoswich detector which consists of transmission photodiode ΔE and CsI(Tl) E elements is also discussed, as is the response of silicon microstrip detectors to fission fragments.

  13. Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhao, Dongxu; Guo, Zhen; Liu, Lei; Zhang, Zhenzhong; Shen, Dezhen

    2013-03-01

    Artificial leaf structures have been fabricated by the self-assembly of ZnO nanoparticles. A hydrothermal method was used to synthesize the nanoparticles. The self-assembly patterns showed asymmetric dendritic morphologies, larger surface-to-volume ratios, a broad absorption band and high resistance. A non-equilibrium two-stage-formation process included diffusion limited aggregation, and the phase-field model was introduced to explain the formation mechanism of the pattern. A high-performance ultraviolet detector was fabricated on the artificial leaf structures, which showed that the current under the irradiation of a UV lamp (1.21 mW cm-2) was about 104 times greater than in the dark. The various and functional properties of the pattern show us the vast prospects of potential applications for light harvesting systems and other optical-electric devices.Artificial leaf structures have been fabricated by the self-assembly of ZnO nanoparticles. A hydrothermal method was used to synthesize the nanoparticles. The self-assembly patterns showed asymmetric dendritic morphologies, larger surface-to-volume ratios, a broad absorption band and high resistance. A non-equilibrium two-stage-formation process included diffusion limited aggregation, and the phase-field model was introduced to explain the formation mechanism of the pattern. A high-performance ultraviolet detector was fabricated on the artificial leaf structures, which showed that the current under the irradiation of a UV lamp (1.21 mW cm-2) was about 104 times greater than in the dark. The various and functional properties of the pattern show us the vast prospects of potential applications for light harvesting systems and other optical-electric devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33748k

  14. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    SciTech Connect

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2015-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  15. A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.

    Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.

  16. Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    NASA Technical Reports Server (NTRS)

    Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.; Towner, D.; U-Yen, K.; Wollack, E. J.

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.

  17. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  18. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.

    PubMed

    Theocharous, E; Theocharous, S P; Lehman, J H

    2013-11-20

    A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings. PMID:24513757

  19. Invited Article: A test-facility for large-area microchannel plate detector assemblies using a pulsed sub-picosecond laser

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard; Chollet, Matthieu; Elagin, Andrey; Oberla, Eric; Vostrikov, Alexander; Wetstein, Matthew; Obaid, Razib; Webster, Preston

    2013-06-01

    The Large Area Picosecond Photodetector Collaboration is developing large-area fast photodetectors with time resolution ≲10 ps and space resolution ≲1 mm based on atomic layer deposition-coated glass Micro-Channel Plates (MCPs). We have assembled a facility at Argonne National Laboratory for characterizing the performance of a wide variety of microchannel plate configurations and anode structures in configurations approaching complete detector systems. The facility consists of a pulsed Ti:Sapphire laser with a pulse duration ≈100 fs, an optical system allowing the laser to be scanned in two dimensions, and a computer-controlled data-acquisition system capable of reading out 60 channels of anode signals with a sampling rate of over 10 GS/s. The laser can scan on the surface of a sealed large-area photodetector, or can be introduced into a large vacuum chamber for tests on bare 8 in.-square MCP plates or into a smaller chamber for tests on 33-mm circular substrates. We present the experimental setup, detector calibration, data acquisition, analysis tools, and typical results demonstrating the performance of the test facility.

  20. WO3 Nanofiber-Based Biomarker Detectors Enabled by Protein-Encapsulated Catalyst Self-Assembled on Polystyrene Colloid Templates.

    PubMed

    Choi, Seon-Jin; Kim, Sang-Joon; Cho, Hee-Jin; Jang, Ji-Soo; Lin, Yi-Min; Tuller, Harry L; Rutledge, Gregory C; Kim, Il-Doo

    2016-02-17

    A novel catalyst functionalization method, based on protein-encapsulated metallic nanoparticles (NPs) and their self-assembly on polystyrene (PS) colloid templates, is used to form catalyst-loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high-temperature heat-treatment during synthesis, which is attributed to the discrete self-assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP-loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (R(air)/R(gas)) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8- and 7.1-fold improvements compared to that of dense WO3 NFs (R(air)/R(gas) = 6.1). Moreover, Pt NP-loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well-dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors. PMID:26728087

  1. Surface conductivity of InAs/GaSb superlattice infrared detectors treated with thiolated self assembled monolayers

    NASA Astrophysics Data System (ADS)

    Henry, Nathan C.; Brown, Alexander; Knorr, Daniel B.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Tidrow, Meimei; Bandara, Sumith

    2016-01-01

    The surface conductivity of InAs/GaSb based type II superlattice (T2SL) long wavelength infrared material following the deposition of thiolated self-assembled monolayers (SAMs) of cysteamine, octadecanethiol, dodecanethiol, and hexanethiol are reported. Quantitative mobility spectrum analysis (QMSA) was employed to study the mobility and to isolate and identify surface carriers following SAM treatments on planar samples. QMSA data collected following the deposition of the SAMs on InAs/GaSb material correlates well with dark current measurements, demonstrating the usefulness of QMSA as a tool for evaluating surface conductivity and predicting device performance. All samples displayed a reduction in surface conductivity and dark current density following thiol treatment. Dark current densities were reduced to 1.1 × 10-5, 1.3 × 10-5, 1.6 × 10-5, and 5 × 10-6 A/cm2 for hexanethiol, dodecanethiol, octadecanethiol, and cysteamine, respectively, from 5.7 × 10-4 A cm2 for unpassivated devices.

  2. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  3. Neutron detectors comprising boron powder

    DOEpatents

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  4. Dynamics of Coronal Bright Points as Seen by Sun Watcher Using Active Pixel System Detector and Image Processing (SWAP), Atmospheric Imaging Assembly (AIA), and Helioseismic and Magnetic Imager (HMI)

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Krishna Prasad, S.; Banerjee, D.; Ravindra, B.; Seaton, Daniel B.

    2013-08-01

    The Sun Watcher using Active Pixel system detector and Image Processing (SWAP) onboard the PRoject for OnBoard Autonomy-2 (PROBA2) spacecraft provides images of the solar corona in EUV channel centered at 174 Å. These data, together with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 Å and AIA 171 Å channels. We observe that bright points are seen in EUV channels corresponding to a magnetic flux of the order of 1018 Mx. We find that there exists a good correlation between total emission from the bright point in several UV-EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings, and we have attempted to find the oscillation periods in bright points and their connection to magnetic-flux changes. The observed periods are generally long (10 - 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection.

  5. A Multi-Layer Phoswich Radioxenon Detection System (7th Qtr Report), Reporting Period 10/01/07 - 12/31/07

    SciTech Connect

    David M. Hamby

    2008-01-29

    Description of activities conducted this report period: (1) Electronics Development--To improve the overall performance of the two-channel digital pulse processor (DPP2), the PCB has been redesigned and the new printed board is now under assembly. The system is enhanced with two new fast ADCs from Analog Devices (AD9230-250), each with a sampling rate of 250 MHz and a resolution of 12 bits. The data bus uses a high performance Low Voltage Differential Signaling (LVDS) standard. The offset and gain of each channel are separately controlled digitally by the GUI software. (2) GUI Software Development--A GUI is being developed using the Python programming language. All functions from the preceding MATLAB code have been re-implemented including basic waveform readout, pulse shape discrimination, and plotting of energy spectra. In addition, the GUI can be used to control sampling runs based on the number of pulses captured, either in real or live time. Calibration coefficients and pulse shape discrimination boundaries can be changed on the fly so that the detector may be characterized experimentally. Plots generated by the GUI can be exported as graphic data. At present, the software has only been tested using one channel, pending availability of the new DPP board (DPP2). However, the functions have been written to allow easy expansion to two channels. (3) Light Collection Modeling--The XEPHWICH design has been modeled to determine its light capture efficiency. Research in the 7th quarter includes additional simulations representing significant increase in data resolution, well over an order of magnitude greater than previous simulations. The final data set represents approximately 11 billion visible photons divided equally among 110 thousand data points. A laboratory experiment is being designed and executed to experimentally determine light capture efficiency as a function of position within the scintillators. (4) Radioxenon Fission Source--We have designed and

  6. Construction of the CDF silicon vertex detector

    SciTech Connect

    Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S. ); Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T. ); Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester

    1992-04-01

    Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 {mu}m detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 {mu}m placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs.

  7. Infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  8. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  9. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  10. MTI Focal Plane Assembly Design and Performance

    SciTech Connect

    Ballard, M.; Rienstra, J.L.

    1999-06-17

    The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

  11. Development of the large-area silicon PIN diode with 2 millimeter-thick depletion layer for hard x-ray detector (HXD) on board ASTRO-E

    NASA Astrophysics Data System (ADS)

    Sugizaki, Mutsumi; Kubo, S.; Murakami, Toshio; Ota, Naomi; Ozawa, Hideki; Takahashi, Tadayuki; Kaneda, Hidehiro; Iyomoto, Naoko; Kamae, Tuneyoshi; Kokubun, Motohide; Kubota, Aya; Makishima, Kazuo; Tamura, Takayuki; Tashiro, Makoto

    1997-07-01

    ASTRO-E is the next Japanese x-ray satellite to be launched in the year 2000. It carries three high-energy astrophysical experiments, including the hard x-ray detector (HXD) which is unique in covering the wide energy band from 10 keV to 700 keV with an extremely low background. The HXD is a compound-eye detector, employing 16 GSO/BGO well-type phoswich scintillation counters together with 64 silicon PIN detectors. The scintillation counters cover an energy range of 40 - 700 keV, while the PIN diodes fill the intermediate energy range from 10 keV to 70 keV with an energy resolution about 3 keV. In this paper, we report on the developments of the large area, thick silicon PIN diodes. In order to achieve a high quantum efficiency up to 70 keV with a high energy resolution, we utilize a double stack of silicon PIN diodes, each 20 by 20 mm(superscript 2) in size and 2 mm thick. Signals from the two diodes are summed into a single output. Four of these stacks (or eight diodes) are placed inside the deep BGO active-shield well of a phoswich counter, to achieve an extremely low background environment. Thus, the HXD utilizes 64 stacked silicon PIN detectors, achieving a total geometrical collecting area of 256 cm(superscript 2). We have developed the 2 mm thick silicon PIN diodes which have low leakage current, a low capacitance, and a high breakdown voltage to meet the requirements of our goal. Through various trials in fabricating PIN diodes with different structures, we have found optimal design parameters, such as mask design of the surface p(superscript +) layer and the implantation process.

  12. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  13. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  14. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  15. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, James W.

    1993-01-01

    A transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  16. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1991-03-04

    This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  17. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1993-11-09

    A transcutaneous bilirubin detector is designed comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient. 6 figures.

  18. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  19. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  20. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  1. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  2. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  3. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  4. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  5. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  6. Terahertz sources and detectors

    NASA Astrophysics Data System (ADS)

    Crowe, Thomas W.; Porterfield, David W.; Hesler, Jeffrey L.; Bishop, William L.; Kurtz, David S.; Hui, Kai

    2005-05-01

    Through the support of the US Army Research Office we are developing terahertz sources and detectors suitable for use in the spectroscopy of chemical and biological materials as well as for use in imaging systems to detect concealed weapons. Our technology relies on nonlinear diodes to translate the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks that have been developed for this application include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These components rely on planar Schottky diodes and integrated diode circuits and are therefore easy to assemble and robust. They require no mechanical tuners to achieve high efficiency and broad bandwidth. This paper will review the range of performance that has been achieved with these terahertz components and briefly discuss preliminary results achieved with a spectroscopy system and the development of sources for imaging systems.

  7. Monte Carlo Calculation of the Response of an External Detector to a Photon Source in the Lungs of a Heterogeneous Phantom.

    Energy Science and Technology Software Center (ESTSC)

    1980-05-19

    FANTOM calculates the response of a 20-cm-diameter phoswich (3 mm NaI(Tl) primary detector) to a source of low energy photons distributed in the lungs of a heterogeneous MIRD phantom, approximating ICRP Reference Man. The program considers the trunk region of the MIRD phantom which is made up of three types of tissues with different densities: skeletal tissue (1.85), lung tissue (0.3) and soft tissue (1). Each organ in the thorax region is described by simplemore » quadratic equations, with respect to a Cartesian coordinate system (X,Y,Z), the origin of which is located at the center of the base of the trunk, with positive Z-axis, Y-axis, and X-axis directed toward the head, posterior, and left side of the phantom, respectively.« less

  8. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  9. Crew Assembly

    NASA Video Gallery

    Train to improve your dexterity and hand-eye coordination by assembling a puzzle.The Train Like an Astronaut project uses the excitement of exploration to challenge students to set goals, practice ...

  10. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  11. Seal assembly

    SciTech Connect

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  12. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  13. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  14. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  15. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  16. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  17. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  18. Latch assembly

    DOEpatents

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  19. Latch assembly

    SciTech Connect

    Frederickson, James R.; Harper, William H.; Perez, Raymond

    1986-01-01

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing.

  20. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  1. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  2. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  4. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  5. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  6. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOEpatents

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  7. Cartwheel assembly

    PubMed Central

    Hirono, Masafumi

    2014-01-01

    The cartwheel is a subcentriolar structure consisting of a central hub and nine radially arranged spokes, located at the proximal end of the centriole. It appears at the initial stage of the centriole assembly process as the first ninefold symmetrical structure. The cartwheel was first described more than 50 years ago, but it is only recently that its pivotal role in establishing the ninefold symmetry of the centriole was demonstrated. Significant progress has since been made in understanding its fine structure and assembly mechanism. Most importantly, the central part of the cartwheel, from which the ninefold symmetry originates, is shown to form by self-association of nine dimers of the protein SAS-6. This finding, together with emerging data on other components of the cartwheel, has opened new avenues in centrosome biology. PMID:25047612

  8. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  9. Low radioactivity material for use in mounting radiation detectors

    NASA Technical Reports Server (NTRS)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  10. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  11. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  12. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  13. Neutron detectors comprising ultra-thin layers of boron powder

    DOEpatents

    Wang, Zhehul; Morris, Christopher

    2013-07-23

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  14. 3D IC for Future HEP Detectors

    SciTech Connect

    Thom, J.; Lipton, R.; Heintz, U.; Johnson, M.; Narain, M.; Badman, R.; Spiegel, L.; Triphati, M.; Deptuch, G.; Kenney, C.; Parker, S.; Ye, Z.; Siddons, D.

    2014-11-07

    Three dimensional integrated circuit technologies offer the possibility of fabricating large area arrays of sensors integrated with complex electronics with minimal dead area, which makes them ideally suited for applications at the LHC upgraded detectors and other future detectors. Here we describe ongoing R&D efforts to demonstrate functionality of components of such detectors. This also includes the study of integrated 3D electronics with active edge sensors to produce "active tiles" which can be tested and assembled into arrays of arbitrary size with high yield.

  15. 3D IC for future HEP detectors

    NASA Astrophysics Data System (ADS)

    Thom, J.; Lipton, R.; Heintz, U.; Johnson, M.; Narain, M.; Badman, R.; Spiegel, L.; Triphati, M.; Deptuch, G.; Kenney, C.; Parker, S.; Ye, Z.; Siddons, D. P.

    2014-11-01

    Three dimensional integrated circuit technologies offer the possibility of fabricating large area arrays of sensors integrated with complex electronics with minimal dead area, which makes them ideally suited for applications at the LHC upgraded detectors and other future detectors. We describe ongoing R&D efforts to demonstrate functionality of components of such detectors. This includes the study of integrated 3D electronics with active edge sensors to produce "active tiles" which can be tested and assembled into arrays of arbitrary size with high yield.

  16. ALICE detector in construction phase

    NASA Astrophysics Data System (ADS)

    Peryt, Wiktor S.

    2005-09-01

    ALICE1 collaboration, which prepares one of the biggest physics experiments in the history, came into production phase of its detector. The experiment will start at LHC2 at CERN in 2007/2008. In the meantime about 1000 people from ~70 institutions are involved in this enterprise. ALICE detector consists of many sub-detectors, designed and manufactured in many laboratories and commercial firms, located mainly in Europe, but also in U.S., India, China and Korea. To assure appropriate working environment for such a specific task, strictly related to tests of particular components, measurements and assembly procedures Detector Construction Database system has been designed and implemented at CERN and at some labs involved in these activities. In this paper special attention is paid to this topic not only due to fact of innovative approach to the problem. Another reason is the group of young computer scientists (mainly students) from the Warsaw University of Technology, leaded by the author, has designed and developed the system for the whole experiment3. Another very interesting subject is the Data Acquisition System which has to fulfill very hard requirements concerning speed and high bandwidth. Required technical performance is achieved thanks to using PCI bus (usually in previous high energy physics experiments VME standard has been used) and optical links. Very general overview of the whole detector and physics goals of ALICE experiment will also be given.

  17. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  18. Pushrod assembly

    DOEpatents

    Potter, Jerry D.

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  19. Shingle assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2007-02-20

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The first edge of one base may be interengageable with the second edge of an adjacent base to be capable of resisting first and second disengaging forces oriented perpendicular to the edges and along planes oriented parallel to and perpendicular to the base. A deflector may be used to help reduce wind uplift forces.

  20. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  1. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  2. Optical Filter Assembly for Interplanetary Optical Communications

    NASA Technical Reports Server (NTRS)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  3. Monte Carlo simulation of a PhosWatch detector using Geant4 for xenon isotope beta-gamma coincidence spectrum profile and detection efficiency calculations.

    PubMed

    Mekarski, P; Zhang, W; Ungar, K; Bean, M; Korpach, E

    2009-10-01

    A simulation tool has been developed using the Geant4 Toolkit to simulate a PhosWatch single channel beta-gamma coincidence detection system consisting of a CsI(Tl)/BC404 Phoswich well detector and pulse shape analysis algorithms implemented digital signal processor. The tool can be used to simulate the detector's response for all the gamma rays and beta particles emitted from (135)Xe, (133m)Xe, (133)Xe, (131m)Xe and (214)Pb. Two- and three-dimensional beta-gamma coincidence spectra from the PhosWatch detector can be produced using the simulation tool. The accurately simulated spectra could be used to calculate system coincidence detection efficiency for each xenon isotope, the corrections for the interference from the various spectral components from radon and xenon isotopes, and system gain calibration. Also, it can generate two- and three-dimensional xenon reference spectra to test beta-gamma coincidence spectral deconvolution analysis software. PMID:19647444

  4. Swivel assembly

    DOEpatents

    Hall, David R.; Pixton, David S.; Briscoe, Michael; Bradford, Kline; Rawle, Michael; Bartholomew, David B.; McPherson, James

    2007-03-20

    A swivel assembly for a downhole tool string comprises a first and second coaxial housing cooperatively arranged. The first housing comprises a first transmission element in communication with surface equipment. The second housing comprises a second transmission element in communication with the first transmission element. The second housing further comprises a third transmission element adapted for communication with a network integrated into the downhole tool string. The second housing may be rotational and adapted to transmit a signal between the downhole network and the first housing. Electronic circuitry is in communication with at least one of the transmission elements. The electronic circuitry may be externally mounted to the first or second housing. Further, the electronic circuitry may be internally mounted in the second housing. The electronic circuitry may be disposed in a recess in either first or second housing of the swivel.

  5. RETORT ASSEMBLY

    DOEpatents

    Loomis, C.C.; Ash, W.J.

    1957-11-26

    An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.

  6. Thermocouple assembly

    DOEpatents

    Thermos, Anthony Constantine; Rahal, Fadi Elias

    2002-01-01

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  7. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker.

    SciTech Connect

    Onuki, Y.; PHENIX Collaboration, et al.

    2009-05-08

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  8. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  9. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  10. The Mark II Silicon Strip Vertex Detector and performance of a silicon detector telescope in the Mark II detector at the SLC

    SciTech Connect

    Labarga, L.; Adolphsen, C.; Gratta, G.; Litke, A.; Turala, M.; Zaccardelli, C. . Inst. for Particle Physics); Breakstone, A.; Parker, S. ); Barnett, B.; Dauncey, P.; Drewer, D.; Matthews, J. ); Jacobsen, R.; Lueth, V. )

    1989-12-01

    A Silicon Strip Vertex Detector (SSVD) consisting of 36 independent silicon detector modules has been built for use in the Mark II detector at the SLAC Linear Collider (SLC). We discuss the performance of the individual modules and the stability and accuracy of their placement in the mechanical support. To gain operational experience at the SLC, we have assembled and placed inside the Mark II a telescope made of three Silicon Detector Modules. We present results from the first data run of the SLC on the overall performance of the Telescope, including backgrounds, charged particle tracking and spatial resolution. 7 refs., 10 figs.

  11. The STAR detector magnet subsystem

    SciTech Connect

    Brown, R.L.; Etkin, A.; Foley, K.J.

    1997-07-01

    The RHIC (Relativistic Heavy Ion Collider) Accelerator currently under construction at Brookhaven National Laboratory will have large detectors at two of its six intersection regions. One of these detectors, known as STAR (Solenoidal Tracker At RHIC), weighs 1100 tons and is being built around a large solenoid magnet. The magnet is 7.32 in in diameter, 7.25 m long and utilizes three different sizes of room temperature aluminum coils. The magnet will operate with a field set from 0.25 T to 0.5 T and have a field uniformity of better than 1000 ppm over a portion of its interior region. This paper describes the magnet design, fabrication and assembly requirements and presents the current construction status.

  12. Pattern fuel assembly loading system

    SciTech Connect

    Ahmed, H.J.; Gerkey, K.S.; Miller, T.W.; Wylie, M.E.

    1986-12-02

    This patent describes an interactive system for facilitating preloading of fuel rods into magazines, which comprises: an operator work station adapted for positioning between a supply of fuel rods of predetermined types, and the magazine defining grid locations for a predetermined fuel assembly; display means associated with the work station; scanner means associated with the work station and adapted for reading predetermined information accompanying the fuel rods; a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; prompter/detector means associated with the frame for detecting insertion of a fuel rod into the magazine; and processing means responsive to the scanner means and the sensing means for prompting the operator via the display means to pre-load the fuel rods into desired grid locations in the magazine. An apparatus is described for facilitating pre-loading of fuel rods in predetermined grid locations of a fuel assembly loading magazine, comprising: a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; and means associated with the frame for detecting insertion of fuel rods into the magazine.

  13. Radiation energy detector and analyzer

    SciTech Connect

    Roberts, T.G.

    1981-09-15

    A radiation detector array and a method for measuring the spectral content of radiation. The radiation sensor or detector is an array or stack of thin solid-electrolyte batteries. The batteries, arranged in a stack, may be composed of independent battery cells or may be arranged so that adjacent cells share a common terminal surface. This common surface is possible since the polarity of the batteries with respect to an adjacent battery is unrestricted, allowing a reduction in component parts of the assembly and reducing the overall stack length. Additionally, a test jig or chamber for allowing rapid measurement of the voltage across each battery is disclosed. A multichannel recorder and display may be used to indicate the voltage gradient change across the cells, or a small computer may be used for rapidly converting these voltage readings to a graph of radiation intensity versus wavelength or energy. The behavior of the batteries when used as a radiation detector and analyzer are such that the voltage measurements can be made at leisure after the detector array has been exposed to the radiation, and it is not necessary to make rapid measurements as is now done.

  14. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  15. Response of liquid scintillator assemblies as a function of angular orientation

    NASA Astrophysics Data System (ADS)

    Naeem, S. F.; Scarpelli, M.; Miller, E.; Clarke, S. D.; Pozzi, S. A.

    2014-06-01

    Liquid scintillator detector assemblies contain an inert nitrogen expansion volume to allow for expansion of the liquid with changing temperature. Measurements and Geant4 Monte Carlo simulations are performed to study the dependence of pulse height distribution shapes as a function of detector angle for two liquid scintillators assemblies filled with 97% organic-liquid cocktail and a 3% expansion volume. A 12.7-cm diameter by 12.7-cm long and a 7.6-cm diameter by 9.1-cm long EJ-309 liquid scintillator assemblies are investigated using a 137Cs gamma-ray source. Aside from the differences in dimensions, the detector assemblies also differed in the design of the active detector volume: there is no light guide in the 12.7-cm-diameter detector assembly, whereas the 7.6-cm-diameter detector contains a BK7 light guide between the scintillation liquid and optical coupling to the photomultiplier tube. Results for the 12.7-cm-diameter detector show a decrease in the position of the Compton edge ranges from 4% to 40% at detector orientations where the expansion volume exists between scintillating medium and the photomultiplier tube. Results for the 7.6-cm-diameter detector show that the position of the Compton edge is relatively unaffected at all detector orientations due to the presence of light guide.

  16. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    associated preamplifiers; these detectors surpassed the performance we expected to get from the Ketek detectors, however they are housed in a sealed module, which does not offer the ease of repair and expandability wed hoped to achieve with the Ketek SDD's. Our packaging efforts were quite successful, as we came up with a very compact way to mount the detector and to house the associated electronics, as well as a very effective way to reliably take out the heat (from the electronics as well as the detector's Peltier coolers) without risk of condensation and without external airflow or vibration, which could create problems for the target applications. While we were able to design compact processing electronics that fit into the detector assembly, they are still at the prototype stage, and would require a significant redesign to achieve product status. We have not yet tested this detector at a synchrotron facility; we do still plan on working with some close contacts at the nearby Stanford Synchrotron Radiation Laboratory (SSRL) to get some testing with the beam (using existing commercial electronics for readout, as the integrated processor is not ready for use).

  17. SuperCDMS Detector Readout Cryogenic Hardware

    NASA Astrophysics Data System (ADS)

    Seitz, D. N.; Ahmed, Z.; Akerib, D. S.; Arrenberg, S.; Bailey, C. N.; Balakishiyeva, D.; Baudis, L.; Bauer, D. A.; Beaty, J.; Brink, P. L.; Bruch, T.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Clark, K.; Cooley, J.; Cushman, P.; DeJongh, F.; Dragowsky, M. R.; Duong, L.; Figueroa-Feliciano, E.; Filippini, J.; Fritts, M.; Golwala, S. R.; Grant, D. R.; Hall, J.; Hennings-Yeomans, R.; Hertel, S.; Homgren, D.; Hsu, L.; Huber, M. E.; Kamaev, O.; Kiveni, M.; Kos, M.; Leman, S. W.; Mahapatra, R.; Mandic, V.; Moore, D.; McCarthy, K. A.; Mirabolfathi, N.; Nelson, H.; Novak, L.; Ogburn, R. W.; Pyle, M.; Qiu, X.; Ramberg, E.; Rau, W.; Reisetter, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Serfass, B.; Sundqvist, K. M.; Tomada, A.; Wang, G.; Wikus, P.; Yellin, S.; Yoo, J.; Young, B. A.

    2009-12-01

    SuperCDMS employs 1-inch thick germanium crystals operated below 50mK in a dilution cryostat. Each detector produces ionization and phonon signals. Ionization signals are amplified by JFETs operating at 150K within an assembly mounted on the 4K cryostat stage. These high impedance signals are carried to the FETs by superconducting "vacuum coaxes" which minimize thermal conductivity, stray capacitance, and microphonics. Transition edge sensors produce low-impedance phonon signals, amplified by SQUID arrays mounted on a 600mK stage. Detectors are mounted in a six-sided wiring configuration called a "tower", which carries signals from 40mK to 4K. A flex circuit 3 meters in length carries amplified signals for each detector from 4K to a vacuum bulkhead. We describe the methods used to support the detectors, wiring and amplifier elements at various thermal stages, minimizing electrical noise and thermal loads.

  18. The EarthCARE broadband radiometer detectors

    NASA Astrophysics Data System (ADS)

    Proulx, Christian; Williamson, Fraser; Allard, Martin; Baldenberger, Georges; Gay, David; Garcia-Blanco, Sonia; Côté, Patrice; Martin, Louis; Larouche, Carl; Ilias, Samir; Pope, Tim; Caldwell, Martin; Ward, Kim; Delderfield, John

    2009-08-01

    The Broadband Radiometer (BBR) is an instrument being developed for the ESA EarthCARE satellite. The BBR instrument objective is to provide top-of-atmosphere (TOA) radiance measurements in two spectral channels, and over three along-track directions. The instrument has three fixed telescopes (one for each view) each containing a broadband detector. Each detector consists of an uncooled 30-pixel linear focal plane array (FPA) coated with gold black in order to ensure uniform spectral responsivity from 0.2 μm to 50 μm. The FPA is hybridized with a readout integrated circuit (ROIC) and a proximity electronics circuit-card assembly (CCA) packaged in an aluminum base plate with cover. This paper provides a technical description of the detector design and operation. Performance data at the FPA pixel level as well as unit-level test results on early prototypes of the detectors are also presented.

  19. One hundred anode microchannel plate ion detector

    SciTech Connect

    He Yi; Poehlman, John F.; Alexander, Andrew W.; Boraas, Kirk; Reilly, James P.

    2011-08-15

    A one-hundred-anode microchannel plate detector is constructed on a 10 cm x 15 cm printed circuit board and attached to a homebuilt matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer. Ringing and cross talk between anodes have been successfully eliminated and preliminary mass spectra of peptide ions recorded. With one hundred anodes on the printed circuit board, spatial information about the ion beam can also be readily determined with this detector. During operation, the detector anode assembly loses sensitivity after ions strike it for a considerable period of time due to charging of the non-conductive regions between anodes. However, this effect can be minimized by deflecting matrix ions away from the detector.

  20. Detector simulation needs for detector designers

    SciTech Connect

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  1. Forward and central preshower detectors for the D0 upgrade

    SciTech Connect

    D0 collaboration

    1998-11-01

    Within the upgraded D0 detector at Fermi National Accelerator Laboratory, forward and central preshower detectors will be used for fast level 1 triggering of electrons. These detectors consist of approximately 25000 channels of extruded scintillator strips with embedded wave length shifter fiber readout. Readout is via clear fiber lightguide to Visible Light Photon Counters. An overview of each system will be presented. Results of prototype detectors to cosmic rays will be presented. Scintillator/fiber manufacture and assembly will be discussed. {copyright} {ital 1998 American Institute of Physics.}

  2. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  3. A novel electron tunneling infrared detector

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1990-01-01

    The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly.

  4. Integration of Radioactive Material with Microcalorimeter Detectors

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Bond, E. M.; Hoover, A. S.; Kunde, G. J.; Moody, W. A.; Rabin, M. W.; Bennett, D. A.; Hayes-Wehle, J.; Kotsubo, V.; Schmidt, D. R.; Ullom, J. N.

    2014-09-01

    Microcalorimeter detectors with embedded radioactive material offer many possibilities for new types of measurements and applications. We will discuss the designs and methods that we are developing for precise deposition of radioactive material and its encapsulation in the absorber of transition-edge sensor (TES) microcalorimeter detectors for two specific applications. The first application is total nuclear reaction energy (Q) spectroscopy for nuclear forensics measurements of trace actinide samples, where the goal is determination of ratios of isotopes with Q values in the range of 5-7 MeV. Simplified, rapid sample preparation and detector assembly is necessary for practical measurements, while maintaining good energy resolution. The second application is electron capture spectroscopy of isotopes with low Q values, such as Ho, for measurement of neutrino mass. Detectors for electron capture spectroscopy are designed for measuring energies up to approximately 6 keV. Their smaller heat capacity and physical size present unique challenges. Both applications require precise deposition of radioactive material and encapsulation in an absorber with optimized thermal properties and coupling to the TES. We have made detectors for both applications with a variety of designs and assembly methods, and will present their development.

  5. LK39F1 S/N U-1 infrared detector. [performance tests, controllability, and equipment specifications of infrared detectors

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A multilayered (Hg,Cd)Te detector is described with three infrared bands. Nominal cut-off wavelengths for each band are as follows: (1) Channel 1 - 3 microns, (2) Channel 2 - 6 microns, and (3) Channel 3 - 11 microns. The multilayered detector is mounted in a Honeywell LK39 glass dewar. Accompanying the detector/dewar assembly is a three-channel preamplifier package capable of switching each detector to the single channel input of the HRB Singer Reconfax 4 Mark 4 Infrared Scanner.

  6. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  7. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  8. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  9. Structural assembly in space

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.; Pruett, E. C.

    1980-01-01

    A cost algorithm for predicting assembly costs for large space structures is given. Assembly scenarios are summarized which describe the erection, deployment, and fabrication tasks for five large space structures. The major activities that impact total costs for structure assembly from launch through deployment and assembly to scientific instrument installation and checkout are described. Individual cost elements such as assembly fixtures, handrails, or remote minipulators are also presented.

  10. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    PubMed Central

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-01-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  11. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  12. A large area silicon UCN detector with the analysis of UCN polarization

    NASA Astrophysics Data System (ADS)

    Lasakov, M. S.; Serebrov, A. P.; Khusainov, A. Kh.; Pustovoit, A.; Borisov, Yu. V.; Fomin, A. K.; Geltenbort, P.; Kon'kov, O. I.; Kotina, I. M.; Shablii, A. I.; Solovei, V. A.; Vasiliev, A. V.

    2005-06-01

    A silicon UCN detector with an area of 45 cm2 and with a 6LiF converter was developed at PNPI. The spectral efficiency of the silicon UCN detector was measured by means of a gravitational spectrometer at ILL. The sandwich-type detector from two silicon plates with a 6LiF converter placed between them was also studied. Using this type of technology the UCN detector with analysis of polarization was developed and tested. The analyzing power of this detector assembly reaches up to 75% for the main part of UCN spectrum. This UCN detector with analysis of UCN polarization can be used in the new EDM spectrometer.

  13. Belle II SVD ladder assembly procedure and electrical qualification

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, Varghese; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules.

  14. Structural assembly demonstration experiment

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.

    1982-01-01

    The experiment is of an operational variety, designed to assess crew capability in Large Space System (LSS) assembly. The six Structural Assembly Demonstration Experiment objectives include: (1) the establishment of a quantitative correlation between LSS neutral buoyancy simulation and on-orbit assembly operations in order to enhance the validity of those assembly simulations; (2) the quantitative study of the capabilities and mechanics of human assembly in an Extravehicular Activity environment; (3) the further corroboration of the LSS Assembly Analysis cost algorithm through the obtainment of hard data base information; (4) the verification of LSS assembly techniques and timeless, as well as the identification of crew imposed loads and assembly aid requirements and concepts; (5) verification of a Launch/Assembly Platform structure concept for other LSS missions; and (6) lastly, to advance thermal control concepts through a flexible heat pipe.

  15. D0 Silicon Upgrade: Ladder Assembly Sequences

    SciTech Connect

    Ratzmann, Paul; /Fermilab

    1994-08-17

    This is an abridged version of the assembly sequence described by the DO assembly subgroup of Cooper, Hrycyk, Kowalski, Rapidis, and Ratzmann. This primarily is used to indicate major steps during the sequence and to list fixturing requirements. Assembly - (1) Place support rails in (1) 3 Chip Ladder Construction fixture. The two rails get held under vacuum. (2) Apply adhesive to the region where contact will be made with the beryllium substrates. (3) Place underside beryllium pieces (active and dummy ends) into the (1) 3 Chip Ladder Construction fixture. These pieces get placed in the fixture against the appropriate pins to mimic final positioning in the bulkhead. Apply vacuum to the beryllium pieces. Allow to cure? (4) Align silicon in (1) 3 Chip Ladder Construction fixture. Reference features on the fixture will be parameterized. Holes in the fixture near the silicon center line will be targeted to set the silicon axis relative to the beryllium slot edge. Z positioning of the detectors will be achieved by shimming between the detectors and butting up the end of the silicon against the fixture. (5) Remove silicon detectors and apply adhesive to the rails and upper surfaces of the beryllium. (6) Replace silicon and check final position of the detectors. (7) Release vacuum on the rails so they cure in a stress-free state. Allow adhesive to cure. (8) Apply adhesive and align HDI to the silicon using (2) 3 Chip HDI Gluing fixture. The HDI will have tabs which are held by the fixture for location relative to the detectors. Allow adhesive to cure. (9) Move ladder to (3) 3 Chip Wirebonding Fixture. Transfer fixture to the wirebonder and bond chip-silicon and silicon-silicon.

  16. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  17. The MINOS detectors

    SciTech Connect

    Habig, A.; Grashorn, E.W.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  18. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  19. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    SciTech Connect

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  20. Autonomous electrochromic assembly

    DOEpatents

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  1. Firearm trigger assembly

    DOEpatents

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  2. A Portable Classroom Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Matis, Howard

    2012-03-01

    Normally, one has to work at an accelerator to demonstrate the principles of particle physics. We have developed a portable cosmic ray detector, the Berkeley Lab Detector, that can bring high energy physics experimentation into the classroom. The detector, which is powered by either batteries or AC power, consists of two scintillator paddles with a printed circuit board. The printed circuit board takes the analog signals from the paddles, compares them, and determines whether the pulses arrived at the same time. It has a visual display and a computer output. The output is compatible with commonly found probes in high schools and colleges. A bright high school student can assemble it. Teachers and students have used a working detector on six of the world's continents. These activities have included cross country trips, science projects, and classroom demonstrations. A complete description can be found at the web site: cosmic.lbl.gov. Besides, basic particle physics, the detector can be used to teach statistics and also to provide an opportunity where students have to determine how much data are taken. In this presentation, we will demonstrate the detector and describe some of the projects that teachers and students have completed with it.

  3. Daya Bay Antineutrino Detector gas system

    NASA Astrophysics Data System (ADS)

    Band, H. R.; Cherwinka, J. J.; Chu, M.-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-11-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya Bay Antineutrino Detector gas system is described.

  4. Survey of the Fermilab D0 detector collision hall

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It had been upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II. The upgrade of the D0 detector was fully commissioned on March 1, 2001, and thus marked the official start of the Run II experiment. The detector which weighs about 5500 tons, was assembled in the Assembly Hall. Prior to moving the detector into the Collision Hall, the existing survey monuments were densified in the Collision Hall with new monuments. This paper discusses the survey of the Collision Hall using a combination of the Laser Tracker, BETS, V-Stars, and other Optical systems to within the specified accuracy of {+-}0.5mm.

  5. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  6. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  7. Silicon Microstrip Detectors for the Jlab SBS Spectrometer

    NASA Astrophysics Data System (ADS)

    de Persio, F.; Kiprich, S.; Meddi, F.; Urciuoli, G. M.

    2014-06-01

    The INFN group of Rome is developing two silicon microstrip detector planes to be part of the tracking system of the SBS spectrometer, that will be installed in the experimental Hall A of Jefferson Labortatory, in order to improve its resolution. The detector and the PCB design were the results of models simulated using PSPICE. The entire assembly process will be realized in the INFN Roma clean room CL10000 facility.

  8. 500 MHz neutron detector

    SciTech Connect

    Yen, Yi-Fen; Bowman, J.D.; Matsuda, Y.

    1993-12-01

    A {sup 10}B-loaded scintillation detector was built for neutron transmission measurements at the Los Alamos Neutron Scattering Center. The efficiency of the detector is nearly 100% for neutron energies from 0 to 1 keV. The neutron moderation time in the scintillator is about 250 ns and is energy independent. The detector and data processing system are designed to handle an instantaneous rate as high as 500 MHz. The active area of the detector is 40 cm in diameter.

  9. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  10. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  11. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  12. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2012-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  13. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2013-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  14. New technologies for UV detectors

    NASA Technical Reports Server (NTRS)

    Joseph, C. L.

    1993-01-01

    Several technologies are currently being developed, leading to substantial improvements in the performance of UV detectors or significant reductions in power or weight. Four technologies discussed are (1) thin-film coatings to enhance the UV sensitivity of CCD's, (2) highly innovative magnet assemblies that dramatically reduce weight and result in virtually no external flux, (3) new techniques for curving microchannel plates (MCP's) so that single plates can be used to prevent ion feedback and present highly localized charge clouds to an anode structure, and (4) high-performance alternatives to glass-based MCP's. In item (2), for example, very robust magnets are made out of rare earth materials such as samarium cobalt, and cladding magnets are employed to prevent flux from escaping from the detector into the external environment. These new ultralight magnet assemblies are able to create strong, exceptionally uniform magnetic fields for image intensification and focusing of photoelectrons. The principle advantage of such detectors is the quantum efficiencies of 70-80 percent obtained throughout ultraviolet wavelengths (900-2000 A), the highest of any device. Despite the improvements achieved under item (3), high-performance alternatives to conventional glass-based MCP's potentially offer three distinct new advantages that include (1) a 30-100-fold improvement in dynamic range resulting in correspondingly higher signal-to-noise ratios, (2) the use of pure dielectric and semiconductor materials that will not outgas contaminants that eventually destroy photocathodes, and (3) channels that have constant spacing providing long-ranged order since the plates are made using photolithography techniques from the semiconductor industry. The manufacturers of these advanced-technology MCP's, however, are a couple of years away from actually producing a functioning image intensifier. In contrast to the use of CCD's for optical, ground based observations, there is no single

  15. Space assembly methodology

    NASA Astrophysics Data System (ADS)

    Stokes, J. W.; Watters, H. H.

    1981-02-01

    Large space structure assembly analysis techniques are defined and simulation activities are described. The simulations included are: an extravehicular activity assembly simulation; a fabricated beam assembly series using a beam generating machine end caps, and cross beam brackets; deployment of a deployable truss, using the neutral buoyancy remote manipulator system with crewman assistance; and a series aboard the KC-135 zero g aircraft.

  16. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  17. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  18. Silicon Detectors-Tools for Discovery in Particle Physics

    SciTech Connect

    Krammer, Manfred

    2009-07-07

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m{sup 2} of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  19. Novel PbS detector chip pattern with extinction function

    NASA Astrophysics Data System (ADS)

    Chen, Fengjin; Si, Junjie; Su, Xianjun; Lv, Yanqiu; Shi, Zhengfeng

    2015-10-01

    A novel chip pattern with extinction function in Lead salt detectors is specified. Lead Sulfide (PbS) polycrystalline film is prepared by Chemical Bath Deposition (CMD) on a transparent substrate, then a special figure and structure is saved by lithography techonology on the substrate. As a quaternion detector chip that made by PbS thin film for example in this paper, whose performance including signal, noise, weak-peaks and the uniformity of the chip are too poor to meet the detecting system at the initial stage of research, and the qualified ratio of chips is only 3% .This paper explains the reason why the performance and qualified ratio of chips were so poor, focuses on a novel chip pattern with extinction which avoided the disadvantages of traditional one. the novel chip pattern has been applied in detectors. The novel chip pattern is prepared with PbS thin film which both "extinction slice" and detector chip are based on a same substrate , which not only had absorbed the jumbled light , improved the uniformity and other performance of photosensitive elements, but also had left out the assembly diffculty and precision demand when a extinction slice assembly in the restricted space of inswept detector chip, omitted the production process of extinction slice and shorten the assembly process of the detectors, and the qualified ratio of chips had been improved from 3% to 98%.

  20. Sensor mount assemblies and sensor assemblies

    DOEpatents

    Miller, David H.

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  1. Multi-segment detector

    NASA Technical Reports Server (NTRS)

    George, Peter K. (Inventor)

    1978-01-01

    A plurality of stretcher detector segments are connected in series whereby detector signals generated when a bubble passes thereby are added together. Each of the stretcher detector segments is disposed an identical propagation distance away from passive replicators wherein bubbles are replicated from a propagation path and applied, simultaneously, to the stretcher detector segments. The stretcher detector segments are arranged to include both dummy and active portions thereof which are arranged to permit the geometry of both the dummy and active portions of the segment to be substantially matched.

  2. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  3. COMBINED GAMMA-RAY AND NEUTRON DETECTOR FOR MEASURING THE CHEMICAL COMPOSITION OF AIRLESS PLANETARY BODIES.

    SciTech Connect

    Lawrence, David J. ,; Barraclough, B. L.; Feldman, W. C.; Prettyman, T. H.; Wiens, R. C.

    2001-01-01

    Galactic cosmic rays (GCR) constant1,y itnpinge all planetary bodies and produce characteristic gamma-ray lines and leakage neutrons as reaction products. Together with gamma-ray lines produced by radioactive decay, these nuclear emissions provide a powerful technique for remotely measuring the chemical composition of airless planetary surfaces. While lunar gamma-ray spectroscopy was first demonstrated with Apollo Gamma-Ray measurements, the full value of combined gamma-ray and neutron spectroscopy was shown for the first time with the Lunar Prospector Gamma-Ray (LP-GRS) and Neutron Spectrometers (LP-NS). Any new planetary mission will likely have the requirement that instrument mass and power be kept to a minimum. To satisfy such requirements, we have been designing a GR/NS instrument which combines all the functionality of the LP-GRS and LP-NS for a fraction of the mass and power. Specifically, our design uses a BGO scintillator crystal to measure gamma-rays from 0.5-10 MeV. A borated plastic scintillator and a lithium gliiss scintillator are used to separately measure thermal, epithermal, and fast neutrons as well as serve as an anticoincidence shield for the BGO. All three scintillators are packaged together in a compact phoswich design. Modifications to this design could include a CdZnTe gamma-ray detector for enhanced energy resolution at low energies (0.5-3 MeV). While care needs to be taken to ensure that an adequate count rate is achieved for specific mission designs, previous mission successes demonstrate that a cornbined GR/NS provides essential information about planetary surfaces.

  4. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  5. Long-drift calorimeter modules for the Soudan 2 nucleon decay detector

    SciTech Connect

    Hoftiezer, J.

    1985-01-01

    The first full size 5-ton detector modules for the Soudan 2 nucleon decay experiment have been assembled and operated. Modules consist of a hexagonal array of drift tubes and corrugated steel, instrumented to read out three-dimensional track positions and pulse height. These will be assembled to form an isotropic, continuously sensitive, self-triggering detector. Details of the design, construction, operation and performance of the modules are discussed. 7 refs., 10 figs.

  6. Telerobotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sheridan, Philip L.

    1987-01-01

    The ACCESS truss was telerobotically assembled in order to gain experience with robotic assembly of hardware designed for astronaut extravehicular (EVA) assembly. Tight alignment constraints of the ACCESS hardware made telerobotic assembly difficult. A wider alignment envelope and a compliant end effector would have reduced the problem. The manipulator had no linear motion capability, but many of the assembly operations required straight line motion. The manipulator was attached to a motion table in order to provide the X, Y, and Z translations needed. A programmable robot with linear translation capability would have eliminated the need for the motion table and streamlined the assembly. Poor depth perception was a major problem. Shaded paint schemes and alignment lines were helpful in reducing this problem. The four cameras used worked well for only some operations. It was not possible to identify camera locations that worked well for all assembly steps. More cameras or movable cameras would have simplified some operations. The audio feedback system was useful.

  7. Rework of flip chip bonded radiation pixel detectors

    NASA Astrophysics Data System (ADS)

    Vähänen, S.; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S.

    2008-06-01

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process.

  8. EarthCARE BBR detectors performance characterization

    NASA Astrophysics Data System (ADS)

    Proulx, Christian; Allard, Martin; Pope, Tim; Tremblay, Bruno; Williamson, Fraser; Delderfield, John; Parker, Dave

    2010-10-01

    The Broadband Radiometer (BBR) is an instrument being developed for the ESA EarthCARE satellite. The BBR instrument objective is to provide measurements of the reflected short-wave (0.25-4.0 μm) and emitted long-wave (4.0- 50 μm) TOA radiance over three along-track views (forward, nadir and backward). The instrument has three fixed telescopes, one for each view, each containing a broadband detector. Each detector consists of an uncooled focal plane array (FPA) hybridized with a readout integrated circuit (ROIC) and a proximity electronics circuit-card assembly (CCA) packaged in an aluminum base plate with cover. The detectors, based on INO's VOx microbolometer technology, are required to provide fast pixel response time (< 6 ms), uniform spectral response over the entire spectral range (achieved by the development of a gold black absorber), and low NEDT under the instrument operating conditions. The detectors development has now passed the critical design review (CDR) and various development units (among which the most recent is the engineering model (EM)) have been shown to meet the specification requirements. This paper first provides a description of the detector design, followed by its principles of operation. It further presents and discusses measurement and analysis results for the performance characterization of the engineering model in the context of the applicable requirements.

  9. The calibration unit and detector system tests for MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Bauer, S. M.; Biswas, I.; Fechner, T.; Hahn, T.; Olaya, J.-C.; Popow, E.; Roth, M. M.; Streicher, O.; Weilbacher, P.; Bacon, R.; Laurent, F.; Laux, U.; Lizon, J. L.; Loupias, M.; Reiss, R.; Rupprecht, G.

    2010-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the ESO Very Large Telescope. After completion of the Final Design Review in 2009, MUSE is now in its manufacture and assembly phase. To achieve a relative large field-of-view with fine spatial sampling, MUSE features 24 identical spectrograph-detector units. The acceptance tests of the detector sub-systems, the design and manufacture of the calibration unit and the development of the Data Reduction Software for MUSE are under the responsibility of the AIP. The optical design of the spectrograph implies strict tolerances on the alignment of the detector systems to minimize aberrations. As part of the acceptance testing, all 24 detector systems, developed by ESO, are mounted to a MUSE reference spectrograph, which is illuminated by a set of precision pinholes. Thus the best focus is determined and the image quality of the spectrograph-detector subsystem across wavelength and field angle is measured.

  10. Development of gas micro-structure detectors for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Hunter, S. D.; Belolipetskiy, S. V.; Bertsch, D. L.; Catelli, J. R.; Crawford, H.; Daniels, W. M.; Deines-Jones, P.; Esposito, J. A.; Fenker, H.; Gossan, B.; Hartman, R. C.; Hutchins, J. B.; Krizmanic, J. F.; Lindenstruth, V.; Martin, M. D.; Mitchell, J. W.; Pitts, W. K.; Simrall, J. H.; Sreekumar, P.; Streitmatter, R. E.; Thompson, D. J.; Visser, G.; Walsh, K. M.

    1997-05-01

    Large area gas micro-structure detectors are being developed for the next generation high-energy gamma-ray telescope as part of NASA's SR&T program to support new technologies. These low-cost detectors are produced by laser micromachining of metalized polyimide films layered on carbon fiber composite substrates. This integrated detector and support design reduces the detector complexity and associated assembly costs. Accomplishments to date include testing of a 32 channel ASIC for the front-end electronics and integration of functional hardware into prototype detectors for tests of the FPGA readout system and event display software.

  11. Micromegas detectors for CLAS12

    SciTech Connect

    Charles, Gabriel

    2013-08-01

    The electron accelerator of the Thomas Jefferson Laboratory (VI, USA) will soon be upgraded to deliver 12 GeV high intensity beams. This increase in the performance will give the opportunity to study the nucleon structure with an unprecedented accuracy. To meet this end, new equipments will be installed in the experimental areas, particularly in the Hall B/CLAS spectrometer. One of the most challenging aspects is the installation of a Central Tracker surrounding the target, dedicated to the detection of particles emitted at large angles. Micromegas detectors have been chosen to be a major element of this new equipment, due to their high rate capability as well as their robustness and light material. Using the recent bulk technology, part of these gaseous detectors are planned to be assembled in thin cylinders to maximize the acceptance. On the other hand, the presence of a strong magnetic field either perpendicular or parallel to the readout strips has important consequences which need to be carefully investigated. Finally, resistive Micromegas have been studied to further improve the rate capability.

  12. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  13. Update on blocked impurity band detector technology from DRS

    NASA Astrophysics Data System (ADS)

    Hogue, H.; Atkins, E.; Reynolds, D.; Salcido, M.; Dawson, L.; Molyneux, D.; Muzilla, M.

    2010-08-01

    The Blocked Impurity Band (BIB) detector technology team at DRS Sensors and Targeting Systems specializes in providing the highest performance, broadest application range of BIB detector products. These include detectors, Focal Plane Arrays (FPA), and sensor assemblies for ground, airborne and space applications. We offer flight proven low flux Si:As and Si:Sb FPAs in square formats up to 1024x1024. We also offer high-flux FPA systems for ground-based telescopes and airborne applications in several square and rectangular formats, such as 160×640 sensors for push-broom spatial-spectral imaging. NASA's Wide-field Infrared Survey Explorer mission selected DRS 1024×1024 arrays for its the 12 and 24 micron wavelength bands. The Spitzer Space Telescope utilizes DRS 128×128 Si:As and Si:Sb FPAs, and 1024×1024 Si:Sb arrays are being fabricated by DRS for an upgrade to the SOFIA FORCAST instrument. DRS is unique in providing detectors and FPAs in alternate detector materials such as Si:Sb, Si:Ga, and Si:P to optimize wavelength range vs operating temperature. Sensor assemblies include detectors or FPAs packaged with cryogenic cabling and electronics and ambient temperature drive and data acquisition electronics--fully tested, and environmentally qualified. DRS is also unique in extending its conventional BIB detector product line to include novel detector architectures for a variety of applications. Si:As detectors with avalanche gain (~40,000X) function as number-mode photon counters at visible or mid-infrared wavelengths. A recent DRS innovation is the extension of Si:As BIB detectors designs to achieve wavelength extension into the far-infrared (low THz) wavelength region. Wavelength extension to ~50 microns (6 THz) has been demonstrated, with further extension to at least ~100 microns (3 THz) in progress.

  14. The HERMES Recoil Detector

    SciTech Connect

    Kaiser, R.

    2006-07-11

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007.

  15. Intelligent Detector Design

    SciTech Connect

    Graf, N.A.; /SLAC

    2012-06-11

    As the complexity and resolution of imaging detectors increases, the need for detailed simulation of the experimental setup also becomes more important. Designing the detectors requires efficient tools to simulate the detector response and reconstruct the events. We have developed efficient and flexible tools for detailed physics and detector response simulation as well as event reconstruction and analysis. The primary goal has been to develop a software toolkit and computing infrastructure to allow physicists from universities and labs to quickly and easily conduct physics analyses and contribute to detector research and development. The application harnesses the full power of the Geant4 toolkit without requiring the end user to have any experience with either Geant4 or C++, thereby allowing the user to concentrate on the physics of the detector system.

  16. Detectors for Particle Radiation

    NASA Astrophysics Data System (ADS)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  17. Wind turbine rotor assembly

    SciTech Connect

    Kaiser, H. W.

    1984-11-20

    A vertical axis wind turbine having a horizontal arm member which supports an upright blade assembly. Bearing structure coupling the blade assembly to the turbine arm permits blade movement about its longitudinal axis as well as flexing motion of the blade assembly about axes perpendicular to the longitudinal axis. A latching mechanism automatically locks the blade assembly to its supporting arm during normal turbine operation and automatically unlocks same when the turbine is at rest. For overspeed prevention, a centrifugally actuated arm functions to unlatch the blade assembly permitting same to slipstream or feather into the wind. Manually actuated means are also provided for unlatching the moving blade assembly. The turbine arm additionally carries a switching mechanism in circuit with a turbine generator with said mechanism functioning to open and hence protect the generator circuit in the event of an overspeed condition of the turbine.

  18. A description of the focal plane/detector test and evaluation lab at MDAC-HB

    NASA Astrophysics Data System (ADS)

    Beebe, D. D.; Lowe, J. J.; Sheldon, C.; D'Ippolito, E. S.; Osler, A. G.

    1986-01-01

    A description of a test facility for testing and evaluating visible and infrared (IR) focal plane arrays (FPA's) and associated components and subsystems is given. The facility is comprised of three computer controlled test systems for characterization of hybrid FPA's, detector arrays, and readout electronics under cryogenic conditions. Facility capabilities include FPA assembly and dewar test and assembly.

