Science.gov

Sample records for photochemical ozone formation

  1. Tropospheric Ozone and Photochemical Smog

    NASA Astrophysics Data System (ADS)

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  2. Stratospheric Ozone: Transport, Photochemical Production and Loss

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Kawa, S. R.; Jackman, C. H.

    2003-01-01

    Observations from various satellite instruments (e.g., Total Ozone Mapping Spectrometer (TOMS), Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)) specify the latitude and seasonal variations of total ozone and ozone as a function of altitude. These seasonal variations change with latitude and altitude partly due to seasonal variation in transport and temperature, partly due to differences in the balance between photochemical production and loss processes, and partly due to differences in the relative importance of the various ozone loss processes. Comparisons of modeled seasonal ozone behavior with observations test the following: the seasonal dependence of dynamical processes where these dominate the ozone tendency; the seasonal dependence of photochemical processes in the upper stratosphere; and the seasonal change in the balance between photochemical and dynamical processes.

  3. Formation and inhibition of photochemical smog

    SciTech Connect

    Heicklen, J.

    1987-01-01

    Photochemical smog is caused by a free-radical chain mechanism which converts NO to NO/sub 2/. The NO/sub 2/ further reacts to produce ozone, nitric acid, and peracylnitrates. This chain mechanism can be inhibited by suitable free-radical scavengers. The chemistry and toxicology of one such free-radical scavenger, diethylhydroxylamine, has been studied in depth. It has been shown to be effective, safe, and practical for use in urban atmospheres to prevent photochemical smog formation. 42 references.

  4. Effect of nitric oxide on photochemical ozone formation in mixtures of air with molecular chlorine and with trichlorofluoromethane

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Wong, E. L.

    1978-01-01

    Ozone formation in a reaction chamber at room temperature and atmospheric pressure were studied for the photolysis of mixtures of NO with either Cl2 or CFCl3 in air. Both Cl2 + NO and CFCl3 + NO in air strongly inhibited O3 formation during the entire 3 to 4 hour reaction. A chemical mechanism that explains the results was presented. An important part of this mechanism was the formation and destruction of chlorine nitrate. Computations were performed with this same mechanism for CFCl3-NO-air mixtures at stratospheric temperatures, pressures, and concentrations. Results showed large reductions in steady-state O3 concentrations in these mixtures as compared with pure air.

  5. Photochemical oxidant processes in the presence of dust: An evaluation of the impact of dust on particulate nitrate and ozone formation

    NASA Technical Reports Server (NTRS)

    Zhang, Yang; Sunwoo, Young; Kotamarthi, Veerabhadra; Carmichael, Gregory R.

    1994-01-01

    The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a surface for a variety of heterogeneous reactions. Dust is found to be an important surface for particulate nitrate formation. For dust loading and ambient concentrations representative of conditions in East Asia, particulate nitrate levels of 1.5-11.5 micrograms/cubic meter are predicted, consistent with measured levels in this region. Dust is also found to reduce NO(x) levels by up to 50%, HO2 concentrations by 20%-80%, and ozone production rates by up to 25%. The magnitude of the influence of dust is sensitive to mass concentration of the aerosol, relative humidity, and the value of the accommodation coefficient.

  6. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    EPA Science Inventory

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  7. FORMATION OF PHOTOCHEMICAL AEROSOLS

    EPA Science Inventory

    The objective was to develop a better understanding of smog aerosol formation with particular reference to haze in the Southern California area. This study combined laboratory work with ambient air studies. Counting of particles by light scattering was the principle physical tech...

  8. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  9. AIR QUALITY CRITERIA FOR OZONE AND RELATED PHOTOCHEMICAL OXIDANTS

    EPA Science Inventory

    The Clean Air Act requires periodic (5-year) update revision of criteria and National Ambient Air Quality Standards (NAAQS) for Ozone. The previous revision of the criteria contained in the Air Quality Criteria Document (AQCD) for Ozone and Related Photochemical Oxidants was co...

  10. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Shao, Ping; An, Junlin; Xin, Jinyuan; Wu, Fangkun; Wang, Junxiu; Ji, Dongsheng; Wang, Yuesi

    2016-07-01

    Volatile organic compounds (VOCs) were continuously observated in a northern suburb of Nanjing, a typical industrial area in the Yangtze River Delta, in a summer observation period from 15th May to 31st August 2013. The average concentration of total VOCs was (34.40 ± 25.20) ppbv, including alkanes (14.98 ± 12.72) ppbv, alkenes (7.35 ± 5.93) ppbv, aromatics (9.06 ± 6.64) ppbv and alkynes (3.02 ± 2.01) ppbv, respectively. Source apportionment via Positive Matrix Factorization was conducted, and six major sources of VOCs were identified. The industry-related sources, including industrial emissions and industrial solvent usage, occupied the highest proportion, accounting for about 51.26% of the VOCs. Vehicular emissions occupied the second highest proportion, accounting for about 34.08%. The rest accounted for about 14.66%, including vegetation emission and liquefied petroleum gas/natural gas usage. Contributions of VOCs to photochemical O3 formation were evaluated by the application of a detailed chemical mechanism model (NCAR MM). Alkenes were the dominant contributors to the O3 photochemical production, followed by aromatics and alkanes. Alkynes had a very small impact on photochemical O3 formation. Based on the outcomes of the source apportionment, a sensitivity analysis of relative O3 reduction efficiency (RORE), under different source removal regimes such as using the reduction of VOCs from 10% to 100% as input, was conducted. The RORE was the highest (~ 20%-40%) when the VOCs from solvent-related sources decreased by 40%. The highest RORE values for vegetation emissions, industrial emissions, vehicle exhaust, and LPG/NG usage were presented in the scenarios of 50%, 80%, 40% and 40%, respectively.

  11. Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event

    NASA Astrophysics Data System (ADS)

    Koss, A. R.; de Gouw, J.; Warneke, C.; Gilman, J. B.; Lerner, B. M.; Graus, M.; Yuan, B.; Edwards, P.; Brown, S. S.; Wild, R.; Roberts, J. M.; Bates, T. S.; Quinn, P. K.

    2015-05-01

    High concentrations of volatile organic compounds (VOCs) associated with oil and natural gas extraction were measured during a strong temperature inversion in the winter of 2013 at a rural site in the Uintah Basin, Utah. During this period, photochemistry enhanced by the stagnant meteorological conditions and concentrated VOCs led to high ozone mixing ratios (150 ppbv). A simple analysis of aromatic VOCs measured by proton-transfer-reaction mass-spectrometry (PTR-MS) is used to estimate (1) VOC emission ratios (the ratio of two VOCs at the time of emission) relative to benzene, (2) aromatic VOC emission rates, and (3) ambient OH radical concentrations. These quantities are determined from a best fit to VOC : benzene ratios as a function of time. The main findings are that (1) emission ratios are consistent with contributions from both oil and gas producing wells; (2) the emission rate of methane (27-57 x 103 kg methane h-1), extrapolated from the emission rate of benzene (4.1 ± 0.4 x 105 molecules cm-3 s-1), agrees with an independent estimate of methane emissions from aircraft measurements in 2012; and (3) calculated daily OH concentrations are low, peaking at 1 x 106 molecules cm-3, and are consistent with Master Chemical Mechanism (MCM) modeling. The analysis is extended to photochemical production of oxygenated VOCs measured by PTR-MS and is able to explain daytime variability of these species. It is not able to completely reproduce nighttime behavior, possibly due to surface deposition. Using results from this analysis, the carbon mass of secondary compounds expected to have formed by the sixth day of the stagnation event was calculated, then compared to the measured mass of primary and secondary compounds. Only 17% of the expected secondary carbon mass is accounted for by gas phase, aerosol, and snow organic carbon measurements. The disparity is likely due to substantial amounts of unquantified oxygenated products.

  12. Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event

    NASA Astrophysics Data System (ADS)

    Koss, A. R.; de Gouw, J.; Warneke, C.; Gilman, J. B.; Lerner, B. M.; Graus, M.; Yuan, B.; Edwards, P.; Brown, S. S.; Wild, R.; Roberts, J. M.; Bates, T. S.; Quinn, P. K.

    2015-03-01

    High concentrations of volatile organic compounds (VOCs) associated with oil and natural gas extraction were measured during a strong temperature inversion in winter of 2013 at a rural site in the Uintah Basin, Utah. During this period, photochemistry enhanced by the stagnant meteorological conditions and concentrated VOCs led to high ozone mixing ratios (150 ppbv). A simple analysis of aromatic VOCs measured by proton-transfer-reaction mass-spectrometry (PTR-MS) is used to estimate (1) VOC emission ratios (the ratio of two VOCs at the time of emission) relative to benzene, (2) aromatic VOC emission rates, and (3) ambient OH radical concentrations. These quantities are determined from a best fit to VOC : benzene ratios as a function of time. The main findings are that (1) emission ratios are consistent with contributions from both oil and gas producing wells, (2) the emission rate of methane (27-57 × 103 kg methane h-1), extrapolated from the emission rate of benzene (4.1 ± 0.4 × 105 molecules cm-3 s-1), agrees with an independent estimate of methane emissions from aircraft measurements in 2012, and (3) calculated daily OH concentrations are low, peaking at 1× 106 molecules cm-3, and are consistent with Master Chemical Mechanism (MCM) modeling. The analysis is extended to photochemical production of oxygenated VOCs measured by PTRMS and is able to explain daytime variability of these species. It is not able to completely reproduce nighttime behavior, possibly due to surface deposition. Using results from this analysis, the carbon mass of secondary compounds expected to have formed by the sixth day of the stagnation event was calculated, then compared to the measured mass of primary and secondary compounds. Only 17% of the expected secondary carbon mass is accounted for by gas phase, aerosol, and snow organic carbon measurements. The disparity is likely due to substantial amounts of unquantified oxygenated products.

  13. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2003-02-01

    show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.

  14. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2002-02-01

    show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.

  15. PHOTOCHEMICAL OXIDANT FORMATION: OVERVIEW OF CURRENT KNOWLEDGE AND EMERGING ISSUES

    EPA Science Inventory

    Despite 1-1/2 decades of control effort, the photochemical ozone problem continues to plague human society and ecology in the U.S. One reason alleged for the difficulty in achieving the established ozone air quality standard is that current understanding of the science underlying...

  16. Evidence for an increase in the ozone photochemical lifetime in the eastern United States using a regional air quality model

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel L.; Vinciguerra, Timothy P.; Hosley, Kyle M.; Loughner, Christopher P.; Canty, Timothy P.; Salawitch, Ross J.; Dickerson, Russell R.

    2015-12-01

    Measures to control surface ozone rely on quantifying production attributable to local versus regional (upwind) emissions. Here we simulate the relative contribution of local (i.e., within a particular state) and regional sources of surface ozone in the eastern United States (66-94°W longitude) for July 2002, 2011, and 2018 using the Comprehensive Air-quality Model with Extensions (CAMx). To determine how emissions and chemistry within the domain affect the production, loss, lifetime, and transport of trace gases, we initialize our model with identical boundary conditions in each simulation. We find that the photochemical lifetime of ozone has increased as emissions have decreased. The contribution of ozone from outside the domain (boundary condition ozone, BCO3) to local surface mixing ratios increases in an absolute sense by 1-2 ppbv between 2002 and 2018 due to the longer lifetime of ozone. The photochemical lifetime of ozone lengthens because the two primary gas phase sinks for odd oxygen (Ox ≈ NO2 + O3)—attack by hydroperoxyl radicals (HO2) on ozone and formation of nitrate—weaken with decreasing pollutant emissions. The relative role of BCO3 will also increase. For example, BCO3 represents 34.5%, 38.8%, and 43.6% of surface ozone in the Baltimore, MD, region during July 2002, 2011, and 2018 means, respectively. This unintended consequence of air quality regulation impacts attainment of the National Ambient Air Quality Standard for surface ozone because the spatial and temporal scales of photochemical smog increase; the influence of pollutants transported between states and into the eastern U.S. will likely play a greater role in the future.

  17. AIR QUALITY CRITERIA FOR OZONE AND OTHER PHOTOCHEMICAL OXIDANTS. VOLUME 3.

    EPA Science Inventory

    Selected scientific information through early 1985 is presented and evaluated relative to the health and welfare effects associated with exposure to ozone and other photochemical oxidants. Data on health and welfare effects are emphasized; additional information is provided for u...

  18. OZONE BYPRODUCT FORMATION

    EPA Science Inventory

    The use of ozone for water treatment has been increasing as ozone has great potential for degrading water pollutants and inactivating viruses, Giardia cysts, and Cryptosporidium oocysts. Although it appears that ozone generates less undesirable disinfection by-products (DBPs) th...

  19. Problem of photochemical equilibrium of ozone in planetary atmospheres: Ozone distribution in the lower atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Grams, G. W.; SHARDANAND

    1972-01-01

    The inherent errors of applying terrestrial atmospheric ozone distribution studies to the atmosphere of other planets are discussed. Limitations associated with some of the earlier treatments of photochemical equilibrium distributions of ozone in planetary atmospheres are described. A technique having more universal application is presented. Ozone concentration profiles for the Martian atmosphere based on the results of the Mariner 4 radio occultation experiment and the more recent results with Mariner 6 and Mariner 7 have been calculated using this approach.

  20. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China.

    PubMed

    Ling, Z H; Guo, H; Cheng, H R; Yu, Y F

    2011-10-01

    The Positive Matrix Factorization (PMF) receptor model and the Observation Based Model (OBM) were combined to analyze volatile organic compound (VOC) data collected at a suburban site (WQS) in the PRD region. The purposes are to estimate the VOC source apportionment and investigate the contributions of these sources and species of these sources to the O(3) formation in PRD. Ten VOC sources were identified. We further applied the PMF-extracted concentrations of these 10 sources into the OBM and found "solvent usage 1", "diesel vehicular emissions" and "biomass/biofuel burning" contributed most to the O(3) formation at WQS. Among these three sources, higher Relative Incremental Reactivity (RIR)-weighted values of ethene, toluene and m/p-xylene indicated that they were mainly responsible for local O(3) formation in the region. Sensitivity analysis revealed that the sources of "diesel vehicular emissions", "biomass/biofuel burning" and "solvent usage 1" had low uncertainties whereas "gasoline evaporation" showed the highest uncertainty. PMID:21616570

  1. Lagrangian photochemical modeling studies of the 1987 Antarctic spring vortex. II - Seasonal trends in ozone

    NASA Technical Reports Server (NTRS)

    Austin, J.; Jones, R. L.; Mckenna, D. S.; Buckland, A. T.; Anderson, J. G.; Fahey, D. W.; Farmer, C. B.; Heidt, L. E.; Proffitt, M. H.; Vedder, J. F.

    1989-01-01

    A photochemical model consisting of 40 species and 107 reactions is integrated along 80-day air parcel trajectories calculated in the lower stratosphere for the springtime Antarctic. For the trajectory starting at 58 deg S, which may be regarded as outside the circumpolar vortex, only a small change in O3 occurs in the model. In contrast, for the air parcel starting in the vortex at 74 deg S, the O3 concentration is reduced by 93 percent during the 80 days from the beginning of August to late October. The model results for several species are compared with measurements from the Airborne Antarctic Ozone Experiment and, in general, good agreement is obtained. In the model, the dentrification of the air parcels in polar stratospheric clouds increases the amount of chlorine present in active form. Heterogeneous reactions maintain high active chlorine which destroys O3 via the formation of the ClO dimer. Results of calculations with reduced concentrations of inorganic chlorine show considerably reduced O3 destruction rates and compare favorably with the behavior of total O3 since the late 1970s. The remaining major uncertainties in the photochemical aspects of the Antarctic ozone hole are highlighted.

  2. 2013 Final Report: Integrated Science Assessment of Ozone and Related Photochemical Oxidants

    EPA Science Inventory

    ozone_isa_cover.jpg" alt="Cover of the Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants" vspace = "5" hspace="5" align="right" border="1" /> EPA is announcing the availability of the <...

  3. Air Quality Criteria for Ozone and Related Photochemical Oxidants (First External Review Draft)

    EPA Science Inventory

    This first external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants (Ozone Criteria Document) is being released in January 2005 for public comment and for review by EPA's Clean A...

  4. Air Quality Criteria for Ozone and Related Photochemical Oxidants (Second External Review Draft)

    EPA Science Inventory

    This second external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants, Volumes I-III (Ozone Criteria Document) is being released for public comment and for review by EPA's Clean Air Scientific Advisory Committee (CASAC) r...

  5. The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes

    NASA Astrophysics Data System (ADS)

    Hamer, P. D.; Bowman, K. W.; Henze, D.; Attié, J.-L.; Marécal, V.

    2015-02-01

    We conduct a variety of analyses to assess how the characteristics of observations of ozone and its precursors affect their ability to support air quality forecasting and research. To carry out this investigation we use a photochemical box model and its adjoint integrated with a Lagrangian 4-D-variational data assimilation system. Using this framework in conjunction with various sets of pseudo observations we perform a ozone precursor source inversion and estimate surface emissions. We then assess the resulting improvement in ozone air quality forecasting and prediction. We use an analytical model as our principle method of conducting uncertainty analyses, which is the primary focus of this work. Using this analytical tool we address some simple but key questions regarding how the characteristics of observations affect our framework's ability to constrain ozone precursor emissions and in turn to predict ozone. These questions include what the effect is of choosing which species to observe, of varying amounts of observation noise, of changing the observing frequency and the observation time during the diurnal cycle, and of how these different scenarios interact with different photochemical regimes. These questions are designed to examine how different types of observing platform, e.g., geostationary satellites or ground monitoring networks, could support future air quality research and forecasting. In our investigation we use three observed species scenarios: CO and NO2; ozone, CO, and NO2; and HCHO, CO and NO2. The photochemical model was setup to simulate a range of summertime polluted environments spanning NOx (NO and NO2) limited to volatile organic compound (VOC) limited conditions. We find that as the photochemical regime changes the relative importance of trace gas observations to constrain emission estimates and subsequent ozone forecasts varies. For example, adding ozone observations to an NO2 and CO observing system is found to decrease ozone prediction

  6. Photochemical Kinetics of Excited States of Ozone and Oxygen: Laboratory Studies and Atmospheric Implications

    NASA Astrophysics Data System (ADS)

    Shi, Jichun

    The photochemistry of O_3 has matured through the extensive research efforts of the last two decades, but its completeness has been questioned by several laboratory and atmospheric observations, including the unusually complex kinetics for the ozone three-body recombination reaction at high pressures, the unexplained heavy ozone isotope enhancement in the stratosphere, and the deficiencies of current chemical models at 90-120 km. The model deficiencies may be related to several of the excited states of O_3 and O_2 . In this dissertation, the photochemical kinetics of these excited species have been studied in a series of laboratory measurements, which are divided into two groups: (1) the study of the excited intermediates formed in the ozone recombination reaction, and (2) the investigation of the unusual odd oxygen formation in O_2 under laser irradiation at 248 nm. The ozone recombination reaction has been investigated at room temperature by monitoring the time-resolved infrared chemiluminescence of ozone at 9.6 mum, 4.7 mum, and 3.4 mu m. These studies have indicated that the recombination reaction (O+O_2+M) apparently proceeds through an intermediate complex OM, and, for M=O _2, the recombination also involves the participation of a metastable electronic state, O_3(E). The three infrared emissions have also been used to analyze the deactivation of vibrationally excited O_3 (v). The unusual odd oxygen formation in O _2 at 248 nm has been studied in both pure O_2 and O_2+N _2 and O_2+Ar mixtures at pressures between 200 and 1600 torr and at temperatures between 298 and 370^circ K. The results have indicated that this odd oxygen formation is initiated by O_2 absorption in the Herzberg continuum, and it is autocatalytically accelerated by the photodissociation of vibrationally excited O_2(v) at 248 nm. These kinetics results have been used to study the possible roles of excited O_3 and O_2 species in the sources and sinks of odd oxygen at 90-120 km, and in the

  7. Photochemical modelling in the Po basin with focus on formaldehyde and ozone

    NASA Astrophysics Data System (ADS)

    Liu, L.; Flatøy, F.; Ordóñez, C.; Braathen, G. O.; Hak, C.; Junkermann, W.; Andreani-Aksoyoglu, S.; Mellqvist, J.; Galle, B.; Prévôt, A. S. H.; Isaksen, I. S. A.

    2006-06-01

    As part of the EU project FORMAT (Formaldehyde as a Tracer of Oxidation in the Troposphere), a field campaign was carried out in the vicinity of Milan during the summer of 2002. Results from a 3-D regional chemical transport model (NILU RCTM) were used to interpret the observations focusing primarily on HCHO and ozone. The performance of the model was assessed by comparing model results with ground based and aircraft measurements. The model results show good agreement with surface measurements, and the model is able to reproduce the photochemical episodes during fair weather days. The comparison indicates that the model can represent well the HCHO concentrations as well as their temporal and spatial variability. The relationship between HCHO and (O3×H2O) was used to validate the model ability to predict the HCHO concentrations. Further analysis revealed the importance of the representativity of different instruments: in-situ concentrations might be locally enhanced by emissions, while long path measurements over a forest can be influenced by rapid formation of HCHO from isoprene. The model is able to capture the plume from the city of Milan and the modelled levels agree generally well with the aircraft measurements, although the wind fields used in the model can lead to a displacement of the ozone plume. During the campaign period, O3 levels were seldom higher than 80 ppbv, the peak surface ozone maxima reached 90 ppbv. Those relatively low values can be explained by low emissions during the August vacation and unstable weather conditions in this period. The modelled ΔO3/ΔNOz slope at Alzate of 5.1 agrees well with the measured slope of 4.9.

  8. Photochemical modelling in the Po basin with focus on formaldehyde and ozone

    NASA Astrophysics Data System (ADS)

    Liu, L.; Flatøy, F.; Ordóñez, C.; Braathen, G. O.; Hak, C.; Junkermann, W.; Andreani-Aksoyoglu, S.; Mellqvist, J.; Galle, B.; Prévôt, A. S. H.; Isaksen, I. S. A.

    2007-01-01

    As part of the EU project FORMAT (Formaldehyde as a Tracer of Oxidation in the Troposphere), a field campaign was carried out in the vicinity of Milan during the summer of 2002. Results from a 3-D regional chemical transport model (NILU RCTM) were used to interpret the observations focusing primarily on HCHO and ozone. The performance of the model was assessed by comparing model results with ground based and aircraft measurements. The model results show good agreement with surface measurements, and the model is able to reproduce the photochemical episodes during fair weather days. The comparison indicates that the model can represent well the HCHO concentrations as well as their temporal and spatial variability. The relationship between HCHO and (O3×H2O) was used to validate the model ability to predict the HCHO concentrations. Further analysis revealed the importance of the representativeness of different instruments: in-situ concentrations might be locally enhanced by emissions, while long path measurements over a forest can be influenced by rapid formation of HCHO from isoprene. The model is able to capture the plume from the city of Milan and the modelled levels agree generally well with the aircraft measurements, although the wind fields used in the model can lead to a displacement of the ozone plume. During the campaign period, O3 levels were seldom higher than 80 ppb, the peak surface ozone maxima reached 90 ppb. Those relatively low values can be explained by low emissions during the August vacation and unstable weather conditions in this period. The modelled ΔO3/ΔNOz slope at Alzate of 5.1 agrees well with the measured slope of 4.9.

  9. Photochemical characteristics of high and low ozone episodes observed in the Taehwa Forest observatory (TFO) in June 2011 near Seoul South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Soyoung; Lee, Meehye; Kim, Suyeon; Choi, Soonho; Seok, Sonjung; Kim, Saewung

    2013-05-01

    We present a comprehensive discussion on what cause high ozone episodes at a suburban photochemical observation site of the Seoul Metropolitan Area (population ˜23 million). The observational site, Taehwa Research Forest (TRF), is situated ˜30 km from the center of Seoul. In June 2011, we observed two very distinctive ozone periods-high ozone (peak up to 120 ppbv) and low ozone (peak up to 60 ppbv) in the mid and early month, respectively. The trace gas measurement dataset, especially CO and NO X clearly indicate that less anthropogenic influences during the high ozone period. Volatile organic compound (VOC) measurement results show that at the observational site, biogenic VOCs (mostly isoprene) contribute most of chemical reactivity towards OH, although toluene from anthropogenic activities was observed in higher concentrations. Back-trajectory analysis indicates that air-masses from the forest part of Korea Peninsula were dominant influences during the high ozone episode event. On the other hand, Aged air masses from China were the dominant influence during the low ozone episode event. Model calculations conducted using the University of Washington Chemical Mechanism (UWCM) box model, also consistently show that BVOC, especially isoprene photochemistry, can be the significantly contribution to local ozone formation in the given photochemical environments of TRF. These research results strongly suggest that ozone control strategy in the Eastern Asian megacities, mostly situated in surrounding forest areas should be based on the comprehensive scientific understanding in BVOC photochemistry and interplays between anthropogenic and biogenic interactions.

  10. Background ozone in North China: trends, photochemical and transport impacts

    NASA Astrophysics Data System (ADS)

    Xu, X.; Lin, W.; Ge, B.

    2012-04-01

    Tropospheric ozone is one of the key greenhouse gases and plays an important role in atmospheric chemistry. Being a strong oxidant, ozone in the surface layer has significant impacts on human and vegetation health. Long-term measurements of surface ozone are highly needed for climate change assessment and environmental policy-making. Such measurements are scarce, particularly from the background regions. Since 2004, surface ozone and some related reactive gases have been observed at Shangdianzi (SDZ), a Global Atmosphere Watch (GAW) station in North China. Located at the north edge of the Northern China Plain (NCP), the SDZ station is an ideal site for capturing polluted air masses from the NCP sector (southwest) and clean air masses from the background sector (northeast). This facilitates the investigation of impacts of regional transport on surface ozone. In this study, we present long-term measurements of surface ozone made at SDZ, discuss the trends of surface ozone levels in different seasons. Results about the observation-based ozone production efficiency (OPE) for the site will be presented, along with impacts from horizontal and vertical air transport.

  11. Background ozone in North China: trends, photochemical and transport impacts

    NASA Astrophysics Data System (ADS)

    Xu, X.; Lin, W.; Ge, B.

    2011-12-01

    Tropospheric ozone is one of the key greenhouse gases and plays an important role in atmospheric chemistry. Being a strong oxidant, ozone in the surface layer has significant impacts on human and vegetation health. Long-term measurements of surface ozone are highly needed for climate change assessment and environmental policy-making. Such measurements are scarce, particularly from the background regions. Since 2004, surface ozone and some related reactive gases have been observed at Shangdianzi (SDZ), a Global Atmosphere Watch (GAW) station in North China. Located at the north edge of the Northern China Plain (NCP), the SDZ station is an ideal site for capturing polluted air masses from the NCP sector (southwest) and clean air masses from the background sector (northeast). This facilitates the investigation of impacts of regional transport on surface ozone. In this study, we present long-term measurements of surface ozone made at SDZ, discuss the trends of surface ozone levels in different seasons. Results about the observation-based ozone production efficiency (OPE) for the site will be presented, along with impacts from horizontal and vertical air transport.

  12. 76 FR 17121 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... published on February 28, 2011 (76 FR 10893). This assessment document was developed by the National Center... provided in the SUPPLEMENTARY INFORMATION section of Federal Register Notice (76 FR 10893). For information... AGENCY Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants...

  13. OZONE AND OTHER PHOTOCHEMICAL OXIDANTS. VOLUME 1 (CHAPTERS 1-7)

    EPA Science Inventory

    The report deals primarily with the origins and effects of ozone and other photochemical oxidants. It is limited, more or less, to the problem of urban pollution and to such closely related topics as natural background in the earth's boundary layer. No consideration is given to t...

  14. OZONE AND OTHER PHOTOCHEMICAL OXIDANTS. VOLUME 2 (CHAPTERS 8-15)

    EPA Science Inventory

    The report deals primarily with the origins and effects of ozone and other photochemical oxidants. It is limited, more or less, to the problem of urban pollution and to such closely related topics as natural background in the earth's boundary layer. No consideration is given to t...

  15. Integrated Science Assessment of Ozone and Related Photochemical Oxidants (First External Review Draft)

    EPA Science Inventory

    EPA announced that the First External Review Draft of the Integrated Science Assessment for Ozone and Related Photochemical Oxidants has been made available for independent peer review and public review. This draft document represents a concise synthesis and evaluation of ...

  16. Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Second External Review Draft)

    EPA Science Inventory

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Second External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant scienc...

  17. Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Third External Review Draft)

    EPA Science Inventory

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Third External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant science...

  18. Recent laboratory photochemical studies and their relationship to the photochemical formation of cometary radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.

    1991-01-01

    Experimental laboratory techniques used in studying the photochemistry of stable and unstable molecules are discussed. The laboratory evidence for the photochemical formation of C2 from C2H, C3 from C3H2, and NH from NH2 is presented. Other recent results obtained in laboratory studies of H2O, H2S, NH3, and HCN are reported.

  19. Comparison of measured ozone in southeastern Virginia with computer predictions from a photochemical model

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Gregory, G. L.

    1980-01-01

    Data for one day of the 1977 southeastern Virginia urban plume study are compared with computer predictions from a traveling air parcel model using a contemporary photochemical mechanism with a minimal description of nonmethane hydrocarbon (NMHC) constitution and chemistry. With measured initial NOx and O3 concentrations and a current separate estimate of urban source loading input to the model, and for a variation of initial NMHC over a reasonable range, an ozone increase over the day is predicted from the photochemical simulation which is consistent with the flight path averaged airborne data.

  20. The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes

    NASA Astrophysics Data System (ADS)

    Hamer, P. D.; Bowman, K. W.; Henze, D. K.; Attié, J.-L.; Marécal, V.

    2015-09-01

    We conduct analyses to assess how characteristics of observations of ozone and its precursors affect air quality forecasting and research. To carry out this investigation, we use a photochemical box model and its adjoint integrated with a Lagrangian 4D-variational data assimilation system. Using this framework in conjunction with pseudo-observations, we perform an ozone precursor source inversion and estimate surface emissions. We then assess the resulting improvement in ozone air quality prediction. We use an analytical model to conduct uncertainty analyses. Using this analytical tool, we address some key questions regarding how the characteristics of observations affect ozone precursor emission inversion and in turn ozone prediction. These questions include what the effect is of choosing which species to observe, of varying amounts of observation noise, of changing the observing frequency and the observation time during the diurnal cycle, and of how these different scenarios interact with different photochemical regimes. In our investigation we use three observed species scenarios: CO and NO2; ozone, CO, and NO2; and HCHO, CO and NO2. The photochemical model was set up to simulate a range of summertime polluted environments spanning NOx-(NO and NO2)-limited to volatile organic compound (VOC)-limited conditions. We find that as the photochemical regime changes, here is a variation in the relative importance of trace gas observations to be able to constrain emission estimates and to improve the subsequent ozone forecasts. For example, adding ozone observations to an NO2 and CO observing system is found to decrease ozone prediction error under NOx- and VOC-limited regimes, and complementing the NO2 and CO system with HCHO observations would improve ozone prediction in the transitional regime and under VOC-limited conditions. We found that scenarios observing ozone and HCHO with a relative observing noise of lower than 33 % were able to achieve ozone prediction

  1. Derived Emission Rates and Photochemical Production Rates of Volatile Organic Compounds (VOCs) Associated with Oil and Natural Gas Operations in the Uintah Basin, UT During a Wintertime Ozone Formation Event

    NASA Astrophysics Data System (ADS)

    Koss, A.; De Gouw, J. A.; Warneke, C.; Gilman, J.; Lerner, B. M.; Graus, M.; Yuan, B.; Edwards, P. M.; Brown, S. S.; Wild, R. J.; Roberts, J. M.; Bates, T. S.; Quinn, P.

    2014-12-01

    The Uintah Basin, an oil and natural gas extraction field in Utah, experienced extremely high levels of volatile organic compounds (VOCs) and ozone during the winter of 2013 - up to 100 ppmv carbon and 150 ppbv O3. Here we interpret VOCs measured during an ozone formation event from 31 Jan 2013 to 8 Feb 2013. Ratios of VOCs show strong diurnal cycles and week-long trends. A simple analysis was applied to ratios of aromatic VOCs measured by proton transfer reaction mass spectrometer (PTR-MS) to explain these trends and to estimate emission rates of aromatic VOCs from oil and natural gas extraction, VOC emission ratios relative to benzene, and ambient [OH]. The analysis incorporates the following assumptions: (1) the source composition of emitted VOCs and their emission rates were temporally and spatially constant, and (2) the removal of VOCs was governed by reaction with OH, diurnal profile of which is constrained by measured photolysis rates. The main findings are (1) the emission rate of methane, extrapolated from the emission rate of benzene, is on the same order as an independent estimate from aircraft measurements of methane in 2012, (2) the derived aromatic emission ratios are consistent with source contributions from both oil and gas producing wells, and (3) calculated daily OH concentrations are low, peaking at 1x106 molecules cm-3. The analysis was extended to investigate secondary production of oxygenated VOCs measured by PTR-MS. The analysis is able to explain daytime production, but it does not adequately explain nighttime behavior, which may be affected by complex deposition to snow and ice surfaces. The relative carbon mass of primary and secondary compounds was calculated and compared to observations. At the end of the ozone formation event (day 6), our analysis predicts that secondary (oxidized) VOCs should comprise about 40% of total carbon mass. However, only 12% of these compounds are accounted for by measured oxygenated VOCs and organic aerosol

  2. Chemical ozone formation- and destruction pathways in Mars' atmosphere

    NASA Astrophysics Data System (ADS)

    Stock, J. W.; Boxe, C. S.; Lehmann, R.; Grenfell, J. L.; Patzer, A. B. C.; Rauer, H.; Yung, Y. L.

    2013-09-01

    Ozone is a species of central interest on the Mars, since it has a significant impact on the photochemical stability of the atmosphere and is furthermore a suitably observable species. The abundance of ozone is controlled by chemical pathways. In this contribution we apply a unique algorithm, called the Pathway Analysis Program - PAP to the results of the JPL/Caltech photochemical column model of the Martian atmosphere to investigate the chemical pathways producing and consuming ozone as functions of height.

  3. Atmospheric photochemical transformations enhance 1,3-butadiene-induced inflammatory responses in human epithelial cells: The role of ozone and other photochemical degradation products.

    PubMed

    Doyle, Melanie; Sexton, Kenneth G; Jeffries, Harvey; Jaspers, Ilona

    2007-03-20

    Chemistry of hazardous air pollutants has been studied for many years, yet little is known about how these chemicals, once reacted within urban atmospheres, affect healthy and susceptible individuals. Once released into the atmosphere, 1,3-butadiene (BD) reacts with hydroxyl radicals and ozone (created by photochemical processes), to produce many identified and unidentified products. Once this transformation has occurred, the toxic potential of atmospheric pollutants such as BD in the ambient environment is currently unclear. During this study, environmental irradiation chambers (also called smog chambers), utilizing natural sunlight, were used to create photochemical transformations of BD. The smog chamber/in vitro exposure system was designed to investigate the toxicity of chemicals before and after photochemical reactions and to investigate interactions with the urban atmosphere using representative in vitro samples. In this study, we determined the relative toxicity and inflammatory gene expression induced by coupling smog chamber atmospheres with an in vitro system to expose human respiratory epithelial cells to BD, BDs photochemical degradation products, or the equivalent ozone generated within the photochemical mixture. Exposure to the photochemically generated products of BD (primarily acrolein, acetaldehyde, formaldehyde, furan and ozone) induced significant increases in cytotoxicity, IL-8, and IL-6 gene expression compared to a synthetic mixture of primary products that was created by injecting the correct concentrations of the detected products from the irradiation experiments. Interestingly, exposure to the equivalent levels of ozone generated during the photochemical transformation of BD did not induce the same level of inflammatory cytokine release for either exposure protocol, suggesting that the effects from ozone alone do not account for the entire response in the irradiation experiments. These results indicate that BDs full photochemical product

  4. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  5. Estimation of the ozone formation rate in the atmospheric boundary layer over a background region of Western Siberia

    NASA Astrophysics Data System (ADS)

    Antokhin, P. N.; Antokhina, O. Y.; Belan, B. D.

    2015-11-01

    The ozone formation rate in the atmospheric boundary layer (ABL) and the ozone inflow from the free atmosphere have been studied experimentally. The obtained estimates are based on the data of airborne sounding carried out over a background region of Western Siberia. As a result, it is obtained that the rate of ozone inflow from the upper atmospheric layers is only 20% of the rate of photochemical formation of ozone inside ABL. The vertical profiles of ozone flows in ABL have been additionally calculated based on the k-theory with the approach proposed by Troen and Mahrt. It has been shown in the calculations that the maximum of the ozone concentration in ABL is formed due to photochemical reactions from precursor gases.

  6. A Comparison of a Photochemical Model with SHIMMER hydroxyl and SABER ozone data

    NASA Astrophysics Data System (ADS)

    Siskind, D. E.; Stevens, M. H.; Englert, C. R.; Marsh, D. R.

    2011-12-01

    Mesospheric ozone photochemistry is primarily dominated by a catalytic loss cycle involving odd hydrogen (HOx). In principal, this comparatively simple chemistry could be tested with simultaneous comparison of a model with ozone and odd hydrogen data. Until recently, such comparisons could not be made because such simultaneous data did not exist. However, with the recent conclusion of the successful 30 month mission of The Spatial Heterodyne Image for Mesospheric Radicals (SHIMMER) on a Space Test Program satellite (STPSat-1) , we now have the data with which to perform these studies. SHIMMER made high quality, high vertical resolution measurements measurements of hydroxyl (OH) from 60-80 km for a wide range of local times. The ozone data comes from measurements made by the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) on the NASA TIMED satellite. Since TIMED and STPSat observed the atmosphere simultaneously but at different local times, these OH and ozone data are studied using a diurnal photochemical model as a "transfer standard" that was sampled for lighting conditions appropriate to each experiment. We have used the eddy diffusion coefficient as a free parameter to be constrained by the model-data comparison. The results suggest very good general agreement with SHIMMER OH, except for a puzzling overestimate by the model of the data in the late afternoon at the highest altitudes. By contrast, the comparison with SABER ozone shows persistent large discrepancies whereby the model falls below the data; reasons for this will be offered.

  7. The ozone formation potential of 1-bromo-propane.

    PubMed

    Whitten, Gary Z; Cohen, Jonathan P; Myers, Thomas C; Carter, William P L

    2003-03-01

    1-Bromo-propane (1-BP) is a replacement for high-end chlorofluorocarbon (HCFC) solvents. Its reaction rate constant with the OH radical is, on a weight basis, significantly less than that of ethane. However, the overall smog formation chemistry of 1-BP appears to be very unusual compared with typical volatile organic compounds (VOCs) and relatively complex because of the presence of bromine. In smog chamber experiments, 1-BP initially shows a faster ozone build-up than what would be expected from ethane, but the secondary products containing bromine tend to destroy ozone such that 1-BP can have a net overall negative reactivity. Alternative sets of reactions are offered to explain this unusual behavior. Follow-up studies are suggested to resolve the chemistry. Using one set of bromine-related reactions in a photochemical grid model shows that 1-BP would be less reactive toward peak ozone formation than ethane with a trend toward even lower ozone impacts in the future. PMID:12661686

  8. College Students' Understanding of Atmospheric Ozone Formation

    ERIC Educational Resources Information Center

    Howard, Kristen E.; Brown, Shane A.; Chung, Serena H.; Jobson, B. Thomas; VanReken, Timothy M.

    2013-01-01

    Research has shown that high school and college students have a lack of conceptual understanding of global warming, ozone, and the greenhouse effect. Most research in this area used survey methodologies and did not include concepts of atmospheric chemistry and ozone formation. This study investigates college students' understandings of atmospheric…

  9. Contributions of biogenic and anthropogenic hydrocarbons to photochemical smog formation

    SciTech Connect

    Paulson, S.E.

    1991-01-01

    Photochemical oxidation of biogenic (Isoprene) and anthropogenic (1-octene) hydrocarbons are examined. Experiments studied the individual daylight reactions of both isoprene and 1-octene, including those of OH, O{sub 3}, O({sup 3}P), and NO{sub 2}. The O{sub 3} reactions are found to produce significant quantities of OH, O({sup 3}P), and carbonyl yields that total about 100%. Isomerization is found to be an important channel for both isoprene and 1-octene. O({sup 3}P) reactions are found to have relatively minor decomposition pathways, resulting instead in epoxide formation. Results from both the smog chamber experiments and computer kinetic modeling were then used to develop photochemical oxidation mechanisms for each hydrocarbon. Aerosol formed by isoprene and another biogenic, {beta}-pinene, are characterized.

  10. Using back trajectories and process analysis to investigate photochemical ozone production in the Puget Sound region

    NASA Astrophysics Data System (ADS)

    Jiang, Guangfeng; Lamb, Brian; Westberg, Hal

    A photochemical Eulerian grid modeling system, consisting of MM5/CALMET/CALGRID, was modified to include a process analysis scheme, and a back trajectory method using the CALPUFF model in a reverse diffusion mode was implemented to define the air mass transport path reaching a downwind receptor from urban Seattle, WA. Process analysis was used to determine the relative importance of chemical production, advection, diffusion and deposition within the receptor grid cell and also along the air mass transport path from the urban source area to the receptor. This analysis was applied to an ozone episode occurring during 11-14 July 1996, in the Puget Sound region of Washington State. Within the receptor grid, the process analysis showed that ozone concentrations increase during the day as chemical production exceeds the net effects of deposition and vertical diffusion. Concentrations decrease after mid-afternoon when horizontal advection begins to dominate the other processes. When applied along the air mass transport path, process analysis shows that during most of the day, chemical production is larger than the other processes and causes the air mass ozone concentration to steadily increase during transport downwind of the urban core. Maximum ozone production rates equaled 20-25 ppb/h along the trajectory to the rural monitoring site where peak ozone levels occurred approximately 40 km downwind of urban Seattle, WA. The chemical production rates during this ozone evolution process play an important role in the peak ozone values. Higher peak ozone concentrations that occurred on Sunday, 14 July 1996 (118 ppbv), compared to those on Friday, 12 July 1996 (80 ppbv), were due, in part, to the higher ozone production rates along the trajectory to the rural monitoring site on 14 July compared to 12 July. These differences in chemical production appear to be related to differences in VOC/NO x ratios within the urban air mass for each day. The importance of VOC/NO x effects on

  11. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  12. Estimated photochemical ozone creation potentials (POCPs) of CF 3CF dbnd CH 2 (HFO-1234yf) and related hydrofluoroolefins (HFOs)

    NASA Astrophysics Data System (ADS)

    Wallington, T. J.; Sulbaek Andersen, M. P.; Nielsen, O. J.

    2010-04-01

    The photochemical ozone creation potentials (POCPs) for CF 3CF dbnd CH 2 and other commercially significant hydrofluoroolefins have been estimated for the first time. CF 3CF dbnd CH 2 (HFO-1234yf) has a POCP of 7.0 which is less than that for ethane (12.3) and greater than for methane (0.6). Methane and ethane have sufficiently low POCPs that they are usually considered unreactive with respect to ozone formation in urban areas and accordingly are exempt from volatile organic compound (VOC) emission regulations. Estimated POCPs for other hydrofluoroolefins are: CH 2dbnd CF 2, 18.0; CF 2dbnd CF 2, 12.5; CH 2dbnd CHCF 3, 10.7; CF 2dbnd CFCF 3, 5.4; Z-CHF dbnd CFCF 3, 5.6; E-CHF dbnd CFCF 3, 7.3; CH 2dbnd CHCF 2CF 3, 6.6; and t-CHF dbnd CHCF 3, 6.4.

  13. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters

    NASA Astrophysics Data System (ADS)

    Jenkin, Michael E.; Hayman, Garry D.

    The sensitivity of Photochemical Ozone Creation Potentials (POCP) to a series of systematic variations in the rates and products of reactions of radical intermediates and oxygenated products is investigated for the C 4 alcohols, 1-butanol ( n-butanol) and 2-methyl-1-propanol ( i-butanol), using the recently developed Master Chemical Mechanism (MCM) as the base case. The POCP values are determined from the calculated formation of ozone in the boundary layer over a period of approximately five days along an idealised straight line trajectory, using a photochemical trajectory model and methodology described in detail previously. The results allow the relative impacts on calculated ozone formation of various classes of chemical reaction within the degradation chemistry to be assessed. The calculated POCP is found to be very insensitive to many of the changes investigated. However, it is found to be sensitive to variations in the rate coefficient for the initiating reaction with OH ( kOH), although the sensitivity decreases with increasing kOH. The POCP appears to vary approximately linearly with kOH at low values (i.e. kOH less than ca. 4×10 -13 cm 3 molecule -1 s -1), whereas at high reactivities (i.e. kOH greater than ca. 4×10 -11 cm 3 molecule -1 s -1), the calculated POCP value is comparatively insensitive to the precise value of kOH. The POCP is also very sensitive to mechanistic changes which influence the yields of unreactive oxygenated products (i.e. those with OH reactivities below ca. 10 -12 cm 3 molecule -1 s -1), for example acetone. The propensity of the organic compound to produce organic nitrates (which act as comparatively unreactive reservoirs for free radicals and NO x) also appears to have a notable influence on the calculated POCP. Recently reported information relevant to the degradation of oxygenated VOCs is then used to update the chemical schemes for the 17 alcohols and glycols, 10 ethers and glycol ethers, and 8 esters included in the MCM

  14. Photochemical production of ozone in Beijing during the 2008 Olympic Games

    NASA Astrophysics Data System (ADS)

    Chou, C. C.-K.; Tsai, C.-Y.; Chang, C.-C.; Lin, P.-H.; Liu, S. C.; Zhu, T.

    2011-09-01

    the photochemical regime and the inhibition of NOz formation.

  15. Susceptibility of Diabetic Rats to Pulmonary and Systemic Effects of Inhaled Photochemically-Aged Atmosphere and Ozone (O3)

    EPA Science Inventory

    Susceptibility of Diabetic Rats to Pulmonary and Systemic Effects of Inhaled Photochemically-Aged Atmosphere and Ozone (O3)MC Schladweiler1, SJ Snow2, QT Krantz1, C King1, JD Krug2, N Modak2, A Henriquez3, V Bass4, DJ Miller3, JE Richards1, EH Boykin1, R Jaskot1, MI Gilmour1 and ...

  16. Sensitivity analysis of photochemical ozone to its precursor emissions over East Asia by CMAQ-DDM

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Kim, S.

    2011-12-01

    In the past three decades, anthropogenic emissions in East Asia have increased dramatically in parallel with the economic growth, and the trans-boundary air pollution arose as a concerning issue. For instance, high photochemical oxidant (over 120 ppbv) was observed at the remote clean island in Japan during 2007 springtime. In this event, many studies concluded that the high possibility of the impact of Asian-scale trans-boundary pollutants. To investigate the source-receptor relationships, modeling study is useful, however, if the chemical reaction involves the nonlinear response (e.g., ozone), to estimate its S-R relationships is quite difficult. The decoupled direct method (DDM) which was implemented in CMAQ ver. 4.7.1 is an efficient and accurate way of performing sensitivity analysis to model inputs. CMAQ-DDM has been extended to higher-order (HDDM) for gas-phase, and calculates first and second-order sensitivity coefficients representing the responsiveness of atmospheric chemical concentrations to perturbations in a model input or parameter (e.g., emission, reaction rate, initical condition, or boundary condition). This applications are well conducted in the U.S., whereas it is not fully examined in East Asia. In this study, we apply CMAQ-DDM technique for ozone and its precursor pollutants in East Asia. In the case of trans-boundary air pollution episode occurred on 7-9 May, 2007, the 1st order ozone sensitivity to the anthropogenic NOx emissions from China show the positive value in almost part over East Asia, namely represent the NOx-sensitive region, whereas in the large-point sources in China (e.g., Beijing and Shanghai), it shows the negative value due to the ozone titration by NO. We will also report more detailed region specified S-R analysis and cross-sensitivity analysis between NOx and VOC over China, Korea and Japan.

  17. Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Solomon, S.; Crutzen, P. J.

    1979-01-01

    The latitudinal and seasonal variation of ozone in the troposphere is discussed. Of particular interest is the asymmetrical behavior of this gas with respect to the two hemispheres. These asymmetries, when coupled with a diagnostic photochemical model of the troposphere, lends support to the view that ozone cannot be viewed as an inert tracer of stratospheric origin. In the calculations it is noted that it is likely that the budgets of carbon monoxide and tropospheric ozone may be quite dependent on each other and the calculations are discussed in light of the uncertainty which currently exists about representative global tropospheric background concentrations of the nitrogen oxides. In addition, the seasonal variation of excess (C-14)O2 (a stratospheric tracer) is examined and compared with the seasonal ozone variation during the same period of observations at the same location and altitudes. The distinct maxima for ozone found during the summer in the lower troposphere are not present for the (C-14)O2 data. This finding likewise suggests that photochemical processes taking place in the troposphere are an important source term for tropospheric ozone.

  18. Stratospheric photochemical studies using Nimbus 7 data. I - Ozone photochemistry. II - Development of inferred trace specie distributions

    NASA Technical Reports Server (NTRS)

    Natarajan, M.; Lambeth, J. D.; Callis, L. B.; Boughner, R. E.; Russell, J. M., III

    1986-01-01

    The present investigation has the objective to make use of the limb infrared monitor of the stratosphere (LIMS) data set in conducting stratospheric photochemical studies. A description of the data is provided. The data are utilized in a zero-dimensional model incorporating the relevant chemistry. The chemical reaction scheme considered is a subset of the scheme used in the Langley one-dimensional model discussed by Callis et al. (1983). Attention is given to a comparison of model results and data, a model uncertainty analysis, model response to modifications in rate data, the ozone-temperature relationship, and the diurnal variation in the upper stratospheric ozone.

  19. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  20. On applicability of the photochemical-equilibrium approach for retrieval of O and H mesospheric distributions from the satellite-based measurements of the airglow emission and ozone concentration

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Belikovich, Mikhail; Kulikov, Mikhail

    2016-04-01

    Atomic oxygen and hydrogen are known to be among key components for the photochemistry and energy balance of the Earth's atmosphere between approximately 80 and 100 km altitude (mesopause region). Therefore, obtaining information about the vertical distributions of O and H concentrations is an important task in studies of this region. Solving of this problem is rather difficult due to the absence of regular methods which allow one to direct measurements of distributions of these components in mesosphere. However, indirect methods used to retrieve O and H distributions from the satellite-based measurements of the OH and O2(1D) airglow emission, as well as the data of IR and microwave O3 measurements have a sufficiently long development history. These methods are rooted in the use of the condition of photochemical equilibrium of ozone density in the range of altitudes from 50 to 100 km. A significant factor is that an insufficient volume of such measurement data forces researchers to use approximate ("truncated") photochemical-equilibrium conditions. In particular, it is assumed that in the daytime the ozone production reaction is perfectly balanced by ozone photodissociation, whereas during the night the only ozone sink is the reaction of ozone with atomic hydrogen, which, in its turn, leads to formation of excited OH and airglow emission of the latter. The presentation analyzes applicability of the photochemical-equilibrium conditions both in the total and truncated forms for description of the spatio-temporal evolution of mesospheric ozone during a year. The analysis is based on year-long time series generated by a 3D chemical transport model, which reproduces correctly various types of atmosphere dynamics in the range of altitudes from 50 to 100 km. These data are used to determine statistics of the ratio between the correct (calculated dynamically) distributions of the O3 density and its uncontracted and truncated equilibrium values for the conditions of the

  1. A two-dimensional photochemical model of the atmosphere. I Chlorocarbon emissions and their effect on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Gidel, L. T.; Crutzen, P. J.; Fishman, J.

    1983-01-01

    A two-dimensional photochemical model is used to examine changes to the ozone layer caused by emissions of CFCl3, CF2Cl2, CH3CCl3 and CCl4. The influence of a possible secular increase in tropospheric methane up to 2 percent per year was found to be small, although it acts to mask decreases in total ozone caused by the chlorocarbons. Increasing NO(x) emissions caused by industralization also tend to mask decreases in total ozone and may have caused total ozone to increase by about 1 percent. The model-calculated ozone decreases are estimated to be about 3 percent by 1980. This estimate is higher than estimates by similar models, although it is noted that CCl4 and CH3CCl3 emissions are included in the model in addition to CFCl3 and CF2Cl2. This is significant because the model indicates that CCl4 has dominated the ozone depletions so far, and knowledge of the historical emission rate of CCl4 to the atmosphere is incomplete. There remain sufficient significant disagreements between theoretical and observed concentrations and variabilities, particularly for odd nitrogen and ClO, to caution against assigning too much confidence in the calculated ozone depletion.

  2. Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Wolfe, G. M.; Bohn, B.; Broch, S.; Fuchs, H.; Ganzeveld, L. N.; Gomm, S.; Häseler, R.; Hofzumahaus, A.; Holland, F.; Jäger, J.; Li, X.; Lohse, I.; Lu, K.; Prévôt, A. S. H.; Rohrer, F.; Wegener, R.; Wolf, R.; Mentel, T. F.; Kiendler-Scharr, A.; Wahner, A.; Keutsch, F. N.

    2015-02-01

    Ozone concentrations in the Po Valley of northern Italy often exceed international regulations. As both a source of radicals and an intermediate in the oxidation of most volatile organic compounds (VOCs), formaldehyde (HCHO) is a useful tracer for the oxidative processing of hydrocarbons that leads to ozone production. We investigate the sources of HCHO in the Po Valley using vertical profile measurements acquired from the airship Zeppelin NT over an agricultural region during the PEGASOS 2012 campaign. Using a 1-D model, the total VOC oxidation rate is examined and discussed in the context of formaldehyde and ozone production in the early morning. While model and measurement discrepancies in OH reactivity are small (on average 3.4 ± 13%), HCHO concentrations are underestimated by as much as 1.5 ppb (45%) in the convective mixed layer. A similar underestimate in HCHO was seen in the 2002-2003 FORMAT Po Valley measurements, though the additional source of HCHO was not identified. Oxidation of unmeasured VOC precursors cannot explain the missing HCHO source, as measured OH reactivity is explained by measured VOCs and their calculated oxidation products. We conclude that local direct emissions from agricultural land are the most likely source of missing HCHO. Model calculations demonstrate that radicals from degradation of this non-photochemical HCHO source increase model ozone production rates by as much as 0.6 ppb h-1 (12%) before noon.

  3. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end. PMID:26077317

  4. The Sensitivity of Model Ozone to Advective and Photochemical Processes in the High Latitude Winter Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Douglass, A.; Kawa, S. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Three dimensional chemistry and transport models (CTMs) contain a set of coupled continuity equations which describe the evolution of constituents such as ozone and other minor species which affect ozone. Both advection and photochemical processes contribute to constituent evolution, and a CTM provides a means to evaluate these contributions separately. Such evaluation is particularly useful when both terms are important to the modeled tendency. An example is the ozone tendency in the high latitude winter lower stratosphere, where advection tends to increase ozone, and catalytic processes involving chlorine radicals tend to decrease ozone. The Goddard three dimensional chemistry and transport model uses meteorological fields from the Goddard Earth Observing System Data Assimilation System, thus the modeled ozone evolution may reproduce the observed evolution and provide a test of the model representation of photochemical processes if the transport is shown to be modeled appropriately. We have investigated the model advection further using diabatic trajectory calculations. For long lived constituents such as N2O, the model field for a particular time on a potential temperature surface is compared with a field produced by calculating 15 day back trajectories for a fixed latitude longitude grid, and mapping model N2O at the terminus of the back trajectories onto the initial grid. This provides a quantitative means to evaluate two aspects of the CTM transport: one, the model horizontal gradient between middle latitudes and the polar vortex is compared with the gradient produced using the non-diffusive trajectory calculation; two, the model vertical advection, which is produced by the divergence of the horizontal winds, is compared with the vertical transport expected from diabatic cooling.

  5. The relationship between ozone formation and air temperature in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  6. Application of photochemical indicators to evaluate ozone nonlinear chemistry and pollution control countermeasure in China

    NASA Astrophysics Data System (ADS)

    Xie, Min; Zhu, Kuanguang; Wang, Tijian; Yang, Haoming; Zhuang, Bingliang; Li, Shu; Li, Minggao; Zhu, Xinsheng; Ouyang, Yan

    2014-12-01

    Ozone sensitivity in China was investigated by using a comprehensive three-dimensional air quality model system WRF-CALGRID. A real case and two cases with 35% emission reduction for either NOx or VOC were conducted for the period of March in 2010. The simulation results of O3 agreed fairly well with the observation data. Based on the meaning of O3 sensitivity, the ratio Ra was defined, with the transition value of 1 to distinguish NOx-sensitive region from VOC-sensitive region. With the aid of Ra, VOC- and NOx-sensitive regions in China were preliminary located. The transition ranges for some photochemical indicators were quantified. Only those of H2O2/NOz and H2O2/HNO3 met the requirement that the 95th percentile VOC-sensitive value should be equal to or lower than the 5th percentile NOx-sensitive value. 0.16-0.40 for H2O2/HNO3 and 0.14-0.28 for H2O2/NOz were adopted to distinguish different O3 sensitivity in China. The results showed that the VOC-sensitive regions are primarily distributed over the urban centers and the developed industrial areas in eastern and southern China, while the NOx-sensitive regions are mainly located in the remote areas of northern and western China. High correlation between Ra and indicators was found, and a new approach to quantify the transition values of indicators was proposed. These indicators can play an important role in the air complex pollution control of urban clusters over East Asia.

  7. Design considerations for ozone and acid aerosol exposure and health investigations: the Fairview Lake summer camp - photochemical smog case study

    SciTech Connect

    Lioy, P.J.; Spektor, D.; Thurston, G.; Citak, K.; Lippmann, M.; Bock, N.; Speizer, F.E.; Hayes, C.

    1987-01-01

    The health effects associated with ozone and acidic particulate sulfate exposures to active children have been and are being addressed in field epidemiological studies at summer camps in rural areas of the Northeastern US. The rationale and study design for studies, which have been conducted in Pennsylvania and New Jersey, are developed and reviewed. As background, results are summarized for human clinical and epidemiological studies and animal studies. These provided the basis for selection of health outcomes measured results from chemical characterization and transport studies are reviewed to define the criteria used for selection of a site which is effected by high ozone and acid species during photochemical smog episodes. The integration of the study design is discussed in detail by reviewing its application to the 1984 - Fairview Lake Camp Study (July 8 to August 4). The features of the camp study are reviewed, including the study population, pulmonary function procedures and analyses, air pollution monitoring instrumentation, and the site characteristics. The pollution exposure data are presented, for ozone and acidic sulfates and examined for the range and distribution concentration. Further information is provided on the intensity and duration of episodes encountered over the course of the study. Episodes occurred which had ozone and acid sulfates, ozone alone, and acid sulfates alone. 56 references, 9 figures.

  8. Chemical pathway analysis of the Martian atmosphere: The formation and destruction of ozone

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Stock, J.; Lehmann, R.; Grenfell, L.; Patzer, A.; Rauer, H.; Yung, Y. L.

    2014-12-01

    Ozone is a species of major importance in the Martian atmosphere e.g. since it is involved in the stabilization of Mars' major atmospheric constituent carbon dioxide. Below XX km altitude, ozone acts as an atomic oxygen source, which is produced by photolysis and oxidizes carbon monoxide via catalytic cycles involving odd hydrogen (HOx=H+OH+HO2). Originating mainly from H2O photolysis, odd hydrogen destroys ozone resulting in the observed anti-correlation between water vapor and ozone. Compared with species from the HOx-family, ozone is relatively easy to detect by e.g. UV spectroscopy or IR heterodyne spectroscopy. Similar to carbon dioxide, the concentration of ozone can be critically influenced by chemical trace species acting as catalysts in chemical pathways. The identification of such chemical pathways in complex reaction networks and the quantification of their contribution is in general challenging. Therefore, we use an automated computer algorithm (PAP - Pathway Analysis Program), which is specifically designed to address such problems. In this work, we apply the PAP-algorithm to the results of the newly updated JPL/Caltech photochemical column model of the Martian atmosphere in order to investigate the Martian atmospheric ozone photochemistry. The efficiencies of individual ozone formation and destruction pathways are calculated for different atmospheric heights, by applying the algorithm to each vertical layer of the column model in turn. The results of our investigations suggest that ozone is primarily produced by a Chapman-like mechanism, whereby atomic oxygen is produced by carbon dioxide photolysis instead of molecular oxygen photolysis. In the ozone layer at approximately 40 km altitude, ozone formation is chiefly dominated by a chemical pathway where atomic oxygen is supplied by vertical transport. Ozone consumption pathways involving ozone photolysis are most efficient except for a layer around 40 km altitude where the reaction between ozone and

  9. Chemical pathway analysis of the Martian atmosphere: The formation and destruction of ozone

    NASA Astrophysics Data System (ADS)

    Stock, Joachim; Boxe, Christopher; Lehmann, Ralph; Grenfell, Lee; Patzer, Beate; Rauer, Heike; Yung, Yuk

    2014-05-01

    Ozone is a species of major importance in the Martian atmosphere e.g. since it is involved in the stabilization of Mars' major atmospheric constituent carbon dioxide. Below approximately 40 km altitude, ozone acts as an atomic oxygen source which is produced by photolysis and oxidizes carbon monoxide via catalytic cycles involving odd hydrogen (HOx=H+OH+HO2). Originating mainly from H2O photolysis, odd hydrogen destroys ozone resulting in the observed anti-correlation between water vapor and ozone. Compared with species from the HOx-family, ozone is relatively easy to detect by e.g. UV spectroscopy or IR heterodyne spectroscopy. Similar to carbon dioxide, the concentration of ozone can be critically influenced by chemical trace species acting as catalysts in chemical pathways. The identification of such chemical pathways in complex reaction networks and the quantification of their contribution are in general challenging. Therefore, we use an automated computer algorithm (PAP - Pathway Analysis Program), which is specifically designed to address such problems. In this work, we apply the PAP-algorithm to the results of the newly updated JPL/Caltech photochemical column model of the Martian atmosphere in order to investigate Mars' atmospheric ozone photochemistry. The efficiencies of individual ozone formation and destruction pathways are calculated for different atmospheric heights, by applying the algorithm to each vertical layer of the column model in turn. The results of our investigations suggest that ozone is primarily produced by a Chapman-like mechanism, whereby atomic oxygen is produced by carbon dioxide photolysis instead of molecular oxygen photolysis. In the ozone layer at approximately 40 km altitude, ozone formation is chiefly dominated by a chemical pathway where atomic oxygen is supplied by vertical transport. Ozone consumption pathways involving ozone photolysis are most efficient except for a layer around 40 km altitude where the reaction between

  10. Source Contribution of Volatile Organic Compounds to Ozone Formation in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Ying, Q.

    2009-12-01

    The Houston-Galveston-Brazoria (HGB) and Beaumont-Port Arthur (BPA) areas in the southeast Texas are respectively in severe and moderate non-attainment status for the National Ambient Air Quality Standards for ozone (O3). In order to design effective emission control strategies to improve ozone air quality, it is necessary to understand the contribution of volatile organic compounds (VOCs) from different sources to O3 formation. In this study, a source-oriented SAPRC-99 gas phase photochemical mechanism was developed and incorporated into the Community Multiscale Air Quality (CMAQ) model to determine the contribution of volatile organic compounds (VOCs) from different sources to the predicted net ozone formation rate in southeast Texas during the Texas Air Quality Study (TexAQS) from 16 August - 6 September 2000. Contribution from eight different sources: biogenic, diesel engines, highway gasoline vehicles, off-highway gasoline engines, solvent utilization, petroleum industry, other industries and wildfire were resolved. This is the first time that the regional source contribution of VOCs to O3 formation has been quantified using a three-dimensional source oriented modeling approach in southeast Texas. Regional source contribution analysis indicates that the VOCs emitted from petrochemical industries are responsible to a large amount of O3 formation in the HGB and BPA area. The peak O3 formation rate due to petroleum industry and other industries combined is ~8 ppb hr(-1) in early afternoon hours, which rivals the O3 formation rate due to biogenic sources (~ 9 ppb hr(-1)). Gasoline vehicles also contribute significantly to the ozone formation, with a maximum contribution of ~3.5 ppb hr(-1). The spatial coverage of vehicle sources is larger that of industrial sources. Solvent utilization contributes ~1.2 ppb hr(-1) and has similar spatial coverage as gasoline vehicle sources. VOC emissions from reciprocating engines powered by natural gas are the most significant

  11. Laboratory studies of chemical and photochemical processes relevant to stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1994-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(sub x) and NO(sub x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO2 radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. In this annual report, we focus on our recent accomplishments in the quantitative spectroscopy of the HO2 radical. This report details the measurements of the broadening coefficients for the v(sub 2) vibrational band. Further measurements of the vapor pressures of nitric acid hydrates relevant to the polar stratospheric cloud formation indicate the importance of metastable crystalline phases of H2SO4, HNO3, and H2O. Large particles produced from these metastable phases may provide a removal mechanism for HNO3 in the polar stratosphere.

  12. Natural hydrocarbon emission estimates based on Landsat data as an input to a regional ozone photochemical model

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Gervin, J. C.; Salop, J.

    1982-01-01

    Landsat-derived forest cover data were employed with non-methane hydrocarbon (NMHC) emission rates in a model to quantify summer forest ozone production for the Tidewater Region of Virginia. The areal extent of the three major forest types - coniferous, deciduous, and mixed - were determined from Landsat data on two adjacent scenes, using an unsupervised approach to spectral signature development. The forest type results from both data sets were verified in an extensive accuracy assessment and merged to provide regional statistics for total acreages, percent forest, and error rates. The Landsat statistics were incorporated into forest type emission factor equations to produce an estimated emission rate for natural hydrocarbons from forests. This estimate, along with measured rates for nitrogen oxides and NMHC from anthropogenic sources, was provided as input to computer simulations of atmospheric ozone generation for the Tidewater Region using a photochemical oxident model.

  13. Ozone and secondary aerosol formation — Analysis of particle observations in the 2009 SHARP campaign

    NASA Astrophysics Data System (ADS)

    Cowin, J.; Yu, X.; Laulainen, N.; Iedema, M.; Lefer, B. L.; Anderson, D.; Pernia, D.; Flynn, J. H.

    2010-12-01

    Particulate matters (PM) play important roles in the formation and transformation of ozone. Although photooxidation of volatile organic compounds with respect to ozone formation in the gas phase is well understood, many unknowns still exist in heterogeneous mechanisms that process soot, secondary aerosols (both inorganic and organic), and key radical precursors such as formaldehyde and nitrous acid. Our main objective is to answer two key science questions: 1) will reduction of fine PM reduce ozone formation? 2) What sources of PM are most culpable? Are they from local chemistry or long-range transport? The field data collected in the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) by our group at the Moody Tower consist of 1) real-time photolysis rates of ozone precursors, 2) particle size distributions, 3) organic carbon and elemental carbon, and 4) an archive of single particle samples taken with the Time Resolved Aerosol Collector (TRAC) sampler. The time resolution of the TRAC sampler is 30 minutes for routine measurements, and 15 minutes during some identified “events” (usually in the mid-afternoon) of high ozone and secondary organic or sulfate particle formation. The latter events last typically about an hour. Five ozone exceedance days occurred during the 6 weeks of deployment. Strong correlation between photochemical activities and organic carbon was observed. Initial data analysis indicates that secondary organic aerosol is a major component of the carbonaceous aerosols observed in Houston. Soot, secondary sulfate, seal salt, and mineral dust particles are determined from single particle analysis using scanning electron microscope and transmission electron microcopy coupled with energy dispersive X-ray spectroscopy. Compared with observations in 2000, the mass percentage of organics is higher (60 vs. 30%), and lower for sulfate (20% vs. 32%). On-going data analysis will focus on the composition, sources, and transformation of primary and

  14. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model

    NASA Astrophysics Data System (ADS)

    Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.

    2014-09-01

    A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p < 0.05), suggesting different cycling processes between OH and HO2 at the two sites. The higher OH at TW was due to high-NO mixing ratios, which shifted the HOx (OH + HO2) balance toward OH by the propagation of HO2 and alkyl peroxy radicals (RO2) with NO. HOx production was dominated by O3 photolysis at TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.

  15. Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.

    1991-01-01

    The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.

  16. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  17. Formation of the 1988 Antarctic ozone hole

    SciTech Connect

    Krueger, A.J.; Stolarski, R.S.; Schoeberl, M.R. )

    1989-05-01

    The 1988 Antarctic ozone hole, as observed with the Nimbus 7 TOMS instrument, formed in August but failed to deepen significantly during September. The structure of the surrounding total ozone maxima also differed from the prior year. The 1987 total ozone pattern was pole centered and symmetrical. During 1988 a persistent strong wavenumber 1 perturbation in total ozone developed in August which resulted in displacement of the polar ozone minimum to the base of the Antarctic Peninsula. Subsequently, a series of transient events diminished and a larger scale decrease in polar total ozone began. The decrease lasted less than two weeks, resulting in a net change of only 25 DU compared with the nearly 100 DU decline observed during the same period in 1987. The minimum values remained roughly constant until October 19, 1988 and then increased rapidly. The 1988 Antarctic ozone hole subsequently drifted off the Antarctic continent in late October and dissipated in mid-November.

  18. An Airborne Investigation of Boundary Layer Dynamics, Entrainment, and Ozone Photochemical Production During DISCOVER-AQ in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Conley, S. A.; Post, A.; Faloona, I. C.

    2014-12-01

    During the California deployment of NASA's DISCOVER-AQ project of January/February 2013, our team flew a Mooney TLS research aircraft instrumented with an in-house wind measurement system, a UV absorption ozone instrument, temperature probe, and a Picarro methane, carbon dioxide, and water vapor analyzer. Flights were focused on the lowest 1000 m across the Central Valley axis just north of Fresno in order to characterize the wintertime atmospheric boundary layer (ABL). For seven flights we report the observed ABL growth rates, and compare these with a simple mixed layer model driven by surface heat flux estimates from the North American Regional Reanalysis data set. By enforcing a mixed layer budget closure of the observed water vapor trend and the differential across the ABL top, we derive midday entrainment velocities for the region that average 1.2 (± 0.4) cm s-1. A similar budgeting method is used for ozone to estimate wintertime photochemical production rates that ranged from 0.5 to 7.0 ppb h-1, and exhibited a strong correlation with ambient temperature (see Figure) and total ozone abundance. Finally, the gross emissions of methane for this heavily agricultural region are estimated and compared to existing inventories. These results can provide important constraints on ABL growth and entrainment to aid surface studies of aerosol composition and other trace gases that are being conducted for DISCOVER-AQ.

  19. AIR QUALITY CRITERIA FOR OZONE AND RELATED PHOTOCHEMICAL OXIDANTS VOLUME I OF III (Final, 1996)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) promulgates the National Ambient Air Quality Standards (NAAQS) on the basis of scientific information contained in air quality criteria documents. The previous ozone (O3) criteria document, Air Quality Criteria for Ozone and Other Ph...

  20. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Nozoe, Susumu; Yonemura, Seiichiro; Bandow, Hiroshi; Yokouchi, Yoko

    2016-04-01

    To better understand the secondary air pollution in transboundary air over westernmost Japan, ground-based field measurements of the chemical composition of fine particulate matter ( ≤ 1 µm), mixing ratios of trace gas species (CO, O3, NOx, NOy, i-pentane, toluene, and ethyne), and meteorological elements were conducted with a suite of instrumentation. The CO mixing ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport of the measured chemical species. Despite the considerably different atmospheric lifetimes of NOy and CO, these mixing ratios were correlated (r2 = 0.67). The photochemical age of the pollutants, t[OH] (the reaction time × the mean concentration of OH radical during the atmospheric transport), was calculated from both the NOx / NOy concentration ratio (NOx / NOy clock) and the toluene / ethyne concentration ratio (hydrocarbon clock). It was found that the toluene / ethyne concentration ratio was significantly influenced by dilution with background air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NOx with O3, a potentially biasing reaction channel on [NOx] / [NOy], was small. The t[OH] values obtained with the NOx / NOy clock ranged from 2.9 × 105 to 1.3 × 108 h molecule cm-3 and were compared with the fractional contribution of the m/z 44 signal to the total signal in the organic aerosol mass spectra (f44, a quantitative oxidation indicator of carboxylic acids) and O3 mixing ratio. The comparison of t[OH] with f44 showed evidence for a systematic increase of f44 as t[OH] increased, an indication of secondary organic aerosol (SOA) formation. To a first approximation, the f44 increase rate was (1.05 ± 0.03) × 10-9 × [OH] h-1, which is comparable to the background-corrected increase rate observed during the New England Air Quality

  1. Ozone formation in biomass burning plumes: Influence of atmospheric dilution

    NASA Astrophysics Data System (ADS)

    Poppe, D.; Koppmann, R.; Rudolph, J.

    Biomass burning in the tropics contributes substantially to the emission of organic compounds and nitrogen oxides into the troposphere and has an important impact on the global budget of ozone in the troposphere. Since ozone formation is a nonlinear chemical process the rate of formation is also influenced by atmospheric dilution and transport. This paper addresses the production of ozone in a plume emerging from a biomass burning site. Atmospheric mixing processes downwind the fire are expected to influence the total amount of ozone produced. A sensitivity study to assess the influence of dilution on the maximum ozone mixing ratio and on the amount of ozone formed in the entire plume (excess ozone) reveals that both quantities depend strongly on the time scale and the final value of the dilution. Up to 70% difference of the excess ozone as function of the characteristic time of the dilution was observed. Since many global models do not treat the early development of the plume with sufficient resolution in space and time a substantial uncertainty of model predicted ozone formation from biomass burning plumes is to be expected.

  2. Ozone formation during an episode over Europe: A 3-D chemical/transport model simulation

    NASA Technical Reports Server (NTRS)

    Berntsen, Terje; Isaksen, Ivar S. A.

    1994-01-01

    A 3-D regional photochemical tracer/transport model for Europe and the Eastern Atlantic has been developed based on the NASA/GISS CTM. The model resolution is 4x5 degrees latitude and longitude with 9 layers in the vertical (7 in the troposphere). Advective winds, convection statistics and other meteorological data from the NASA/GISS GCM are used. An extensive gas-phase chemical scheme based on the scheme used in our global 2D model has been incorporated in the 3D model. In this work ozone formation in the troposphere is studied with the 3D model during a 5 day period starting June 30. Extensive local ozone production is found and the relationship between the source regions and the downwind areas are discussed. Variations in local ozone formation as a function of total emission rate, as well as the composition of the emissions (HC/NO(x)) ratio and isoprene emissions) are elucidated. An important vertical transport process in the troposphere is by convective clouds. The 3D model includes an explicit parameterization of this process. It is shown that this process has significant influence on the calculated surface ozone concentrations.

  3. Simulation of the effects of critical factors on ozone formation and accumulation in the greater Athens area

    NASA Astrophysics Data System (ADS)

    Bossioli, Elissavet; Tombrou, Maria; Dandou, Aggeliki; Soulakellis, Nikos

    2007-01-01

    In the present study, the temporal and spatial dynamics of the ozone production in the greater Athens area (GAA) is examined by using the photochemical UAM-V model coupled with the meteorological MM5 model. Several numerical experiments were performed in order to investigate and to quantify the effect of critical factors that conduce to the ozone formation and accumulation during ozone episodes. The initial scenario is able to reproduce the observed ozone patterns, but it underestimates the observed peaks in most of the downwind suburban stations. Using process analysis, we demonstrate the contribution of chemical and physical processes to ozone formation and destruction. The inclusion of biogenic emissions and their distribution based on a satellite vegetation index, as well as the adjustment of the speciation of the anthropogenic NMVOC emissions according to specific characteristics measured in street and aged city plumes, lead to a more realistic description of the urban mixture and thus of the ozone production. The effect of the urban sector introduced via a simplified urbanized meteorological data set, provoke a differentiation of the spatial pattern attributed to the accumulation of the primary NOX pollutants inside the city center and to the consequent limited horizontal advection toward the peripheral zone. Finally, the ozone background turned out to be a key factor for the model performance. The statistical evaluation of the results reveals the importance and the necessity of implementing all the above modifications; the persistence of some discrepancies is associated with meteorological or modeling coupling limitations.

  4. Ozone formation due to interaction of meteoroids with Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Bibarsov, R. SH.

    1987-01-01

    In a previous paper, it was shown that concentration of atomic oxygen in overdense meteor trails may exceed that of the normal atmosphere by a factor of several hundred times. This may lead to the formation of meteoric ozone. Therefore, it is imperative to estimate the concentration of ozone in the trails of meteor bodies with different masses. It seems that meteoric ozone must be taken into account when studying the balance of ionization in the meteor trails formed by particles with masses more than .01 g. The predicted levels of atomic oxygen and ozone seem sufficient to greatly influence the rate of meteoric plasma deionization.

  5. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  6. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs).

    PubMed

    Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J

    2015-06-01

    Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable. PMID:25070769

  7. Peroxy radical concentration and ozone formation rate at a rural site in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Kleinman, Lawrence; Lee, Yin-Nan; Springston, Stephen R.; Lee, Jai H.; Nunnermacker, Linda; Weinstein-Lloyd, Judith; Zhou, Xianliang; Newman, Leonard

    1995-04-01

    As part of the Southern Oxidants Study, Brookhaven National Laboratory operated an intensive measurement site near Metter, Georgia, during parts of the summers of 1991 and 1992. Measurements were made of photochemically active trace gases and meteorological parameters relevant to determining causes for elevated ambient ozone concentration. The 1992 data set was used to calculate peroxy radical concentration and ozone formation rate based on determining the departure from the photostationary state (PSS) and based on a radical budget equation, such as applied previously to the 1991 data set. Averaged over the 28-day experimental period, we find maximum radical production occurring near noon at 2.5 ppb h-1, maximum peroxy radical concentration also occurring near noon at 80 ppt, and maximum ozone production of 8 ppb h-1 occurring near 1000 EST. Ozone photolysis accounts for 55% of radical production, HCHO and other carbonyl compounds about 40%. The radical budget and PSS methods depend in different ways on atmospheric photochemistry and a comparison between them affords a test of our understanding of the photochemical production of O3. We find that these methods agree to the extent expected based on uncertainty estimates. For the data set as a whole, the median estimate for fractional error in hourly average peroxy radical concentration determined from the radical budget method is approximately 30% and from the PSS method, 50%. Error estimates for the PSS method are highly variable, becoming infinite as peroxy radical concentration approaches zero. This behavior can be traced back to the difference form of the PSS equations. To conduct a meaningful comparison between the methods, the data set was segregated into subsets based on PSS uncertainty estimates. For the low-uncertainty subset, consisting of a third of the whole data set, we find that the ratio of peroxy radical concentration predicted from the PSS method to that predicted from the radical budget method to be

  8. Particulate matter formation from photochemical degradation of organophosphorus pesticides

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    Several experiments were performed in the European Photo-reactor - EUPHORE - for studying aerosol formation from organophosphorus pesticides such as diazinon, chlorpyrifos, chlorpyrifos-methyl and pirimiphos-methyl. The mass concentration yields obtained (Y) were in the range 5 - 44% for the photo-oxidation reactions in the presence and the absence of NOx. These results confirm the importance of studying pesticides as significant precursors of atmospheric particulate matter due to the serious risks associated to them. The studies based on the use of EUPHORE photoreactor provide useful data about atmospheric degradation processes of organophosphorus pesticides to the atmosphere. Knowledge of the specific degradation products, including the formation of secondary particulate matter, could complete the assessment of their potential impact, since the formation of those degradation products plays a significant role in the atmospheric chemistry, global climate change, radiative force, and are related to health effects.

  9. [Study on bromate formation of catalytic ozonation process].

    PubMed

    Wu, Lin; Yang, Hong-Wei; Yang, Shao-Xia; Lü, Miao; Cheng, Wen

    2011-08-01

    In a batch reactor, the BrO3(-) formation was investigated in the ozonation and catalytic ozonation of Br(-)-containing Yellow river water, using the different heterogeneous catalysts. The results showed that BrO3(-) minimization was achieved in the catalytic ozonation with NiO, CuO, Fe3O4 and Al2O3 as catalysts and the percent reductions of BrO3(-) were 34.0%, 32.8%, 29.2% and 20.8% respectively. In the reaction R(ct), the ratio of concentration of *OH to O3, decreased with the reaction time, and the range of R(ct) was from 10(-8) to 10(-6). In the ozonation process, one of the main reaction pathways of BrO3(-) formation was the combination oxidation of Br(-) by *OH and then O3, another was the combination oxidation of Br(-) by O3 and then *OH. In the catalytic ozonation with Fe3O4 catalyst, the main pathway was the combination oxidation by *OH and then O3. Moreover, about 60.7% removal for UV254 was obtained after 20 min in the catalytic ozonation reaction. In our study, it was found that the catalytic ozonation process can effectively minimize the formation of BrO3(-) and also oxidize organic compounds. PMID:22619950

  10. Air Quality Criteria for Ozone and Related Photochemical Oxidants (2006 Final)

    EPA Science Inventory

    Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S. Clean Air Act. As mandated by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) must periodically review t...

  11. 76 FR 10893 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... in the development of the ISA (75 FR 42085). The first external review draft ISA for Ozone and... criteria. On Sep 29, 2008 (73 FR 56581), EPA formally initiated its current review of the air quality... via a publicly accessible teleconference consultation on November 13, 2009 (74 FR 54562). In...

  12. AIR QUALITY CRITERIA FOR OZONE AND RELATED PHOTOCHEMICAL OXIDANTS (External Review Draft, 1995)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) promulgates the National Ambient Air Quality Standards (NAAQS) on the basis of scientific information contained in air quality criteria issued under Section 108 of the Clean Air Act. The previous ozone (03) criteria document, Air Qua...

  13. Oxidation of chlorfenvinphos in ultrapure and natural waters by ozonation and photochemical processes.

    PubMed

    Acero, Juan L; Real, Francisco J; Javier Benitez, F; González, Antonio

    2008-06-01

    The chemical oxidation of the organophosphorus insecticide chlorfenvinphos, a priority pollutant in aquatic environments, has been conducted in ultrapure water, by means of single degradation agents (ozone and UV radiation), and by the Advanced Oxidation Processes constituted by combinations of these oxidants (O(3)/H(2)O(2) and UV/H(2)O(2)). The influence of the operating variables was discussed, and the degradation rates were evaluated by determining the rate constants for the reactions with ozone (k(O)(3)=3.7+/-0.2 L mol(-1)s(-1)) and OH radicals (k(OH)=(3.2+/-0.2)x10(9) L mol(-1)s(-1)), as well as the quantum yield for the photodegradation (around 0.1 mol E(-1), depending on the pH). Additionally, the ozonation of chlorfenvinphos in a natural water system (a surface water from a reservoir) was studied. The influence of the operating conditions on the insecticide removal efficiency was established, and the R(ct) parameter was evaluated. A kinetic model was proposed for the prediction of the elimination rate of chlorfenvinphos in the ozonation process and the results obtained reveal a good agreement between experimental results and predicted values. PMID:18448145

  14. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.

    2012-04-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  15. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J. G.; Kampf, C. J.; Timkovsky, J.; Noziere, B.; Praplan, A. P.; Pfaffenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A. S.; Baltensperger, U.; Volkamer, R.

    2011-12-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  16. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Villalta, Peter W.; Zahniser, Mark S.; Nelson, David D.; Kolb, Charles E.

    1997-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(x) and NO(x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. The second year's effort has focussed the design and construction of the proposed high pressure flow reactor on three separate areas: (1) the construction of the high pressure flow reactor; (2) characterization of the turbulent flow profile; and (3) demonstration of the instrument by measuring HO2 + NO2 and HO2 + NO reaction rate coefficients.

  17. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1996-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HOx and NOx species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences.

  18. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  19. OXIDANT FORMATION IN THE GENERATION OF OZONE

    EPA Science Inventory

    Ozone samples generated by UV photolysis and silent electric discharge upon air or oxygen were examined to determine if other oxidants were formed. Chemical and physical methods (IR and UV spectroscopy) failed to show the presence of such oxidants. Absence of such oxidants was al...

  20. Fine-scale photochemical modeling of ozone and ammonium nitrate over California during CalNex 2010

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Baker, K.; Misenis, C.; Gilman, J.; De Gouw, J. A.; Lerner, B. M.; Neuman, J. A.; Nowak, J. B.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Warneke, C.; Williams, E. J.; Veres, P. R.; Murphy, J. G.; Markovic, M. Z.; VandenBoer, T. C.; Weber, R.

    2013-12-01

    Multiple areas of California are designated as nonattainment of the ozone and PM2.5 National Ambient Air Quality Standards making air quality (AQ) modeling for California an important aspect of national-scale modeling for EPA rulemaking. Fine-scale AQ modeling for key population centers in California is also useful to inform health and exposure studies. However, AQ modeling is challenging in California due to complex emissions, terrain, meteorology, and chemistry, and understanding model performance is difficult using routine network observations alone. In May-June 2010, the CalNex field study was conducted in California to answer important scientific questions related to air quality and climate processes. The field study provides a rich observational dataset for probing the performance of fine-scale AQ simulations and identifying causes of model performance limitations. In this study, we conduct fine-scale (4-km horizontal resolution) photochemical model simulations for California during May-June 2010 using the Community Multiscale Air Quality model with the Carbon Bond 05 and SAPRC07 gas-phase chemical mechanisms. Model predictions are then evaluated using observations from the CalNex ground, aircraft, and ship platforms in addition routine network observations. Our model evaluations focus on understanding predictions of ammonium nitrate and ozone concentrations given the importance of these pollutants to California's air quality. Model predictions of ammonium and nitrate have a slight low bias but are strongly correlated with network observations in Riverside and Bakersfield. The model tends to under-predict NH3 concentrations observed on the NOAA P3 aircraft near large NH3 sources in the San Joaquin Valley (SJV) and South Coast Air Basin (SoCAB). At the SJV ground site, NH3 predictions are of similar magnitude as observations, while NH3 tends to be over-predicted at the Pasadena ground site. Nitric acid is over-predicted during the day at the SJV ground site

  1. Role of ozone precursors in tropospheric ozone formation and control: A report to Congress

    SciTech Connect

    Not Available

    1993-07-01

    Tropospheric ozone pollution, which occurs at ground level and is the major component of ground-level summertime smog, remains an important environmental and health concern despite nearly 20 years of regulatory efforts. Ozone is a secondary pollutant formed in the atmosphere by reactions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx) in the presence of sunlight. Carbon monoxide (CO) also plays a role in the formation of ozone. Major sources of VOCs include exhaust and evaporative emissions from motor vehicles, emissions from solvent use and emissions from the chemical and petroleum industries. The following EPA perspectives identify two key components (strategy selection; modeling and data bases) which must be addressed in resolving the tropospheric ozone problem.

  2. Investigation of the thermal and photochemical reactions of ozone with styrene in argon and krypton matrices

    NASA Astrophysics Data System (ADS)

    Coleman, Bridgett E.; Ault, Bruce S.

    2012-09-01

    The matrix isolation technique, combined with infrared spectroscopy and twin jet codeposition, has been used to characterize intermediates formed during the ozonolysis of styrene. Absorptions assigned to early intermediates grew in after warming the matrix from 19 K to 68 K in the twin jet krypton matrix experiments. A number of these absorptions have been assigned to the primary ozonide, formaldehyde-O-oxide Criegee intermediate, and secondary ozonide of styrene, transient species not previously observed for this system. In contrast, the room temperature reaction of ozone with styrene led to the observation of "late," stable products of this ozonolysis reaction. These product absorptions were observed after merged jet deposition, followed by cryogenic trapping in solid argon. Irradiation with λ ⩾ 220 nm of merged and twin jet argon matrices involving ozone led to O atom production and subsequent reaction with styrene. Identification of intermediates formed during the ozonolysis of styrene was further supported by 18O isotopic labeling experiments as well as theoretical density functional calculations at the B3LYP/6-311G++(d,2p) level.

  3. An Observational Based Assessment of In-situ Photochemical Ozone Productivity in the European Boundary Layer

    NASA Astrophysics Data System (ADS)

    Rickard, A. R.; Monks, P. S.; Jonson, J. E.

    2003-04-01

    Empirical observational-based indicator relationships have been used over the past decade in order to investigate ozone production sensitivities to different NO_x/VOC levels. If such relationships can be proven to show marked and consistently different values under different NO_x- and VOC-limited regimes over a broad variety of conditions and geographical locations, then O_3-NO_x-VOC sensitivities and ozone production trends can be determined relatively quickly and simply from measurements rather than from complex models. Such correlations would also provide invaluable measurement data to test the accuracy of model chemistry sensitivities. The tracer indicator relationships O_3/NO_z, H_2O_2/HCHO, H_2O_2/NO_z and O_3/2H_2O_2+NO_z have principally been investigated using data from the Eastern Atlantic Summer/Spring Experiments (EASE 96 and 97 respectively), which took place at Mace Head, on the west coast of Ireland. In order to study the chemistry occurring in the different air masses arriving at Mace Head, minute-averaged data were divided up into five wind sectors according to wind direction and speed. The measurements were additionally segregated using a back trajectory classification method in order to identify the pollution regimes encountered. Some of the calculated results have been compared and contrasted to those calculated from data measured under southern hemispheric "baseline" conditions, collected during the Southern Ocean Atmospheric Photochemistry EXperiment (SOAPEX 2), which took place at Cape Grim on the Tasmanian coast in the Austral summer of 1999 and from the Terrestrial Initiative in Global Environmental Research program (TIGER 95) which took place at Weybourne on the North Norfolk coast in summer 1995. Finally, the above observed indicator ratios, calculated from hourly values for EASE 97, have been compared to those calculated from model data from the EMEP-E regional model (DNMI) for May 1997.

  4. Diagnosis of Photochemical Ozone Production Rates and Limiting Factors based on Observation-based Modeling Approach over East Asia: Impact of Radical Chemistry Mechanism and Ozone-Control Implications

    NASA Astrophysics Data System (ADS)

    Kanaya, Y.

    2015-12-01

    Growth of tropospheric ozone, causing health and climate impacts, is concerned over East Asia, because emissions of precursors have dramatically increased. Photochemical production rates of ozone and limiting factors, primarily studied for urban locations, have been poorly assessed within a perspective of regional-scale air pollution over East Asia. We performed comprehensive observations of ozone precursors at several locations with regional representativeness and made such assessment based on the observation-based modeling approach. Here, diagnosis at Fukue Island (32.75°N, 128.68°E) remotely located in western Japan (May 2009) is highlighted, where the highest 10% of hourly ozone concentrations reached 72‒118 ppb during May influenced by Asian continental outflow. The average in-situ ozone production rate was estimated to be 6.8 ppb per day, suggesting that in-travel production was still active, while larger buildup must have occurred beforehand. Information on the chemical status of the air mass arriving in Japan is important, because it affects how further ozone production occurs after precursor addition from Japanese domestic emissions. The main limiting factor of ozone production was usually NOx, suggesting that domestic NOx emission control is important in reducing further ozone production and the incidence of warning issuance (>120 ppb). VOCs also increased the ozone production rate, and occasionally (14% of time) became dominant. This analysis implies that the VOC reduction legislation recently enacted should be effective. The uncertainty in the radical chemistry mechanism governing ozone production had a non-negligible impact, but the main conclusion relevant to policy was not altered. When chain termination was augmented by HO2-H2O + NO/NO2 reactions and by heterogeneous loss of HO2 on aerosol particle surfaces, the daily ozone production rate decreased by <24%, and the fraction of hours when the VOC-limited condition occurred varied from 14% to 13

  5. [Ozone source apportionment at urban area during a typical photochemical pollution episode in the summer of 2013 in the Yangtze River Delta].

    PubMed

    Li, Hao; Li, Li; Huang, Cheng; An, Jing-yu; Yan, Ru-sha; Huang, Hai-ying; Wang, Yang-jun; Lu, Qing; Wang, Qian; Lou, Sheng-rong; Wang, Hong-li; Zhou, Min; Tao, Shi-kang; Qiao, Li-ping; Chen, Ming-hua

    2015-01-01

    With the fast development of urbanization, industrialization and mobilization, the air pollutant emissions with photochemical reactivity become more obvious, causing a severe photochemical pollution with the characteristics of high ozone concentration. However, the ozone source identification is very complicated due to the high non linearity between ozone and its precursors. Thus, ways to reduce ozone is still not clear. A high ozone pollution episode occurred during July, 2013, which lasted for a long period, with large influence area and high intensity. In this paper, we selected this episode to do a case study with the application of ozone source apportionment technology(OSAT) coupled within the CAMx air quality model. In this study, 4 source regions(including Shanghai, north Zhejiang, South Jiangsu and long range transport), 7 source categories (including power plants, industrial process, industrial boilers and kilns, residential, mobile source, volatile source and biogenic emissions) are analyzed to study their contributions to surface O3 in Shanghai, Suzhou and Zhejiang. Results indicate that long range transport contribution to the surface ozone in the YRD is around 20 x 10(-9) - 40 x 10(-9) (volume fraction). The O3 concentrations can increased to 40 x 10(-9) - 100 x 10(-9) (volume fraction) due to precursors emissions in Shanghai, Jiangsu and Zhejiang. As for the regional contribution to 8 hour ozone, long range transport constitutes 42.79% +/- 10.17%, 48.57% +/- 9.97% and 60.13% +/- 7.11% of the surface ozone in Shanghai, Suzhou and Hangzhou, respectively. Regarding the high O3 in Shanghai, local contribution is 28.94% +/- 8.49%, north Zhejiang constitutes 19.83% +/- 10.55%. As for surface O3 in Suzhou, the contribution from south Jiangsu is 26.41% +/- 6.80%. Regarding the surface O3 in Hangzhou, the major regional contributor is north Zhejiang (29.56% +/- 8.33%). Contributions from the long range transport to the daily maximum O3 concentrations are

  6. TOLNet Data Format for Lidar Ozone Profile & Surface Observations

    NASA Astrophysics Data System (ADS)

    Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.

    2015-12-01

    The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.

  7. Formation of smooth, conformal molecular layers on ZnO surfaces via photochemical grafting.

    PubMed

    Ruther, Rose E; Franking, Ryan; Huhn, Alex M; Gomez-Zayas, Jaritza; Hamers, Robert J

    2011-09-01

    We have investigated the photochemical grafting of organic alkenes to atomically flat ZnO(10 ̅10) single crystals and ZnO nanorods as a way to produce functional molecule-semiconductor interfaces. Atomic force microscopy shows that photochemical grafting produces highly conformal, smooth molecular layers with no detectable changes in the underlying structure of the ZnO terraces or steps. X-ray photoelectron spectroscopy measurements show that grafting of a methyl ester-terminated alkene terminates near one monolayer, while alkenes bearing a trifluoroacetamide-protected amine form very smooth multilayers. Even with multilayers, it is possible to deprotect the amines and to link a second molecule to the surface with excellent efficiency and without significant loss of molecules from the surface. This demonstrates that the use of photochemical grafting, even in the case of multilayer formation, enables multistep chemical processes to be conducted on the ZnO surface. Photoresponse measurements demonstrate that functionalization of the surface does not affect the ability to induce field effects in the underlying ZnO, thereby suggesting that this approach to functionalization may be useful for applications in sensing and in hybrid organic-inorganic transistors and related devices. PMID:21777005

  8. Conceptual Challenges in Learning Ozone Formation for Collegiate Students

    NASA Astrophysics Data System (ADS)

    Howard, K. E.; Chung, S. H.; Jobson, B. T.; Vanreken, T. M.; Brown, S. A.

    2010-12-01

    Atmospheric chemistry in general, and tropospheric ozone formation in particular, are complex processes that to be understood require students to learn several interrelated concepts. These systems are particularly difficult to grasp because they are inherently nonlinear and because they are abstract- students do not have an obvious tangible model for how gases behave in an unbounded atmosphere. To address perceived shortfalls in our students’ conceptualizations of atmospheric chemical processes, we have endeavored to develop, implement, and assess curricular materials that can be used from the freshmen to graduate level. Our goal was to both improve student understanding of the fundamental concepts of atmospheric chemistry while simultaneously reinforcing the scientific method and what it means to do science. Our approach for achieving this was to build student-friendly interfaces to adapt existing research models for use in the classroom and thereby provide students with a means of exploring the evolution of pollutants in the atmosphere. A major focus of the project was student understanding of ozone formation. In this presentation we provide insight regarding collegiate students’ conceptions of ozone formation and discuss possible explanations for student misconceptions in this and related environmental topics of concern. In order to extract student understanding and conceptions of ozone formation, qualitative interview and analysis methodologies were implemented. These qualitative procedures allowed us to gain a rich and detailed understanding of the specific nature of students’ mental models of these concepts. Forty-five participants were included in the study, all of which were collegiate students enrolled in a junior-level Introduction to Environmental Engineering course at Washington State University. Our results show that the students seemed to comprehend many individual concepts within ozone production cycle to some extent. However, there were very

  9. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Villalta, P. W.; Zahniser, M. S.; Nelson, D. D.; Kolb, C. E.

    1998-01-01

    This is the final report for this project. Its purpose is to reduce the uncertainty in rate coefficients for key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring the rate coefficients for the reactions of HO2 + O3, and HO2 + NO2 in the temperature range (200-240 K) relevant to the lower stratosphere. In order to accomplish this, a high pressure turbulent flow tube reactor was built and its flow characteristics were quantified. The instrument was coupled with tunable diode laser spectroscopy for HO2 detection. Room temperature measurements of the HO2 + NO2 rate coefficients over the pressure range of 50-300 torr agree well with previous measurements. Preliminary measurements of the HO2 + O, rate coefficients at 50 - 300 Torr over the temperature range of 208-294 K agree with the NASA evaluation from 294-225 K but deviate significantly (50 % higher) at approximately 210 K.

  10. BROMIDE'S EFFECT ON DBP FORMATION, SPECIATION, AND CONTROL: PART 1, OZONATION

    EPA Science Inventory

    The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection byproducts (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalometha...

  11. Bromoform formation in ozonated groundwater containing bromide and humic substances

    SciTech Connect

    Cooper, W.J.; Amy, G.L.; Moore, C.A.; Zika, R.G.

    1986-01-01

    The effect of bromide ion, organic carbon concentration (natural aquatic humic substances), pH, and solar irradiation on the formation of bromoform in ozonated groundwater has been studied. The studies were conducted on four unique samples of groundwater taken from different regions of the Biscayne Aquifer in southern Florida. All other conditions being equal, increases in bromide ion concentrations resulted in increases in CHBr/sub 3/ formation. In three of the four samples, CHBr/sub 3/ formation decreased as the pH level increased from 5 to 9. The fourth sample exhibited an opposite trend whereby the CHBr/sub 3/ concentration increased with increasing pH. Bromoform concentration increased with increased O/sub 3/ concentration over an ozone dosage range of 3.4 to 6.7 mg/L. Ozonated samples placed in sunlight immediately after ozone addition showed a decrease in the formation of CHBr/sub 3/ presumably due to the photodecomposition of HOBr/OBr.

  12. Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest

    SciTech Connect

    Kim, Saewung; Kim, So-Young; Lee, Meehye; Shim, Heeyoun; Wolfe, Glenn; Guenther, Alex B.; He, Amy; Hong, Youdeog; Han, Jinseok

    2014-01-01

    Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Gangzhou, and Beijing are surrounded by densely forested areas and recent research has consistently demonstrated the importance of biogenic volatile organic compounds from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical concentrations, undermine our ability to assess regional photochemical air pollution problems. We present an observational dataset of CO, NOX, SO2, ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa Research Forest (TRF) near the Seoul Metropolitan Area (SMA) in early June 2012. The data show that TRF is influenced both by aged pollution and fresh BVOC emissions. With the dataset, we diagnose HOx (OH, HO2, and RO2) distributions calculated with the University of Washington Chemical Box Model (UWCM v 2.1). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that 1) different model simulation scenarios cause systematic differences in HOX distributions especially OH levels (up to 2.5 times) and 2) radical destruction (HO2+HO2 or HO2+RO2) could be more efficient than radical recycling (HO2+NO) especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone-VOC-NOX sensitivity and oxidation product formation rates. Overall, the VOC limited regime in ozone photochemistry is predicted but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO2 levels are positively correlated with OVOCs production that is not routinely

  13. Characterizing the impacts of vertical transport and photochemical ozone production on an exceedance area

    NASA Astrophysics Data System (ADS)

    Yates, Emma L.; Iraci, Laura T.; Austerberry, David; Pierce, R. Bradley; Roby, Matthew C.; Tadić, Jovan M.; Loewenstein, Max; Gore, Warren

    2015-05-01

    Offshore and inland vertical profiles of ozone (O3) were measured from an aircraft during 16 flights from January 2012 to January 2013 over the northern San Joaquin Valley (SJV) and over the Pacific Ocean. Analysis of in situ measurements presents an assessment of the seasonality and magnitude of net O3 production and transport within the lower troposphere above the SJV. During the high O3 season (May-October), the Dobson Unit sum of O3 in the 0-2 km above sea level (km.a.s.l.) layer above the SJV exceeds that above the offshore profile by up to 20.5%, implying net O3 production over the SJV or vertical transport from above. During extreme events (e.g. Stratosphere-to-troposphere transport) vertical features (areas of enhanced or depleted O3 or water vapor) are observed in the offshore and SJV profiles at different altitudes, demonstrating the scale of vertical mixing during transport. Correlation analysis between offshore O3 profiles and O3 surface sites in the SJV lends further support the hypothesis of vertical mixing. Correlation analysis indicates that O3 mixing ratios at surface sites in the northern and middle SJV show significant correlations to the 1.5-2 km.a.s.l. offshore altitude range. Southern SJV O3 surface sites show a shift towards maximum correlations at increased time-offsets, and O3 surface sites at elevated altitudes show significant correlations with higher offshore altitudes (2.5-4 km.a.s.l.).

  14. Photochemical grid model estimates of lateral boundary contributions to ozone and particulate matter across the continental United States

    NASA Astrophysics Data System (ADS)

    Baker, Kirk R.; Emery, Chris; Dolwick, Pat; Yarwood, Greg

    2015-12-01

    Multiple approaches to characterize lateral boundary contributions to photochemical model predicted ozone (O3) and particulate matter less than 2.5 microns in diameter (PM2.5) are available in the Comprehensive Air quality Model with extensions (CAMx). Here, three approaches are used for O3: (1) a comprehensive source apportionment scheme for chemical boundary conditions and emissions (OSAT), (2) chemically reactive tracers (RTRAC), and (3) chemically inert tracers. Two approaches are used for PM2.5: (1) particulate source apportionment (PSAT) and (2) chemically inert tracers. The inert tracer approach resulted in higher O3 lateral boundary contribution estimates because the method does not account for any O3 destruction reactions. OSAT and RTRAC estimate generally similar monthly average contributions during the warmer months although RTRAC estimates higher urban area contribution during the cold months because this RTRAC implementation did not treat O3 titration by NO. Accurate representation of lateral boundary O3 impacts must include appropriate accounting for O3 destruction reactions. OSAT and RTRAC were configured to estimate the contribution to modeled O3 from each of the four lateral faces of the model domain. RTRAC was configured to further stratify the western and northern boundaries by groups of vertical layers. The RTRAC approach showed that the largest O3 contributions to the continental U.S. are from the mid-troposphere, with less contribution from the upper troposphere/lower stratosphere. Inert tracers compared more closely to reactive tracers on average for PM2.5 compared to O3. This close agreement for PM2.5 indicates most of the lateral boundary contribution is from PM2.5 rather than precursor inflow. A strong relationship exists between model predicted PM2.5 boundary contribution and model overestimates of nitrate and organic carbon at IMPROVE monitor locations suggesting global model estimates of these species were overestimated at some places

  15. Formation of ozone by irradiation of oxygen at 248 nanometers

    NASA Technical Reports Server (NTRS)

    Freeman, D. E.; Yoshino, K.; Parkinson, W. H.

    1990-01-01

    While Slanger et al. (1988) have reported that the 248-nm KrF laser radiation generates ozone from oxygen, despite this wavelength's exceeding of the conventionally accepted photodissociation threshold of 242.4 for the ground electronic state, the initiating mechanism for this ozone formation remains obscure. It is presently suggested that the initiating step is the absorption of the 248-nm radiation by O2. In a reply to the present authors, Slanger et al. indicate that their original experiment should have been performed by introducing pure O2 into a baked cell, with the start time defined by the unblocking of the 248-nm laser.

  16. Formation Of Perchlorate By Ozonation Of Aqueous Oxy-chlorine Anions: An Insight To Natural Perchlorate Formation

    NASA Astrophysics Data System (ADS)

    Rao, B.; Jackson, A.; Kang, N.; Redder, A.

    2007-12-01

    Perchlorate (ClO4-) is a natural and anthropogenic contaminant of increasing concern. Natural perchlorate was first identified in Chilean nitrates from the Atacama dessert over 100 years ago. However, only in the last two years has the occurrence of natural perchlorate been seriously considered as a potential exposure source. Although there has been considerable research effort in understanding the occurrence, remediation, and impact of ClO4- in the environment, relatively little information is available regarding the mechanism(s) responsible for ClO4- formation. Perchlorate productions from ozone oxidation of chlorine and oxy- chlorine anions (Cl-, OCl-, ClO2-and ClO3-) were conducted in continuous flow reactors at constant ozone concentrations (approximately 6 mg L-1) and at varying concentrations of chlorine materials (ranging from 10 to 1000 mg L-1). Sub samples from both the main reaction flask and alkaline trapping flasks were taken over varying time intervals and the concentrations of oxy-chlorine anions including ClO4- were measured using various ion chromatographic methods whereas OCl- was determined iodometrically using the spectrophotometer. The experiment time ranged from 6 hrs to 7 days depending on the rate of decomposition of the reactants. Results indicate that ClO4- is readily formed during the ozonation of ClO2- and OCl- solutions (maximum conversion of 2.7 %) whereas the Cl- and ClO3- solutions produced relatively lower quantities of ClO4- ( maximum conversion of 0.02 %) . Further the presence of ClO2- in the initial OCl- solution is suspected to significantly contribute the total ClO4- generated augmenting the role of ClO2- in ClO4- formation as mentioned in recent study on the photochemical reactions of oxy-chlorine anions.

  17. Alternatives to the 'water oxidation pathway' of biological ozone formation.

    PubMed

    Onyango, Arnold N

    2016-01-01

    Recent studies have shown that ozone (O3) is endogenously generated in living tissues, where it makes both positive and negative physiological contributions. A pathway for the formation of both O3 and hydrogen peroxide (H2O2) was previously proposed, beginning with the antibody or amino acid-catalyzed oxidation of water by singlet oxygen ((1)O2) to form hydrogen trioxide (H2O3) as a key intermediate. A key pillar of this hypothesis is that some of the H2O2 molecules incorporate water-derived oxygen atoms. However, H2O3 decomposes extremely readily in water to form (1)O2 and water, rather than O3 and H2O2. This article highlights key literature indicating that the oxidation of organic molecules such as the amino acids methionine, tryptophan, histidine, and cysteine by (1)O2 is involved in ozone formation. Based on this, an alternative hypothesis for ozone formation is developed involving a further reaction of singlet oxygen with various oxidized organic intermediates. H2O2 having water-derived oxygen atoms is subsequently formed during ozone decomposition in water by known reactions. PMID:26855676

  18. Deviations from ozone photostationary state during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Use of measurements and photochemical modeling to assess potential causes

    NASA Astrophysics Data System (ADS)

    Griffin, Robert J.; Beckman, Pieter J.; Talbot, Robert W.; Sive, Barkley C.; Varner, Ruth K.

    2007-05-01

    Nitric oxide (NO) and nitrogen dioxide (NO2) were monitored at the University of New Hampshire Atmospheric Observing Station at Thompson Farm (TF) during the ICARTT campaign of summer 2004. Simultaneous measurement of ozone (O3), temperature, and the photolysis rate of NO2 (jNO2) allow for assessment of the O3 photostationary state (Leighton ratio, Φ). Leighton ratios that are significantly greater than unity indicate that peroxy radicals (PO2), halogen monoxides, nitrate radicals, or some unidentified species convert NO to NO2 in excess of the reaction between NO and O3. Deviations from photostationary state occurred regularly at TF (1.0 ≤ Φ ≤ 5.9), particularly during times of low NOx (NOx = NO + NO2). Such deviations were not controlled by dynamics, as indicated by regressions between Φ and several meteorological parameters. Correlation with jNO2 was moderate, indicating that sunlight probably controls nonlinear processes that affect Φ values. Formation of PO2 likely is dominated by oxidation of biogenic hydrocarbons, particularly isoprene, the emission of which is driven by photosynthetically active radiation. Halogen atoms are believed to form via photolysis of halogenated methane compounds. Nitrate radicals are believed to be insignificant. Higher Φ values are associated with lower mixing ratios of isoprene and chloroiodomethane and lower ratios of NOx to total active nitrogen, indicating that photochemical aging may very well lead to increased Φ values. PO2 levels calculated using a zero-dimensional model constrained by measurements from TF can account for 71% of the observed deviations on average. The remainder is assumed to be associated with halogen atoms, most likely iodine, with necessary mixing ratios up to 0.6 or 1.2 pptv, for chlorine and iodine, respectively.

  19. Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Aikin, K. C.; Atlas, E. L.; Blake, D. R.; Holloway, J. S.; Meinardi, S.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.

    2012-05-01

    Ozone (O3), alkyl nitrates (RONO2), and other photochemical products were formed in the atmosphere downwind from the Deepwater Horizon (DWH) oil spill by photochemical reactions of evaporating hydrocarbons with NOx (=NO + NO2) emissions from spill response activities. Reactive nitrogen species and volatile organic compounds (VOCs) were measured from an instrumented aircraft during daytime flights in the marine boundary layer downwind from the area of surfacing oil. A unique VOC mixture, where alkanes dominated the hydroxyl radical (OH) loss rate, was emitted into a clean marine environment, enabling a focused examination of O3 and RONO2 formation processes. In the atmospheric plume from DWH, the OH loss rate, an indicator of potential O3 formation, was large and dominated by alkanes with between 5 and 10 carbons per molecule (C5-C10). Observations showed that NOx was oxidized very rapidly with a 0.8 h lifetime, producing primarily C6-C10 RONO2 that accounted for 78% of the reactive nitrogen enhancements in the atmospheric plume 2.5 h downwind from DWH. Both observations and calculations of RONO2 and O3 production rates show that alkane oxidation dominated O3 formation chemistry in the plume. Rapid and nearly complete oxidation of NOx to RONO2 effectively terminated O3 production, with O3 formation yields of 6.0 ± 0.5 ppbv O3 per ppbv of NOx oxidized. VOC mixing ratios were in large excess of NOx, and additional NOx would have formed additional O3 in this plume. Analysis of measurements of VOCs, O3, and reactive nitrogen species and calculations of O3 and RONO2 production rates demonstrate that NOx-VOC chemistry in the DWH plume is explained by known mechanisms.

  20. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, P. D.; Mihalopoulos, N.; Ellul, R.; Kleanthous, S.; Repapis, C. C.

    A study on the spatial distribution as well as an investigation of the possible factors influencing the observed variations of summer (JJA) rural and marine surface ozone background in the Central and Eastern Mediterranean is performed, following observations showing that the 60 ppb EU Air Quality Standard for Human Health Protection is frequently exceeded in the area. For this purpose the measurements of the following four Eastern Mediterranean stations are analyzed: Giordan Lighthouse-Gozo, Malta; Aliartos-Central Greece; Finokalia-Crete, Greece and Ag. Marina, Cyprus. The measured summer afternoon rural and marine ozone levels in Central Greece and on Crete Island are quite comparable, but are found to be significantly higher (by about 15-20%) than the corresponding levels in Malta and Cyprus. After investigating the characteristic meteorological conditions associated with high and low rural and marine surface ozone concentrations, it appears that an important factor leading to high tropospheric ozone values in the Eastern Mediterranean area is the anticyclonic influence of the high-pressure domination over the Central Mediterranean and the Balkans. The rural and marine surface ozone stations located across the Aegean Channel are also influenced by the long-range transport of polluted air masses from the European continent in the boundary layer during summer and the subsequent photochemical ozone production. This characteristic northern flow during summer is created by the combination of the Central Mediterranean anticyclone with the Middle-East low-pressure system. On the other hand, the lowest ozone levels, particularly in the Crete and Cyprus stations, are associated with an extension to the west of the Middle-East low and weak pressure gradients over the Eastern Mediterranean and an upper air trough in the North Eastern Europe.

  1. Photochemical changes in hydrogen-loaded optical fibres with application to Bragg grating formation

    NASA Astrophysics Data System (ADS)

    Nguty, T. A.; Potton, R. J.

    1997-10-01

    The sensitization to UV-induced refractive-index changes, by hydrogen, of germanosilicate glass is important in the production of in-fibre Bragg gratings. During grating formation fluorescence from germanium lone-pair centres is excited in the core of the fibre by the UV exposure. This fluorescence has been used to monitor photochemical reduction of substituted tetravalent germanium atoms by hydrogen. The photoreduced atoms occupy 0957-0233/8/10/004/img1 sites and absorb fluorescent radiation. Together with 0957-0233/8/10/004/img2 ions they are responsible for the refractive-index changes exploited in the holographic formation of Bragg gratings in hydrogen-loaded, germanium-doped fibres.

  2. Design considerations for ozone and acid-aerosol exposure and health investigations: the Fairview Lake Summer Camp - photochemical smog case study

    SciTech Connect

    Lioy, P.J.; Spektor, D.; Thurston, G.; Citak, K.; Lippmann, M.

    1987-01-01

    The health effects associated with ozone and acidic particulate sulfate exposures to active children have been and are being addressed in field epidemiological studies at summer camps in rural areas of the Northeastern U.S. The rationale and study design for studies, which have been conducted in Pennsylvania and New Jersey, are developed and reviewed. As background, results are summarized for human clinical and epidemiological studies and animal studies. These provided the basis for selection of health outcomes. Measured results from chemical characterization and transport studies are reviewed to define the criteria used for selection of a site affected by high ozone and acid species during photochemical smog episodes. The integration of the study design is discussed in detail by reviewing its application to the 1984 - Fairview Lake Camp Study (July 8 to August 4). The features of the camp study are reviewed, including the study population, pulmonary function procedures and analyses, air pollution monitoring instrumentation, and the site characteristics.

  3. Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, S.-Y.; Lee, M.; Shim, H.; Wolfe, G. M.; Guenther, A. B.; He, A.; Hong, Y.; Han, J.

    2015-04-01

    Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Guangzhou, and Beijing are surrounded by densely forested areas, and recent research has consistently demonstrated the importance of biogenic volatile organic compounds (VOCs) from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical, undermine our ability to assess regional photochemical air pollution problems. We present an observational data set of CO, NOx, SO2, ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa research forest (TRF) near the Seoul metropolitan area in early June 2012. The data show that TRF is influenced both by aged pollution and fresh biogenic volatile organic compound emissions. With the data set, we diagnose HOx (OH, HO2, and RO2) distributions calculated using the University of Washington chemical box model (UWCM v2.1) with near-explicit VOC oxidation mechanisms from MCM v3.2 (Master Chemical Mechanism). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HOx distributions, especially OH levels (up to 2.5 times), and (2) radical destruction (HO2 + HO2 or HO2 + RO2) could be more efficient than radical recycling (RO2 + NO), especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone-VOC-NOx sensitivity and VOC oxidation product formation rates. Overall, the NOx limited regime is assessed except for the morning hours (8 a.m. to 12 p.m. local standard time), but the degree of sensitivity can

  4. Structural Control of Nonadiabatic Photochemical Bond Formation: Photocyclization in Structurally Modified ortho-Terphenyls.

    PubMed

    Molloy, Molly S; Snyder, Joshua A; DeFrancisco, Justin R; Bragg, Arthur E

    2016-06-16

    Understanding how molecular structure impacts the shapes of potential energy surfaces and prospects for nonadiabatic photochemical dynamics is critical for predicting and controlling the chemistry of molecular excited states. Ultrafast transient absorption spectroscopy was used to interrogate photoinduced, nonadiabatic 6π cyclization of a collection of ortho-terphenyls (OTP) modified with alkyl substituents of different sizes and electron-donating/withdrawing character positioned on its central and pendant phenyl rings. OTP alkylated at the 4,4″ and 4',5' positions of the pendant and central rings, respectively, exhibiting biphasic excited-state relaxation; this is qualitatively similar to relaxation of OTP itself, including a fast decrease in excited-state absorption (τ1 = 1-4 ps) followed by formation of metastable cyclized photoproducts (τ2 = 3-47 ps) that share common characteristic spectroscopic features for all substitutions despite variations in chemical nature of the substituents. By contrast, anomalous excited-state dynamics are observed for 3',6'dimethyl-OTP, in which the methyl substituents crowd the pendant rings sterically; time-resolved spectral dynamics and low photochemical reactivity with iodine reveal that methylation proximal to the pendant rings impedes nonadiabatic cyclization. Results from transient measurements and quantum-chemical calculations are used to decipher the nature of excited state relaxation mechanisms in these systems and how they are perturbed by mechanical, electronic, and steric interactions induced by substituents. PMID:27171560

  5. Photochemical control of molecular assembly formation in a catanionic surfactant system.

    PubMed

    Matsumura, Atsutoshi; Tsuchiya, Koji; Torigoe, Kanjiro; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-03-01

    Photochemical control of vesicle disintegration and reformation in aqueous solution was examined using a mixture of 4-butylazobenzene-4'-(oxyethyl)trimethylammonium bromide (AZTMA) as the photoresponsive cationic surfactant and sodium dodecylbenzenesulfonate (SDBS) as the anionic surfactant. Spontaneous vesicle formation was found in a wide-ranging composition of the trans-AZTMA/SDBS system. AZTMA molecules constituting vesicles underwent reversible trans-cis photoisomerization when irradiated with ultraviolet and visible light. Transmission electron microscopy observations using the freeze-fracture technique (FF-TEM) showed that UV light irradiation caused the vesicles to disintegrate into coarse aggregates and visible light irradiation stimulated the reformation of vesicles (normal control). A detailed investigation of the phase state and the effects of UV and visible light irradiation on the AZTMA/SDBS system with the use of electroconductivity, dynamic/static light scattering, and surface tension measurements and FF-TEM observations revealed that in the AZTMA-rich composition (AZTMA/SDBS 9:1) a micellar solution before light irradiation became a vesicular solution after UV light irradiation and visible light irradiation allowed the return to a micellar solution (reverse control). Thus, we could photochemically control the disintegration (normal control) and reformation (reverse control) of vesicles in the same system. PMID:21244081

  6. Photochemical formation of hydroxyl radical in red-soil-polluted seawater - effects of dissolved organic compounds

    NASA Astrophysics Data System (ADS)

    Uehara, M.; Arakaki, T.

    2006-12-01

    Development of pineapple farmlands and construction of recreational facilities caused runoff of red soil into the coastal ocean (locally termed as red soil pollution) in the north of Okinawa Island, Japan. Red soil is acidic and contains a few percent of iron oxide. We were interested in the formation of hydroxyl radical (·OH), the most potent oxidant in the environment, from the photo-Fenton reaction (reaction between Fe(II) and HOOH) in red-soil-polluted seawater. Various artificial seawater solutions were prepared by adding red soil, HOOH, and/or humic acid to clean seawater, and were used for photochemical experiments. Commercially available humic acid was used to represent natural organic compounds. All the solutions were filtered through 0.45 micron filter before conducting photochemical experiments. Comparisons among the solutions indicated that dissolved chemicals from the red-soil only slightly increased the OH radical photoformation. Photoformation rates of OH radicals of the HOOH + red soil solutions were similar to the calculated rates from direct photolysis of HOOH. Furthermore, addition of humic acid to the HOOH + red soil solutions did not significantly enhance the photo-Fenton reaction, suggesting that Fe(II), even if it had been formed, did not react with HOOH to form OH radicals at detectable level in seawater.

  7. Photochemical Pollution Modeling of Ozone at Metropolitan Area of Porto Alegre - RS/Brazil using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Cuchiara, G. C.; Carvalho, J.

    2013-05-01

    One of the main problems related to air pollution in urban areas is caused by photochemical oxidants, particularly troposphere ozone (O3), which is considered a harmful substance. The O3 precursors (carbon monoxide CO, nitrogen oxides NOx and hydrocarbons HCs) are predominantly of anthropogenic origin in these areas, and vehicles are the main emission sources. Due to the increased urbanization and industrial development in recent decades, air pollutant emissions have increased likewise, mainly by mobile sources in the highly urbanized and developed areas, such as the Metropolitan Area of Porto Alegre-RS (MAPA). According to legal regulations implemented in Brazil in 2005, which aimed at increasing the fraction of biofuels in the national energy matrix, 2% biodiesel were supposed to be added to the fuel mixture within three years, and up to 5% after eight years of implementation of these regulations. Our work performs an analysis of surface concentrations for O3, NOx, CO, and HCs through numerical simulations with WRF/Chem (Weather Research and Forecasting model with Chemistry). The model is validated against observational data obtained from the local urban air quality network for the period from January 5 to 9, 2009 (96 hours). One part of the study focused on the comparison of simulated meteorological variables, to observational data from two stations in MAPA. The results showed that the model simulates well the diurnal evolution of pressure and temperature at the surface, but is much less accurate for wind speed. Another part included the evaluation of model results of WRF/Chem for O3 versus observed data at air quality stations Esteio and Porto Alegre. Comparisons between simulated and observed O3 revealed that the model simulates well the evolution of the observed values, but on many occasions the model did not reproduce well the maximum and minimum concentrations. Finally, a preliminary quantitative sensitivity study on the impact of biofuel on the

  8. Photochemistry of the Martian atmosphere: Pathway analysis of ozone formation and destruction

    NASA Astrophysics Data System (ADS)

    Stock, J. W.; Boxe, C. S.; Lehmann, R.; Grenfell, J. L.; Patzer, A. B. C.; Rauer, H.; Yung, Y. L.

    2012-04-01

    Ozone is of central importance for the Martian atmosphere, because e.g. it is related to the photochemical stability of the main atmospheric constituent, CO2. Furthermore, ozone is relatively easy to observe, since it exhibits strong spectral features. The concentration of ozone is influenced by chemical trace species (mainly from the Ox- and HOx-family) acting as catalysts in chemical pathways. It is therefore desirable to identify those pathways and quantify their efficiency by calculating pathway rates. Finding chemical pathways in complex reaction networks is in general challenging. Therefore, automated computer algorithms are useful to address such problems. In order to investigate the Martian atmospheric ozone photochemistry, we apply the PAP (Pathway Analysis Program) algorithm to the results of the updated JPL/Caltech photochemical column model of the Martian atmosphere. Rates of individual ozone production and destruction pathways are computed for different altitudes, by applying the algorithm to each vertical layer of the column model separately. Our findings show, that ozone is primarily produced by a Chapman-like mechanism involving CO2 photolysis products as source for atomic oxygen. Ozone destruction proceeds mainly via photolysis except for a layer around 42km where the reaction with atomic hydrogen become more important.

  9. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    PubMed

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-01

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations. PMID:26752338

  10. [Correlation Analysis Between Characteristics of VOCs and Ozone Formation Potential in Summer in Nanjing Urban District].

    PubMed

    Yang, Xiao-xiao; Tang, Li-li; Zhang, Yun-jiang; Mu, Ying-feng; Wang, Ming; Chen, Wen-tai; Zhou, Hong-cang; Hua, Yan; Jiang, Rong-xin

    2016-02-15

    Volatile organic compounds (VOCs) is an important precursor of photochemical ozone pollution (O3) in the atmosphere. Their concentration variation directly affects the characteristics of the ozone pollution. The concentration, speciation of VOCs, ozone and its precursors in Nanjing were analyzed and measured using online gas detection systems in August 2013. VOCs/NOx discriminant method was used to get the sensitive control factors of ozone. The results showed that the averaged volume fraction of VOCs was 52. 05 x 10(-9), and the largest one reached 200 x 10(-9) in Nanjing urban district. The order of volume fraction of each species VOCs was alkane > oxygen-containing VOCs > alkene > aromatics. The averaged concentration of ozone was 76.5 microg x m(-1) and the exceeding concentration of hourly standard was 5.9%. The change trends of ozone precursors VOCs and NOx were basically identical and Ozone showed the obvious negative correlation during the period of high concentrations of ozone. There were some differences in the concentrations of the same VOCs in different ozone concentration periods. The ozone generation in Nanjing urban district was sensitive to VOCs, and Nanjing belonged to VOCs control area in summer. PMID:27363129

  11. The effect of ozone associated with summertime photochemical smog on the frequency of asthma visits to hospital emergency departments

    SciTech Connect

    Cody, R.P. ); Weisel, C.P.; Lioy, P.J. Environmental and Occupational Health Sciences Institute, Piscataway, NJ ); Birnbaum, G. )

    1992-08-01

    A retrospective study using ambient ozone, temperature, and other environmental variables and their effect on the frequency of hospital visits for asthma was conducted in New Jersey, an area that often exceeds the allowable national standard for ozone. Data on emergency department visits for asthma, bronchitis, and finger wounds (a nonrespiratory control) were analyzed for the period May through August for 1988 and 1989. Asthma visits were correlated with temperature while the correlation between asthma visits and ozone concentration was nonsignificant. However, when temperature was controlled for in a multiple regression analysis, a highly significant relationship between asthma visits and ozone concentration was identified. Between 13 and 15% of the variability of the asthma visits and ozone concentration was identified. Between 13 and 15% of the variability of the asthma visits was explained in the regression model by temperature and ambient ozone levels. This association, when compared to similar studies in Canada, shows the contribution of ozone to asthma admissions to be stronger in areas with higher ozone concentrations. Thus, among regions with periodic accumulations of ozone in the ambient atmosphere, an exposure-response relationship may be discernible. This supports the need to attain air quality standards for ozone to protect individuals in the general population from the adverse health effects caused by ambient ozone exposure. 21 refs., 1 fig., 6 tabs.

  12. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    NASA Astrophysics Data System (ADS)

    Chatani, S.; Amann, M.; Goel, A.; Hao, J.; Klimont, Z.; Kumar, A.; Mishra, A.; Sharma, S.; Wang, S. X.; Wang, Y. X.; Zhao, B.

    2014-04-01

    A regional air quality simulation framework including the Weather Research and Forecasting modelling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitorings, ozone zondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around north eastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  13. Ozone production in urban plumes transported over water: Photochemical model and case studies in the northeastern and midwestern United States

    NASA Astrophysics Data System (ADS)

    Sillman, Sanford; Samson, Perry J.; Masters, Jeffrey M.

    1993-07-01

    Abnormally high concentrations of O3 have been observed in rural locations on the shore of Lake Michigan and on the Atlantic coast in Maine, at a distance of 300 km or more from major anthropogenic sources. We hypothesize that this O3 is associated with transport from major urban centers and with the suppression of vertical mixing as urban plumes are transported over water. A dynamical/photochemical model is developed that represents formation of O3 in shoreline environments and is used to simulate case studies for Lake Michigan and the northeastern United States. Results suggest that a broad region with elevated O3, NOx and volatile organic carbon (VOC) forms as the Chicago plume travels over Lake Michigan, a pattern consistent with observed O3 at surface monitoring sites. Near-total suppression of dry deposition of O3 and NOx over the lake is needed to produce high O3. Results for the east coast suggest that the observed peak O3 can only be reproduced by a model that includes suppressed vertical mixing and deposition over water, 2-day transport of a plume from New York, and superposition of the New York and Boston plumes. An investigation of the sensitivity of O3 to emissions of NOx and VOC suggests that results vary greatly between cities, even when the composition of urban emissions is similar. An index for VOC versus NOx sensitivity is shown to correlate with total reactive nitrogen (NOy) at the time of peak O3.

  14. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    NASA Astrophysics Data System (ADS)

    Chatani, S.; Amann, M.; Goel, A.; Hao, J.; Klimont, Z.; Kumar, A.; Mishra, A.; Sharma, S.; Wang, S. X.; Wang, Y. X.; Zhao, B.

    2014-09-01

    A regional air quality simulation framework including the Weather Research and Forecasting modeling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitoring, ozonesondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around northeastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  15. FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES

    SciTech Connect

    Jing Dapeng; He Jiao; Vidali, Gianfranco; Brucato, John Robert; Tozzetti, Lorenzo; De Sio, Antonio

    2012-09-01

    Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

  16. COMBINED EFFECTS OF ORGANIC REACTIVITY AND NMHC/NOX RATIO ON PHOTOCHEMICAL OXIDANT FORMATION - A MODELING STUDY

    EPA Science Inventory

    A modeling study was undertaken to assess the effect of organic reactivity on photochemical oxidant formation. A six-component hydrocarbon model was developed and tested against data collected in a smog chamber study of irradiated auto exhaust and oxides of nitrogen (NO sub x) mi...

  17. Measurement of non-methane hydrocarbons in Taipei city and their impact on ozone formation in relation to air quality.

    PubMed

    Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Chiu, Konghwa; Lo, Jiunn-Guang

    2006-08-18

    Air pollutants data from semi-continuous measurements at multiple sampling sites in Taipei metropolitan area of Taiwan was obtained by collecting air samples in canisters. The hydrocarbon composition was determined by using GC/MS and GC/FID. The air samples were pre-concentrated onto glass beads prior to separation by PLOT and DB-1 columns of GC. The method showed detection limit of <1 ppb and relative standard deviation in the range of 5-30% for different compounds. Aromatic hydrocarbons (toluene, benzene, etc.) and aliphatic hydrocarbons (ethylene, acetylene, propane, etc.) were correlated primarily to determine the source of emission. The estimated hydrocarbons were ranked according to their abundance and photochemical reactivity. The criteria pollutants, ozone and NO2 were measured by UV-differential optical absorption spectroscopy (UV-DOAS), and were utilized to determine the relative importance of non-methane hydrocarbons (NMHC) and significant contribution of NO2 in limiting ozone formation. The obtained results suggest that ozone formation in Taipei city is probably limited by the supply of non-methane hydrocarbons. The concentration profile of targeted pollutants was compared to other metropolitan areas to determine air quality and the pollutant sources. PMID:17723619

  18. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere.

    PubMed

    Ma, N; Birmili, W

    2015-04-15

    Ultrafine particles (UFPs, diameter<100 nm) have gained major attention in the environmental health discussion due to a number of suspected health effects. Observations of UFPs in urban air reveal the presence of several, time-dependent particle sources. In order to attribute measured UFP number concentrations to different source type contributions, we analyzed observations collected at a triplet of observation sites (roadside, urban background, rural) in the city of Leipzig, Germany. Photochemical new particle formation (NPF) events can be the overwhelming source of UFP particles on particular days, and were identified on the basis of characteristic patterns in the particle number size distribution data. A subsequent segmentation of the diurnal cycles of UFP concentration yielded a quantitative contribution of NPF events to daily, monthly, and annual mean values. At roadside, we obtained source contributions to the annual mean UFP number concentration (diameter range 5-100 nm) for photochemical NPF events (7%), local traffic (52%), diffuse urban sources (20%), and regional background (21%). The relative contribution of NPF events rises when moving away from roadside to the urban background and rural sites (14 and 30%, respectively). Their contribution also increases when considering only fresh UFPs (5-20 nm) (21% at the urban background site), and conversely decreases when considering UFPs at bigger sizes (20-100 nm) (8%). A seasonal analysis showed that NPF events have their greatest importance on UFP number concentration in the months May-August, accounting for roughly half of the fresh UFPs (5-20 nm) at the urban background location. The simplistic source apportionment presented here might serve to better characterize exposure to ambient UFPs in future epidemiological studies. PMID:25617781

  19. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  20. PROJECT WORK PLAN FOR REVISED AIR QUALITY CRITERIA FOR OZONE AND RELATED PHOTOCHEMICAL OXIDANTS (CASAC REVIEW DRAFT)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) promulgates the National Ambient Air Quality Standards (NAAQS) on the basis of scientific information contained in criteria documents. The previous ozone (O3) criteria document, Air Quality Criteria for Ozone and Related Phot...

  1. PROJECT WORK PLAN FOR REVISED AIR QUALITY CRITERIA FOR OZONE AND RELATED PHOTOCHEMICAL OXIDANTS (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) promulgates the National Ambient Air Quality Standards (NAAQS) on the basis of scientific information contained in criteria documents. The previous ozone (O3 ) criteria document, Air Quality Criteria for Ozone and Related Photochemi...

  2. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.

    PubMed

    De Vera, Glen Andrew; Stalter, Daniel; Gernjak, Wolfgang; Weinberg, Howard S; Keller, Jurg; Farré, Maria José

    2015-12-15

    When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions. PMID:26378731

  3. Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest

    SciTech Connect

    Kim, S.; Kim, S. -Y.; Lee, M.; Shim, H.; Wolfe, G. M.; Guenther, A. B.; He, A.; Hong, Y.; Han, J.

    2015-04-29

    Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Guangzhou, and Beijing are surrounded by densely forested areas, and recent research has consistently demonstrated the importance of biogenic volatile organic compounds (VOCs) from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical, undermine our ability to assess regional photochemical air pollution problems. We present an observational data set of CO, NOx, SO2, ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa research forest (TRF) near the Seoul metropolitan area in early June 2012. The data show that TRF is influenced both by aged pollution and fresh biogenic volatile organic compound emissions. With the data set, we diagnose HOx (OH, HO2, and RO2) distributions calculated using the University of Washington chemical box model (UWCM v2.1) with near-explicit VOC oxidation mechanisms from MCM v3.2 (Master Chemical Mechanism). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HOx distributions, especially OH levels (up to 2.5 times), and (2) radical destruction (HO2 + HO2 or HO2 + RO2) could be more efficient than radical recycling (RO2 + NO), especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone–VOC–NOx sensitivity and VOC oxidation product

  4. Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest

    DOE PAGESBeta

    Kim, S.; Kim, S. -Y.; Lee, M.; Shim, H.; Wolfe, G. M.; Guenther, A. B.; He, A.; Hong, Y.; Han, J.

    2015-04-29

    Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Guangzhou, and Beijing are surrounded by densely forested areas, and recent research has consistently demonstrated the importance of biogenic volatile organic compounds (VOCs) from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical, undermine our ability to assess regional photochemical air pollution problems. We present an observational data set of CO, NOx, SO2, ozone, HONO,more » and VOCs (anthropogenic and biogenic) from Taehwa research forest (TRF) near the Seoul metropolitan area in early June 2012. The data show that TRF is influenced both by aged pollution and fresh biogenic volatile organic compound emissions. With the data set, we diagnose HOx (OH, HO2, and RO2) distributions calculated using the University of Washington chemical box model (UWCM v2.1) with near-explicit VOC oxidation mechanisms from MCM v3.2 (Master Chemical Mechanism). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HOx distributions, especially OH levels (up to 2.5 times), and (2) radical destruction (HO2 + HO2 or HO2 + RO2) could be more efficient than radical recycling (RO2 + NO), especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone–VOC–NOx sensitivity and VOC oxidation product formation rates. Overall, the NOx limited regime is assessed except for the morning hours (8 a.m. to 12 p.m. local standard time), but the degree of sensitivity

  5. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China.

    PubMed

    An, Junlin; Zou, Jianan; Wang, Junxiu; Lin, Xu; Zhu, Bin

    2015-12-01

    Rapid economic growth has led to a significant increase in ozone (O3) precursor emissions in many regions of China. Improved understanding of O3 formation in response to different precursor emissions is imperative to address the highly nonlinear O3 problem and to provide a solid scientific basis for efficient O3 abatement in these regions. A comparative study was conducted in summer using a set of observational data at urban and suburban sites in Nanjing. The results showed that high O3 concentrations were frequently encountered at both sites. The probability distributions of O3 in both sites show a fair resemblance to each other, suggesting strong regional mixing over the polluted Nanjing. A distinction between the characteristics of O3 precursors has been found at different sites. During the observation period, O3 concentrations varied monthly, reaching a minimum in June and peaking in August. The daily maximum O3 concentration was found to exceed 80 ppb for 27 days at residential area (RA), whereas it only exceeded 80 ppb for 22 days at industrial area (IA), 16 days at traffic area (TA), and 14 days at commercial area (CA). This pattern suggests a higher continuous ozone exposure risk at RA. The daily maximum O3 concentrations at different sites were 135.1 ppb (IA), 134.1 ppb (RA), 129.2 ppb (TA), and 110.6 ppb (CA), respectively. The daily maximum O3 concentration occurred at 16:00 in IA, at 17:00 in TA and CA, and at 18:00 in RA. Nitrogen dioxide (NO2) and carbon monoxide (CO) showed similar double-peak diurnal cycles. NO2 showed maximum values in June and minimum values in July. CO showed a similar diurnal variation to NO2. This effect may be explained by their common sources and the similar chemical losses. During the day, O3 tended to rapidly increase during the morning, reaching a maximum value of 9-11 ppb h(-1). The differences in O3 and NO2 between workdays and weekends were small. The CO levels were higher on weekdays than on weekends in urban areas and

  6. Direct measurements of the ozone formation potential from dairy cattle emissions using a transportable smog chamber

    NASA Astrophysics Data System (ADS)

    Howard, Cody J.; Yang, Wenli; Green, Peter G.; Mitloehner, Frank; Malkina, Irina L.; Flocchini, Robert G.; Kleeman, Michael J.

    Tropospheric ozone continues to be an air pollution problem in the United States, particularly in California, Texas, and across the eastern seaboard. The obvious sources of ozone precursors have been largely controlled over the past several decades, leading to the critical examination of secondary sources. In particular, California has new air quality rules addressing agricultural sources of ozone precursors, including dairy farms. Some recent estimates predict that dairy cattle are second only to on-road vehicles as a leading source of ozone precursor emissions in California's San Joaquin Valley. The objective of this work was to directly measure the ozone formation potential from dairy housing. A transportable "smog" chamber was constructed and validated using organic gases known to be present in dairy emissions. The ozone formation potential of emissions from eight non-lactating dairy cows and their fresh waste was then directly evaluated in the field at a completely enclosed cow corral on the campus of the University of California, Davis. The results demonstrate that the majority of the ozone formation is explained by ethanol (EtOH) in the emissions from the dairy cows, not by acetone as previously thought. Ozone formation potential is generally small, with <20 ppb of ozone produced under typical conditions when EtOH concentrations were ˜200 ppb and NO x concentrations were ˜50 ppb. The results match our current understanding of atmospheric ozone formation potential, ruling out the possibility of unknown organic compounds in dairy emissions with significant ozone formation potential. Simulations carried out with a modified form of the Caltech Atmospheric Chemistry Mechanism verify that actual ozone formation from dairy emissions is much lower than what would be predicted using the current regulatory profiles. Based on these results, the ozone formation potential of emissions from dairy cattle in California seems to be lower than previously estimated.

  7. INFLUENCE OF VERTICAL RESOLUTION ON THE DIURNAL OZONE CONCENTRATIONS IN A REGIONAL PHOTOCHEMICAL MODEL: A PRELIMINARY STUDY WITH WINDOW RADM

    EPA Science Inventory

    Evaluation studies of the Regional Acid Deposition Model (RADM) with surface measurement have revealed positive bias (overprediction) of surface ozone (O3) concentration during nighttime hours and negative bias (underprediction) during daytime hours by the model, especially in ru...

  8. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  9. Structural control of nonadiabatic bond formation: the photochemical formation and stability of substituted 4a,4b-dihydrotriphenylenes.

    PubMed

    Snyder, Joshua A; Bragg, Arthur E

    2015-04-30

    Nonadiabatic photocyclization makes bonds and is the first step in the photoinduced cyclodehydrogenation of ortho-arenes to yield polycyclic aromatic hydrocarbons. How molecular structure alters potential-energy landscapes, excited-state dynamics, and stabilities of reactants and intermediates underlies the feasibility of desirable photochemistry. In order to gain insight into these structure-dynamics relationships, we have used femtosecond transient absorption spectroscopy (TAS) to examine photoinduced dynamics of 1,2,3-triphenylbenzene (TPB) and ortho-quaterphenyl (OQTP), phenyl-subsituted analogues of ortho-terphenyl (OTP). Dynamics of TPB and OTP are quite similar: TPB exhibits fast (7.4 ps) excited-state decay with concomitant formation and vibrational relaxation of 9-phenyl-dihydrotriphenylene (9-phenyl DHT). In contrast, photoexcited OQTP exhibits multistate kinetics leading to formation of 1-phenyl DHT. Excited-state calculations reveal the existence of two distinct minima on the OQTP S1 surface and, together with photophysical data, support a mechanism involving both direct cyclization by way of an asymmetric structure and indirect cyclization by way of a symmetric quinoid-like minimum. Temperature-dependent nanosecond TAS was utilized to assess the relative stabilities of intermediates, substantiating the observed trend in photochemical reactivity OTP > OQTP > TPB. In total, this work demonstrates how specific structural variations alter the course of the excited-state dynamics and photoproduct stability that underlies desired photochemistry. PMID:25849258

  10. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg; Snyder, Shane A

    2016-02-01

    N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation. PMID:26517390

  11. Secondary Organic Aerosol Formation in Aerosol Water by Photochemical Reactions of Gaseous Mixture of Monoterpene and Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Lim, H.; Yi, S.; Park, J.; Cho, H.; Jung, K.

    2011-12-01

    There exist large uncertainties in model predictions for climate change and regional air quality. It could be caused by incomplete integration of secondary organic aerosol (SOA) formation in atmospheric chemical models. Recent laboratory studies have found SOA formation through chemical reactions on aerosol surface and in aerosol water. Water soluble organics formed by photochemical degradation of biogenic organics including isoprene and anthropogenic aromatics are predicted to form substantial amount of SOA through the newly found pathways. Although SOA formation in bulk aqueous solution was reported for laboratory experiments of various precursors (e.g., water soluble carbonyls and phenols), little is known for SOA formation in real aerosol water. In this study, photochemical reactions of the gaseous mixture of monoterpene and hydrogen peroxide were examined to investigate SOA formation through reactions in real aerosol phase water. SOA formation was conducted using a flow tube reactor (ID 30 cm x L 150 cm, FEP) and a smog chamber using FEP film in the presence of dry and wet seed particles. Acidity and chemical composition of seed aerosol were also controlled as important parameters influencing SOA formation. Particle size distribution and aerosol composition were analyzed to account for differences in SOA formation mechanisms and yields for dry and wet particles. The differences might be mainly associated with SOA formation in aerosol phase water. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0000221).

  12. (CF3)2CFCH=CHF (HFO-1438ezy): OH Radical Rate Coefficient, Infrared Spectrum Measurements and Estimated Global Warming Potentials and Photochemical Ozone Creation Potential

    NASA Astrophysics Data System (ADS)

    Papadimitriou, V.; Burkholder, J. B.

    2015-12-01

    Short-lived hydrofluoroolefins (HFOs) are proposed replacement compounds for ozone depleting substances (ODSs) and longer-lived greenhouse gases that are used in various industrial and technological applications. HFOs are not ODSs and the presence of the highly reactive unsaturated bond toward the common atmospheric oxidants (OH, Cl, NO3 and O3) is expected to lead to shorter tropospheric lifetimes relative to those of saturated hydrofluorocarbons. The shorter lifetime reduces their direct contribution to Climate Change. In this study, rate coefficients for the gas-phase reaction of the OH radical with (CF3)2CFCH=CHF (HFO-1438ezy), between 214 and 380 K and 50-450 Torr (He, N2), were measured using pulsed laser photolysis-laser induced fluorescence (PLP/LIF) and relative rate methods. No pressure dependence was observed within this measurement range. The reaction displays a non-Arrhenius temperature dependence over this temperature range with a slightly positive temperature dependence above 280 K and near temperature independence at lower temperatures. The infrared spectrum of HFO-1438ezy was measured as part of this work. On the basis of the present measurements, the atmospheric lifetime of HFO-1438ezy as well as its radiative efficiency, global warming potential and photochemical ozone creation potential were estimated.

  13. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign

    NASA Astrophysics Data System (ADS)

    Tie, X.; Geng, F.; Guenther, A.; Cao, J.; Greenberg, J.; Zhang, R.; Apel, E.; Li, G.; Weinheimer, A.; Chen, J.; Cai, C.

    2013-06-01

    The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese megacity (Shanghai) and was conducted during September 2009. This paper provides information on the measurements conducted for this study. In order to have some deep analysis of the measurements, a regional chemical/dynamical model (version 3 of Weather Research and Forecasting Chemical model - WRF-Chemv3) is applied for this study. The model results are intensively compared with the measurements to evaluate the model capability for calculating air pollutants in the Shanghai region, especially the chemical species related to ozone formation. The results show that the model is able to calculate the general distributions (the level and the variability) of air pollutants in the Shanghai region, and the differences between the model calculation and the measurement are mostly smaller than 30%, except the calculations of HONO (nitrous acid) at PD (Pudong) and CO (carbon monoxide) at DT (Dongtan). The main scientific focus is the study of ozone chemical formation not only in the urban area, but also on a regional scale of the surrounding area of Shanghai. The results show that during the experiment period, the ozone photochemical formation was strongly under the VOC (volatile organic compound)-limited condition in the urban area of Shanghai. Moreover, the VOC-limited condition occurred not only in the city, but also in the larger regional area. There was a continuous enhancement of ozone concentrations in the downwind of the megacity of Shanghai, resulting in a significant enhancement of ozone concentrations in a very large regional area in the surrounding region of Shanghai. The sensitivity study of the model suggests that there is a threshold value for switching from VOC-limited condition to NOx (nitric oxide and nitrogen dioxide)-limited condition. The threshold value is strongly dependent on the emission ratio of NOx / VOCs. When the ratio is about

  14. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign

    NASA Astrophysics Data System (ADS)

    Tie, X.; Geng, F.; Guenther, A.; Cao, J.; Greenberg, J.; Zhang, R.; Apel, E.; Li, G.; Weinheimer, A.; Chen, J.; Cai, C.

    2013-01-01

    The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese Megacity (Shanghai) and was conducted during September 2009. This paper provides an overview of the measurements conducted for this study. In addition to the measurements, a regional chemical/dynamical model (version 3 of Weather Research and Forecasting Chemical model - WRF-Chemv3) is applied for this study. The model results are intensively compared with the measurements to evaluate the model capability for calculating air pollutants in the Shanghai region, especially the chemical species related to ozone formation. The results show that the model is able to calculate the general distributions (the level and the variability) of air pollutants in the Shanghai region, and the difference between the model calculation and the measurement are mostly smaller than 30%, except the calculations of HONO at PD (Pudong) and CO at DT (Dongtan). The main scientific focus is the study of ozone chemical formation not only in the urban area, but also on a regional scale of the surrounding area of Shanghai. The results show that during the experiment period, the ozone photochemical formation was strongly under the VOC-limited condition in the urban area of Shanghai. Moreover, the VOC-limited condition occurred not only in the city, but also in the larger regional area. There was a continuous enhancement of ozone concentrations in the downwind of the megacity of Shanghai, resulting in a significant enhancement of ozone concentrations in a very large regional area in the surrounding region of Shanghai. The sensitivity study of the model suggests that there is a threshold value for switching from VOC-limited condition to NOx-limited condition. The threshold value is strongly dependent on the emission ratio of NOx/VOCs. When the ratio is about 0.4, the Shanghai region is under a strong VOC-limited condition over the regional scale. In contrast, when the ratio is

  15. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.

    PubMed

    Arbaugh, Michael; Bytnerowicz, Andrzej; Grulke, Nancy; Fenn, Mark; Poth, Mark; Temple, Patrick; Miller, Paul

    2003-06-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation, and increase carbon sequestration rates in heavily polluted forests. Further study of the effects of multiple pollutants, and their long-term consequences on the mixed conifer ecosystem, cannot be adequately done using the original San Bernardino Mountains Air Pollution Gradient network. To correct deficiencies in the design, the new site network is being configured for long-term studies on multiple air pollutant concentrations and deposition, physiological and biochemical changes in trees, growth and composition of over-story species, biogeochemical cycling including carbon cycling and sequestration, water quality, and biodiversity of forest ecosystems. Eleven sites have been re-established. A comparison of 1974 stand composition with data from 2000 stand composition indicate that significant changes in species composition have occurred at some sites with less change at other sites. Moist, high-pollution sites have experienced the greatest amount of forest change, while dryer low-pollution sites have experienced the least amount of stand change. In general, ponderosa pine had the lowest basal area increases and the highest mortality across the San Bernardino Mountains. PMID:12676233

  16. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    PubMed

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability. PMID:26418767

  17. Ozone

    MedlinePlus

    ... Earth's surface. It shields us from the sun's ultraviolet rays. Part of the good ozone layer is ... enough good ozone, people may get too much ultraviolet radiation. This may increase the risk of skin ...

  18. Ozone

    MedlinePlus

    ... reactive form of oxygen. In the upper atmosphere, ozone forms a protective layer that shields us from the sun’s ultraviolet rays. At ground level, ozone is a harmful air pollutant and a primary ...

  19. Multi-year evaluation of ambient volatile organic compounds: temporal variation, ozone formation, meteorological parameters, and sources.

    PubMed

    Kim, Ku H; Chun, Ho-Hwan; Jo, Wan K

    2015-02-01

    The multi-year characteristics of ambient volatile organic compounds (VOCs) and their source contribution in a selected metropolitan (Seoul) and rural (Seokmolee) areas in Korea were investigated to provide the framework for development and implementation of ambient VOC control strategies. For Seoul, none of the three VOC groups exhibited any significant trend in their ambient concentrations, whereas for Seokmolee, they all showed a generally decreasing trend between 2005 and 2008 and an increasing trend after 2008. Two paraffinic (ethane and propane) and two olefin (ethylene and propylene) hydrocarbons displayed higher concentrations during the cold season than warm season, while the other target VOCs did not exhibit any significant trends. Ethylene and toluene were the first and second largest contributors to ozone formation, respectively, whereas several other VOCs displayed photochemical ozone formation potential values less than 0.01 ppb. For both areas, there was a significant negative correlation between ambient temperature and the selected VOC group concentrations. In contrast, a significant positive correlation was observed between relative humidity and the three VOC group concentrations, while no significant correlation was observed between wind speed and VOC group concentrations. For Seoul, the combination of vehicle exhaust and gasoline/solvent evaporation was the greatest source of VOCs, followed by liquid natural gas (LNG) and liquid petroleum gas (LPG). However, combination of LNG and LPG was the greatest source of VOCs at Seokmolee, followed by the combination of vehicle exhaust and gasoline evaporation, and then biogenic sources. PMID:25632908

  20. Atmospheric Ozone Formation and Observation Effects on Waterless Rocky Exoplanets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mai, Chuhong; Tian, Feng

    2015-11-01

    It is recently proposed that up to two thousand bars of O2 atmospheres could buildup on rocky planets near M dwarfs as the result of stellar luminosity evolution and runaway water loss (Luger and Barnes, 2015). Here we use a one-dimensional photochemical model to study ozone distributions in these hypothetical O2-rich atmospheres. Our study showed that ozone layers in denser O2 atmospheres locate at higher altitudes than that in the Earth’s atmospheres. A higher ozone layer should generate stronger O3 absorption feature, potentially different from that of our Earth. We also present the enhancement of transmission spectral features which could be useful to identify such dense O2-rich atmospheres by future exoplanet characterization missions and facilities such as JWST.

  1. Ozone

    MedlinePlus

    Ozone is a gas. It can be good or bad, depending on where it is. "Good" ozone occurs naturally about 10 to 30 miles above ... the sun's ultraviolet rays. Part of the good ozone layer is gone. Man-made chemicals have destroyed ...

  2. PHOTOCHEMICAL REACTIVITY OF PERCHLOROETHYLENE

    EPA Science Inventory

    Perchloroethylene (PCE), a solvent used in dry cleaning, has been suspected of contributing significantly to photochemical ozone/oxidant (O3/Ox) problems in urban atmospheres. Past evidence, however, was neither complete nor consistent. To interpret more conclusively the past evi...

  3. Effect of pre-ozonation on the formation and speciation of DBPs.

    PubMed

    Hua, Guanghui; Reckhow, David A

    2013-09-01

    The objective of this study was to quantitatively evaluate the effect of pre-ozonation on the formation and speciation of disinfection byproducts (DBPs) from subsequent chlorination and chloramination. Laboratory experiments were conducted on six diverse natural waters with low to medium bromide concentrations. Four groups of DBPs were investigated in this study: trihalomethanes (THMs), trihaloacetic acids (THAAs), dihaloacetic acids (DHAAs), and dihaloacetonitriles (DHANs). The results showed that the relative destructions of chlorination DBP precursors by ozone generally follow the order of DHANs > THMs & THAAs > DHAAs. Pre-ozonation substantially increased the DHAA precursors in the waters with low specific ultraviolet absorbance values. Pre-ozonation shifted the formation of DBPs to more brominated species. The bromine substitution factors (BSF) of different chlorination DBPs typically increased by 1-8 percentage points after ozonation. Pre-ozonation reduced the yields of chloramination DHAAs and THMs and increased the BSFs of chloramination DHAAs by 1-6 percentage points. PMID:23764583

  4. N-Nitrosodimethylamine formation from ozonation of chlorpheniramine: Influencing factors and transformation mechanism.

    PubMed

    Lv, Juan; Wang, Lin; Song, Yun; Li, Yongmei

    2015-12-15

    As a disinfection byproduct, the detection of N-nitrosodimethylamine (NDMA) in aquatic environments across the globe has caused widespread concern due to its potential carcinogenicity. In this study, the possibility of NDMA formation from chlorpheniramine ozonation was investigated. The influencing factors including the initial chlorpheniramine concentration, ozone dose, pH, and water matrix were quantified. Furthermore, the mechanisms for chlorpheniramine transformation and NDMA formation were explored. Our results demonstrate that ozonation is effective in removing chlorpheniramine. Generation of dimethylamine (DMA) and NDMA was observed during chlorpheniramine ozonation. Higher initial chlorpheniramine concentration and ozone dose resulted in higher production of NDMA. Acidic conditions (pH≤5) did not facilitate the production of NDMA. Ozone molecules played a dominant role in chlorpheniramine degradation, and influenced DMA release and NDMA formation. DMA and NDMA generations as well as their degradations were mainly attributed to hydroxyl radicals (·OH) produced by ozone decomposition. Water matrix properties such as HCO3(-) and humic acid affected DMA and NDMA generation due to ·OH competition. The degradation intermediates of chlorpheniramine were identified, among which only the intermediates with a DMA group were attributable to NDMA formation. A possible pathway for NDMA formation from chlorpheniramine ozonation is proposed. PMID:26261866

  5. [Influencing Factors of Assimilable Organic Carbon (AOC) Formation in Drinking Water During Ozonation Process].

    PubMed

    Dong, Bing-zhi; Zhang, Jia-li; He, Chang

    2016-05-15

    The influences of ozone dosage, pH and ionic strength on the formation of Assimilable Organic Carbon (AOC) during ozonation were investigated. The result demonstrated that within the range of 1-5 mg · L⁻¹ O₃, the formation of AOC increased with increasing ozone dosage, but higher ozone dosage (9 mg · L⁻¹) resulted in reduction of AOC formation. AOC formation increased with higher pH but decreased with increasing ionic strength. The result also showed that AOC formation with hydrophobic fraction (HPO) was the most, followed by transphilic fraction (TPI), and charged hydrophilic fraction (CHPI), while neutral hydrophilic fraction (NHPI) was the least. It was found that AOC formation related closely with SUVA of small molecular weight organics, and the lower SUVA produced more AOC. PMID:27506038

  6. Effect of magnetic ion exchange and ozonation on disinfection by-product formation.

    PubMed

    Kingsbury, Ryan S; Singer, Philip C

    2013-03-01

    The purpose of this research was to investigate the performance of treatment with magnetic ion exchange (MIEX) resin followed by ozonation in achieving disinfection goals while controlling bromate and chlorinated disinfection by-product (DBP) formation. Three water samples were collected from raw water supplies impacted by the San Francisco Bay Delta to represent the varying levels of bromide and total organic carbon (TOC) that occur throughout the year. A fourth water was prepared by spiking bromide into a portion of one of the samples. Samples of each water were pre-treated with alum or virgin MIEX resin, and the raw and treated waters were subsequently ozonated under semi-batch conditions to assess the impact of treatment on ozone demand, ozone exposure for disinfection ("CT"), and bromate formation. Finally, aliquots of raw, coagulated, resin-treated, and ozonated waters were chlorinated in order to measure trihalomethane formation potential (THMFP). In the waters studied, MIEX resin removed 41-68% of raw water TOC, compared to 12-44% for alum. MIEX resin also reduced the bromide concentration by 20-50%. The removal of TOC by alum and MIEX resin significantly reduced the ozone demand of all waters studied, resulting in higher dissolved ozone concentrations and CT values for a given amount of ozone transferred into solution. For a given level of disinfection (CT), the amount of bromate produced by ozonation of MIEX-treated waters was similar to or slightly less than that of raw water and significantly less than that of alum-treated water. MIEX resin removed 39-85% of THMFP compared to 16-56% removal by alum. Ozonation reduced THMFP by 35-45% in all cases. This work indicates that in bromide-rich waters in which ozone disinfection is used, MIEX resin is a more appropriate treatment than alum for the removal of organic carbon, as it achieves superior TOC and THM precursor removal and decreases the production of bromate from ozone. PMID:23286989

  7. BROMIDES'S EFFECT ON DBP FORMATION, SPECIATION, AND CONTROL: PART 1, OZONATION

    EPA Science Inventory

    Many factors should be taken into account in the assessment of the impact of ozonation on the speciation of the THMs and HAAS. n this study, the behavior of the individual species with varying bromide and ozone concentrations was examined. n general, the formation behavior for th...

  8. THE EFFECTS OF COMBINED OZONATION AND FILTRATION ON DISINFECTION BY-PRODUCT FORMATION. (R830908)

    EPA Science Inventory

    The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) ...

  9. Wavelength and temperature-dependent apparent quantum yields for photochemical formation of hydrogen peroxide in seawater.

    PubMed

    Kieber, David J; Miller, Gary W; Neale, Patrick J; Mopper, Kenneth

    2014-04-01

    Wavelength and temperature-dependent apparent quantum yields (AQYs) were determined for the photochemical production of hydrogen peroxide using seawater obtained from coastal and oligotrophic stations in Antarctica, the Pacific Ocean at Station ALOHA, the Gulf of Mexico, and at several sites along the East Coast of the United States. For all samples, AQYs decreased exponentially with increasing wavelength at 25 °C, ranging from 4.6 × 10(-4) to 10.4 × 10(-4) at 290 nm to 0.17 × 10(-4) to 0.97 × 10(-4) at 400 nm. AQYs for different seawater samples were remarkably similar irrespective of expected differences in the composition and concentrations of metals and dissolved organic matter (DOM) and in prior light exposure histories; wavelength-dependent AQYs for individual seawater samples differed by less than a factor of two relative to respective mean AQYs. Temperature-dependent AQYs increased between 0 and 35 °C on average by a factor of 1.8 per 10 °C, consistent with a thermal reaction (e.g., superoxide dismutation) controlling H2O2 photochemical production rates in seawater. Taken together, these results suggest that the observed poleward decrease in H₂O₂ photochemical production rates is mainly due to corresponding poleward decreases in irradiance and temperature and not spatial variations in the composition and concentrations of DOM or metals. Hydrogen peroxide photoproduction AQYs and production rates were not constant and not independent of the photon exposure as has been implicitly assumed in many published studies. Therefore, care should be taken when comparing and interpreting published H₂O₂ AQY or photochemical production rate results. Modeled depth-integrated H₂O₂ photochemical production rates were in excellent agreement with measured rates obtained from in situ free-floating drifter experiments conducted during a Gulf of Maine cruise, with differences (ca. 10%) well within measurement and modeling uncertainties. Results from this study

  10. Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene

    NASA Astrophysics Data System (ADS)

    Wang, Chunyi; Waring, Michael S.

    2014-02-01

    Previous research has shown that ozone reactions on surface-sorbed D-limonene can promote gas phase secondary organic aerosol (SOA) formation indoors. In this work, we conducted 13 steady state chamber experiments to measure the SOA formation entirely initiated by ozone reactions with squalene sorbed to glass, at chamber ozone of 57-500 ppb for two relative humidity (RH) conditions of 21% and 51%, in the absence of seed particles. Squalene is a nonvolatile compound that is a component of human skin oil and prevalent on indoor surfaces and in settled dust due to desquamation. The size distributions, mass and number secondary emission rates (SER), aerosol mass fractions (AMF), and aerosol number fractions (ANF) of formed SOA were quantified. The surface AMF and ANF are defined as the change in SOA mass or number formed, respectively, per ozone mass consumed by ozone-squalene reactions. All experiments but one exhibited nucleation and mass formation. Mass formation was relatively small in magnitude and increased with ozone, most notably for the RH = 51% experiments. The surface AMF was a function of the chamber aerosol concentration, and a multi-product model was fit using the 'volatility basis set' framework. Number formation was relatively strong at low ozone and low RH conditions. Though we cannot extrapolate our results because experiments were conducted at high air exchange rates, we speculate that this process may enhance particle number more than mass concentrations indoors.

  11. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight

    SciTech Connect

    Cooper, W.J.; Zika, R.G.

    1983-05-13

    A rapid increase in the concentration of hydrogen peroxide was observed when samples of natural surface and ground water from various locations in the United States were exposed to sunlight. The hydrogen peroxide is photochemically generated from organic constitutents present in the water; humic materials are believed to be the primary agent producing the peroxide. Studies with superoxide dismutase suggest that the superoxide anion is the precursor of the peroxide.

  12. Formation of free radicals in the photochemical modification of antifrictional plastic compositions

    SciTech Connect

    Klimov, E.S.; Vakar, A.A.; Sokolov, V.P.; Okhlobystin, O.Yu.

    1987-09-20

    Using ESR spectroscopy the authors investigated the photolysis and radical composition of a plastic lubricant composed of polyethylene, perfluoroalkylpolyester 240, oleic acid, mineral oil, and benzophenone. The spectra are comprehensively analyzed. Hyperfine structure and spin trapping are given for the polyalkyl radicals. The photochemical modification of the lubricant leading to these radicals, and their reaction with oxygen, are determined to be responsible for the enhanced adhesion of the plasticizers to the polymer.

  13. Photochemical Formation of Fe(II) and Peroxides in Coastal Seawater Collected around Okinawa Island, Japan - Impact of Red Soil Pollution

    NASA Astrophysics Data System (ADS)

    Okada, K.; Nakajima, H.; Higuchi, T.; Fujimura, H.; Arakaki, T.; Taira, H.

    2003-12-01

    In a study to elucidate the impacts of red soil pollution on the oxidizing power of seawater, photochemical formation of Fe(II) and peroxides was studied in seawaters collected around Okinawa Island, Japan. The northern part of Okinawa Island suffers from red soil pollution which is caused mainly by land development such as pineapple farming and the construction of recreational facilities. We studied photochemical formation of peroxides and Fe(II) in the same seawater samples because the reaction between HOOH and Fe(II) forms hydroxyl radical (OH radical), the most potent environmental oxidant. Photochemical formation of Fe(II) was fast and reached steady-state in 30 minutes of simulated sunlight illumination and the steady-state Fe(II) concentrations were about 80% of total iron concentrations. Photochemical formation of peroxides was relatively slow and formation kinetics varied, depending on the initial peroxide concentrations. Because photochemical formation of peroxides was faster and total iron concentrations in the red soil polluted seawater were higher, red soil polluted seawater is expected to have greater oxidizing power than seawater that is not polluted with red soil.

  14. Regional impacts of oil and gas development on ozone formation in the western United States.

    PubMed

    Rodriguez, Marco A; Barna, Michael G; Moore, Tom

    2009-09-01

    The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico. PMID:19785277

  15. LABORATORY AND COMPUTATIONAL INVESTIGATIONS OF THE ATMOSPHERIC CHEMISTRY OF KEY OXIDATION PRODUCTS CONTROLLING TROPOSPHERIC OZONE FORMATION

    EPA Science Inventory

    Major uncertainties remain in our ability to identify the key reactions and primary oxidation products of volatile hydrocarbons that contribute to ozone formation in the troposphere. To reduce these uncertainties, computational chemistry, mechanistic and process analysis techniqu...

  16. MODELING OF SIMULATED PHOTOCHEMICAL SMOG WITH KINETIC MECHANISMS. VOLUME 1. INTERIM REPORT

    EPA Science Inventory

    Computer modeling of smog chamber data is discussed in three parts. First, a series of detailed chemical mechanisms were developed to describe the photochemical formation of ozone from nitrogen oxides and the following organic compounds (alone and in various combinations): formal...

  17. MODELING OF SIMULATED PHOTOCHEMICAL SMOG WITH KINETIC MECHANISMS. VOLUME 2. INTERIM REPORT APPENDIX

    EPA Science Inventory

    Computer modeling of smog chamber data is discussed in three parts. First, a series of detailed chemical mechanisms were developed to describe the photochemical formation of ozone from nitrogen oxides and the following organic compounds (alone and in various combinations): formal...

  18. Secondary organic aerosol formation from ozone reactions with single terpenoids and terpenoid mixtures

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Wells, J. Raymond; Siegel, Jeffrey A.

    2011-08-01

    Ozone reacts with indoor-emitted terpenoids to form secondary organic aerosol (SOA). Most SOA research has focused on ozone reactions with single terpenoids or with consumer products, and this paper reports the results from an investigation of SOA formation from ozone reactions with both single terpenoids and mixtures of D-limonene, α-pinene, and α-terpineol. Transient experiments were conducted at low (25 ppb) and high (100 ppb) initial concentrations of ozone. The three terpenoids were tested singly and in combinations in a manner that controlled for their different reaction rates with ozone. The SOA formation was assessed by examining the evolution in time of the resulting number size-distributions and estimates of the mass concentrations. The results suggest that at higher ozone and terpenoid concentrations, SOA number formation follows a linear trend as a function of the initial rate of reaction. This finding was valid for both single terpenoids and mixtures. Generally speaking, higher ozone and terpenoid concentrations also led to larger geometric mean diameters and smaller geometric standard deviations of fitted lognormal distributions of the formed SOA. By assuming a density, mass concentrations were also assessed and did not follow as consistent of a trend. At low ozone concentration conditions, reactions with only D-limonene yielded the largest number concentrations of any experiment, even more than experiments with mixtures containing D-limonene and much higher overall terpenoid concentrations. This finding was not seen for high ozone concentrations. These experiments demonstrate quantifiable trends for SOA forming reactions of ozone and mixtures, and this work provides a framework for expanding these results to more complex mixtures and consumer products.

  19. Ozonation of piperidine, piperazine and morpholine: Kinetics, stoichiometry, product formation and mechanistic considerations.

    PubMed

    Tekle-Röttering, Agnes; Jewell, Kevin S; Reisz, Erika; Lutze, Holger V; Ternes, Thomas A; Schmidt, Winfried; Schmidt, Torsten C

    2016-01-01

    Piperidine, piperazine and morpholine as archetypes for secondary heterocyclic amines, a structural unit that is often present in pharmaceuticals (e.g., ritalin, cetirizine, timolol, ciprofloxacin) were investigated in their reaction with ozone. In principle the investigated compounds can be degraded with ozone in a reasonable time, based on their high reaction rate constants with respect to ozone (1.9 × 10(4)-2.4 × 10(5) M(-1) s(-1)). However, transformation is insufficient (13-16%), most likely due to a chain reaction, which decomposes ozone. This conclusion is based on OH scavenging experiments, leading to increased compound transformation (18-27%). The investigated target compounds are similar in their kinetic and stoichiometric characteristics. However, the mechanistic considerations based on product formation indicate various reaction pathways. Piperidine reacts with ozone via a nonradical addition reaction to N-hydroxypiperidine (yield: 92% with and 94% without scavenging, with respect to compound transformation). However, piperazine degradation with ozone does not lead to N-hydroxypiperazine. In the morpholine/ozone reaction, N-hydroxymorpholine was identified. Additional oxidation pathways in all cases involved the formation of OH with high yields. One important pathway of piperazine and morpholine by ozonation could be the formation of C-centered radicals after ozone or OH radical attack. Subsequently, O2 addition forms unstable peroxyl radicals, which in one pathway loose superoxide radicals by generating a carbon-centered cation. Subsequent hydrolysis of the carbon-centered cation leads to formaldehyde, whereby ozonation of the N-hydroxy products can proceed in the same way and in addition give rise to hydroxylamine. A second pathway of the short-lived peroxyl radicals could be a dimerization to form short-lived tetraoxides, which cleave by forming hydrogen peroxide. All three products have been found. PMID:26624229

  20. EXPERIMENTAL EVIDENCE FOR WATER FORMATION VIA OZONE HYDROGENATION ON DUST GRAINS AT 10 K

    SciTech Connect

    Mokrane, H.; Chaabouni, H.; Accolla, M.; Congiu, E.; Dulieu, F.; Chehrouri, M.; Lemaire, J. L.

    2009-11-10

    The formation of water molecules from the reaction between ozone (O{sub 3}) and D-atoms is studied experimentally for the first time. Ozone is deposited on non-porous amorphous solid water ice (H{sub 2}O), and D-atoms are then sent onto the sample held at 10 K. HDO molecules are detected during the desorption of the whole substrate where isotope mixing takes place, indicating that water synthesis has occurred. The efficiency of water formation via hydrogenation of ozone is of the same order of magnitude as that found for reactions involving O-atoms or O{sub 2} molecules and exhibits no apparent activation barrier. These experiments validate the assumption made by models using ozone as one of the precursors of water formation via solid-state chemistry on interstellar dust grains.

  1. Ambient Ozone Control in a Photochemically Active Region: Short-Term Despiking or Long-Term Attainment?

    PubMed

    Ou, Jiamin; Yuan, Zibing; Zheng, Junyu; Huang, Zhijiong; Shao, Min; Li, Zekun; Huang, Xiaobo; Guo, Hai; Louie, Peter K K

    2016-06-01

    China has made significant progress decreasing the ambient concentrations of most air pollutants, but ozone (O3) is an exception. O3 mixing ratios during pollution episodes are far higher than the national standard in the Pearl River Delta (PRD), thus greater evidence-based control efforts are needed for O3 attainment. By using a validated O3 modeling system and the latest regional emission inventory, this study illustrates that control strategies for short-term O3 despiking and long-term attainment in the PRD may be contradictory. VOC-focused controls are more efficient for O3 despiking in urban and industrial areas, but significant NOx emission reductions and a subsequent transition to a NOx-limited regime are required for O3 attainment. By tracking O3 changes along the entire path toward long-term attainment, this study recommends to put a greater focus on NOx emission controls region-wide. Parallel VOC reductions around the Nansha port are necessary in summertime and should be extended to the urban and industrial areas in fall with a flexibility to be strengthened on days forecasted to have elevated O3. Contingent VOC-focused controls on top of regular NOx-focused controls would lay the groundwork for striking a balance between short-term despiking and long-term attainment of O3 concentrations in the PRD. PMID:27135547

  2. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    PubMed

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and <4% for 2 precursors. Bromide concentration was important for three compounds (1,1-dimethylhydrazine, acetone dimethylhydrazone and dimethylsulfamide), but did not enhance NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. PMID:25241951

  3. Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Song, Yu; Mao, Zhichun; Liu, Mingxu; Huang, Xin

    2016-02-01

    Thermal circulations induced by urbanization could exert important effects on regional ozone (O3) formation through regulating the chemical transformations and transport of O3 and its precursors. In this study, the Weather Research and Forecasting/Chemistry (WRF/Chem) model combined with remote sensing are used to investigate the impacts of urbanization-induced circulations on O3 formation in the Pearl River Delta (PRD) region, China. The urban heat island (UHI) effect in PRD significantly enhances turbulent mixing and modifies local circulations, i.e., initiates the UHI circulation and strengthens the sea breeze, which in turn cause a detectable decrease of daytime O3 concentration (-1.3 ppb) and an increase of O3 (+5.2 ppb) around the nocturnal rush-hours. The suppressed O3 titration destruction due to NOx dilution into the deeper urban boundary layer (200-400 m) is the main reason for elevated nocturnal O3 levels. In the daytime, however, the upward transport of O3 precursors weakens near-surface O3 photochemical production and conversely enhances upper-level O3 generation. Furthermore, the surface UHI convergence flow and intensified sea breeze act to effectively trap O3 at the suburban and coastal regions.

  4. Effect of the conditions of structure formation on the physicochemical properties of ozonated shungites

    NASA Astrophysics Data System (ADS)

    Emel'Yanova, G. I.; Gorlenko, L. E.; Rozhkova, N. N.; Rumyantseva, M. N.; Lunin, V. V.

    2010-08-01

    It was investigated the influence of ozone on the physicochemical properties of shungites (type 1) (75-98% C) from Nigozero and Chebolaksha deposits (Karelia) formed by hydrothermal (Nigozero) and high-temperature (Chebolaksha) processes. Ozonation was found to affect the specific surface and the total pore volume of shungites considerably. The pore size distribution pattern depends on the volume morphology (texture) of the sample. An increase in the temperature and pressure during the structure formation of shungite (Chebolaksha) led to a shift of the maximum on the distribution pattern towards the formation of mesopores. The size distribution of pores with the dominant contents of micro- and submesopores for both shungites correlated with the basic structural nanoelements of shungite carbon. The peculiarities of the ozonation of shungite nanocarbon found previously (the non-steady state vibrational kinetics of ozonation and the absence of carbon(II) oxide among the reaction products) were confirmed.

  5. Simulations of aerosols and their effects on photolysis and ozone formation in Mexico City

    NASA Astrophysics Data System (ADS)

    Li, G.; Zavala, M.; Lei, W.; Karydis, V. A.; Tsimpidi, A. P.; Pandis, S.; Molina, L. T.

    2009-04-01

    Atmospheric aerosols, formed from natural and anthropogenic sources, are believed to be associated with adverse human effects at high levels in polluted urban areas. They also play a key role in climate through direct and indirect effects. Therefore, accurate simulations of aerosol composition and distribution in the atmospheric models are important in evaluating their impact on environment and climate. In the present study, a flexible gas phase chemical module with SAPRC mechanism and the CMAQ/models3 aerosol module developed by EPA have been implemented into the WRF-CHEM model. Additionally, to further improve the aerosol, especially the secondary organic aerosol (SOA) simulations, an advanced SOA module [Tsimpidi et al., 2009] has been incorporated into the WRF-CHEM model. The new SOA module is based on the volatility basis-set approach in which both primary and secondary organic components are assumed to be semivolatile and photochemically reactive [Lane et al., 2008]. Gas phase species and aerosol simulation results are compared with the available measurements obtained during the MILAGRO 2006 campaign. When the advanced SOA mechanism is employed, the SOA simulations are significantly improved. Furthermore, the aerosol impacts on the photochemistry in Mexico City have been evaluated using the FTUV [Tie et al., 2005]. Aerosol optical properties are calculated using the Mie theory and compared with available observations in Mexico City [Paredes-Miranda et al., 2008]. Aerosols, principally black carbon, reduce the photolysis frequencies of J[O3(1D)] and J[NO2] in the planetary boundary layer and hence decrease the ground-level ozone concentration. Our study demonstrates that the impact of aerosols on photochemistry is significant in polluted urban atmosphere. References: Lane, T. E., N. M. Donahue, and S. N. Pandis (2008), Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, PMCAMx, Atmos. Environ

  6. Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics

    NASA Astrophysics Data System (ADS)

    Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Nazaroff, William W.

    We measured ozone consumption and byproduct formation on materials commonly found in aircraft cabins at flight-relevant conditions. Two series of small-chamber experiments were conducted, with most runs at low relative humidity (10%) and high air-exchange rate (˜20 h -1). New and used cabin materials (seat fabric, carpet, and plastic) and laundered and worn clothing fabrics (cotton, polyester, and wool) were studied. We measured ozone deposition to many material samples, and we measured ozone uptake and primary and secondary emissions of volatile organic compounds (VOCs) from a subset of samples. Deposition velocities ranged from 0.06 to 0.54 cm s -1. Emissions of VOCs were higher with ozone than without ozone in every case. The most commonly detected secondary emissions were C 1 through C 10 saturated aldehydes and the squalene oxidation products 6-methyl-5-hepten-2-one and acetone. For the compounds measured, summed VOC emission rates in the presence of 55-128 ppb (residual level) ozone ranged from 1.0 to 8.9 μmol h -1 m -2. Total byproduct yield ranged from 0.07 to 0.24 moles of product volatilized per mole of ozone consumed. Results were used to estimate the relative contribution of different materials to ozone deposition and byproduct emissions in a typical aircraft cabin. The dominant contributor to both was clothing fabrics, followed by seat fabric. Results indicate that ozone reactions with surfaces substantially reduce the ozone concentration in the cabin but also generate volatile byproducts of potential concern for the health and comfort of passengers and crew.

  7. Studies in photochemical smog chemistry. 1. Atmospheric chemistry of toulene. 2. Analysis of chemical reaction mechanisms for photochemical smog

    SciTech Connect

    Leone, J.A.

    1985-01-01

    This study focuses on two related topics in the gas phase organic chemistry of importance in urban air pollution. An experimental effort aimed at developing a new explicit reaction mechanism for the atmospheric photooxidation of toluene is described. This mechanism is tested using experimental data from both indoor and outdoor smog chamber facilities. The predictions of the new reaction mechanism are found to be in good agreement with both sets of experimental data. Additional simulations performed with the new mechanism are used to investigate various mechanistic paths. A theoretical analysis of lumped chemical reaction mechanisms for photochemical smog is presented. Included is a description of a new counter species analysis technique which can be used to analyze any complex chemical reaction mechanism. When applied to mechanisms for photochemical smog, this analysis is shown capable of providing answers to previously inaccessible questions such as the relative contributions of individual organics to photochemical ozone formation.

  8. Sensitivity analysis of ozone formation and transport for a Central California air pollution episode

    SciTech Connect

    Jin, Ling; Tonse, Shaheen; Cohan, Daniel S.; Mao, Xiaoling; Harley, Robert A.; Brown, Nancy J.

    2009-05-15

    CMAQ-HDDM is used to determine spatial and temporal variations in ozone limiting reagents and local vs upwind source contributions for an air pollution episode in Central California. We developed a first- and second- order sensitivity analysis approach with the Decoupled Direct Method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a five-day ozone episode (29th July-3rd Aug, 2000). Despite considerable spatial variations, nitrogen oxides (NO{sub x}) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8-hr ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior 1-hr ozone standard. Inter-basin source contributions of NO{sub x} emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NO{sub x} and AVOC, and the rate coefficient of the OH + NO{sub 2} termination reaction, have the greatest effect on first-order ozone responses to changes in NO{sub x} emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region.

  9. Effects of ozone and ozone/peroxide pretreatments on disinfection byproduct formation during subsequent chlorination and chloramination.

    PubMed

    Yang, Xin; Peng, Jinfeng; Chen, Baiyang; Guo, Wanhong; Liang, Yongmei; Liu, Wei; Liu, Lu

    2012-11-15

    Ozone (O3) and ozone/hydrogen peroxide (O3/H2O2) can be used in water treatment facilities to remove many organic micropollutants with taste, odor, and color implications. The effects of O3 and O3/H2O2 on the formation of disinfection byproducts (DBPs) in subsequent chlorination and chloramination processes, however, are not well determined. In this study, we compared the yields of a series of regulated and emerging DBPs during sequenced O3-Cl2, O3/H2O2-Cl2, O3-NH2Cl, and O3/H2O2-NH2Cl oxidation of 11 samples, each with different hydrophobicity, bromide concentration, soluble microbial products, and humic substances. For most water, pretreatment with O3 and O3/H2O2 increased the formation of chloral hydrate (CH), trichloronitromethane (TCNM) and haloketones (HKs) but lowered the yields of haloacetonitriles (HANs) during chlorination processes. Compared with O3 alone, O3/H2O2 in combination generated more CH and HKs during chlorination, and their extents of formation appeared to depend on the O3 doses. In terms of chloramination, both O3 and O3/H2O2 reduced THM, HAA, and HAN formation significantly without increasing CH, TCNM, or HKs. These results suggest that O3 or O3/H2O2 pretreatments may provide some benefits for the chloramination process in controlling regulated and emerging DBPs in waters without high bromide content. PMID:23009791

  10. Photochemical alkene formation in seawater from dissolved organic carbon: Results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Ratte, M.; Bujok, O.; Spitzy, A.; Rudolph, J.

    1998-03-01

    The production mechanism of light alkenes, alkanes, and isoprene was investigated in laboratory experiments by measuring their concentrations in natural seawater as a function of spectral range, exposure time and origin, and concentration of dissolved organic carbon (DOC). The production mechanism of alkanes and of isoprene could not be clarified. Ethene and propene are produced photochemically from DOC. The relevant spectral range is UV and short-wavelength visible light. Initial production rates (up to day 10 of exposure) were in the range of several pmol L-1 h-1 (mg DOC)-1; the corresponding mean quantum yields for the spectral range of 300-420 nm were about 10-8. Generally, the production rates and the quantum yields for ethene were about 2 times that of propene. The key factors in the total column integrated oceanic alkene production are the solar photon flux at sea surface, the penetration depth of the light into the ocean (especially the relation between different light absorbers, i.e., the extinction due to absorption of DOC), and the wavelength- and DOC-dependent quantum yields. As a result of the high variability of these parameters, actual local alkene production rates for a specific oceanic region may differ considerably from the globally averaged oceanic alkene production rates. The latter were estimated to be at most 5 Mt yr-1.

  11. Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space

    NASA Astrophysics Data System (ADS)

    Meinert, Cornelia; de Marcellus, Pierre; Le Sergeant D'Hendecourt, Louis; Nahon, Laurent; Jones, Nykola C.; Hoffmann, Søren V.; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J.

    2011-10-01

    Proteins of all living organisms including plants, animals, and humans are made up of amino acid monomers that show identical stereochemical L-configuration. Hypotheses for the origin of this symmetry breaking in biomolecules include the absolute asymmetric photochemistry model by which interstellar ultraviolet (UV) circularly polarized light (CPL) induces an enantiomeric excess in chiral organic molecules in the interstellar/circumstellar media. This scenario is supported by a) the detection of amino acids in the organic residues of UV-photo-processed interstellar ice analogues, b) the occurrence of L-enantiomer-enriched amino acids in carbonaceous meteorites, and c) the observation of CPL of the same helicity over large distance scales in the massive star-forming region of Orion. These topics are of high importance in topical biophysical research and will be discussed in this review. Further evidence that amino acids and other molecules of prebiotic interest are asymmetrically formed in space comes from studies on the enantioselective photolysis of amino acids by UV-CPL. Also, experiments have been performed on the absolute asymmetric photochemical synthesis of enantiomer-enriched amino acids from mixtures of astrophysically relevant achiral precursor molecules using UV-circularly polarized photons. Both approaches are based on circular dichroic transitions of amino acids that will be highlighted here as well. These results have strong implications on our current understanding of how life's precursor molecules were possibly built and how life selected the left-handed form of proteinogenic amino acids.

  12. A study on the ozone formation using CMAQ with PA and HDDM in the Seoul Metropolitan Area.

    NASA Astrophysics Data System (ADS)

    Jong Hee, K.; Koo, Y. S.

    2014-12-01

    HDDM (High-order Decoupled Direct Method) is an efficient method to understand sensitivity of ozone peak concentration on the precursor emission of NOx and VOCs (Volatile Organic Compounds). PA (Process Analysis) in the CMAQ (Community Multiscale Air Quality Model) is a probing tool to identify the formation pathways of the ozone. CMAQ with the HDDM and PA was used to simulate the high peak ozone concentrations in the Seoul Metropolitan Area (SMA) for 2009. The predicted ozone concentrations by CMAQ were compared with observations at air quality monitoring stations in the SMA. The results showed that the model could depict observed diurnal variations of ozone concentration but it had a tendency of underestimating the ozone peak concentration. One of the main reasons for such discrepancies is due to uncertainties of precursor emissions of NOx and VOCs. The main processes inducing peak ozone were the horizontal transport and gas phase chemistry according to the PA. In order to improve capacity of prediction high peak ozone concentration, sensitivity test of the precursor emissions on ozone formation using HDDM was carried out to determine which emission of VOCs and NOx is a controlling one in the ozone formation. The results showed that the ozone concentrations increased with VOCs emissions and decreased with NOx emission, which implies the VOC-limited region. The further details of model comparisons with observations and results of HDDM and PA will be discussed in the presentation.

  13. Empirical evidence for the low- and high-NO x photochemical regimes of sulfate and nitrate formation

    NASA Astrophysics Data System (ADS)

    Stein, Ariel F.; Lamb, Dennis

    The formation of sulfate and nitrate in eastern North America is chemically linked to the abundance of oxidants and therefore to the emissions of nitrogen oxides (NO x). Depending on conditions, NO x reacts under either of two distinct photochemical regimes, defined by the types and levels of radical production. In the low-NO x regime (typical of summer), nitrogen dioxide (NO 2) is readily consumed during nitric acid formation, leaving an excess of radicals that recombine to form peroxides and a highly oxidizing state favorable to sulfate formation. On the other hand, under high-NO x conditions (as in winter), the oxidizing capacity of the atmosphere is reduced because the NO 2 rapidly combines with and thereby depletes hydroxyl radicals, producing nitric acid, but few peroxides. The distinction between these two chemical regimes is crucial for interpreting atmospheric deposition data because it determines whether sulfate or nitrate is the dominant acidifying component. Evidence for these regimes is gained from seasonal observations of sulfate and nitrate in rain samples collected at several sites of the National Atmospheric Deposition Program (NADP). A simple modeling exercise elucidates the processes by which sulfate and nitrate are formed under the high- and low-NO x states.

  14. Ozone

    SciTech Connect

    Not Available

    1988-06-01

    The author discusses the debate over whether concern about a hole in the ozone layer in Antarctic is real or science fiction. There is a growing consensus that efforts must be taken to protect the ozone layer. The issue now is not whether chlorofluorocarbons (CFCs) should be controlled and regulated but how much and how soon. The United States has urged that the production of dangerous CFCs, and any other chemicals that affect the ozone layer, be restricted immediately to current levels and that their use be reduced 95 percent over the next decade. The American position was too strong for many European nations and the Japanese. Negotiations at an international conference on the matter broke down. The breakdown is due in part to a more acute concern for environmental matters in the United States than exists in many countries. Meanwhile CFCs are linked to another environmental problem that equally threatens the world - the Greenhouse Effect. The earth is in a natural warming period, but man could be causing it to become even warmer. The Greenhouse Effect could have a catastrophic impact on mankind, although nothing has been proven yet.

  15. Documentation of ozone as the primary phytotoxic agent in photochemical oxidant smog. Final report, 23 February 1987-23 May 1988

    SciTech Connect

    Olszyk, D.M.

    1988-05-01

    The study evaluated whether equivalent ozone concentrations in ambient oxidant smog and added ozone in filtered air produce the same physiological, growth, yield, and injury effects in plants. Three treatments of alfalfa cultivars were used in open-top field chambers: charcoal-filtered air (CF); non-filtered air (NF); and filtered air plus ozone added to equal the ozone concentration in the ambient air according to the same temporal pattern. The O/sup 3/ treatment resulted in significantly greater leaf injury, chlorophyll concentrations, and a distinct trend toward a large reduction in dry weight compared with the NF treatment. The results indicate that use of dry air to generate ozone may overestimate losses due to ambient ozone. Conversely, use of oxygen to generate ozone may underestimate losses due to ambient oxidants as other detrimental oxidants such as nitric acid vapor are not present as they would be in ambient air.

  16. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  17. THE OZONE REACTION WITH BUTADIENE: FORMATION OF TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    Abstract

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product ...

  18. Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming

    NASA Astrophysics Data System (ADS)

    Carter, William P. L.; Seinfeld, John H.

    2012-04-01

    The Upper Green River Basin (UGRB) in Wyoming experiences ozone episodes in the winter when the air is relatively stagnant and the ground is covered by snow. A modeling study was carried out to assess relative contributions of oxides of nitrogen (NOx) and individual volatile organic compounds (VOCs), and nitrous acid (HONO) in winter ozone formation episodes in this region. The conditions of two ozone episodes, one in February 2008 and one in March 2011, were represented using a simplified box model with all pollutants present initially, but with the detailed SAPRC-07 chemical mechanism adapted for the temperature and radiation conditions arising from the high surface albedo of the snow that was present. Sensitivity calculations were conducted to assess effects of varying HONO inputs, ambient VOC speciation, and changing treatments of temperature and lighting conditions. The locations modeled were found to be quite different in VOC speciation and sensitivities to VOC and NOx emissions, with one site modeled for the 2008 episode being highly NOx-sensitive and insensitive to VOCs and HONO, and the other 2008 site and both 2011 sites being very sensitive to changes in VOC and HONO inputs. Incremental reactivity scales calculated for VOC-sensitive conditions in the UGRB predict far lower relative contributions of alkanes to ozone formation than in the traditional urban-based MIR scale and that the major contributors to ozone formation were the alkenes and the aromatics, despite their relatively small mass contributions. The reactivity scales are affected by the variable ambient VOC speciation and uncertainties in ambient HONO levels. These box model calculations are useful for indicating general sensitivities and reactivity characteristics of these winter UGRB episodes, but fully three-dimensional models will be required to assess ozone abatement strategies in the UGRB.

  19. ORGANIC AEROSOL FORMATION IN THE HUMID, PHOTOCHEMICALLY-ACTIVE SOUTHEASTERN US: SOAS EXPERIMENTS AND SIMULATIONS

    EPA Science Inventory

    A better understanding of SOA formation, properties and behavior in the humid eastern U.S. including dependence on anthropogenic emissions (RFA Q #1, 2). More accurate air quality prediction enabling more accurate air quality management (EPA Goal #1). Scientific insights co...

  20. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches

    NASA Astrophysics Data System (ADS)

    Baker, K. R.; Woody, M. C.; Tonnesen, G. S.; Hutzell, W.; Pye, H. O. T.; Beaver, M. R.; Pouliot, G.; Pierce, T.

    2016-09-01

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (SMOKE) model, Weather and Research Forecasting (WRF) meteorological model, and Community Multiscale Air Quality (CMAQ) photochemical grid model. The modeling system was applied to track the contribution from a wildfire (Wallow) and prescribed fire (Flint Hills) using both source sensitivity and source apportionment approaches. The model estimated fire contribution to primary and secondary pollutants are comparable using source sensitivity (brute-force zero out) and source apportionment (Integrated Source Apportionment Method) approaches. Model estimated O3 enhancement relative to CO is similar to values reported in literature indicating the modeling system captures the range of O3 inhibition possible near fires and O3 production both near the fire and downwind. O3 and peroxyacetyl nitrate (PAN) are formed in the fire plume and transported downwind along with highly reactive VOC species such as formaldehyde and acetaldehyde that are both emitted by the fire and rapidly produced in the fire plume by VOC oxidation reactions. PAN and aldehydes contribute to continued downwind O3 production. The transport and thermal decomposition of PAN to nitrogen oxides (NOX) enables O3 production in areas limited by NOX availability and the photolysis of aldehydes to produce free radicals (HOX) causes increased O3 production in NOX rich areas. The modeling system tends to overestimate hourly surface O3 at routine rural monitors in close proximity to the fires when the model predicts elevated fire impacts on O3 and Hazard Mapping System (HMS) data indicates possible fire impact. A sensitivity simulation in which solar radiation and photolysis rates were more aggressively attenuated by aerosol in the plume

  1. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.

    PubMed

    Borrowman, Cuyler K; Zhou, Shouming; Burrow, Timothy E; Abbatt, Jonathan P D

    2016-01-01

    In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter. PMID:26603953

  2. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  3. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  4. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  5. Evidence for photochemical formation of H[sub 2]O[sub 2] and oxidation of SO[sub 2] in authentic fog water

    SciTech Connect

    Yuegang Zuo, Hoigne, J. )

    1993-04-02

    When samples of rain and fog water were exposed to ultraviolet and visible light, reactive transients such as hydrogen peroxide were formed and dissolved organic matter and sulfur dioxide were depleated. These results, in conjunction with those from previous studies, imply that dissolved organic compounds and transition metals such as iron ions are involved in the photochemical formation of hydrogen peroxide and other photooxidants in atmospheric waters.

  6. Photochemical Formation of Hydroxyl Radical, Hydrogen Peroxide and Fe(II) in the Sea Surface Microlayer (SML) Collected in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Higaonna, Y.; Tachibana, C.; Kasaba, T.; Ishikawa, R.; Arakaki, T.

    2014-12-01

    The sea surface microlayer (SML) covers upper 1 to 1000 μm deep boundary layer of the ocean, where important biogeochemical processes take place. Photo-chemical reactions are activated by sunlight, so it is assumed that more photo-chemical reactions occur in SML than underlying bulk seawater (bulk). We initiated a study to understand chemical changes occurring in the SML by studying photochemical formation of oxidants such as hydrogen peroxide and hydroxyl radical (OH), both of which react with various organic substances and determine their lifetimes. Since OH can be formed by reaction between hydrogen peroxide and Fe(II), Fe(II) photoformation was also studied. We collected SML samples using a widely-used glass plate method and bulk samples by using a polyethylene bottles near the coast of Okinawa Island, Japan. Results showed that dissolved organic carbon (DOC) concentrations in the SML were about twice those of bulk seawater samples. Hydrogen peroxide formation in the SML samples was ca. 2.8 times faster than the bulk seawater samples. On the other hand, Fe(II) and OH photoformation kinetics was similar for both SML and bulk samples. Although it was predicted that more OH could be formed from reaction between hydrogen peroxide and Fe(II), OH formation kinetics was similar in both SML and bulk, suggesting that either Fe(II) did not react with hydrogen peroxide or reaction is very slow, possibly by forming a complex with organic compounds in the SML and bulk.

  7. Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil.

    PubMed

    da Silva, Débora Bonfim Neves; Martins, Eduardo Monteiro; Corrêa, Sergio Machado

    2016-05-01

    The ozone in Rio de Janeiro has been in violation of national air quality standards. Among all of the monitoring stations, the Bangu neighbourhood has the most violations of the national standard of 160 μg m(-3) for the years 2012 and 2013. This study evaluated the reactivity of the carbonyls and aromatics in the tropospheric ozone formation processes. The samples were collected between July and October of 2013. Carbonyls were sampled using SiO2 cartridges coated with C18 and impregnated with 2,4-dinitrophenylhydrazine and were analysed by HPLC. Activated carbon cartridges and GC/MS were used to measure the concentration of monoaromatic hydrocarbons. An air quality monitoring station provided the concentrations of the criteria pollutants and the meteorological parameters. Cluster analysis and a Pearson correlation matrix were used to determine the formation of groups and the correlation of the variables. The evaluation of the volatile organic compounds (VOC) reaction with OH radicals and the MIR scale was used to extrapolate the reactivity of VOCs to the ozone formation. The average concentrations obtained were 19.7 and 51.9 μg m(-3) for formaldehyde and acetaldehyde, respectively. The mean concentrations obtained for aromatics were 1.5, 6.7, 1.5, 2.6 and 1.6 μg m(-3) for benzene, toluene, ethyl benzene, m+p-xylene and o-xylene, respectively. The cluster analysis indicated the presence of three similar groups, with one formed by gaseous criteria pollutants, another formed by the meteorological parameters, ozone and fine particles, and the last group formed by the aromatics. For the two reactivity scales evaluated, acetaldehyde and toluene were the main ozone precursors. PMID:27080853

  8. Protein cross-linking and oligomerization through dityrosine formation upon exposure to ozone

    NASA Astrophysics Data System (ADS)

    Liu, Fobang; Kampf, Christopher; Reinmuth-Selzle, Kathrin; Berkemeier, Thomas; Shiraiwa, Manabu; Pöschl, Ulrich

    2015-04-01

    Air pollution is a potential factor for the increasing prevalence of allergic diseases. Airborne allergenic proteins can be directly exposed to air pollution promoting post-translational modifications, which can enhance the allergenic potential of proteins. The formation of dimers or oligomers of allergenic proteins has been reported to result in an enhanced allergenicity. However, the oligomerization process for proteins at atmospherically relevant concentration of O3 is still largely unknown. In this study, the kinetics and reaction mechanism of protein oligomerization upon ozone exposure were studied at atmospherically relevant ozone concentrations and relative humidity (RH) in coated-wall flow tube experiments. Bovine Serum Albumin (BSA) was used as a model protein. Protein ozone exposure was studied for different protein phase-states, i.e. amorphous solid (45% RH experiments), semi-solid (96% RH experiments) and liquid (bulk solution experiments) to account for the differences of phase in atmospheric particulates, e.g., aerosol particles and cloud droplets. Product analysis was performed using a size exclusion chromatography-high performance liquid chromatography-diode array detector (SEC-HPLC-DAD). We demonstrate that protein cross-linking upon ozone exposure can be attributed to the formation of covalent intermolecular dityrosine species by gel electrophoretic and fluorescence spectroscopic methods. The exposure experiments indicate that in addition to ozone concentration, the oligomerization process was depending on the phase-state of protein. In liquid-phase experiments, dimer formation was significantly enhanced, thus indicating a potential relevance of in-cloud processes for protein oligomerization. The reactive turnover is higher at 96% RH compared to 45% RH, indicating a higher bulk diffusion coefficient at high RH, which is explicitly resolved by kinetic modeling. Further, the reactive turnover showed a strong correlation to particle surface

  9. PHOTOCHEMICAL AEROSOL DYNAMICS

    EPA Science Inventory

    New data are reported on (1) the rate of formation of condensable chemical species by photochemical reactions, (2) the effect of the reaction products on the particle size distribution and (3) the distribution of reaction products as a function of particle size. Gas-to-particle c...

  10. The determination and role of peroxyacetil nitrate in photochemical processes in atmosphere

    PubMed Central

    2012-01-01

    Peroxyacetilnitrates (PAN) is the most characteristic photoxidant of a range of secondary pollutants formed by the photochemical reaction of hydrocarbons with nitrogen oxides in the atmosphere: it is phytotoxic and shows an increasing role in human health effects due to ambient air exposure, especially in presence of high ozone concentrations. Because of the similarity of the conditions required for their photochemical production PAN is observed in conjunction with elevated ozone concentrations. PAN has very low natural background concentrations so it is the very specific indicator of anthropogenic photochemical air pollution. In this paper we report PAN concentrations determined in Rome urban area during winter- and summer-period. PAN measurements were carried out by means of a gas-chromatograph equipped with an Electron Capture Detector (ECD) detector. For identifying the acute episodes of atmospheric photochemical pollutants the relationship between PAN and the variable Ox (=NO2+O3) which describes the oxidation process evolution is investigated. The role of Volatile Organic Compounds and PAN in the ozone formation is investigated as well the issue of taking in account the autovehicular emissions for checking the NOx fraction in fuel. PMID:22594443

  11. Effect of trichlorofluoromethane and molecular chlorine on ozone formation by simulated solar radiation

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Wong, E. L.

    1977-01-01

    Mixtures of air with either Cl2 or CFCl3 were photolyzed in a reaction chamber by simulated solar radiation. Ozone formation was temporarily inhibited by Cl2 and permanently inhibited by CFCl3. A chemical mechanism including gas phase and wall reactions is proposed to explain these results. The CFCl3 is assumed to be adsorbed on the chamber walls and to poison the sites for Cl destruction.

  12. Theoretical analysis of isotope effects on ozone formation in oxygen photochemistry

    NASA Technical Reports Server (NTRS)

    Kaye, J. A.

    1986-01-01

    In situ measurements of stratospheric ozone and laboratory studies of ozone production in electric discharge through oxygen have shown previously that ozone containing heavy isotopes of oxygen (O-17, O-18) may be formed preferentially. In order to assess the relevance of thee latter experiment to the stratospheric measurements, detailed understanding of the effect of isotopic substitution on the O3 formation reaction O + O2 + M yields O3 + M and on the O atom exchange reaction O + O2 + O yields O2 + O is necessary. In this work, an estimate of the effect of isotopic substitution on the recombination rate is made by us of approximate dynamical theories and statistical mechanics. The results indicate the possibility of isotope effects on the O + O2 recombination rate of the order of several percent at stratospheric temperatures. In general, recombination reactions involving heavy (mass 49, 50) O3 formation are found to be slower than the reaction leading to normal (mass 48) O3 formation. The calculated isotope effects are sufficiently small that the uncertainties in the model input and the approximations in the dynamical theories will probably make the quantitative nature of these results subject to considerable uncertainty. This isotope effect should not be observable in the atmosphere given the precision of the current measurements but may be crucial in the understanding of the laboratory experiments, where observed enhancements are only of the order of several percent. Possible reasons for this discrepancy between the observed enhancement and predicted depletion are presented.

  13. Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching.

    PubMed

    Pouyet, Frédéric; Chirat, Christine; Potthast, Antje; Lachenal, Dominique

    2014-08-30

    The formation of carbonyl groups during the ozone treatment (Z) of eucalyptus (Eucalyptus grandis and Eucalyptus urophylla hybrid) kraft pulps and their behaviors during subsequent alkaline stages were investigated by the CCOA method with carbazole-9-carboxylic acid [2-(2-aminooxethoxy)-ethoxy] amide (CCOA) as the carbonyl-selective fluorescence label. Several pulp samples with or without lignin and hexenuronic acids (hexA) were used to elucidate the effects of these components when present in unbleached kraft pulp. Both hexA and lignin increased the formation of carbonyl groups on cellulose and hemicellulose during ozonation. It was concluded that radicals are likely formed when ozone reacts with either lignin or hexA. These carbonyl groups were involved in cellulose depolymerization during subsequent alkaline extraction stages with sodium hydroxide (E) and alkaline hydrogen peroxide (P, in ZEP or ZP). Their numbers decreased after E but increased during P when H2O2 was not stabilized enough. Several ways to minimize the occurrence of carbonyl group formation are suggested. PMID:24815405

  14. Unveiling formation mechanism of carcinogenic N-nitrosodimethylamine in ozonation of dimethylamine: a density functional theoretical investigation.

    PubMed

    Zhang, Siyu; Yu, Gang; Chen, Jingwen; Wang, Bin; Huang, Jun; Deng, Shubo

    2014-08-30

    Recent studies found that ozonation of organic pollutants with dimethylamino groups produces N-nitrosodimethylamine (NDMA) that is highly carcinogenic to humans. However, the formation mechanism of NDMA remains inexplicit, and previously proposed mechanisms are inconsistent with experimental observations. In this study, the formation mechanism of NDMA in ozonation was explored by density functional theory (DFT) calculations, with dimethylamine (DMA) as a model compound. By calculating Gibbs energies and energy barriers, formation of NDMA in ozonation of DMA was observed to proceed through a hydroxylamine mechanism. The calculation results show that hydroxylamine is generated through DMA reacting with hydroxyl radicals (HO•) formed from hydrolysis of ozone. DMA reacting with hydroxylamine can produce unsymmetrical dimethylhydrazine (UDMH), a well-known NDMA precursor. Transformation of UDMH to NDMA is mainly induced by ozone or HO• rather than dissolved oxygen proposed previously. The reaction of DMA and hydroxylamine is pH dependent, with energy barriers increasing from neutral pH to the second pKa of hydroxylamine and then decreasing. This is in accordance with the experimentally observed pH dependence of NDMA yield in ozonation, indicating that the hydroxylamine mechanism is responsible for the NDMA formation in ozonation. PMID:25072138

  15. Use of satellite data to study tropospheric ozone in the tropics

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Minnis, Patrick; Reichle, Henry G., Jr.

    1986-01-01

    Three independent examples are discussed which suggest that photochemical ozone production in the troposphere can be observed in the tropics from an analysis of total ozone data. The first finding shows that the seasonal cycle of total columnar ozone is dominated by the seasonal cycle of tropospheric ozone, even though tropospheric ozone accounts for only 5-15 percent of the total ozone. Second, a case study is presented which shows that enhanced total ozone observed over the Amazon Basin can be associated with the presence of biomass burning. In situ measurements have confirmed that biomass burning does result in the production of photochemically generated ozone, analogous to the formation of 'smog' near industrialized areas. Third, an analysis of the distribution of carbon monoxide obtained from a Space Shuttle platform is strongly correlated with the concurrent distribution of total ozone between 5 deg S and 10 deg N. Because all of the sources of carbon monoxide are located in the troposphere, this finding likewise suggests that the gradients of total ozone at low latitudes must also reflect processes occurring in the troposphere.

  16. Formation of photochemical air pollution in central California 1. Development of a revised motor vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Marr, Linsey C.; Black, Douglas R.; Harley, Robert A.

    2002-03-01

    Photochemical air pollution problems have proved difficult to understand and control in central California. A major source of uncertainty is the rate of precursor volatile organic compounds and NOx emissions, especially from motor vehicles. We develop alternative emissions estimates for on-road motor vehicles in 1990, using fuel sales data, emission factors measured in on-road studies, and ambient pollutant ratios, for a region that includes the San Francisco Bay and San Joaquin Valley air basins and Sacramento County. Fuel-based emissions estimates are compared with predictions of California's most recent motor vehicle emission factor model (EMFAC) and with an inventory that has been used in previous regional-scale photochemical modeling studies. The fuel-based inventory contains 10-50% less CO, 40-100% more nonmethane organic compounds, and 10-20% less NOx than estimated both by EMFAC and the photochemical modeling inventory. We also describe new temporal distributions of vehicle emissions by hour and day of week. Diesel trucks, a major source of NOx, have a broad midday peak in emissions on weekdays, in contrast to passenger vehicles, which show morning and afternoon commuter peaks. While passenger vehicle travel is similar on weekdays and weekends, diesel truck activity and emissions decrease by 70-80% on weekends. Vehicle emission rates and their temporal patterns are linked to a regional photochemical air pollution episode that spans a weekend in August 1990.

  17. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.; Crawford, James H.

    2010-01-01

    We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.

  18. Products of BVOC oxidation: ozone and organic aerosols

    NASA Astrophysics Data System (ADS)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] < 7 ppbC / ppb) photochemical ozone formation was observed. For -pinene as individual BVOC as well as for the monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of

  19. Photochemical Evolution of Continental Outflow to the N. Atlantic Lower Free Troposphere During Spring and Summer

    NASA Astrophysics Data System (ADS)

    Honrath, R. E.; Owen, R. C.; Val Martin, M.; Helmig, D.; Parrish, D. D.; Li, Q.; Tanner, D.; Fialho, P.

    2006-12-01

    Measurements at the 2.2 km PICO-NARE observatory indicate significant impacts of N. American pollution outflow upon ozone and ozone precursors in the lower free troposphere (FT) of the Azores region, ~5--7 days downwind of N. America, with a summertime d[O3]/d[CO] slope near 1.0. We use a combination of PICO-NARE observations of lower FT composition, FLEXPART-based transport analyses, and GEOS-Chem simulations to investigate the ways that export, photochemical ozone formation, and photochemical destruction of ozone and CO combine to produce the observed enhancements. The FLEXPART particle dispersion model is used to characterize the transport events that carry anthropogenic emissions to the central N. Atlantic lower FT, with a focus on N. American pollution outflow events during spring and summer. The observed enhancements of ozone, non-methane hydrocarbons (NMHC), nitrogen oxides (NOx and NOy) and CO during these events will be described. Photochemical processing during (or prior to) transport is investigated using photochemical ages indicated by measured NMHC-NMHC ratios and through analysis of GEOS-Chem simulation results at the upwind locations indicated by FLEXPART{}. This analysis will be used to provide an initial assessment of the relative contributions of pollution transport events and regional photochemistry (outside of such events) to the observed O3-CO relationship. The degree to which the in-situ measurements are consistent with satellite observations and GEOS-Chem simulations of trans-Atlantic O3 transport will be discussed.

  20. A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes

    SciTech Connect

    Cariolle, D.; Lasserre-Bigorry, A.; Royer, J.F. ); Geleyn, J.F. )

    1990-02-20

    Ozone is treated as an interactive variable calculated by means of a continuity equation which takes account of advection and photochemical production and loss. The ozone concentration is also used to compute the heating and cooling rates due to the absorption of solar ultraviolet radiation, and the infrared emission in the stratosphere. The daytime ozone decrease due to the perturbed chlorine chemistry found at high southern latitudes is introduced as an extra loss in the ozone continuity equation. Results of the perturbed simulation show a very good agreement with the ozone measurements made during spring 1987. The simulation also shows the development of a high-latitude anomalous circulation, with a warming of the upper stratosphere resulting mainly from dynamical heating. In addition, a substantial ozone decrease is found at mid-latitudes in a thin stratospheric layer located between the 390 and the 470 K {theta} surfaces. A significant residual ozone decrease is found at the end of the model integration, 7 months after the final warming and the vortex breakdown. If there is a significant residual ozone decrease in the atmosphere, the ozone trends predicted by photochemical models which do not take into account the high-latitude perturbed chemistry are clearly inadequate. Finally, it is concluded that further model simulations at higher horizontal resolution, possibly with a better representation of the heterogeneous chemistry, will be needed to evaluate with more confidence the magnitude of the mid-latitudinal ozone depletion induced by the ozone hole formation.

  1. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches

    EPA Science Inventory

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (...

  2. High atmospheric NO(x) levels and multiple photochemical steady states

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Ackerman, T. P.

    1985-01-01

    The rate of removal of atmospheric NO(x) compounds at different NO(x) levels is estimated using a one-dimensional photochemical model. NO(x) removal by wet deposition, surface deposition, and thermochemical processes is examined. NO(x) removal rates at different surface NO mixing ratios are calculated and the data are analyzed. It is revealed that at low NO(x) levels NO(x) is photochemically converted to HNO3 by either wet or dry deposition; however, at high NO(x) levels formation of HNO3 is inhibited due to the disappearance of tropospheric ozone and OH, and the NO(x) is removed by rainout of N2O4 and N2O5, surface deposition of NO and NO2, and direct dissolution of NO and NO2 in rainwater. The effects of NO(x) mixing ratios greater than 10 to the -7th on the ozone and climate are investigated.

  3. A theoretical study of the ozonolysis of C60: primary ozonide formation, dissociation, and multiple ozone additions.

    PubMed

    Chapleski, Robert C; Morris, John R; Troya, Diego

    2014-04-01

    We present an investigation of the reaction of ozone with C60 fullerene using electronic structure methods. Motivated by recent experiments of ozone exposure to a C60 film, we have characterized stationary points in the potential energy surface for the reactions of O3 with C60 that include both the formation of primary ozonide and subsequent dissociation reactions of this intermediate that lead to C-C bond cleavage. We have also investigated the addition of multiple O3 molecules to the C60 cage to explore potential reaction pathways under the high ozone flux conditions used in recent experiments. The lowest-energy product of the reaction of a single ozone molecule with C60 that results in C-C bond breakage corresponds to an open-cage C60O3 structure that contains ester and ketone moieties at the seam. This open-cage product is of much lower energy than the C60O + O2 products identified in prior work, and it is consistent with IR experimental spectra. Subsequent reaction of the open-cage C60O3 product with a second ozone molecule opens a low-energy reaction pathway that results in cage degradation via the loss of a CO2 molecule. Our calculations also reveal that, while full ozonation of all bonds between hexagons in C60 is unlikely even under high ozone concentration, the addition of a few ozone molecules to the C60 cage is favorable at room temperature. PMID:24549406

  4. The effects of increasing atmospheric ozone on biogenic monoterpene profiles and the formation of secondary aerosols

    NASA Astrophysics Data System (ADS)

    Pinto, Delia M.; Tiiva, Päivi; Miettinen, Pasi; Joutsensaari, Jorma; Kokkola, Harri; Nerg, Anne-Marja; Laaksonen, Ari; Holopainen, Jarmo K.

    Monoterpenes are biogenic volatile organic compounds (BVOCs) which play an important role in plant adaptation to stresses, atmospheric chemistry, plant-plant and plant-insect interactions. In this study, we determined whether ozonolysis can influence the monoterpenes in the headspace of cabbage. The monoterpenes were mixed with an air-flow enriched with 100, 200 or 400 ppbv of ozone (O 3) in a Teflon chamber. The changes in the monoterpene and O 3 concentrations, and the formation of secondary organic aerosols (SOA) were determined during ozonolysis. Furthermore, the monoterpene reactions with O 3 and OH were modelled using reaction kinetics equations. The results showed that all of the monoterpenes were unequally affected: α-thujene, sabinene and D-limonene were affected to the greatest extend, whereas the 1,8-cineole concentration did not change. In addition, plant monoterpene emissions reduced the O 3 concentration by 12-24%. The SOA formation was dependent on O 3 concentration. At 100 ppbv of O 3, virtually no new particles were formed but clear SOA formation was observed at the higher ozone concentrations. The modelled results showed rather good agreements for α-pinene and 1,8-cineole, whereas the measured concentrations were clearly lower compared to modelled values for sabinene and limonene. In summary, O 3-quenching by monoterpenes occurs beyond the boundary layer of leaves and results in a decreased O 3 concentration, altered monoterpene profiles and SOA formation.

  5. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2014-09-01

    Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples. PMID:25029629

  6. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter.

    PubMed

    Oulton, Rebekah; Haase, Jason P; Kaalberg, Sara; Redmond, Connor T; Nalbandian, Michael J; Cwiertny, David M

    2015-03-17

    We explored factors influencing hydroxyl radical (•OH) formation during ozonation of multiwalled carbon nanotubes (MWCNTs) and assessed this system's viability as a next-generation advanced oxidation process (AOP). Using standard reactivity metrics for ozone-based AOPs (RCT values), MWCNTs promoted •OH formation during ozonation to levels exceeding ozone (both alone and with activated carbon) and equivalent to ozone with hydrogen peroxide. MWCNTs oxidized with nitric acid exhibited vastly greater rates of ozone consumption and •OH formation relative to as-received MWCNTs. While some of this enhancement reflects their greater suspension stability, a strong correlation between RCT values and surface oxygen concentrations from X-ray photoelectron spectroscopy suggests that surface sites generated during MWCNT oxidation promote •OH exposure. Removal of several ozone-recalcitrant species [para-chlorobenzoic acid (p-CBA), atrazine, DEET, and ibuprofen] was not significantly inhibited in the presence of radical scavengers (humic acid, carbonate), in complex aquatic matrices (Iowa River water) and after 12 h of continuous exposure of MWCNTs to concentrated ozone solutions. As a proof-of-concept, oxidized MWCNTs deposited on a ceramic membrane chemically oxidized p-CBA in a flow through system, with removal increasing with influent ozone concentration and mass of deposited MWCNTs (in mg/cm2). This hybrid membrane platform, which integrates adsorption, oxidation, and filtration via an immobilized MWCNT layer, may serve as the basis for future novel nanomaterial-enabled technologies, although long-term performance trials under representative treatment scenarios remain necessary. PMID:25730285

  7. Spatiotemporal variation of ozone precursors and ozone formation in Hong Kong: Grid field measurement and modelling study.

    PubMed

    Lyu, X P; Liu, M; Guo, H; Ling, Z H; Wang, Y; Louie, P K K; Luk, C W Y

    2016-11-01

    Grid field measurements of volatile organic compounds (VOCs) covering the entire territory of Hong Kong were simultaneously carried out twice daily on 27 September 2013 and 24 September 2014, respectively, to advance our understanding on the spatiotemporal variations of VOCs and ozone (O3) formation, the factors controlling O3 formation and the efficacy of a control measure in Hong Kong. From before to after the control measure on liquefied petroleum gas (LPG) fueled vehicles, the VOCs originated from LPG vehicle exhaust deceased from 41.3±1.2μg/m(3) (49.7±1.5%) to 32.8±1.4μg/m(3) (38.8±1.7%) (p<0.05). In contrast, the contribution to VOCs made by gasoline and diesel vehicle exhaust and solvent usage increased (p<0.05). VOCs and nitric oxide (NO) in LPG source experienced the highest reductions at the roadside sites, while the variations were not significant at the urban and new town sites (p>0.05). For O3 production, LPG vehicle exhaust generally made a negative contribution (-0.17±0.06 ppbv) at the roadside sites, however it turned to a slightly positive contribution (0.004±0.038 ppbv) after the control measure. At the urban sites, although the reductions of VOCs and NO were minor (p>0.05), O3 produced by LPG vehicle significantly reduced from 4.19±1.92 ppbv to 0.95±0.38 ppbv (p<0.05). Meanwhile, O3 produced by LPG at the new town sites remained stable. The analysis of O3-precursor relationships revealed that alkenes and aromatics were the main species limiting roadside O3 formation, while aromatics were the most predominant controlling factor at urban and new town sites. In contrast, isoprene and sometimes NOx limited the O3 formation in rural environment. PMID:27387808

  8. The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.

    2009-01-01

    We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.

  9. The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors.

    PubMed

    Hwang, Geelsu; Dong, Tao; Islam, Md Sahinoor; Sheng, Zhiya; Pérez-Estrada, Leónidas A; Liu, Yang; Gamal El-Din, Mohamed

    2013-02-01

    To examine the effects of the ozonation process (as an oxidation treatment for water and wastewater treatment applications) on microbial biofilm formation and biodegradability of organic compounds present in oil sands process-affected water (OSPW), biofilm reactors were operated continuously for 6weeks. Two types of biofilm substrate materials: polyethylene (PE) and polyvinylchloride (PVC), and two types of OSPW-fresh and ozonated OSPWs-were tested. Endogenous microorganisms, in OSPW, quickly formed biofilms in the reactors. Without ozonation, the bioreactor (using endogenous microorganisms) removed 13.8% of the total acid-extractable organics (TAO) and 18.5% of the parent naphthenic acids (NAs) from fresh OSPW. The combined ozonation and biodegradation process removed 87.2% of the OSPW TAO and over 99% of the OSPW parent NAs. Further UPLC/HRMS analysis showed that NA biodegradability decreased as the NA cyclization number increased. Microbial biofilm formation was found to depend on the biofilm substrate type. PMID:23313671

  10. Formation of water-soluble dicarboxylic acids, oxoacids and a-dicarbonyls by ozone oxidation of isoprene

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Sakamoto, Y.; Hirokawa, J.

    2014-12-01

    Water-soluble dicarboxylic acids such as oxalic acid (C2) are the dominant organic compound class in atmospheric aerosols. They can act as cloud condensation nuclei and affect on the Earth climate. Diacids can be primary emitted from fossil fuel combustion and biomass burning and secondarily produced by photochemical oxidations of biogenic and anthropogenic hydrocarbons. However, their sources and formation processes are still not well understood. Recently model and observation studies suggested the importance of isoprene as a precursor of oxalic acid. Isoprene is the most abundant BVOC emitted from terrestrial plants and can serve as important precursors of diacids. We conducted a laboratory oxidation of isoprene (2.0 ppm) with ozone (4.3 ppm) in a Teflon bag for 10 to 480 min. The formed particles were collected with quartz fiber filters and analyzed for diacids, oxoacids and a-dicarbonyls employing water extraction and butyl ester derivatization and using GC and GC/MS techniques. Here, we report the analytical results to better understand the formation process of diacids and related compounds from isoprene. We detected homologous series of saturated diacids (C2-C6), unsaturated diacids (maleic and methylmaleic acids), w-oxocarboxylic acids (C2-C9), pyruvic acid, glyoxal and methylglyoxal. We found that oxalic acid (3000-9700 ngm-3) is the most abundant diacid followed by succinic (C4) or malonic (C3) acid. Their concentrations increased with reaction time showing a maximum in 4 hours. Interestingly, C3/C4 ratios increased with time. The second most abundant species after oxalic acid was generally methylglyoxal (3600-9600 ngm-3), except for the 30 min. sample where methylglyoxal was more abundant than oxalic acid. Glyoxylic acid (wC2) was found as the most abundant oxoacid (1600-3800 ngm-3) followed by wC3 and wC4. Although the concentrations of diacids and related compounds are 1-2 orders magnitude higher than those reported in ambient aerosols, this study

  11. Chemical kinetics and photochemical data for use in stratospheric modeling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Margitan, J. J.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1985-01-01

    Rate constants and photochemical cross sections are presented. The primary application of the data is for modeling of the stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  12. Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes

    NASA Astrophysics Data System (ADS)

    Xue, L. K.; Wang, T.; Gao, J.; Ding, A. J.; Zhou, X. H.; Blake, D. R.; Wang, X. F.; Saunders, S. M.; Fan, S. J.; Zuo, H. C.; Zhang, Q. Z.; Wang, W. X.

    2013-10-01

    Despite a large volume of research over a number of years, our understandings of the key precursors that control tropospheric ozone production and the impacts of heterogeneous processes remain incomplete. In this study, we analyze measurements of ozone and its precursors made at rural/suburban sites downwind of four large Chinese cities - Beijing, Shanghai, Guangzhou and Lanzhou. At each site the same measurement techniques were utilized and a photochemical box model based on the Master Chemical Mechanism (v3.2) was applied, to minimize uncertainties in comparison of the results due to differences in methodology. All four cities suffered from severe ozone pollution. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high ozone levels (up to an hourly value of 286 ppbv), while the pollution observed at the suburban sites of Shanghai, Guangzhou and Lanzhou was characterized by intense in-situ ozone production. The major anthropogenic hydrocarbons were alkenes and aromatics in Beijing and Shanghai, aromatics in Guangzhou, and alkenes in Lanzhou. The ozone production was found to be in a VOCs-limited regime in both Shanghai and Guangzhou, and a mixed regime in Lanzhou. In Shanghai, the ozone formation was most sensitive to aromatics and alkenes, while in Guangzhou aromatics were the predominant ozone precursors. In Lanzhou, either controlling NOx or reducing emissions of olefins from the petrochemical industry would mitigate the local ozone production. The potential impacts of several heterogeneous processes on the ozone formation were assessed. The hydrolysis of dinitrogen pentoxide (N2O5), uptake of the hydroperoxyl radical (HO2) on particles, and surface reactions of NO2 forming nitrous acid (HONO) present considerable sources of uncertainty in the current studies of ozone chemistry. Further efforts are urgently required to better understand these processes and refine atmospheric models.

  13. Research on Efficiency of Ozonation and Bromate Formation in Low Temperature and Low Turbidity Water

    NASA Astrophysics Data System (ADS)

    Zhu, Qi; Liu, Dongmei; Cui, Fuyi; Fang, Lei; Zhao, Zhiwei; Liu, Tongmian

    2010-11-01

    The efficiency of ozonation and the influence factor of bromate formation were studied in filtered water at low temperature and low turbidity in Harbin Shaohe water treatment plant, of which source water was from Songhua river. The results showed that when adding 3 mg/L O3 to the filtered water, the average removal rate of UV254 were 22.31%, the removal rate of TOC in filtered water were 6.33%. When adding 2 mg/L O3 and 4 mg/L O3 to the filtered water, the CODMn decreased by 21.53% and 24.68%, respectively. Ozonation had no obvious effect on reducing turbidity and the content of ammonia nitrogen of filtered water in Shaohe water treatment plant. It could be found that the formation amount of BrO3- would increase with the concentration of Br- increasing in low temperature and low turbidity water. When Ct value of filtered water in Shaohe water treatment plant was less than 30 mgṡL-1ṡmin, the formation amount of BrO3- could be controlled under 10 μg/L.

  14. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    EPA Science Inventory

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  15. Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface.

    NASA Astrophysics Data System (ADS)

    Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian

    2015-04-01

    Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and

  16. On the formation of ozone in oxygen-rich solar system ices via ionizing radiation.

    PubMed

    Ennis, Courtney P; Bennett, Chris J; Kaiser, Ralf I

    2011-05-28

    The irradiation of pure molecular oxygen (O(2)) and carbon dioxide (CO(2)) ices with 5 keV H(+) and He(+) ions was investigated experimentally to simulate the chemical processing of oxygen rich planetary and interstellar surfaces by exposure to galactic cosmic ray (GCR), solar wind, and magnetospheric particles. Deposited at 12 K under ultra-high vacuum conditions (UHV), the irradiated condensates were monitored on-line and in situ in the solid-state by Fourier transform infrared spectroscopy (FTIR), revealing the formation of ozone (O(3)) in irradiated oxygen ice; and ozone, carbon monoxide (CO), and cyclic carbon trioxide (c-CO(3)) in irradiated carbon dioxide. In addition to these irradiation products, evolution of gas-phase molecular hydrogen (H(2)), atomic helium (He) and molecular oxygen (O(2)) were identified in the subliming oxygen and carbon dioxide condensates by quadrupole mass spectrometry (QMS). Temporal abundances of the oxygen and carbon dioxide precursors and the observed molecular products were compiled over the irradiation period to develop reaction schemes unfolding in the ices. These reactions were observed to be dependent on the generation of atomic oxygen (O) by the homolytic dissociation of molecular oxygen induced by electronic, S(e), and nuclear, S(n), interaction with the impinging ions. In addition, the destruction of the ozone and carbon trioxide products back to the molecular oxygen and carbon dioxide precursors was promoted over an extended period of ion bombardment. Finally, destruction and formation yields were calculated and compared between irradiation sources (including 5 keV electrons) which showed a surprising correlation between the molecular yields (∼10(-3)-10(-4) molecules eV(-1)) created by H(+) and He(+) impacts. However, energy transfer by isoenergetic, fast electrons typically generated ten times more product molecules per electron volt (∼10(-2)-10(-3) molecules eV(-1)) than exposure to the ions. Implications of these

  17. Ozone in the Atmosphere: II. The Lower Atmosphere.

    ERIC Educational Resources Information Center

    Phillips, Paul; Pickering, Pam

    1991-01-01

    Described are the problems caused by the increased concentration of ozone in the lower atmosphere. Photochemical pollution, mechanisms of ozone production, ozone levels in the troposphere, effects of ozone on human health and vegetation, ozone standards, and control measures are discussed. (KR)

  18. Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China

    NASA Astrophysics Data System (ADS)

    Geng, F.; Tie, X.; Guenther, A.; Li, G.; Cao, J.; Harley, P.

    2011-06-01

    Ambient surface level concentrations of isoprene (C5H8) were measured in the major forest regions located south of Shanghai, China. Because there is a large coverage of broad-leaved trees in this region, high concentrations of isoprene were measured, ranging from 1 to 6 ppbv. A regional dynamical/chemical model (WRF-Chem) is applied for studying the effect of such high concentrations of isoprene on the ozone production in the city of Shanghai. The evaluation of the model shows that the calculated isoprene concentrations agree with the measured concentrations when the measured isoprene concentrations are lower than 3 ppb, but underestimate the measurements when the measured values are higher than 3 ppb. Isoprene was underestimated only at sampling sites near large bamboo plantations, a high isoprene source, indicating the need to include geospatially resolved bamboo distributions in the biogenic emission model. The assessment of the impact of isoprene on ozone formation suggests that the concentrations of peroxy radicals (RO2) are significantly enhanced due to the oxidation of isoprene, with a maximum of 30 ppt. However, the enhancement of RO2 is confined to the forested regions. Because the concentrations of NOx were low in the forest regions, the ozone production due to the oxidation of isoprene (C5H8 + OH →→ RO2 + NO →→ O3) is low (less than 2-3 ppb/h). The calculation further suggests that the oxidation of isoprene leads to the enhancement of carbonyls (such as formaldehyde and acetaldehyde) in the regions downwind of the forests, due to continuous oxidation of isoprene in the forest air. As a result, the concentrations of HO2 radical are enhanced, resulting from the photo-disassociation of formaldehyde and acetaldehyde. Because the enhancement of HO2 radical occurs in regions downwind of the forests, the enhancement of ozone production (6-8 ppb/h) is higher than in the forest region, causing by higher anthropogenic emissions of NOx. This study suggests

  19. Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China

    NASA Astrophysics Data System (ADS)

    Geng, F.; Tie, X.; Guenther, A.; Li, G.; Cao, J.; Harley, P.

    2011-10-01

    Ambient surface level concentrations of isoprene (C5H8) were measured in the major forest regions located south of Shanghai, China. Because there is a large coverage of broad-leaved trees in this region, high concentrations of isoprene were measured, ranging from 1 to 6 ppbv. A regional dynamical/chemical model (WRF-Chem) is applied for studying the effect of such high concentrations of isoprene on the ozone production in the city of Shanghai. The evaluation of the model shows that the calculated isoprene concentrations agree with the measured concentrations when the measured isoprene concentrations are lower than 3 ppb, but underestimate the measurements when the measured values are higher than 3 ppb. Isoprene was underestimated only at sampling sites near large bamboo plantations, a high isoprene source, indicating the need to include geospatially resolved bamboo distributions in the biogenic emission model. The assessment of the impact of isoprene on ozone formation suggests that the concentrations of peroxy radicals (RO2) are significantly enhanced due to the oxidation of isoprene, with a maximum of 30 ppt. However, the enhancement of RO2 is confined to the forested regions. Because the concentrations of NOx were low in the forest regions, the ozone production due to the oxidation of isoprene (C5H8 + OH → → RO2 + NO → → O3) is low (less than 2-3 ppb h-1). The calculation further suggests that the oxidation of isoprene leads to the enhancement of carbonyls (such as formaldehyde and acetaldehyde) in the regions downwind of the forests, due to continuous oxidation of isoprene in the forest air. As a result, the concentrations of HO2 radical are enhanced, resulting from the photo-disassociation of formaldehyde and acetaldehyde. Because the enhancement of HO2 radical occurs in regions downwind of the forests, the enhancement of ozone production (6-8 ppb h-1) is higher than in the forest region, causing by higher anthropogenic emissions of NOx. This study

  20. Understanding ozone formation and the radical budget during oil sands plume transport in the Athabasca region of Alberta

    NASA Astrophysics Data System (ADS)

    Moussa, S. G.; Leithead, A.; Li, S. M.; Wang, D. K.; O'brien, J.; Mittermeier, R. L.; Gordon, M.; Staebler, R. M.; Liu, P.; Liggio, J.

    2015-12-01

    The sources of ozone and hydroxyl radicals (OH) in the Alberta oil sands (OS) region have not previously been well characterized. In the summer of 2013, airborne measurements of various volatile organic compounds (VOCs), nitrogen oxides (NOx = NO2+NO) and ozone were made in the Athabasca OS region between August 13 and September 7, 2013. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) and whole air samples were used to measure VOCs. A box model incorporating the Master Chemical Mechanism (MCM v3.3), was constrained by measured chemical species and meteorological parameters and used to simulate the evolution of an OS plume. In doing so, an improved understanding of the chemical factors controlling the radical budget and the evolution of ozone in oil sands plumes is achieved. Our results indicate that approximately 20% of the in-plume generated OH radicals are derived from primary sources (HCHO, O3 and HONO photolysis). The remaining OH is derived from the recycling of hydroperoxyl radical (HO2). The HO2 and alkyl peroxyl radical (RO2) chemistry leads to 35% of the ozone formation in the plume, while the main sink for ozone in the plume was via reactions with alkenes (anthropogenic and biogenic). The results of this work will help to characterize ozone formation and the factors influencing its atmospheric fate in the oil sands region.

  1. Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: a clear relationship with fluorescence changes.

    PubMed

    Liu, Chen; Tang, Xiangyu; Kim, Jaeshin; Korshin, Gregory V

    2015-04-01

    This study examined the formation of aldehydes and carboxylic acids in ozonated surface water and municipal wastewater secondary effluent and addressed correlations between the generation of these compounds and concurrent changes of the fluorescence of natural/effluent organic matter (NOM/EfOM) substrates. Ozonation was effective in removing fluorophores in all excitation/emission matrix (EEM) regions, with those operationally assigned to humic- and protein-like species showing relatively higher reactivity than fulvic-like species. Examination of HO exposures and attendant changes of fluorescence-based parameters allows establishing strong linear relationships between formation of the aldehydes and carboxylic acids and the relative changes of integrated fluorescence (ΔIF/IF0). This demonstrates the feasibility of surrogate monitoring of the formation of biodegradable ozonation by-products via online measurements of water/wastewater EEM fluorescence. PMID:25576127

  2. Photochemical formation of H/sub 2/O/sub 2/ in natural waters exposed to sunlight

    SciTech Connect

    Cooper, W.J.; Zika, R.G.; Petasne, R.G.; Plane, J.M.C.

    1988-10-01

    Hydrogen peroxide is formed in most natural waters when they are exposed to sunlight. The rate at which H/sub 2/O/sub 2/ accumulates is related to the concentration of light-absorbing (>295 nm) organic substances in these waters. The photochemical accumulation rate of H/sub 2/O/sub 2/ in sunlight has been measured for several surface waters and ground waters and was found to be 2.7 /times/ 10/sup /minus/7/ to 48 /times/ 10/sup /minus/7/ mol L/sup /minus/1/ h/sup /minus/1/, in waters ranging from 0.53 to 18 mgL/sup -1/ dissolved organic carbon (DOC), respectively. These rates were determined in midday sunlight, 0.4 W m/sup /minus/2/ (295-385 nm), latitude 24.3/degrees/ N. Apparent quantum yields of H/sub 2/O/sub 2/ have been determined for natural waters at different wavelengths. These quantum yields decreased with increasing wavelength, from 10/sup /minus/3/ in the near-ultraviolet to 10/sup /minus/6/ in the visible spectral range. The quantum yields have been used in a photochemical model to calculate H/sub 2/O/sub 2/ accumulation rates of natural water samples. Model calculations agree with H/sub 2/O/sub 2/ accumulation rates obtained from exposing three different water samples to sunlight.

  3. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping

    PubMed Central

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 1013 cm-2, resistivity at 4.6 × 10-3 Ω∙cm, and Hall mobility at 14.6 cm2/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm2/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm2/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs. PMID:25435832

  4. Ozone vertical flux within the lower troposphere over background areas of west Siberia

    NASA Astrophysics Data System (ADS)

    Antokhin, P. N.; Antokhina, O. Yu.; Belan, S. B.; Belan, B. D.; Kozlov, A. V.; Krasnov, O. A.; Pestunov, D. A.

    2014-11-01

    In this paper the results of the vertical ozone flux profiles calculated within the lower troposphere over background area of west Siberia are presented. The data on the vertical distribution of the ozone and meteorological parameters derived from AN-2 aircraft measurements supplemented by radiosonde launches. Profiles of turbulent diffusion coefficient were calculated based on "K-theory" with the use of nonlocal closure scheme - "Troen and Mahrt". Calculations confirmed earlier findings that the formation of the daytime ozone maximum in the atmospheric boundary layer occurs due to its photochemical production from precursors.

  5. PHOTOCHEMICAL REACTIVITY OF PERCHLOROETHYLENE: A NEW APPRAISAL

    EPA Science Inventory

    Perchloroethylene (PCE), a solvent used in dry cleaning, has been suspected of contributing significantly to photochemical ozone/oxidant (O3/O(x)) problems in urban atmospheres. Past evidence, however, was neither complete nor consistent. To interpret more conclusively the past e...

  6. Ozone, Tropospheric

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1995-01-01

    In the early part of the 20th century, ground-based and balloon-borne measurements discovered that most of atmosphere's ozone is located in the stratosphere with highest concentrations located between 15 and 30 km (9,3 and 18.6 miles). For a long time, it was believed that tropospheric ozone originated from the stratosphere and that most of it was destroyed by contact with the earth's surface. Ozone, O3, was known to be produced by the photo-dissociation of molecular oxygen, O2, a process that can only occur at wavelengths shorter than 242 nm. Because such short-wave-length radiation is present only in the stratosphere, no tropospheric ozone production is possible by this mechanism. In the 1940s, however, it became obvious that production of ozone was also taking place in the troposphere. The overall reaction mechanism was eventually identified by Arie Haagen-Smit of the California Institute of Technology, in highly polluted southern California. The copious emissions from the numerous cars driven there as a result of the mass migration to Los Angeles after World War 2 created the new unpleasant phenomenon of photochemical smog, the primary component of which is ozone. These high levels of ozone were injuring vegetable crops, causing women's nylons to run, and generating increasing respiratory and eye-irritation problems for the populace. Our knowledge of tropospheric ozone increased dramatically in the early 1950s as monitoring stations and search centers were established throughout southern California to see what could be done to combat this threat to human health and the environment.

  7. Origin of Ozone NO(x) in the Tropical Troposphere: A Photochemical Analysis of Aircraft Observations Over the South Atlantic Basin

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.; Heikes, B. G.; Fan, S.-M.; Logan, J. A.; Mauzerall, D. L.; Bradshaw, J. D.; Singh, H. B.; Gregory, G. L.; Talbot, R. W.; Blake, D. R.; Sachse, G. W.

    1996-01-01

    The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics.

  8. Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone.

    PubMed

    Kampf, Christopher J; Liu, Fobang; Reinmuth-Selzle, Kathrin; Berkemeier, Thomas; Meusel, Hannah; Shiraiwa, Manabu; Pöschl, Ulrich

    2015-09-15

    Air pollution is a potential driver for the increasing prevalence of allergic disease, and post-translational modification by air pollutants can enhance the allergenic potential of proteins. Here, the kinetics and mechanism of protein oligomerization upon ozone (O3) exposure were studied in coated-wall flow tube experiments at environmentally relevant O3 concentrations, relative humidities and protein phase states (amorphous solid, semisolid, and liquid). We observed the formation of protein dimers, trimers, and higher oligomers, and attribute the cross-linking to the formation of covalent intermolecular dityrosine species. The oligomerization proceeds fast on the surface of protein films. In the bulk material, reaction rates are limited by diffusion depending on phase state and humidity. From the experimental data, we derive a chemical mechanism and rate equations for a kinetic multilayer model of surface and bulk reaction enabling the prediction of oligomer formation. Increasing levels of tropospheric O3 in the Anthropocene may promote the formation of protein oligomers with enhanced allergenicity and may thus contribute to the increasing prevalence of allergies. PMID:26287571

  9. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation

    NASA Astrophysics Data System (ADS)

    Shao, Min; Lu, Sihua; Liu, Ying; Xie, Xin; Chang, Chichung; Huang, Shan; Chen, Zhongmin

    2009-01-01

    Beijing has long suffered from serious ground-level ozone pollution, and volatile organic compounds (VOCs) play a key role in ozone formation. To understand the chemical speciation of VOCs in Beijing, nonmethane hydrocarbons (NMHCs) and oxygenated VOCs (OVOCs) were measured in summer in Beijing and nearby provinces (VOCs in this work means NMHCs+OVOCs). A variation of VOC mixing ratios and chemical speciation from 2004 to 2006 was observed at an urban site in Beijing. The typical VOC species, e.g., propane, propene, and toluene, had comparable or lower mixing ratios than levels found in other cities that previously hosted the Olympic Games, while the mixing ratios for isoprene were higher. The chemical compositions of VOCs within Beijing were heavily influenced by vehicular emissions and differed from those obtained in Tianjin and Hebei Province. OVOCs were an important component, accounting for 54% and 37% in the VOC mixing ratio in 2005 and 2006, respectively, and about 40% of the OH loss rates. The main reactive VOC compounds were aldehydes and alkenes. By using isoprene chemistry and the ratio of ethylbenzene to mp-xylene, the initial mixing ratios of VOCs were estimated. The VOCs had similar variation patterns to ambient ozone and peroxyacetyl nitrate (PAN) concentrations. The correlation between daily maximum ozone concentrations and initial VOCs revealed that ozone formation was sensitive to VOCs for both urban (Peking University, PKU) and rural (Yufa) sites. A reduction in NOx would lead to a decrease in ozone at Yufa, but would cause increased ozone at the PKU site.

  10. Formation of strong airway irritants in mixtures of isoprene/ozone and isoprene/ozone/nitrogen dioxide.

    PubMed Central

    Wilkins, C K; Clausen, P A; Wolkoff, P; Larsen, S T; Hammer, M; Larsen, K; Hansen, V; Nielsen, G D

    2001-01-01

    We evaluated the airway irritation of isoprene, isoprene/ozone, and isoprene/ozone/nitrogen dioxide mixtures using a mouse bioassay, from which we calculated sensory irritation, bronchial constriction, and pulmonary irritation. We observed significant sensory irritation (approximately 50% reduction of mean respiratory rate) by dynamically exposing the mice, over 30 min, to mixtures of isoprene and O3 or isoprene, O3, and NO2. The starting concentrations were approximately 4 ppm O3 and 500 ppm isoprene (+ approximately 4 ppm NO2. The reaction mixtures after approximately 30 sec contained < 0.2 ppm O3. Addition of the effects of the residual reactants and the identified stable irritant products (formaldehyde, formic acid, acetic acid, methacrolein, and methylvinyl ketone) could explain only partially the observed sensory irritation. This suggests that one or more strong airway irritants were formed. It is thus possible that oxidation reactions of common unsaturated compounds may be relevant for indoor air quality. PMID:11673123

  11. THE GAS PHASE REACTION OF OZONE WITH 1,3-BUTADIENE: FORMATION YIELDS OF SOME TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separa...

  12. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Zhao, Chunsheng

    2013-04-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various non-methane hydrocarbons (NMHCs). Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. High ozone concentrations (>80 ppbv) of long duration (>6h) were frequently encountered in both urban and suburban Tianjin, while the occurrence of high ozone concentrations lasted for a shorter period (usually <4h) and had a much lower frequency in Shanghai. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Model simulations based on measurements also reveal similar dependence of ozone production rates upon NMHC reactivity. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional

  13. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  14. [Pollution characteristics and ozone formation potential of ambient VOCs in winter and spring in Xiamen].

    PubMed

    Xu, Hui; Zhang, Han; Xing, Zhen-yu; Deng, Jun-jun

    2015-01-01

    Air samples were collected at urban and rural sites in Xiamen from January to April 2014. The concentrations of 48 ambient volatile organic compounds (VOC) species were measured by the method of cryogenic pre-concentrator and gas chromatography-mass spectrometry (GC/MS). The ozone formation potential (OFP) of VOCs was also calculated with the method of maximum incremental reactivity (MIR). The results showed that the average mixing ratios of VOCs in winter were 11.13 x 10(-9) and 7.17 x 10(-9) at urban and rural sites, respectively, and those in spring were 24.88 x 10(-9) and 11.27 x 10(-9) at urban and rural sites, respectively. At both sites, alkanes contributed the most to VOCs, followed by aromatics and alkenes. The ratios of B/T showed that vehicle and solvent evaporation were the main sources of VOCs at urban site. While at rural site, transport of anthropogenic sources was another important source of VOCs besides local biomass emissions. Ten main components including propene, n-butane, i-butane, n-pentane, i-pentane, n-hexane, benzene, toluene, ethylbenzene and m/p-xylene accounted for 61.57% and 45.83% of total VOCs at urban and rural sites in winter, respectively, and 62.83% and 53.74% at urban and rural sites in spring, respectively. Aromatics contributed the most to total OFP, followed by alkenes. Alkanes contributed the least to OFP with the highest concentration. C3, C4 alkenes and aromatics were found to be the more reactive species with relatively high contributions to ozone formation in Xiamen. Comparing the average MIR of VOCs at the two sites, it was found that the reactivity of VOCs at rural site was higher than that at urban site. PMID:25898641

  15. Aqueous-Phase Photochemical Production of Oxidants in Atmospheric Waters.

    NASA Astrophysics Data System (ADS)

    Allen, John Morrison

    1992-01-01

    The photochemical formation and subsequent reactions of oxidants plays an important role in the overall chemistry of the atmosphere. Much of the interest in atmospheric oxidation reactions has been fueled by the environmental consequences of the oxidation of sulfur dioxide (SO _2) forming sulfuric acid (H_2 SO_4). Oxidation reactions also play a crucial role in other atmospheric chemical transformations such as: (1) the destruction of tropospheric ozone, (2) redox cycling of transition metals, and (3) oxidation of organic compounds. Much of the research pertaining to atmospheric oxidant formation and the reactions that these oxidants undergo has centered upon gas-phase photochemical oxidant formation and: (1) subsequent reactions in the gas phase, or (2) partitioning of oxidants into cloud and fog drops and subsequent reactions in the aqueous phase. Only a very limited amount of data is available concerning aqueous -phase photochemical sources of oxidants in cloud and fog drops. The focus of one aspect of the work presented in this dissertation is upon the aqueous-phase sunlight photochemical formation of oxidants in authentic cloud and fog water samples from across the United States and Canada. It will be demonstrated that atmospheric waters typically absorb solar ultraviolet radiation at wavelengths ranging from 290 to 340 nm. This absorption is due to the presence of chemical constituents in the cloud and fog waters that contain chromophoric functional groups that give rise to the formation of: (1) singlet molecular oxygen O_2(^1Delta_ {rm g}), (2) peroxyl radicals (HO _2cdot and RO_2 cdot), (3) peroxides (HOOH, ROOH, and ROOR '), and (4) hydroxyl radical ( cdotOH). This work will demonstrate that aqueous-phase photochemical reactions are a significant and in some cases dominant source of these oxidants in cloud and fog drops. The transition metal catalyzed oxidation of SO _2 to H_2SO _4 by molecular oxygen has been extensively studied. This reaction is thought

  16. Tropospheric Ozone Over North America

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Thompson, A. M.; Cooper, O. R.; Merrill, J. T.; Tarasick, D. W.; Newchurch, M. J.

    2007-05-01

    Ozone in the troposphere plays a significant role as an absorber of infrared radiation (greenhouse gas), in the cleansing capacity of the atmosphere as a precursor of hydroxol radical formation, and a regulated air pollutant capable of deleterious health and ecosystem effects. Knowledge of the ozone budget in the troposphere over North America (NA) is required to properly understand the various mechanisms that contribute to the measured distribution and to develop and test models capable of simulating and predicting this key player in atmospheric chemical and physical processes. Recent field campaigns including the 2004 and 2006 INTEX Ozone Network Studies (IONS) http:croc.gsfc.nasa.gov/intexb/ions06.html that have included intensive ozone profile measurements from ozonesondes provide a unique data set for describing tropospheric ozone over a significant portion of the North American continent. These campaigns have focused on the spring and summer seasons when tropospheric ozone over NA is particularly influenced by long-range transport processes, significant photochemical ozone production resulting from both anthropogenic and natural (lightning) precursor emissions, and exchange with the stratosphere. This study uses ozone profiles measured over NA in the latitude band from approximately 12-60N, extending from the tropics to the high mid latitudes, to describe the seasonal behavior of tropospheric ozone over NA with an emphasis on the spring and summer. This includes the variability within seasons at a particular site as well as the contrasts between the seasons. Emphasis is placed on the variations among the sites including latitudinal and longitudinal gradients and how these differ through the seasons and with altitude in the troposphere. Regional differences are most pronounced during the summer season likely reflecting the influence of a wider variation in processes influencing the tropospheric ozone distribution including lightning NOX production in the upper

  17. Potential impacts of climate change on tropospheric ozone in California: a preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley

    SciTech Connect

    Taha, Haider

    2001-01-01

    In this preliminary and relatively short modeling effort, an initial assessment is made for the potential air quality implications of climate change in California. The focus is mainly on the effects of changes in temperature and related meteorological and emission factors on ozone formation. Photochemical modeling is performed for two areas in the state: the Los Angeles Basin and the Sacramento Valley.

  18. A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station - experimental versus modelled formation rates

    NASA Astrophysics Data System (ADS)

    Bianco, A.; Passananti, M.; Perroux, H.; Voyard, G.; Mouchel-Vallon, C.; Chaumerliac, N.; Mailhot, G.; Deguillaume, L.; Brigante, M.

    2015-08-01

    The oxidative capacity of the cloud aqueous phase is investigated during three field campaigns from 2013 to 2014 at the top of the puy de Dôme station (PUY) in France. A total of 41 cloud samples are collected and the corresponding air masses are classified as highly marine, marine and continental. Hydroxyl radical (HO•) formation rates (RHO•f) are determined using a photochemical setup (xenon lamp that can reproduce the solar spectrum) and a chemical probe coupled with spectroscopic analysis that can trap all of the generated radicals for each sample. Using this method, the obtained values correspond to the total formation of HO• without its chemical sinks. These formation rates are correlated with the concentrations of the naturally occurring sources of HO•, including hydrogen peroxide, nitrite, nitrate and iron. The total hydroxyl radical formation rates are measured as ranging from approximately 2 × 10-11 to 4 × 10-10 M s-1, and the hydroxyl radical quantum yield formation (ΦHO•) is estimated between 10-4 and 10-2. Experimental values are compared with modelled formation rates calculated by the model of multiphase cloud chemistry (M2C2), considering only the chemical sources of the hydroxyl radicals. The comparison between the experimental and the modelled results suggests that the photoreactivity of the iron species as a source of HO• is overestimated by the model, and H2O2 photolysis represents the most important source of this radical (between 70 and 99 %) for the cloud water sampled at the PUY station (primarily marine and continental).

  19. VALIDATION DATA FOR PHOTOCHEMICAL MECHANISMS

    EPA Science Inventory

    The report describes the Quality Assurance and data processing procedures and systems used at the UNC outdoor smog chamber facility. The facility is used to measure the reactants and products that participate in the photochemical smog formation process. The intent of the Quality ...

  20. Explicit photochemical mechanism for atmospheric oxidation of n-butane

    SciTech Connect

    Wen, L.

    1992-01-01

    Alkanes, being an important component of atmosphere, serve as precursors to ozone formation in urban and rural air masses. An explicit photochemical oxidation mechanism for n-butane, which is the major hydrocarbon component of automobile exhaust, is created in this work. The yields of organic nitrates from n-butane, n-pentane, and methyl ethyl ketone photooxidations were studied in Teflon bag and smog chamber experiments. Comparing with the expression currently using the most atmospheric model studies, the total butyl nitrates yield obtained in this work is about 36% lower, and the ratio of primary to secondary butyl nitrates is slightly higher. It is shown in this work that the yields of hydroxyl and carbonyl butyl nitrates are very low, and can be ignored in the explicit photochemical mechanisms. The explicit photochemical oxidation mechanism for methyl ethyl ketone (MEK) was created first because it is the major product from photooxidation of n-butane. The explicit photochemical oxidation mechanism for n-butane, created later, draws on the MEK mechanism. The mechanisms were tested by comparing model predictions with experimental observations from smog chamber experiments. The comparisons were conducted for species which had experimental observation data, such as O[sub 3], NO, and NO[sub 2], n-butane, MEK, organic nitrates, and aldehydes species. The sixteen smog chamber experiments, used in model simulations, were conducted during 1978 to 1992. The mechanisms are mainly based on the available kinetic data in literature and the experimental result in this work. The rate constants for some reactions in the mechanisms were adjusted to make a better fit with the experimental observations. These reactions were: reaction of OH and n-butane to form secondary butyl peroxy radical, decomposition of secondary butoxy radical, and reaction of OH and MEK.

  1. Ozone in the free atmosphere

    NASA Technical Reports Server (NTRS)

    Whitten, R. C. (Editor); Prasad, S. S. (Editor)

    1985-01-01

    The present book provides a summary of the state of scientific knowledge of stratospheric and free tropospheric ozone as it exists at the beginning of 1983. Ozone photochemistry in the stratosphere is discussed, taking into account fundamental molecular properties, the absorption spectrum of ozone, photodissociation, ozone formation and destruction in the upper atmosphere, the photochemistry of odd-hydrogen, the photochemistry of odd-nitrogen, the photochemistry of odd-chlorine, and photochemistry-temperature coupling. The observed distribution of atmospheric ozone and its variations are considered along with ozone transport, ozone in the troposphere, stratospheric ozone perturbations, and climatic and biological effects. Attention is given to the techniques of observing atmospheric ozone, horizontal-vertical ozone transport and conservative quantities, measurements of tropospheric ozone, the tropospheric ozone budget, ozone models, natural ozone variations, and anthropogenic ozone perturbations.

  2. [Chemical Loss of Volatile Organic Compounds and Its Impact on the Formation of Ozone in Shanghai].

    PubMed

    Wang, Hong-li

    2015-09-01

    The spatial characterization of ozone (O3) and its precursors was studied based on the field measurements in urban and rural areas of Shanghai during the summer of 2014. The chemical loss of volatile organic compounds (VOCs) was estimated by the parameterization method. The mixing ratio of VOCs was 20 x 10(-9) in urban area and 17 x 10(-9) in the west rural area during the measurements. The average values of the maximum incremental reactivity were comparable in urban and rural areas, namely 5. 0 mol.mol-1 (O3/VOCs). By contrast, the chemical loss of VOCs was 8. 3 x 10(-9) in west rural area, which was two times as that in urban area. The more chemical loss of VOCs was probably one of the important reasons leading to the higher O3 concentration in west rural area. The regional transport might be important reason of the variation of O3 in the eastern coastal rural area. The chemical loss of VOCs showed good agreement with the local formation of O3 in both urban and rural areas, suggesting a similar efficiency of O3 formation from the chemical loss of VOCs. Among the chemical loss, aromatics and alkenes are the dominant VOC species of the atmospheric chemistry which accounts for more than 90% . The diurnal profile of VOC chemical loss matched well with the production of O3 with one-hour postponement. PMID:26717674

  3. Interactions of fire emissions and urban pollution over California: Ozone formation and air quality simulations

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Cai, C.; Kaduwela, A.; Weinheimer, A.; Wisthaler, A.

    2012-09-01

    An instrumented DC-8 aircraft was employed to perform airborne observations in rural and urban environs of California during the summer 2008 NASA ARCTAS-CARB campaign. The fortuitous occurrence of large wildfire episodes in Northern California allowed for studies of fire emissions, their composition, and their interactions with rural and urban air. Relative to CO, emissions of HCN were shown to vary non-linearly with fire characteristics while those of CH3CN were nearly unchanged, making the latter a superior quantitative tracer of biomass combustion. Although some fire plumes over California contained little NOx and virtually no O3 enhancement, others contained ample VOCs and sufficient NOx, largely from urban influences, to result in significant ozone formation. The highest observed O3 mixing ratios (170 ppb) were also in fire-influenced urban air masses. Attempts to simulate these interactions using CMAQ, a high-resolution state of the art air quality model, were only minimally successful and indicated several shortcomings in simulating fire emission influences on urban smog formation. A variety of secondary oxidation products (e.g. O3, PAN, HCHO) were substantially underestimated in fire-influenced air masses. Available data involving fire plumes and anthropogenic pollution interactions are presently quite sparse and additional observational and mechanistic studies are needed.

  4. Semiclassical wave packet study of anomalous isotope effect in ozone formation.

    PubMed

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-10-21

    We applied the semiclassical initial value representation method to calculate energies, lifetimes, and wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such scattering states represent the metastable O3* species and play a central role in the process of ozone formation. Autocorrelation functions for scattering states were computed and then analyzed using the Prony method, which permits one to extract accurate energies and widths of the resonances. We found that the results of the semiclassical wave packet propagation agree well with fully quantum results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated with formation of this molecule, either through the 16O16O+18O or the 16O+16O18O channels. An interesting correlation between the local vibration mode character of the metastable states and their lifetimes was observed and explained. New insight is obtained into the mechanism by which the long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large isotope effect. PMID:17949154

  5. Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.

    PubMed

    Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi

    2016-09-01

    The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG. PMID:27396671

  6. Formation of the Antarctic ozone hole by the ClO dimer mechanism

    NASA Technical Reports Server (NTRS)

    Barrett, J. W.; Solomon, P. M.; De Zafra, R. L.; Jaramillo, M.; Emmons, L.

    1988-01-01

    New measurements of the low-altitude ClO profile, made during September 1987, are presented along with detailed observations of ozone depletion over McMurdo Station, Antarctica during the same period. The results show that both the rate and altitude range of ozone depletion can be quantitatively accounted for by a mechanism in which the ClO dimer is the important intermediary in the catalytic destruction of ozone. An alternative bromine mechanism appears capable of contributing only 5-15 percent to the ozone loss rate.

  7. Photochemical Formation of Hydroxyl Radical in Red-Soil-Polluted Seawater in Okinawa, Japan -Potential Impacts on Marine Organisms

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Hamdun, A. M.; Okada, K.; Kuroki, Y.; Ikota, H.; Fujimura, H.; Oomori, T.

    2004-12-01

    Development of pineapple farmlands and construction of recreational facilities caused runoff of red soil into coastal ocean (locally termed as red-soil-pollution) in the north of Okinawa Island, Japan. In an attempt to understand the impacts of red soil on oxidizing power of the seawater, we studied formation of hydroxyl radical (OH radical), the most potent oxidant in the environment, in red-soil-polluted seawaters, using 313 nm monochromatic light. Photo-formation rates of OH radical showed a good correlation with dissolved iron concentrations (R = 0.98). The major source of OH radical was found to be the Fenton reaction (a reaction between Fe(II) and HOOH). The un-filtered red-soil-polluted seawater samples exhibited faster OH radical formation rates than the filtered samples, suggesting that iron-bearing red soil particles enhanced formation of OH radical.

  8. Winter Photochemistry Underlying High Ozone in an Oil and Gas Producing Region

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Edwards, P. M.; Roberts, J. M.; Ahmadov, R.; Banta, R. M.; De Gouw, J. A.; Dube, W. P.; Field, R. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; McKeen, S. A.; Li, S. M.; Murphy, S. M.; Parrish, D. D.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.; Zamora, R. J.; Washenfelder, R. A.

    2014-12-01

    Ozone formation during wintertime in oil and gas producing basins of the Rocky Mountain West now accounts for some of the highest ozone pollutant concentrations observed in the U.S. These events are scientifically challenging, occurring only during cold, snow covered periods when meteorological inversions concentrate pollutants near the surface, but when incident solar actinic flux that initiates photochemical reactions is at or near its minimum. A near-explicit chemical model that incorporates detailed measurements obtained during three successive winter field studies in the Uintah Basin, Utah, accurately reproduces the observed buildup of ozone and other photochemically generated species. It also identifies the sources of free radicals that drive this unusual photochemistry, and quantifies their relative contributions. Although sharing the same basic atmospheric chemistry, winter ozone formation differs from its summertime, urban counterpart in its dependence upon the relative concentrations of volatile organic compounds (VOCs) and nitrogen oxide (NOx) precursors. Observed NO­­x mixing ratios in the Uintah basin are lower than is typical of urban areas, while VOC levels are significantly larger. These extreme VOC concentrations allow for nearly optimal efficiency of ozone production from the available NO­x. This analysis will inform the design of mitigation strategies and provide insight into the response of winter ozone to primary air pollutants in other regions, particularly those where oil and gas development is contemplated.

  9. Characterization of ozone precursors in a regional background site of the Pearl River Delta by time series observation of non-methane hydrocarbons

    NASA Astrophysics Data System (ADS)

    Chang, C.; Wang, J.; Liu, S. C.; Lai, C.; Shao, M.; Zeng, L.; Zhang, Y.

    2009-12-01

    Continuous hourly measurements of C3-C12 non-methane hydrocarbons (NMHCs) were carried out in the period July 3 - 30, 2006 at a downwind site of Peal River Delta during the PRIDE-PRD2006 campaign. The measurements were intended to characterize the “residual composition” of ozone precursors through photochemical processing and to evaluate the photochemical relationship between oxidant (O3+NO2) and its precursors. An observation based method (OBM) of consumption concept is used to generate an ozone isopleth diagram that resembles the EKMA diagram, to examine the relationship of oxidant versus ozone precursors. A critical step in the method is to use observed concentrations of ethylbenzene and m,p-xylenes to estimate the degree of photochemical processing and amounts of photochemically consumed NOx and NMHCs by OH. The 3D OBM ozone isopleth diagram indicates that the observed oxidant level was sensitive to both of the consumed amounts of NMHCs and NOx. In addition, based on the 577 samples analyzed, toluene, benzene, isoprene, xylene and C3-C5 alkanes were found to be the most elevated species accounting for around 55% of the total measured NMHC abundance. After considering both the photochemical reactivities and mixing ratios of all the measured species, CO, isoprene, propene, xylene and toluene were calculated to have the highest ozone formation potentials (OFPs) accounting for 76.5% of total reactivity. Good correlation between NMHCs and 3-methylpentane, a proven good vehicular indicator, suggests vehicular emissions should be the major source for anthropogenic NMHCs. No correlation was found between isoprene and anthropogenic NMHCs, clearly supporting the existence of isoprene’s non-anthropogenic sources. Moreover, its diurnal pattern showed maximum mixing ratios around midday hours and minima at night, reflecting its biogenic properties which are both solar radiation and temperature dependent. Keywords: Age indicator; photochemical aging; NOx-control regime

  10. DISINFECTION BY-PRODUCT FORMATION AND CONTROL BY OZONATION AND BIOTREATMENT

    EPA Science Inventory

    There is increasing interest in using ozone in water treatment because it is a strong disinfectant and is able to oxidize the precursors of some disinfection by-products (DBPs). However, ozonation itself produces DBPs, like aldehydes and ketones, and increases the concentration ...

  11. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    SciTech Connect

    Cole, Amanda S.; Boering, Kristie A.

    2006-11-14

    In addition to the anomalous {sup 17}O and {sup 18}O isotope effects in the three-body ozone formation reaction O+O{sub 2}+M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in {sup 17}O and {sup 18}O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O({sup 1}D), O({sup 3}P), O{sub 2}({sup 1}{delta}), and O{sub 2}({sup 1}{sigma}) is needed through experiments we suggest here.

  12. Characterizing the ozone formation potential of agricultural sources in California's San Joaquin Valley: A computational and experimental approach

    NASA Astrophysics Data System (ADS)

    Howard, Cody Jerome

    The global pattern of expanding urban centers and increasing agricultural intensity is leading to more frequent interactions between air pollution emissions from urban and agricultural sources. The confluence of these emissions that traditionally have been separated by hundreds of kilometers is creating new air quality challenges in numerous regions across the United States. An area of particular interest is California's San Joaquin Valley (SJV), which has an agricultural output higher than many countries, a rapidly expanding human population, and ozone concentrations that are already higher than many dense urban areas. New regulations in the SJV restrict emissions of reactive organic gases (ROG) from animal sources in an attempt to meet Federal and State ozone standards designed to protect human health. A transportable "smog" chamber was developed and tested to directly measure the ozone formation potential of a variety of agricultural emissions in representative urban and rural atmospheres. After validation of the experimental procedure, four animal types were examined: beef cattle, dairy cattle, swine, and poultry, as well as six commonly used animal feeds: cereal silage (wheat grain and oat grain), alfalfa silage, corn silage, high moisture ground corn, almond shells, almond hulls, and total mixed ration. The emitted ROG composition was also measured so that the theoretical incremental reactivity could be calculated for a variety of atmospheres and directly compared with the measured ozone formation potential (OFP) under the experimental conditions. A computational model was created based on a modified form of the Caltech Atmospheric Chemistry Mechanism and validated against experimental results. After validation, the computational model was used to predict OFP across a range of NOx and ROG concentrations. The ROG OFP measurements combined with adjusted agricultural ROG emissions inventory estimates were used to predict the actual ozone production in the SJV

  13. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  14. The effects of welding parameters on ultra-violet light emissions, ozone and CrVI formation in MIG welding.

    PubMed

    Dennis, J H; Mortazavi, S B; French, M J; Hewitt, P J; Redding, C R

    1997-01-01

    This paper describes the relationships between ultra-violet emission, ozone generation and CrVI production in MIG welding which were measured as a function of shield gas flow rate, welding voltage, electrode stick-out and shield gas composition using an automatic welding rig that permitted MIG welding under reproducible conditions. The experimental results are interpreted in terms of the physico-chemical processes occurring in the micro- and macro-environments of the arc as part of research into process modification to reduce occupational exposure to ozone and CrVI production rates in MIG welding. We believe the techniques described here, and in particular the use of what we have termed u.v.-ozone measurements, will prove useful in further study of ozone generation and CrVI formation and may be applied in the investigation of engineering control of occupational exposure in MIG and other welding process such as Manual Metal Arc (MMA) and Tungsten Inert Gas (TIG). PMID:9072953

  15. Summertime ozone formation in Xi'an and surrounding areas, China

    NASA Astrophysics Data System (ADS)

    Feng, Tian; Bei, Naifang; Huang, Ru-Jin; Cao, Junji; Zhang, Qiang; Zhou, Weijian; Tie, Xuexi; Liu, Suixin; Zhang, Ting; Su, Xiaoli; Lei, Wenfang; Molina, Luisa T.; Li, Guohui

    2016-04-01

    In this study, the ozone (O3) formation in China's northwest city of Xi'an and surrounding areas is investigated using the Weather Research and Forecasting atmospheric chemistry (WRF-Chem) model during the period from 22 to 24 August 2013, corresponding to a heavy air pollution episode with high concentrations of O3 and PM2.5. The model generally performs well compared to measurements in simulating the surface temperature, relative humidity, and wind speed and direction, near-surface O3 and PM2.5 mass concentrations, and aerosol constituents. High aerosol concentrations in Xi'an and surrounding areas significantly decrease the photolysis frequencies and can reduce O3 concentrations by more than 50 µg m-3 (around 25 ppb) on average. Sensitivity studies show that the O3 production regime in Xi'an and surrounding areas is complicated, varying from NOx to VOC (volatile organic compound)-sensitive chemistry. The industrial emissions contribute the most to the O3 concentrations compared to biogenic and other anthropogenic sources, but neither individual anthropogenic emission nor biogenic emission plays a dominant role in the O3 formation. Under high O3 and PM2.5 concentrations, a 50 % reduction in all the anthropogenic emissions only decreases near-surface O3 concentrations by about 14 % during daytime. The complicated O3 production regime and high aerosol levels pose a challenge for O3 control strategies in Xi'an and surrounding areas. Further investigation regarding O3 control strategies will need to be performed, taking into consideration the rapid changes in anthropogenic emissions that are not reflected in the current emission inventories and the uncertainties in the meteorological field simulations.

  16. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    NASA Astrophysics Data System (ADS)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor

  17. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Deng, W.; Hu, Q.; Ding, X.; Zhang, Y.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Chen, J.; Yu, J.

    2015-04-01

    In China, fast increase in passenger vehicles has procured the growing concern about vehicle exhausts as an important source of anthropogenic secondary organic aerosols (SOA) in megacities hard-hit by haze. However, there are still no chamber simulation studies in China on SOA formation from vehicle exhausts. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) in China was investigated in a 30 m3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with the relative humidity around 50%. After aging at an OH exposure of 5 × 106 molecules cm-3 h, the formed SOA was 12-259 times as high as primary OA (POA). The SOA production factors (PF) were 0.001-0.044 g kg-1 fuel, comparable with those from the previous studies at the quite similar OH exposure. This quite lower OH exposure than that in typical atmospheric condition might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yield data in this study were well fit by a one-product gas-particle partitioning model and quite lower than those of a previous study investigating SOA formation form three idling passenger vehicles (Euro 2-Euro 4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90% of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f43 (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f44 (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C/ΔO : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a

  18. Ozone formation along the California-Mexican border region during Cal-Mex 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bei, Naifang; Zavala, Miguel; Molina, Luisa T.

    2014-05-01

    The purpose of this study is to evaluate the ozone (O3) formation along the California-Mexico border region using the WRF-CHEM model in association with the Cal-Mex 2010 field campaign. Four two-day episodes in 2010 are chosen based on plume transport patterns: 1) May 15-16 (plume north), 2) May 29-30 (plume southwest), 3) June 4-5 (plume east), and 4) June 13-14 (plume southeast). Generally, the predicted O3 spatial patterns and temporal variations agree well with the observations at the ambient monitoring sites in the San Diego-Tijuana region, but in the Calexico-Mexicali region, the model frequently underestimates the observation. In the San Diego-Tijuana region, the morning anthropogenic precursor emissions in the urbanized coastal plain are carried inland and mixed with the local biogenic emissions during transport, causing the high O3 level over the mountain region. Biogenic emissions enhance the O3 concentrations by up to 40 ppb over the mountain region in the afternoon. The factor separation approach is used to evaluate the contributions of trans-boundary transport of emissions from California and Baja California to the O3 level in the California-Mexico border region. The Baja California emissions play a minor role in the O3 formation in the San Diego region and do not seem to contribute to the O3 exceedances in the region, but have large potential to cause O3 exceedances in the Calexico region. The California emissions can considerably enhance the O3 level in the Tijuana region. Generally, the California emissions play a more important role than the Baja California emissions on O3 formation in the border region (within 40 km to the California-Mexico border). On average, the O3 concentrations in the border region are decreased by 2-4 ppb in the afternoon due to the interactions of emissions from California and Baja California. Further studies need to be conducted to improve the sea breeze simulations in the border region for evaluating O3 formation.

  19. Photochemical products in urban mixtures enhance inflammatory responses in lung cells.

    PubMed

    Sexton, Kenneth G; Jeffries, Harvey E; Jang, Myoseon; Kamens, Richard M; Doyle, Melanie; Voicu, Iuliana; Jaspers, Ilona

    2004-01-01

    Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concentrations and aerosol chemistry. These chambers were used to generate photochemical and nonirradiated systems, which were interfaced with an in vitro exposure system to compare the inflammatory effects of complex air pollutant mixtures with and without sunlight-driven chemistry. These are preliminary experiments in a new project to study the health effects of particulate matter and associated gaseous copollutants. Briefly, two matched outdoor chambers capable of using real sunlight were utilized to generate two test atmospheres for simultaneous exposures to cultured lung cells. One chamber was used to produce a photochemically active system, which ran from sunrise to sunset, producing O(3) and the associated secondary products. A few hours after sunset, NO was added to titrate and remove completely the O(3), forming NO(2). In the second chamber, an equal amount of NO(2) and the same amount of the 55-component hydrocarbon mixture used to setup the photochemical system in the first side were injected. A549 cells, from an alveolar type II-like cell line grown on membranous support, were exposed to the photochemical mixture or the "original" NO(2)/hydrocarbon mixture for 5 h and analyzed for inflammatory response (IL-8 mRNA levels) 4 h postexposure. In addition, a variation of this experiment was conducted to compare the photochemical system producing O(3) and NO(2), with a simple mixture of only the O(3) and NO(2). Our data suggest that the photochemically altered mixtures that produced secondary products induced about two- to threefold more IL-8 mRNA than the mixture of NO(2) and hydrocarbons or O(3). These results indicate that secondary products generated through the photochemical reactions

  20. Photochemical oxidants: state of the science.

    PubMed

    Kley, D; Kleinmann, M; Sanderman, H; Krupa, S

    1999-01-01

    Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed. PMID:15093111

  1. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Deng, W.; Hu, Q.; Ding, X.; Zhang, Y.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Chen, J.; Yu, J.

    2015-08-01

    In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with relative humidity at around 50 %. After aging at an OH exposure of 5 × 106 molecules cm-3 h, the formed SOA was 12-259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001-0.044 g kg-1 fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2-4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90 % of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f43 (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f44 (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C / ΔO : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.

  2. Ozone Formation Potentials from Different Anthropogenic Emission Sources of Volatile Organic Compounds in California's South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Chen, J.; Luo, D.; Croes, B.

    2010-12-01

    Different volatile organic compounds (VOC) exhibit different propensities for ozone formation. Two approaches were used to study the relative ozone formation potentials (source reactivities) of different anthropogenic VOC emission source categories in California’s South Coast Air Basin (SoCAB). The first approach combined emission speciation profiles for total organic gases (TOG) with maximum incremental reactivity (MIR) scales for VOC species. The second approach quantified ozone impacts from different sources by performing 3-dimensional air quality model sensitivity analyses involving increased TOG emissions from particular sources. The source reactivities for 58 VOC emission categories in SoCAB derived from these two approaches agree reasonably well (R2 = ~0.9). Both approaches revealed the two emissions source types with the highest TOG reactivity were mobile sources and managed forest burning. Also, a reactivity-based TOG emission inventory for SoCAB in 2005 was produced by combining the source reactivities from both approaches with TOG emissions from anthropogenic source categories. The top five reactivity-based source categories are: light-duty passenger cars, off-road equipments, consumer products, light-duty trucks, and recreational boats. This is in contrast to the mass-based TOG emission inventory, which indicates that farming operations (mainly from animal waste) was one of the five largest mass-based anthropogenic TOG emission sources. Compared to the mass-based TOG emission inventory, the reactivity-based TOG emission inventory more appropriately represents the ozone formation potentials from emission sources, and highlights those sources that should be targeted for future regulations.

  3. Ozone formation potentials of organic compounds from different emission sources in the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Luo, Dongmin

    2012-08-01

    Different organic compounds exhibit different propensities for ozone formation. Two approaches were used to study the ozone formation potentials or source reactivities of different anthropogenic organic compounds emission categories in California's South Coast Air Basin (SoCAB). The first approach was based on the combination of total organic gases (TOG) emission speciation profiles and the maximum incremental reactivity (MIR) scale of organic species. The second approach quantified ozone impacts from different emission sources by performing 3-dimensional air quality model sensitivity analysis involving increased TOG emissions from particular sources. The source reactivities derived from these two approaches agree reasonably well for 58 anthropogenic organic compounds emission categories in the SoCAB. Both approaches identify TOG emissions from mobile sources as having the highest reactivity. Source reactivities from both approaches were also combined with TOG emissions from each source category to produce a 2005 reactivity-based anthropogenic TOG emission inventory for the SoCAB. The top five reactivity-based anthropogenic TOG emission sources in the SoCAB during 2005 were: light-duty passenger cars, off-road equipment, consumer products, light-duty trucks category 2 (i.e., 3751-5750 lb), and recreational boats. This is in contrast to the mass-based TOG emission inventory, which indicates that livestock waste and composting emission categories were two of the five largest mass-based anthropogenic TOG emission sources. The reactivity-based TOG emission inventory is an important addition to the mass-based TOG emission inventory because it represents the ozone formation potentials from emission sources and can be used to assist in determining targeted sources for developing organic compounds reduction policies.

  4. Regulatory ozone modeling: status, directions, and research needs.

    PubMed Central

    Georgopoulos, P G

    1995-01-01

    The Clean Air Act Amendments (CAAA) of 1990 have established selected comprehensive, three-dimensional, Photochemical Air Quality Simulation Models (PAQSMs) as the required regulatory tools for analyzing the urban and regional problem of high ambient ozone levels across the United States. These models are currently applied to study and establish strategies for meeting the National Ambient Air Quality Standard (NAAQS) for ozone in nonattainment areas; State Implementation Plans (SIPs) resulting from these efforts must be submitted to the U.S. Environmental Protection Agency (U.S. EPA) in November 1994. The following presentation provides an overview and discussion of the regulatory ozone modeling process and its implications. First, the PAQSM-based ozone attainment demonstration process is summarized in the framework of the 1994 SIPs. Then, following a brief overview of the representation of physical and chemical processes in PAQSMs, the essential attributes of standard modeling systems currently in regulatory use are presented in a nonmathematical, self-contained format, intended to provide a basic understanding of both model capabilities and limitations. The types of air quality, emission, and meteorological data needed for applying and evaluating PAQSMs are discussed, as well as the sources, availability, and limitations of existing databases. The issue of evaluating a model's performance in order to accept it as a tool for policy making is discussed, and various methodologies for implementing this objective are summarized. Selected interim results from diagnostic analyses, which are performed as a component of the regulatory ozone modeling process for the Philadelphia-New Jersey region, are also presented to provide some specific examples related to the general issues discussed in this work. Finally, research needs related to a) the evaluation and refinement of regulatory ozone modeling, b) the characterization of uncertainty in photochemical modeling, and c

  5. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    NASA Technical Reports Server (NTRS)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  6. Generation of oxidative stress in human cutaneous models following in vitro ozone exposure.

    PubMed

    Cotovio, J; Onno, L; Justine, P; Lamure, S; Catroux, P

    2001-01-01

    Ozone, one of the main components of photochemical smog, represents an important source of environmental oxidative stress. The skin, being the outermost barrier of the body, is directly exposed to environmental oxidant toxicants. Skin sebum and cellular plasma membrane lipids contain polyunsaturated fatty acids which are primary targets for ozone and free radical attack induced lipid peroxides. These ozonation processes in skin can also generate aldehydes, hydroxyhydroperoxides and specific Criegee's ozonides. In order to evaluate in vitro human skin susceptibility to ozone, we have exposed cultured immortalized human keratinocytes (DK7-NR) and the reconstructed human epidermis Episkin to 10 ppm of ozone in a specific incubator. We measured the formation of protein carbonyls by an ELISA method and monitored the oxidative stress using the fluorogenic probe 2',7'-dichlorofluorescin-diacetate (DCFH-DA). Results showed a time-dependent increase of fluorescence levels (linked to oxidative stress) in both models exposed to ozone. Using this protocol, we investigated the protective potential of different products including vitamin C, a thiol derivative and a plant extract. All products dramatically reduced oxidative responses during ozone exposure. Decreases observed in fluorescence levels were between 60 and 90% as compared to non-protected controls. These results demonstrate: (a) cutaneous in vitro models are remarkably susceptible to oxidative stress generated by an environmental air pollutant as ozone, and (b) raw antioxidants, thiols and vitamin C were efficient products to prevent ozone induced cellular oxidative damage. PMID:11566563

  7. Study using a three-dimensional photochemical smog formation model under conditions of complex flow: Application of the Urban Airshed Model to the Tokyo Metropolitan Area. Rept. for Jan 85-Jan 91

    SciTech Connect

    Wakamatsu, S.; Schere, K.L.

    1991-03-01

    The purpose of the study is to evaluate the Urban Airshed Model (UAM), a three-dimensional photochemical urban air quality simulation model, using field observations from the Tokyo Metropolitan Area. Emphasis was placed on the photochemical smog formation mechanism under stagnant meteorological conditions. The UAM produced reasonable calculated results for the diurnal, areal and vertical distributions of O3 concentrations covering the Tokyo Metropolitan Area. The role and significance of the previous day's secondary pollutants on O3 formation mechanisms were also investigated. During the night time, high values of secondary pollutant concentrations were predicted above the radiation inversion layer. These aged pollutants were then entrained into the mixing layer during the day in accordance with the elevation of the lid. These characteristic features were also observed in the field study.

  8. A Status Report on the SHADOZ (Southern Hemisphere Additional Ozonesondes) Project and Some Issues Affecting Ozone Climatology

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, J. C.; McPeters, R. D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    SHADOZ aims to support the study of local and global patterns in stratospheric and tropospheric ozone and to provide a data set for the validation for satellite products and model calculations of ozone. Southern hemispheric tropical ozone is of particular interest because this region appears to have complex interplay among photochemical ozone formation (from biomass burning and lightning), stratospheric dynamics, convection and possibly cross-hemispheric transport. Balloon-borne ozone instrumentation (ozonesondes), joined with standard radiosondes for measurement of pressure, temperature and relative humidity, is used to collect profiles throughout the troposphere and lower- to mid-stratosphere. A network of 10 southern hemisphere tropical and subtropical stations, called the Southern Hemisphere ADditional OZonesondes (SHADOZ) project, has been established from operational sites to assemble sonde data for 1998-2000. A status report on the archive, with station operating characteristics, will be given, along with some operational issues that may affect data analysis and interpretation.

  9. Uncertainty Analysis of Ozone Formation and Response to Emission Controls Using Higher-Order Sensitivities

    EPA Science Inventory

    Understanding ozone response to its precursor emissions is crucial for effective air quality management practices. This nonlinear response is usually simulated using chemical transport models, and the modeling results are affected by uncertainties in emissions inputs. In this stu...

  10. Total ozone, ozone vertical distributions, and stratospheric temperatures at South Pole, Antarctica, in 1986 and 1987

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Grass, R. D.; Reitelbach, P. J.; Franchois, P. R.; Kuester, S. E.

    1988-01-01

    Seventy-six electrochemical cell (ECC) ozonesondes were flown at South Pole, Antarctica, during 1987 in a continuing program to document year-round changes in Antarctica ozone that are dynamically and photochemically induced. Dobson spectrophotometer total ozone observations were also made. For the twilight months of March and September when Dobson instrument observations cannot be made at South Pole, total ozone amounts were deduced from the ECC ozonesonde soundings. ECC sonde total ozone data obtained during the polar night (April to August), supplemented the sparse total ozone data obtained from Dobson instrument moon observations. Similar ozone profile and total ozone observations were made at South Pole in 1986.

  11. Humidity effects on photochemical aerosol formation in the SO 2-NO-C 3H 6-air system

    NASA Astrophysics Data System (ADS)

    Izumi, Katsuyuki; Mizuochi, Motoyuki; Murano, Kentaro; Fukuyama, Tsutomu

    In order to investigate the effects of humidity on the gas-phase oxidation of SO 2 in polluted air and on the subsequent aerosol formation process, photoirradiation experiments were carried out by means of a 4-m 3 chamber, in which mixtures containing SO 2, NO and C 3H 6 with concentrations in the ppm range were exposed to simulated solar radiation in different relative humidity (r.h.) conditions. The total amount of oxidized SO 2 was quantified from the SO 42- yield determined by the chemical analysis of the aerosol product, and a part due to the oxidation by the OH radical was evaluated by estimating the OH concentration from the decay rate of C 3H 6. The remaining part was assigned to the oxidation by the Criegee intermediate, as it had a good correlation with the progress of the O 3 + C 3H 6 reaction. The contributions of the two oxidizing species to the total conversion and the oxidation rate of SO 2 were measured as functions of r.h. As a result, experimental evidence was obtained for the prediction of Calvert and Stockwell's (1983, Envir. Sci. Technol. 17, 428A-443A) simulation that the oxidation due to the Criegee intermediate was retarded by the increase in humidity. The OH contribution, on the other hand, was almost independent of r.h. It was observed consequently that the total oxidized amount of SO 2 considerably decreased as r.h. was higher. The humidity effect on the aerosol formation process was found to be more complicated than the effect on the gas-phase chemistry. The maximum rate of increase in the particle number concentration rose linearly with increasing r.h., but the number concentration itself measured at its maximum or at the end of the irradiation reached a ceiling value around r.h. = 30% and went down for higher r.h. The average panicle size in the final stage of the reaction showed a minimum around the same r.h. at which the number concentration was maximum. The H 2SO 4 concentration in the mist particles, however, decreased

  12. Indirect synthesis of Al{sub 2}O{sub 3}via radiation- or photochemical formation of its hydrated precursors

    SciTech Connect

    Barta, Jan Pospisil, Milan; Cuba, Vaclav

    2014-01-01

    Graphical abstract: - Highlights: • Al{sub 2}O{sub 3} precursors were produced by UV/e-beam irradiation of aqueous solutions. • Depending on the aluminium salt (Cl{sup −} or NO{sub 3}{sup −}), either γ-AlOOH or Al(OH){sub 3} is formed. • The mechanism involved strongly depends on the presence of formate anion. • Prepared mesoporous solid phase has high specific surface area (<190 m{sup 2} g{sup −1}). • Calcination of the precursor leads to the formation of γ-/η-, θ- and α-Al{sub 2}O{sub 3}. - Abstract: γ-, θ- and α-modifications of aluminium oxide (alumina) were successfully prepared by calcination of precursor solid phase obtained by irradiation of clear aqueous solutions by UV light or electron beam. For the precipitate to form, formate anion must be present in the solution in sufficient concentration. According to X-ray diffraction, the precipitate was found to consist of γ-AlOOH or a mixture of γ- and α-Al(OH){sub 3}, when aluminium chloride or aluminium nitrate was used, respectively. The addition of hydrogen peroxide as a ·OH radical source and sensitizer markedly improved the efficiency of the preparation. Some hints for the apparently very complex mechanism involved were listed and discussed. Calcination of the dried precipitate at 500–800 °C produced highly porous γ-alumina with high specific surface area (ca. 150 m{sup 2} g{sup −1}). Mixture of γ- and θ-transition aluminas was obtained at 1000 °C and pure, stable corundum α-Al{sub 2}O{sub 3} formed at 1200 °C. Samples were further investigated by means of scanning electron microscopy and specific surface area or porosity measurement. According to N{sub 2} adsorption isotherm, the precipitate contains mostly mesopores with average pore size 7 nm with specific surface area of ca. 100 m{sup 2} g{sup −1}. Possible applications of the material as sorbent or catalyst as well as a pure matrix for thermoluminescence dosimetry were briefly contemplated. Strong light

  13. Ozone inhibits endothelial cell cyclooxygenase activity through formation of hydrogen peroxide

    SciTech Connect

    Madden, M.C.; Eling, T.E.; Friedman, M.

    1987-09-01

    We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0-1.0 ppm) in-vitro resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposed to 1.0 ppm ozone for 2H. A significant decrease in prostacyclin synthesis was found within 5 min of exposure (77 +/- 36% of air-exposed control values, p less than 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5 U/ml) during ozone exposure, no inhibition of prostacyclin synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10 U/ml) did not affect the ozone-induced inhibition of prostacyclin synthesis. These data suggest that H/sub 2/O/sub 2/ is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibition of endothelial cyclooxygenase activity.

  14. Bromine-Chlorine Coupling in the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.; Prather, Michael J.

    1996-01-01

    The contribution from the chlorine and bromine species in the formation of the Antarctic ozone hole is evaluated. Since chlorine and bromine compounds are of different industrial origin, it is desirable, from a policy point of view, to be able to attribute chlorine-catalyzed loss of ozone with those reactions directly involving chlorine species, and likewise for bromine-catalyzed loss. In the stratosphere, however, most of the chemical families are highly coupled, and, for example, changes in the chlorine abundance will alter the partitioninig in other families and thus the rate of ozone loss. This modeling study examines formation of the Antarctic ozone hole for a wide range of bromine concentrations (5 - 25 pptv) and for chlorine concentrations typical of the last two decades (1.5, 2.5 and 3.5 ppbv). We follow the photochemical evolution of a single parcel of air, typical of the inner Antarctic vortex (50 mbar, 70 deg. S, NO(sub y) = 2 ppbv, with Polar Stratospheric Clouds(PSC)) from August 1 to November 1. For all of these ranges of chlorine and bromine loading, we would predict a substantial ozone hole (local depletion greater than 90%) within the de-nitrified, PSC- perturbed vortex. The contributions of the different catalytic cycles responsible for ozone loss are tabulated. The deep minimum in ozone is driven primarily by the chlorine abundance. As bromine levels decrease, the magnitude of the chlorine-catalyzed ozone loss increases to take up the slack. This is because bromine suppresses ClO by accelerating the conversion of ClO an Cl2O2 back to HCI. For this range of conditions, the local relative efficiency of ozone destruction per bromine atom to that per chlorine atom (alpha-factor) ranges from 33 to 55, decreasing with increase of bromine.

  15. Ozone uptake and formation of reactive oxygen intermediates on glassy, semi-solid and liquid organic matter

    NASA Astrophysics Data System (ADS)

    Berkemeier, Thomas; Steimer, Sarah S.; Krieger, Ulrich K.; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-04-01

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols (Abbatt, Lee and Thornton, 2012). The effects of particle phase state on the reaction kinetics are still not fully elucidated and cannot be described by classical models assuming a homogeneous condensed phase (Berkemeier et al., 2013). We apply a kinetic multi-layer model, explicitly resolving gas adsorption, condensed phase diffusion and condensed phase chemistry (Shiraiwa et al., 2010), to systematic measurements of ozone uptake onto proxies for secondary organic aerosols (SOA). Our findings show how moisture-induced phase changes affect the gas uptake and chemical transformation of organic matter through change in the physicochemical properties of the substrate: the diffusion coefficients are found to be low under dry conditions, but increase by several orders of magnitude toward higher relative humidity (RH). The solubility of ozone in the dry organic matrix is found to be one order of magnitude higher than in the dilute aqueous solution. The model simulations reveal that at high RH, ozone uptake is mainly controlled by reaction throughout the particle bulk, whereas at low RH, bulk diffusion is retarded severely and reaction at the surface becomes the dominant pathway, with ozone uptake being limited by replenishment of unreacted organic molecules from the bulk phase. The experimental results can only be reconciled including a pathway for ozone self-reaction, which becomes especially important under dry and polluted conditions. Ozone self-reaction can be interpreted as formation and recombination of long-lived reactive oxygen intermediates at the aerosol surface, which could also explain several kinetic parameters and has implications for the health effects of organic aerosol particles. This study hence outlines how kinetic modelling can be used to gain mechanistic insight into the coupling of mass transport, phase changes, and chemical

  16. Isoprene and terpene gas-phase mechanisms and their effect on ozone formation over the regional scale

    SciTech Connect

    Stockwell, W.R.; Kuhn, M.; Seefeld, S.; Kirchner, F.

    1997-12-31

    Ozone is produced through the photo-oxidation of nitrogen oxides and volatile organic compounds. Biogenic emissions are an important source of reactive organic compounds such as isoprene and terpenes. Their reactions contribute to the production of ozone and aerosol particles. The photo-oxidation of isoprene and terpene affect the atmosphere`s nitrogen budget through the formation of nitrates and peroxyacetyl nitrates (PAN). Biogenic compounds also affect hydroperoxide formation rates. The authors have developed new oxidation mechanisms for isoprene, a-pinene and d-limonene based upon recent laboratory results. However, many unknowns remain in the experimental data and it was necessary to complete the a-pinene and d-limonene mechanism by using reactions that were analogous to known reactions for alkenes of lower carbon number. The new mechanism for isoprene, a-pinene and d-limonene was successfully tested against smog chamber runs. The authors will present the new biogenic mechanisms, compare simulations with environmental chamber runs and show results of simulations for typical urban, rural and remote conditions. They will show evaluations of the influence of biogenic emissions on the concentrations of ozone, nitrates, hydroperoxides and peroxynitrates over the regional scale.

  17. Ozone production in the megacities of Tianjin and Shanghai, China: a comparative study

    NASA Astrophysics Data System (ADS)

    Ran, L.; Zhao, C. S.; Xu, W. Y.; Han, M.; Lu, X. Q.; Han, S. Q.; Lin, W. L.; Xu, X. B.; Gao, W.; Yu, Q.; Geng, F. H.; Ma, N.; Deng, Z. Z.; Chen, J.

    2012-04-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs). Ozone pollution was found to be more severe in Tianjin than in Shanghai during the summer, either based on the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive VOC mixture in the Tianjin region. It is found that industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominate. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  18. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    NASA Astrophysics Data System (ADS)

    Ran, L.; Zhao, C. S.; Xu, W. Y.; Han, M.; Lu, X. Q.; Han, S. Q.; Lin, W. L.; Xu, X. B.; Gao, W.; Yu, Q.; Geng, F. H.; Ma, N.; Deng, Z. Z.; Chen, J.

    2012-08-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various non-methane hydrocarbons (NMHCs). Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  19. Fate of three anti-influenza drugs during ozonation of wastewater effluents - degradation and formation of transformation products.

    PubMed

    Fedorova, Ganna; Grabic, Roman; Nyhlen, Jonas; Järhult, Josef D; Söderström, Hanna

    2016-05-01

    Anti-influenza drugs constitute a key component of pandemic preparedness plans against influenza. However, the occurrence of such drugs in water environments, the potential of resistance development in the natural hosts, and the risk for transmission of antiviral resistance to humans call for measures to increase removal in wastewater treatment plants (WWTPs). In this study, removal of three anti-influenza drugs; amantadine (AM), oseltamivir carboxylate (OC) and zanamivir (ZA), and formation/removal of their transformation products during ozonation of wastewater effluents from two Swedish WWTPs in Uppsala and Stockholm were studied. The removal profile of target antivirals and formation/removal of their transformation products were studied by liquid chromatography/high resolution mass spectrometry. 3.5 h of ozone exposure (total dose of ozone 5.95 g) led to complete removal of the three anti-influenza drugs with a degradation in the following order ZA > OC > AM. Two, five and one transformation products were identified and semi-quantified for AM, OC and ZA, respectively. Increasing and later decreasing transformation products concentration followed the decrease in concentration of target compounds. All transformation products detected, except one of AM in wastewater from Stockholm WWTP, were removed at the end of the experiment. The removal efficiency was higher for all studied compounds in wastewater from Uppsala WWTP, which had lower TOC and COD values, less phosphorus, and also higher pH in the water. Ozonation thus offers multiple benefits through its potential to degrade influenza antivirals, hence decrease the risk of environmental resistance development, in addition to degrading other pharmaceuticals and resistant microorganisms. PMID:26746418

  20. By-products formation during degradation of isoproturon in aqueous solution. I: Ozonation.

    PubMed

    Mascolo, G; Lopez, A; James, H; Fielding, M

    2001-05-01

    The degradation of the herbicide isoproturon during its ozonation in aqueous solution has been investigated with the aim of identifying intermediate as well as final by-products formed. At ambient temperature, phosphate-buffered (pH = 7) isoproturon aqueous solutions (10, 10(-1) and 10(-3) mg/l) were ozonated in a semi-batch reactor, under a continuous flow of ozonated air whose ozone concentration was 9 and 0.9 mg O3/lair for the highest and the two lower herbicide concentrations respectively. Measured steady-state ozone concentrations during the two sets of experiments (i.e. the highest and the lower isoproturon concentration) were 1.9 and 0.7 mg O3/l. Under all of the above conditions, isoproturon was always completely removed in a period ranging between 5 and 15 min, essentially by reacting with molecular ozone. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses indicate that primary degradation by-products are formed either by introducing OH groups in the aromatic ring and/or in the side-chain substituents, or by breaking down the isopropyl alkyl chain. The results also show that these primary intermediates are successively degraded yielding low molecular weight compounds such as aldehydes, simple organic acids and alpha-oxo-acids, which have been identified by gas chromatography-electron capture detection (GC-ECD), ion chromatography (IC) and GC-MS, respectively. On the basis of the analytical results, a pathway for the degradation of isoproturon by ozone has been proposed. PMID:11329671

  1. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 6

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1983-01-01

    Evaluated sets of rate constants and photochemical cross sections are presented. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  2. Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 5

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1982-01-01

    Sets of rate constants and photochemical cross sections compiled which were evaluated. The primary application of the data is in the modeling of stratospheric processes on the ozone layer and its possible perturbation by anthropogenic and natural phenomena are emphasized.

  3. APPLICATION OF BAYESIAN MONTE CARLO ANALYSIS TO A LAGRANGIAN PHOTOCHEMICAL AIR QUALITY MODEL. (R824792)

    EPA Science Inventory

    Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...

  4. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment

    EPA Science Inventory

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid m...

  5. Summertime ozone formation in Xi'an and surrounding areas, China

    NASA Astrophysics Data System (ADS)

    Feng, T.; Bei, N.; Huang, R.; Cao, J.; Zhang, Q.; Zhou, W.; Tie, X.; Liu, S.; Zhang, T.; Su, X.; Lei, W.; Molina, L. T.; Li, G.

    2015-11-01

    In the study, the ozone (O3) formation is investigated in Xi'an and surrounding areas, China using the WRF-CHEM model during the period from 22 to 24 August 2013 corresponding to a heavy air pollution episode with high concentrations of O3 and PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm). The WRF-CHEM model generally performs well in simulating the surface temperature and relative humidity compared to the observations and also reasonably reproduces the observed temporal variations of the surface wind speed and direction. The convergence formed in Xi'an and surrounding areas is favorable for the accumulation of pollutants, causing high concentrations of O3 and PM2.5. In general, the calculated spatial patterns and temporal variations of near-surface O3 and PM2.5 are consistent well with the measurement at the ambient monitoring stations. The simulated daily mass concentrations of aerosol constituents, including sulfate, nitrate, ammonium, elemental and organic carbon, are also in good agreement with the filter measurements. High aerosol concentrations in Xi'an and surrounding areas significantly decrease the photolysis frequencies and can reduce near-surface O3 concentrations by more than 50 μg m-3 (around 25 ppb) on average. Sensitivity studies show that the O3 production regime in Xi'an and surrounding areas is complicated, varying from NOx to VOC-sensitive chemistry. The industry emissions contribute the most to the O3 concentrations compared to the natural and other anthropogenic sources, but still do not play a determined role in the O3 formation. The complicated O3 production regime and high aerosol levels constitute a dilemma for O3 control strategies in Xi'an and surrounding areas. In the condition with high O3 and PM2.5 concentrations, decreasing various anthropogenic emissions cannot efficiently mitigate the O3 pollution, and a 50 % reduction of all the anthropogenic emissions only decreases near-surface O3 concentrations by less

  6. Reactive nitrogen partitioning and its relationship to winter ozone events in Utah

    NASA Astrophysics Data System (ADS)

    Wild, R. J.; Edwards, P. M.; Bates, T. S.; Cohen, R. C.; de Gouw, J. A.; Dubé, W. P.; Gilman, J. B.; Holloway, J.; Kercher, J.; Koss, A. R.; Lee, L.; Lerner, B. M.; McLaren, R.; Quinn, P. K.; Roberts, J. M.; Stutz, J.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Williams, E.; Young, C. J.; Yuan, B.; Zarzana, K. J.; Brown, S. S.

    2016-01-01

    High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013 and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx (NO + NO2) remained remarkably similar all three years. Nitric acid comprised roughly half of NOz ( ≡ NOy - NOx) in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. In 2012, N2O5 and ClNO2 were larger components of NOz relative to HNO3. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor of 2.6, and much of this is due to higher aerosol surface area in the high-ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.

  7. The photochemical smog pollution in Beijing

    SciTech Connect

    Xiaoyan Tang

    1996-12-31

    The photochemical smog pollution in summer time has been studied in Beijing area. The systematic field measurements associated with meteorological observation was conducted in 1986, 1987 and 1993. The spatial and temporal distribution of O{sub 3} and specific formation condition of photochemical smog, including vehicle emission sources and meteorological factors etc. in summer were studied and discussed. The prediction of O{sub 3} ambient air concentration in Beijing area in 2000, 2005 and 2010 by model simulation were also discussed.

  8. Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products.

    PubMed

    Borowska, Ewa; Bourgin, Marc; Hollender, Juliane; Kienle, Cornelia; McArdell, Christa S; von Gunten, Urs

    2016-05-01

    The efficiency of wastewater ozonation for the abatement of three nitrogen-containing pharmaceuticals, two antihistamine drugs, cetirizine (CTR) and fexofenadine (FXF), and the diuretic drug, hydrochlorothiazide (HCTZ), was investigated. Species-specific second-order rate constants for the reactions of the molecular, protonated (CTR, FXF) or deprotonated (HCTZ) forms of these compounds with ozone were determined. All three compounds are very reactive with ozone (apparent second order rate constants at pH 7: kO3,pH7 = 1.7·10(5) M(-1)s(-1), 8.5·10(4) M(-1)s(-1) and 9.0·10(3) M(-1)s(-1) for CTR, HCTZ and FXF, respectively). Transformation product (TP) structures were elucidated using liquid chromatography coupled with high-resolution tandem mass spectrometry, including isotope-labeled standards. For cetirizine and hydrochlorothiazide 8 TPs each and for fexofenadine 7 TPs were identified. The main TPs of cetirizine and fexofenadine are their respective N-oxides, whereas chlorothiazide forms to almost 100% from hydrochlorothiazide. In the bacteria bioluminescence assay the toxicity was slightly increased only during the ozonation of cetirizine at very high cetirizine concentrations. The main TPs detected in bench-scale experiments were also detected in full-scale ozonation of a municipal wastewater, for >90% elimination of the parent compounds. PMID:26971810

  9. Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa.

    PubMed

    Zhu, Mingqiu; Gao, Naiyun; Chu, Wenhai; Zhou, Shiqing; Zhang, Zhengde; Xu, Yaqun; Dai, Qi

    2015-10-01

    The increasing use of algal-impacted source waters is increasing concerns over exposure to disinfection byproducts (DBPs) in drinking water disinfection, due to the higher concentrations of DBP precursors in these waters. The impact of pre-ozonation on the formation and speciation of DBPs during subsequent chlorination and chloramination of algal organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), was investigated. During subsequent chlorination, ozonation pretreatment reduced the formation of haloacetonitriles from EOM, but increased the yields of trihalomethanes, dihaloacetic acid and trichloronitromethane from both EOM and IOM. While in chloramination, pre-ozonation remarkably enhanced the yields of several carbonaceous DBPs from IOM, and significantly minimized the nitrogenous DBP precursors. Also, the yield of 1,1-dichloro-2-propanone from IOM was decreased by 24.0% after pre-ozonation during chloramination. Both increases and decreases in the bromine substitution factors (BSF) of AOM were observed with ozone pretreatment at the low bromide level (50μg/L). However, pre-ozonation played little impact on the bromide substitution in DBPs at the high bromide level (500μg/L). This information was used to guide the design and practical operation of pre-ozonation in drinking water treatment plants using algae-rich waters. PMID:26093107

  10. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil.

    PubMed

    Galvão, Elson Silva; Santos, Jane Meri; Reis Junior, Neyval Costa; Stuetz, Richard Michael

    2016-09-01

    Speciation and the influence on the ozone formation potential (OFP) from volatile organic compounds (VOCs) have been studied between February June 2013 in Vitória, ES, Brazil. Passive samplers were installed at three air-quality monitoring stations and a total of 96 samplings were collected. A total of 78 VOCs were characterized by gas chromatograph-mass spectrometer. The predominant group was organic acids, followed by alcohols and substituted aromatics and 14 precursor species were quantified. An analysis correlating concentrations with wind direction was conducted to identify possible sources. The OFP was calculated applying the scale of maximum incremental reactivity proposed by Carter.[ 23 ] Ozone precursors with the greatest OFP such as undecane, toluene, ethylbenzene and m, p-xylene compounds were the most abundant with means of 0.855, 0.365, 0.259 and 0.289 µg m(-3), respectively. The benzene, toluene, ethylbenzene and xylene (BTEX) group was found below the limits considered harmful to the health of the population living in Vitória. The OFP calculated for the precursors group was 22.55 µg m(-3) for the rainy season and 32.11 µg m(-3) for the dry season. The VOC/NOx ratio in Vitória is approximately 1.71, indicating that the region has a VOC-limiting condition for the production of ozone. PMID:26776458

  11. Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential.

    PubMed

    Jeon, Dahee; Kim, Jisoo; Shin, Jaedon; Hidayat, Zahra Ramadhany; Na, Soyoung; Lee, Yunho

    2016-11-15

    Ranitidine can produce high yields of N-nitrosodimethylamine (NDMA) upon chloramination and its presence in water resources is a concern for water utilities using chloramine disinfection. This study assessed the efficiency of water chlorination and ozonation in transforming ranitidine and eliminating its NDMA formation potential (NDMA-FP) by determining moiety-specific reaction kinetics, stoichiometric factors, and elimination levels in real water matrices. Despite the fact that chlorine reacts rapidly with the acetamidine and thioether moieties of ranitidine (k>10(8)M(-1)s(-1) at pH 7), the NDMA-FP decreases significantly only when chlorine reacts with the less reactive tertiary amine (k=3×10(3)M(-1)s(-1) at pH 7) or furan moiety (k=81M(-1)s(-1) at pH 7). Ozone reacts rapidly with all four moieties of ranitidine (k=1.5×10(5)-1.6×10(6)M(-1)s(-1) at pH 7) and its reaction with the tertiary amine or furan moiety leads to complete elimination of the NDMA-FP. Treatments of ranitidine-spiked real water samples have shown that ozonation can efficiently deactivate ranitidine in water and wastewater treatment, while chlorination can be efficient for water containing low concentration of ammonia. This result can be applied to the other structurally similar, potent NDMA precursors. PMID:27381234

  12. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  13. TRANSPORT, RADIATIVE, AND DYNAMICAL EFFECTS OF THE ANTARCTIC OZONE HOLE: A GFDL "SKYHI" MODEL EXPERIMENT

    EPA Science Inventory

    The GFDL 'SKYHI' general circulation model has been used to simulate the effect of the Antarctic "ozone hole" phenomenon on the radiative and dynamical environment of the lower stratosphere. oth the polar ozone destruction and photochemical restoration chemistries are calculated ...

  14. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    PubMed

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution. PMID:22916444

  15. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 µm. The aerosol yield w...

  16. TROPOSPHERIC ULTRAVIOLET RADIATION: ASSESSMENT OF EXISTING DATA AND EFFECT ON OZONE FORMATION

    EPA Science Inventory

    The study to determine the impacts of future changes in stratospheric ozone and surface temperature on urban air quality was carried out in two parts. The first part assesses the quality of existing ultraviolet data and approaches available for using these data to determine chemi...

  17. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    EPA Science Inventory

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  18. FORMATION AND STABILITY OF OZONATION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    A project is proposed that will study a wide-range of by-products resulting from the combined use of ozone (as a pre-oxidation treatment) with terminal disinfectants chlorine and chloramine. This study will first investigate new methodologies for targeting as yet unidentified by-...

  19. Photochemical Synthesis of Nepetanudone.

    PubMed

    Jayan, Swapna; Jones, Paul B

    2015-06-26

    Nepetanudone and nepetaparnone have been suspected of being the products of a photochemical dimerization of nepetapyrone. Both are natural products found in a variety of Nepeta species. The synthesis of (±)-nepetapyrone and subsequent photochemical experiments are described. (±)-Nepetanudone was produced upon irradiation of (±)-nepetapyrone, while (±)-nepetaparnone, a diastereomer of nepetanudone, was not observed. PMID:25978278

  20. Ozone impacts of natural gas development in the Haynesville Shale.

    PubMed

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg

    2010-12-15

    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020. PMID:21086985

  1. Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model.

    PubMed

    Wang, N; Guo, H; Jiang, F; Ling, Z H; Wang, T

    2015-02-01

    Field measurements were simultaneously conducted at a mountain (Mt.) site (Tai Mao Shan, TMS) and an urban site (Tsuen Wan, TW) at the foot of the Mt. TMS in Hong Kong. An interesting event with consecutive high-ozone (O₃) days from 08:00 on 28 Oct. to 23:00 on 03 Nov., 2010 was observed at Mt. TMS, while no such polluted event was found at the foot of the mountain. The Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models were used to understand this event. Model performance evaluation showed that the simulated meteorological parameters and air pollutants were well in agreement with the observations. The index of agreement (IOA) of temperature, relative humidity, wind direction and wind speed were 0.93, 0.83, 0.46 and 0.60, respectively. The multi-day high O₃ episode at Mt. TMS was also reasonably reproduced (IOA=0.68). Horizontally, the photochemical processes determined the O₃ levels in southwestern Pearl River Delta (PRD) and the Pearl River Estuary (PRE), while in eastern and northern PRD, the O₃ destruction was over the production during the event. Vertically, higher O₃ values at higher levels were found at both Mt. TMS and TW, indicating a vertical O₃ gradient over Hong Kong. With the aid of the process analysis module, we found positive contribution of vertical transport including advection and diffusion to O₃ mixing ratios at the two sites, suggesting that O₃ values at lower locations could be affected by O₃ at higher locations via vertical advection and diffusion over Hong Kong. PMID:25461095

  2. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  3. Chemical kinetics and photochemical data for use in stratospheric modeling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1992-01-01

    As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory.

  4. Chemical kinetic and photochemical data for use in stratospheric modelling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Stief, L. J.; Kaufman, F.; Golden, D. M.; Hampton, R. F.; Kurylo, M. J.; Margitan, J. J.; Molina, M. J.; Watson, R. T.

    1979-01-01

    An evaluated set of rate constants and photochemical cross sections were compiled for use in modelling stratospheric processes. The data are primarily relevant to the ozone layer, and its possible perturbation by anthropogenic activities. The evaluation is current to, approximately, January, 1979.

  5. Modeling of simulated photochemical smog with kinetic mechanisms. Volume 1. Final report, July 1978-September 1979

    SciTech Connect

    Whitten, G.Z.; Killus, J.P.; Hogo, H.

    1980-02-01

    Mechanisms that describe the formation of photochemical smog are developed using a computer modeling technique directed toward the simulation of data collected in two smog chambers: an indoor chamber and a dual outdoor chamber. The results of simulating 164 different experiments are presented in Vol. 1. Individual compounds for which specific experiments were simulated and mechanisms developed include the following: formaldehyde, acetaldehyde, ethylene, propylene, butane, and toluene. Experiments in both chambers were simulated for all these compounds. The mechanisms reported describe the decay of the precursor organic compound, formation and decay of secondary organic compounds, conversion of nitrogen oxides, formation of nitrates, and the appearance and decay of ozone. Special emphasis is given to the chemistry of toluene. Also included is a study of a generalized smog-based or carbon-bond mechanism developed in a previous study.

  6. Observations and Modeling of Ozone Photochemistry in Plumes from Petrochemical Facilities near Houston, TX.

    NASA Astrophysics Data System (ADS)

    Trainer, M.; Angevine, W.; Atlas, E.; Dissley, R.; Donnelly, S.; Fehsenfeld, F.; Flocke, F.; Fried, A.; Goldan, P.; Hansel, A.; Holloway, J.; Huebler, G.; Neuman, A.; Nicks, D.; Parrish, D.; Ryerson, T.; Schauffler, S.; Weinheimer, A.; Wert, B.; Wisthaler, A.

    2002-12-01

    Comprehensive airborne measurements of ozone and its precursors, as well as other secondary photochemical products were made during the Texas 2000 Air Quality Study in the plumes of power plants, petrochemical facilities and the Houston urban plume. These measurements indicate particularly rapid and efficient ozone formation as a result of the collocation of significant emissions of NOx and reactive alkenes (mainly ethene and propene) at some of the petrochemical facilities. In a two dimensional Lagrangian plume model the emission rates of NOx, as well as, ethene and propene were adjusted by comparison with the observations downwind from isolated petrochemical facilities. While adopted and reported NOx emission rates compare reasonably well for these facilities, the reported alkene emission rates are much lower than the observation based estimates. The model, using the observation based emission rates, reproduces the observed formation of ozone and other secondary products such as formaldehyde, acetaldehyde and the partitioning of the reactive nitrogen species well in the plumes of petrochemical facilities.

  7. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-01

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model. PMID:26151227

  8. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.

    PubMed

    Chon, Kangmin; Salhi, Elisabeth; von Gunten, Urs

    2015-09-15

    In this study, the changes in UV absorbance at 254 nm (UVA254) and electron donating capacity (EDC) were investigated as surrogate indicators for assessing removal of micropollutants and bromate formation during ozonation of wastewater effluents. To measure the EDC, a novel method based on size exclusion chromatography followed by a post-column reaction was developed and calibrated against an existing electrochemical method. Low specific ozone doses led to a more efficient abatement of EDC than of UVA254. This was attributed to the abatement of phenolic moieties in the dissolved organic matter (DOM), which lose their EDC upon oxidation, but are partially transformed into quinones, which still absorb in the measured UV range. For higher specific ozone doses, the relative EDC abatement was lower than the relative UVA abatement, which can be explained by the oxidation of UV absorbing moieties (e.g. non-activated aromatic compounds), which contribute less to EDC. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), atenolol (ATE), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) varied significantly depending on their reactivity with ozone in the examined specific ozone dose range of 0-1.45 mgO3/mgDOC. The decrease of EE2 and CBZ with high ozone reactivity was linearly proportional to the reduction of the relative residuals of UVA254 and EDC. The abatement of ATE, BZF, IBU, and pCBA with intermediate to low ozone reactivities was not significant in a first phase (UVA254/UVA254,0 = 1.00-0.70; EDC/EDC0 = 1.00-0.56) while their abatement was more efficient than the degradation of the relative residual UVA254 and much more noticeable than the degradation of the relative residual EDC in a second phase (UVA254/UVA254,0 = 0.70-0.25; EDC/EDC0 = 0.56-0.25) because the partially destroyed UV absorbing and electron donating DOM moieties become recalcitrant to ozone attack. Bromate formation was

  9. Prompt formation of organic acids in pulse ozonation of terpenes on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. R.; Colussi, A. J.; Enami, S.

    2010-12-01

    A major atmospheric process, the gas-phase ozonation of terpenes yields suites of products via a cascade of chemically activated intermediates that ranges from primary ozonides to dioxiranes. If a similar mechanism operated in water, as it is generally assumed, such intermediates would be deactivated within picoseconds and, henceforth, unable to produce carboxylic acids in microseconds. Herein we report the online electrospray mass spectrometric detection of (M + 2O - H+) and (M + 3O - H+) carboxylates on the surface of aqueous β-caryophyllene (C15H24, M = 204 Da) microjets exposed to a few ppmv O3(g) for < 10 μs. Since neither species is formed on dry solvent microjets, and both incorporate deuterium from D2O, we infer that carboxylates ensue from the interaction of nascent intermediates with interfacial water via a heretofore unreported mechanism. These interfacial events proceed much faster than in bulk liquids saturated with ozone.

  10. Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Ryerson, T. B.; Trainer, M.; Angevine, W. M.; Brock, C. A.; Dissly, R. W.; Fehsenfeld, F. C.; Frost, G. J.; Goldan, P. D.; Holloway, J. S.; Hübler, G.; Jakoubek, R. O.; Kuster, W. C.; Neuman, J. A.; Nicks, D. K.; Parrish, D. D.; Roberts, J. M.; Sueper, D. T.; Atlas, E. L.; Donnelly, S. G.; Flocke, F.; Fried, A.; Potter, W. T.; Schauffler, S.; Stroud, V.; Weinheimer, A. J.; Wert, B. P.; Wiedinmyer, C.; Alvarez, R. J.; Banta, R. M.; Darby, L. S.; Senff, C. J.

    2003-04-01

    Petrochemical industrial facilities can emit large amounts of highly reactive hydrocarbons and NOx to the atmosphere; in the summertime, such colocated emissions are shown to consistently result in rapid and efficient ozone (O3) formation downwind. Airborne measurements show initial hydrocarbon reactivity in petrochemical source plumes in the Houston, TX, metropolitan area is primarily due to routine emissions of the alkenes propene and ethene. Reported emissions of these highly reactive compounds are substantially lower than emissions inferred from measurements in the plumes from these sources. Net O3 formation rates and yields per NOx molecule oxidized in these petrochemical industrial source plumes are substantially higher than rates and yields observed in urban or rural power plant plumes. These observations suggest that reductions in reactive alkene emissions from petrochemical industrial sources are required to effectively address the most extreme O3 exceedences in the Houston metropolitan area.

  11. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    PubMed

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use. PMID:27016807

  12. The Antarctic ozone minimum - Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1986-01-01

    Photochemical calculations along 'diabatic trajectories' in the meridional phase are used to search for the cause of the dramatic springtime minimum in Antarctic column ozone. The results indicate that the minimum is principally due to catalytic destruction of ozone by high levels of total odd nitrogen. Calculations suggest that these levels of odd nitrogen are transported within the polar vortex and during the polar night from the middle to upper stratosphere and lower mesosphere to the lower stratosphere. The possibility that these levels are related to the 11-year solar cycle and are increased by enhanced formation in the thermosphere and mesosphere during solar maximum conditions is discussed.

  13. Suppression of new particle formation from monoterpene oxidation by NOx

    NASA Astrophysics Data System (ADS)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2014-03-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.

  14. UV photolysis of ClOOCl and the ozone hole.

    PubMed

    Lin, Jim J; Chen, Andrew F; Lee, Yuan T

    2011-07-01

    The photochemistry of the ClO dimer (ClOOCl) plays a central role in the catalytic destruction of polar stratospheric ozone. In spite of decades of intense investigations, some of its laboratory photochemical data had not reached the desired accuracy to allow a reliable simulation of the stratospheric ozone loss until recently. Inevitable impurities in ClOOCl samples have obstructed conventional measurements. In particular, an absorption measurement of ClOOCl in 2007, which gave much lower cross sections than previous studies, implied that the formation of the ozone hole cannot be explained with current chemical models. Scientists have wondered whether the model is insufficient or the data is erroneous. Efforts aiming to resolve this controversy are reviewed in this paper, which emphasizes newly developed experiments to determine two critical photochemical properties of ClOOCl--its absorption cross section and product branching ratio--including the first reported product branching ratio at 351.8 nm photolysis. PMID:21538907

  15. Long wavelength photochemistry of ozone and n-butylferrocene: A matrix isolation study

    NASA Astrophysics Data System (ADS)

    Pinelo, Laura F.; Ault, Bruce S.

    2016-07-01

    The photochemical reaction of ozone and n-butylferrocene has been studied using a combination of argon-matrix isolation, infrared spectroscopy, and theoretical calculations. The dark deposition produced a vivid green matrix that, when irradiated with red light, turned a brownish-red color. This green matrix as well as slightly red-shifted O3 infrared absorptions are indicative of the formation an initial charge transfer complex between ozone and n-butylferrocene. The spectral results support the photodissociation of the complexed ozone with red light (λ ≥ 600 nm) producing an oxygen atom, O(3P), and a dioxygen molecule, O2(3Σ). The O(3P) then reacts with n-butylferrocene to form products consisting of an iron atom with a coordinated n-butylcyclopentadienyl or cyclopentadienyl ring and either: (1) a pyran, (2) an aldehyde, or (3) a bidentate cyclic aldehyde with a seven-membered ring including the iron atom. The photochemical products were characterized with FT-IR spectroscopy, 18O-labeled O3 experiments, and DFT calculations using the B3LYP functional with the 6-311++G(d, 2p) basis set. A possible mechanism for the photochemical reaction is discussed.

  16. Long wavelength photochemistry of ozone and n-butylferrocene: A matrix isolation study

    NASA Astrophysics Data System (ADS)

    Pinelo, Laura F.; Ault, Bruce S.

    2016-07-01

    The photochemical reaction of ozone and n-butylferrocene has been studied using a combination of argon-matrix isolation, infrared spectroscopy, and theoretical calculations. The dark deposition produced a vivid green matrix that, when irradiated with red light, turned a brownish-red color. This green matrix as well as slightly red-shifted O3 infrared absorptions are indicative of the formation an initial charge transfer complex between ozone and n-butylferrocene. The spectral results support the photodissociation of the complexed ozone with red light (λ ≥ 600 nm) producing an oxygen atom, O(3P), and a dioxygen molecule, O2(3Σ). The O(3P) then reacts with n-butylferrocene to form products consisting of an iron atom with a coordinated n-butylcyclopentadienyl or cyclopentadienyl ring and either: (1) a pyran, (2) an aldehyde, or (3) a bidentate cyclic aldehyde with a seven-membered ring including the iron atom. The photochemical products were characterized with FT-IR spectroscopy, 18O-labeled O3 experiments, and DFT calculations using the B3LYP functional with the 6-311++G(d, 2p) basis set. A possible mechanism for the photochemical reaction is discussed.

  17. Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia

    NASA Astrophysics Data System (ADS)

    Itahashi, Syuichi; Hayami, Hiroshi; Uno, Itsushi

    2015-01-01

    Emission source contributions of tropospheric ozone (O3) were comprehensively investigated by using the higher-order decoupled direct method (HDDM) for sensitivity analysis and the ozone source apportionment technology (OSAT) for mass balance analysis in the comprehensive air-quality model with extensions (CAMx). The response of O3 to emissions reductions at various levels in mainland China, Korea, and Japan were estimated and compared with results calculated by the brute force method (BFM) where one model parameter is varied at a time. Emissions were assessed at three receptor sites in Japan that experienced severe pollution events in May 2009. For emissions from China, HDDM assessed O3 response with a bias of only up to 3 ppbv (a relative error of 4.5%) even for a 50% reduction but failed to assess a more extreme reduction. OSAT was reasonably accurate at 100% reduction, with a -4 ppbv (-7%) bias, but was less accurate at moderate ranges of reduction (˜50-70%). For emissions from Korea and Japan, HDDM captured the nonlinear response at all receptor sites and at all reduction levels to within 1% in all but one case; however, the bias of OSAT increased with the increasing reduction of emissions. One possible reason for this is that OSAT does not account for NO titration. To address this, a term for potential ozone (PO; O3 and NO2 together) was introduced. Using of PO instead of O3 improved the performance of OSAT, especially for emissions reductions from Korea and Japan. The proposed approach with PO refined the OSAT results and did not degrade HDDM performance.

  18. Distribution of total ozone and stratospheric ozone in the tropics - Implications for the distribution of tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Larsen, Jack C.

    1987-01-01

    Climatologies of total columnar ozone and integrated stratospheric ozone amounts at low latitudes (15 deg N to 15 deg S), derived from satellite observations, are presented. A significant longitudinal variability in total ozone is present, with highest values generally located between 60 deg W and 60 deg E. The integrated stratospheric component of total ozone, on the other hand, does not exhibit a longitudinal preference for high values. Therefore it is hypothesized that the climatological longitudinal distribution of total ozone reflects the variability of the abundance of tropospheric ozone at low latitudes. Furthermore, it is speculated that in situ photochemical production of ozone resulting from biomass burning may be responsible for the observed enhancement of total ozone at these longitudes.

  19. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.

    PubMed

    Rosenfeldt, Erik J; Linden, Karl G; Canonica, Silvio; von Gunten, Urs

    2006-12-01

    Comparison of advanced oxidation processes (AOPs) can be difficult due to physical and chemical differences in the fundamental processes used to produce OH radicals. This study compares the ability of several AOPs, including ozone, ozone+H2O2, low pressure UV (LP)+H2O2, and medium pressure UV (MP)+H2O2 in terms of energy required to produce OH radicals. Bench scale OH radical formation data was generated for each AOP using para-chlorobenzoic acid (pCBA) as an OH radical probe compound in three waters, Lake Greifensee water, Lake Zurich water, and a simulated groundwater. Ozone-based AOPs were found to be more energy efficient than the UV/H2O2 process at all H2O2 levels, and the addition of H2O2 in equimolar concentration resulted in 35% greater energy consumption over the ozone only process. Interestingly, the relatively high UV/AOP operational costs were due almost exclusively to the cost of hydrogen peroxide while the UV portion of the UV/AOP process typically accounted for less than 10 percent of the UV/AOP cost and was always less than the ozone energy cost. As the *OH radical exposure increased, the energy gap between UV/H2O2 AOP and ozone processes decreased, becoming negligible in some water quality scenarios. PMID:17078993

  20. Large-scale variations in ozone and polar stratospheric clouds measured with airborne lidar during formation of the 1987 ozone hole over Antarctica

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Poole, Lamont R.; Mccormick, M. Patrick; Ismail, Syed; Butler, Carolyn F.; Kooi, Susan A.; Szedlmayer, Margaret M.; Jones, Rod; Krueger, Arlin J.; Tuck, Adrian

    1988-01-01

    A joint field experiment between NASA and NOAA was conducted during August to September 1987 to obtain in situ and remote measurements of key gases and aerosols from aircraft platforms during the formation of the ozone (O3) hole over Antarctica. The ER-2 (advanced U-2) and DC-8 aircraft from the NASA Ames Research Center were used in this field experiment. The NASA Langley Research Center's airborne differential absorption lidar (DIAL) system was operated from the DC-8 to obtain profiles of O3 and polar stratospheric clouds in the lower stratosphere during long-range flights over Antarctica from August 28 to September 29, 1987. The airborne DIAL system was configured to transmit simultaneously four laser wavelengths (301, 311, 622, and 1064 nm) above the DC-8 for DIAL measurements of O3 profiles between 11 to 20 km ASL (geometric altitude above sea level) and multiple wavelength aerosol backscatter measurements between 11 to 24 km ASL. A total of 13 DC-8 flights were made over Antarctica with 2 flights reaching the South Pole. Polar stratospheric clouds (PSC's) were detected in multiple thin layers in the 11 to 21 km ASL altitude range with each layer having a typical thickness of less than 1 km. Two types of PSC's were found based on aerosol backscattering ratios: predominantly water ice clouds (type 2) and clouds with scattering characteristics consistent with binary solid nitric acid/water clouds (type 1). Large-scale cross sections of O3 distributions were obtained. The data provides additional information about a potentially important transport mechanism that may influence the O3 budget inside the vortex. There is also some evidence that strong low pressure systems in the troposphere are associated with regions of lower stratospheric O3. This paper discusses the spatial and temporal variations of O3 inside and outside the polar vortex region during the development of the O3 hole and relates these data to other measurements obtained during this field experiment.

  1. Suppression of new particle formation from monoterpene oxidation by NOx

    NASA Astrophysics Data System (ADS)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2013-10-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory set up. At high NOx conditions (BVOC/NOx < 7, NOx > 23 ppb) no new particles were formed. Instead photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. As soon as [NO] was reduced to below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF orders of magnitude slower than in analogous experiments at low NOx conditions (NOx ~ 300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF suggesting that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent of approximately -2. This exponent indicated that the overall peroxy radical concentration must have been the same whenever NPF appeared. Thus permutation reactions of first generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy radical like molecules limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was less sensitive to NOx concentrations, if at all. Only at very high NOx concentrations yields were reduced by about an order of magnitude.

  2. Ozone Layer Observations

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  3. A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the pre-industrial holocene and the present

    SciTech Connect

    Crutzen, P.J.; Bruehl, C. )

    1993-06-07

    This paper presents a one and one half D calculation of the atmospheric content of CO[sub 2], CH[sub 4], and N[sub 2]O, along with temperature changes, from the glacial, pre-industrial holocene, to the industrial era. The question is what the changes in these gases have done to the atmospheric abundance of ozone and hydroxyl radical. There have been large increases in the first three gases over this time span, and yet the column abundance of ozone has remained relatively constant. Todays heterogeneous reactions with halogen compounds are decreasing ozone abundance, particularly in certain seasons and regions. The atmospheric loss rates of CH[sub 4] have varied considerably over this period.

  4. Impact of greenhouse gases on the Earth's ozone layer

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the

  5. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    NASA Astrophysics Data System (ADS)

    Takehisa, M.; Arai, H.; Arai, M.; Miyata, T.; Sakumoto, A.; Hashimoto, S.; Nishimura, K.; Watanabe, H.; Kawakami, W.; Kuriyama, I.

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users.

  6. The photochemistry of synoptic-scale ozone synthesis Implications for the global tropospheric ozone budget

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Browell, E. V.; Vukovich, F. M.

    1985-01-01

    The oxidation of nonmethane hydrocarbons represents a source of tropospheric ozone that is primarily confined to the boundary layers of several highly industrialized regions. (Each region has an area greater than one million km/sq cm). Using a photochemical model, the global tropospheric ozone budget is reexamined by including the in-situ production from these localized regimes. The results from these calculations suggest that the net source due to this photochemistry, which takes place on the synoptic scale, is approximately as large as the amount calculated for global scale photochemical processes which consider only the oxidation of methane and carbon monoxide. Such a finding may have a considerable impact on our understanding of the tropospheric ozone budget. The model results for ozone show reasonable agreement with the climatological summer distribution of ozone and the oxides of nitrogen at the surface and with the vertical distribution of ozone and nonmethane hydrocarbons obtained during a 1980 field program.

  7. On-road emission characteristics of VOCs from rural vehicles and their ozone formation potential in Beijing, China

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Shen, Xianbao; Cao, Xinyue; Jiang, Xi; Ye, Yu; He, Kebin

    2015-03-01

    This paper is the second in a series of papers aimed at understanding volatile organic compound (VOC) emissions from motor vehicles in Beijing using on-board emission measurements, focusing specifically on rural vehicles (RVs). In this work, 13 RVs, including 6 different 3-wheel (3-W) RVs and 7 different 4-wheel (4-W) RVs, were examined using a portable emissions measurement system (PEMS) as the vehicles were driven on predesigned fixed test routes in rural areas of Beijing. Overall, 50 VOC species were quantified in this study, including 18 alkanes, 5 alkenes, 11 aromatics, 13 carbonyls and 3 other compounds. The average emission factor (EF) of the total VOCs for the 4-W RVs based on the distance traveled was 326.2 ± 129.3 mg/km, which is 2.5 times greater than that of the 3-W RVs. However, the VOC emissions for the 3-W RVs had higher EFs based on their CO2 emissions due to the different fuel economies of the two types of RVs. Formaldehyde, toluene, acetaldehyde, m-xylene, p-xylene, isopentane, benzene, ethylbenzene, n-pentane, 2-methoxy-2-methylpropane and butenal were the dominant VOC species from the RVs, accounting for an average of 68.6% of the total VOC emissions. Overall, the RVs had high proportions of aromatics and carbonyls. The ozone formation potentials (OFPs) were 670.6 ± 227.2 and 1454.1 ± 643.0 mg O3/km for the 3-W and 4-W RVs, respectively, and approximately 60%-70% of the OFP resulted from carbonyls. We estimated that the 3-W and 4-W RVs accounted for approximately 50% and 10%, respectively, of the total OFP caused by diesel vehicles (including diesel trucks and RVs) in Beijing in 2012. Thus, more attention should be given to VOC emissions and their impact on ozone formation.

  8. Engineering photochemical smog through convection towers

    SciTech Connect

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L.; Jacobson, M.Z.; Turco, R.P. |

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  9. Interpretation of ozone temperature correlations. I - Theory

    NASA Technical Reports Server (NTRS)

    Rood, R. B.; Douglass, A. R.

    1985-01-01

    Correlations between ozone and temperature are commonly used to investigate the photochemical and dynamical aspects of satellite-derived ozone data. In this paper, the dynamical contributions to the ozone temperature correlations are examined using simple analytic and numerical models. It is shown that the phase differences between ozone and temperature waves caused by dynamical forcing can mimic the phase relationships predicted for photochemical equilibrium. Furthermore, the dynamical contribution to the phase relationship between ozone and temperature waves is routinely significant for chemistry time scales of approximately 0.5 days and is potentially important for time scales as short as 2 hours during stratospheric warmings. The model results are highly relevant to the analysis of the limb infrared monitor of the stratosphere and solar backscatter ultraviolet data taken during the winter of 1979.

  10. EFFECT OF OZONE ON LEUKOCYTE FUNCTION IN EXPOSED HUMAN SUBJECTS

    EPA Science Inventory

    Evidence from animal studies indicates that ozone (O3), the major component of environmental photochemical smog, depresses various intracellular hydrolytic enzymes and increases susceptibility to microbial infections. It would appear possible that O3 induced alterations in normal...

  11. Constraining ozone-precursor responsiveness using ambient measurements

    EPA Science Inventory

    This study develops probabilistic estimates of ozone (O3) sensitivities to precursoremissions by incorporating uncertainties in photochemical modeling and evaluating modelperformance based on ground-level observations of O3 and oxides of nitrogen (NOx).Uncertainties in model form...

  12. ON THE FORMATION OF OZONE IN SOLAR SYSTEM OXYGEN ICES EXPOSED TO HEAVY IONS

    SciTech Connect

    Ennis, Courtney; Kaiser, Ralf I.

    2012-02-01

    Mimicking the bombardment of icy surfaces with heavy ions from solar system radiation fields, solid-phase molecular oxygen ({sup 32}O{sub 2}) and its isotope labeled analogue ({sup 36}O{sub 2}) were irradiated with monoenergetic carbon (C{sup +}), nitrogen (N{sup +}), and oxygen (O{sup +}) ions in laboratory experiments simulating the interaction of ions from the solar wind and those abundant in planetary magnetospheres. Online Fourier-transform infrared spectroscopy of the irradiated oxygen ices (12 K) showed that the yields of molecular ozone monomer (O{sub 3} {approx} 2 Multiplication-Sign 10{sup -3} molecules eV{sup -1} in {sup 32}O{sub 2}) were independent of the mass of the implanted C{sup +}, N{sup +}, and O{sup +} ions ({Phi}{sub max} = 4.0 Multiplication-Sign 10{sup 14} ions cm{sup -2}). The production of oxygen atoms in the solid was observed in the mid-IR stabilized via the [O{sub 3}...O] van der Waals complex. We expand on this inference by comparing the ozone yields induced by light particles (e{sup -}, H{sup +}, and He{sup +}) to the heavy ions (C{sup +}, N{sup +}, and O{sup +}) to provide compelling evidence that the abundance of radiolytic products in an oxygen-bearing solid is primarily dependent on electronic stopping regimes, which supersedes the contribution of nuclear stopping processes irrespective of the mass of the particle irradiation in the kinetic energy regime of solar wind and magnetospheric particles.

  13. VALIDATION DATA FOR PHOTOCHEMICAL MECHANISMS: EXPERIMENTAL RESULTS

    EPA Science Inventory

    The smog chamber facility of the University of North Carolina (UNC) was used to provide experimental data for the EPA and atmospheric model developers for testing and validating kinetic mechanisms of photochemical smog formation. In the study, 71 dual-experiments were performed u...

  14. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation: New Insights into the Formation and Fates of Highly Oxygenated Gas- and Particle-phase Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Nah, T.; Sanchez, J.; Boyd, C.; Ng, N. L.

    2015-12-01

    The nitrate radical (NO3), one of the most important oxidants in the nocturnal atmosphere, can react rapidly with a variety of biogenic volatile organic compounds (BVOCs) to form high mass concentrations of secondary organic aerosol (SOA) and organic nitrates (ON). Despite its critical importance in aerosol formation, the mechanisms and products from the NO3 oxidation of BVOCs have been largely unexplored, and the fates of their SOA and ON after formation are not well characterized. In this work, we studied the formation of SOA and ON from the NO3 oxidation of α-pinene and β-pinene and investigated for the first time how they evolve during dark and photochemical aging through a series of chamber experiments performed at the Georgia Tech Environmental Chamber (GTEC) facility. The α-pinene and β-pinene SOA are characterized using real-time gas- and particle-phase measurements, which are used to propose mechanisms for SOA and organic nitrate formation and aging. Highly oxygenated gas- and particle-phase ON (containing as many as 9 oxygen atoms) are detected during the NO3 reaction. In addition, the β-pinene SOA and α-pinene SOA exhibited drastically different behavior during photochemical aging. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either NOx reservoirs or sinks depending on the monoterpene precursor. Results from this study provide fundamental data for evaluating the contributions of NO3+monoterpene reactions to ambient OA measured in the Southeastern U.S.

  15. On the temporal and spatial variation of ozone in Cyprus.

    PubMed

    Kleanthous, Savvas; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kalabokas, Pavlos; Lelieveld, Jos

    2014-04-01

    More than sixteen years (1997-2013) of continuous ozone concentrations at the rural Agia Marina (EMEP, 532 ma.s.l.) station in Cyprus, together with a number of ancillary chemical and meteorological parameters have been analyzed on a multiannual, annual and diurnal basis. The observations reveal a) the presence of a prominent seasonality with maxima observed during summer (54±5 ppbv) and the minima in winter (39±3 ppbv) b) a relatively small diurnal variability with the noon levels (50±9 ppbv) being higher by ~4 pbbv compared to nighttime (46±9 ppbv) and c) a non-significant upward trend over the 16 years of 0.11±0.12 ppbv y(-1). To assess the spatial variability over Cyprus, simultaneous measurements in 2011-2012 have been performed at Inia, Stavrovouni and Cavo Greco, three remote marine monitoring sites located to the west, central and the east of the Island, respectively. Our results show that ambient ozone levels over Cyprus are mostly influenced by regional/transported ozone while the local precursor emissions play a minor role in ozone formation. On an annual basis a net ozone reduction of 1.5 and 1.0 ppbv occurs when the air masses originate from northerly and westerly directions, respectively, while this is 2.4 ppbv during southerly wind. This suggests continuous net ozone loss controlled by surface deposition and photochemical destruction, and highlights the importance of long-range transport in controlling ozone levels in Cyprus. PMID:24508856

  16. Airborne measurements of tropospheric ozone destruction and particulate bromide formation in the Arctic

    NASA Technical Reports Server (NTRS)

    Schnell, Russell C.; Sheridan, Patrick J.; Peterson, Richard E.; Oltmans, S. J.

    1988-01-01

    Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The gradient of O3 across the temperature inversion, which is essentially a step function from tropospheric values (35 to 40 ppbv) to 0, is somewhat masked by a 1-min running mean applied to the data. Evidence is presented that O3 destruction beneath the Arctic temperature inversion is the result of a photochemical reaction between gaseous Br compounds and O3 to produce particulate Br aerosol. It is noted that in springtime, O3 at the Alert Baseline Station regularly decreases from 30 to 40 ppbv to near 0 over the period of a few hours to a day. At the same time, there is a production of particulate Br with a near 1.0 anti-correlation to O3 concentration. Surface concentrations of bromoform in the Arctic exhibit a rapid decrease following polar sunrise. AGASP aircraft measurements of filterable bromine particulates in the Arctic (March-April, 1983 and 1986) are shown. The greatest concentrations of Br aerosol (shown as enrichment factors relative to to Na in seawater, EFBR (Na)) were observed in samples collected beneath the surface temperature inversion over ice. Samples collected at the same altitude over open ocean (off Spitzbergen) labeled Marine did not exhibit similar Br enrichments. A second region of particulate Br enrichment was observed in the lower stratosphere, which regularly descends to below 500 mb (5.5 km) in the high Arctic. The NOAA WP-3D flew in the stratosphere on all AGASP flights and occasionally measured O3 concentrations in excess of 300 ppbv.

  17. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna.

    PubMed

    Park, Keun-Young; Choi, Su-Young; Lee, Seung-Hoon; Kweon, Ji-Hyang; Song, Ji-Hyeon

    2016-08-01

    This study compared the two most frequently used disinfectants (i.e., chlorine and ozone) to understand their efficiency in wastewater effluents and the ecotoxicity of disinfection by-products created during chlorination and ozonation. Four trihalomethanes (THMs) and nine haloacetic acids (HAAs) were measured from a chlorine-disinfected sample and two aldehydes (i.e., formaldehydes and acetaldehydes) were analyzed after ozonation. Chlorination was effective for total coliform removal with Ct value in the range of 30-60 mg-min/L. Over 1.6 mg/L of ozone dose and 0.5 min of the contact time presented sufficient disinfection efficiency. The concentration of THMs increased with longer contact time (24 h), but that of HAAs showed little change with contact time. The measured concentration of formaldehyde at the ozone dose of 1.6 mg/L and the contact time of 9 min showed the greatest value in this study, approximately 330 μg L(-1), from which the corresponding ecotoxicity was determined using an indicator species, Daphnia magna. The ecotoxicity results were consistent with the toxicological features judged by occurrence, genotoxicity, and carcinogenicity. Both the disinfection efficiency as well as the DBP formation potential should therefore be considered to avoid harmful impacts on aquatic environments when a disinfection method is used for wastewater effluents. PMID:27213572

  18. Trends in total column ozone measurements

    NASA Technical Reports Server (NTRS)

    Rowland, F. S.; Angell, J.; Attmannspacher, W.; Bloomfield, P.; Bojkov, R. D.; Harris, N.; Komhyr, W.; Mcfarland, M.; Mcpeters, R.; Stolarski, R. S.

    1989-01-01

    It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record.

  19. Children's Models of the Ozone Layer and Ozone Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  20. PHOTOCHEMICAL BOX MODEL (PBM)

    EPA Science Inventory

    This magnetic tape contains the FORTRAN source code, sample input data, and sample output data for the Photochemical Box Model (PBM). The PBM is a simple stationary single-cell model with a variable height lid designed to provide volume-integrated hour averages of O3 and other ph...

  1. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  2. The Contribution of Dynamic Interannual Variability to Ozone Trends

    NASA Technical Reports Server (NTRS)

    Douglass, Anne; Stolarski, Richard

    2004-01-01

    At middle latitudes the total column ozone and the lower stratospheric ozone mixing ratio exhibit natural variability. Models and statistical analyses of observations such as SAGE ozone profiles and TOMS column measurements show that seasonal cycle, solar cycle, and interannual dynamical variability and dynamical phenomena such as the quasi- biennial oscillation all contribute to ozone variability. These must be accounted for when deriving ozone trends. Systematic or random changes in the atmospheric circulation may also contribute to ozone trends. It is presently unclear how much of the ozone trend derived from observations is due to changes in the chemical composition of the stratosphere and how much is due to changes in the atmospheric circulation. We are attempting to resolve this issue by comparing a twenty-five year simulation of ozone with fixed source gas boundary conditions with an identical simulation with time dependent source gas boundary conditions. Both simulations are driven with output from a general circulation model that produces realistic interannual variability in dynamical forcing. The model trend in ozone due to changes in composition is determined from the difference in these simulations. We compare these trends with trends determined from observations and model output using the same analysis techniques. Initial results emphasize the complications to attribution of observed ozone trends to dynamical and photochemical effects that are due to interrelationships between trends in transport, temperature, and photochemical effects. It may not be possible to describe the ozone trend as a superposition of dynamical and photochemical contributions.

  3. A Process-Analysis Based Study of the Ozone Weekend Effect

    SciTech Connect

    Tonse, Shaheen R.; Brown, Nancy J.; Harley, Robert A.; Jin, Ling

    2008-05-09

    We have used the 3D photochemical model CMAQ to simulate the ozone weekend effect, a phenomenon in which urban areas can have higher ozone concentrations on weekends than on weekdays even though NO{sub x} emissions are usually lower on weekends. A simulation containing a weekend is compared to hypothetical simulations in which the anthropogenic emissions for the weekend have been replaced by weekday emissions. The simulations are identical in all other respects. Process analysis is used to explain the results. We find that the weekend effect can be decomposed into an ozone titration component and an odd oxygen component, each contributing about half of the excess weekend ozone. The titration component simply requires that there be lower weekend NO{sub x} emissions. The odd oxygen component additionally requires that on weekends there be a higher rate of OH + (VOC or CO) reactions, brought about by one or more of lower nitric acid formation, higher OH formation from O{sub 3} photolysis, and higher VOC emissions. This causes higher weekend peroxy radical formation. The odd oxygen component also requires sufficiently high NO concentration even on the lower-NO{sub x} weekends to propagate this higher rate of peroxy formation back to higher weekend OH formation.

  4. Methods for the photochemical utilization of solar energy

    NASA Technical Reports Server (NTRS)

    Schwerzel, R. E.

    1978-01-01

    The paper considers the 'ground rules' which govern the efficiency of photochemical solar energy conversion and then summarizes the most promising approaches in each of three categories: photochemically assisted thermal systems for the heating and/or cooling of structures; photogalvanic systems for the production of electrical power in applications, such as photorechargeable batteries or inexpensive 'solar cells'; and photochemical formation of fuels for combustion and for use as chemical feedstocks or foods. Three concepts for the photochemical utilization of solar energy in space are found to be particularly promising: (1) photochemical trans-cis isomerization of indigold dyes for photoassisted heating or cooling, (2) the redox stabilized photoelectrolysis cell for the production of hydrogen (and/or oxygen or other useful chemicals), and (3) the liquid-junction photovoltaic cell for the production of electrical power.

  5. Observation Characteristics and Model Validation of Photochemical Process in Guangzhou,China

    NASA Astrophysics Data System (ADS)

    Deng, Xuejiao

    2015-04-01

    An actinic radiation flux instrument was used for the observations at the Guangzhou Panyu Atmospheric Composition Station during October, 2012, in order to obtain eight types of material photolysis rates which were closely related to the photochemical process. The observation analysis and model validation were then carried out. The results showed that Guangzhou was significantly characterized by photochemical pollution in October, 2012. The maximum daily 8 hour average and the daily 1 hour maximum of the ozone concentration had monthly averages of 121.57 ppb and 155.00 ppb, respectively, which were greater than the national secondary standard by 62.81% and 66.08%, respectively. Also, the eight types of photolysis rates were related to the ozone concentration by different extents. Among these, the maximum daily 8 hour average and the daily 1 hour maximum of the photolysis rate J (NO2) were closely related to the ozone generation, with monthly averages of 7.12•10-3s-1 and 9.97•10-3s-1, respectively. The maximum daily 8 hour average and the daily 1 hour maximum of the photolysis rate J(O1D) were closely related to the ozone depletion, displaying monthly averages of 2.47•10-5s-1 and 3.18•10-5s-1, respectively. The Model CMAQ 5.0 was used for the simulation analysis in the cases of a sunny high ozone process. The results showed that, compared with the measured photolysis rate, the J (NO2) simulation value was approximately 30% to 40% lower, while the J (O1D) simulation result was 5% to 10% higher. Therefore, characteristics of the under-estimation of the photolysis rate J (NO2) and over-estimation of the J (O1D) clearly existed. That is to say, the formation rate of the O3 was under-estimated, while its depletion rate was over-estimated, which was a generally important cause which led to the model having a lower simulation of O3.

  6. Introductory study of the chemical behavior of jet emissions in photochemical smog. [computerized simulation

    NASA Technical Reports Server (NTRS)

    Whitten, G. Z.; Hogo, H.

    1976-01-01

    Jet aircraft emissions data from the literature were used as initial conditions for a series of computer simulations of photochemical smog formation in static air. The chemical kinetics mechanism used in these simulations was an updated version which contains certain parameters designed to account for hydrocarbon reactivity. These parameters were varied to simulate the reaction rate constants and average carbon numbers associated with the jet emissions. The roles of surface effects, variable light sources, NO/NO2 ratio, continuous emissions, and untested mechanistic parameters were also assessed. The results of these calculations indicate that the present jet emissions are capable of producing oxidant by themselves. The hydrocarbon/nitrous oxides ratio of present jet aircraft emissions is much higher than that of automobiles. These two ratios appear to bracket the hydrocarbon/nitrous oxides ratio that maximizes ozone production. Hence an enhanced effect is seen in the simulation when jet exhaust emissions are mixed with automobile emissions.

  7. Reuse of sewage sludge as a catalyst in ozonation--efficiency for the removal of oxalic acid and the control of bromate formation.

    PubMed

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-11-15

    Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO3-) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO3- formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO3- formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO3- formation was demonstrated and the reason for its control in the process of O3/SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase. PMID:23021317

  8. Chlorophyll fluorescence quenching during ozone exposure of leaves of Phaseolus vulgaris (pinto)

    SciTech Connect

    Guralnick, L.J. ); Miller, R.; Heath, R.L. )

    1990-05-01

    During ozone exposure, observations have noted an initial decrease in CO{sub 2} uptake followed by a decrease in stomatal conductance. We examined this response utilizing the technique of fluorescence quenching. Fourteen day old plants were exposed to 0.3 ul/l ozone for 1 hour. Fluorescence quenching was monitored using the Hanstech modulated fluorescence system. This enabled us to measure changes in photochemical quenching (qQ) and non-photochemical quenching (qE) in control and ozone treated plants. Results have indicated no differences in qQ and qE between ozone treated and control plants. We are initiating further studies utilizing different ozone levels.

  9. Photochemical and meteorological conditions during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP)

    NASA Astrophysics Data System (ADS)

    Lefer, B.; Rappenglueck, B.; Flynn, J.; Haman, C.; Luke, W.

    2007-12-01

    The TexAQS II Radical and Aerosol Measurement Project (TRAMP) was an atmospheric chemistry field campaign from mid-August to early October 2006 with the primary objective to better understand processes important to the photochemical cycling of atmospheric radical and aerosol species in the Houston atmospheric environment. Photochemically important trace gas and aerosol species, as well as the relevant meteorological and solar conditions were measured on the roof of an 18-story building at the University of Houston. During the TRAMP campgain, multiple 1-hr and 8-hr ozone exceedences were observed. The basic photochemical conditions (CO, NO, NOx, O3, j-values, AOD) during the both clean and polluted days are compared with meteorological conditions (T, P, RH, clouds, wdir, ws) to identify the factors important to ozone events at this site. Chemical and meteorological conditions during the 2006 ozone season are compared to 2000 and 2005 when similar photochemical measurement campaigns were performed in Houston.

  10. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 1. Ozone formation metrics.

    PubMed

    Griffin, Robert J; Revelle, Meghan K; Dabdub, Donald

    2004-02-01

    Metrics associated with ozone (O3) formation are investigated using the California Institute of Technology (CIT) three-dimensional air-quality model. Variables investigated include the O3 production rate (P(O3)), O3 production efficiency (OPE), and total reactivity (the sum of the reactivity of carbon monoxide (CO) and all organic gases that react with the hydroxyl radical). Calculations are spatially and temporally resolved; surface-level and vertically averaged results are shown for September 9, 1993 for three Southern California locations: Central Los Angeles, Azusa, and Riverside. Predictions indicate increasing surface-level O3 concentrations with distance downwind, in line with observations. Surface-level and vertically averaged P(O3) values peak during midday and are highest downwind; surface P(O3) values are greater than vertically averaged values. Surface OPEs generally are highest downwind and peak during midday in downwind locations. In contrast, peaks occur in early morning and late afternoon in the vertically averaged case. Vertically averaged OPEs tend to be greater than those for the surface. Total reactivities are highest in upwind surface locations and peak during rush hours; vertically averaged reactivities are smaller and tend to be more uniform temporally and spatially. Total reactivity has large contributions from CO, alkanes, alkenes, aldehydes, unsubstituted monoaromatics, and secondary organics. Calculations using estimated emissions for 2010 result in decreases in P(O3) values and reactivities but increases in OPEs. PMID:14968859

  11. Chemical analysis and ozone formation potential of exhaust from dual-fuel (liquefied petroleum gas/gasoline) light duty vehicles

    NASA Astrophysics Data System (ADS)

    Adam, T. W.; Astorga, C.; Clairotte, M.; Duane, M.; Elsasser, M.; Krasenbrink, A.; Larsen, B. R.; Manfredi, U.; Martini, G.; Montero, L.; Sklorz, M.; Zimmermann, R.; Perujo, A.

    2011-06-01

    Measures must be undertaken to lower the transport sector's contribution to anthropogenic emissions. Vehicles powered by liquefied petroleum gas (LPG) are an option due to their reduced emissions of air pollutants compared to engines with conventional fuels. In the present study, ten different dual-fuel LPG/gasoline light duty vehicles were tested, which all complied with European emission level legislation EURO-4. Tests with LPG and gasoline were performed on a chassis dynamometer by applying the New European Driving Cycle (NEDC) and emission factors and ozone formation potentials of both kinds of fuels were compared. The components investigated comprised regulated compounds, CO 2, volatile hydrocarbons and carbonyls. On-line analysis of aromatic species was carried out by resonance-enhanced multiphoton ionization-time-of-flight mass spectrometry (REMPI-TOFMS). We demonstrate that utilization of LPG can entail some environmental benefits by reducing emissions. However, for dual-fuel LPG/gasoline vehicles running on LPG the benefits are less than expected. The main reason is that dual-fuel vehicles usually start the engine up on gasoline even when LPG is selected as fuel. This cold-start phase is crucial for the quality of the emissions. Moreover, we demonstrate an influence on the chemical composition of emissions of vehicle performance, fuel and the evaporative emission system of the vehicles.

  12. Numerical photochemical modeling over Madrid (Spain) mesoscale urban area

    NASA Astrophysics Data System (ADS)

    San Jose, Roberto; Ramirez-Montesinos, Arturo; Marcelo, Luis M.; Sanz, Miguel A.; Rodriguez, Luis M.

    1995-09-01

    Photochemical air quality models provide the most defensible method for relating future air quality to changes in emission, and hence are the foundation for determining the effectiveness of proposed control strategies. In this contribution, we will show results from different photochemical schemes under typical emission conditions for a summer day in the Madrid mesocsale urban area. We will show that complex numerical integrated urban mesoscale models are a powerful tool to predict the ozone levels on this area. The comparison of model simulations at different grid points show an acceptable preliminary behavior. The results presented in this paper are prepared for August 15th, 1991 and the predicted ozone values are compared with those measured at two stations of the Madrid city monitoring network. Results show that the shape is successfully predicted by using the NUFOMO (numerical photochemical model) model. Because of the computer limitations, we have limited the results to this case study. Further investigations will provide additional information to produce a statistical analysis of the results. However, preliminary results show that the NUFOMO model is able to reproduce the measured ozone values.

  13. Numerical study on the impacts of heterogeneous reactions on ozone formation in the Beijing urban area

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhang, Yuanhang; Wang, Wei

    2006-12-01

    The air quality model CMAQ-MADRID (Community Multiscale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization and Dissolution) was employed to simulate summer O3 formation in Beijing China, in order to explore the impacts of four heterogeneous reactions on O3 formation in an urban area. The results showed that the impacts were obvious and exhibited the characteristics of a typical response of a VOC-limited regime in the urban area. For the four heterogeneous reactions considered, the NO2 and HO2 heterogeneous reactions have the most severe impacts on O3 formation. During the O3 formation period, the NO2 heterogeneous reaction increased new radical creation by 30%, raising the atmospheric activity as more NO→NO2 conversion occurred, thus causing the O3 to rise. The increase of O3 peak concentration reached a maximum value of 67 ppb in the urban area. In the morning hours, high NO titration reduced the effect of the photolysis of HONO, which was produced heterogeneously at night in the surface layer. The NO2 heterogeneous reaction in the daytime is likely one of the major reasons causing the O3 increase in the Beijing urban area. The HO2 heterogeneous reaction accelerated radical termination, resulting in a decrease of the radical concentration by 44% at the most. O3 peak concentration decreased by a maximum amount of 24 ppb in the urban area. The simulation results were improved when the heterogeneous reactions were included, with the O3 and HONO model results close to the observations.

  14. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  15. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  16. Materials Integrating Photochemical Upconversion.

    PubMed

    McCusker, Catherine E; Castellano, Felix N

    2016-04-01

    This review features recent experimental work focused on the preparation and characterization of materials that integrate photochemical upconversion derived from sensitized triplet-triplet annihilation, resulting in the conversion of low energy photons to higher energy light, thereby enabling numerous wavelength-shifting applications. Recent topical developments in upconversion include encapsulating or rigidifying fluid solutions to give them mechanical strength, adapting inert host materials to enable upconversion, and using photoactive materials that incorporate the sensitizer and/or the acceptor. The driving force behind translating photochemical upconversion from solution into hard and soft materials is the incorporation of upconversion into devices and other applications. At present, some of the most promising applications of upconversion materials include imaging and fluorescence microscopy, photoelectrochemical devices, water disinfection, and solar cell enhancement. PMID:27573144

  17. Measured and modeled HOCl profiles in the mid-latitude stratosphere : implication for ozone loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Salawitch, R. J.; Blavier, J. -F.; Sen, B.; Toon, G. C.; Jucks, K. W.; Johnson, D. G.; Stachnik, R. A.; Margitan, J. J.

    2004-01-01

    The HOCl catalytic cycle is an efficient ozone loss mechanism in the lower mid-latitude stratosphere. We use a diurnal steady-state photochemical model to calculate profiles of HOCl for conditions encountered by a number of high-altitude balloon flights. To assess how well this model represents ozone loss by the HOCl cycle, we compare our calculations of HOCl and its precursors Cl0 and HO2 with measurements obtained by an FTIR solar absorption spectrometer (MkIV), a far-infrared emission spectrometer (FIRS-2), and a submillimetenvave limb sounder (SLS). We then evaluate these comparisons in light of a number of recent laboratory studies of the main formation mechanism of HOCl, the reaction of Cl0 + HO2. Those studies measured both the reaction rate constant and the quantum yield for a second product pathway, formation of HCl.

  18. The Potential of Photochemical Transition Metal Reactions in Prebiotic Organic Synthesis. I. Observed Conversion of Methanol into Ethylene Glycol as Possible Prototype for Sugar Alcohol Formation

    NASA Astrophysics Data System (ADS)

    Eisch, John J.; Munson, Peter R.; Gitua, John N.

    2004-10-01

    Photochemical processes involving redox reactions between metal ions and organic substrates possess the versatile potential for having harnessed solar energy for prebiotic organic synthesis. The present study in our Laboratory has shown that ultraviolet irradiation of transition metal ions such as of Ni, Co, Fe, Cu and Ti dissolved in primary or secondary alcohols causes photoreduction of the metal ions with the concomitant oxidation of the alcohol to aldehyde or ketone. An observed accompaniment of this novel `light' reaction has been the known `dark' pinacol reaction, whereby the carbonyl derivative underwent bimolecular coupling to the diol by the photogenerated reduced transition metal reagent. These tandem `light-dark' processes possess the potential for the stepwise synthesis of dimeric 1,2-diols from simpler alcohols under conditions that might have prevailed on the prebiotic earth. Experiments reported here have demonstrated that such a tandem `light-dark' conversion of methanol into ethylene glycol, via formaldehyde, does in fact occur, when nickel(II) acetylacetonate solutions in methanol undergo prolonged irradiation at 185-254 nm. Since ethylene glycol can be considered as the simplest sugar alcohol, these findings may provide novel insight into the prebiotic oligomerization of formaldehyde into higher sugar alcohols or even sugars.

  19. Evaluation of Emissions and Photochemical Processing Within Air Quality Model Forecasts During the 2006 TexAQS/GoMACCS Field Study

    NASA Astrophysics Data System (ADS)

    McKeen, S. A.; Grell, G.; Peckham, S.; McQueen, J.; Lee, P.; McHenry, J.; Gong, W.; Bouchet, V.; Tang, Y.; Carmichael, G.; Wilczak, J.; Djalalova, I.; None, N.

    2007-12-01

    Several air-quality models provided real-time forecasts of ozone and PM2.5 aerosols during the TexAQS/GoMACCS field campaign. These forecast models include two versions of the NOAA/ESRL/GSD WRF/Chem model, a developmental version of the NWS/NCEP CMAQ/WRF model, the Canadian Meteorological Services CHRONOS and AURAMS models, the MM5 based MAQSIP model from Baron Advanced Meteorological Services Inc., and the University of Iowa STEM model. Statistical evaluations of each model with the U.S. EPA AIRNow ozone and PM2.5 network over Eastern Texas during the summer of 2006 point to persistent model biases in surface predictions of these two criteria pollutants. Uncertainties in emission inventories and photochemical mechanisms are likely sources of forecast error within each model. Detailed observations of dozens of gas-phase ozone precursors and aerosol components collected on board the NOAA-WP3 aircraft during TexAQS/GoMACCS are used to compare model and observed concentrations. Aircraft flight tracks were designed to characterize up-wind conditions and the evolving composition of urban plumes down-wind of Houston and Dallas, TX within the planetary boundary layer. The aircraft data for 10 flights during September of 2006 are used in three diagnostic evaluations of the various models: characterizing the background composition up-wind of the two urban areas, evaluating the photochemical processing leading to ozone and PM2.5 formation various distances down-wind of the urban sources, and using ratios of above-background concentrations to infer and compare emission ratios of key ozone and PM2.5 precursors.

  20. Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-NaCl irradiations

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Luo, Hao; Jia, Long; Ge, Shuangshuang

    2016-09-01

    Ozone (O3) and secondary organic aerosol (SOA) are important pollutants in the urban atmosphere. Benzene is one of the most important aromatic species in urban air, which could produce O3 and SOA in the presence of NOx (x = 1, 2) and UV light. A series of experiments was carried out to study the effect of particle water on O3 and SOA formation from benzene under various humid conditions in an indoor smog chamber. The results show that the peak O3 concentrations decreased with the increase of RH or the mass concentration of liquid NaCl particles. The peak O3 concentration reduced by 30% as RH increased from 9% to 87% with the similar initial concentrations of NaCl (about 46 μg m-3), and decreased by 10% as the initial NaCl concentrations increased from 36.0 μg m-3 to 152.1 μg m-3 at about 73% RH. The relationships between liquid water content (LWC) and O3 or SOA were investigated. The results show that LWC is the key factor that leads to an opposite effect on O3 and SOA formation from benzene. The peak O3 concentration exponentially decreased 37% as LWC0 increased from zero to 349.8 μg m-3. Heterogeneous reaction of dinitrogen pentoxide (N2O5) with particle water is the major reason for the decrease of O3. The yields of SOA increased from 5.2 to 10.5% as LWC0 increased from zero to 349.8 μg m-3. The relative intensities of bands Osbnd H, Cdbnd O, Csbnd OH and NO3- increased by 22.9, 6.8, 6.7 and 13.1 times respectively as compared with dry condition. Alcohols or hydrates are confirmed to be the major contributors to SOA with increasing LWC.

  1. CMAQ predictions of tropospheric ozone in the U.S. southwest: influence of lateral boundary and synoptic conditions.

    PubMed

    Shi, Chune; Fernando, H J S; Hyde, Peter

    2012-02-01

    Phoenix, Arizona, has been an ozone nonattainment area for the past several years and it remains so. Mitigation strategies call for improved modeling methodologies as well as understanding of ozone formation and destruction mechanisms during seasons of high ozone events. To this end, the efficacy of lateral boundary conditions (LBCs) based on satellite measurements (adjusted-LBCs) was investigated, vis-à-vis the default-LBCs, for improving the predictions of Models-3/CMAQ photochemical air quality modeling system. The model evaluations were conducted using hourly ground-level ozone and NO(2) concentrations as well as tropospheric NO(2) columns and ozone concentrations in the middle to upper troposphere, with the 'design' periods being June and July of 2006. Both included high ozone episodes, but the June (pre-monsoon) period was characterized by local thermal circulation whereas the July (monsoon) period by synoptic influence. Overall, improved simulations were noted for adjusted-LBC runs for ozone concentrations both at the ground-level and in the middle to upper troposphere, based on EPA-recommended model performance metrics. The probability of detection (POD) of ozone exceedances (>75ppb, 8-h averages) for the entire domain increased from 20.8% for the default-LBC run to 33.7% for the adjusted-LBC run. A process analysis of modeling results revealed that ozone within PBL during bulk of the pre-monsoon season is contributed by local photochemistry and vertical advection, while the contributions of horizontal and vertical advections are comparable in the monsoon season. The process analysis with adjusted-LBC runs confirms the contributions of vertical advection to episodic high ozone days, and hence elucidates the importance of improving predictability of upper levels with improved LBCs. PMID:22227303

  2. Ozone from Wildfires: Peering through the Smog

    NASA Astrophysics Data System (ADS)

    Jaffe, D. A.; Baylon, P.; Wigder, N. L.; Collier, S.; Zhou, S.; Zhang, Q.; Alvarado, M. J.

    2014-12-01

    In the western US, many areas are near the current air quality standard for O3. Yet there is substantial inter-annual variability (IAV) in the number of days that exceed the O3 air quality threshold (currently 75 ppbv for an 8-hour average). We propose that wildfires are the dominant cause for this IAV. However there are large uncertainties around O3 production from wildfires due to numerous complicating factors. Ozone formation in wildfire plumes differs substantially from urban O3 production in several ways: substantial variations in the emissions, much larger aerosol loadings, a much greater variety of reactive and oxygenated VOCs, rapid and substantial formation of PAN and very different sources of HOx in the plume. These factors make it challenging to model wildfire impacts on photochemistry in the usual way. In this presentation we will show examples of three common situations based on data from the Mt. Bachelor Observatory: Rapid O3 formation (within one day) in a wildfire plume. Slow, but substantial, O3 formation (over days to a week) in a wildfire plume. No detectable O3 formation in a wildfire plume. We will interpret these results with respect to the observed NOy mixing ratios, the photochemical environment, the combustion efficiency, the plume transport and other factors and suggest some key experiments and modeling studies that can help further our understanding of wildfire O3 production.

  3. Development and testing of a chemical mechanism for atmospheric photochemical transformations of 1,3-butadiene.

    PubMed

    Sexton, Kenneth G; Doyle, Melanie L; Jeffries, Harvey E; Ebersviller, Seth

    2007-03-20

    1,3-Butadiene (BD) in the atmosphere is a highly reactive hazardous air pollutant, which has a short lifetime and is quickly transformed to reaction products, some of which are also toxic. The ability to predict exposure to BD and its' products requires models with chemical mechanisms which can simulate these transformations. The atmospheric photochemical reactions of BD have been studied in the University of North Carolina Outdoor smog chamber, which has been used for over 30 years to test photochemical mechanisms for air quality simulation models for ozone. Experiments have been conducted under conditions of real sunlight and realistic temperature and humidity to study the transformations of BD and to develop and test chemical mechanisms for the simulation of these processes. Experimental observation of time-concentration data of BD decay and the formation of many products is compared to simulation results. This chemical mechanism can be incorporated into air quality simulation models which can be used to estimate ambient concentrations needed for exposure estimates. PMID:17328875

  4. Influence of photochemical processes on traffic-related airborne pollutants in urban street canyon

    NASA Astrophysics Data System (ADS)

    Střižík, Michal; Zelinger, Zdeněk; Kubát, Pavel; Civiš, Svatopluk; Bestová, Iva; Nevrlý, Václav; Kadeřábek, Petr; Čadil, Jan; Berger, Pavel; Černý, Alexandr; Engst, Pavel

    2016-09-01

    The urban street canyon of Legerova Street is part of the north-south trunk road that passes through the centre of Prague and remains an unresolved environmental issue for the capital of the Czech Republic. As many as one hundred thousand cars move through this region per day, and mortality has increased as a result of dust, NOx and other exhaust pollutants. The spatial distribution of pollutants (i.e., NO2, NO, and O3) during a day was measured by combined DIAL/SODAR techniques and spot analyzers that were appropriately located near the bottom of the street canyon. The measurements were performed under different meteorological conditions (autumn versus summer period). A purely physical approach does not provide a true description of reality due to photochemical processes that take place in the street canyon atmosphere. Sunlight in the summer triggers the production of ozone and thereby influences the concentration of NO2. The formation of an inverse non-diffuse vertical concentration distribution of NO2 in the morning hours was found to be related to the direct emission of O3 in the street and its background concentration. Rapid changes of NO2 concentrations were observed over time and in the vertical profile. An approach using a photochemical reactor to describe processes in a street canyon atmosphere was developed and verified as a useful tool for prediction purposes.

  5. Decrease of summer tropospheric ozone concentrations in Antarctica

    NASA Technical Reports Server (NTRS)

    Schnell, R. C.; Stone, R. S.; Liu, S. C.; Oltmans, S. J.; Hofmann, D. J.

    1991-01-01

    It is shown here that surface ozone concentrations at the South Pole in the austral summer decreased by 17 percent over the period 1976-90. Over the same period, solar irradiance at the South Pole in January and February decreased by 7 percent as a result of a 25 percent increase in cloudiness. It is suggested that the trend in the summer ozone concentrations is caused by enhanced photochemical destruction of ozone in the lower troposphere caused by the increased penetration of UV radiation associated with stratospheric ozone depletion, coupled with enhanced transport of ozone-poor marine air from lower latitudes to the South Pole.

  6. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  7. OH radical formation from the gas-phase reaction of ozone with terminal alkenes and the relationship between structure and mechanism

    SciTech Connect

    Paulson, S.E.; Chung, M.Y.; Hasson, A.S.

    1999-10-14

    The reactions of ozone with alkenes have been shown recently to lead to the direct production of OH radicals in quantities that vary from 7 to 100% depending on the structure of the alkene. OH radicals are the most important oxidizing species in the lower atmosphere, and the OH-alkene reaction is a large source of new OH radicals, important in urban and rural air during both day and night. Evidence for OH formation comes both from low-pressure direct measurements and from tracer experiments at high pressure. With the goal of measuring OH formation yields with good precision, a small-ratio relative rate technique was developed. This method uses small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation yields. Here, the authors report OH formation yields for a series of terminal alkenes reacting with ozone. Measured OH yields were 0.29 {+-} 0.05, 0.24 {+-} 0.05, 0.18 {+-} 0.04, and 0.10 {+-} 0.03 for 1-butene, 1-pentene, 1-hexene, and 1-octene, respectively. For the methyl-substituted terminal alkenes methyl propene and 2-methyl-1-butene, OH yields were 0.72 {+-} 0.12 and 0.67 {+-} 0.12, respectively. The results are discussed both in terms of their atmospheric implications and the relationship between structure and OH formation.

  8. Characteristics of C-, N-DBPs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation.

    PubMed

    Zhou, Shiqing; Zhu, Shumin; Shao, Yisheng; Gao, Naiyun

    2015-04-01

    Extracellular organic matter (EOM) and intracellular organic matter (IOM) of Microcystis aeruginosa have been reported to contribute to the formation of carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs). Little is known about DBPs formation from different molecular weight (MW) fractions, especially for N-nitrosodimethylamine (NDMA). This study fractionated EOM and IOM into several MW fractions using a series of ultrafiltration membranes and is the first to report on the C-DBPs and N-DBPs formation from chlorination and chloramination of different MW fractions. Results showed that EOM and IOM were mainly distributed in low-MW (<1 KDa) and high-MW (>100 KDa) fractions. Additionally, the low-MW and high-MW fractions of EOM and IOM generally took an important part in forming C-DBPs and N-DBPs, either in chlorination or in chloramination. Furthermore, the effects of pre-ozonation on the formation of DBPs in subsequent chlorination and chloramination were also investigated. It was found that ozone shifted the high-MW fractions of EOM and IOM into lower MW fractions and increased the C-DBPs and N-DBPs yields to different degrees. As low-MW fractions are more difficult to remove than high-MW fractions by conventional treatment processes, therefore, activated carbon adsorption, nanofiltration (NF) and biological treatment processes can be ideal to remove the low-MW fractions and minimize the formation potential of C-DBPs and N-DBPs. Moreover, the use of ozone should be carefully considered in the treatment of algal-rich water. PMID:25479708

  9. Long-Term Ozone Exposure Attenuates 1-Nitronaphthalene–Induced Cytotoxicity in Nasal Mucosa

    PubMed Central

    Lee, Myong Gyong; Wheelock, Åsa M.; Boland, Bridget; Plopper, Charles G.

    2008-01-01

    1-Nitronaphthalene (1-NN) and ozone are cytotoxic air pollutants commonly found as components of photochemical smog. The mechanism of toxicity for 1-NN involves bioactivation by cytochrome P450s and subsequent adduction to proteins. Previous studies have shown that 1-NN toxicity in the lung is considerably higher in rats after long-term exposure to ozone compared with the corresponding filtered air–exposed control rats. The aim of the present study was to establish whether long-term exposure to ozone alters the susceptibility of nasal mucosa to the bioactivated toxicant, 1-NN. Adult male Sprague-Dawley rats were exposed to filtered air or 0.8 ppm ozone for 8 hours per day for 90 days, followed by a single treatment with 0, 12.5, or 50.0 mg/kg 1-NN by intraperitoneal injection. The results of the histopathologic analyses show that the nasal mucosa of rats is a target of systemic 1-NN, and that long-term ozone exposure markedly lessens the severity of injury, as well as the protein adduct formation by reactive 1-NN metabolites. The antagonistic effects were primarily seen in the nasal transitional epithelium, which corresponds to the main site of histologic changes attributed to ozone exposure (goblet cell metaplasia and hyperplasia). Long-term ozone exposure did not appear to alter susceptibility to 1-NN injury in other nasal regions. This study shows that long-term ozone exposure has a protective effect on the susceptibility of nasal transitional epithelium to subsequent 1-NN, a result that clearly contrasts with the synergistic toxicological effect observed in pulmonary airway epithelium in response to the same exposure regimen. PMID:17901409

  10. Issues on urban ozone: Natural hydrocarbons, urbanization and ozone control strategies

    SciTech Connect

    Cardelino, C.A.

    1991-01-01

    Using the Atlanta metropolitan area as a case study, the author has examined the effects of urbanization and its associated heat island on urban ozone concentrations. As cities grow, two important effects take place: the amount of trees is reduced and there is an increase in ambient temperature due to the urban heat island effect. As the temperature increases, more ozone is photochemically produced, more anthropogenic hydrocarbons are released into the atmosphere, and more biogenic hydrocarbons are emitted from the remaining trees. This increase in hydrocarbons helps produce even more ozone. Numerical simulations using conditions of a typical summertime day in Atlanta suggest that these processes are able to offset the reductions in anthropogenic hydrocarbon emissions caused by emission controls. To study ozone control strategies, the author has developed a photochemical model that utilizes ozone and ozone precursors observations as input data, and is therefore independent of the highly uncertain processes of emission inventories and transport. In contrast with the operation of the current emission-based models, the observation-based model (OBM) is relatively easy to implement and very fast to operate. Using numerical simulations of different meteorological and chemical conditions in Atlanta, he has shown that the ozone sensitivities obtained with the observation-based model, are in very good agreement with similar ozone sensitivities derived using an emission-based model that includes transport. He also illustrated the potential utility of the OBM by applying it to the ozone non-attainment problem in Baton Rouge, Louisiana.

  11. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  12. Photochemical cutting of fabrics

    SciTech Connect

    Piltch, M.S.

    1994-11-22

    Apparatus is described for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged. 1 fig.

  13. The role of chlorine chemistry in Antarctic ozone loss: Implications of new kinetic data

    SciTech Connect

    Rodriguez, J.M.; Ko, M.K.W.; Sze, Nien Dak )

    1990-03-01

    New kinetic data yielding a slower formation rate and larger absorption cross sections of C{ell}{sub 2}O{sub 2} are incorporated into a photochemical model to reassess the role of chlorine chemistry in accounting for the ozone reductions derived from TOMS observations in different regions of the Antarctic polar vortex during 1987. The model is further constrained by existing measurements from the Airborne Antarctic Ozone Experiment (AAOE) and the National Ozone Expedition (NOZE)-II. Calculated concentrations of C{ell}O based on the new kinetic data increase by almost a factor of two between the collar and core regions of the vortex during the second half of September. As a result of the higher concentrations of C{ell}O, the calculated ozone reductions in the vortex core appear to be still consistent with the TOMS observations in spite of the slower rate for the self-reaction of C{ell}O. The agreement in the collar region is poorer. However, uncertainties in mixing, possible spatial inhomogeneities in both C{ell}O and O{sub 3}, the lack of more extensive data, and the uncertainties in the rate data and observations preclude determination of whether additional processes are required to account for the observed ozone removal in the collar region.

  14. Role of deep convective in modulating tropospheric column ozone over Northern region of India: Case study of 2002

    NASA Astrophysics Data System (ADS)

    Kulkarni, Santosh; Ghude, Sachin; Beig, G.

    2012-07-01

    The present study is an attempt to examine some of the probable causes for the unusually low tropospheric column ozone observed over the Eastern India during the exceptional drought event in July 2002. The analysis presented here aimed to characterize the possible link of the convective transport and tropospheric ozone distribution over the highly polluted northern plain of India. We examined horizontal wind and omega (vertical velocity) anomalies over the Indian region to understand the large scale dynamical processes prevailed during July 2002. It was found that, instead of normal large scale ascent over the Indian region, the air was descending in the middle and lower troposphere over vast part of India. This configuration was apparently responsible for less convective upwelling of precursors and likely caused less photochemical ozone formation in the free troposphere over the Eastern Indian during July 2002. The deep convection during Indian summer monsoon may thus have a significant role in regulating the chemical cycles associated with the change in tropospheric ozone over the Indian region. This study has shown that anomalous low TOR values in July 2002 over the eastern Indian region can be linked to the reduced transport of the precursors in the free troposphere than in normal years. To examine this effect the study of climatology of ozone over the period 2000-2009 has been done using vertical profiles data from ozonosonde dataset over three stations in India. Keyword: Tropospheric ozone - Convection - South Asia - Pollution

  15. PHOTOCHEMICAL MODELING APPLIED TO NATURAL WATERS

    EPA Science Inventory

    The study examines the application of modeling photochemical processes in natural water systems. For many photochemical reactions occurring in natural waters, a simple photochemical model describing reaction rate as a function of intensity, radiation attenuation, reactant absorpt...

  16. Relationship between total ozone amounts and stratospheric temperature at Syowa, Antarctica

    SciTech Connect

    Shigeru Chubachi )

    1993-02-20

    Using statistical methods, the relationship has been studied between total ozone and 100-mbar temperatures at Syowa Station, Antarctica (69[degrees]S, 40[degrees]E), based on data obtained in 1961-1981 and 1982-1988, the time of ozone depletion in Antarctica. Results indicate a strong, positive correlation between total ozone and 100-mbar stratospheric temperatures during September-March for all years, but lower ozone values at 100-mbar stratospheric temperatures colder than about [minus]60[degrees]C during the 1982-1988 period. Ozone destruction by heterogeneous photochemical processes is the main cause of ozone depletion over Syowa during the 1980's, with a lesser contribution from a change in air dynamics (heat, ozone, and momentum transport to Antarctica during the austral spring) that increased polar vortex stability, thereby promoting photochemical ozone depression within the vortex. 27 refs., 9 figs., 2 tabs.

  17. Large Scale Atmospheric Chemistry Simulations for 2001: An Analysis of Ozone and Other Species in Central Arizona

    SciTech Connect

    Atherton, C; Bergmann, D; Cameron-Smith, P; Connell, P; Molenkamp, C; Rotman, D; Tannahil, J

    2002-10-08

    A key atmospheric gas is ozone. Ozone in the stratosphere is beneficial to the biosphere because it absorbs a significant fraction of the sun's shorter wavelength ultraviolet radiation. Ozone in the troposphere is a pollutant (respiratory irritant in humans and acts to damage crops, vegetation, and many materials). It affects the Earths energy balance by absorbing both incoming solar radiation and outgoing long wave radiation. An important part of the oxidizing capacity of the atmosphere involves ozone, through a photolysis pathway that leads to the hydroxyl radical (OH). Since reaction with OH is a major sink of many atmospheric species, its concentration controls the distributions of many radiatively important species. Ozone in the troposphere arises from both in-situ photochemical production and transport from the stratosphere. Within the troposphere, ozone is formed in-situ when carbon monoxide (CO), methane (CH4), and non-methane hydrocarbons (NMHCs) react in the presence of nitrogen oxides (NO, = NO + NO2) and sunlight. The photochemistry of the stratosphere differs significantly from that in the troposphere. Within the stratosphere, ozone formation is initiated by the photolysis of 02. Stratospheric ozone may be destroyed via catalytic reactions with NO, H (hydrogen), OH, CI (chlorine) and Br (bromine), or photolysis. In the past, attempts to simulate the observed distributions of ozone (and other important gases) have focused on either the stratosphere or the troposphere. Stratospheric models either employed simplified parameterizations to represent tropospheric chemical and physical processes, or assumed the troposphere behaved as a boundary condition. Likewise, tropospheric models used simplified stratospheric chemistry and transport.

  18. Photochemical properties of trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3): OH reaction rate constant, UV and IR absorption spectra, global warming potential, and ozone depletion potential.

    PubMed

    Orkin, Vladimir L; Martynova, Larissa E; Kurylo, Michael J

    2014-07-17

    Measurements of the rate constant for the gas-phase reactions of OH radicals with trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3) were performed using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The reaction rate constant exhibits a noticeable curvature of the temperature dependence in the Arrhenius plot, which can be represented by the following expression: kt-CFP (220-370 K) = 1.025 × 10(-13) × (T/298)(2.29) exp(+384/T) cm(3 )molecule(-1) s(-1). The room-temperature rate constant was determined to be kt-CFP (298 K) = (3.29 ± 0.10) × 10(-13) cm(3) molecule(-1) s(-1), where the uncertainty includes both two standard errors (statistical) and the estimated systematic error. For atmospheric modeling purposes, the rate constant below room temperature can be represented by the following expression: kt-CFP (220-298 K) = (7.20 ± 0.46) × 10(-13) exp[-(237 ± 16)/T] cm(3) molecule(-1) s(-1). There was no difference observed between the rate constants determined at 4 kPa (30 Torr) and 40 kPa (300 Torr) at both 298 and 370 K. The UV and IR absorption cross sections of this compound were measured at room temperature. The atmospheric lifetime, global warming potential, and ozone depletion potential of trans-CHCl═CHCF3 were estimated. PMID:24955760

  19. Photochemical oxidation: A solution for the mixed waste dilemma

    SciTech Connect

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  20. Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2014-12-01

    Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).

  1. The 2010 Antarctic ozone hole: Observed reduction in ozone destruction by minor sudden stratospheric warmings

    PubMed Central

    de Laat, A. T. J.; van Weele, M.

    2011-01-01

    Satellite observations show that the 2010 Antarctic ozone hole is characterized by anomalously small amounts of photochemical ozone destruction (40-60% less than the 2005-2009 average). Observations from the MLS instrument show that this is mainly related to reduced photochemical ozone destruction between 20-25 km altitude. Lower down between 15-20 km the atmospheric chemical composition and photochemical ozone destruction is unaffected. The modified chemical composition and chemistry between 20-25 km altitude in 2010 is related to the occurrence of a mid-winter minor Antarctic Sudden Stratospheric Warming (SSW). The measurements indicate that the changes in chemical composition are related to downward motion of air masses rather than horizontal mixing, and affect stratospheric chemistry for several months. Since 1979, years with similar anomalously small amounts of ozone destruction are all characterized by either minor or major SSWs, illustrating that their presence has been a necessary pre-condition for reduced Antarctic stratospheric ozone destruction. PMID:22355557

  2. The 2010 Antarctic ozone hole: observed reduction in ozone destruction by minor sudden stratospheric warmings.

    PubMed

    de Laat, A T J; van Weele, M

    2011-01-01

    Satellite observations show that the 2010 Antarctic ozone hole is characterized by anomalously small amounts of photochemical ozone destruction (40-60% less than the 2005-2009 average). Observations from the MLS instrument show that this is mainly related to reduced photochemical ozone destruction between 20-25 km altitude. Lower down between 15-20 km the atmospheric chemical composition and photochemical ozone destruction is unaffected. The modified chemical composition and chemistry between 20-25 km altitude in 2010 is related to the occurrence of a mid-winter minor Antarctic Sudden Stratospheric Warming (SSW). The measurements indicate that the changes in chemical composition are related to downward motion of air masses rather than horizontal mixing, and affect stratospheric chemistry for several months. Since 1979, years with similar anomalously small amounts of ozone destruction are all characterized by either minor or major SSWs, illustrating that their presence has been a necessary pre-condition for reduced Antarctic stratospheric ozone destruction. PMID:22355557

  3. Has the Performance of Regional-Scale Photochemical Modelling Systems Changed over the Past Decade?

    EPA Science Inventory

    This study analyzed summertime ozone concentrations that have been simulated by various regional-scale photochemical modelling systems over the Eastern U.S. as part of more than ten independent studies. Results indicate that there has been a reduction of root mean square errors ...

  4. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation No. 12

    NASA Technical Reports Server (NTRS)

    DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1997-01-01

    This is the twelfth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  5. PHOTOCHEMICAL PRODUCTS IN URBAN MIXTURES ENHANCE INFLAMMATORY RESPONSES IN LUNG CELLS

    EPA Science Inventory

    Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concent...

  6. A single exposure to photochemical smog causes airway irritation and cardiac dysrhythmia in mice

    EPA Science Inventory

    The data presented here shows that a single exposure to photochemical smog causes airway irritation and cardiac dysrhythmia in mice. Smog, which is a complex mixture of particulate matter and gaseous irritants (ozone, sulfur dioxide, reactive aldehydes), as well as components whi...

  7. Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Briggs, R.; Ertem, G.; Ferris, J. P.; Greenberg, J. M.; Mccain, P. J.; Mendoza-Gomez, C. X.; Schutte, W.

    1992-01-01

    Photolysis of mixtures of CO:NH3:H2O at 12 K results in the formation of an organic residue which is not volatile in high vacuum at room temperature. Analysis of this fraction by GC-MS resulted in the detection of C2-C3 hydroxy acids and hydroxy amides, glycerol, urea, glycine, hexamethylene tetramine, formamidine and ethanolamine. Use of isotopically labeled gases made it possible to establish that the observed products were not contaminants. The reaction pathways for the formation of these products were determined from the position of the isotopic labels in the mass spectral fragments. The significance of these findings to the composition of comets and the origins of life is discussed.

  8. An Integrative Study of Photochemical Air Pollution in Hong Kong: an Overview

    NASA Astrophysics Data System (ADS)

    Wang, T.

    2014-12-01

    Hong Kong is situated in the Pearl River delta of Southern China. This region has experienced phenomenal economic growth in the past 30 years. Emissions of large amount of pollutants from urban areas and various industries coupled with subtropical climate have led to frequent occurrences of severe photochemical air pollution. Despite the long-term control efforts of the Hong Kong government, the atmospheric levels of ozone have been increasing in the past decade. To obtain an updated and more complete understanding of photochemical smog, an integrative study has been conducted during 2010-2014. Several intensive measurement campaigns were carried out at urban, suburban and rural sites in addition to the routine observations at fourteen air quality monitoring stations in Hong Kong. Meteorological, photochemical, and chemical-transport modeling studies were conducted to investigate the causes/processes of elevated photochemical pollution . The main activities of this study were to (1) examine the situation and trends of photochemical air pollution in Hong Kong, (2) understand some underlying chemical processes in particular the poorly-understood heterogeneous processes of reactive nitrogen oxides, (3) quantify the local, regional, and super-regional contributions to the ozone pollution in Hong Kong, and (4) review the control policy and make further recommendations based on the science. This paper will give an overview of this study and present some key results on the trends and chemistry of the photochemical pollution in this polluted subtropical region.

  9. Induction of benzo[a]pyrene Mono-oxygenase in liver cell culture by the photochemical generation of active oxygen species. Evidence for the involvement of singlet oxygen and the formation of a stable inducing intermediate.

    PubMed Central

    Paine, A J

    1976-01-01

    1. The photochemical generation of excited states of oxygen in liver cell culture by the mild ilumination of culture medium containing riboflavin, results in stimulation of benzo[a]pyrene 3-mono-oxygenase, a cytochrome P-450-linked mono-oxygenase. 2. The same large increase in mono-oxygenase activity was found when medium containing riboflavin was illuminated in the absence of cells and then stored in the dark for 24h before contact with the cells. From this it may be inferred that stimulation is due to the formation of a stable inducer in the culture medium. Further experiments indicate that the stable inducer is due to the photo-oxidation of an amino acid. 3. Evidence that singlet oxygen is responsible for initiating the stimulation of the mono-oxygenase is based on the use of molecules that scavenge particular active oxygen species. Of all the scavengers tested, only those that scavenge single oxygen inhibited the stimulation. 4. A hypothesis is developed to relate the stimulation of the mono-oxygenase by singlet oxygen in cultured cells to the regulation of the cytochrome P-450 enzyme system in vivo. It is suggested that single oxygen generation within cells may be a common factor linking the many structurally diverse inducers of the enzyme system. PMID:962887

  10. Induction of benzo[a]pyrene Mono-oxygenase in liver cell culture by the photochemical generation of active oxygen species. Evidence for the involvement of singlet oxygen and the formation of a stable inducing intermediate.

    PubMed

    Paine, A J

    1976-07-15

    1. The photochemical generation of excited states of oxygen in liver cell culture by the mild ilumination of culture medium containing riboflavin, results in stimulation of benzo[a]pyrene 3-mono-oxygenase, a cytochrome P-450-linked mono-oxygenase. 2. The same large increase in mono-oxygenase activity was found when medium containing riboflavin was illuminated in the absence of cells and then stored in the dark for 24h before contact with the cells. From this it may be inferred that stimulation is due to the formation of a stable inducer in the culture medium. Further experiments indicate that the stable inducer is due to the photo-oxidation of an amino acid. 3. Evidence that singlet oxygen is responsible for initiating the stimulation of the mono-oxygenase is based on the use of molecules that scavenge particular active oxygen species. Of all the scavengers tested, only those that scavenge single oxygen inhibited the stimulation. 4. A hypothesis is developed to relate the stimulation of the mono-oxygenase by singlet oxygen in cultured cells to the regulation of the cytochrome P-450 enzyme system in vivo. It is suggested that single oxygen generation within cells may be a common factor linking the many structurally diverse inducers of the enzyme system. PMID:962887

  11. Polyimides by Photochemical Cyclopolymerization

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor)

    2005-01-01

    The novel polyimides of this invention are derived from Diels-Alder cyclopolymerization of photochemically generated bisdienes with dienophiles, such as bismaleimides, trismaleimides and mixtures thereof with maleimide endcaps. Irradiation of one or more diketones produces two distinct hydroxy o-quinodimethane (photoenol) intermediates. These intermediates are trapped via Diels-Alder cycloaddition with appropriate dienophiles, e.g., bismaleimide and/or trismaleimides to give the corresponding polyimides in quantitative yields. When bismaleimides, trismaleimides or mixtures thereof with maleimide end-caps are used as the dienophile, the resulting polyimides have glass transition temperatures (Tg) as high as 300 C. Polyimide films can be prepared by ultraviolet irradiation of high solids content varnishes of the monomers in a small amount of solvent, e.g., cyclohexanone, dimethyl formamide, N-methylpyrollidone and the like. These novel polyimides are characterized as having high glass transition temperatures, good mechanical properties and improved processing in the manufacture of adhesives, electronic materials and films.

  12. Polyimides by photochemical cyclopolymerization

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor)

    2005-01-01

    The novel polyimides of this invention are derived from Diels-Alder cyclopolymerization of photochemically generated bisdienes with dienophiles, such as bismaleimides, trismaleimides and mixtures thereof with maleimide end-caps. Irradiation of one or more diketones produces two distinct hydroxy o-quinodimethane (photoenol) intermediates. These intermediates are trapped via Diels-Alder cycloaddition with appropriate dienophiles, e.g., bismaleimide and/or trismaleimides to give the corresponding polyimides in quantitative yields. When bismaleimides, trismaleimides or mixtures thereof with maleimide end-caps are used as the dienophile, the resulting polyimides have glass transition temperatures (Tg) as high as 300? C. Polyimide films can be prepared by ultraviolet irradiation of high solids content varnishes of the monomers in a small amount of solvent, e.g., cyclohexanone, dimethyl formamide, N-methylpyrollidone and the like. These novel polyimides are characterized as having high glass transition temperatures, good mechanical properties and improved processing in the manufacture of adhesives, electronic materials and films.

  13. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    PubMed

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (<23%) on a domain-wide basis, despite significant biogenic volatile organic compounds (VOC) emissions (65-89% of total VOC emissions). However, the production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic

  14. Source attribution of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  15. 76 FR 76725 - Notification of a Public Meeting of the Clean Air Scientific Advisory Committee (CASAC); Ozone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... AGENCY Notification of a Public Meeting of the Clean Air Scientific Advisory Committee (CASAC); Ozone... Advisory Board (SAB) Staff Office announces a public meeting of the CASAC Ozone Review Panel to conduct a peer review of EPA's Integrated Science Assessment for Ozone and Related Photochemical Oxidants...

  16. Effects of bromide and iodide ions on the formation of disinfection by-products during ozonation and subsequent chlorination of water containing biological source matters.

    PubMed

    Zha, Xiao-song; Liu, Yan; Liu, Xiang; Zhang, Qiang; Dai, Rui-hua; Ying, Ling-wen; Wu, Jin; Wang, Jing-ting; Ma, Luming

    2014-02-01

    This study aims to investigate the influence of the coexistence of halogen ions (bromide/iodide) and biological source matters on the speciation and yield of trihalomethanes (THMs), haloacetic acids (HAAs), and N-nitrosodimethylamine (NDMA) during the ozonation and subsequent chlorination of water. The results show that the concentrations of brominated THMs and iodinated THMs increased with increasing bromide and iodide concentration. These results may be attributed to the higher reactivity of hypobromous acid and hypoiodous acid generated from the ozonation and subsequent chlorination in the presence of bromide or iodide ions. The presence of bromide increased the species of brominated HAAs. There was a shift from chlorinated HAAs to brominated HAAs after increasing the concentration of bromide. The effect of iodide on HAA formation was more complex than bromide. For most samples, the concentration of total HAAs (T-HAAs) increased to the maximum and then decreased with increasing iodide concentration. The components of the organic precursors also significantly influenced the formation of brominated and iodinated disinfection by-products (Br-DBPs and I-DBPs). Humic acids produced more CHBr3 (596.60 μg/L) than other organic materials. Microcystis aeruginosa cells produced the most tribromoacetic acid (TBAA, 84.16 μg/L). Furthermore, the yield of NDMA decreased with increasing bromide concentration, indicating that the formation of NDMA was inhibited by the high concentration of bromide. PMID:24122265

  17. CO2 and O3 vertical distributions over the Showa Station, Antarctica before and during the ozone hole formation in 2014, measured by balloon-borne CO2 and O3 instruments

    NASA Astrophysics Data System (ADS)

    Miyaji, K.; Matsumi, Y.; Nakayama, T.; Ouchi, M.; Imasu, R.; Kawasaki, M.

    2015-12-01

    The vertical and horizontal distributions of CO2 mixing ratio in the troposphere and stratosphere are considered to include the information on the source and sink of CO2, as well as transport of air masses in the atmosphere. However, only a limited number of vertical profiles for CO2 mixing ratio, which were typically obtained based on aircraft-based observations, are available. We have originally developed a new balloon-born instrument (CO2 sonde) to measure CO2 vertical profile from surface up to about 10 km in altitude. The ozone hole formation is typically observed in the early spring over Antarctica. To our knowledge, no study focusing on the change in the CO2 vertical profile before and after the ozone hole formation has been reported. In the present study, we launched four CO2 sondes at Syowa Station, Antarctica between June and October in 2014 to obtain CO2 vertical distributions before and during the ozone hole formation. Observations of ozone vertical distributions using traditional ozone sondes were also conducted on the same days. In the presentation, we will report the relationships between the vertical distributions of CO2 and ozone.

  18. UNEP REPORT, "ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: 2002 ASSESSMENT."

    EPA Science Inventory

    United Nations Environment Programme (UNEP) Report on "Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment." The chapters were published in the first issue (No. 1) of the 2003 volume of journal "Photochemical & Photobiological Scien...

  19. EXAMINING THE INFLAMMATORY RESPONSES OF HAPS: THE ROLE OF OZONE AND OTHER PHTOTCHEMICAL TRANSFORMATION PRODUCTS

    EPA Science Inventory

    The chemistry and health effects of individual hazardous air pollutants (HAPS) have been studied for many years. Once released into the atmosphere, HAPS interact with hydroxyl radicals and ozone (created by photochemical processes), to produce many different products, whose toxic...

  20. Laboratory evaluation of a prototype photochemical chamber designed to investigate the health effects of fresh and aged vehicular exhaust emissions

    PubMed Central

    Papapostolou, Vasileios; Lawrence, Joy E.; Diaz, Edgar A.; Wolfson, Jack M.; Ferguson, Stephen T.; Long, Mark S.; Godleski, John J.; Koutrakis, Petros

    2013-01-01

    Laboratory experiments simulating atmospheric aging of motor vehicle exhaust emissions were conducted using a single vehicle and a photochemical chamber. A compact automobile was used as a source of emissions. The vehicle exhaust was diluted with ambient air to achieve carbon monoxide (CO) concentrations similar to those observed in an urban highway tunnel. With the car engine idling, it is expected that the CO concentration is a reasonable surrogate for volatile organic compounds (VOCs) emissions. Varying the amount of dilution of the exhaust gas to produce different CO concentrations, allowed adjustment of the concentrations of VOCs in the chamber to optimize production of secondary organic aerosol (SOA) needed for animal toxicological exposures. Photochemical reactions in the chamber resulted in nitric oxide (NO) depletion, nitrogen dioxide (NO2) formation, ozone (O3) accumulation, and SOA formation. A stable SOA concentration of approximately 40 µg m−3 at a chamber mean residence time of 30 min was achieved. This relatively short mean residence time provided adequate chamber flow output for both particle characterization and animal exposures. The chamber was operated as a continuous flow reactor for animal toxicological tests. SOA mass generated from the car exhaust diluted with ambient air was almost entirely in the ultrafine mode. Chamber performance was improved by using different types of seed aerosol to provide a surface for condensation of semivolatile reaction products, thus increasing the yield of SOA. Toxicological studies using Sprague-Dawley rats found significant increases of in vivo chemiluminescence in lungs following exposure to SOA. PMID:21689011

  1. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin

    EPA Science Inventory

    Areas with close proximity to oil and natural gas operations in rural Utah have experienced winter ozone levels that exceed EPA’s National Ambient Air Quality Standards (NAAQS). Through a collaborative effort, EPA Region 8 – Air Program, ORD, and OAQPS used the Commun...

  2. Products of ozonized arachidonic acid potentiate the formation of DNA single strand breaks in cultured human lung cells

    SciTech Connect

    Kozumbo, W.J.; Hanley, N.M.; Agarwal, S.

    1996-12-31

    In this study we examined the potential for environmental levels of ozone (O{sub 3}) to degrade arachidonic acid (AA), a polyunsaturated fatty acid abundantly present in the lung, into products that can produce DNA single strand breaks (ssb) in cultured human lung cells. Human lung fibroblasts were incubated with 60 {mu}M AA that had been previously exposed to an degraded by 0.4 ppm O{sub 3} (1 hr). Incubation of the cells with O{sub 3}-exposed AA (but not with vehicle alone) for 1 hr at 4{degrees}C and 37{degrees}C produced 555 and 245 rad-equivalents of DNA ssb, respectively, as determined by the DNA alkaline elution technique. These breaks were completely eliminated when the ozonized AA solution was incubated with catalase prior to cell treatment, indicating that H{sub 2}O{sub 2} was solely responsible for damaging DNA. Superoxide dismutase, bovine serum albumin, or heat-inactivated catalase showed little, if any, inhibitory activity. The H{sub 2}O{sub 2} content for only about 40% of the observed breaks. Potentiation of the H{sub 2}O{sub 2}-induced DNA ssb persisted after removal of the carbonyl substances by chromatographic procedures, suggesting that the non-carbonyl component of ozonized AA was the responsible component for inducing augmentation of the observed increases in DNA ssb. Ozonized AA also induced DNA ssb in cultures of the human bronchial epithelial cell line BEAS-2B. Again, these breaks were shown to exceed levels that could be attributed to the presence of H{sub 2}O{sub 2} alone. These results indicate that products of ozonized AA can interact to potentiate DNA ssb in human lung cells. 42 refs., 6 figs., 3 tabs.

  3. Photochemical Formation of Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) from Polybrominated Diphenyl Ethers (PBDEs) in Aqueous Solution under Simulated Solar Light Irradiation.

    PubMed

    Zhao, Qian; Zhao, Huimin; Quan, Xie; He, Xin; Chen, Shuo

    2015-08-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of great concern due to their higher toxicity compared to PBDEs. However, the abiologic process whereby PBDEs are converted to OH-PBDEs in the aquatic environment is not well understood. To explore the possibility of OH-PBDEs photoformation in natural water, the photohydroxylation of BDE-47 has been investigated in aqueous Fe(III) and/or fulvic acid (FA) solutions and in natural lake water under simulated solar light irradiation. The results showed that 6-OH-BDE-47 and 2'-OH-BDE-68 were generated from BDE-47 under these conditions. Based on the identification of derivatives and reactive radicals, OH-PBDEs formation can be ascribed to an addition reaction of ortho-tetra-BDE radical and hydroxyl radical ((•)OH), with or without a subsequent Smiles rearrangement reaction. Since the ortho-tetra-BDE radical could be readily produced by the photolysis of BDE-47, even in pure water, (•)OH production was considered as critical for the photoformation of OH-PBDEs. Thus, it is reasonable to deduce that the photoreactive components (Fe(III), FA) in aqueous solution played an important role through influencing (•)OH generation. Although the yields of OH-PBDEs did not increase regularly with increasing concentration of these photoreactive components in solution, this study suggests a possible abiotic origin of OH-PBDEs formation in the aquatic environment. PMID:26134578

  4. Possible effects of CO{sub 2} increase on the high-speed civil transport impact on ozone

    SciTech Connect

    Pitari, G.; Visconti, G.

    1994-08-20

    This paper discusses the possible impacts on stratospheric ozone abundance from the use of large fleets of high speed civil transport (HSCT) aircraft. An assessment is made of the potential impacts of injections of nitrous oxide, sulfur dioxide and water vapor directly into the lower stratosphere. A carbon dioxide increase is also predicted in the future atmosphere when HSCT would be operational. A three-dimensional model is presented for the radiative and dynamic calculations. For the process of aerosol formation, a two-dimensional photochemical model is presented. 24 refs., 24 figs., 4 tabs.

  5. Surface ozone in the urban area of Manaus, Amazonas, Brazil

    NASA Astrophysics Data System (ADS)

    Souza, R. A. F. D.; Costa, P. S.; Silva, C.; Godoi, R. M.; Martin, S. T.; Tota, J.; Barbosa, H. M.; Pauliquevis, T.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.; Wolf, S. A.; Cirino, G. G.

    2014-12-01

    When nitrogen oxides from vehicle and industrial emissions mix with volatile organic compounds from trees and plants with exposure to sunlight, a chemical reaction occurs contributing to ground-level ozone pollution. The preliminary results of the surface ozone study in urban area of Manaus, Amazonas State, Brazil, are presented for the first intensive operating period (IOP1) of the GoAmazon experiment (February/March 2014). Photochemical ozone production was found to be a regular process, with an afternoon maximum of the ozone mixing ratio of lower than 20 ppbv for cloudy days or clear sky weather. Typical ozone concentrations at mid-day were low (about 10 ppb). On the other hand, several high-value ozone episodes with surface ozone mixing ratios up to three times larger were registered during the dry season of 2013 (September/October). At the beginning of the wet season, the ozone concentration in Manaus decreased significantly, but diurnal variations can be found during the days with rainfall and other fast changes of meteorological conditions. Possible explanations of the nature of pulsations are discussed. Photochemical ozone production by local urban plumes of Manaus is named as a first possible source of the ozone concentration and biomass burning or power plant emissions are suggested as an alternative or an additional source.

  6. Path-integral method for the source apportionment of photochemical pollutants

    NASA Astrophysics Data System (ADS)

    Dunker, A. M.

    2015-06-01

    A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the

  7. Sulfate aerosols and polar stratospheric cloud formation

    SciTech Connect

    Tolbert, M.A. )

    1994-04-22

    Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

  8. Evidence of the mid-latitude impact of Antarctic ozone depletion

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger J.; Matthews, W. Andrew; Newman, Paul A.; Plumb, R. Alan

    1989-01-01

    Record low ozone values found over Australia and New Zealand during December 1987 following the record low Antarctic values of October 1987 are analyzed. The sudden decline of ozone amounts in midmonth rule out photochemical effects as a cause and permit the underlying processes to be investigated on a case study basis. Using data from ozone sondes, radiosondes, the Nimbus-7 total ozone mapping spectrometer, and meteorological analyses from the National Meteorological Center, it is argued that these low values resulted from transport of ozone-poor air from higher latitudes. Thus, it seems that the chemical destruction of ozone over Antarctica in early spring is having an impact on lower latitudes.

  9. Photochemically Synthesized Polyimides

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Tyson, Daniel S.

    2008-01-01

    An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature. The main disadvantages of the conventional approach are the following: Elevated production temperatures can lead to high production costs and can impart thermal stresses to the final products. If the proportions of the multiple monomeric ingredients in a given batch are not exactly correct, the molecular weight and other physical properties of the final material could be reduced from their optimum or desired values. To be useful in the alternative approach, a monomer must have a molecular structure tailored to exploit Diels-Alder trapping of a photochemically generated ortho-quinodimethane. (In a Diels-Alder reaction, a diene combines with a dienophile to form molecules that contain six-membered rings.) In particular, a suitable monomer (see figure) contains ortho-methylbenzophenone connected to a dienophile (in this case, a maleimide) through a generic spacer group. Irradiation with ultraviolet light gives rise to a photochemical intermediate the aforementioned ortho-quinodimethane from the ortho-methylbenzophenone. This group may react with the dienophile on another such monomer molecule to produce an oligomer that, in turn may react in a stepgrowth manner to produce a polyimide. This approach offers several advantages in addition to those mentioned above: The monomer can be stored for a long time because it remains unreactive until exposed to light. Because the monomer is the only active starting ingredient, there is no need for mixing, no concern for ensuring correct proportions of monomers, and the purity of the final product material is inherently high. The use

  10. Mesospheric ozone measurements by SAGE II

    NASA Astrophysics Data System (ADS)

    Chu, D. A.; Cunnold, D. M.

    1994-04-01

    SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.

  11. Mesospheric ozone measurements by SAGE II

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Cunnold, D. M.

    1994-01-01

    SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.

  12. An improved tropospheric ozone database retrieved from SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Rozanov, Alexei; Ladstätter-Weißenmayer, Annette; Ebojie, Felix; Rahpoe, Nabiz; Bötel, Stefan; Burrows, John

    2015-04-01

    Tropospheric ozone is one of the most important green-house gases and the main component of photochemical smog. It is either transported from the stratosphere or photochemically produced during pollution events in the troposphere that threaten the respiratory system. To investigate sources, transport mechanisms of tropospheric ozone in a global view, limb nadir matching (LNM) technique applied with SCIAMACHY instrument is used to retrieve tropospheric ozone. With the fact that 90% ozone is located in the stratosphere and only about 10% can be observed in the troposphere, the usage of satellite data requires highly qualified nadir and limb data. In this study we show an improvement of SCIAMACHY limb data as well as its influence on tropospheric ozone results. The limb nadir matching technique is also refined to increase the quality of the tropospheric ozone. The results are validated with ozone sonde measurements.

  13. Progress in understanding the formation of fine particulate matter and ground-level ozone in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Wang, Tao; Zheng, Junyu; Shao, Min; Wang, Xinming

    2015-12-01

    In the past three decades, the Pearl River Delta of China has been suffered from severe air pollution due to the rapid increase in energy consumption associated with industrialization and urbanization of the region. The number of hazy days, increased from below 20 days in a year before 1970, to more than 150 days a year during 1980 and 2000. The ground-level ozone levels have also on the rise, with hourly concentration of 160 ppbv being observed in Guangzhou and 201 ppbv in nearby Hong Kong (Zhang et al., 2008). The ozone pollution has been difficult to reduce even in air quality improvement program for the Guangzhou Asian Games (Liu et al., 2013).

  14. Evidence for midwinter chemical ozone destruction over Antartica

    SciTech Connect

    Voemel, H.; Hoffmann, D.J.; Oltmans, S.J.; Harris, J.M.

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes where photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.

  15. Polyesters by Photochemical Cyclopolymerization

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor)

    2002-01-01

    The polyesters of this invention are derived from a Diels-Alder cyclopolymerization of a photochemically generated bisdiene with dienophiles, such as di(acrylates), tri (acrylates), di(methacrylates), tri(methacrylates) and mixtures thereof with mono(methacrylates) or mono(acrylate) end-caps. Irradiation of one or more diketones produces two distinct hydroxy o-quinodimethane (photoenol) intermediates. These intermediates are trapped via a Diels-Alder cycloaddition with appropriate dienophiles, e.g., di(acrylates) to give the corresponding in polyesters quantitative yields. When di(acrylates), tri(acrylates) and di and tri(methacrylates) or mixtures thereof with monoacrylate end-caps are used as the dienophile, the resulting polyesters have glass transition temperatures (Tg) as high as 200 C. Polyesters films can be prepared by ultraviolet irradiation of high solids content varnishes of the monomers in a small amount of solvent, e.g., cyclohexanone, dimethyl formamide, N-methylpyrollidone and the like. These polyesters, i.e. polyesters are characterized as having high glass transition temperatures, good mechanical properties and improved processing in the manufacture of composites, adhesives, electronic materials and films.

  16. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment

    NASA Astrophysics Data System (ADS)

    Kwok, R. H. F.; Baker, K. R.; Napelenok, S. L.; Tonnesen, G. S.

    2015-01-01

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to track source impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong nonlinearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, where appropriate use depends on whether source attribution or

  17. Photochemical grid model implementation of VOC, NOx, and O3 source apportionment

    NASA Astrophysics Data System (ADS)

    Kwok, R. H. F.; Baker, K. R.; Napelenok, S. L.; Tonnesen, G. S.

    2014-09-01

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to estimate impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong non-linearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, depending on whether sources of interest are either to be accounted

  18. Ozone-Induced Responses in Croton floribundus Spreng. (Euphorbiaceae): Metabolic Cross-Talk between Volatile Organic Compounds and Calcium Oxalate Crystal Formation

    PubMed Central

    Cardoso-Gustavson, Poliana; Bolsoni, Vanessa Palermo; de Oliveira, Debora Pinheiro; Guaratini, Maria Tereza Gromboni; Aidar, Marcos Pereira Marinho; Marabesi, Mauro Alexandre; Alves, Edenise Segala; de Souza, Silvia Ribeiro

    2014-01-01

    Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3. PMID:25165889

  19. Ozone-induced responses in Croton floribundus Spreng. (Euphorbiaceae): metabolic cross-talk between volatile organic compounds and calcium oxalate crystal formation.

    PubMed

    Cardoso-Gustavson, Poliana; Bolsoni, Vanessa Palermo; de Oliveira, Debora Pinheiro; Guaratini, Maria Tereza Gromboni; Aidar, Marcos Pereira Marinho; Marabesi, Mauro Alexandre; Alves, Edenise Segala; de Souza, Silvia Ribeiro

    2014-01-01

    Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3. PMID:25165889

  20. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    NASA Astrophysics Data System (ADS)

    Grooß, J.-U.; Brautzsch, K.; Pommrich, R.; Solomon, S.; Müller, R.

    2011-12-01

    Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS). As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC) threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  1. Ground-level ozone in Alberta

    SciTech Connect

    Sandhu, H.S.

    1999-11-01

    This literature review on ground-level ozone in Alberta begins with introductory sections on the precursors and products of ozone formation, the chemistry and meteorology of ozone, and atmospheric ozone models. The subsequent section reviews ozone data from ambient air quality monitoring stations in Alberta. The final section discusses trends in ozone concentrations in urban and rural areas of Alberta, human and environmental health effects of ozone, proposed national ambient objectives and Canada-wide standards for ground-level ozone, and options for an ozone concentration standard for Alberta. Appendices include an outline of air pollutant monitoring methods used in Alberta, lists of monitoring stations, and tables of monitoring results for nitrogen oxides, total hydrocarbons, and volatile organic compounds at Calgary and Edmonton sites.

  2. Ground-level ozone in Alberta

    SciTech Connect

    Sandhu, H.S.

    1999-01-01

    This literature review on ground-level ozone in Alberta begins with introductory sections on the precursors and products of ozone formation, the chemistry and meteorology of ozone, and atmospheric ozone models. The subsequent section reviews ozone data from ambient air quality monitoring stations in Alberta. The final section discusses trends in ozone concentrations in urban and rural areas of Alberta, human and environmental health effects of ozone, proposed national ambient objectives and Canada-wide standards for ground-level ozone, and options for an ozone concentration standard for Alberta. Appendices include an outline of air pollutant monitoring methods used in Alberta, lists of monitoring stations, and tables of monitoring results for nitrogen oxides, total hydrocarbons, and volatile organic compounds at Calgary and Edmonton sites.

  3. KINETICS MODEL AND OZONE ISOPLETH PLOTTING PACKAGE

    EPA Science Inventory

    The Kinetics Model and Ozone Isopleth Plotting Package (OZIPP) computer program can be used to simulate ozone formation in urban atmospheres. OZIPP calculates maximum one-hour average ozone concentrations given a set of input assumptions about initial precursor concentrations, li...

  4. Rocket Ozone Data Recovery for Digital Archival

    NASA Astrophysics Data System (ADS)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  5. Photochemical Aging of Organic Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Mang, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Secondary Organic Aerosol (SOA) particles are produced in the atmosphere as a result of oxidation of volatile organic compounds (VOC). Primary Organic Aerosol (POA) particles are directly emitted in the atmosphere by their sources. This research focuses on the mechanisms of direct photochemical processes taking place in model SOA and POA particles, the role of such processes in aging of organic aerosol particles, and the effect of photochemistry on particles' physicochemical properties. To address these questions, artificial SOA and POA particles are investigated with several laboratory-based approaches relying on cavity ring-down spectroscopy and mass-spectrometry. SOA particles generated by dark oxidation of d-Limonene, alpha-Pinene, and beta-Pinene by ozone are all found to absorb radiation in the tropospheric actinic window. The UV absorption photolyzes SOA constituents resulting in a release of small VOC molecules back in the gas-phase, and considerable change in SOA chemical composition. For terpenes featuring a terminal double bond, the main SOA photolysis products are invariably found to be formaldehyde and formic acid. Similar observations are obtained for products of ozonolysis of thin films of unsaturated fatty acids and self-assembled monolayers of unsaturated alkenes. For the case of fatty acids, a very detailed mechanism of ozonolysis and subsequent photolysis is proposed. The photolytic activity is primarily attributed to organic peroxides and aldehydes. These results convincingly demonstrate that photochemical processes occurring inside SOA and POA particles age the particles on time scales that are shorter than typical lifetimes of aerosol particles in the atmosphere.

  6. Seasonal behavior of tropospheric ozone in the Sao Paulo (Brazil) metropolitan area

    NASA Astrophysics Data System (ADS)

    Massambani, Oswaldo; Andrade, Fatima

    This paper presents a study of the seasonal behavior of tropospheric ozone and its precursors in the Sao Paulo Metropolitan Area as observed during 1987. The 03, NO, NO 2, NMHC, and meteorological data were collected at an air quality station in downtown Sao Paulo by the State Environmental Protection Agency (CETESB). The air pollutant measurements were related to both daily total insolation and the number of hours of insolation measured at the Sao Paulo University Climatological Station. Correlations between both radiation parameters and total daily integrated ozone amounts were performed. The total number of sunshine hours was highly correlated to mean hourly ozone concentration values during each month of 1987. The seasonal behavior of NO, NO 2, and NMHC was also studied. Two diurnal peaks in average NO concentration were observed, i.e. one in early morning and one in early evening; both were due to emissions from urban mobile sources. The magnitude of these peaks doubled in value during the winter months. Its diurnal concentration variation was inverse to that of the 03; similar behavior was found for NO 2 and for NMHC. The data presented herein show the influence of solar radiation and of ozone precursors on photochemical smog formation in this tropical region.

  7. Hairlike Percutaneous Photochemical Sensors

    NASA Technical Reports Server (NTRS)

    George, Thomas; Loeb, Gerald

    2004-01-01

    Instrumentation systems based on hairlike fiber-optic photochemical sensors have been proposed as minimally invasive means of detecting biochemicals associated with cancer and other diseases. The fiber-optic sensors could be mass-produced as inexpensive, disposable components. The sensory tip of a fiber-optic sensor would be injected through the patient's skin into subcutaneous tissue. A biosensing material on the sensory tip would bind or otherwise react with the biochemical(s) of interest [the analyte(s)] to produce a change in optical properties that would be measured by use of an external photonic analyzer. After use, a fiber-optic sensor could be simply removed by plucking it out with tweezers. A fiber-optic sensor according to the proposal would be of the approximate size and shape of a human hair, and its sensory tip would resemble a follicle. Once inserted into a patient's subcutaneous tissue, the sensor would even more closely resemble a hair growing from a follicle (see Figure 1). The biosensing material on the sensory tip could consist of a chemical and/or cells cultured and modified for the purpose. The biosensing material would be contained within a membrane that would cover the tip. If the membrane were not permeable by an analyte, then it would be necessary to create pores in the membrane that would be large enough to allow analyte molecules to diffuse to the biosensing material, but not so large as to allow cells (if present as part of the biosensing material) to diffuse out. The end of the fiber-optic sensor opposite the sensory tip would be inserted in a fiberoptic socket in the photonic analyzer.

  8. Mars Ozone Mapping with MAVEN IUVS

    NASA Astrophysics Data System (ADS)

    Lefèvre, F.; Montmessin, F.; Schneider, N. M.; Deighan, J.; Jain, S.; Stewart, I. F.; Stiepen, A.; Chaffin, M.; McClintock, W. E.; Lo, D.; Clarke, J. T.; Holsclaw, G.; Jakosky, B. M.

    2015-12-01

    Ozone (O3) on Mars is a product of the CO2 photolysis by ultraviolet radiation. It is destroyed with a timescale of less than ~1 hour during the day by the H, OH, and HO2 radicals. This tight coupling between O3 and HOx species makes ozone a sensitive tracer of the odd hydrogen chemistry that stabilizes the CO2 atmosphere of Mars, and ozone measurements offer a powerful constraint for photochemical models. Ozone is also expected to be anti-correlated to water vapour, the source of hydrogen radicals HOx. At high latitudes in winter, the absence of H2O prevents the production of HOx and the chemical lifetime of ozone may increase up to several days. In these conditions, the ozone column abundance usually reaches its largest values of the Martian year and ozone turns into a measurable tracer of the polar vortex dynamics. The Imaging Ultraviolet Spectrograph (IUVS) is one of nine science instruments aboard the Mars Atmosphere and Volatile and Evolution (MAVEN) spacecraft. In the apoapse imaging phase, the spacecraft motion carries the IUVS lines-of-sight across the Martian disk while the scan mirror is used to make transverse swaths. This observation mode allows mapping the ozone vertically-integrated column from its signature in the solar ultraviolet flux backscattered by the surface and the atmosphere. This paper will present an overview of the first year of ozone mapping by IUVS. We will describe in particular the last Mars northern winter (2015) when the largest ozone columns have been observed since the beginning of the MAVEN mission. The data will be compared to prior Earth-based observations and to the SPICAM and MARCI ozone datasets. We will also test our quantitative understanding of the Martian ozone by comparing the IUVS observations to our three-dimensional model with photochemistry.

  9. In situ formation of superconducting YBa2Cu3O(7-x) thin films using pure ozone vapor oxidation

    NASA Astrophysics Data System (ADS)

    Berkley, D. D.; Johnson, B. R.; Anand, N.; Beauchamp, K. M.; Conroy, L. E.

    1988-11-01

    Superconducting YBa2Cu3O(7-x) thin films have been prepared by coevaporation using an ozone vapor jet as an oxygen source. Films exhibiting zero resistance at 82 K have been fabricated in situ under high vacuum conditions using substrate temperatures of 700 C without a post-evaporation anneal in oxygen. This process has implications for in situ measurements of fully superconducting surfaces using a variety of probes as well as for the fabrication of devices and structures whose properties are dependent on surfaces and interfaces.

  10. Research opportunities in photochemical sciences

    SciTech Connect

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  11. Processes Affecting Tropospheric Ozone over Africa

    NASA Technical Reports Server (NTRS)

    Diab, Roseanne D.; Thompson, Anne M.

    2004-01-01

    This is a Workshop Report prepared for Eos, the weekly AGU magazine, The workshop took place between 26-28 January 2004 at the University of KwaZulu-Natal in Durban, South Africa and was attended by 26 participants (http//www.geography.und.ac.za). Considerable progress has been made in ozone observations except for northern Africa (large data gaps) and west Africa (to be covered by the French-sponsored AMMA program). The present-day ozone findings were evaluated and reviewed by speakers using Aircraft data (MOZAIC program), NASA satellites (MOPITT, TRMM, TOMS) and ozone soundings (SHADOZ). Besides some ozone gaps, there are challenges posed by the need to assess the relative strengths of photochemical and dynamic influences on the tropospheric ozone budget. Biogenic, biofuels, biomass burning sources of ozone precursors remain highly uncertain. Recent findings (by NASA's Chatfield and Thompson, using satellite and sounding data) show significant impact of Indian Ocean pollution on African ozone. European research on pollutants over the Mediterranean and the middle east, that suggests that ozone may be exported to Africa from these areas, also needs to be considered.

  12. Surface ozone variability at Kislovodsk Observatory

    NASA Technical Reports Server (NTRS)

    Elansky, Nikolay F.; Makarov, Oleg V.; Senik, Irina A.

    1994-01-01

    The results of the surface ozone observations at the Observatory 'Kislovodsk', situated in the North Caucasus at the altitude 2070 m a.s.l., are given. The observatory is in the background conditions and the variations of the surface ozone are determined by the natural dynamic and photochemical processes. The mean value of the concentration and its seasonal variations are very near to those obtained at the high-mountain stations in Alps. The daily variations have the features, which remain stable during all warm period of the year (April-October). These features, including the minimum of the surface ozone at noon, are formed by the mountain-valley circulation. The significant variations of the surface ozone are connected with the unstationary lee waves.

  13. Computer Modelling of Photochemical Smog Formation

    ERIC Educational Resources Information Center

    Huebert, Barry J.

    1974-01-01

    Discusses a computer program that has been used in environmental chemistry courses as an example of modelling as a vehicle for teaching chemical dynamics, and as a demonstration of some of the factors which affect the production of smog. (Author/GS)

  14. AIRCRAFT OBSERVATIONS OF REGIONAL TRANSPORT OF OZONE IN THE NORTHEASTERN UNITED STATES

    EPA Science Inventory

    A regional scale aircraft sampling program was conducted during August 1979 to obtain data for validation of a regional scale photochemical air quality simulation model and for studying the physical and chemical processes important in long-range transport of ozone and ozone precu...

  15. The impact of aerosols on solar ultraviolet radiation an photochemical smog

    SciTech Connect

    Dickerson, R.R.; Kondragunta, S.; Stenchikov, G.

    1997-10-31

    Photochemical smog, or ground-level ozone, has been the most recalcitrant of air pollution problems, but reductions in emissions of sulfur and hydrocarbons may yield unanticipated benefits in air quality. While sulfate and some organic aerosol particles scatter solar radiation back into space and can cool Earth`s surface, they also change the actinic flux of ultraviolet (UV) radiation. Observations and numerical models show that UV-scattering particles in the boundary layer accelerate photochemical reactions and smog production, but UV-absorbing aerosols such as mineral dust and soot inhibit smog production. Results could have major implications for the control of air pollution. 19 refs., 4 figs.

  16. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanisms in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Rodriquez, Jose M.; Hu, Wenjie; Danilin, Michael Y.; Shia, Run-Li

    1998-01-01

    The proposed work utilized Upper Atmosphere Research Satellite (UARS) measurements of short-lived and long-lived species, in conjunction with existing photochemical "box" models, trajectory models, and two-dimensional global models, to elucidate outstanding questions in our understanding of photochemical and dynamical mechanisms in the stratosphere. Particular emphasis was given to arriving at the best possible understanding of the chemical and dynamical contribution to the stratospheric ozone budget. Such understanding will increase confidence in the simulations carried out by assessment models.

  17. Photochemical oxidant transport - Mesoscale lake breeze and synoptic-scale aspects

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Cole, H. S.

    1976-01-01

    Data from routine ozone monitoring in southeastern Wisconsin and limited monitoring of the Milwaukee area by the Environmental Protection Agency are examined. Hourly averages as high as 30 pphm have been recorded in southeastern Wisconsin, and high readings have been reported in rural regions throughout the state. The observations indicate that photochemical oxidants and their nitrogen oxide and reactive hydrocarbon precursers advect from Chicago and northern Indiana into southeastern Wisconsin. There is evidence that synoptic-scale transport of photochemical oxidants occurs, allowing the pollution of entire anticyclones. These results cast doubt on the validity of the Air Quality Control Regions established by amendment to the Clean Air Act of 1970.

  18. Approximate photochemical dynamics of azobenzene with reactive force fields

    SciTech Connect

    Li, Yan; Hartke, Bernd

    2013-12-14

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work)

  19. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  20. Understanding differences in upper stratospheric ozone response to changes in chlorine and temperature as computed using CCMVal-2 models

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-08-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as coupled chemistry-climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary among models for scenarios for ozone depleting substances (ODSs) and greenhouse gases. Photochemical processes control the upper stratospheric ozone level, and there is broad agreement among CCMs in that ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. There are quantitative differences in the ozone sensitivity to chlorine and temperature. We obtain insight into differences in sensitivity by examining the relationship between the upper stratospheric seasonal cycles of ozone and temperature as produced by fourteen CCMs. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Analysis reveals differences in simulated temperature, ozone and reactive nitrogen that lead to differences in the relative importance of ozone loss processes and are most obvious when chlorine levels are close to background. Differences in the relative importance of loss processes underlie differences in simulated sensitivity of ozone to composition change. This suggests 1) that the multimodel mean is not a best estimate of the sensitivity of upper stratospheric ozone to changes in ODSs and temperature; and 2) that the spread of values is not an appropriate measure of uncertainty.

  1. Ozone Production and Loss Rate Measurements in the Middle Stratosphere

    NASA Technical Reports Server (NTRS)

    Jucks, Kenneth W.; Johnson, David G.; Chance, K. V.; Traub, Wesley A.; Salawitch, R. J.; Stachnik, R. A.

    1996-01-01

    The first simultaneous measurements of HO(x), NO(x), and Cl(x) radicals in the middle stratosphere show that NO(x) catalytic cycles dominate loss of ozone (O3) for altitudes between 24 and 38 km; Cl(x) catalytic cycles are measured to be less effective than previously expected; and there is no 'ozone deficit' in the photochemically dominated altitude range from 31 and 38 km, contrary to some previous theoretical studies.

  2. Ozone and ozone byproducts in the cabins of commercial aircraft.

    PubMed

    Weisel, Clifford; Weschler, Charles J; Mohan, Kris; Vallarino, Jose; Spengler, John D

    2013-05-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  3. Diurnal variation of mesospheric ozone

    NASA Astrophysics Data System (ADS)

    Vaughan, G.

    1982-03-01

    Four Petrel rockets were flown from South Uist on October 2, 1979, to investigate the ozone concentration variation predicted by photochemical models between day and night in the mesosphere by means of interference filters that defined an approximately 10 nm bandwidth. The first two rockets contained photometers with wavebands centered at 265 and 290 nm, while the last two employed a single waveband at 265 nm. Results show significant diurnal variation above 54 km, which exceeds a factor of 2 above 65 km and reaches a factor of 10 between night and sunrise at 90 km.

  4. Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism.

    PubMed

    Li, Weiwei; Lu, Xiaowei; Xu, Ke; Qu, Jiuhui; Qiang, Zhimin

    2015-12-01

    The composite mesoporous sieve Ce-MCM-48 (cerium incorporated MCM-48) with different Si/Ce molar ratios were synthesized hydrothermally and characterized with X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area, and pHpzc. