Science.gov

Sample records for photocarrier dynamics electronic

  1. Photocarrier dynamics in anatase TiO{sub 2} investigated by pump-probe absorption spectroscopy

    SciTech Connect

    Matsuzaki, H. E-mail: okamotoh@k.u-tokyo.ac.jp; Matsui, Y.; Uchida, R.; Yada, H.; Terashige, T.; Li, B.-S.; Sawa, A.; Kawasaki, M.; Tokura, Y.; Okamoto, H. E-mail: okamotoh@k.u-tokyo.ac.jp

    2014-02-07

    The dynamics of photogenerated electrons and holes in undoped anatase TiO{sub 2} were studied by femtosecond absorption spectroscopy from the visible to mid-infrared region (0.1–2.0 eV). The transient absorption spectra exhibited clear metallic responses, which were well reproduced by a simple Drude model. No mid-gap absorptions originating from photocarrier localization were observed. The reduced optical mass of the photocarriers obtained from the Drude-model analysis is comparable to theoretically expected one. These results demonstrate that both photogenerated holes and electrons act as mobile carriers in anatase TiO{sub 2}. We also discuss scattering and recombination dynamics of photogenerated electrons and holes on the basis of the time dependence of absorption changes.

  2. Time-Resolved Measurements of Photocarrier Dynamics in TiS3 Nanoribbons.

    PubMed

    Cui, Qiannan; Lipatov, Alexey; Wilt, Jamie Samantha; Bellus, Matthew Z; Zeng, Xiao Cheng; Wu, Judy; Sinitskii, Alexander; Zhao, Hui

    2016-07-20

    We report synthesis and time-resolved transient absorption measurements of TiS3 nanoribbons. TiS3 nanoribbons were fabricated by direct reaction of titanium and sulfur. Dynamics of the photocarriers in these samples were studied by transient absorption measurements. It was found that following ultrafast injection of nonequilibrium and hot photocarriers, the thermalization, energy relaxation, and exciton formation all occur on a subpicosecond time scale. Several key parameters describing the dynamical properties of photocarriers, including their recombination lifetime, diffusion coefficient, mobility, and diffusion length, were deduced. PMID:27362332

  3. Photocarrier dynamics in transition metal dichalcogenide alloy Mo0.5W0.5S2.

    PubMed

    He, Jiaqi; He, Dawei; Wang, Yongsheng; Zhao, Hui

    2015-12-28

    We report a transient absorption study of photocarrier dynamics in transition metal dichalcogenide alloy, Mo0.5W0.5S2. Photocarriers were injected by a 400-nm pump pulse and detected by a 660-nm probe pulse. We observed a fast energy relaxation process of about 0.7 ps. The photocarrier lifetime is in the range of 50 - 100 ps, which weakly depends on the injected photocarrier density and is a few times shorter than MoS2 and WS2, reflecting the relatively lower crystalline quality of the alloy. Saturable absorption was also observed in Mo0.5W0.5S2, with a saturation energy fluence of 32 μJ cm(-2). These results provide important parameters on photocarrier properties of transition metal dichalcogenide alloys. PMID:26832001

  4. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    SciTech Connect

    Wang, Qian; Li, Bincheng

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.

  5. Hot photocarrier dynamics in organic solar cells measured by transient absorption and time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Lane, Paul A.; Cunningham, Paul D.; Melinger, Joseph S.; Heilweil, Edwin J.

    2014-10-01

    We present a study of charge transfer and carrier dynamics in films of zinc phthalocyanine (ZnPc) and buckmisnsterfullerene (C60) by investigated by time-resolved terahertz spectroscopy (TRTS). We compare terahertz photoconductivity dynamics in composite and multi-layered films of C60 and ZnPc. The few picosecond terahertz photoconductivity dynamics arise from autoionization and recombination between C60 molecules and cooling of hot photocarriers following from charge transfer between C60 and ZnPc.

  6. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots.

    PubMed

    Sun, Jianhui; Ikezawa, Michio; Wang, Xiuying; Jing, Pengtao; Li, Haibo; Zhao, Jialong; Masumoto, Yasuaki

    2015-05-14

    Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots (CIS QDs) was studied by means of femtosecond transient-absorption (TA) and nanosecond time-resolved photoluminescence (PL) spectroscopy. Under strong excitation, the TA dynamics in CIS QDs is well described by a simple rate equation including single-carrier trapping, free-to-bound recombination, and trap-assisted Auger recombination. Under weak excitation, on the other hand, the PL decays of the QDs are composed of a short-lived component caused by surface trapping and a long-lived one caused by free-to-bound recombination. It is found that the surface trapping accelerates markedly with decreasing QD size while the free-to-bound radiative recombination hardly depends on the QD size. Besides this, we observed both a decrease in the PL lifetimes and a dynamic spectral redshift, which are attributed to the surface trapping and the coexistent inhomogeneous broadening in CIS QDs. The spectral redshift becomes less pronounced in CIS/ZnS core/shell QDs because of the suppression of the fast nonradiative recombination caused by the passivation of the surface traps. These results give clear evidence that the free-to-bound model is appropriate for interpreting the optical properties of CIS QDs. PMID:25728207

  7. Temperature-dependent photocarrier recombination dynamics in Cu{sub 2}ZnSnS{sub 4} single crystals

    SciTech Connect

    Phuong, Le Quang; Kanemitsu, Yoshihiko; Okano, Makoto; Yamada, Yasuhiro; Nagaoka, Akira; Yoshino, Kenji

    2014-02-24

    Time-resolved photoluminescence (PL) measurements have been used to study the temperature-dependent photocarrier recombination dynamics in Cu{sub 2}ZnSnS{sub 4} (CZTS) single crystals. We found a significant change of nearly four orders of magnitude of the PL decay time, from microseconds at low temperatures to subnanoseconds at room temperature. The slow PL decay at low temperatures indicates localization of the photocarriers at the band tails. Due to the large band tail states, the PL decay time depends strongly on both the photon energy and excitation density. It is pointed out that the drastically enhanced nonradiative recombination at high temperatures is one of the main factors that determine the power conversion efficiency of CZTS-based solar cells.

  8. Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Vella, Eleonora; Li, Hao; Grégoire, Pascal; Tuladhar, Sachetan M.; Vezie, Michelle S.; Few, Sheridan; Bazán, Claudia M.; Nelson, Jenny; Silva-Acuña, Carlos; Bittner, Eric R.

    2016-07-01

    All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-cost processing and short energy payback time. In such systems the primary dissociation of an optical excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description of the coupling of the electronic states of the system to an external environment and to the applied laser fields. The experimental data show no cross-peaks in the twodimensional photocurrent spectra, as predicted by the model for coherence times between the exciton and the photocurrent producing states of 20 fs or less.

  9. Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells

    PubMed Central

    Vella, Eleonora; Li, Hao; Grégoire, Pascal; Tuladhar, Sachetan M.; Vezie, Michelle S.; Few, Sheridan; Bazán, Claudia M.; Nelson, Jenny; Silva-Acuña, Carlos; Bittner, Eric R.

    2016-01-01

    All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-cost processing and short energy payback time. In such systems the primary dissociation of an optical excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description of the coupling of the electronic states of the system to an external environment and to the applied laser fields. The experimental data show no cross-peaks in the twodimensional photocurrent spectra, as predicted by the model for coherence times between the exciton and the photocurrent producing states of 20 fs or less. PMID:27412119

  10. Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells.

    PubMed

    Vella, Eleonora; Li, Hao; Grégoire, Pascal; Tuladhar, Sachetan M; Vezie, Michelle S; Few, Sheridan; Bazán, Claudia M; Nelson, Jenny; Silva-Acuña, Carlos; Bittner, Eric R

    2016-01-01

    All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-cost processing and short energy payback time. In such systems the primary dissociation of an optical excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description of the coupling of the electronic states of the system to an external environment and to the applied laser fields. The experimental data show no cross-peaks in the twodimensional photocurrent spectra, as predicted by the model for coherence times between the exciton and the photocurrent producing states of 20 fs or less. PMID:27412119

  11. Photocarrier dynamics in undoped and Na-doped Cu2ZnSnS4 single crystals revealed by ultrafast time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Quang Phuong, Le; Okano, Makoto; Yamashita, Genki; Nagai, Masaya; Ashida, Masaaki; Nagaoka, Akira; Yoshino, Kenji; Kanemitsu, Yoshihiko

    2015-06-01

    We investigated the effects of sodium doping on the photocarrier dynamics in Cu2ZnSnS4 (CZTS) single crystals using optical pump-THz probe transient reflectivity (THz-TR) and time-resolved photoluminescence (PL) spectroscopy. The THz-TR and PL decay dynamics are influenced by sodium doping, and their sodium-induced changes are consistent with each other. These time-resolved measurements revealed that the lifetime of photocarriers increases with sodium doping. This result indicates that a part of defects is suppressed by doping sodium into CZTS and implies that sodium doping improves the charge transport properties of CZTS, leading to an improvement in the performance of CZTS-based solar cells.

  12. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2015-12-01

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1-0.2 Ω.cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  13. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    SciTech Connect

    Wang, Qian; Li, Bincheng

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  14. Depth profile reconstructions of electronic transport properties in H{sup +} MeV-energy ion-implanted n-Si wafers using photocarrier radiometry

    SciTech Connect

    Tai, Rui; Wang, Chinhua Hu, Jingpei; Mandelis, Andreas

    2014-07-21

    A depth profiling technique using photocarrier radiometry (PCR) is demonstrated and used for the reconstruction of continuously varying electronic transport properties (carrier lifetime and electronic diffusivity) in the interim region between the ion residence layer and the bulk crystalline layer in H{sup +} implanted semiconductor wafers with high implantation energies (∼MeV). This defect-rich region, which is normally assumed to be part of the homogeneous “substrate” in all existing two- and three-layer models, was sliced into many virtual thin layers along the depth direction so that the continuously and monotonically variable electronic properties across its thickness can be considered uniform within each virtual layer. The depth profile reconstruction of both carrier life time and diffusivity in H{sup +} implanted wafers with several implantation doses (3 × 10{sup 14}, 3 × 10{sup 15}, and 3 × 10{sup 16} cm{sup −2}) and different implantation energies (from 0.75 to 2.0 MeV) is presented. This all-optical PCR method provides a fast non-destructive way of characterizing sub-surface process-induced electronic defect profiles in devices under fabrication at any intermediate stage before final metallization and possibly lead to process correction and optimization well before electrical testing and defect diagnosis becomes possible.

  15. Photocarrier Radiometry for Noncontact Evaluation of Monocrystalline Silicon (c-Si) Solar Cell Irradiated by 1 MeV Electron Beams

    NASA Astrophysics Data System (ADS)

    Song, P.; Liu, J. Y.; Yuan, H. M.; Wang, F.; Wang, Y.

    2016-08-01

    In this paper, the monocrystalline silicon (c-Si) solar cell irradiated by 1 MeV electron beams was investigated using noncontact photocarrier radiometry (PCR). A theoretical 1D two-layer PCR model including the impedance effect of the p-n junction was used to characterize the transport properties (carrier lifetime, diffusion coefficient, and surface recombination velocities) of c-Si solar cells irradiated by 1 MeV electron beams with different fluences. The carrier transport parameters were derived by the best fit through PCR measurements. Furthermore, an Ev+0.56 eV trap was introduced into the band gap based on the minority carrier lifetime reduction. An I-V characteristic was obtained by both AFORS-HET simulation and experimental study, and the simulation results shows in good agreement with the experimental results. Moreover, the simulation and experiment results also indicate that the increase of fluences of electron beams results in the reduction of short-circuit current and open-circuit voltage.

  16. Photomodulation spectroscopy of photocarrier dynamics, electronic defects and morphology of conducting polymers

    SciTech Connect

    Vardeny, Z.V.

    1993-01-01

    A variety of techniques were used: CW photomodulation, photomodulation in femtosecond and picosecond time ranges, CW resonant Raman scattering, transient photoinduced Raman scattering, electro-absorption, degenerate four-wave mixing, spin dependent photomodulation, and absorption detected magnetic resonance. The following conducting polymers were studied: polyacetylene, polythiophene, polydiacetylene 4-BCMU, polydiethynylsilanes, polysilane embedded in a-Si:H matrix, and fullerenes.

  17. Photocarrier drift distance in organic solar cells and photodetectors

    PubMed Central

    Stolterfoht, Martin; Armin, Ardalan; Philippa, Bronson; White, Ronald D.; Burn, Paul L.; Meredith, Paul; Juška, Gytis; Pivrikas, Almantas

    2015-01-01

    Light harvesting systems based upon disordered materials are not only widespread in nature, but are also increasingly prevalent in solar cells and photodetectors. Examples include organic semiconductors, which typically possess low charge carrier mobilities and Langevin-type recombination dynamics – both of which negatively impact the device performance. It is accepted wisdom that the “drift distance” (i.e., the distance a photocarrier drifts before recombination) is defined by the mobility-lifetime product in solar cells. We demonstrate that this traditional figure of merit is inadequate for describing the charge transport physics of organic light harvesting systems. It is experimentally shown that the onset of the photocarrier recombination is determined by the electrode charge and we propose the mobility-recombination coefficient product as an alternative figure of merit. The implications of these findings are relevant to a wide range of light harvesting systems and will necessitate a rethink of the critical parameters of charge transport. PMID:25919439

  18. Spectrally resolved modulated infrared radiometry of photothermal, photocarrier, and photoluminescence response of CdSe crystals: Determination of optical, thermal, and electronic transport parameters

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Chirtoc, M.; Horny, N.; Pelzl, J.

    2016-03-01

    Spectrally resolved modulated infrared radiometry (SR-MIRR) with super-band gap photoexcitation is introduced as a self-consistent method for semiconductor characterization (CdSe crystals grown under different conditions). Starting from a theoretical model combining the contributions of the photothermal (PT) and photocarrier (PC) signal components, an expression is derived for the thermal-to-plasma wave transition frequency ftc which is found to be wavelength-independent. The deviation of the PC component from the model at high frequency is quantitatively explained by a quasi-continuous distribution of carrier recombination lifetimes. The integral, broad frequency band (0.1 Hz-1 MHz) MIRR measurements simultaneously yielded the thermal diffusivity a, the effective IR optical absorption coefficient βeff, and the bulk carrier lifetime τc. Spectrally resolved frequency scans were conducted with interchangeable IR bandpass filters (2.2-11.3 μm) in front of the detector. The perfect spectral match of the PT and PC components is the direct experimental evidence of the key assumption in MIRR that de-exciting carriers are equivalent to blackbody (Planck) radiators. The exploitation of the β spectrum measured by MIRR allowed determining the background (equilibrium) free carrier concentration n0. At the shortest wavelength (3.3 μm), the photoluminescence (PL) component supersedes the PC one and has distinct features. The average sample temperature influences the PC component but not the PT one.

  19. Electric-field dependence of photocarrier generation efficiency of organic photoconductors

    SciTech Connect

    Umeda, Minoru

    2015-03-07

    The electric-field dependence of photocarrier generation efficiency has been investigated in several different types of organic photoconductor for electrophotography to elucidate the controlling factors of light-to-electrical energy conversion. The rate-determining step in generating photocarriers has been considered to be the charge transfer between two neighboring molecules. Overall photocarrier generation efficiency has been determined using the charge transfer velocity at the rate-determining step as a function of electric-field-dependent activation energy, which is influenced by the symmetry factor α and the energy gap ΔE. The formula used successfully fits the experimental data for different types of organic photoconductor over a wide field strengths range. From the fitting results of high-sensitivity photoconductors, the zero-field activation energy is small and the reactant lifetime is long. In addition, ΔE is zero, which implies that the hole-electron interaction in the reactant is negligible at the rate-determining step. In contrast, for low-sensitivity photoconductors, the zero-field activation energy is large and the reactant lifetime is short; however, ΔE < 0 and α > 0.5, which suggest that the hole-electron interaction is not negligible. Consequently, the proposed formula well explains the electric-field dependence of photocarrier generation efficiency on the basis of its controlling factors.

  20. Exceptional and Anisotropic Transport Properties of Photocarriers in Black Phosphorus.

    PubMed

    He, Jiaqi; He, Dawei; Wang, Yongsheng; Cui, Qiannan; Bellus, Matthew Z; Chiu, Hsin-Ying; Zhao, Hui

    2015-06-23

    One key challenge in developing postsilicon electronic technology is to find ultrathin channel materials with high charge mobilities and sizable energy band gaps. Graphene can offer extremely high charge mobilities; however, the lack of a band gap presents a significant barrier. Transition metal dichalcogenides possess sizable and thickness-tunable band gaps; however, their charge mobilities are relatively low. Here we show that black phosphorus has room-temperature charge mobilities on the order of 10(4) cm(2) V(-1) s(-1), which are about 1 order of magnitude larger than silicon. We also demonstrate strong anisotropic transport in black phosphorus, where the mobilities along the armchair direction are about 1 order of magnitude larger than in the zigzag direction. A photocarrier lifetime as long as 100 ps is also determined. These results illustrate that black phosphorus is a promising candidate for future electronic and optoelectronic applications. PMID:25961945

  1. Individual identification of free hole and electron dynamics in CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films by simultaneous monitoring of two optical transitions

    SciTech Connect

    Okano, Makoto; Hagiya, Hideki; Sakurai, Takeaki; Akimoto, Katsuhiro; Shibata, Hajime; Niki, Shigeru; Kanemitsu, Yoshihiko

    2015-05-04

    The photocarrier dynamics of CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGS) thin films were studied using white-light transient absorption (TA) measurements, as an understanding of this behavior is essential for improving the performance of solar cells composed of CIGS thin films. A characteristic double-peak structure due to the splitting of the valence bands in the CIGS was observed in the TA spectra under near-band-gap resonant excitation. From a comparison of the TA decay dynamics monitored at these two peaks, it was found that the slow-decay components of the electron and hole relaxation are on the nanosecond timescale. This finding is clear evidence of the long lifetimes of free photocarriers in polycrystalline CIGS thin films.

  2. Electronic Spectroscopy & Dynamics

    SciTech Connect

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  3. Dynamic Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  4. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  5. Photomodulation spectroscopy of photocarrier dynamics, electronic defects and morphology of conducting polymers. Final progress report, October 1, 1989--March 31, 1993

    SciTech Connect

    Vardeny, Z.V.

    1993-03-01

    A variety of techniques were used: CW photomodulation, photomodulation in femtosecond and picosecond time ranges, CW resonant Raman scattering, transient photoinduced Raman scattering, electro-absorption, degenerate four-wave mixing, spin dependent photomodulation, and absorption detected magnetic resonance. The following conducting polymers were studied: polyacetylene, polythiophene, polydiacetylene 4-BCMU, polydiethynylsilanes, polysilane embedded in a-Si:H matrix, and fullerenes.

  6. LETTER TO THE EDITOR: Efficient photocarrier injection in a transition metal oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Muraoka, Y.; Yamauchi, T.; Ueda, Y.; Hiroi, Z.

    2002-12-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO2/TiO2:Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO2:Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO2.

  7. Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Zhang, Hengkai; Tang, Xiaobing; Lai, King W. C.

    2016-07-01

    Graphene/silicon junction based photodetectors have attracted great interest due to their superior characteristics like large photosensitive area, fast photocarrier collection and low dark current. Currently, the weak optical absorption and short photocarrier lifetime of graphene remain major limitations for detection of infrared light with wavelengths above 1.2 μm. Here, we elucidate the mechanism of photocarrier transport in graphene/silicon junction based photodetector and propose a theoretical model to study the design and effect of finger-electrode structures on the photocurrent in graphene. We demonstrate that the top finger-like electrode in graphene/silicon photodetector can be designed to enhance the photocarrier collection efficiency in graphene by reducing the average transport distance of photocarriers. Therefore, the photoresponsivity of the graphene/silicon junction based photodetector can be increased. Our results have successfully demonstrated that by optimizing the design of finger electrodes, 4 times enhancement of photocurrents in graphene can be obtained at room temperature.

  8. Dynamic imaging with electron microscopy

    SciTech Connect

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  9. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  10. Electron Dynamics in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Schriver, David

    2001-01-01

    The goal of this research has been to study the effects of electrons on magnetotail dynamics and current sheet structure. The approach is to follow ion trajectories in a global model of the magnetotail, use a Boltzmann approximation to include electrons, and then to update the field model according to the currents that are generated by the cross-tail electric field and/or induced fields. Parallel (and perpendicular) electric fields that form are included through the Boltzmann relation. Transverse electron currents are to be included through adiabatic drift equations.

  11. Electron dynamics in Hall thruster

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  12. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  13. Photocarrier transport in iron-doped potassium lithium tantalate niobate studied by time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongxiang; Li, Yang; Tian, Hao; Li, Jun; Liu, Yuqiang; Yang, Yanqiang

    2009-07-01

    The photocarrier mobility of Fe 0.03 wt%-doped potassium lithium tantalate niobate (K 0.95Li 0.05Ta 0.61Nb 0.39O 3) was investigated by time-of-flight (TOF) measurement. The longitudinal photocarrier response due to pulsed excitation leads to values of the drift mobility of μh = 1.45 × 10 -2 cm 2/V s for holes, μe = 0.325 × 10 -2 cm 2/V s for electrons, and a value for the range of holes ( μτ) h = 4.38 × 10 -5 cm 2/V at room temperature and at low field 3 KV/cm. The response time of holes and electrons (or the relaxation time) is determined to be 3.02 × 10 -3 s and 3.74 × 10 -3 s, respectively. The mobility of holes strongly depends on the field strength, and is observed to decrease with increasing bias field.

  14. A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Zhu, Hugh L.; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C. H.

    2015-02-01

    It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics.

  15. A general design rule to manipulate photocarrier transport path in solar cells and its realization by the plasmonic-electrical effect.

    PubMed

    Sha, Wei E I; Zhu, Hugh L; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C H

    2015-01-01

    It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics. PMID:25686578

  16. A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect

    PubMed Central

    Sha, Wei E. I.; Zhu, Hugh L.; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C. H.

    2015-01-01

    It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics. PMID:25686578

  17. Realization of dynamical electronic systems

    NASA Astrophysics Data System (ADS)

    Hammari, Elena; Catthoor, Francky; Iasemidis, Leonidas; Kjeldsberg, Per Gunnar; Huisken, Jos; Tsakalis, Konstantinos

    2014-04-01

    This article gives an overview of a methodology for building dynamical electronic systems. As an example a part of a system for epileptic seizure prediction is used, which monitors EEG signals and continuously calculates the largest short-term Lyapunov exponents. In dynamical electronic systems, the cost of exploitation, for instance energy consumption, may vary substantially with the values of input signals. In addition, the functions describing the variations are not known at the time the system is designed. As a result, the architecture of the system must accommodate for the worst case exploitation costs, which rapidly exceed the available resources (for instance battery life) when accumulated over time. The presented system scenario methodology solves these challenges by identifying at design time groups of possible exploitation costs, called system scenarios, and implementing a mechanism to detect system scenarios at run time and re-configure the system to cost-efficiently accommodate them. During reconfiguration, the optimized system architecture settings for the active system scenario are selected and the total exploitation cost is reduced. When the dynamic behavior is due to input data variables with a large number of possible values, current techniques for bottom-up scenario identification and detection becomes too complex. A new top-down technique, based on polygonal regions, is presented in this paper. The results for the example system indicate that with 10 system scenarios the average energy consumption of the system can be reduced by 28% and brought within 5% of the theoretically best solution.

  18. Dynamical effects in electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Jianqiang Sky; Kas, J. J.; Sponza, Lorenzo; Reshetnyak, Igor; Guzzo, Matteo; Giorgetti, Christine; Gatti, Matteo; Sottile, Francesco; Rehr, J. J.; Reining, Lucia

    2015-11-01

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green's function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green's function, and we discuss the cancellation of various dynamical effects that occur in that case.

  19. Dynamical effects in electron spectroscopy

    SciTech Connect

    Zhou, Jianqiang Sky Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia; Kas, J. J.; Rehr, J. J.; Sponza, Lorenzo; Guzzo, Matteo; Gatti, Matteo

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case.

  20. Dynamical effects in electron spectroscopy.

    PubMed

    Zhou, Jianqiang Sky; Kas, J J; Sponza, Lorenzo; Reshetnyak, Igor; Guzzo, Matteo; Giorgetti, Christine; Gatti, Matteo; Sottile, Francesco; Rehr, J J; Reining, Lucia

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green's function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green's function, and we discuss the cancellation of various dynamical effects that occur in that case. PMID:26567648

  1. AgI microplate monocrystals with polar {0001} facets: spontaneous photocarrier separation and enhanced photocatalytic activity.

    PubMed

    Kuang, Qin; Zheng, Xiaoli; Yang, Shihe

    2014-02-24

    Elucidating the facet-dependent photocatalytic activity of semiconductor photocatalysts is important in improving the overall efficiency of photocatalysis. Furthermore, combining facet control with selective deposition of oxidation and/or reduction cocatalysts on specific faces of semiconductor photocatalysts is potentially an effective strategy to synergistically optimize the functionality of photocatalysts. In the present study, high-purity wurtzite-type β-AgI platelet microcrystals with polar {0001} facets were prepared by a facile polyvinylpyrrolidone-assisted precipitation reaction. The polar-faceted AgI microplates were used as archetypes to demonstrate preferential diametric migration (i.e., effective separation) of photogenerated electrons and holes along the c axis. Such vectorial electron-hole separation stems from the asymmetric surface structures, which give rise to distinct photoexcited reaction behaviors on the ±(0001) polar facets of wurtzite-type semiconductors. Furthermore, on selective deposition of Ag and MnOx (1.5photocarriers. PMID:24449437

  2. Trap State Effects in PbS Colloidal Quantum Dot Exciton Kinetics Using Photocarrier Radiometry Intensity and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Mandelis, Andreas; Melnikov, Alexander; Sun, Qiming

    2016-06-01

    Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for monitoring radiative recombination photon emissions while excluding thermal infrared photons due to non-radiative recombination, has been applied to PbS CQD thin films for the analysis of charge transport properties. Linear excitation intensity responses of PCR signals were found in the reported experimental conditions. The type and influence of trap states in the coupled PbS CQD thin film were analyzed with PCR temperature- and time-dependent results.

  3. Dynamical simulations of strongly correlated electron materials

    NASA Astrophysics Data System (ADS)

    Kress, Joel; Barros, Kipton; Batista, Cristian; Chern, Gia-Wei; Kotliar, Gabriel

    We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

  4. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate.

    PubMed

    Schmitt, S W; Brönstrup, G; Shalev, G; Srivastava, S K; Bashouti, M Y; Döhler, G H; Christiansen, S H

    2014-07-21

    Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level. PMID:24830733

  5. Electron magnetohydrodynamics: dynamics and turbulence.

    PubMed

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated. PMID:24329368

  6. Electron magnetohydrodynamics: Dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k1=k2 do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade ∝k-2. The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.

  7. Dynamics of energetic plasma sheet electrons

    NASA Astrophysics Data System (ADS)

    Burin Des Roziers, Edward

    2009-06-01

    The dynamics of energetic plasma sheet electrons plays an important role in many geomagnetic processes. The intent of this thesis is to extend the current understanding of the relationship between the solar wind and energetic plasma sheet electrons (~> 40 keV ), as well as the variability of these electrons within the plasma sheet. The statistical relationship between tens of keV plasma sheet electrons and the solar wind, as well as > 2 MeV geosynchronous electrons, is investigated, using plasma sheet measurements from Cluster (2001 - 2005) and Geotail (1998 - 2005), and concurrent solar wind measurements from ACE. Statistically, plasma sheet electron flux variations are compared to solar wind velocity, density, dynamic pressure, IMF B z , and solar wind energetic electrons, as well as > 2 MeV electrons at geosynchronous orbit. Several new results are revealed: (1) there is a strong positive correlation between energetic plasma sheet electrons and solar wind velocity; (2) this correlation is valid throughout the plasma sheet and extends to distances of X GSM =-30 R E ; (3) there is evidence of a weak negative correlation between energetic plasma sheet electrons and solar wind density; (4) energetic plasma sheet electrons are enhanced during times of southward interplanetary magnetic field (IMF); (5) there is no clear correlation between energetic plasma sheet electrons and solar wind electrons of comparable energies; and (6) there is a strong correlation between energetic electrons in the plasma sheet and > 2 MeV electrons at geosynchronous orbit measured 2 days later. In addition, the variability of energetic electron fluxes within the plasma sheet is explored. Interesting events were found using a combination of automated methods and visual inspection. Events are classified into 4 main types: (1) plasma sheet empty of energetic electrons; (2) decreasing plasma sheet energetic electron fluxes; (3) increasing plasma sheet energetic electron fluxes; and (4) sharp

  8. Electron dynamics controlled via self-interaction.

    PubMed

    Tamburini, Matteo; Keitel, Christoph H; Di Piazza, Antonino

    2014-02-01

    The dynamics of an electron in a strong laser field can be significantly altered by radiation reaction. This usually results in a strongly damped motion, with the electron losing a large fraction of its initial energy. Here we show that the electron dynamics in a bichromatic laser pulse can be indirectly controlled by a comparatively small radiation reaction force through its interplay with the Lorentz force. By changing the relative phase between the two frequency components of the bichromatic laser field, an ultrarelativistic electron bunch colliding head-on with the laser pulse can be deflected in a controlled way, with the deflection angle being independent of the initial electron energy. The effect is predicted to be observable with laser powers and intensities close to those of current state-of-the-art petawatt laser systems. PMID:25353414

  9. Hot electron dynamics in graphene

    SciTech Connect

    Ling, Meng-Chieh

    2011-01-01

    Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime

  10. Dynamic electron control using light and nanostructure

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Wei

    The advent of nano-technology has made possible the manipulation of electron or light through nanostructures. For example, a nano-tip in near-field optical microscopy allows imaging beyond the diffraction limit, and a nano-fabricated hologram is used to produce electron vortex beam. While most schemes of electron control utilize only static components, dynamic electron beam control using both light and nanostructures has not yet been realized. In this dissertation, we explore this possibility and study the interplay between electron, light, and nanostructures. A understanding of such a system may facilitate dynamic electron beam control or even bring new insights to fundamental quantum mechanics. The direct interaction between light and free electrons is weak, but the presence of nanostructures may modify the electron-light interaction in different ways. First, nanostructures may change a free electron's behavior by deforming the local vacuum field. When the electron's behavior is modified, its interaction with light could change too. Second, the illumination of light on nanostructures may give rise to induced surface charges or surface plasmon polaritons. The near-field of these charge structures could couple strongly with free electrons. To learn about electron dynamics in the vacuum field, we start with a classical harmonic oscillator. When the oscillator is immersed in the vacuum field, its interaction with light could be modified. Our study shows that the harmonic oscillator exhibits an integer-spaced spectrum instead of a single resonance. On the other hand, to study how induced surface charges could mediate interaction between light and free electrons, we illuminated different surfaces with a low-intensity laser. As an electron beam is brought close to a surface that is illuminated with light, electron deflection was observed. This is considered to be a preliminary study to the effect of light on the electrons in the presence of nanostructures. The

  11. Electronic continuum model for molecular dynamics simulations.

    PubMed

    Leontyev, I V; Stuchebrukhov, A A

    2009-02-28

    A simple model for accounting for electronic polarization in molecular dynamics (MD) simulations is discussed. In this model, called molecular dynamics electronic continuum (MDEC), the electronic polarization is treated explicitly in terms of the electronic continuum (EC) approximation, while the nuclear dynamics is described with a fixed-charge force field. In such a force-field all atomic charges are scaled to reflect the screening effect by the electronic continuum. The MDEC model is rather similar but not equivalent to the standard nonpolarizable force-fields; the differences are discussed. Of our particular interest is the calculation of the electrostatic part of solvation energy using standard nonpolarizable MD simulations. In a low-dielectric environment, such as protein, the standard MD approach produces qualitatively wrong results. The difficulty is in mistreatment of the electronic polarizability. We show how the results can be much improved using the MDEC approach. We also show how the dielectric constant of the medium obtained in a MD simulation with nonpolarizable force-field is related to the static (total) dielectric constant, which includes both the nuclear and electronic relaxation effects. Using the MDEC model, we discuss recent calculations of dielectric constants of alcohols and alkanes, and show that the MDEC results are comparable with those obtained with the polarizable Drude oscillator model. The applicability of the method to calculations of dielectric properties of proteins is discussed. PMID:19256627

  12. Electron and Proton Auroral Dynamics

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Frey, H. U.; Gerard, J. C.; Hubert, B.; Fuselier, S.; Spann, J. F., Jr.; Gladstone, R.; Burch, J. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Data from the Wide-band Imaging Camera (WIC) sensitive to far ultraviolet auroras and from the Spectrographic Imager (SI) channel SI12, sensitive to proton precipitation induced Lyman alpha were analyzed during a high altitude orbit segment of the IMAGE spacecraft. This segment began during the expansive phase of a substorm. The aurora changed into a double oval configuration, consisting of a set of discrete pole-ward forms and a separate diffuse auroral oval equatorwards, Although IMF Bz was strongly southward considerable activity could be seen poleward of the discrete auroras in the region that was considered to be the polar cap. The SI12 Doppler shifted Lyman alpha signature of precipitating protons show that the proton aurora is on the equatorward side of the diffuse aurora. In the following several hours the IMF Bz field changed signed. Although the general character of the proton and electron aurora did not change, the dayside aurora moved equatorward when the Bz was negative and more bright aurora was seen in the central polar cap during periods of positive Bz.

  13. Dynamics of dissociative electron attachment to ammonia

    NASA Astrophysics Data System (ADS)

    Rescigno, T. N.; Trevisan, C. S.; Orel, A. E.; Slaughter, D. S.; Adaniya, H.; Belkacem, A.; Weyland, Marvin; Dorn, Alexander; McCurdy, C. W.

    2016-05-01

    Ab initio theoretical studies and momentum-imaging experiments are combined to provide a consistent picture of the dynamics of dissociative electron attachment to ammonia through its 5.5- and 10.5-eV resonance channels. The present study clarifies the character and symmetry of the anion states involved and the dynamics that leads to the observed fragment-ion channels, their branching ratios, and angular distributions.

  14. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  15. Chaotic electron dynamics in gyrotron resonators

    SciTech Connect

    Kominis, Y.; Dumbrajs, O.; Avramides, K.A.; Hizanidis, K.; Vomvoridis, J.L.

    2005-04-15

    Phase space analysis of electron dynamics is used in combination with the canonical perturbation method and the KAM (Kolmogorov-Arnold-Moser) theory in order to study the dependence of the efficient gyrotron operation on the rf field profile and frequency mismatch. Knowledge of the boundaries of the electron motion provided through robust (slightly distorted) KAM surfaces is useful for optimizing depressed collectors and thereby for enhancement of overall efficiency of gyrotron operation.

  16. Electron Dynamics Near a Charged Radiator

    SciTech Connect

    Dufty, James W.; Wrighton, Jeffrey M.

    2008-10-22

    Time correlation functions for electron dynamics near a positively charged radiator are described by a mean field kinetic theory that is exact in the short time limit. The important case of the electric field autocorrelation function is examined and the dependence on radiator charge number is shown to be dominated by the bound states of the electron-ion potential. A very simple practical model is proposed and shown to be accurate over a wide range of electron-ion coupling conditions. The model is expected to be useful for more complex conditions confronted in recent theories for line shapes.

  17. Protein electron transfer: Dynamics and statistics.

    PubMed

    Matyushov, Dmitry V

    2013-07-14

    Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies

  18. Ultrafast dynamics of electrons in ammonia.

    PubMed

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron. PMID:25493716

  19. Ultrafast Dynamics of Electrons in Ammonia

    NASA Astrophysics Data System (ADS)

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

  20. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  1. Ultrafast electron optics: Propagation dynamics of femtosecond electron packets

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley J.; Dwyer, Jason R.; Jordan, Robert E.; Miller, R. J. Dwayne

    2002-08-01

    Time-resolved electron diffraction harbors great promise for resolving the fastest chemical processes with atomic level detail. The main obstacles to achieving this real-time view of a chemical reaction are associated with delivering short electron pulses with sufficient electron density to the sample. In this article, the propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. It is found that space-charge effects can broaden the electron pulse to many times its original length and generate many eV of kinetic energy bandwidth in only a few nanoseconds. There is excellent agreement between the N-body simulation and the mean-field model for both space-charge induced temporal and kinetic energy distribution broadening. The numerical simulation also shows that the redistribution of electrons inside the packet results in changes to the pulse envelope and the development of a spatially linear axial velocity distribution. These results are important for (or have the potential to impact on) the interpretation of time-resolved electron diffraction experiments and can be used in the design of photoelectron guns and streak tubes with temporal resolution of several hundred femtoseconds.

  2. Electron dynamics and its control in molecules

    NASA Astrophysics Data System (ADS)

    de Vivie-Riedle, Regina

    2014-03-01

    The accessibility of few femtosecond or even attoseconds pulses opens the door to direct observation of electron dynamics. The idea to steer chemical reactions by localization of electronic wavepackets is intriguing, since electrons are directly involved in bond breaking and formation. The formation of a localized electronic wavepacket requires the superposition of two or more appropriate electronic states. Its guidance is only possible within the coherence time of the system and has to be synchronized with the vibrational molecular motions. In theoretical studies we elucidate the role of electron wavepacket motion for the control of molecular processes. We give three examples with direct connection to experiments. From our analysis, we extract the systems requirements defining the time window for intramolecular electronic coherence, the basis for efficient control. Based on these findings we map out a photoreaction that allows direct control by guiding electronic wavepackets. The carrier envelope of a femtosecond few cycle IR pulse is the control parameter that steers the photoreaction through a conical intersection.

  3. Ultrafast electronic dynamics driven by nuclear motion

    NASA Astrophysics Data System (ADS)

    Vendrell, Oriol

    2016-05-01

    The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.

  4. Dynamics of electron transfer in amine photooxidation

    SciTech Connect

    Peters, K.S.; Freilich, S.C.; Schaeffer, C.G.

    1980-08-13

    Studies were initiated utilizing picosecond (ps) absorption spectroscopy, to directly monitor the dynamics of electron transfer from 1,4-diazabicyclo(2.2.2)octane (Dabco) to the excited states of benzophenone and fluorenone. These two systems were chosen because of their contrasting photochemistry. The quantum yield for photoreduction of benzophenone in polar solvents is generally greater than 0.1, while that of fluorenone is zero. In polar solvents, the proposed mechanism dictates that an electron is transferred to the excited singlet state fluorenone, which then back-transfers the electron, regenerating ground-state fluorenone and amine. Photolysis of benzophenone in the presence of an amine transfers an electron to an excited triplet state, forming an ion pair that is stable relative to diffusional separation. The results of this study verify this proposal.

  5. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    SciTech Connect

    Kanemoto, Katsuichi Nakatani, Hitomi; Domoto, Shinya

    2014-10-28

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5 × 10{sup 16 }cm{sup −3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  6. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  7. Structure and Dynamics with Ultrafast Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley

    In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.

  8. Dynamics of Attosecond Electron Wave Packets

    NASA Astrophysics Data System (ADS)

    Mauritsson, Johan

    2005-05-01

    We present results from some of the first experimental studies of attosecond electron wave packets created via the absorption of ultrashort extreme ultraviolet (XUV) light pulses [1]. The pulses, made via high harmonic generation, form an attosecond pulse train (APT) whose properties we can manipulate by a combination of spatial and spectral filtering. For instance, we show that on-target attosecond pulses of 170 as duration, which is close to the single cycle limit, can be produced [2]. The electron wave packets created when such an APT is used to ionize an atom are different from the tunneling wave packets familiar from strong field ionization. We show how to measure the dynamics of these wave packets in a strong infrared (IR) field, where the absorption of energy above the ionization threshold is found to depend strongly on the APT-IR delay [3]. We also demonstrate that altering the properties of the initial electron wave packet by manipulating the APT changes the subsequent continuum electron dynamics. Finally, we show how the phase of a longer, femtosecond electron wave packet can be modulated by a moderately strong IR pulse with duration comparable to or shorter than that of the electron wave packet. This experiment reveals how the normal ponderomotive shift of an XUV ionization event is modified when the IR pulse is shorter than the XUV pulse.[1] The experiments were done at Lund Institute of Technology, Sweden.[2] R. López-Martens, et al., Phys. Rev. Lett. 94, 033001 (2005)[3] P. Johnsson, et al., submitted to Phys. Rev. Lett.

  9. Noncontacting laser photocarrier radiometric depth profilometry of harmonically modulated band bending in the space-charge layer at doped SiO{sub 2}-Si interfaces

    SciTech Connect

    Mandelis, Andreas; Batista, Jerias; Gibkes, Juergen; Pawlak, Michael; Pelzl, Josef

    2005-04-15

    Laser infrared photocarrier radiometry (PCR) was used with a harmonically modulated low-power laser pump and a superposed dc superband-gap optical bias (a secondary laser beam) to control and monitor the space-charge-layer (SCL) width in oxidized p-Si-SiO{sub 2} and n-Si-SiO{sub 2} interfaces (wafers) exhibiting charged interface-state related band bending. Applying the theory of PCR-SCL dynamics [A. Mandelis, J. Appl. Phys. 97, 083508 (2005)] to the experiments yielded various transport parameters of the samples as well as depth profiles of the SCL exhibiting complete ( p-type Si) or partial (n-type Si) band flattening, to a degree controlled by widely different minority-carrier capture cross section at each interface. The uncompensated charge density at the interface was also calculated from the theory.

  10. Dynamical electronic nematicity from Mott physics

    SciTech Connect

    Okamoto, Satoshi; Senechal, D.; Civelli, M.; Tremblay, A.-M.

    2010-01-01

    Very large anisotropies in transport quantities have been observed in the presence of very small in-plane structural anisotropy in many strongly correlated electron materials. By studying the two-dimensional Hubbard model with dynamical-mean-field theory for clusters, we show that such large anisotropies can be induced without static stripe order if the interaction is large enough to yield a Mott transition. Anisotropy decreases at large frequency. The maximum effect on conductivity anisotropy occurs in the underdoped regime, as observed in high temperature superconductors.

  11. Origin of Photocarrier Losses in Iron Pyrite (FeS2) Nanocubes.

    PubMed

    Shukla, Sudhanshu; Xing, Guichuan; Ge, Hu; Prabhakar, Rajiv Ramanujam; Mathew, Sinu; Su, Zhenghua; Nalla, Venkatram; Venkatesan, Thirumalai; Mathews, Nripan; Sritharan, Thirumany; Sum, Tze Chien; Xiong, Qihua

    2016-04-26

    Iron pyrite has received significant attention due to its high optical absorption. However, the loss of open circuit voltage (Voc) prevents its further application in photovoltaics. Herein, we have studied the photophysics of pyrite by ultrafast laser spectroscopy to understand fundamental limitation of low Voc by quantifying photocarrier losses in high quality, stoichiometric, and phase pure {100} faceted pyrite nanocubes. We found that fast carrier localization of photoexcited carriers to indirect band edge and shallow trap states is responsible for major carrier loss. Slow relaxation component reflects high density of defects within the band gap which is consistent with the observed Mott-variable range hopping (VRH) conduction from transport measurements. Magnetic measurements strikingly show the magnetic ordering associated with phase inhomogeneity, such as FeS2-δ (0 ≤ δ ≤ 1). This implies that improvement of iron pyrite solar cell performance lies in mitigating the intrinsic defects (such as sulfur vacancies) by blocking the fast carrier localization process. Photocarrier generation and relaxation model is presented by comprehensive analysis. Our results provide insight into possible defects that induce midgap states and facilitate rapid carrier relaxation before collection. PMID:26962638

  12. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    SciTech Connect

    Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.

    2013-12-28

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  13. Dynamically programmable electronic pill dispenser system.

    PubMed

    Boquete, Luciano; Rodriguez-Ascariz, Jose Manuel; Artacho, Irene; Cantos-Frontela, Joaquin; Peixoto, Nathalia

    2010-06-01

    Compliance in medicine dispensation has proven critical for dosage control, diagnosis, and treatment. We have designed, manufactured, and characterized a novel dynamically programmable e-pill dispensing system. Our system is initially programmed remotely through a cell phone. After programming, the system may be reconfigured in order to adapt pill dispensation to new conditions. In this paper we describe the mechanics, electronics, control, and communication protocols implemented. Our dyn-e-pill devices can be actuated for over 350 h with two pill retrievals per hour. We challenged the charging circuit and demonstrated that the system has a lifetime longer than 6 h with a 30 min charging cycle, while it lasts for 14 h of uninterrupted use with a full charge. PMID:20503621

  14. Electron trapping in amorphous silicon: A quantum molecular dynamics study

    SciTech Connect

    Yang, Lin H.; Kalia, R.K.; Vashishta, P.

    1990-12-01

    Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius {approximately}3 {Angstrom} at finite temperatures. 12 refs.

  15. Electron dynamics in a plasma focus. [electron acceleration

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.; Winters, P. A.

    1977-01-01

    Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.

  16. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency. PMID:27315525

  17. Social Dynamics within Electronic Networks of Practice

    ERIC Educational Resources Information Center

    Mattson, Thomas A., Jr.

    2013-01-01

    Electronic networks of practice (eNoP) are special types of electronic social structures focused on discussing domain-specific problems related to a skill-based craft or profession in question and answer style forums. eNoP have implemented peer-to-peer feedback systems in order to motivate future contributions and to distinguish contribution…

  18. ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.

    SciTech Connect

    WANG, L.; WEI, J.

    2005-05-16

    Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

  19. Relativistic dynamics of the Compton diffusion on a bound electron

    NASA Astrophysics Data System (ADS)

    Al Saleh, Salwa

    2016-05-01

    A covariant relativistic formalism for the electron-photon and nuclear dynamics is summarised making more accurate predictions in agreement with experiments for Compton scattering in shells with large electron binding energy. An exact solution for the Dirac equation for an electron in the nuclear Coulomb field is obtained, in order to write the relativistic dynamics for this QED process. This is a preparation for the calculation of the relativistic cross-section for Compton scattering on bound electrons, as a precision test for QED.

  20. Runaway electron dynamics in tokamak plasmas with high impurity content

    SciTech Connect

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-15

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  1. Runaway electron dynamics in tokamak plasmas with high impurity content

    NASA Astrophysics Data System (ADS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-01

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  2. Electron Spin Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-07-15

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  3. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  4. Electron spin decoherence in nuclear spin baths and dynamical decoupling

    SciTech Connect

    Zhao, N.; Yang, W.; Ho, S. W.; Hu, J. L.; Wan, J. T. K.; Liu, R. B.

    2011-12-23

    We introduce the quantum theory of the electron spin decoherence in a nuclear spin bath and the dynamical decoupling approach for protecting the electron spin coherence. These theories are applied to various solid-state systems, such as radical spins in molecular crystals and NV centers in diamond.

  5. Lattice dynamics of neodymium: Influence of 4 f electron correlations

    NASA Astrophysics Data System (ADS)

    Waller, O.; Piekarz, P.; Bosak, A.; Jochym, P. T.; Ibrahimkutty, S.; Seiler, A.; Krisch, M.; Baumbach, T.; Parlinski, K.; Stankov, S.

    2016-07-01

    Incorporation of strong electron correlations into the density functional theory (DFT) for the electronic structure calculations of light lanthanides leads to a modification of interatomic forces and consequently the lattice dynamics. Using first-principles theory we demonstrate the substantial influence of the 4 f electron correlations on the phonon dispersion relations of Nd. The calculations are verified by an inelastic x-ray scattering experiment performed on a single-crystalline Nd(0001) film. We show that very good agreement between the calculated and measured data is achieved when electron-electron interactions are treated by the DFT +U approach.

  6. Role of Many-Electron Dynamics in High Harmonic Generation

    SciTech Connect

    Gordon, Ariel; Kaertner, Franz X.; Rohringer, Nina; Santra, Robin

    2006-06-09

    High harmonic generation (HHG) in many-electron atoms is studied theoretically. The breakdown of the frozen-core single active electron approximation is demonstrated, as it predicts roughly the same radiation amplitude in all noble gases. This is in contradiction with experiments, where heavier noble gases are known to emit much stronger HHG radiation than lighter ones. This experimental behavior of the noble gases can be qualitatively reproduced when many-electron dynamics, within a simple approximation, is taken into account.

  7. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  8. Electron transfer dynamics: Zusman equation versus exact theory.

    PubMed

    Shi, Qiang; Chen, Liping; Nan, Guangjun; Xu, Ruixue; Yan, YiJing

    2009-04-28

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations. PMID:19405605

  9. Atomically resolved real-space imaging of hot electron dynamics.

    PubMed

    Lock, D; Rusimova, K R; Pan, T L; Palmer, R E; Sloan, P A

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  10. Atomically resolved real-space imaging of hot electron dynamics

    NASA Astrophysics Data System (ADS)

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-09-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics.

  11. Atomically resolved real-space imaging of hot electron dynamics

    PubMed Central

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  12. Dynamical backaction cooling with free electrons

    PubMed Central

    Niguès, A.; Siria, A.; Verlot, P.

    2015-01-01

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms. PMID:26381454

  13. Electron dynamics with radiation and nonlinear wigglers

    SciTech Connect

    Jowett, J.M.

    1986-06-01

    The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches.

  14. Dynamical backaction cooling with free electrons

    NASA Astrophysics Data System (ADS)

    Niguès, A.; Siria, A.; Verlot, P.

    2015-09-01

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  15. Ultrafast dynamics of electrons at interfaces

    SciTech Connect

    McNeill, Jason D.

    1999-05-03

    Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. For Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure

  16. Dynamics of runaway electrons in magnetized plasmas

    SciTech Connect

    Moghaddam-Taaheri, E.

    1986-01-01

    The evolution of a runaway electron tail driven by a subcritical dc electric field in a magnetized plasma is studied numerically using a quasi-linear numerical code (2-D in v- and k-space) based on the Ritz-Galerkin method and finite elements. Three different regimes in the evolution of the runaway tail depending on the strength of the dc electric field and the ratio of plasma to gyrofrequency, were found. The tail can be (a) stable and the electrons are accelerated to large parallel velocities, (b) unstable to the Cerenkov resonance due to the formation of a positive slope on the runaway tail, (c) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution resulting in less acceleration. The synchrotron emission of the runaway electrons shows large enhancement in the radiation level at the high-frequency end of the spectrum during the pitch-angle scattering of the fast particles. The results are relevant to recent experimental data from the Princeton Large Torus (PLT) during current-drive experiments and to the microwave bursts observed during solar flares.

  17. Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals.

    PubMed

    Loiudice, Anna; Cooper, Jason K; Hess, Lucas H; Mattox, Tracy M; Sharp, Ian D; Buonsanti, R

    2015-11-11

    Multicomponent oxides and their heterostructures are rapidly emerging as promising light absorbers to drive oxidative chemistry. To fully exploit their functionality, precise tuning of their composition and structure is crucial. Here, we report a novel solution-based route to nanostructured bismuth vanadate (BiVO4) that facilitates the assembly of BiVO4/metal oxide (TiO2, WO3, and Al2O3) nanocomposites in which the morphology of the metal oxide building blocks is finely tailored. The combination of transient absorption spectroscopy-spanning from picoseconds to second time scales-and photoelectrochemical measurements reveals that the achieved structural tunability is key to understanding and directing charge separation, transport, and efficiency in these complex oxide heterostructured films. PMID:26457457

  18. Understanding electronically non-adiabatic relaxation dynamics in singlet fission.

    PubMed

    Tao, Guohua

    2015-01-13

    Nonadiabatic relaxation of one singlet state into two triplet states is the key step in singlet fission dynamics, the understandings of which may help design next generation solar cells. In this work we perform the symmetrical quasi-classical (SQC) nonadiabatic molecular dynamics (MD) simulation [Cotton and Miller, J. Phys. Chem. A, 2013, 117, 7190; Meyer and Miller, J. Chem. Phys. 1979, 70, 3214] for a model system to study the real-time fission dynamics. The dependence of the nonadiabatic relaxation dynamics on energy levels, electronic couplings, and electronic-phonon couplings has been examined, in comparison with other analytical approximations, such as Förster theory and Marcus theory. Unlike many other methods, the SQC nondiabatic MD simulation approach is able to describe fission dynamics efficiently and accurately enough to provide microscopic insights into singlet fission. PMID:26574200

  19. Quantum dynamics of secondary electron emission from nanographene

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2016-07-01

    We have observed secondary electron emission (SEE) from nanographene by applying time-dependent density functional theory simulations in real-time and real-space to electron scattering on target graphene-flakes. We obtained the incident-electron energy dependence and bilayer effect on the amount of secondary electron (SE). The dynamics of SEE and collective density oscillations, which are electronic excitations induced by electron impact, were demonstrated numerically, and elucidated by the time-dependent occupation numbers of the Kohn-Sham electronic levels. The SE yields from graphene flakes are found to be ˜0.1 . The highest energy of SE is ˜20 eV, which is compatible with the characteristics observed in SEE experiments.

  20. Dynamics of Hybrid Electronic-Neuronal Systems

    NASA Astrophysics Data System (ADS)

    Breen, Barbara; Garcia, Paul; Furman, Michael D.; Lindner, John; Ditto, William

    2001-03-01

    Hybrid systems of neurons and nonlinear electrical components may make possible a new breed of computer optimized for such applications as pattern recognition and the combinatorially explosive problems that are the bane of traditional computers. Because the dynamics of arrays of neurons are high dimensional, and as they are difficult to measure and control, we have focused our initial efforts on more manageable hybrid silicon-neuron systems. Here we present results from our numerical simulations and biological experiments involving a neuron coupled to Chua’s famous chaotic circuit. The results of our simulations reinforce the possibility of using the dynamics of hybrid systems for encoding numbers and performing computation [1]. For example, bi-directionally coupling the FitzHugh-Nagumo model neuron to the Chua model circuit resulted in co-existing stable limit cycles, which can be used to store information. The coupling was also able to convert periodic neuronal spiking to chaotic bursting. We observed similar results with the more physiologically relevant Pinsky-Rinzel [2] model neuron, which facilitated our transition to a living neuron, the rodent hippocampal CA3 pyramidal cell, which we coupled to an analog Chua circuit. [1] Sinha, S., Ditto, W.L., Phys. Rev. Lett., 81, 2156-2159 (1998); Sinha, S., Ditto, W.L., Phys. Rev. E, 60, 363-377 (1999) [2] Pinsky, P., Rinzel, J., Journ. Comp. Neuroscience, 1, 39-60 (1994)

  1. Coherent electron hole dynamics near a conical intersection.

    PubMed

    Timmers, Henry; Li, Zheng; Shivaram, Niranjan; Santra, Robin; Vendrell, Oriol; Sandhu, Arvinder

    2014-09-12

    The coherent evolution of an electron hole in a photoionized molecule represents an unexplored facet of charge transfer phenomena occurring in complex systems. Using ultrafast extreme ultraviolet spectroscopy, we investigate the real-time dynamics of an electron hole wave packet created near a conical intersection in CO_{2}. We resolve the oscillation of the electron hole density between σ and π character, driven by the coupled bending and asymmetric stretch vibrations of the molecule. We also quantify the mixing between electron hole configurations and find that the wave packet coherence diminishes with time due to thermal dephasing. PMID:25259975

  2. Electron Dynamics in Nanostructures in Strong Laser Fields

    SciTech Connect

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  3. Revealing Dissociative Electron Attachment Dynamics in Polyatomic Molecules Using Momentum Imaging Experiments and Electron Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Slaughter, Daniel

    2015-05-01

    Understanding electron-driven chemical reactions is important for improving a variety of technological applications such as materials processing and the important role they play in the radiation damage in bulk matter. Furthermore, dissociative electron attachment often exhibits site-selective bond cleavage, which holds promise for prediction and precise control of electron-driven chemical reactions. Recent dynamical studies of these reactions have demonstrated that an understanding of anion dissociation dynamics beyond simple one-dimensional models is crucial in interpreting the measured fragment angular distributions. We combine ion fragment momentum imaging experiments with electron attachment entrance amplitude calculations to interrogate the non-Born-Oppenheimer dynamics of dissociative electron attachment in polyatomic molecules. We will report recent experimental developments in molecules of technological interest including methanol, methane and uracil. Work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  4. Electronic transport and dynamics in correlated heterostructures

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Amaricci, A.; Capone, M.; Fabrizio, M.

    2015-05-01

    We investigate by means of the time-dependent Gutzwiller approximation the transport properties of a strongly correlated slab subject to Hubbard repulsion and connected with to two metallic leads kept at a different electrochemical potential. We focus on the real-time evolution of the electronic properties after the slab is connected to the leads and consider both metallic and Mott insulating slabs. When the correlated slab is metallic, the system relaxes to a steady state that sustains a finite current. The zero-bias conductance is finite and independent of the degree of correlations within the slab as long as the system remains metallic. On the other hand, when the slab is in a Mott insulating state, the external bias leads to currents that are exponentially activated by charge tunneling across the Mott-Hubbard gap, consistent with the Landau-Zener dielectric breakdown scenario.

  5. Dynamics of Dissociative Electron Attachment to Methane

    NASA Astrophysics Data System (ADS)

    Rescigno, T. N.; Douguet, N.; Fonseca, S.; Orel, A. E.; Slaughter, D. S.; Belkacem, A.

    2015-05-01

    We present the results of a theoretical ad experimental study of dissociative electron attachment (DEA) to CH4. The total DEA cross section is dominated by a single broad peak centered near 10 eV, leading predominantly to H-/CH4 and CH2-/CH4dissociation channels. We will present evidence that both of these ion channels result from excitation of a triply degenerate Feshbach resonance (doubly excited negative ion state) of 2T2 symmetry whose parent is the lowest excited triplet state of the neutral molecule. We will present calculated angular distributions based on analysis of the entrance amplitudes obtained from the results of complex Kohn scattering calculations along with experimentally measured angular distributions obtained using the COLTRIMS method. Work performed under the auspices of the US DOE by the LBNL and supported by the U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences.

  6. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  7. The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Choy, Wallace C. H.; Cho Chew, Weng

    2012-11-01

    A multiphysics study carries out on organic solar cells (OSCs) by solving Maxwell's and semiconductor equations simultaneously. By introducing a metallic rectangular-grating as the anode, surface plasmons are excited resulting in nonuniform exciton generation. Meanwhile, the internal E-field of plasmonic OSCs is modified with the modulated anode boundary. The plasmonic OSC improves 13% of short-circuit current but reduces 7% of fill factor (FF) compared to the standard one with a planar anode. The uneven photocarrier generation and transport by the grating anode are physical origins of the dropped FF. This work provides fundamental multiphysics modeling and understanding for plasmonic OSCs.

  8. Direct observation of electron dynamics in the attosecond domain.

    PubMed

    Föhlisch, A; Feulner, P; Hennies, F; Fink, A; Menzel, D; Sanchez-Portal, D; Echenique, P M; Wurth, W

    2005-07-21

    Dynamical processes are commonly investigated using laser pump-probe experiments, with a pump pulse exciting the system of interest and a second probe pulse tracking its temporal evolution as a function of the delay between the pulses. Because the time resolution attainable in such experiments depends on the temporal definition of the laser pulses, pulse compression to 200 attoseconds (1 as = 10(-18) s) is a promising recent development. These ultrafast pulses have been fully characterized, and used to directly measure light waves and electronic relaxation in free atoms. But attosecond pulses can only be realized in the extreme ultraviolet and X-ray regime; in contrast, the optical laser pulses typically used for experiments on complex systems last several femtoseconds (1 fs = 10(-15) s). Here we monitor the dynamics of ultrafast electron transfer--a process important in photo- and electrochemistry and used in solid-state solar cells, molecular electronics and single-electron devices--on attosecond timescales using core-hole spectroscopy. We push the method, which uses the lifetime of a core electron hole as an internal reference clock for following dynamic processes, into the attosecond regime by focusing on short-lived holes with initial and final states in the same electronic shell. This allows us to show that electron transfer from an adsorbed sulphur atom to a ruthenium surface proceeds in about 320 as. PMID:16034414

  9. Identifying the Stern-Gerlach force of classical electron dynamics.

    PubMed

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H

    2016-01-01

    Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron's orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model. PMID:27546820

  10. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    NASA Astrophysics Data System (ADS)

    Farasat, M.; Shojaei, S. H. R.; Morini, F.; Golzan, M. M.; Deleuze, M. S.

    2016-04-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born-Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ˜10.0 and ˜12.0 eV (band C) and between ˜16.5 and ˜20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion.

  11. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-03-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation.

  12. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we

  13. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. PMID:25969945

  14. Electron-hole dynamics in CdTe tetrapods.

    PubMed

    Malkmus, Stephan; Kudera, Stefan; Manna, Liberato; Parak, Wolfgang J; Braun, Markus

    2006-09-01

    We present transient absorption studies with femtosecond time resolution on the electron-hole dynamics in CdTe tetrapod nanostructures. Electron-hole pairs are generated by optical excitation in the visible spectral range, and an immediate bleach and induced absorption signal are observed. The relaxation dynamics to the lowest excitonic state is completed in about 6 ps. Experiments with polarized excitation pulses give information about the localization of the excited-state wave functions. The influence of the nanocrystal shape on the optical properties of CdTe nanoparticles is discussed. PMID:16942067

  15. Molecular interferometer to decode attosecond electron-nuclear dynamics.

    PubMed

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-03-18

    Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses. PMID:24591647

  16. Dynamic optometer. [for electronic recording of human lens anterior surface

    NASA Technical Reports Server (NTRS)

    Wilson, D. C.

    1974-01-01

    A dynamic optometer that electronically records the position of the anterior surface of the human lens is described. The geometrical optics of the eye and optometer, and the scattering of light from the lens, are closely examined to determine the optimum conditions for adjustment of the instrument. The light detector and associated electronics are also considered, and the operating conditions for obtaining the best signal-to-noise ratio are determined.

  17. Electronically Nonadiabatic Dynamics via Semiclassical Initial Value Methods

    SciTech Connect

    Miller, William H.

    2008-12-11

    In the late 1970's Meyer and Miller (MM) [J. Chem. Phys. 70, 3214 (1979)] presented a classical Hamiltonian corresponding to a finite set of electronic states of a molecular system (i.e., the various potential energy surfaces and their couplings), so that classical trajectory simulations could be carried out treating the nuclear and electronic degrees of freedom (DOF) in an equivalent dynamical framework (i.e., by classical mechanics), thereby describing non-adiabatic dynamics in a more unified manner. Much later Stock and Thoss (ST) [Phys. Rev. Lett. 78, 578 (1997)] showed that the MM model is actually not a 'model', but rather a 'representation' of the nuclear-electronic system; i.e., were the MMST nuclear-electronic Hamiltonian taken as a Hamiltonian operator and used in the Schroedinger equation, the exact (quantum) nuclear-electronic dynamics would be obtained. In recent years various initial value representations (IVRs) of semiclassical (SC) theory have been used with the MMST Hamiltonian to describe electronically non-adiabatic processes. Of special interest is the fact that though the classical trajectories generated by the MMST Hamiltonian (and which are the 'input' for an SC-IVR treatment) are 'Ehrenfest trajectories', when they are used within the SC-IVR framework the nuclear motion emerges from regions of non-adiabaticity on one potential energy surface (PES) or another, and not on an average PES as in the traditional Ehrenfest model. Examples are presented to illustrate and (hopefully) illuminate this behavior.

  18. Special issue on ultrafast electron and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Martin, Fernando; Hishikawa, Akiyoshi; Vrakking, Marc

    2014-06-01

    In the last few years, the advent of novel experimental and theoretical approaches has made possible the investigation of (time-resolved) molecular dynamics in ways not anticipated before. Experimentally, the introduction of novel light sources such as high-harmonic generation (HHG) and XUV/x-ray free electron lasers, and the emergence of novel detection strategies, such as time-resolved electron/x-ray diffraction and the fully coincident detection of electrons and fragment ions in reaction microscopes, has significantly expanded the arsenal of available techniques, and has taken studies of molecular dynamics into new domains of spectroscopic, spatial and temporal resolution, the latter including first explorations into the attosecond domain, thus opening completely new avenues for imaging electronic and nuclear dynamics in molecules. Along the way, particular types of molecular dynamics, e.g., dynamics around conical intersections, have gained an increased prominence, sparked by the realization of the essential role that this dynamics plays in relaxation pathways in important bio-molecular systems. In the short term, this will allow one to uncover and control the dynamics of elementary chemical processes such as, e.g., ultrafast charge migration, proton transfer, isomerization or multiple ionization, and to address new key questions about the role of attosecond coherent electron dynamics in chemical reactivity. The progress on the theoretical side has been no less impressive. Novel generations of supercomputers and a series of novel computational strategies have allowed nearly exact calculations in small molecules, as well as highly successful approximate calculations in large, polyatomic molecules, including biomolecules. Frequent and intensive collaborations involving both theory and experiment have been essential for the progress that has been accomplished. The special issue 'Ultrafast electron and molecular dynamics' seeks to provide an overview of the current

  19. Suprathermal electron dynamics and MHD instabilities in a tokamak

    NASA Astrophysics Data System (ADS)

    Kamleitner, J.; Coda, S.; Decker, J.; Graves, J. P.; the TCV Team

    2015-10-01

    The dynamics of suprathermal electrons in the presence of magnetohydrodynamics (MHD) activity and the excitation of MHD modes by suprathermal electrons are studied experimentally to improve the understanding of the interaction of fast particles with MHD instabilities in a tokamak. The study focuses on three different aspects of the internal kink mode with poloidal/toroidal mode number m/n=1/1 : the sawtooth instability, electron fishbones and coupled bursts alternating with sawtooth crashes (CAS), all located where the safety factor (q) profile approaches or takes the value q=1 . New quantitative results on suprathermal electron transport and an investigation of electron acceleration during sawtooth crashes are followed by the characterization of initial electron fishbone observations on the Tokamak à configuration variable (TCV). Finally, m/n=1/1 bursts associated with the sawtooth cycle, coupled to a persisting m/n=2/1 mode and alternating with sawtooth crashes, are discussed, in particular in view of the fast electron dynamics and their role in confinement degradation and mode excitation.

  20. Phase-space Dynamics of Runaway Electrons In Tokamaks

    SciTech Connect

    Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch

    2010-08-31

    The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.

  1. Dynamics Of Electronic Excitation Of Solids With Ultrashort Laser Pulse

    SciTech Connect

    Medvedev, Nikita; Rethfeld, Baerbel

    2010-10-08

    When ultrashort laser pulses irradiate a solid, photoabsorption by electrons in conduction band produces nonequilibrium highly energetic free electrons gas. We study the ionization and excitation of the electronic subsystem in a semiconductor and a metal (solid silicon and aluminum, respectively). The irradiating femtosecond laser pulse has a duration of 10 fs and a photon energy of h-bar {omega} = 38 eV. The classical Monte Carlo method is extended to take into account the electronic band structure and Pauli's principle for electrons excited to the conduction band. In the case of semiconductors this applies to the holes as well. Conduction band electrons and valence band holes induce secondary excitation and ionization processes which we simulate event by event. We discuss the transient electron dynamics with respect to the differences between semiconductors and metals. For metals the electronic distribution is split up into two branches: a low energy distribution as a slightly distorted Fermi-distribution and a long high energy tail. For the case of semiconductors it is split into two parts by the band gap. To thermalize, these excited electronic subsystems need longer times than the characteristic pulse duration. Therefore, the analysis of experimental data with femtosecond lasers must be based on non-equilibrium concepts.

  2. Identifying the Stern-Gerlach force of classical electron dynamics

    PubMed Central

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron’s orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model. PMID:27546820

  3. Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Lühmann, Dirk-Sören; Weitenberg, Christof; Sengstock, Klaus

    2015-07-01

    In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.

  4. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited)

    SciTech Connect

    Coda, S.

    2008-10-15

    Plasmas, both in the laboratory and in space, are often not in thermodynamic equilibrium, and the plasma electron distribution function is accordingly non-Maxwellian. Suprathermal electron tails can be generated by external drives, such as rf waves and electric fields, or internal ones, such as instabilities and magnetic reconnection. The variety and importance of the phenomena in which suprathermal electrons play a significant role explains an enduring interest in diagnostic techniques to investigate their properties and dynamics. X-ray bremsstrahlung emission has been studied in hot magnetized plasmas for well over two decades, flanked progressively by electron-cyclotron emission in geometries favoring the high-energy end of the distribution function (high-field-side, vertical, oblique emission), by electron-cyclotron absorption, by spectroscopic techniques, and at lower temperatures, by Langmuir probes and electrostatic analyzers. Continuous progress in detector technology and in measurement and analysis techniques, increasingly sophisticated layouts (multichannel and tomographic systems, imaging geometries), and highly controlled suprathermal generation methods (e.g., perturbative rf modulation) have all been brought to bear in recent years on an increasingly detailed, although far from complete, understanding of suprathermal electron dynamics.

  5. Electron-phonon interaction within classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.

    2016-07-01

    We present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e -ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.

  6. Electron-phonon interaction within classical molecular dynamics

    DOE PAGESBeta

    Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.

    2016-07-14

    Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computermore » simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.« less

  7. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  8. New attosecond spectroscopies for correlation-induced electron hole dynamics

    NASA Astrophysics Data System (ADS)

    Averbukh, Vitali

    2014-05-01

    In this talk I will present two of our recent ideas for new attosecond time-resolved measurements of electron hole dynamics: 1. Single-photon laser enabled Auger decay (spLEAD) spectroscopy and 2. High-harmonic generation (HHG) spectroscopy of Auger-type transitions. Unlike the well-known attosecond streaking, the proposed spectroscopies do not rely on photo- or secondary electron emission and are applicable to ultrafast electronic processes involving bound-bound transitions, such as electron correlation-driven charge migration. We simulate the new attosecond spectroscopies using both model and ab initio methods. Specific applications include hole migration in glycine, atomic Auger and Coster-Kronig decays as well as quasi-exponential dynamics of molecular orbital breakdown in trans-butadiene and propanal. The author acknowledges the financial support of the Engineering and Physical Sciences Research Council (EPSRC, UK) through the Career Acceleration Fellowship (Award No. EP/H003657/1) and the Programme Grant on Attosecond Dynamics (Award No. EP/I032517).

  9. The dynamical correlation in spacer-mediated electron transfer couplings

    SciTech Connect

    Yang, C.-H.; Hsu, C.-P.

    2006-06-28

    The dynamical correlation effect in electron transfer (ET) coupling was studied in this work, for cases where electrons tunnel through a many-electron environment. The ET couplings for three different bridge-mediated model systems were calculated: (I) trans-alkyl chains [H{sub 2}C-(CH{sub 2}){sub n}-CH{sub 2}, n=2-10], (II) two isomers of trans-1,4-dimethylenecyclohexane, and (III) two ethylenes spaced by a saturated ethane molecule. The couplings were calculated as half energy gaps of the two lowest adiabatic states. The dynamical correlation was included with spin-flip (SF) and ionization potential or electron affinity coupled-cluster singles and doubles (SF-CCSD and IP/EA-CCSD) and a {delta}CCSD scheme. The direct coupling (DC) scheme is also used as a way to obtain a solution with nondynamical correlation, since DC uses approximated eigenstates that are symmetry-restoring linear combinations of two symmetry-broken unrestricted Hartree-Fock configurations. For all cases tested except for one, results from the DC scheme closely follow the CCSD data, indicating that the dual-configuration solutions can be a good approximation of wave functions with nondynamical correlation included, but there exist exceptions. Comparing the DC results with SF-CCSD and IP or EA-CCSD data, we concluded that the dynamical correlation effect is small for most of the cases we tested.

  10. Enhancement of charge ordering by dynamic electron-phonon interaction

    NASA Astrophysics Data System (ADS)

    Singer, Andrej; Fullerton, Eric; Shpyrko, Oleg

    Symmetry breaking and emergence of order is one of the most fascinating phenomena in condensed matter physics and leads to a plethora of intriguing ground states such as in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting non-equilibrium dynamics of matter following ultrafast external excitation can provide even more striking routes to symmetry-lowered, ordered states, for instance, by accessing hidden equilibrium states in the free-energy landscape or dynamic stabilization of non-equilibrium states. This is remarkable because ultrafast excitation typically creates disorder, reduces the order parameter, and raises the symmetry. Here, we demonstrate for the case of antiferromagnetic chromium that moderate photo-excitation can transiently enhance the charge-density-wave (CDW) order by up to 30% above its equilibrium value, while strong excitation leads to an oscillating, large-amplitude CDW state that persists above the equilibrium transition temperature. Both effects result from dynamic electron-phonon interaction, which provides an efficient mechanism to selectively transform a broad excitation of the electronic order into a well defined, long-lived coherent lattice vibration. This mechanism may be exploited to transiently enhance the order parameter in other systems with coupled electronic and lattice orders. The data was collected at the x-ray free electron laser LCLS at SLAC.

  11. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  12. Gated electron sharing within dynamic naphthalene diimide-based oligorotaxanes.

    PubMed

    Avestro, Alyssa-Jennifer; Gardner, Daniel M; Vermeulen, Nicolaas A; Wilson, Eleanor A; Schneebeli, Severin T; Whalley, Adam C; Belowich, Matthew E; Carmieli, Raanan; Wasielewski, Michael R; Stoddart, J Fraser

    2014-04-22

    The controlled self-assembly of well-defined and spatially ordered π-systems has attracted considerable interest because of their potential applications in organic electronics. An important contemporary pursuit relates to the investigation of charge transport across noncovalently coupled components in a stepwise fashion. Dynamic oligorotaxanes, prepared by template-directed methods, provide a scaffold for directing the construction of monodisperse one-dimensional assemblies in which the functional units communicate electronically through-space by way of π-orbital interactions. Reported herein is a series of oligorotaxanes containing one, two, three and four naphthalene diimide (NDI) redox-active units, which have been shown by cyclic voltammetry, and by EPR and ENDOR spectroscopies, to share electrons across the NDI stacks. Thermally driven motions between the neighboring NDI units in the oligorotaxanes influence the passage of electrons through the NDI stacks in a manner reminiscent of the conformationally gated charge transfer observed in DNA. PMID:24623608

  13. Electron-Wavepacket Reaction Dynamics in Proton Transfer of Formamide

    NASA Astrophysics Data System (ADS)

    Nagashima, Kengo; Takatsuka, Kazuo

    2009-10-01

    We apply the semiclassical Ehrenfest theory, which provides electron wavepacket dynamics coupled to nuclear motion, to a study of water-assisted proton relay in formamide compared with a forced proton transfer in gas phase, both of which are associated with the tautomerization. We start with the enol (imidic acid) form HO-CH═NH and track its proton transfer process to the keto (amide) form O═CH-NH2. Identifying the fact that this is indeed a "proton transfer process" rather than hydrogen-atom migration in terms of radical character on the proton, we show a collective quantum flux of electrons, which flows backward against the proton motion. This backward flux compensates the electrons tightly covering the proton, as represented in the Mulliken charge. The enol form formamide is one of the simplest species in the group O═CR1-NHR2, which is a unit of polypeptide. In the gas phase, the nitrogen atom may have a pyramidal structure as in the ammonium molecule; therefore, the C-N bond may allow low barrier rotation along it. This rotation is strongly prohibited by the formation of the double bond C═N induced by the proton transfer. Not only the dynamical process of proton transfer itself but also the electronic structures left behind are greatly affected by the presence of water molecule(s) and polar solvents. In discussing the relative stability of the formamide after the proton transfer, the following resonance structures are frequently mentioned, O--CH═N+H2 ↔ O═CH-NH2. Here we address the dynamical manifestation of the resonance structures in terms of our dynamical electron theory.

  14. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Astrophysics Data System (ADS)

    Truhlar, Donald G.

    1993-04-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  15. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  16. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations.

    PubMed

    Narth, Christophe; Gillet, Natacha; Cailliez, Fabien; Lévy, Bernard; de la Lande, Aurélien

    2015-04-21

    Electron transfer in biological systems drives the processes of life. From cellular respiration to photosynthesis and enzymatic catalysis, electron transfers (ET) are chemical processes on which essential biological functions rely. Over the last 40 years, scientists have sought understanding of how these essential processes function in biology. One important breakthrough was the discovery that Marcus theory (MT) of electron transfer is applicable to biological systems. Chemists have experimentally collected both the reorganization energies (λ) and the driving forces (ΔG°), two parameters of Marcus theory, for a large variety of ET processes in proteins. At the same time, theoretical chemists have developed computational approaches that rely on molecular dynamics and quantum chemistry calculations to access numerical estimates of λ and ΔG°. Yet another crucial piece in determining the rate of an electron transfer is the electronic coupling between the initial and final electronic wave functions. This is an important prefactor in the nonadiabatic rate expression, since it reflects the probability that an electron tunnels from the electron donor to the acceptor through the intervening medium. The fact that a protein matrix supports electron tunneling much more efficiently than vacuum is now well documented, both experimentally and theoretically. Meanwhile, many chemists have provided examples of the rich physical chemistry that can be induced by protein dynamics. This Account describes our studies of the dynamical effects on electron tunneling. We present our analysis of two examples of natural biological systems through MD simulations and tunneling pathway analyses. Through these examples, we show that protein dynamics sustain efficient tunneling. Second, we introduce two time scales: τcoh and τFC. The former characterizes how fast the electronic coupling varies with nuclear vibrations (which cause dephasing). The latter reflects the time taken by the system

  17. Quantum dynamics and electronic spectroscopy within the framework of wavelets

    NASA Astrophysics Data System (ADS)

    Toutounji, Mohamad

    2013-03-01

    This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron-phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested.

  18. Electron-spin dynamics induced by photon spins

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2014-10-01

    Strong rotating magnetic fields may cause a precession of the electron's spin around the rotation axis of the magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite helicity features such a rotating magnetic field component but also carries spin. The laser's spin density, which can be expressed in terms of the laser's electromagnetic fields and potentials, couples to the electron's spin via a relativistic correction to the Pauli equation. We show that the quantum mechanical interaction of the electron's spin with the laser's rotating magnetic field and with the laser's spin density counteract each other in such a way that a net spin rotation remains with a precession frequency that is much smaller than the frequency one would expect from the rotating magnetic field alone. In particular, the frequency scales differently with the laser's electric field strength depending on whether relativistic corrections are taken into account or not. Thus, the relativistic coupling of the electron's spin to the laser's spin density changes the dynamics not only quantitatively but also qualitatively as compared to the nonrelativistic theory. The electron's spin dynamics are a genuine quantum mechanical relativistic effect.

  19. Dynamics of two-electron excitations in helium

    SciTech Connect

    Caldwell, C.D.; Menzel, A.; Frigo, S.P.

    1997-04-01

    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  20. Dynamical conductivity of strongly correlated electron systems at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Ouellette, Daniel Gerald

    The Mott metal-insulator transition (MIT) in transition-metal complex oxides results from strong electron-electron interactions and is accompanied by a rich spectrum of phenomena, including magnetic, charge, and orbital ordering, superconductivity, structural distortions, polarons, and very high-density 2-dimensional interface electron liquids. Recent advances in oxide heteroepitaxy allow interface control as a promising new approach to tuning the exotic properties of materials near the quantum critical point, with potential application to technologies including phase-change electronics, high power transistors, and sensors. The dynamical conductivity of oxide heterostructures is measured using a combination of terahertz time-domain spectroscopy, Fourier transform infrared spectroscopy, and dc magnetotransport. The rare-earth nickelates RNiO3 (R = La, Nd...) exhibit a temperature and bandwidth controlled MIT in bulk. Measurements of the Drude response in epitaxial thin films provide quantification of the strain-dependent mass enhancement in the metallic phase due to strong correlations. Reduction of LaNiO 3 film thickness leads to additional mass renormalization attributed to structural distortions at the heteroepitaxial interface, and an MIT is observed depending on the interfacing materials in coherent perovskite heterostructures. The rare-earth titanates RTiO3 exhibit a bandwidth and band filling controlled Mott MIT. Furthermore, the heterointerface between Mott insulating GdTiO3 and band insulating SrTiO3 exhibits a 2-dimensional itinerant electron liquid, with extremely high sheet densities of 3 x 1014 cm-2. The dynamical conductivity of the interface electrons is analyzed in terms of subband-dependent electron mobility and the established large polaron dynamics in bulk SrTiO3. Additional confinement of the electron liquids is achieved by decreasing the SrTiO3 layer thickness, with attendant increase in the dynamical mass. Taking the confinement to its extreme

  1. Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates.

    PubMed

    Jain, Prashant K; Qian, Wei; El-Sayed, Mostafa A

    2006-01-12

    We report the effect of aggregation in gold nanoparticles on their ultrafast electron-phonon relaxation dynamics measured by femtosecond transient absorption pump-probe spectroscopy. UV-visible extinction and transient absorption of the solution-stable aggregates of gold nanoparticles show a broad absorption in the 550-700-nm region in addition to the isolated gold nanoparticle plasmon resonance. This broad red-shifted absorption can be attributed to contributions from gold nanoparticle aggregates with different sizes and/or different fractal structures. The electron-phonon relaxation, reflected as a fast decay component of the transient bleach, is found to depend on the probe wavelength, suggesting that each wavelength interrogates one particular subset of the aggregates. As the probe wavelength is changed from 520 to 635 nm across the broad aggregate absorption, the rate of electron-phonon relaxation increases. The observed trend in the hot electron lifetimes can be explained on the basis of an increased overlap of the electron oscillation frequency with the phonon spectrum and enhanced interfacial electron scattering, with increasing extent of aggregation. The experimental results strongly suggest the presence of intercolloid electronic coupling within the nanoparticle aggregates, besides the well-known dipolar plasmon coupling. PMID:16471511

  2. Ultrafast studies of electron dynamics at metal-dielectric interfaces

    SciTech Connect

    Ge, Nien-Hui

    1998-10-01

    Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows that optical excitation creates interfacial electrons in quasifree states for motion parallel to the n-heptane/Ag(111) interface. These initially delocalized electrons decay into a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal by tunneling through the adlayer potential barrier. The localization time depends strongly on the electron's initial parallel momentum and exhibits a non-Arrhenius temperature dependence. The experimental findings are consistent with a 2-D self-trapping process in which electrons become localized by interacting with the topmost plane of the alkane layer. The energy dependence of

  3. SO(5, 1) dynamical symmetry for electron Zitterbewegung

    NASA Astrophysics Data System (ADS)

    Bruce, S. A.; Minning, P. C.

    1985-10-01

    Electron rest-frame internal canonical coordinates are reobtained by the free-particle Foldy-Wouthuysen transformation: Schrödinger “microscopic momentum”, Barut-Bracken “microscopic coordinate”, and the rest Hamiltonian, which describe Zitterbewegung in this frame. SO(4, 1) Snyder space-time invariant quantization is considered in order to construct a dynamical group for Zitterbewegung. The electron's internal structure appears associated with its secondorder self-energy process and governed by the 15-parameter dynamical group SO(5, 1). This is a generalization of Barut-Bracken symmetry which describes Zitterbewegung as generated by an algebra of the rotation group SO(5). This noncompact symmetry SO(5, 1) permits a natural interpretation for the operators of its algebra and introduces a generalization to higher-dimensional fermionic representations.

  4. Modeling Crabbing Dynamics in an Electron-Ion Collider

    SciTech Connect

    Castilla, Alejandro; Morozov, Vasiliy S.; Satogata, Todd J.; Delayen, Jean R.

    2015-09-01

    A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) of both electron and proton bunches. The same model was applied to both local and global crabbing schemes to determine the linear-order dynamical effects of the synchro-betatron coupling induced by crabbing.

  5. Electron Dynamics in Intense Laser Fields: A Bohmian Mechanics Study

    NASA Astrophysics Data System (ADS)

    Jooya, Hossein Z.; Telnov, Dmitry A.; Chu, Shih-I.

    2016-05-01

    We study the electron quantum dynamics of atomic hydrogen under intense near infrared laser fields by means of the De Broglie-Bohm's framework of Bohmian mechanics. This method is used to study the mechanism of the multiple plateau generation and the cut-off extension, as the main characteristic features of high order harmonic generation spectrum. Electron multiple recollision dynamics under intense mid-infrared laser fields is also investigated. In this case, the resulting patterns in the high-order harmonic generation and the above-threshold ionization spectra are analyzed by comprehensive picture provided by Bohmian mechanics. The time evolution of individual trajectories is closely studied to address some of the major structural features of the photoelectron angular distributions. This work is partially supported by DOE.

  6. Attosecond Dynamics of Electron Wave Packets in Intense Laser Fields

    NASA Astrophysics Data System (ADS)

    Varjú, K.; Johnsson, P.; Mauritsson, J.; López-Martens, R.; Gustafsson, E.; Remetter, T.; L'huillier, A.

    The continuous progress in the performances of light sources as well as detection techniques allows us to investigate and control the states of matter in even finer details. Light sources, ranging from the infrared (IR) to the extreme ultraviolet (XUV), are becoming increasingly coherent, intense, well characterized, and controlled. The shortest available light pulses are now significantly shorter than 1 fs [1]-[4], thus offering unique promise for studies of ultrafast electron dynamics.

  7. Static and dynamic variational principles for strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Potthoff, Michael

    2011-12-01

    The equilibrium state of a system consisting of a large number of strongly interacting electrons can be characterized by its density operator. This gives a direct access to the ground-state energy or, at finite temperatures, to the free energy of the system as well as to other static physical quantities. Elementary excitations of the system, on the other hand, are described within the language of Green's functions, i.e. time- or frequency-dependent dynamic quantities which give a direct access to the linear response of the system subjected to a weak time-dependent external perturbation. A typical example is angle-revolved photoemission spectroscopy which is linked to the single-electron Green's function. Since usually both, the static as well as the dynamic physical quantities, cannot be obtained exactly for lattice fermion models like the Hubbard model, one has to resort to approximations. Opposed to more ad hoc treatments, variational principles promise to provide consistent and controlled approximations. Here, the Ritz principle and a generalized version of the Ritz principle at finite temperatures for the static case on the one hand and a dynamical variational principle for the single-electron Green's function or the self-energy on the other hand are introduced, discussed in detail and compared to each other to show up conceptual similarities and differences. In particular, the construction recipe for non-perturbative dynamic approximations is taken over from the construction of static mean-field theory based on the generalized Ritz principle. Within the two different frameworks, it is shown which types of approximations are accessible, and their respective weaknesses and strengths are worked out. Static Hartree-Fock theory as well as dynamical mean-field theory are found as the prototypical approximations.

  8. Control of electron spin decoherence caused by electron nuclear spin dynamics in a quantum dot

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao; Yao, Wang; Sham, L. J.

    2007-07-01

    Control of electron spin decoherence in contact with a mesoscopic bath of many interacting nuclear spins in an InAs quantum dot is studied by solving the coupled quantum dynamics. The nuclear spin bath, because of its bifurcated evolution predicated on the electron spin up or down state, measures the which-state information of the electron spin and hence diminishes its coherence. The many-body dynamics of the nuclear spin bath is solved with a pair-correlation approximation. In the relevant timescale, nuclear pair-wise flip flops, as elementary excitations in the mesoscopic bath, can be mapped into the precession of non-interacting pseudo-spins. Such mapping provides a geometrical picture for understanding the decoherence and for devising control schemes. A close examination of nuclear bath dynamics reveals a wealth of phenomena and new possibilities of controlling the electron spin decoherence. For example, when the electron spin is flipped by a π-pulse at τ, its coherence will partially recover at \\sqrt{2}\\tau as a consequence of quantum disentanglement from the mesoscopic bath. In contrast to the re-focusing of inhomogeneously broadened phases by conventional spin-echoes, the disentanglement is realized through shepherding quantum evolution of the bath state via control of the quantum object. A concatenated construction of pulse sequences can eliminate the decoherence with arbitrary accuracy, with the nuclear nuclear spin interaction strength acting as the controlling small parameter.

  9. Protein dynamics modulated electron transfer kinetics in early stage photosynthesis

    NASA Astrophysics Data System (ADS)

    Kundu, Prasanta; Dua, Arti

    2013-01-01

    A recent experiment has probed the electron transfer kinetics in the early stage of photosynthesis in Rhodobacter sphaeroides for the reaction center of wild type and different mutants [Science 316, 747 (2007)]. By monitoring the changes in the transient absorption of the donor-acceptor pair at 280 and 930 nm, both of which show non-exponential temporal decay, the experiment has provided a strong evidence that the initial electron transfer kinetics is modulated by the dynamics of protein backbone. In this work, we present a model where the electron transfer kinetics of the donor-acceptor pair is described along the reaction coordinate associated with the distance fluctuations in a protein backbone. The stochastic evolution of the reaction coordinate is described in terms of a non-Markovian generalized Langevin equation with a memory kernel and Gaussian colored noise, both of which are completely described in terms of the microscopics of the protein normal modes. This model provides excellent fits to the transient absorption signals at 280 and 930 nm associated with protein distance fluctuations and protein dynamics modulated electron transfer reaction, respectively. In contrast to previous models, the present work explains the microscopic origins of the non-exponential decay of the transient absorption curve at 280 nm in terms of multiple time scales of relaxation of the protein normal modes. Dynamic disorder in the reaction pathway due to protein conformational fluctuations which occur on time scales slower than or comparable to the electron transfer kinetics explains the microscopic origin of the non-exponential nature of the transient absorption decay at 930 nm. The theoretical estimates for the relative driving force for five different mutants are in close agreement with the experimental estimates obtained using electrochemical measurements.

  10. Protein dynamics modulated electron transfer kinetics in early stage photosynthesis.

    PubMed

    Kundu, Prasanta; Dua, Arti

    2013-01-28

    A recent experiment has probed the electron transfer kinetics in the early stage of photosynthesis in Rhodobacter sphaeroides for the reaction center of wild type and different mutants [Science 316, 747 (2007)]. By monitoring the changes in the transient absorption of the donor-acceptor pair at 280 and 930 nm, both of which show non-exponential temporal decay, the experiment has provided a strong evidence that the initial electron transfer kinetics is modulated by the dynamics of protein backbone. In this work, we present a model where the electron transfer kinetics of the donor-acceptor pair is described along the reaction coordinate associated with the distance fluctuations in a protein backbone. The stochastic evolution of the reaction coordinate is described in terms of a non-Markovian generalized Langevin equation with a memory kernel and Gaussian colored noise, both of which are completely described in terms of the microscopics of the protein normal modes. This model provides excellent fits to the transient absorption signals at 280 and 930 nm associated with protein distance fluctuations and protein dynamics modulated electron transfer reaction, respectively. In contrast to previous models, the present work explains the microscopic origins of the non-exponential decay of the transient absorption curve at 280 nm in terms of multiple time scales of relaxation of the protein normal modes. Dynamic disorder in the reaction pathway due to protein conformational fluctuations which occur on time scales slower than or comparable to the electron transfer kinetics explains the microscopic origin of the non-exponential nature of the transient absorption decay at 930 nm. The theoretical estimates for the relative driving force for five different mutants are in close agreement with the experimental estimates obtained using electrochemical measurements. PMID:23387626

  11. Dynamics of quantal heating in electron systems with discrete spectra

    NASA Astrophysics Data System (ADS)

    Dietrich, Scott; Mayer, William; Vitkalov, Sergey; Bykov, A. A.

    2015-05-01

    The temporal evolution of quantal Joule heating of two-dimensional (2D) electrons in a GaAs quantum well placed in quantizing magnetic fields is studied using a difference-frequency method. The method is based on measurements of the electron conductivity oscillating at the beat frequency f =f1-f2 between two microwaves applied to the 2D system at frequencies f1 and f2. The method provides direct access to the dynamical characteristics of the heating and yields the inelastic-scattering time τi n of 2D electrons. The obtained τi n is strongly temperature dependent, varying from 0.13 ns at 5.5 K to 1 ns at 2.4 K in magnetic field B =0.333 T . When the temperature T exceeds the Landau-level separation, the relaxation rate 1 /τi n is proportional to T2, indicating electron-electron interaction as the dominant mechanism limiting the quantal heating. At lower temperatures, the rate tends to be proportional to T3, indicating considerable contribution from electron-phonon scattering.

  12. Imaging the dynamics of free-electron Landau states.

    PubMed

    Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco

    2014-01-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563

  13. The Delicate Balance of Static and Dynamic Electron Correlation.

    PubMed

    Stein, Christopher J; von Burg, Vera; Reiher, Markus

    2016-08-01

    Multi-configurational approaches yield universal wave function parametrizations that can qualitatively well describe electronic structures along reaction pathways. For quantitative results, multi-reference perturbation theory is required to capture dynamic electron correlation from the otherwise neglected virtual orbitals. Still, the overall accuracy suffers from the finite size and choice of the active orbital space and peculiarities of the perturbation theory. Fortunately, the electronic wave functions at equilibrium structures of reactants and products can often be well described by single-reference methods and hence are accessible to accurate coupled cluster calculations. Here, we calculate the heterolytic double dissociation energy of four 3d-metallocenes with the complete active space self-consistent field method and compare to highly accurate coupled cluster data. Our coupled cluster data are well within the experimental error bars. This accuracy can also be approached by complete active space calculations with an orbital selection based on information entropy measures. The entropy based active space selection is discussed in detail. We find a very subtle balance between static and dynamic electron correlation effects that emphasizes the need for algorithmic active space selection and that differs significantly from restricted active space results for identical active spaces reported in the literature. PMID:27409981

  14. Spectral dynamics of a collective free electron maser

    SciTech Connect

    Eecen, P.J.; Schep, T.J.; Tulupov, A.V.

    1995-12-31

    A theoretical and numerical study of the nonlinear spectral dynamics of a Free Electron Maser (FEM) is reported. The electron beam is modulated by a step-tapered undulator consisting of two sections with different strengths and lengths. The sections have equal periodicity and are separated by a field-free gap. The millimeter wave beam is guided through a rectangular corrugated waveguide. The electron energy is rather low and the current density is large, therefore, the FEM operates in the collective (Raman) regime. Results of a computational study on the spectral dynamics of the FEM are presented. The numerical code is based on a multifrequency model in the continuous beam limit with a 3D description of the electron beam. Space-charge forces are included by a Fourier expansion. These forces strongly influence the behaviour of the generated spectrum of the FEM. The linear gain of the FEM is high, therefore, the system quickly reaches the nonlinear regime. In saturation the gain is still relatively high and the spectral signal at the resonant frequency of the second undulator is suppressed. The behaviour of the sidebands is analysed and their dependence on mirror reflectivity and undulator parameters will be discussed.

  15. Electron dynamics and valley relaxation in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Gundogdu, Kenan

    2015-03-01

    Single layer transition metal dichalcogenides are 2D semiconducting systems with unique electronic band structure. Two-valley energy bands along with strong spin-orbital coupling lead to valley dependent career spin polarization, which is the basis for recently proposed valleytronic applications. Since the durations of valley population provide the time window in which valley specific processes take place, it is an essential parameter for developing valleytronic devices. These systems also exhibit unusually strong many body affects, such as strong exciton and trion binding, due to reduced dielectric screening of Coulomb interactions. But there is not much known about the impact of strong many particle correlations on spin and valley polarization dynamics. Here we report direct measurements of ultrafast valley specific relaxation dynamics in single layer MoS2 and WS2. We found that excitonic many body interactions significantly contribute to the relaxation process. Biexciton formation reveals hole valley spin relaxation time. Our results also suggest initial fast intervalley electron scattering and electron spin relaxation leads to loss of electron valley polarization, which then facilitates hole valley relaxation via excitonic spin exchange interaction.

  16. Imaging the dynamics of free-electron Landau states

    PubMed Central

    Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco

    2014-01-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563

  17. Quantitative Carrier Density Wave Imaging in Silicon Solar Cells Using Photocarrier Radiometry and Lock-in Carrierography

    NASA Astrophysics Data System (ADS)

    Sun, Q. M.; Melnikov, A.; Mandelis, A.

    2016-04-01

    InGaAs camera-based low-frequency homodyne and high-frequency heterodyne lock-in carrierographies (LIC) are introduced for spatially resolved imaging of optoelectronic properties of Si solar cells. Based on the full theory of solar cell photocarrier radiometry (PCR), several simplification steps were performed aiming at the open circuit case, and a concise expression of the base minority carrier density depth profile was obtained. The model shows that solar cell PCR/LIC signals are mainly sensitive to the base minority carrier lifetime. Both homodyne and heterodyne frequency response data at selected locations on a mc-Si solar cell were used to extract the local base minority carrier lifetimes by best fitting local experimental data to theory.

  18. Probing ultrafast electronic and molecular dynamics with free-electron lasers

    NASA Astrophysics Data System (ADS)

    Fang, L.; Osipov, T.; Murphy, B. F.; Rudenko, A.; Rolles, D.; Petrovic, V. S.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Berrah, N.

    2014-06-01

    Molecular dynamics is an active area of research, focusing on revealing fundamental information on molecular structures and photon-molecule interaction and with broad impacts in chemical and biological sciences. Experimental investigation of molecular dynamics has been advanced by the development of new light sources and techniques, deepening our understanding of natural processes and enabling possible control and modification of chemical and biomolecular processes. Free-electron lasers (FELs) deliver unprecedented intense and short photon pulses in the vacuum ultraviolet and x-ray spectral ranges, opening a new era for the study of electronic and nuclear dynamics in molecules. This review focuses on recent molecular dynamics investigations using FELs. We present recent work concerning dynamics of molecular interaction with FELs using an intrinsic clock within a single x-ray pulse as well as using an external clock in a pump-probe scheme. We review the latest developments on correlated and coincident spectroscopy in FEL-based research and recent results revealing photo-induced interaction dynamics using these techniques. We also describe new instrumentations to conduct x-ray pump-x-ray probe experiments with spectroscopy and imaging detectors.

  19. Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy

    SciTech Connect

    Reed, B W; Armstrong, M R; Blobaum, K J; Browning, N D; Burnham, A K; Campbell, G H; Gee, R; Kim, J S; King, W E; Maiti, A; Piggott, W T; Torralva, B R

    2007-02-22

    The Dynamic Transmission Electron Microscope (DTEM) project is developing an in situ electron microscope with nanometer- and nanosecond-scale resolution for the study of rapid laser-driven processes in materials. We report on the results obtained in a year-long LDRD-supported effort to develop DTEM techniques and results for phase transitions in molecular crystals, reactive multilayer foils, and melting and resolidification of bismuth. We report the first in situ TEM observation of the HMX {beta}-{delta} phase transformation in sub-{micro}m crystals, computational results suggesting the importance of voids and free surfaces in the HMX transformation kinetics, and the first electron diffraction patterns of intermediate states in fast multilayer foil reactions. This project developed techniques which are applicable to many materials systems and will continue to be employed within the larger DTEM effort.

  20. Dynamics of photoinduced electron transfer from adsorbed molecules into solids

    NASA Astrophysics Data System (ADS)

    Gundlach, L.; Ernstorfer, R.; Willig, F.

    2007-08-01

    Ultrafast interfacial electron transfer from the donor orbital of organic chromophores into empty electronic acceptor states of a semiconductor and of a metal was investigated by two-photon photoemission spectroscopy (2PPE). Experimental tools and procedures have been developed for carrying out wet-chemistry preparation of the molecule/solid interface. The organic chromophore perylene was investigated with several different bridge/anchor groups on TiO2(110). One perylene compound was investigated for comparison on Ag(110). Angle and polarization dependent 2PPE measurements revealed the orientation of the perylene chromophore on the surface as controlled by the adsorption geometry of the respective anchor group on TiO2. UPS measurements gave the position of the HOMO level of the chromophore with respect to the Fermi level of the solid. The donor level of each molecule was found high enough to fulfill the “wide band limit” of heterogeneous electron transfer dynamics. Time constants for heterogeneous electron transfer were extracted from 2PPE transients. A difference by a factor of four was found, 13 fs against 47 fs, when a conjugated bond was exchanged for a saturated bond in the otherwise identical bridge group. The two different contributions to the 2PPE transients arising firstly from the excited state of the chromophore and secondly from the injected electrons were separated by measuring the latter contribution separately in the case of instantaneous interfacial electron transfer realized with catechol as adsorbate. The time scales measured for the electron transfer step and for the subsequent electron escape process from the surface into the bulk of TiO2 showed both good agreement with recent theoretical predictions of other groups for these systems.

  1. Optical pump-terahertz probe analysis of long-lived d-electrons and relaxation to self-trapped exciton states in MnO

    NASA Astrophysics Data System (ADS)

    Nishitani, Junichi; Nagashima, Takeshi; Lippmaa, Mikk; Suemoto, Tohru

    2016-04-01

    The dynamics of photoexcited electrons in various excited d-states was investigated in a transition metal oxide MnO by tunable optical pump-terahertz probe measurements. Photoexcited electrons in the lowest excited d-state showed the longest relaxation time among the three excited d-states that are accessible in MnO at room temperature. The relaxation rate in the lowest excited d-state showed a drastic increase below the Neel temperature TN = 120 K in MnO. We conclude that this increase is caused by the appearance of a decay channel related to magnetic-excitation-assisted photoluminescence from self-trapped exciton (STE) states. The opening of relaxation channels to the STE states in an antiferromagnetic phase suggests that it may be possible to control photocarrier lifetime by magnetic order in transition metal oxides.

  2. Pulsed Power for a Dynamic Transmission Electron Microscope

    SciTech Connect

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  3. Electron dynamics and ion acceleration in expanding-plasma thrusters

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Cannat, F.; Jarrige, J.; Elias, P. Q.; Packan, D.

    2015-12-01

    In most expanding-plasma thrusters, ion acceleration occurs due to the formation of ambipolar-type electric fields; a process that depends strongly on the electron dynamics of the discharge. The electron properties also determine the heat flux leaving the thruster as well as the maximum ion energy, which are important parameters for the evaluation of thruster performance. Here we perform an experimental and theoretical investigation with both magnetized, and unmagnetized, low-pressure thrusters to explicitly determine the relationship between the ion energy, E i , and the electron temperature, T e0. With no magnetic field a relatively constant value of {{E}i}/{{T}e0}≈ 6 is found for xenon, while when a magnetic nozzle is present, {{E}i}/{{T}e0} is between about 4-5. These values are shown to be a function of both the magnetic field strength, as well as the electron energy distribution function, which changes significantly depending on the mass flow rate (and hence neutral gas pressure) used in the thruster. The relationship between the ion energy and electron temperature allows estimates to be made for polytropic indices of use in a number of fluid models, as well as estimates of the upper limits to the performance of these types of systems, which for xenon and argon result in maximum specific impulses of about 2500 s and 4500 s respectively.

  4. Dynamic Phase Shifts in Nanoscale Distance Measurements by Double Electron Electron Resonance (DEER)†

    SciTech Connect

    Bowman, Michael K.; Maryasov, Alexander G.

    2007-04-01

    The off-resonant pump pulse used in double electron electron resonance (DEER) measurements produces dynamic phase shifts that are explained here by simple analytic and vector descriptions of the full range of signal behaviors observed during DEER measurements, including: large phase shifts in the signal; changes in the position and shape of the detected echo; and changes in the signal intensity. The dynamic phase shifts depend on the width, amplitude and offset frequency of the pump pulse. Isolated radicals as well as pairs or clusters of dipolar-coupled radicals have the same dynamic phase shift that is independent of pump pulse delay in a typical measurement. A method of calibrating both the pump pulse offset frequency and the pump pulse field strength is outlined. A vector model is presented that explains the dynamic phase shifts in terms of precessing magnetization that is either spin locked or precessing about the effective pump field during the pump pulse. Implications of the dynamic phase shifts are discussed as they relate to setting up, calibrating and interpreting the results of DEER measurements.

  5. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    SciTech Connect

    Bouchard, A.M.

    1994-07-27

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.

  6. Dynamic electron arc radiotherapy (DEAR): a feasibility study

    NASA Astrophysics Data System (ADS)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-01

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm2 and 3×10 cm2 for a 15×15 cm2 applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min-1). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  7. Tracing molecular electronic excitation dynamics in real time and space.

    PubMed

    Dutoi, Anthony D; Cederbaum, Lorenz S; Wormit, Michael; Starcke, Jan Hendrik; Dreuw, Andreas

    2010-04-14

    We present a method for studying the movement of electrons and energy within and between electronically excited molecules. The dynamically changing state is a many-electron wavepacket, for which we numerically integrate the Schrodinger equation using the ADC(2) effective Hamiltonian for the particle-hole propagator. We develop the tools necessary for following the separate motions of the particles and holes. Total particle and hole densities can be used to give an overview of the dynamics, which can be atomically decomposed in a Mulliken fashion, or individual particle and hole states give a more detailed look at the structure of an excitation. We apply our model to a neon chain, as an illustrative example, projecting an excited eigenstate of an isolated atom onto the coupled system as the initial state. In addition to demonstrating our propagation and analysis machinery, the results show a dramatic difference in excitation-energy transfer rates as a consequence of initial polarization. Furthermore, already in a system with three constituents, an important aspect of multiple coupled systems appears, in that one absorbing system essentially shields another, changing the effective sitewise coupling parameters. PMID:20405991

  8. Local spin dynamics with the electron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Soga, Kota; Senami, Masato; Tachibana, Akitomo

    2016-01-01

    The local spin dynamics of the electron is studied from the viewpoint of the electric dipole moment (EDM) of the electron in the framework of the quantum field theory. The improvements of the computational accuracy of the effective electric field (Eeff) for the EDM and the understanding of spin precession are important for the experimental determination of the upper bound of the EDM. Calculations of Eeff in YbF (2Σ1 /2 ), BaF (2Σ1 /2 ), ThO (3Δ1 ), and HF+ (2Π1 /2 ) are performed on the basis of the restricted active space configuration interaction approach by using the four-component relativistic electronic structure calculation. The spin precession is also discussed from the viewpoint of local spin torque dynamics. We show that a contribution to the torque density for the spin is brought into by the EDM. Distributions of the local spin angular momentum density and torque densities induced by external fields in the above molecules are calculated and a property related with large Eeff is discussed.

  9. Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3

    DOE PAGESBeta

    Valdés Aguilar, R.; Qi, J.; Brahlek, M.; Bansal, N.; Azad, A.; Bowlan, J.; Oh, S.; Taylor, A. J.; Prasankumar, R. P.; Yarotski, D. A.

    2015-01-07

    We use optical pump–THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi2Se3 films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. Furthermore, these different dynamics are attributed tomore » the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.« less

  10. Atomic-Resolution 3D Electron Microscopy with Dynamic Diffraction

    SciTech Connect

    O'Keefe, Michael A.; Downing, Kenneth H.; Wenk, Hans-Rudolf; Meisheng, Hu

    2005-02-15

    Achievement of atomic-resolution electron-beam tomography will allow determination of the three-dimensional structure of nanoparticles (and other suitable specimens) at atomic resolution. Three-dimensional reconstructions will yield ''section'' images that resolve atoms overlapped in normal electron microscope images (projections), resolving lighter atoms such as oxygen in the presence of heavier atoms, and atoms that lie on non-lattice sites such as those in non-periodic defect structures. Lower-resolution electron microscope tomography has been used to produce reconstructed 3D images of nanoparticles [1] but extension to atomic resolution is considered not to be straightforward. Accurate three-dimensional reconstruction from two-dimensional projections generally requires that intensity in the series of 2-D images be a monotonic function of the specimen structure (often specimen density, but in our case atomic potential). This condition is not satisfied in electron microscopy when specimens with strong periodicity are tilted close to zone-axis orientation and produce ''anomalous'' image contrast because of strong dynamic diffraction components. Atomic-resolution reconstructions from tilt series containing zone-axis images (with their contrast enhanced by strong dynamical scattering) can be distorted when the stronger zone-axis images overwhelm images obtained in other ''random'' orientations in which atoms do not line up in neat columns. The first demonstrations of 3-D reconstruction to atomic resolution used five zone-axis images from test specimens of staurolite consisting of a mix of light and heavy atoms [2,3]. Initial resolution was to the 1.6{angstrom} Scherzer limit of a JEOL-ARM1000. Later experiments used focal-series reconstruction from 5 to 10 images to produce staurolite images from the ARM1000 with resolution extended beyond the Scherzer limit to 1.38{angstrom} [4,5]. To obtain a representation of the three-dimensional structure, images were obtained

  11. Temporal dynamics of storage ring free electron lasers

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Hara, T.; Gontier, D.; Troussel, P.; Garzella, D.; Delboulbé, A.; Billardon, M.

    1996-02-01

    The growth and saturation of a storage ring free electron laser (SRFEL) is driven by the beam behavior, including bunch lengthening or coherent modes of longitudinal motion (the bunch length being related to the energy spread), detuning effects, and a modification of the bunch distribution by the FEL interaction; all of these phenomena are accumulated for various passes, leading to complex dynamical processes. The knowledge and understanding of the dynamics, together with the stability over time are essential for efficient use of SRFEL sources. This is illustrated with the Super-ACO FEL experiment, analyzed from growth from the positron bunch to laser saturation and induced positron beam modification. Stability analysis (jitter, shape, intensity) is then performed carefully. A longitudinal feedback system can significantly improve it. Information provided with a streak camera reveals the distribution of a single FEL micropulse or synchrotron radiation pulse without any averaging or sampling.

  12. Electron-spin dynamics in elliptically polarized light waves

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Grobe, Rainer

    2014-11-01

    We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent perturbation theory based on the fully relativistic Dirac equation and on the nonrelativistic Pauli equation that is amended by a relativistic correction that accounts for the light's spin density.

  13. Electron density and plasma dynamics of a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J.

    2016-07-01

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH2 at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ṡ 1015 cm-3 for a single accelerated plasma and a maximum value of ≈2.6 ṡ 1016 cm-3 for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  14. Protein electron transfer: is biology (thermo)dynamic?

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  15. Protein electron transfer: is biology (thermo)dynamic?

    PubMed

    Matyushov, Dmitry V

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life's ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein's elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic activated

  16. An accurate dynamical electron diffraction algorithm for reflection high-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Huang, J.; Cai, C. Y.; Lv, C. L.; Zhou, G. W.; Wang, Y. G.

    2015-12-01

    The conventional multislice method (CMS) method, one of the most popular dynamical electron diffraction calculation procedures in transmission electron microscopy, was introduced to calculate reflection high-energy electron diffraction (RHEED) as it is well adapted to deal with the deviations from the periodicity in the direction parallel to the surface. However, in the present work, we show that the CMS method is no longer sufficiently accurate for simulating RHEED with the accelerating voltage 3-100 kV because of the high-energy approximation. An accurate multislice (AMS) method can be an alternative for more accurate RHEED calculations with reasonable computing time. A detailed comparison of the numerical calculation of the AMS method and the CMS method is carried out with respect to different accelerating voltages, surface structure models, Debye-Waller factors and glancing angles.

  17. Electron and hole dynamics in the electronic and structural phase transitions of VO2

    NASA Astrophysics Data System (ADS)

    Haglund, Richard

    2015-03-01

    The ultrafast, optically induced insulator-to-metal transition (IMT) and the associated structural phase transition (SPT) in vanadium dioxide (VO2) have been studied for over a decade. However, only recently have effects due to the combined presence of electron-hole pairs and injected electrons been observed. Here we compare and contrast IMT dynamics when both hot electrons and optically excited electron-hole pairs are involved, in (1) thin films of VO2 overlaid by a thin gold foil, in which hot electrons are generated by 1.5 eV photons absorbed in the foil and accelerated through the VO2 by an applied electric field; (2) VO2 nanoparticles covered with a sparse mesh of gold nanoparticles averaging 20-30 nm in diameter in which hot electrons are generated by resonant excitation and decay of the localized surface plasmon; and (3) bare VO2 thin films excited by intense near-single-cycle THz pulses. In the first case, the IMT is driven by excitation of the bulk gold plasmon, and the SPT appears on a few-picosecond time scale. In the second case, density-functional calculations indicate that above a critical carrier density, the addition of a single electron to a 27-unit supercell drives the catastrophic collapse of the coherent phonon associated with, and leading to, the SPT. In the third case, sub-bandgap-energy photons (approximately 0.1 eV) initiate the IMT, but exhibit the same sub-100 femtosecond switching time and coherent phonon dynamics as observed when the IMT is initiated by 1.5 eV photons. This suggests that the underlying mechanism must be quite different, possibly THz-field induced interband tunneling of spatially separated electron-hole pairs. The implications of these findings for ultrafast switching in opto-electronic devices - such as hybrid VO2 silicon ring resonators - are briefly considered. Support from the National Science Foundation (DMR-1207407), the Office of Science, U.S. Department of Energy (DE-FG02-01ER45916) and the Defense Threat

  18. U31: Vehicle Stability and Dynamics: Electronic Stability Control

    SciTech Connect

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Delorenzis, Damon; LaClair, Tim J; Lim, Alvin; Pape, Doug

    2011-01-01

    A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. Modern electronic stability control (ESC) products automatically slow a vehicle rounding a corner too quickly or apply individual brakes when necessary to improve the steering characteristics of a vehicle. Air brake systems in North America provide no electronic communication between a tractor and semitrailer, limiting the degree to which control systems can be optimized. Prior research has demonstrated stability improvements where dynamic measurements and control commands are communicated between units of a vehicle. Three related activities were undertaken: (1) Develop an algorithm for the optimum yaw and roll control of a combination vehicle. Vehicle state parameters needed to control the vehicle and the proper brake response were determined. An integrated stability control for the tractor and semitrailer requires communication between the two units. Dynamic models were used to assess the algorithm. (2) Implement the ESC algorithm in the laboratory. Hardware components suitable for the harsh environment for measurement, sensor-to-controller communication, and semitrailer-to-tractor communication and brake actuation were specified and assembled as a working system. The goal was to collect the needed vehicle state information, transmit the information to the ESC system, and then actuate the brakes in response to controller commands. (3) Develop a wireless network with the data rate and reliability necessary to communicate dynamic signals for a vehicle stability control system. Adaptive connectivity-aware, multi-hop routing was selected because it can perform in the harsh environment where packet collisions and fading often will exist. The protocol is to give high priority to urgent messages.

  19. Proton Dynamics on Goethite Nanoparticles and Coupling to Electron Transport.

    PubMed

    Zarzycki, Piotr; Smith, Dayle M; Rosso, Kevin M

    2015-04-14

    The surface chemistry of metal oxide particles is governed by the charge that develops at the interface with aqueous solution. Mineral transformation, biogeochemical reactions, remediation, and sorption dynamics are profoundly affected in response. Here we report implementation of replica-exchange constant-pH molecular dynamics simulations that use classical molecular dynamics for exploring configurational space and Metropolis Monte Carlo walking through protonation space with a simulated annealing escape route from metastable configurations. By examining the archetypal metal oxide, goethite (α-FeOOH), we find that electrostatic potential gradients spontaneously arise between intersecting low-index crystal faces and across explicitly treated oxide nanoparticles at a magnitude exceeding the Johnson-Nyquist voltage fluctuation. Fluctuations in adsorbed proton density continuously repolarize the surface potential bias between edge-sharing crystal faces, at a rate slower than the reported electron-polaron hopping rate in goethite interiors. This suggests that these spontaneous surface potential fluctuations will control the net movement of charge carriers in the lattice. PMID:26574382

  20. Dissipative many-electron dynamics of ionizing systems.

    PubMed

    Tremblay, Jean Christophe; Klinkusch, Stefan; Klamroth, Tillmann; Saalfrank, Peter

    2011-01-28

    In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (ρ-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the ρ-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (∼N(2)) with the number of configurations N used to represent the reduced density matrix in the ρ-TDCI method, as compared to a N(3) scaling for the model in its original form. PMID:21280729

  1. Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons

    NASA Astrophysics Data System (ADS)

    Sanche, Léon

    This chapter addresses the nanoscale dynamics involved in the sensitization of biological cells to ionizing radiation. More specifically, it describes the role of low energy electrons (LEE) in radiosensitization by gold nanoparticles and chemotherapeutic agents, as well as potential applications to radiotherapy. The basic mechanisms of action of the LEE generated within nanoscopic volumes by ionizing radiation are described in solid water ice and various forms of DNA. These latter include the subunits (i.e., a base, a sugar or the phosphate group), short single strands (i.e., oligonucleotides) and plasmid and linear DNA. By comparing the results from experiments with the different forms of the DNA molecule and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of the subunits, base release and the production of single, double-strand breaks and cross-links. Below 15 eV, LEE localize on DNA subunits to form transient negative ions. Such states can damage DNA by dissociating into a stable anion and radical fragment(s), via dissociative electron attachment, or by decaying into dissociative electronically excited states. LEE can also transfer from one DNA subunit to another, particularly from a base to the phosphate group, where they can induce cleavage of the C-O bond (i.e., break a strand). DNA damage and the corresponding nanoscale dynamics are found to be modified in the presence of other cellular constituents. For example, condensing on DNA the most abundant cellular molecule, H2O, induces the formation of a new type of transient anion whose parent is a H2O-DNA complex.

  2. Dynamics of a high-current relativistic electron beam

    SciTech Connect

    Strelkov, P. S.; Tarakanov, V. P.; Ivanov, I. E. Shumeiko, D. V.

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.

  3. Time-resolved terahertz dynamics in thin films of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect

    Valdés Aguilar, R.; Qi, J.; Brahlek, M.; Bansal, N.; Oh, S.; Azad, A.; Bowlan, J.; Taylor, A. J.; Prasankumar, R. P.; Yarotski, D. A.

    2015-01-05

    We use optical pump–THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi{sub 2}Se{sub 3} films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. These different dynamics are attributed to the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.

  4. Nonadiabatic electron dynamics of single-electron transport in a perpendicular magnetic field

    SciTech Connect

    He, JianHong; Guo, HuaZhong; Gao, Jie

    2014-04-28

    We present results of our investigation into the nonadiabatic electron dynamics of a moving quantum dot assisted by surface acoustic waves (SAWs) in a perpendicular magnetic field. The measurements show the evolution of a quantized acoustoelectric current in a modulated external field, which provides direct information of the energy spectrum and the occupation of the SAW-induced elliptical dynamical quantum dot. By comparing the magnetic field dependence of the spectrum with that of a somewhat symmetric circular dot, we find the appearance of nonadiabatic excitations at low magnetic fields resulting from the anisotropy of the dot. We also detect the transitions between different quantum states of the elliptical dot, achieved by exploiting the interference of two phase-tuned SAWs. Our results demonstrate that the quantum states in an asymmetric dot are fragile and extremely sensitive to their environment.

  5. Entanglement dynamics of electron-electron scattering in low-dimensional semiconductor systems

    SciTech Connect

    Buscemi, F.; Bordone, P.; Bertoni, A.

    2006-05-15

    We perform the quantitative evaluation of the entanglement dynamics in scattering events between two indistinguishable electrons interacting via the Coulomb potential in one- and two-dimensional semiconductor nanostructures. We apply a criterion based on the von Neumann entropy and the Schmidt decomposition of the global state vector suitable for systems of identical particles. From the time-dependent numerical solution of the two-particle wave function of the scattering carriers we compute their entanglement evolution for different spin configurations: two electrons with the same spin, with different spin, and singlet and triplet spin states. The procedure allows us to evaluate the mechanisms that govern entanglement creation and their connection with the characteristic physical parameters and initial conditions of the system. The cases in which the evolution of entanglement is similar to the one obtained for distinguishable particles are discussed.

  6. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed. PMID:27040614

  7. Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices

    SciTech Connect

    Bliokh, Konstantin Yu.; Bliokh, Yury P.; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schroedinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) ({Dirac_h}/2{pi})l (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  8. Dynamics of a nanodroplet under a transmission electron microscope

    SciTech Connect

    Leong, Fong Yew; Mirsaidov, Utkur M.; Matsudaira, Paul; Mahadevan, L.

    2014-01-15

    We investigate the cyclical stick-slip motion of water nanodroplets on a hydrophilic substrate viewed with and stimulated by a transmission electron microscope. Using a continuum long wave theory, we show how the electrostatic stress imposed by non-uniform charge distribution causes a pinned convex drop to deform into a toroidal shape, with the shape characterized by the competition between the electrostatic stress and the surface tension of the drop, as well as the charge density distribution which follows a Poisson equation. A horizontal gradient in the charge density creates a lateral driving force, which when sufficiently large, overcomes the pinning induced by surface heterogeneities in the substrate disjoining pressure, causing the drop to slide on the substrate via a cyclical stick-slip motion. Our model predicts step-like dynamics in drop displacement and surface area jumps, qualitatively consistent with experimental observations.

  9. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  10. Photocarrier Radiometry Investigation of Light-Induced Degradation of Boron-Doped Czochralski-Grown Silicon Without Surface Passivation

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2016-04-01

    Light-induced degradation (LID) effects of boron-doped Cz silicon wafers without surface passivation are investigated in details by photocarrier radiometry (PCR). The resistivity of all samples is in the range of 0.006 Ω {\\cdot } {cm} to 38 Ω {\\cdot } {cm}. It is found that light-induced changes in surface state occupation have a great effect on LID under illumination. With the increasing contribution of light-induced changes in surface state occupation, the generation rate of the defect decreases. The light-induced changes in surface state occupation and light-induced degradation dominate the temporal behaviors of the excess carrier density of high- and low-resistivity Si wafers, respectively. Moreover, the temporal behaviors of PCR signals of these samples under laser illumination with different powers, energy of photons, and multiple illuminations were also analyzed to understand the light-induced change of material properties. Based on the nonlinear dependence of PCR signal on the excitation power, a theoretical model taking into account both light-induced changes in surface state occupation and LID processes was proposed to explain those temporal behaviors.

  11. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  12. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  13. Nonequilibrium electron dynamics: Formation of the quasiparticle peak

    NASA Astrophysics Data System (ADS)

    Sayyad, Sharareh; Eckstein, Martin

    We characterize how the narrow quasiparticle band of the one-band Hubbard model forms out of a bad metallic state in a time-dependent metal-insulator transition, using nonequilibrium slave-rotor dynamical mean field theory. Our results exhibit a nontrivial electronic timescale which is much longer than the width of the quasiparticle peak itself. To study this timescale, we perform a fast ramp from the insulating phase into the metallic region of the phase diagram, resulting in a highly excited state, and study the equilibration of the system with a weakly coupled phononic bath. The slow relaxation behavior is explained by surveilling the interplay between spinon and rotor degrees of freedom. Since the system is initially prepared in an insulating phase, the quasi-particle peak emerges when spinons catch up the metal-insulator crossover region, which is reached earlier by the rotor. At this point, spinon and rotor become weakly coupled, and the resulting very slow equilibration of the spinon is a bottleneck for the dynamics. After the birth of the quasiparticle peak, its height enhances by the construction of the low-energy spectrum of the rotor, which then lacks behind the relaxation of the spinon.

  14. Femtosecond electron imaging of defect-modulated phonon dynamics

    NASA Astrophysics Data System (ADS)

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2016-04-01

    Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps-1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics.

  15. Femtosecond electron imaging of defect-modulated phonon dynamics.

    PubMed

    Cremons, Daniel R; Plemmons, Dayne A; Flannigan, David J

    2016-01-01

    Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps(-1)) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790

  16. Effects of parallel electron dynamics on plasma blob transport

    SciTech Connect

    Angus, Justin R.; Krasheninnikov, Sergei I.; Umansky, Maxim V.

    2012-08-15

    The 3D effects on sheath connected plasma blobs that result from parallel electron dynamics are studied by allowing for the variation of blob density and potential along the magnetic field line and using collisional Ohm's law to model the parallel current density. The parallel current density from linear sheath theory, typically used in the 2D model, is implemented as parallel boundary conditions. This model includes electrostatic 3D effects, such as resistive drift waves and blob spinning, while retaining all of the fundamental 2D physics of sheath connected plasma blobs. If the growth time of unstable drift waves is comparable to the 2D advection time scale of the blob, then the blob's density gradient will be depleted resulting in a much more diffusive blob with little radial motion. Furthermore, blob profiles that are initially varying along the field line drive the potential to a Boltzmann relation that spins the blob and thereby acts as an addition sink of the 2D potential. Basic dimensionless parameters are presented to estimate the relative importance of these two 3D effects. The deviation of blob dynamics from that predicted by 2D theory in the appropriate limits of these parameters is demonstrated by a direct comparison of 2D and 3D seeded blob simulations.

  17. Femtosecond electron imaging of defect-modulated phonon dynamics

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2016-01-01

    Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790

  18. Electronic Structure and Molecular Dynamics Calculations for KBH4

    NASA Astrophysics Data System (ADS)

    Papaconstantopoulos, Dimitrios; Shabaev, Andrew; Hoang, Khang; Mehl, Michael; Kioussis, Nicholas

    2012-02-01

    In the search for hydrogen storage materials, alkali borohydrides MBH4 (M=Li, Na, K) are especially interesting because of their light weight and the high number of hydrogen atoms per metal atom. Electronic structure calculations can give insights into the properties of these complex hydrides and provide understanding of the structural properties and of the bonding of hydrogen. We have performed first-principles density-functional theory (DFT) and tight-binding (TB) calculations for KBH4 in both the high temperature (HT) and low temperature (LT) phases to understand its electronic and structural properties. Our DFT calculations were carried out using the VASP code. The results were then used as a database to develop a tight-binding Hamiltonian using the NRL-TB method. This approach allowed for computationally efficient calculations of phonon frequencies and elastic constants using the static module of the NRL-TB, and also using the molecular dynamics module to calculate mean-square displacements and formation energies of hydrogen vacancies.

  19. Electronic structure and relaxation dynamics in a superconducting topological material

    DOE PAGESBeta

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S.; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M. Mofazzel; Shin, Shik; et al

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less

  20. Electron accommodation dynamics in the DNA base thymine

    SciTech Connect

    King, Sarah B.; Yandell, Margaret A.; Kunin, Alice; Stephansen, Anne B.; Yokoi, Yuki; Takayanagi, Toshiyuki; Neumark, Daniel M.

    2015-07-14

    The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I{sup −}T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from −120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I{sup −}T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I{sup −}T VDE, which suggests that if the dipole-bound anion acts as a “doorway” to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.

  1. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology. PMID:25763310

  2. Electronic structure and relaxation dynamics in a superconducting topological material

    NASA Astrophysics Data System (ADS)

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S.; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M. Mofazzel; Shin, Shik; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz

    2016-03-01

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc ~ 3 K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc ~ 2.5 K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excited topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. Our results will be helpful in understanding low temperature superconducting states of these topological materials.

  3. Electronic structure and relaxation dynamics in a superconducting topological material

    PubMed Central

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S.; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M. Mofazzel; Shin, Shik; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz

    2016-01-01

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc ~ 3 K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc ~ 2.5 K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excited topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. Our results will be helpful in understanding low temperature superconducting states of these topological materials. PMID:26936229

  4. Electronic structure and relaxation dynamics in a superconducting topological material.

    PubMed

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M Mofazzel; Shin, Shik; Chou, Fangcheng; Hasan, M Zahid; Durakiewicz, Tomasz

    2016-01-01

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc ~ 3 K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc ~ 2.5 K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excited topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. Our results will be helpful in understanding low temperature superconducting states of these topological materials. PMID:26936229

  5. Classical molecular dynamics simulation of the photoinduced electron transfer dynamics of plastocyanin.

    PubMed Central

    Ungar, L W; Scherer, N F; Voth, G A

    1997-01-01

    Classical molecular dynamics simulations are used to investigate the nuclear motions associated with photoinduced electron transfer in plastocyanin. The blue copper protein is modeled using a molecular mechanics potential; potential parameters for the copper-protein interactions are determined using an x-ray crystallographic structure and absorption and resonance Raman spectra. Molecular dynamics simulations yield a variety of information about the ground (oxidized) and optically excited (charge-transfer) states: 1) The probability distribution of the potential difference between the states, which is used to determine the coordinate and energy displacements, places the states well within the Marcus inverted region. 2) The two-time autocorrelation function of the difference potential in the ground state and the average of the difference potential after instantaneous excitation to the excited state are very similar (confirming linear response in this system); their decay indicates that vibrational relaxation occurs in about 1 ps in both states. 3) The spectral densities of various internal coordinates begin to identify the vibrations that affect the optical transition; the spectral density of the difference potential correlation function should also prove useful in quantum simulations of the back electron transfer. 4) Correlation functions of the protein atomic motions with the difference potential show that the nuclear motions are correlated over a distance of more than 20 A, especially along proposed electron transport paths. Images FIGURE 1 FIGURE 7 PMID:8994588

  6. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    NASA Astrophysics Data System (ADS)

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2015-10-01

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  7. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state.

    PubMed

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2015-10-01

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing. PMID:26450316

  8. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    SciTech Connect

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  9. Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer.

    PubMed

    Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck

    2016-08-31

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance. PMID:27494649

  10. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    NASA Astrophysics Data System (ADS)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  11. Ultrafast excited state relaxation dynamics of electron deficient porphyrins: Conformational and electronic factors

    NASA Astrophysics Data System (ADS)

    Okhrimenko, Albert N.

    Metallo-tetrapyrroles (MTP) are highly stable macrocyclic pi-systems that display interesting properties that make them potential candidates for various applications. Among these applications are optoelectronics, magnetic materials, photoconductive materials, non-linear optical materials and photo tumor therapeutic drugs. These applications are generally related to their high stability and efficient light absorption ability in the visible and near-infrared region of the optical spectrum. Metallo porphyrins are well known and widely studied representatives of metallotetrapyrroles. Electron deficient substituents in the meso positions are well known to greatly influence the interaction between the metal d-orbitals and the nitrogen orbitals of the tetrapyrrole macrocycle. In this work, a series of electron deficient porphyrins has been studied to gain some knowledge about the change in the excited state dynamics with structural and electronic modifications. Among these porphyrins is nickel and iron modified species bearing perfluoro-, perprotio-, p-nitrophenyl- and perfluorophenyl-meso substituents. Ultrafast transient absorption spectrometry has been used as the main research instrument along with other spectroscopic and electrochemical methods. A new technique has been employed to study the photophysical properties of zinc (II) tetraphenylporphine cation radical. It employs a combination of controlled potential coulometry and femtosecond absorption spectrometry. The fast transient lifetime of 17 ps of the pi-cation species originates in very efficient mixing of the a2u HOMO cation orbital that places electronic density mainly on pyrrolic nitrogens and metal d-orbitals. That explains the lack of any emission of the cationic species. This non-radiative decay process might elucidate the processes taking place in photosynthetic systems when electron is removed from porphyrinic moiety and the hole is produced. In this work zinc(II) meso-tetraphenylporphine radial cation

  12. Enhanced dynamic electron paramagnetic resonance imaging of in vivo physiology

    NASA Astrophysics Data System (ADS)

    Redler, Gage

    It is well established that low oxygen concentration (hypoxia) in tumors strongly affects their malignant state and resistance to therapy. The importance of tumor oxygenation status has led to increased interest in the development of robust oxygen imaging modalities. One such method is electron paramagnetic resonance imaging (EPRI). EPRI has provided a non-invasive, quantitative imaging modality with sensitivity deep in tissues, capable of investigating static oxygen concentration (pO2) in vivo and has helped to corroborate the correlation between chronic states of hypoxia and tumor malignancy. However, when studying the complicated physiology of a living animal, the situation tends to be inherently dynamic. It has been found that in certain tumor regions there may exist steady states of hypoxia, or chronic hypoxia, whereas in other regions there may exist transient states of hypoxia, or acute hypoxia. It has been postulated that the negative prognostic implications associated with hypoxic tumors may be amplified for acutely hypoxic tumors. However, controversial data and a current lack in methods with the capability to noninvasively image tumor pO2 in vivo with sufficient spatial, temporal, and pO 2 resolution preclude definitive conclusions on the relationships between the different forms of hypoxia and the differences in their clinical implications. A particularly promising oxygen imaging modality that can help to study both chronic and acute hypoxia and elucidate important physiological and clinical differences is rapid Dynamic EPRI. The focus of this work is the development of methods enabling Dynamic EPRI of in vivo physiology as well as its potential applications. This work describes methods which enhance various aspects of EPRI in order to establish a more robust Dynamic EPRI capable of noninvasively studying and quantifying acute hypoxia in vivo. These enhancements are achieved through improvements that span from methods for the acquisition of individual

  13. Ultrafast electronic dynamics in polyatomic molecules studied using femtosecond vacuum ultraviolet and x-ray pulses

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshinori

    2014-06-01

    Time-resolved velocity map photoelectron imaging is performed using sub-20 fs deep ultraviolet and vacuum ultraviolet pulses to study electronic dynamics of isolated polyatomic molecules. The non-adiabatic dynamics of pyrazine, furan and carbon disulfide (CS2) are described as examples. Also described is sub-picosecond time-resolved x-ray direct absorption spectroscopy using a hard x-ray free electron laser (SACLA) and a synchronous near ultraviolet laser to study ultrafast electronic dynamics in solutions.

  14. High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Ryne, R. D.; Venturini, M.; Zholents, A. A.; Pogorelov, I. V.

    2009-10-01

    In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs for the next-generation x-ray free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wakefields, coherent synchrotron radiation (CSR) wakefields, and treatment of radio-frequency (rf) accelerating cavities using maps obtained from axial field profiles. We present a study of the microbunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is generally needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac.

  15. Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics

    NASA Astrophysics Data System (ADS)

    Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina

    2016-07-01

    We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.

  16. Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3

    SciTech Connect

    Valdés Aguilar, R.; Qi, J.; Brahlek, M.; Bansal, N.; Azad, A.; Bowlan, J.; Oh, S.; Taylor, A. J.; Prasankumar, R. P.; Yarotski, D. A.

    2015-01-07

    We use optical pump–THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi2Se3 films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. Furthermore, these different dynamics are attributed to the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.

  17. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    NASA Astrophysics Data System (ADS)

    Egorov, E. N.; Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-01

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  18. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  19. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  20. A diagnostic for electron dynamics in tokamaks. Final report

    SciTech Connect

    Skiff, F.; Boyd, D.

    1997-12-01

    The diagnostic was installed on TdeV and brought into operation. It was optimized to the extent that time and money permitted. A considerable quantity of data was accumulated and analyzed. Experiments ended in August 1995. The apparatus has been removed from TdeV and returned to the University of Maryland. Each of these activities is detailed here. The diagnostic worked very well. Although the distribution functions behaved in ways that were not anticipated and the refractive losses were sometimes higher than projected, the authors were able to adapt to the unexpected. In the authors` estimation, all of the effects listed above are significant, and warrant further study. The diagnostic is ready for use as a tool to study the physics of current drive and current profile modification. A mechanism for steering the launched beams is desirable to cope with the strong variations in refraction which are seen. Phased array launchers seem attractive for this purpose. Tuning of the length of the waveguide run is important to avoid troublesome reflections (return losses). It may be best to build in this capability in a future system. The perpendicular dynamics of the current driven electrons are invisible to us with the present form of the diagnostic. Simultaneous measurements at fundamental and harmonic frequencies would make perpendicular distribution function measurements possible.

  1. 2003 Electronic Spectroscopy and Dynamics - July 6-11, 2003

    SciTech Connect

    Elliot Bernstein

    2004-09-10

    The Gordon Research Conference (GRC) on 2003 Electronic Spectroscopy and Dynamics - July 6-11, 2003 was held at Bates College, Lewiston, Maine, July 6-11, 2003. The Conference was well-attended with 103 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  2. Modeling Charge Transfer in Fullerene Collisions via Real-Time Electron Dynamics.

    PubMed

    Jakowski, Jacek; Irle, Stephan; Sumpter, Bobby G; Morokuma, Keiji

    2012-06-01

    An approach for performing real-time dynamics of electron transfer in a prototype redox reaction that occurs in reactive collisions between neutral and ionic fullerenes is discussed. The quantum dynamical simulations show that the electron transfer occurs within 60 fs directly preceding the collision of the fullerenes, followed by structural changes and relaxation of electron charge. The consequences of real-time electron dynamics are fully elucidated for the far from equilibrium processes of collisions between neutral and multiply charged fullerenes. PMID:26285634

  3. Nonequilibrium electron dynamics in a solid with a changing nodal excitation gap

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher L.; Miller, Tristan L.; Zhang, Wentao; Kaindl, Robert A.; Lanzara, Alessandra

    2016-06-01

    We develop a computationally inexpensive model to examine the dynamics of boson-assisted electron relaxation in solids, studying nonequilibrium dynamics in a metal, in a nodal superconductor with a stationary density of states, and in a nodal superconductor where the gap dynamically opens. In the metallic system, the electron population resembles a thermal population at all times, but the presence of even a fixed nodal gap both invalidates a purely thermal treatment and sharply curtails relaxation rates. For a gap that is allowed to open as electron relaxation proceeds, effects are even more pronounced, and gap dynamics become coupled to the dynamics of the electron population. Comparisons to experiments reveal that phase-space restrictions in the presence of a gap are likely to play a significant role in the widespread observation of coexisting femtosecond and picosecond dynamics in the cuprate high-temperature superconductors.

  4. Ion-induced electron emission from surfaces: Dynamical screening effects

    SciTech Connect

    Kouzakov, Konstantin A.; Berakdar, Jamal

    2003-08-01

    A theoretical model is developed for the description of the single-electron emission from surfaces following the impact of fast ions. The theory describes quantum mechanically the ion reflection at the surface and the excitation of the valence band electrons via an ion-electron interaction renormalized by the dielectric response of the target. Numerical calculations are presented and analyzed for the electron emission from the conduction band of an aluminum surface upon proton impact. Particular attention is devoted to the influence of the dielectric screening on the energy distributions and the angular distributions of the ejected electrons. In addition, the role of the surface electronic structure is studied.

  5. Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations

    NASA Astrophysics Data System (ADS)

    Eckstein, Martin; Werner, Philipp

    2016-02-01

    Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations, and can be 10-20 fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid.

  6. Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations.

    PubMed

    Eckstein, Martin; Werner, Philipp

    2016-01-01

    Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations, and can be 10-20 fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid. PMID:26883536

  7. Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations

    PubMed Central

    Eckstein, Martin; Werner, Philipp

    2016-01-01

    Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations, and can be 10–20 fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid. PMID:26883536

  8. Electron dynamics in strong laser pulse illumination of large rare gas clusters

    NASA Astrophysics Data System (ADS)

    Saalmann, U.; Rost, J. M.

    2005-11-01

    We analyze the dynamics of up to 105 electrons resulting from illuminating a xenon cluster with 9093 atoms with intense laser pulses of different length and peak intensity. Interesting details of electron motion are identified which can be probed with a time resolution of 100 attoseconds. Corresponding experiments would shed light on unexplored territory in complex electronic systems such as clusters and they would also permit to critically access the present theoretical description of this dynamics.

  9. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  10. Electronic stopping power calculation method for molecular dynamics simulations using local Firsov and free electron-gas models

    NASA Astrophysics Data System (ADS)

    Peltola, J.; Nordlund, K.; Keinonen, J.

    2006-09-01

    Molecular dynamics simulations have proven to be accurate in predicting depth distributions of low-energy ions implanted in materials. Free parameters adjusted for every ion-target combination are conventionally used to obtain depth profiles in accordance with the experimental ones. We have previously developed a model for predicting depth profiles in crystalline Si without free parameters. The electronic stopping power was calculated using local total electron density. The model underestimated the stopping in the < 1 1 0 > channeling direction. We have now taken a new approach to calculate the electronic stopping power. We use the local valence (3p(2)) electron density to account for the electronic energy loss between collisions and the Firsov model to account for the electronic energy loss during collision. The lowest electron densities are adjusted with a parametrization that is same for all ions in all implanting directions to correct the problems in the < 1 1 0 > channeling direction.

  11. First principles based multiparadigm modeling of electronic structures and dynamics

    NASA Astrophysics Data System (ADS)

    Xiao, Hai

    Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance. An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV). The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in

  12. Electron quantum dynamics in atom-ion interaction

    NASA Astrophysics Data System (ADS)

    Sabzyan, H.; Jenabi, M. J.

    2016-04-01

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, which define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.

  13. Electron quantum dynamics in atom-ion interaction.

    PubMed

    Sabzyan, H; Jenabi, M J

    2016-04-01

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, which define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis. PMID:27059569

  14. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  15. Theoretical analysis of hot electron dynamics in nanorods

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Agrawal, Govind P.

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  16. Theoretical analysis of hot electron dynamics in nanorods.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Bao, Qiaoliang; Agrawal, Govind P

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  17. Monte Carlo simulation of electron dynamics in liquid water

    NASA Astrophysics Data System (ADS)

    Huthmacher, Klaus; Herzwurm, André; Gnewuch, Michael; Ritter, Klaus; Rethfeld, Baerbel

    2015-07-01

    We present a stochastic model for the energy loss of low-energy electrons (<100 eV) in water in the liquid phase. More precisely, we treat the electrons as independent particles and are thus able to model the time evolution of the kinetic energy of a single electron as a so-called pure jump process. Free electrons are created due to irradiation of an extreme ultraviolet femtosecond laser pulse. In our model, free electrons may interact with water molecules via elastic scattering and impact ionization. Moreover, we present numerical results for the kinetic energy of electrons during and after laser irradiation. Furthermore, we distinguish between primary and secondary electrons, where the latter are created by impact ionization. The numerical results show that creation of secondary electrons due to impact ionization occurs almost entirely during laser irradiation. After irradiation, only a small amount of the laser pulse energy remains in the electron system, while the majority is stored in holes of water molecules.

  18. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G.

    2013-12-01

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  19. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    SciTech Connect

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G.

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  20. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity.

    PubMed

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-07-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  1. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    PubMed Central

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  2. Pulsars as cosmic ray particle accelerators: Dynamics of electrons

    NASA Technical Reports Server (NTRS)

    Thielheim, K. O.

    1985-01-01

    The Lorentz-Dirac-equation with Landau approximation has been solved numerically for electrons in the electromagnetic field of a magnetic dipole rotating with the angular velocity omega perpendicular to its magnetic moment mu. Results are discussed with respect to electron orbits and energy development.

  3. Radiolytic yields of solvated electrons in ionic liquid and its solvation dynamics at low temperature

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Kondoh, Takafumi; Gohdo, Masao; Yoshida, Yoichi; Takahashi, Kenji

    2016-07-01

    We present an investigation of the solvated electron in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (P14NTf2) using pulse radiolytic techniques. Temperature-dependent studies reveal that the yield of the solvated electron decreases with decreasing temperature. The lower initial yield measured indicates that we have a loss of some electrons before they become fully solvated. There may be a high probability that the excess dry electrons (pre-solvated electron) react before the electron solvation is completed because the solvation dynamics is slowing down with decreasing temperature.

  4. Coherently driven, ultrafast electron-phonon dynamics in transport junctions

    SciTech Connect

    Szekely, Joshua E.; Seideman, Tamar

    2014-07-28

    Although the vast majority of studies of transport via molecular-scale heterojunctions have been conducted in the (static) energy domain, experiments are currently beginning to apply time domain approaches to the nanoscale transport problem, combining spatial with temporal resolution. It is thus an opportune time for theory to develop models to explore both new phenomena in, and new potential applications of, time-domain, coherently driven molecular electronics. In this work, we study the interaction of a molecular phonon with an electronic wavepacket transmitted via a conductance junction within a time-domain model that treats the electron and phonon on equal footing and spans the weak to strong electron-phonon coupling strengths. We explore interference between two coherent energy pathways in the electronic subspace, thus complementing previous studies of coherent phenomena in conduction junctions, where the stationary framework was used to study interference between spatial pathways. Our model provides new insights into phase decoherence and population relaxation within the electronic subspace, which have been conventionally treated by density matrix approaches that often rely on phenomenological parameters. Although the specific case of a transport junction is explored, our results are general, applying also to other instances of coupled electron-phonon systems.

  5. Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion

    SciTech Connect

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.; Mendive-Tapia, David

    2015-03-07

    Photoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case. However, if we add methyl substituents that break symmetry but do not radically alter the electronic structure, we see charge migration: oscillations in the spin density that we can correlate with particular localized electronic structures, with a period depending on the gap between the states initially populated. We have also investigated the effect of nuclear motion on electron dynamics using a complete active space self-consistent field (CASSCF) implementation of the Ehrenfest method, most previous theoretical studies of electron dynamics having been carried out with fixed nuclei. In toluene cation for instance, simulations where the nuclei are allowed to move show significant differences in the electron dynamics after 3 fs, compared to simulations with fixed nuclei.

  6. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition.

    PubMed

    Kim, S; Russell, M; Henry, M; Kim, S S; Naik, R R; Voevodin, A A; Jang, S S; Tsukruk, V V; Fedorov, A G

    2015-09-28

    We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an "n-p-n" junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 10(18) e(-) per cm(2)). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 10(19) e(-) per cm(2) results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, "direct-write" functional patterning of graphene-based electronic devices with potential for on-demand re-configurability. PMID:26302897

  7. Dynamics of electron injection from the excited state of anchored molecules into semiconductors

    NASA Astrophysics Data System (ADS)

    Gundlach, L.; Ernstorfer, R.; Willig, F.

    A complete picture of different interfacial electron transfer dynamics has been obtained from transient absorption and two-photon photoemission data when inserting different anchor/bridge groups between the excited organic donor and the electrode surface.

  8. Electronically non-adiabatic influences in surface chemistry and dynamics.

    PubMed

    Wodtke, Alec M

    2016-07-01

    Electronically nonadiabatic interactions between molecules and metal surfaces are now well known. Evidence is particularly clear from studies of diatomic molecules that molecular vibration can be strongly coupled to electrons of the metal leading to efficient energy transfer between these two kinds of motion. Since molecular vibration is the same motion needed for bond breaking, it is logical to postulate that electronically nonadiabatic influences on surface chemical reaction probabilities would be strong. Still there are few if any examples where such influences have been clearly investigated. This review recounts the evidence for and against the aforementioned postulate emphasizing reacting systems that have yet to receive full attention and where electronically nonadiabatic influence of reaction probabilities might be clearly demonstrated. PMID:27152489

  9. Final Report: Vibrational Dynamics in Photoinduced Electron Transfer

    SciTech Connect

    Kenneth G. Spears

    2006-04-19

    The objective of this grant was to understand how molecular vibrational states (geometry distortions) are involved in photoinduced electron transfer rates of molecules. This subject is an important component of understanding how molecular absorbers of light convert that energy into charge separation. This is important because the absorption usually excites molecular vibrations in a new electronic state prior to electron transfer to other molecules or semiconductor nanoparticles, as in some types of solar cells. The speeds of charge separation and charge recombination are key parameters that require experiments such as those in this work to test the rules governing electron transfer rates. Major progress was made on this goal. Some of the molecular structures selected for developing experimental data were bimolecular charge transfer complexes that contained metals of cobalt or vanadium. The experiments used the absorption of an ultrafast pulse of light to directly separate charges onto the two different molecular parts of the complex. The charge recombination then proceeds naturally, and one goal was to measure the speed of this recombination for different types of molecular vibrations. We used picosecond and femtosecond duration pulses with tunable colors at infrared wavelengths to directly observe vibrational states and their different rates of charge recombination (also called electron transfer). We discovered that different contact geometries in the complexes had very different electron transfer rates, and that one geometry had a significant dependence on the amount of vibration in the complex. This is the first and only measurement of such rates, and it allowed us to confirm our interpretation with a number of molecular models and test the sensitivity of electron transfer to vibrational states. This led us to develop a general theory, where we point out how molecular distortions can change the electron transfer rates to be much faster than prior theories

  10. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.

    2016-05-01

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.