  19. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  20. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  1. Detectors (4/5)

    ScienceCinema

    None

    2011-10-06

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  2. Detectors (5/5)

    ScienceCinema

    None

    2011-10-06

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  3. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  4. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  5. Detectors of gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    Gravitational waves Motion of test bodies in a g.w. field Energy carried by gravitational waves Gravitational-wave sources Spinning star Double-star systems Fall into a Schwarzschild black hole Radiation from gravitational collapse Gravitational-wave detectors The nonresonant detectors The resonant detectors Electromechnical transducers Piezoelectric ceramic The capacitor The inductor Data analysis The Brownian noise The back-action The wide-band noise, data analysis and optimization The resonant transducer The Wiener-Kolmogoroff filter The cross-section and the effective temperature The antenna bandwidth The gravitational-wave experiments in the world The laser interferometers The resonant detectors

  6. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  7. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  8. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  9. MINOS near-detector coil design

    SciTech Connect

    Nelson, J.K.; Kilmer, J.; /Fermilab

    1999-08-01

    The 980-ton MINOS near detector will be installed in the new NuMI near hall at 100m below grade at Fermilab. It will be assembled from 282 1-inch thick steel plates. The planes are made from low carbon (1006), hot rolled steel and are toroidally magnetized. Each plane will be hung by two 'ears', which are extensions of the octagonal plane structure, similar to the hanging files in a file drawer. The plates have a center-to-center spacing of 5.94 cm. This document has been prepared for the 8/99 Conceptual Design Review of the MINOS near detector coil. It's main goal is to provide a set of references to previous documents and to assemble various design drawings and engineering calculations that have not been included in previous technical memos. It also provides some background material relevant for the coil implementation. Much of the text for this document is edited from the MINOS Detectors Technical Design Report.

  10. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  11. GRAVITY detector systems

    NASA Astrophysics Data System (ADS)

    Mehrgan, Leander H.; Finger, Gert; Accardo, Matteo; Lizon, Jean-Louis; Stegmeier, Joerg; Eisenhauer, Frank

    2014-07-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. It will combine the AO corrected beams of the four VLT telescopes. The GRAVITY instrument uses a total of five eAPD detectors, four of which are for wavefront sensing and one for the Fringe tracker. In addition two Hawaii2RG are used, one for the acquisition camera and one for the spectrometer. A compact bath cryostat is used for each WFS unit, one for each of the VLT Unit Telescopes. Both Hawaii2RG detectors have a cutoff wavelength of 2.5 microns. A new and unique element of GRAVITY is the use of infrared wavefront sensors. For this reason SELEX-Galileo has developed a new high speed avalanche photo diode detector for ESO. The SAPHIRA detector, which stands for Selex Avalanche Photodiodes for Highspeed Infra Red Applications, has been already evaluated by ESO. At a frame rate of 1 KHz, a read noise of less than one electron can be demonstrated. A more detailed presentation about the performance of the SPAHIRA detector will be given at this conference 1. Each SAPHIRA detector is installed in an LN2 bath cryostat. The detector stage, filter wheel and optics are mounted on the cold plate of the LN2 vessel and enclosed by a radiation shield. All seven detector systems are controlled and read out by the standard ESO NGC controller. The NGC is a controller platform which can be adapted and customized for all infrared and optical detectors. This paper will discuss specific controller modifications implemented to meet the special requirements of the GRAVITY detector systems and give an overview of the GRAVITY detector systems and their performance.

  12. Proposed applications of monolithic microlens array technology to enhance IR detector performance

    NASA Astrophysics Data System (ADS)

    Wilson, J. P.; Reardon, Patrick J.

    1994-10-01

    Gains in micro-optic technology may provide enhanced performance for IR sensing applications. The benefits in noise reduction and increase in signal-to-noise ratio on the detector arrays can off-set the increased cost of adding micro-lens structures to the detector assemblies. Additionally, new manufacturing techniques make it feasible to make micro-lens structures on the same substrate as the detector elements. One of the advantages of this technology growth is the shifting of alignment to the fabrication stage instead of the filter assembly stage. Important considerations include: fill factor, diffraction efficiency, optical and electronic crosstalk, optical power, and optical bandwidth.

  13. The CLAS Cherenkov detector

    SciTech Connect

    G. Adams; V. Burkert; R. Carl; T. Carstens; V. Frolov; L. Houghtlin; G. Jacobs; M. Kossov; M. Klusman; B. Kross; M. Onuk; J. Napolitano; J. W. Price; C. Riggs; Y. Sharabian; A. Stavinsky; L. C. Smith; W. A. Stephens; P. Stoler; W. Tuzel; K. Ullrich; A. Vlassovc; A. Weisenberger; M. Witkowski; B. Wojtekhowski; P. F. Yergin; C. Zorn

    2001-06-01

    The design, construction, and performance of the CLAS Cerenkov threshold gas detector at Jefferson Lab is described. The detector consists of 216 optical modules. Each module consists of 3 adjustable mirrors, of lightweight composite construction, a Winston light collecting cone, a 5-inch photomultiplier tube, and specially designed magnetic shielding.

  14. Particle impact location detector

    NASA Technical Reports Server (NTRS)

    Auer, S. O.

    1974-01-01

    Detector includes delay lines connected to each detector surface strip. When several particles strike different strips simultaneously, pulses generated by each strip are time delayed by certain intervals. Delay time for each strip is known. By observing time delay in pulse, it is possible to locate strip that is struck by particle.

  15. Future particle detector systems

    NASA Astrophysics Data System (ADS)

    Clark, Allan G.

    2000-09-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√s =2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √s =14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described.

  16. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  17. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  18. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  19. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  20. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  1. Smoke Detectors and Legislation.

    ERIC Educational Resources Information Center

    National Fire Prevention and Control Administration (DOC), Washington, DC.

    This manual, one of a series for use in public education, provides an in-depth review of the current status of state and local smoke detector legislation. First, for the community considering a smoke detector law or ordinance, six decision points are discussed: which residential occupancy sub-classes will be affected; what the time factors are for…

  2. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  3. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  4. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  5. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  6. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  7. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  8. Assembly: a resource for assembled genomes at NCBI.

    PubMed

    Kitts, Paul A; Church, Deanna M; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D; Pruitt, Kim D; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  9. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  10. Mechanisms of Virus Assembly

    PubMed Central

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-01-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  11. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  12. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  13. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  14. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  15. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  16. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  17. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  18. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. (Inventor)

    1982-01-01

    A pyroelectric detector array and the method for using it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strips. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  19. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. A. (Inventor)

    1982-01-01

    A pryoelectric detector array and the method for making it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strip. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of the layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  20. Fiber optical assembly for fluorescence spectrometry

    DOEpatents

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  1. Fluorescence detector for capillary separations fabricated by 3D printing.

    PubMed

    Prikryl, Jan; Foret, Frantisek

    2014-12-16

    A simple inexpensive light-emitting diode (LED)-based fluorescence detector for detection in capillary separations is described. The modular design includes a separate high power LED source, detector head, designed in the epifluorescence arrangement, and capillary detection cells. The detector head and detection cells were printed using a 3D printer and assembled with commercially available optical components. Optical fibers were used for connecting the detector head to the LED excitation source and the photodetector module. Microscope objective or high numerical aperture optical fiber were used for collection of the fluorescence emission from the fused silica separation capillary. As an example, mixture of oligosaccharides labeled by 8-aminopyrene-1,3,6-trisulfonate (APTS) was separated by capillary zone electrophoresis and detected by the described detector. The performance of the detector was compared with both a semiconductor photodiode and photomultiplier as light sensing elements. The main advantages of the 3D printed parts, compared to the more expensive alternatives from the optic component suppliers, include not only cost reduction, but also easy customization of the spatial arrangement, modularity, miniaturization, and sharing of information between laboratories for easy replication or further modifications of the detector. All information and files necessary for printing the presented detector are enclosed in the Supporting Information. PMID:25427247

  2. Commissioning of the ATLAS inner detector with cosmic rays

    NASA Astrophysics Data System (ADS)

    Hayward, H.

    2008-07-01

    The inner detector of the ATLAS experiment is in the process of being commissioned using cosmic ray events. First tests were performed in the SR1 assembly hall at CERN with both barrel and endcaps for all different detector technologies (pixels and microstrips silicon detectors as well as straw tubes with additional transition radiation detection). Integration with the rest of the ATLAS sub-detectors is now being done in the ATLAS cavern. The full software chain has been set up in order to reconstruct and analyse this kind of events. Final detector decoders have been developed, different pattern recognition algorithms and track fitters have been validated as well as the various alignment and calibration methods. The infrastructure to deal with conditions data coming from the data acquisition, detector control system and calibration runs has been put in place, allowing also to apply alignment and calibration constants. The software has also been essential to monitor the detector performance during data taking. Detector efficiencies, noise occupancies and resolutions have been studied in detail and compared with those obtained from simulation.

  3. Why compton-suppressed germanium detector arrays?

    SciTech Connect

    Diamond, R.M.

    1993-10-01

    Nuclear spectroscopic studies have provided a strong incentive to obtain {gamma}-ray detectors with increasingly better energy resolution, higher full-energy peak efficiencies, and greater sensitivity or resolving power. A major step was the introduction of Ge detectors in the early 60`s. But because of the low atomic number of Ge they have a poor response function; a majority of interacting gamma rays of moderate energy Compton scatter out of the detector leaving a large low-energy background. The remedy was to add a Compton-suppression shield made of NaI around the Ge crystal, and if interactions occurred simultaneously in the NaI scintillator and in the Ge detector to veto that event. Efficiencies also increased greatly when an English-Danish collaboration assembled five Ge detectors, each with a NaI suppressor, into the first array at the end of 1980. Obviously, a system of five such detectors gave much better statistics than the usual two bare detectors used for obtaining coincidence data (by a factor of 10). A few years later, another major improvement came with replacement of the NaI suppressors with shields made of the much denser bismuth germanate (BGO) as scintillator, as these could be thinner leading to arrays with of order 20 detectors. Use of such a large number of detectors led to the realization that for cascades of coincident gamma rays, as in going down a band, the improvement in the peak/background ratio observed and already appreciated in going from singles spectra to gated (double-) coincidence spectra continued when doubly-gated triple-coincidence data were compared for the first time to singly-gated double-coincidence ones. The higher-gated spectra were much cleaner and more selective, though with poorer statistics, and the advantages of higher folds and efficiencies led to the proposals for the larger 4{pi} arrays of today, Eurogam and GASP in Europe and Gammasphere in the U.S.

  4. Heterogeneous MEMS device assembly and integration

    NASA Astrophysics Data System (ADS)

    Topart, Patrice; Picard, Francis; Ilias, Samir; Alain, Christine; Chevalier, Claude; Fisette, Bruno; Paultre, Jacques E.; Généreux, Francis; Legros, Mathieu; Lepage, Jean-François; Laverdière, Christian; Ngo Phong, Linh; Caron, Jean-Sol; Desroches, Yan

    2014-03-01

    In recent years, smart phone applications have both raised the pressure for cost and time to market reduction, and the need for high performance MEMS devices. This trend has led the MEMS community to develop multi-die packaging of different functionalities or multi-technology (i.e. wafer) approaches to fabricate and assemble devices respectively. This paper reports on the fabrication, assembly and packaging at INO of various MEMS devices using heterogeneous assembly at chip and package-level. First, the performance of a giant (e.g. about 3 mm in diameter), electrostatically actuated beam steering mirror is presented. It can be rotated about two perpendicular axes to steer an optical beam within an angular cone of up to 60° in vector scan mode with an angular resolution of 1 mrad and a response time of 300 ms. To achieve such angular performance relative to mirror size, the microassembly was performed from sub-components fabricated from 4 different wafers. To combine infrared detection with inertial sensing, an electroplated proof mass was flip-chipped onto a 256×1 pixel uncooled bolometric FPA and released using laser ablation. In addition to the microassembly technology, performance results of packaged devices are presented. Finally, to simulate a 3072×3 pixel uncooled detector for cloud and fire imaging in mid and long-wave IR, the staggered assembly of six 512×3 pixel FPAs with a less than 50 micron pixel co-registration is reported.

  5. A series of detector systems for MUSE

    NASA Astrophysics Data System (ADS)

    Lizon, J. L.; Kelz, A.; Dupuy, C.; Accardo, M.; Reiss, R.; Deiries, S.; Fechner, T.; Srivastava, M.; Streicher, O.; Weilbacher, P.; Hinterschuster, Renate

    2012-09-01

    The 24 IFU from MUSE are equipped with 4K x 4K CCD detectors which are operated at cryogenic temperature around 160 K. The large size of the chip combined with a rather fast camera (F/2) impose strong positioning constrains. The sensitive surface should remain in an angular envelope of less than 30 arc sec in both directions. The ambitious goal of having the same spectrum format on every detector imposes also a very accurate positioning in the image plane. The central pixel has to be located in a square smaller 50 microns relative to the external references. The first part of the paper describes the mechanical design of the detector head. We concentrate on the various aspects of the design with its very complex interfaces. The opto-mechanical concept is presented with an emphasis on the robustness and reliability. We present also the necessary steps for the extreme optimization of the cryogenic performance of this compact design driven with a permanent view of the production in series. The techniques and procedures developed in order to meet and verify the very tight positioning requirements are described in a second part. Then the 24 fully assembled systems undergo a system verification using one of the MUSE spectrographs. These tests include a focus series, the determination of the PSF across the chip and a subsequent calculation of the tip/tilt and shift rotation of the detector versus the optical axis.

  6. Arc detector uses fiber optics

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.; Leech, R. A.

    1979-01-01

    Arc detector for protecting high-power microwave klystron oscillators uses fiber optics connected to remote solid-state light-sensing circuits. Detector is more reliable, smaller, and sensitive than other systems that locate detector in waveguide.

  7. Detector characterization, optimization, and operation for ACTPol

    NASA Astrophysics Data System (ADS)

    Grace, Emily Ann

    2016-01-01

    Measurements of the temperature anisotropies of the Cosmic Microwave Background (CMB) have provided the foundation for much of our current knowledge of cosmology. Observations of the polarization of the CMB have already begun to build on this foundation and promise to illuminate open cosmological questions regarding the first moments of the universe and the properties of dark energy. The primary CMB polarization signal contains the signature of early universe physics including the possible imprint of inflationary gravitational waves, while a secondary signal arises due to late-time interactions of CMB photons which encode information about the formation and evolution of structure in the universe. The Atacama Cosmology Telescope Polarimeter (ACTPol), located at an elevation of 5200 meters in Chile and currently in its third season of observing, is designed to probe these signals with measurements of the CMB in both temperature and polarization from arcminute to degree scales. To measure the faint CMB polarization signal, ACTPol employs large, kilo-pixel detector arrays of transition edge sensor (TES) bolometers, which are cooled to a 100 mK operating temperature with a dilution refrigerator. Three such arrays are currently deployed, two with sensitivity to 150 GHz radiation and one dichroic array with 90 GHz and 150 GHz sensitivity. The operation of these large, monolithic detector arrays presents a number of challenges for both assembly and characterization. This thesis describes the design and assembly of the ACTPol polarimeter arrays and outlines techniques for their rapid characterization. These methods are employed to optimize the design and operating conditions of the detectors, select wafers for deployment, and evaluate the baseline array performance. The results of the application of these techniques to wafers from all three ACTPol arrays is described, including discussion of the measured thermal properties and time constants. Finally, aspects of the

  8. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  9. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  10. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  11. ACCESS: Detector Performance

    NASA Astrophysics Data System (ADS)

    Morris, Matthew J.; Kaiser, M.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Mott, D. B.; Wen, Y.; Foltz, R.; McCandliss, S. R.; Pelton, R. S.; Wright, E. L.; Feldman, P. D.; Moos, H. W.; Riess, A. G.; Benford, D. J.; Gardner, J. P.; Woodgate, B. E.; Bohlin, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Kurucz, R. L.; Lampton, M.; Perlmutter, S.

    2013-01-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass (overview Kaiser et al.). The flight detector and detector spare have been integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been performed. The flight detector controller boards have been installed into a ruggedized flight housing. They have been successfully vacuum tested for periods significantly longer than the flight length, and components have been heat-sunk and reinforced as necessary. Thermal stability tests have been performed, and results will be presented. Goddard Space Flight Center’s Detector Characterization Lab (DCL) executed initial characterization tests for the flight detector in 2007. These were repeated in 2012, to ensure and establish baseline performance. Current lab characterization tests at Johns Hopkins are ongoing, and results will be presented. NASA sounding rocket grant NNX08AI65G supports this work.

  12. The HERMES recoil detector

    NASA Astrophysics Data System (ADS)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  13. Performances of photodiode detectors for top and bottom counting detectors of ISS-CREAM experiment

    NASA Astrophysics Data System (ADS)

    Hyun, H. J.; Anderson, T.; Angelaszek, D.; Baek, S. J.; Copley, M.; Coutu, S.; Han, J. H.; Huh, H. G.; Hwang, Y. S.; Im, S.; Jeon, H. B.; Kah, D. H.; Kang, K. H.; Kim, H. J.; Kim, K. C.; Kwashnak, K.; Lee, J.; Lee, M. H.; Link, J. T.; Lutz, L.; Mitchell, J. W.; Nutter, S.; Ofoha, O.; Park, H.; Park, I. H.; Park, J. M.; Patterson, P.; Seo, E. S.; Wu, J.; Yoon, Y. S.

    2015-07-01

    The Cosmic Ray Energetics and Mass (CREAM) experiment at the International Space Station (ISS) aims to elucidate the source and acceleration mechanisms of high-energy cosmic rays by measuring the energy spectra from protons to iron. The instrument is planned for launch in 2015 at the ISS, and it comprises a silicon charge detector, a carbon target, top and bottom counting detectors, a calorimeter, and a boronated scintillator detector. The top and bottom counting detectors are developed for separating the electrons from the protons, and each of them comprises a plastic scintillator and a 20×20 silicon photodiode array. Each photodiode is 2.3 cm×2.3 cm in size and exhibits good electrical characteristics. The leakage current is measured to be less than 20 nA/cm2 at an operating voltage. The signal-to-noise ratio is measured to be better than 70 using commercial electronics, and the radiation hardness is tested using a proton beam. A signal from the photodiode is amplified by VLSI (very-large-scale integration) charge amp/hold circuits, the VA-TA viking chip. Environmental tests are performed using whole assembled photodiode detectors of a flight version. Herein, we present the characteristics of the developed photodiode along with the results of the environmental tests.

  14. D0 Silicon Upgrade: D-Zero Assembly Hall ODH Analysis

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1997-03-12

    The ODH analysis presented here covers the high bay and assembly hall docking area of the for the D-Zero detector. It includes the STand Alone helium Refrigerator (STAR) in the building. It also includes the D-Zero detector and it's associated cryogenic and gas systems. An ODH analysis is presented which shows that the D-Zero assembly building high bay including the detector docking area is ODH class O. Probabilities, leak rates, and fatality factors are generated for all items that are sources of inert gas. The scope of analysis included the calorimeter and gas components on the detector, the helium refrigerator/liquifier components, and the future solenoid and visible light photon counter cryogenics that will be added to the D-Zero detector. The analysis demonstrates that the calorimeter and helium refrigerator systems pose no ODH hazard to personnel.

  15. Protective helmet assembly

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S. (Inventor); Weiss, Fred R. (Inventor); Eck, John D. (Inventor)

    1992-01-01

    The invention is a protective helmet assembly with improved safety and impact resistance, high resistance to ignition and combustion, and reduced offgassing. The assembly comprises a hard rigid ballistic outer shell with one or more impact absorbing pads fitted to the interior surface. The pads are made of open cell flexible polyimide foam material, each of which is attached to the inner surface of the ballistic outer shell by cooperative VELCRO fastener strips of hook-and-loop material affixed respectively to the rigid outer shell and the impact absorbing pads. The helmet assembly with shell and pads is sized to fit relatively close over a wearer's head.

  16. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  17. LHC detector upgrades

    SciTech Connect

    Dan Green

    2003-09-15

    The LHC detectors are well into their construction phase. The LHC schedule shows first beam to ATLAS and CMS in 2007. Because the LHC accelerator has begun to plan for a ten fold increase in LHC design luminosity (the SLHC or super LHC) it is none too soon to begin to think about the upgrades which will be required of the present LHC detectors. In particular, the tracking systems of ATLAS and CMS will need to be completely rebuilt. Given the time needed to do the R & D, make prototypes, and construct the new detectors and given the accelerator schedule for the SLHC, work needs to begin rather soon.

  18. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  19. Station Assembly Animation

    NASA Video Gallery

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  20. Hypergolic Ignitor Assembly

    NASA Technical Reports Server (NTRS)

    Taylor, Eric S. (Inventor); Myers, W. Neill (Inventor); Martin, Michael A. (Inventor)

    2002-01-01

    An ignitor for use with the MC-I rocket engine has a cartridge bounded by two end caps with rupture disc assemblies connected thereto. A piston assembly within the cartridge moves from one end of the cartridge during the ignition process. The inlet of the ignitor communicates with a supply taken from the discharge of the fuel pump. When the pump is initially started, the pressure differential bursts the first rupture disc to begin the movement of the piston assembly toward the discharge end. The pressurization of the cartridge causes the second rupture to rupture and hypergolic fluid contained within the cartridge is discharged out the outlet. Once the piston assembly reaches the discharge end of the cartridge, purge grooves allow for fuel and remaining hypergolic fluid, to be discharged out the ignitor outlet into the combustion chamber to purge the ignitor of any remaining hypergolic fluid.

  1. Swipe transfer assembly

    DOEpatents

    Christiansen, Robert M.; Mills, William C.

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  2. Automated Assembly Center (AAC)

    NASA Technical Reports Server (NTRS)

    Stauffer, Robert J.

    1993-01-01

    The objectives of this project are as follows: to integrate advanced assembly and assembly support technology under a comprehensive architecture; to implement automated assembly technologies in the production of high-visibility DOD weapon systems; and to document the improved cost, quality, and lead time. This will enhance the production of DOD weapon systems by utilizing the latest commercially available technologies combined into a flexible system that will be able to readily incorporate new technologies as they emerge. Automated assembly encompasses the following areas: product data, process planning, information management policies and framework, three schema architecture, open systems communications, intelligent robots, flexible multi-ability end effectors, knowledge-based/expert systems, intelligent workstations, intelligent sensor systems, and PDES/PDDI data standards.

  3. Magnetostrictive valve assembly

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2008-01-01

    A magnetostrictive valve assembly includes a housing that defines a passage with a seat being formed therein. A magnetically-biased and axially-compressed magnetostrictive assembly slidingly fitted in the passage is configured as a hollow and open-ended conduit adapted to support a flow of a fluid therethrough. Current-carrying coil(s) disposed about the passage in the region of the magnetostrictive assembly generate a magnetic field in the passage when current flows through the coil(s). A hollow valve body with side ports is coupled on one end thereof to an axial end of the magnetostrictive assembly. The other end of the valve body is designed to seal with the seat formed in the housing's passage when brought into contact therewith.

  4. IAHS General Assembly

    NASA Astrophysics Data System (ADS)

    Peters, Helen J.

    The International Association of Hydrological Sciences (IAHS) General Assembly, held as part of the International Union of Geodesy and Geophysics (IUGG) Assembly, August 9-22, 1987, in Vancouver, Canada, had an estimated 500 attendees. At least 20 countries were represented by official delegates. Attendance from the United States is estimated at 120, with Helen J. Peters (California Department of Water Resources, Sacramento) as chief delegate and Marshall E. Moss (U.S. Geological Survey (USGS), Reston, Va.) as alternate delegate and future chief delegate for the 1991 General Assembly.The Canadian Organizing Committee had done a masterful job of organizing the assembly, with excellent housing and meeting facilities on the University of British Columbia campus. In addition to five symposia and nine workshops, the IAHS Bureau and all commissions and the committees held several meetings. Some excellent social events and tours were included.

  5. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  6. Rnnotator Assembly Pipeline

    SciTech Connect

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  7. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  8. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  9. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  10. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  11. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  12. Multiple detectors "Influence Method".

    PubMed

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived. PMID:26943904

  13. Subspace Detectors: Theory

    SciTech Connect

    Harris, D B

    2006-07-11

    Broadband subspace detectors are introduced for seismological applications that require the detection of repetitive sources that produce similar, yet significantly variable seismic signals. Like correlation detectors, of which they are a generalization, subspace detectors often permit remarkably sensitive detection of small events. The subspace detector derives its name from the fact that it projects a sliding window of data drawn from a continuous stream onto a vector signal subspace spanning the collection of signals expected to be generated by a particular source. Empirical procedures are presented for designing subspaces from clusters of events characterizing a source. Furthermore, a solution is presented for the problem of selecting the dimension of the subspace to maximize the probability of detecting repetitive events at a fixed false alarm rate. An example illustrates subspace design and detection using events in the 2002 San Ramon, California earthquake swarm.

  14. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  15. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  16. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  17. Simplified phase detector

    NASA Technical Reports Server (NTRS)

    Hershey, L. M.

    1979-01-01

    Tanlick sine-wave phase detector gives dc output voltage nearly proportional to phase difference between oscillator signal and reference signal. Device may be used for systems in which signal-to-noise ratio is high.

  18. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  19. SRAM Detector Calibration

    NASA Technical Reports Server (NTRS)

    Soli, G. A.; Blaes, B. R.; Beuhler, M. G.

    1994-01-01

    Custom proton sensitive SRAM chips are being flown on the BMDO Clementine missions and Space Technology Research Vehicle experiments. This paper describes the calibration procedure for the SRAM proton detectors and their response to the space environment.

  20. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  1. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  2. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  3. Detector array design

    SciTech Connect

    Lari, S.

    1996-02-01

    Neutron scattering facility at Oak-Ridge National is used to measure residual stresses in many different materials. Neutron beam from the reactor can be used to penetrate the inner atomic distances of metals which then can be diffracted to a detector to measure the strain. The strain data later can be converted to stresses. The facility currently uses only one detector to carry the measurement. By designing an array of detectors data can be obtained at a much faster rate and or having a much better and improved resolution. The purpose of this report is to show design of such array of detectors and their movements (rotation) for possible maximum data collection at a faster rate.

  4. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  5. The Advanced LIGO Detectors

    NASA Astrophysics Data System (ADS)

    Fritschel, Peter

    2016-03-01

    After decades of development, the Advanced LIGO gravitational wave detectors are now operating, and they completed their first observational run in early 2016. Advanced LIGO consists of two 4-km scale interferometric detectors located at separate sites in the US. The first year of detector commissioning that led to the first observation run produced instruments that have several times better sensitivity to gravitational-wave strain than previous instruments. At their final design sensitivity, the detectors will be another factor of 2-3x more sensitive than current performance. This talk will cover the design of Advanced LIGO, explain how the sensitivity improvements have been achieved, and lay out the path to reaching final design sensitivity.

  6. Recuperator assembly and procedures

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2008-08-26

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  7. High speed door assembly

    SciTech Connect

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  8. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  9. Recuperator assembly and procedures

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-06-27

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  10. MONDE: MOmentum Neutron DEtector

    NASA Astrophysics Data System (ADS)

    Santa Rita, P.; Acosta, L.; Favela, F.; Huerta, A.; Ortiz, M. E.; Policroniades, R.; Chávez, E.

    2016-07-01

    MONDE is a large area neutron momentum detector, consisting of a 70x160x5 cm3 plastic scintillator slab surrounded by 16 photomultiplier tubes, standard NIM signal processing electronics and a CAMAC data acquisition system. In this work we present data from a characterization run using an external trigger. For that purpose, coincident gamma rays from a 60Co radioactive source were used together with a NaI external detector. First results with an "external" trigger are presented.

  11. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  12. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  13. Compact infrared detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    Broadband IR detector integrated into compact package for pollution monitoring and weather prediction is small, highly responsive, and immune to high noise. Sensing material is transparent sheet metalized with reflecting coating and overcoated with black material on same side. Pulse produced by chopping of infrared source beam creates transient "thermal lens" that temporarily defocuses laser beam probe. Detector monitoring beam measures defocusing which parallels infrared intensity.

  14. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  15. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  16. Crosstalk study of near infrared InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Li, Tao; Fan, Cui; Shao, Xiumei; Li, Jianwei; Wei, Jun; Gong, Haimei

    2016-05-01

    Crosstalk characteristics of high density FPA detectors attract widespread attention in the application of electro-optical systems. Crosstalk characteristics of near-infrared (NIR) InGaAs photodiodes and focal plane arrays (FPAs) were studied in this paper. The mesa type detector was investigated by using laser beam induced current technique (LBIC) to measure the absorption outside the designed photosensitive area, and the results show that the excess absorption enlarges the crosstalk of the adjacent pixels. The structure optimization using the effective absorption layer between the pixels can effectively reduce the crosstalk to 2.5%. The major crosstalk components of the optimization photodiode come from the electronic signal caused by carrier lateral diffusion. For the planar type detectors, test structures were used to compare the crosstalk of different structures, and the guard ring structure shows good suppression of the crosstalk. Then the back-illuminated 32x32 InGaAs photodiodes with 30μm pitch were designed, and LBIC was used to measure its lateral diffusion of the effective carriers and fill factor of photosensitive area. The results indicate that the fill factor of detectors can reach up to 98% when the diffusion region is optimized, and the minimum response exists between two neighborhood pixels. Based on these crosstalk measurement results and optimizing structure designs, the linear InGaAs photodiodes were designed and thus the InGaAs FPA assembly was fabricated. The assembly shows higher electro-optical performance and good improvement on crosstalk. The assembly was applied in infrared imaging system and modulation transfer function (MTF) of FPA assembly was calculated to be above 0.50. The clear image based on FPA assembly was obtained.

  17. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  18. RHIC Beam Position Monitor Assemblies

    SciTech Connect

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-09-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, dc 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance.

  19. Detector driver systems and photometric estimates for RIMAS

    NASA Astrophysics Data System (ADS)

    Toy, Vicki L.; Kutyrev, Alexander S.; Lyness, Eric I.; Muench, Marius; Robinson, Frederick D.; Lotkin, Gennadiy N.; Capone, John I.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid infrared IMAger-Spectrometer (RIMAS) is a rapid gamma-ray burst afterglow instrument that will provide photometric and spectroscopic coverage of the Y, J, H, and K bands. RIMAS separates light into two optical arms, YJ and HK, which allows for simultaneous coverage in two photometric bands. RIMAS utilizes two 2048 x 2048 pixel Teledyne HgCdTe (HAWAII-2RG) detectors along with a Spitzer Legacy Indium- Antimonide (InSb) guiding detector in spectroscopic mode to position and keep the source on the slit. We describe the software and hardware development for the detector driver and acquisition systems. The HAWAII- 2RG detectors simultaneously acquire images using Astronomical Research Cameras, Inc. driver, timing, and processing boards with two C++ wrappers running assembly code. The InSb detector clocking and acquisition system runs on a National Instruments cRIO-9074 with a Labview user interface and clocks written in an easily alterable ASCII file. We report the read noise, linearity, and dynamic range of our guide detector. Finally, we present RIMAS's estimated instrument efficiency in photometric imaging mode (for all three detectors) and expected limiting magnitudes. Our efficiency calculations include atmospheric transmission models, filter models, telescope components, and optics components for each optical arm.

  20. Human Assisted Assembly Processes

    SciTech Connect

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  1. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  2. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  3. WHO: World Health Assembly.

    PubMed

    McGregor, A

    1992-05-23

    1200 delegates from 175 member countries attended the 45th World Health Assembly in Geneva. Everyone at the Assembly ratified measures to prevent and control AIDS. 12 countries intended to do long term planning for community based care for AIDS patients. Further the Assembly denounced instances where countries and individuals denied the gravity of the AIDS pandemic. In fact, it expressed the importance for urgent and intensive action against HIV/AIDS. The assembly backed proposals to prevent and control sexually transmitted diseases that affect AIDS patients, especially hepatitis B. For example, in countries with hepatitis B prevalence 8% (many countries in Sub-Sahara Africa, Asia, the Pacific region, and South America), health officials should introduce hepatitis B vaccine into their existing immunization programs by 1995. By 1997, this vaccine should be part of all immunization programs. The Assembly was aware of the obstacles of establishing reliable cold chains for nationwide distribution, however. Delegates in Committee A objected to the fact that 50% of the populations of developing countries continued to have limited access to essential drugs. They also expressed disapproval in implementation of WHO's 1988 ethical criteria for promotion of drugs which WHO entrusted to the Council for International Organisations of Medical Sciences (CIOMS). CIOMS lacked WHO's status and thus could not effectively monitor drug advertising. In fact, the pharmaceutical industry as well as WHO provided the funds for a meeting of 25 experts to discuss principles included in the ethical criteria. At least 4 countries insisted that WHO have the ultimate authority in monitoring drug advertising. Delegates did adopt a compromise resolution on this topic which required that industry promotion methods be reported to the 1994 Assembly via the Executive Board. The Assembly requested WHO to establish an international advisory committee on nursing and midwifery and to improve the network of

  4. Methodology and Determination of Field of View of Neutron and Gamma Detectors in the Atucha Spent Fuel Storage Pool

    SciTech Connect

    Walters, W; Wenner, M; Haghighat, A; Sitaraman, S; Ham, Y S

    2009-06-15

    In this paper we seek to create a model by determining the field of view (FOV) of a detector (i.e. which assemblies contribute to the detector response) in the Atucha-I spent fuel pool. The FOV is determined by solving the adjoint transport equation using the 3-D, parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) Sn code, with the detector cross section as the adjoint source. If this adjoint function is coupled with the source spectrum, then the contribution to the detector from each assembly can be determined. First, the reactor criticality was modeled using the MCNP5 (Monte Carlo N-Particle) Monte Carlo code in order to determine the power distribution in each assembly. Using the power distribution data, the assemblies were divided and homogenized into 8 axial and 3 radial zones for burnup analysis. Depletion calculations were performed for each zone using the ORIGEN-ARP (Automatic Rapid Processing) utility from the SCALE 5.1 (Standardized Computer Analyses for Licensing Evaluation) code package. Spent fuel pool and detector were modeled in 2-D in PENTRAN as the detector plus 3 fuel assemblies along both x and y axes. Using the resulting adjoint function combined with the source spectrum, they have determined the FOVs of the fission chamber neutron detector that was used at Atucha, and concluded that 2 assemblies along x and y axes are needed for both cases (i.e. the 4 adjacent assemblies plus the next surrounding 12). For the neutron detector, 88% of the response comes from the nearest 4 assemblies, with 99% from the nearest 16. Results for a uniformly sensitive gamma detector indicate that 2 assemblies in both directions are also needed, with 89% of the response coming from the adjacent assemblies. A Monte Carlo calculation using MCNP was performed to benchmark the neutron result, giving a similar result (87% MCNP vs. 88% PENTRAN). Based on these studies, we have developed a database of FOVs as a function of burnup and decay conditions for

  5. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  6. The CLIC Vertex Detector

    NASA Astrophysics Data System (ADS)

    Dannheim, D.

    2015-03-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a measurement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → Wb will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit timing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin planar or active HV-CMOS sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. This contribution reviews the requirements and design optimisation for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensors, readout and detector integration.

  7. Evaluation of commercial pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Crouch, R. K.

    1977-01-01

    A series of commercially available pyroelectric detectors made from PVF2, LTO, SBN, and TGS were evaluated in terms of responsivity and detectivity as a function of frequency. The performance of the detectors evaluated was very different, depending upon the manufacturer of the detector, and this dependency was primarily related to the thickness of the various detectors. The best detectors of each material were comparable in performance at frequencies around 10 Hz but differed radically at frequencies above 100 Hz.

  8. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  9. Linear hanger assembly

    SciTech Connect

    Baugh, J.L.

    1992-02-11

    This patent describes a hanger assembly securable to a workstring for carrying a liner conduit in a subterranean well and settable within a casing string. It comprises: an elongated tubular housing; a series of circumferentially extending slip elements carried exteriorly around and by the housing and axially movable relative to a slip seat from a radially retracted position to a radially spaded position for gripping engagement with the casing string; and each of the slip elements having circumferentially subscribed exteriorly protruding non-buttress teeth defined thereon, the teeth being symmetrical to both pus and pull forces applied through the assembly by either the work-string or the liner conduit subsequent to setting within the casing string; wherein the assembly is moved to a set position relative to the casing string by application of hydraulic pressure in a first predeterminable amount to transmit and apply a setting load to the slip elements; and further comprising compressive biasing means movable to a compressed biasing means movable to a compressed condition by mechanical manipulation of the workstring subsequent to movement of the assembly to the set position to transmit a second load to the slip elements in excess of the setting load; and locking means for locking the setting and second loads into the slip assembly.

  10. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  11. Assembly Test Article (ATA)

    NASA Technical Reports Server (NTRS)

    Ricks, Glen A.

    1988-01-01

    The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.

  12. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  13. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  14. Detectors in Extreme Conditions

    SciTech Connect

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Tomada, A.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  15. Microparticle impact detector experiment on MightySat I

    NASA Astrophysics Data System (ADS)

    Serna, Patrick J.; Liechty, Gary H.; Neslen, Craig L.; del Frate, Renzo; Draper, Edwin

    1997-10-01

    The purpose of this report is to present the engineering design of a spaceborne micro particle impact detector (MPID) experiment. This experiment is manifested on a Phillips Laboratory spacecraft called MightySat I scheduled for launch in July 1998. A follow-on report will present the resulting particle impact data. The objective of this experiment is to measure direction and time of impact of spaceborne micron size particles with time of impact resolution of 0.1 seconds. The primary element in this experiment consists of two metal- oxide-semiconductor (MOS) discharge capacitor detectors that discharge upon hypervelocity particle impact. The detectors were developed by Prof. J. J. Wortman from North Carolina State University. Each MOS particle detector is 3 in by 1-1/2 in and approximately 0.013 in thick. Each particle detector is bonded to a detector assembly that is in turn mechanically fastened to the external bottom plate of the MightySat I spacecraft. The detector assembly and associated electronics weigh less than 0.4 lb and have a total impact detection area of 3.7 in(superscript 2). Each particle impact causes an impact event record to be stored in the spacecraft control unit for later downlink. Each impact event record will store time of impact and output from two coarse sun sensors. Data from the coarse sun sensors is used to help determine attitude of the spacecraft. The Phillips Laboratory MightySat I spacecraft, developed largely by CTA Space Systems in McLean, Virginia, designed for ejection from the Space Shuttle is a 6-sided composite structure, 20.5 in (height) by 19.0 in (diameter), 150 lb., and spin stabilized with 5 degree attitude knowledge. The MightySat I spacecraft is scheduled for orbit injection using a standard hitchhiker ejection system from space shuttle flight STS-88. (Ref. 1)

  16. Blade attachment assembly

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  17. Liaison based assembly design

    SciTech Connect

    Ames, A.; Kholwadwala, D.; Wilson, R.H.

    1996-12-01

    Liaison Based Assembly Design extends the current information infrastructure to support design in terms of kinematic relationships between parts, or liaisons. These liaisons capture information regarding contact, degrees-of-freedom constraints and containment relationships between parts in an assembly. The project involved defining a useful collection of liaison representations, investigating their properties, and providing for maximum use of the data in downstream applications. We tested our ideas by implementing a prototype system involving extensions to Pro/Engineer and the Archimedes assembly planner. With an expanded product model, the design system is more able to capture design intent. When a product update is attempted, increased knowledge availability improves our ability to understand the effect of design changes. Manufacturing and analysis disciplines benefit from having liaison information available, so less time is wasted arguing over incomplete design specifications and our enterprise can be more completely integrated.

  18. Optical interconnect assembly

    SciTech Connect

    Laughlin, Daric; Abel, Philip

    2015-06-09

    An optical assembly includes a substrate with a first row of apertures and a second row of apertures. A first optical die includes a first plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each transducer element is aligned with an aperture of the first row of optical apertures. A second optical die includes a second plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each of the second plurality of optical transducer elements is aligned with an aperture of the second row of optical apertures. A connector configured to mate with the optical assembly supports a plurality of optical fibers. A terminal end of each optical fiber protrudes from the connector and extends into one of the apertures when the connector is coupled with the optical assembly.

  19. Supported PV module assembly

    SciTech Connect

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  20. Power module assembly

    DOEpatents

    Campbell, Jeremy B.; Newson, Steve

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  1. Radon project---Detectors and electronics

    SciTech Connect

    Thorngate, J.H.

    1989-12-01

    We have assembled a set of detectors that allow separate measurements of radon and its first four daughters. Radon is measured directly by detecting its alpha particles in a 6-in diameter spherical ion chamber. The output of the ion chamber can be measured as pulses or as a current. Daughters are collected on various surfaces, including filters, diffusion-battery screens, or cascade impactor surfaces. These are placed in an evacuated chamber between a 600 mm{sup 2} surface-barrier diode to measure the alphas and a 51-mm by 51-mm NaI scintillator to measure the gamma rays. We built eight such chambers to allow simultaneous measurements of all of the components from a diffusion battery. There is also a single vacuum chamber that uses two diodes to measure alpha particles from both sides of a screen simultaneously. Each detector has an associated preamplifier and linear amplifier. Separate bias supplies are used for the ion chamber and diodes, but the scintillators all operate from a single high-voltage supply. Two computer-operated multichannel analyzer systems are used to collect data, one for the ion chamber, and the other for multiplexed signals from the other detectors. Special programs were written to acquire the data. All of these components have performed well during initial measurements. 12 figs.

  2. Handheld CZT radiation detector

    SciTech Connect

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  3. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  4. Imaging MAMA detector systems

    NASA Astrophysics Data System (ADS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-07-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  5. JSATS Detector Field Manual

    SciTech Connect

    Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.; Weiland, Mark A.

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  6. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  7. Lightweight reflector assembly

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Jolley, J.; Walker, W. L. (Inventor)

    1977-01-01

    An inexpensive, lightweight reflective assembly member having good optical quality and particularly adaptable to accommodating temperature variations without providing destructive thermal stresses and reflective slope errors is described. The reflective assembly consists of a thin sheet of glass with appropriate reflective coating and a cellular glass block substrate bonded together. The method of fabrication includes abrading the cellular substrate with an abrasive master die to form an appropriate concave surface. An adhesive is applied to the abraded surface and a lamina reflective surface is placed under a uniform pressure to conform the reflective surface onto the desired abraded surface of the substrate.

  8. Low inductance connector assembly

    DOEpatents

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  9. Hand Controller Assembly

    NASA Technical Reports Server (NTRS)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2015-01-01

    A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.

  10. Assembling an aesthetic.

    PubMed

    Candela, Emily

    2012-12-01

    Recent research informing and related to the study of three-dimensional scientific models is assembled here in a way that explores an aesthetic, specifically, of touch. I concentrate on the materiality of models, drawing on insights from the history and philosophy of science, design and metaphysics. This article chronicles the ways in which touch, or material interactions, operate in the world of 3D models, and its role in what models mean and do. I end with a call for greater attention to scientific process, described as assembly of and within science, which is revealed by this focus on touch. PMID:23176974

  11. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  12. Investigations of a bearing fault detector for railroad bearings

    NASA Technical Reports Server (NTRS)

    Wilson, D. S.; Frarey, J. L.

    1975-01-01

    The laboratory tests are described which were conducted on new and damaged bearings to determine the feasibility of using high-frequency vibration as a diagnostic tool. A high-frequency band pass filter and demodulator was assembled to permit field measurements of the high-frequency vibrations. Field tests were conducted on an actual truck and on an axle assembly run in a grease test rig. These field tests were directed toward demonstration of the suitability and capabilities of the high-frequency technique for field application. Two specific areas of field application were identified as being cost effective for railroad use. One area is the examination of railroad roller bearings at a derailment site, and the second is as a wayside detector to supplement present hot box detectors for defective roller bearings.

  13. Fissile material detector

    DOEpatents

    Ivanov, Alexander I.; Lushchikov, Vladislav I.; Shabalin, Eugeny P.; Maznyy, Nikita G.; Khvastunov, Michael M.; Rowland, Mark

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  14. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  15. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  16. The KEDR detector

    NASA Astrophysics Data System (ADS)

    Anashin, V. V.; Aulchenko, V. M.; Baldin, E. M.; Barladyan, A. K.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Baru, S. E.; Basok, I. Yu.; Bedny, I. V.; Beloborodova, O. L.; Blinov, A. E.; Blinov, V. E.; Bobrov, A. V.; Bobrovnikov, V. S.; Bondar, A. E.; Buzykaev, A. R.; Vorobiov, A. I.; Gulevich, V. V.; Dneprovsky, L. V.; Zhilich, V. N.; Zhulanov, V. V.; Karpov, G. V.; Karpov, S. V.; Kononov, S. A.; Kotov, K. Yu.; Kravchenko, E. A.; Kudryavtsev, V. N.; Kuzmin, A. S.; Kulikov, V. F.; Kuper, E. A.; Levichev, E. B.; Maksimov, D. A.; Malyshev, V. M.; Maslennikov, A. L.; Medvedko, A. S.; Muchnoi, N. Yu.; Nikitin, S. A.; Nikolaev, I. B.; Onuchin, A. P.; Oreshkin, S. B.; Orlov, I. O.; Osipov, A. A.; Peleganchuk, S. V.; Pivovarov, S. G.; Poluektov, A. O.; Pospelov, G. E.; Prisekin, V. G.; Rodyakin, V. A.; Ruban, A. A.; Savinov, G. A.; Skovpen, Yu. I.; Skrinsky, A. N.; Smalyuk, V. V.; Snopkov, R. G.; Sokolov, A. V.; Sukharev, A. M.; Talyshev, A. A.; Tayursky, V. A.; Telnov, V. I.; Tikhonov, Yu. A.; Todyshev, K. Yu.; Usov, Yu. V.; Kharlamova, T. A.; Shamov, A. G.; Shwartz, B. A.; Shekhtman, L. I.; Shusharo, A. I.; Yushkov, A. N.

    2013-07-01

    The KEDR detector is a universal magnetic detector designed for studying the c- and b-quarks and two-photon physics, and is employed at the VEPP-4M e + e - collider. A specific feature of the experiment is the measurement of absolute beam energy using two methods: the resonant depolarization and the faster but less precise Compton backscattering of laser photons. This allowed a large series of measurements to be performed, in which the accuracy of determination of such fundamental parameters of particles as mass and total and leptonic widths was improved.

  17. Cosmic ray detectors

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1987-01-01

    Work on the MSFC emulsion laboratory microscopes in which mechanical modifications previously made were verified is reviewed, as is a design study of a large area hybrid electronic/emulsion chamber balloon flight detector system. This design is built upon the experience obtained with the highly successful MSFC/UAH hybrid instrument flown by the JACEE consortium. The design included overall system design and specification, design and fabrication of a prototype large light diffusion for Cerenkov charge detector or scintillator, design of a multiwire proportional counter array and design of the gondola or flight support system.

  18. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  19. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  20. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  1. Intelligent Detector Design

    SciTech Connect

    Graf, N.; Cassell, R.; Johnson, T.; McCormick, J.; Magill, S.; Kuhlmann, S.; /Argonne

    2007-02-13

    At a future e+e- linear collider, precision measurements of jets will be required in order to understand physics at and beyond the electroweak scale. Calorimetry will be used with other detectors in an optimal way to reconstruct particle 4-vectors with unprecedented precision. This Particle Flow Algorithm (PFA) approach is seen as the best way to achieve particle mass resolutions from dijet measurements in the range of {approx} 30%/{radical}E, resulting in innovative methods for choosing the calorimeter technology and optimizing the detector design.

  2. Future water Cherenkov detectors

    SciTech Connect

    Bergevin, Marc

    2015-05-15

    In these proceedings a review of the current proposed large-scale Warer Cherenkov experiments is given. An argument is made that future water Cherenkov detectors would benefit in the investment in neutron detection technology. A brief overview will be given of proposed water Cherenkov experiments such as HYPER-K and MEMPHYS and other R and D experiments to demonstrate neutron capture in water Cherenkov detectors. Finally, innovation developed in the context of the now defunct LBNE Water R and D option to improve Water Cherenkov technology will be described.

  3. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  4. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  5. Radiation Detectors and Art

    NASA Astrophysics Data System (ADS)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  6. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    NASA Astrophysics Data System (ADS)

    Hitomi, K.; Muroi, O.; Shoji, T.; Suehiro, T.; Hiratate, Y.

    1999-10-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68eV) and high X- and γ-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and γ-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation γ-ray (511keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56keV FWHM (11%) for 511keV γ-rays. Energy resolution of 1.81keV FWHM for 5.9keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and /1/f noise were dominant noise sources in the detector system. Current-voltage characteristics of the TlBr detector with a small Peltier cooler were also measured. Significant reduction of the detector leakage current was observed for the cooled detectors.

  7. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This

  8. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  9. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  10. SILICON DRIFT DETECTORS FOR THE STAR/SVT EXPERIMENT AT RHIC.

    SciTech Connect

    TAKAHASHI,J.

    1998-06-14

    Large area linear Silicon Drift Detectors (SDD) were developed to be used in the Silicon Vertex Tracker (SVT) of the STAR experiment at the BNL relativistic heavy ion collider (RHIC). The SDD is in its final design and has been submitted for large scale production. Test results show that the detector exhibits excellent position resolution and low noise. A special characterization procedure was developed to test detector wafers in order to select good detectors for the SVT. Recently, 15 STAR/SVT SDD's were assembled as a tracking device in a BNL-AGS heavy ion experiment (E896). It is the first tracking application of these detectors and their corresponding front-end electronics in an experimental environment. Preliminary results indicating good detector performance are shown and discussed in this paper.

  11. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  12. A Silicon UCN Detector With Large Area and With Analysis of UCN Polarization.

    PubMed

    Lasakov, M; Serebrov, A; Khusainov, A; Pustovoit, A; Borisov, Yu; Fomin, A; Geltenbort, P; Kon'kov, O; Kotina, I; Shablii, A; Solovei, V; Vasiliev, A

    2005-01-01

    A silicon ultracold neutron (UCN) detector with an area of 45 cm(2) and with a (6)LiF converter is developed at St. Petersburg Nuclear Physics Institute (PNPI). The spectral efficiency of the silicon UCN detector was measured by means of a gravitational spectrometer at Institut Max von Laue - Paul Langevin (ILL). The sandwich-type detector from two silicon plates with a (6)LiF converter placed between them was also studied. Using this type of technology the UCN detector with analysis of polarization was developed and tested. The analyzing power of this detector assembly reaches up 75 % for the main part of UCN spectrum. This UCN detector with analysis of UCN polarization can be used in the new electric dipole moment (EDM) spectrometer. PMID:27308138

  13. A Silicon UCN Detector With Large Area and With Analysis of UCN Polarization

    PubMed Central

    Lasakov, M.; Serebrov, A.; Khusainov, A.; Pustovoit, A.; Borisov, Yu.; Fomin, A.; Geltenbort, P.; Kon’kov, O.; Kotina, I.; Shablii, A.; Solovei, V.; Vasiliev, A.

    2005-01-01

    A silicon ultracold neutron (UCN) detector with an area of 45 cm2 and with a 6LiF converter is developed at St. Petersburg Nuclear Physics Institute (PNPI). The spectral efficiency of the silicon UCN detector was measured by means of a gravitational spectrometer at Institut Max von Laue – Paul Langevin (ILL). The sandwich-type detector from two silicon plates with a 6LiF converter placed between them was also studied. Using this type of technology the UCN detector with analysis of polarization was developed and tested. The analyzing power of this detector assembly reaches up 75 % for the main part of UCN spectrum. This UCN detector with analysis of UCN polarization can be used in the new electric dipole moment (EDM) spectrometer. PMID:27308138

  14. Structural design of a high energy particle detector using liquid scintillator

    SciTech Connect

    Berg, Timothy John; /Minnesota U.

    1997-02-01

    This thesis presents a design for a 10,000 ton liquid scintillator neutrino detector being considered for the MINOS project at Fermilab. Details of designing, manufacturing, and assembling the active detector components are presented. The detector consists of 1080 magnetized steel absorber planes alternating with 1080 active detector planes. Each active plane is made up of plastic extrusions divided into nearly 400 cells for positional resolution. Life tests on the plastic extrusions determine their feasibility for containing the scintillator. The extrusions are sealed at the bottom, filled with liquid scintillator, and have an optical fiber running the entire length of each cell. The fibers terminate at the top of each extrusion in a manifold. An optical-fiber-light-guide connects the fibers in each manifold to a photo-detector. The photo-detector converts the light signals from the scintillator and optical fibers into electrical impulses for computer analysis.

  15. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  16. Lageos assembly operation plan

    NASA Technical Reports Server (NTRS)

    Brueger, J.

    1975-01-01

    Guidelines and constraints procedures for LAGEOS assembly, operation, and design performance are given. Special attention was given to thermal, optical, and dynamic analysis and testing. The operation procedures illustrate the interrelation and sequence of tasks in a flow diagram. The diagram also includes quality assurance functions for verification of operation tasks.

  17. The synapse assembly model.

    PubMed

    Lee, Sung-Joo E; Hori, Yuko; Groves, Jay T; Dustin, Michael L; Chakraborty, Arup K

    2002-10-01

    A framework for quantitative analysis of the mechanisms underlying immunological synapse assembly has been recently developed. This model uses partial differential equations to describe the binding interactions of receptors and ligands, with the constraint that they are embedded in apposed deformable membranes linked to a cytoskeletal complex. PMID:12297422

  18. Assembling Multicolor Printing Plates

    NASA Technical Reports Server (NTRS)

    Waters, W. J.

    1982-01-01

    Improved joining method uses wave-soldering techniques developed for integrated-circuit-board assemblies. Thermosetting plastic is replaced by wave soldering, which applies a thin even coat of solder to mating copper surfaces. This is done after ink holes and channels have been protected by water-soluble, high-temperature solder mask which prevents wetting and clogging.

  19. Dump valve assembly

    DOEpatents

    Owen, T.J.

    1984-01-01

    A dump valve assembly comprising a body having a bore defined by a tapered wall and a truncated spherical valve member adapted to seat along a spherical surface portion thereof against said tapered wall. Means are provided for pivoting said valve member between a closed position engagable with said tapered wall and an open position disengaged therefrom.

  20. Corium protection assembly

    DOEpatents

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  1. Solar collector assembly

    SciTech Connect

    Murphy, J.A.

    1980-09-09

    A solar collector assembly includes shingles which have integral tubes projecting therefrom, and which are mounted in overlapping parallel array. Mounting brackets for the shingles are engaged on roof rafters or the like, and interlocked light transmissive plates overlie the shingles. The plates are also engaged with shingle components. A special fitting for the tube ends is provided.

  2. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  3. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  4. Combination vehicle assembly

    SciTech Connect

    Silverman, M.J. Sr.

    1987-03-17

    A combination recreational vehicle assembly is described comprising: two vehicles of a different type, the vehicles comprising a first, leading vehicle having a steering mechanism for maneuvering the assembly and a drivable axle mechanism for propelling the assembly; an independently drivable second vehicle trailing the first vehicle comprising a standard road vehicle having a motor, and an axle mechanism for connecting the motor to the wheels of the second vehicle for providing power to the wheels of the vehicle. A gear means for selectively disconnecting the motor from the axle mechanism to place the vehicle in neutral, and a steering means for maneuvering the second vehicle when driven independently of the first vehicle are included; and a releasable mechanical drive connection between the second vehicle motor and the first vehicle axle mechanism to provide power for driving the assembly. The drive connection comprises a drive pinion projecting from the second vehicle motor to the front of the second vehicle, and a drive shaft projecting from the first vehicle axle mechanism to the rear of the first vehicle.

  5. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  6. Segmented stator assembly

    SciTech Connect

    Lokhandwalla, Murtuza; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Shah, Manoj Ramprasad; Quirion, Owen Scott

    2013-04-02

    An electric machine and stator assembly are provided that include a continuous stator portion having stator teeth, and a tooth tip portion including tooth tips corresponding to the stator teeth of the continuous stator portion, respectively. The tooth tip portion is mounted onto the continuous stator portion.

  7. Beyond the Assembly Line.

    ERIC Educational Resources Information Center

    Weitz, Rebecca; Guild, Todd

    1985-01-01

    Describes how Hughes Aircraft trainers followed four steps in meeting the challenges of a flexible manufacturing environment: needs assessment, design strategy, pilot evaluation, and follow-through. Within this environment, 50 self-paced training products were developed for one of the company's wire and back plane harness assembly departments. (CT)

  8. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and

  9. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  10. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  11. The Friendship Detector

    ERIC Educational Resources Information Center

    Cox, Scott

    2012-01-01

    After years of using Rube Goldberg-inspired projects to teach concepts of simple machines, the author sought a comparable project to reinforce electricity lessons in his ninth-grade Science and Technology course. The Friendship Detector gives students a chance to design, test, and build a complex circuit with multiple switches and battery-powered…

  12. Neutrino Detectors Review

    SciTech Connect

    D'Ambrosio, Nicola

    2005-10-12

    The neutrino physics is one of the most important research field and there are several experiments made and under construction focused on it. This paper will present a review on some detectors used for Solar Neutrinos detection, Atmospheric Neutrinos detection and in Long Baseline Experiments.

  13. Choosing a Motion Detector.

    ERIC Educational Resources Information Center

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  14. Leak detector uses ultrasonics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Keir, A. R.

    1978-01-01

    Probe located on outer wall of vacuum-jacketed fluid lines detects leaks on inner wall. Probe picks up and amplifies vibrations that occur when gas rushes through leak and converts them to audible signal or CRT display. System is considerably simpler to use than helium leak detectors and allows rapid checks to be made as part of routine maintenance.

  15. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  16. Refrigerant leak detector

    NASA Technical Reports Server (NTRS)

    Byrne, E. J.

    1979-01-01

    Quantitative leak detector visually demonstrates refrigerant loss from precision volume of large refrigeration system over established period of time from single test point. Mechanical unit is less costly than electronic "sniffers" and is more reliable due to absence of electronic circuits that are susceptible to drift.

  17. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  18. Temperature stabilized phase detector

    NASA Technical Reports Server (NTRS)

    Lo, Y.

    1981-01-01

    The construction, tests, and performance of a temperature stabilized phase detector are discussed. It has a frequency stability of 5 parts in 10 to the 16th power at 100 MHz, with a temperature step of 20 C (15 to 35 C).

  19. Understanding the SNO+ Detector

    DOE PAGESBeta

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  20. Understanding the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Kamdin, K.

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  1. Smoke Detector Technology.

    ERIC Educational Resources Information Center

    Powell, Pamela, Ed.; Portugill, Jestyn, Ed.

    This manual, one in a series developed for public education, provides information on smoke detector selection, installation, operation, and maintenance. For the prospective buyer, the importance of looking for the seal of a recognized national testing laboratory--such as Underwriters' Laboratories, Inc. (UL)--indicating adequate laboratory testing…

  2. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  3. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  4. Understanding the SNO+ Detector

    SciTech Connect

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  5. Improved relay chatter detector

    NASA Technical Reports Server (NTRS)

    Reynolds, R. K.

    1971-01-01

    Detector provides go/no-go sensing of momentary relay or contact opening during vibration testing. Device compares duration of unwanted openings to calibrated standard and lights indicator if standard is exceeded. Stability and reliability are higher than in any other comparable device.

  6. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  7. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  8. Smoke Detector Resource Catalog.

    ERIC Educational Resources Information Center

    Portugill, Jestyn, Ed.; Powell, Pamela, Ed.

    This manual is one of a series developed for public education on smoke detectors. First, basic facts are given including guidelines for selection and purchasing, installation, maintenance, and what to do if the alarm goes off. Second, five case studies are presented which are examples of public education programs. (The script to one slide…

  9. Smoke Detectors Save Lives.

    ERIC Educational Resources Information Center

    Kominski, John

    This resource bulletin provides information which can be used in classrooms, at conferences, and at meetings with parents to increase public awareness and acceptance of a new New York City ordinance which requires the installation of smoke detectors in apartments. The booklet contains information on the following: (1) background information for…

  10. The Watchman Detector Design

    NASA Astrophysics Data System (ADS)

    Dazeley, Steven

    2014-03-01

    The Watchman collaboration is proposing a kiloton scale antineutrino detector of reactor-based antineutrinos for non-proliferation purposes. As an added bonus the detector will also have the capability to search for evidence of sterile neutrino oscillation, super-nova antineutrinos and, in a second phase, measure the neutrino mass hierarchy. Despite that fact that KamLAND demonstrated the feasibility of kiloton scale, long distance antineutrino detection with liquid scintillator, similar detectors at the megaton scale remain problematic for environmental, cost and light attenuation reasons. Water, with gadolinium added for neutron sensitivity, may be the detection medium of choice if its efficiency can be shown to be competitive with scintillator. The goal of the Watchman project, therefore, is to demonstrate medium distance reactor antineutrino detection, and thus demonstrate the feasibility of moving to water-based megaton scale antineutrino detectors in the future. In this talk I will describe the scope of the experiment, the physics and engineering challenges involved, the proposed design and the predicted performance of the experimental non-proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-648381.

  11. Direct Electron Detectors.

    PubMed

    McMullan, G; Faruqi, A R; Henderson, R

    2016-01-01

    Direct electron detectors have played a key role in the recent increase in the power of single-particle electron cryomicroscopy (cryoEM). In this chapter, we summarize the background to these recent developments, give a practical guide to their optimal use, and discuss future directions. PMID:27572721

  12. Gas Detectors, Volume 1.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The report contains annotated references on gas detectors compiled from the Defense Documentation Center's data bank. The range of the topics deals with detection of toxic propellants, odors, gas leaks, oxygen, etc. Included with the bibliographic reference are the corporate author-monitoring agency, subject, and title indexes. (Author/JR)

  13. Position Sensitive Detectors Mounted with Scintillators and Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Carvalhaes, Roberto P. M.; Bonifácio, Daniel A. B.; Moralles, Maurício

    2011-08-01

    This work presents the first results obtained in the "Assembly and characterization of position sensitive detectors composed of scintillators coupled to silicon photomultipliers" project. The development of new x and γ radiation detectors have found several technological applications, especially in medical physics, where γ detectors that can be used in high intensity magnetic field are of particular importance. The experimental setup consisted of coupling of two silicon photomultipliers (SiPM) to the small sides of a 3×3×100 mm3 scintillator and the coupling of one SiPM to one of the small sides of a 3×3×10 mm3 scintillator. We found that the detectors used in this study presented an energy resolution that is in agreement with those observed in scintillators of the same family coupled to conventional photomultipliers. Besides that, there is a strong correlation between the difference of the light intensity in both SiPMs of the long detector and the position of the γ source. The results confirm the great potential of application of such detectors.

  14. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  15. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  16. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  17. Construction and commissioning of the SuperNEMO detector tracker

    NASA Astrophysics Data System (ADS)

    Cascella, Michele

    2016-07-01

    The SuperNEMO detector will search for neutrinoless double beta decay at the Modane Underground Laboratory; the detector design allows complete topological reconstruction of the decay event enabling excellent levels of background rejection and, in the event of a discovery, the ability to determine the nature of the lepton number violating process. In order to demonstrate the feasibility of the full experiment, we are building a Demonstrator Module containing 7 kg of 82Se, with an expected sensitivity of |mββ | < 0.2 - 0.4 eV after 2.5 yr. The demonstrator tracker is currently being assembled in the UK; the main challenge in the tracker design is the high radiopurity required to limit the background. For this reason the cell wiring is automated and every step of the tracker assembly happens in a clean environment. All components are carefully screened for radiopurity and each section of the tracker, once assembled, is sealed and checked for Radon emanation. We present the detector design, the current status of the construction and present the first results from the surface commissioning of one section of the Demonstrator Module tracker.

  18. Development of LAMBDA: Large Area Medipix-Based Detector Array

    NASA Astrophysics Data System (ADS)

    Pennicard, David; Lange, Sabine; Smoljanin, Sergej; Becker, Julian; Hirsemann, Helmut; Epple, Michael; Graafsma, Heinz

    2011-11-01

    The Medipix3 photon counting readout chip has a range of features — small pixel size, high readout rate and inter-pixel communication — which make it attractive for X-ray scattering and imaging at synchrotrons. DESY have produced a prototype large-area detector module that can carry a 6 by 2 array of Medipix3 chips (1536 by 512 pixels), which can be used with a single large silicon sensor (85mm by 28mm) or two ``hexa'' high-Z sensors. The detector head is designed to be tilable and compatible with low temperatures, and will allow high speed parallel readout of the Medipix3 chips. It consists of a ceramic board, on which the sensor assembly is mounted, and a secondary board for signal routing and voltage regulators. A prototype DAQ board using USB2 readout has also been produced. A ``quad'' Medipix3 sensor assembly has been mounted on the detector head, and successfully configured and read out by the DAQ board. Development has begun on a high-speed readout board, and large-area silicon assemblies are in production.

  19. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  20. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2005-01-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  1. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2004-12-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  2. Towards Implementing Multi-Pixel Photon Counters as Light Detectors for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Vasquez, Jaime; Saavedra, Arthur; Ramos, Roxana; Tavares, Pablo; Wade, Marcus; Fan, Sewan; Haag, Brooke

    2013-04-01

    There has been tremendous effort in recent years to implement multi-pixel photon counters (MPPC) in diverse areas of particle physics and positron emission tomography. The MPPC detectors possess certain favorable properties such as fast response time, high sensitivity to weak light signals, compact size, low operating voltage, and lower cost compared to photomultiplier tubes. However, constructing a working MPPC detector assembly is not a unique process; there are various working setups. In this poster, we present our particular experimental setup for a working MPPC detector assembly. In particular, we describe our efforts to implement the MPPC as a readout detector to be coupled to wavelength shifting fibers that are implanted within plastic scintillators for the measurement of cosmic rays.

  3. Advanced ROICs design for cooled IR detectors

    NASA Astrophysics Data System (ADS)

    Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent

    2008-04-01

    The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.

  4. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  5. Carbon monoxide detector. [electrochemical gas detector for spacecraft use

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Bradspies, J. L.; Brummer, S. B.; Nelsen, L. L.

    1973-01-01

    A sensitive carbon monoxide detector, developed specifically for spacecraft use, is described. An instrument range of 0 to 60 ppm CO in air was devised. The fuel cell type detector is used as a highly sensitive electrolysis cell for electrochemically detecting gases. The concept of an electrochemical CO detector is discussed and the CO oxidation behavior in phosphoric and sulfuric acid electrolytes is reported.

  6. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  7. Frequency discriminator/phase detector

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1974-01-01

    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.

  8. Energy resolving CT systems using Medipix2 and MHSP detectors

    NASA Astrophysics Data System (ADS)

    Carramate, L. F. N. D.; Nachtrab, F.; Firsching, M.; Silva, A. L. M.; da Silva, A. M.; Veloso, J. F. C. A.; Uhlmann, N.

    2013-03-01

    Energy resolved imaging has been possible with a newest generation of radiation detectors with photon counting and spectroscopic capabilities. This innovation gives the possibility to enhance the image quality by applying techniques using the energy information. In this work two X-ray Computed Tomography (CT) Systems were assembled with two different energy resolving detectors: Medipix2 and MicroHole & Strip Plate (MHSP). These detectors have the aforesaid characteristics and showed a good performance for X-ray imaging. The Energy Weighting Technique (EWT) and Basis Material Decomposition (BMD) techniques were applied with good results. An improvement of 31% in the CNR was achieved by applying the EWT in the MHSP data and, using Medipix2, two basis materials (Carbon based and Aluminium) were decomposed successfully with densities close to the real values.

  9. Infrared focal plane detector modules for space applications at AIM

    NASA Astrophysics Data System (ADS)

    Hübner, Dominique; Hanna, Stefan; Thöt, Richard; Gassmann, Kai-Uwe; Haiml, Markus; Weber, Andreas; Haas, Luis-Dieter; Ziegler, Johann; Nothaft, Hans-Peter; Fick, W.

    2012-09-01

    In the framework of this paper, AIM presents the actual status of some of its currently ongoing focal plane detector module developments for space applications covering the spectral range from the short-wavelength infrared (SWIR) to the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength infrared (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP will be elaborated. Additionally dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC will be addressed.

  10. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  11. Implosion chain reaction mitigation in underwater assemblies of photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Ling, Jiajie; Bishai, Mary; Diwan, Milind; Dolph, Jeffrey; Kettell, Steve; Sexton, Kenneth; Sharma, Rahul; Simos, Nikolaos; Stewart, James; Tanaka, Hidekazu; Viren, Brett; Arnold, Douglas; Tabor, Philip; Turner, Stephen; Benson, Terry; Wahl, Daniel; Wendt, Christopher; Hahn, Alan; Kaducak, Marc; Mantsch, Paul; Sundaram, S. K.

    2013-11-01

    Since the accident with a cascade failure of photomultiplier tubes (PMTs) in the Super-Kamiokande experiment in 2001, the mechanical performance of large format semi-hemispherical PMTs has become a critical issue for large water Cherenkov detectors. The subject of this study is the survival of an assembled array of PMTs under significant hydrostatic pressure and subjected to shock waves caused by the failure of a single PMT. This paper details the results of the second stage of a R&D program focused on the design and testing of different PMT assemblies to mitigate the risk of a “chain-reaction” of PMT failures. The initial results show that our PMT assembly design can effectively reduce the magnitude of the shock wave. With the testing results in this paper and the hydrodynamic simulation calculation, we can further improve the design of PMT deployment to mitigate the risk of chain reactions caused by implosion induced shock waves.

  12. In-Situ Safeguards Verification of Low Burn-up Pressurized Water Reactor Spent Fuel Assemblies

    SciTech Connect

    Ham, Y S; Sitaraman, S; Park, I; Kim, J; Ahn, G

    2008-04-16

    A novel in-situ gross defect verification method for light water reactor spent fuel assemblies was developed and investigated by a Monte Carlo study. This particular method is particularly effective for old pressurized water reactor spent fuel assemblies that have natural uranium in their upper fuel zones. Currently there is no method or instrument that does verification of this type of spent fuel assemblies without moving the spent fuel assemblies from their storage positions. The proposed method uses a tiny neutron detector and a detector guiding system to collect neutron signals inside PWR spent fuel assemblies through guide tubes present in PWR assemblies. The data obtained in such a manner are used for gross defect verification of spent fuel assemblies. The method uses 'calibration curves' which show the expected neutron counts inside one of the guide tubes of spent fuel assemblies as a function of fuel burn-up. By examining the measured data in the 'calibration curves', the consistency of the operator's declaration is verified.

  13. AIM cryocooler developments for HOT detectors

    NASA Astrophysics Data System (ADS)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  14. Space assembly fixtures and aids

    NASA Technical Reports Server (NTRS)

    Bloom, K. A.; Lillenas, A. N.

    1980-01-01

    Concepts and requirements for assembly fixtures and aids necessary for the assembly and maintenance of spare platforms were studied. Emphasis was placed on erectable and deployable type structures with the shuttle orbiter as the assembly base. Both single and multiple orbiter flight cases for the platform assembly were considered. Applicable space platform assembly studies were reviewed to provide a data base for establishing the assembly fixture and aids design requirements, assembly constraints, and the development of representative design concepts. Conclusions indicated that fixture requirements will vary with platform size. Larger platforms will require translation relative to the orbiter RMS working volume. The installation of platform payloads and subsystems (e.g., utility distribution) must also be considered in the specification of assembly fixtures and aids.

  15. School Assemblies: The Lost Art.

    ERIC Educational Resources Information Center

    Beach, Daniel R.

    1979-01-01

    Guidelines and suggestions are offered for successful school assemblies. The school assembly should be a positive event; an occasion for developing unity, group loyalty, and desirable audience habits. (Author/MLF)

  16. Readout for a large area neutron sensitive microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Wang, Yiming; Yang, Yigang; Wang, Xuewu; Li, Yuanjing

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP-WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP-WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  17. New electronically black neutron detectors

    SciTech Connect

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors.

  18. The ALICE Forward Multiplicity Detector

    NASA Astrophysics Data System (ADS)

    Christensen, Christian Holm; Gaardhøje, Jens Jørgen; Gulbrandsen, Kristján; Nielsen, Børge Svane; Søgaard, Carsten

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range -3.4 < η < 5.1. It is placed around the beam pipe at small angles to extend the charged particle acceptance of ALICE into the forward regions, not covered by the central barrel detectors.

  19. Characterisations of GEM detector prototype

    NASA Astrophysics Data System (ADS)

    Patra, Rajendra Nath; Nanda, Amit; Rudra, Sharmili; Bhattacharya, P.; Sahoo, Sumanya Sekhar; Biswas, S.; Mohanty, B.; Nayak, T. K.; Sahu, P. K.; Sahu, S.

    2016-07-01

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  20. Detector characterization in GEO 600

    NASA Astrophysics Data System (ADS)

    Sintes, A. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Barr, B. W.; Berukoff, S.; Borger, S.; Cagnoli, G.; Cantley, C. A.; Casey, M. M.; Chelkowski, S.; Churches, D.; Colacino, C. N.; Crooks, D. R. M.; Cutler, C.; Danzmann, K.; Davies, R.; Dupuis, R.; Elliffe, E.; Fallnich, C.; Freise, A.; Goßler, S.; Grant, A.; Grote, H.; Grunewald, S.; Harms, J.; Heinzel, G.; Heng, I. S.; Hepstonstall, A.; Heurs, M.; Hewitson, M.; Hough, J.; Ingley, R.; Itoh, Y.; Jennrich, O.; Jones, R.; Hutter, S.; Kawabe, K.; Killow, C.; Kötter, K.; Krishnan, B.; Leonhardt, V.; Lück, H.; Machenschalk, B.; Malec, M.; Messenger, C.; Mossavi, K.; Mohanty, S.; Mukherjee, S.; Nagano, S.; Newton, G. P.; Papa, M. A.; Perreur-Lloyd, M.; Pitkin, M.; Plissi, M. V.; Quetschke, V.; Reid, S.; Ribichini, L.; Robertson, D. I.; Robertson, N. A.; Rowan, S.; Rüdiger, A.; Sathyaprakash, B. S.; Schilling, R.; Schnabel, R.; Schutz, B. F.; Seifert, F.; Smith, J.; Sneddon, P.; Strain, K. A.; Taylor, I.; Torrie, C. I.; Vecchio, A.; Ward, H.; Weiland, U.; Welling, H.; Williams, P.; Willke, B.; Winkler, W.; Woan, G.; Zawischa, I.

    2003-09-01

    The GEO 600 interferometric gravitational wave detector conducted its first science run (S1) from 23 August 2002 to 9 September 2002. The GEO 600 data acquisition system is described together with some software tools developed for doing detector characterization and data analysis. Detector characterization results are also being presented.

  1. ISS/IDS Detector Study

    SciTech Connect

    Cervera-Villanueva, A.

    2008-02-21

    This article summarises the results obtained by the detector working group of the 'International Scooping Study' (ISS) of a future neutrino oscillations facility. Special emphasis is put on far detectors, for which some of the main issues are identified. A detector R and D strategy in the context of the 'International Design Study' (IDS) for a neutrino factory is also presented.

  2. Complementary Barrier Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2009-01-01

    The complementary barrier infrared detector (CBIRD) is designed to eliminate the major dark current sources in the superlattice infrared detector. The concept can also be applied to bulk semiconductor- based infrared detectors. CBIRD uses two different types of specially designed barriers: an electron barrier that blocks electrons but not holes, and a hole barrier that blocks holes but not electrons. The CBIRD structure consists of an n-contact, a hole barrier, an absorber, an electron barrier, and a p-contact. The barriers are placed at the contact-absorber junctions where, in a conventional p-i-n detector structure, there normally are depletion regions that produce generation-recombination (GR) dark currents due to Shockley-Read- Hall (SRH) processes. The wider-bandgap complementary barriers suppress G-R dark current. The barriers also block diffusion dark currents generated in the diffusion wings in the neutral regions. In addition, the wider gap barriers serve to reduce tunneling dark currents. In the case of a superlattice-based absorber, the superlattice itself can be designed to suppress dark currents due to Auger processes. At the same time, the barriers actually help to enhance the collection of photo-generated carriers by deflecting the photo-carriers that are diffusing in the wrong direction (i.e., away from collectors) and redirecting them toward the collecting contacts. The contact layers are made from materials with narrower bandgaps than the barriers. This allows good ohmic contacts to be made, resulting in lower contact resistances. Previously, THALES Research and Technology (France) demonstrated detectors with bulk InAsSb (specifically InAs0.91Sb0.09) absorber lattice-matched to GaSb substrates. The absorber is surrounded by two wider bandgap layers designed to minimize impedance to photocurrent flow. The wide bandgap materials also serve as contacts. The cutoff wavelength of the InAsSb absorber is fixed. CBIRD may be considered as a modified

  3. Multisensor mine detector for peacekeeping: improved landmine detector concept (ILDC)

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Carruthers, Al

    1996-05-01

    The Improved Landmine Detector Concept Project was initiated in Autumn 1994 to develop a prototype vehicle mounted mine detector for low metal content and nonmetallic mines for a peacekeeping role on roads. The system will consist of a teleoperated vehicle carrying a highly sensitive electromagnetic induction (EMI) detector, an infrared imager (IR), ground probing radar (GPR), and a thermal neutron activation (TNA) detector for confirmation. The IR, EMI and TNA detectors have been under test since 1995 and the GPR will be received in June 1996. Results of performance trials of the individual detectors are discussed. Various design configurations and their tradeoffs are discussed. Fusion of data from the detectors to reduce false alarm rate and increase probability of detection, a key element to the success of the system, is discussed. An advanced development model of the system is expected to be complete by Spring 1997.

  4. Desmosome assembly and dynamics

    PubMed Central

    Nekrasova, Oxana; Green, Kathleen J.

    2013-01-01

    Desmosomes are intercellular junctions that anchor intermediate filaments to the plasma membrane, forming a supracellular scaffold that provides mechanical resilience to tissues. This anchoring function is accomplished by specialized members of the cadherin family and associated cytoskeletal linking proteins, which together form a highly organized membrane core flanked by mirror image cytoplasmic plaques. Due to the biochemical insolubility of desmosomes, the mechanisms that govern assembly of these components into a functional organelle remained elusive. Recently developed molecular reporters and live cell imaging approaches have provided powerful new tools to monitor this finely-tuned process in real time. Here we discuss studies that are beginning to decipher the machinery and regulation governing desmosome assembly and homeostasis in situ, and how these mechanisms are affected during disease pathogenesis. PMID:23891292

  5. Hearing Aid Assembly

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N. (Inventor)

    2002-01-01

    Progress in hearing aids has come a long way. Yet despite such progress hearing aids are not the perfect answer to many hearing problems. Some adult ears cannot accommodate tightly fitting hearing aids. Mouth movements such as chewing, talking, and athletic or other active endeavors also lead to loosely fitting ear molds. It is well accepted that loosely fitting hearing aids are the cause of feedback noise. Since feedback noise is the most common complaint of hearing aid wearers it has been the subject of various patents. Herein a hearing aid assembly is provided eliminating feedback noise. The assembly includes the combination of a hearing aid with a headset developed to constrict feedback noise.

  6. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  7. Infrared floodlight assembly

    DOEpatents

    Wierzbicki, Julian J.; Chakrabarti, Kirti B.

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  8. Compressor diaphragm assembly

    SciTech Connect

    Scalzo, A.

    1989-12-26

    This patent describes, in a combustion turbine having a casing, one or more slots of a first predetermined cross-section formed circumferentially within the casing at a compressor portion of the turbine, and a compressor diaphragm assembly adapted to be suspended from each of the one or more slots to provide a labyrinth seal with a plurality of compressor discs, a method of forming each compressor diaphragm assembly. It comprises: providing a plurality of vane airfoils each of which have an inner shroud formed integrally with the vane airfoil, and an outer portion attached to the vane airfoil; providing outer ring means for suspending each of the plurality of van airfoils at a stagger angle; suspending the plurality of vane airfoils from the outer ring means, thereby disposing each the vane airfoil and its respective outer portion at the stagger angle; and providing seal carrier means for engagement with each the inner shroud.

  9. Ignition system monitoring assembly

    DOEpatents

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  10. Turbine seal assembly

    DOEpatents

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  11. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2002-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.

  12. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  13. Solution deposition assembly

    SciTech Connect

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  14. Vacuum breaker valve assembly

    DOEpatents

    Thompson, J.L.; Upton, H.A.

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening. 1 fig.

  15. Molten core retention assembly

    DOEpatents

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  16. Low inductance busbar assembly

    DOEpatents

    Holbrook, Meghan Ann

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  17. Ingestion resistant seal assembly

    DOEpatents

    Little, David A.

    2011-12-13

    A seal assembly limits gas leakage from a hot gas path to one or more disc cavities in a gas turbine engine. The seal assembly includes a seal apparatus associated with a blade structure including a row of airfoils. The seal apparatus includes an annular inner shroud associated with adjacent stationary components, a wing member, and a first wing flange. The wing member extends axially from the blade structure toward the annular inner shroud. The first wing flange extends radially outwardly from the wing member toward the annular inner shroud. A plurality of regions including one or more recirculation zones are defined between the blade structure and the annular inner shroud that recirculate working gas therein back toward the hot gas path.

  18. FLUORINE CELL ANODE ASSEMBLY

    DOEpatents

    Cable, R.E.; Goode, W.B. Jr.; Henderson, W.K.; Montillon, G.H.

    1962-06-26

    An improved anode assembly is deslgned for use in electrolytlc cells ln the productlon of hydrogen and fluorlne from a moIten electrolyte. The anode assembly comprises a copper post, a copper hanger supported by the post, a plurality of carbon anode members, and bolt means for clamplng half of the anode members to one slde of the hanger and for clamplng the other half of the anode members to the other slde of the hanger. The heads of the clamplng bolts are recessed withln the anode members and carbon plugs are inserted ln the recesses above the bolt heads to protect the boIts agalnst corroslon. A copper washer is provided under the head of each clamplng boIt such that the anode members can be tightly clamped to the hanger with a resultant low anode jolnt resistance. (AEC)

  19. Vacuum breaker valve assembly

    DOEpatents

    Thompson, Jeffrey L.; Upton, Hubert Allen

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.

  20. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    PubMed Central

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  1. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  2. REACTOR NOZZLE ASSEMBLY

    DOEpatents

    Capuder, F.C.; Dearwater, J.R.

    1959-02-10

    An improved nozzle assembly useful in a process for the direct reduction of uranium hexafluoride to uranium tetrafluoride by means of dissociated ammonia in a heated reaction vessel is descrlbed. The nozzle design provides for intimate mixing of the two reactants and at the same time furnishes a layer of dissociated ammonia adjacent to the interior wall of the reaction vessel, thus preventing build-up of the reaction product on the vessel wall.

  3. Flue gas duct assembly

    SciTech Connect

    Montana, F.J.

    1984-08-28

    A length of longitudinally extending duct assembly for heated corrosive gases includes an outer support duct and a substantially gas-tight liner. The liner is spaced from the outer support duct by a relatively yielding spacer material that accommodates expansion of the liner in directions parallel to the inner surface of the outer support duct and in directions normal to the inner surface of the outer support duct without imposing any substantial resistance to such thermal expansion.

  4. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  5. Magnetic control assembly reports

    NASA Technical Reports Server (NTRS)

    Stickler, A. C.

    1972-01-01

    Results are summarized of the qualification level vibration tests performed on the magnet control assembly (MCA) for Nimbus and ERTS satellites. The MCA electronics and probe units have demonstrated the capability to survive qualification sinusoidal and random vibration levels. The functional testing indicated normal operation of the units after each axis of vibration. Visual inspection indicated no evidence of degradation. Post vibration acceptance testing verified normal operation of the MCA.

  6. Composite airfoil assembly

    SciTech Connect

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  7. Uniform Test Assembly

    ERIC Educational Resources Information Center

    Belov, Dmitry I.

    2008-01-01

    In educational practice, a test assembly problem is formulated as a system of inequalities induced by test specifications. Each solution to the system is a test, represented by a 0-1 vector, where each element corresponds to an item included (1) or not included (0) into the test. Therefore, the size of a 0-1 vector equals the number of items "n"…

  8. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  9. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  10. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  11. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  12. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  13. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  14. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  15. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  16. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  17. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  18. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  19. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  20. Portable Radiation Detectors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  1. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  2. IAHS Third Scientific Assembly

    NASA Astrophysics Data System (ADS)

    The International Association of Hydrological Sciences (IAHS) convened its Third Scientific Assembly in Baltimore, Md., May 10-19, 1989. The Assembly was attended by about 450 scientists and engineers. The attendance was highest from the U.S., as could be expected; 37 were from Canada; 22 each, Netherlands and United Kingdom; 14, Italy; 12, China; 10, Federal Republic of Germany; 8 each from France, the Republic of South Africa, and Switzerland; 7, Austria; 6 each, Finland and Japan; others were scattered among the remainder of 48 countries total.one of the cosponsors and also handled business matters for the Assembly. Other cosponsors included the International Association of Meteorology and Atmospheric Physics (IAMAP), United Nations Environmental Program (UNEP), United Nations Educational, Scientific, and Cultural Organization (UNESCO), World Meteorological Organization (WMO), and U.K. Overseas Development Authority (ODA). U.S. federal agencies serving as cosponsors included the Environmental Protection Agency, National Aeronautics and Space Administration, National Science Foundation, National Weather Service, Department of Agriculture, Department of State, and U.S. Geological Survey.

  3. Retractable Visual Indicator Assembly

    NASA Technical Reports Server (NTRS)

    Hackler, George R. (Inventor); Gamboa, Ronald J. (Inventor); Dominquez, Victor (Inventor)

    1998-01-01

    A retractable indicator assembly may be mounted on a container which transmits air through the container and removes deleterious gases with an activated charcoal medium in the container. The assembly includes: an elongate indicator housing has a chamber therein; a male adaptor with an external threads is used for sealing engagement with the container; a plug located at the upper end of the housing; a housing that includes a transparent wall portion for viewing at least a portion of the chamber; a litmus indicator, moveable by a retractable rod from a retracted position within the container to an extended position within the chamber of the housing; and an outer housing that is secured to the upper end of the rod, and protects the indicator housing while the litmus indicator is in its normally retracted position. The assembly may be manually manipulated between its extended position wherein the litmus indicator may be viewed through the transparent wall of the indicator housing, and a retracted position wherein the outer housing encloses the indicator housing and engages the exterior of the container.

  4. OH Module Assembly Stand

    SciTech Connect

    Bolan, P.J.; /Fermilab

    1990-10-16

    There is an OR module assembly stand in use at IB4. This design has been approved by safety, as presented by Mike Foley, and has been successfully used. Another one is needed at the D-zero assembly building, but some modifications need to be made. This report will show that the new modified design is at least as strong, if not stronger, than the older IB4 design in every aspect. Since the weight distribution of the OR modules on the sling is indeterminate, this report compares three cases of support for the entire assembly: the lowest two beams only, the lowest four beams only, and all six beams. In each of these cases, the new design is stronger than the old design in maximum allowable weight. The ability of the the cradle to support the weight is also shown. For all of the failure conditions except for two, the cradle is stronger than the beams that it supports. In the two excepted situations, the calculated limit of the cradle is less than the beams it supports. This is because no credit is taken for the sling and strongback, which in reality will relieve much of the horizontal load.

  5. A mercuric iodide detector system for X-ray astronomy. I - Design considerations and predictions of background and sensitivity

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Vallerga, J. V.; Wood, D. R.

    1983-01-01

    Since the discovery of Sco X-1 initiated X-ray astronomy in 1962, this science has progressed in connection with the placement of X-ray photon detectors above the atmosphere by means of rockets, balloons, and satellites. In the last few years, studies have been conducted regarding the use of mercuric iodide (HgI2) as room temperature X-ray detector for applications in hard X-ray astronomy. These detectors combine a high quantum efficiency with good energy resolution. The sensitivity of an astronomical X-ray telescope is discussed, and a description is presented of a specific design accepted for the HDXT to be flown on Spacelab. Attention is given to predictions of the background counting rate of the detector assembly in this design, taking into account the results of a Monte Carlo simulation of the detector assembly in the radiation environment at balloon altitudes (40 km).

  6. Vertex Detector Cable Considerations

    SciTech Connect

    Cooper, William E.; /Fermilab

    2009-02-01

    Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.

  7. Development of Portable Detectors

    SciTech Connect

    2006-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the “Contractor”) and Sense Holdings, Inc. (the “Participant”) was for the development of hand-held detectors with high sensitivity and selectivity for the detection of explosives, toxic industrial chemicals and materials, and other materials of interest for security applications. The two parties built a series of demonstration and prototype handheld sensors based upon micoelectromechanical systems (MEMS) with electronic readout.

  8. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  9. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  10. Vacuum leak detector

    NASA Technical Reports Server (NTRS)

    Kazokas, G. P. (Inventor)

    1975-01-01

    A leak detector for use with high vacuum seals as used in feedthroughs and hatch covers for manned spacecraft and vacuum systems is described. Two thermistors are used, one exposed directly to vacuum and the other exposed to a secondary chamber formed by the seal being monitored and a second auxiliary seal. Leakage into the secondary chamber causes an unbalance of an electrical bridge circuit in which the thermistors are connected.

  11. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  12. Extruded plastic scintillation detectors

    SciTech Connect

    Anna Pla-Dalmau, Alan D. Bross and Kerry L. Mellott

    1999-04-16

    As a way to lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into different profiles. The selection of the raw materials is discussed. Two techniques to add wavelength shifting dopants to polystyrene pellets and to extrude plastic scintillating strips are described. Data on light yield and transmittance measurements are presented.

  13. The CMS muon detector

    NASA Astrophysics Data System (ADS)

    Giacomelli, P.

    2002-02-01

    The muon detection system of the Compact Muon Solenoid experiment is described. It consists of three different detector technologies: drift tubes in the barrel region, cathode strip chambers in the endcap region and resistive plate chambers in both barrel and endcap regions. The CMS muon detection system ensures excellent muon detection and efficient triggering in the pseudorapidity range 0< η<2.4. The most recent developments and some results from the R&D program will also be discussed.

  14. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  15. Biological detector and method

    SciTech Connect

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  16. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  17. Novel neutron detectors

    NASA Astrophysics Data System (ADS)

    Burgett, Eric Anthony

    A new set of thermal neutron detectors has been developed as a near term 3He tube replacement. The zinc oxide scintillator is an ultrafast scintillator which can be doped to have performance equal to or superior to 3He tubes. Originally investigated in the early 1950s, this room temperature semiconductor has been evaluated as a thermal neutron scintillator. Zinc oxide can be doped with different nuclei to tune the band gap, improve optical clarity, and improve the thermal neutron detection efficiency. The effects of various dopant effects on the scintillation properties, materials properties, and crystal growth parameters have been analyzed. Two different growth modalities were investigated: bulk melt grown materials as well as thin film scintillators grown by metalorganic chemical vapor deposition (MOCVD). MOCVD has shown significant advantages including precise thickness control, high dopant incorporation, and epitaxial coatings of neutron target nuclei. Detector designs were modeled and simulated to design an improved thermal neutron detector using doped ZnO layers, conformal coatings and light collection improvements including Bragg reflectors and photonic crystal structures. The detectors have been tested for crystalline quality by XRD and FTIR spectroscopy, for scintillation efficiency by photo-luminescence spectroscopy, and for neutron detection efficiency by alpha and neutron radiation tests. Lastly, a novel method for improving light collection efficiency has been investigated, the creation of a photonic crystal scintillator. Here, the flow of optical light photons is controlled through an engineered structure created with the scintillator materials. This work has resulted in a novel radiation detection material for the near term replacement of 3He tubes with performance characteristics equal to or superior to that of 3He.

  18. Detectors for the space telescope

    NASA Technical Reports Server (NTRS)

    Kelsall, T.

    1978-01-01

    This review of Space Telescope (ST) detectors is divided into two parts. The first part gives short summaries of detector programs carried out during the final planning stage (Phase B) of the ST and discusses such detectors as Photicon, the MAMA detectors, the CODACON, the University of Maryland ICCD, the Goddard Space Flight Center ICCD, and the 70 mm SEC TV sensor. The second part describes the detectors selected for the first ST flight, including the wide field/planetary camera, the faint object and high resolution spectrographs, and the high speed photometer.

  19. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  20. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.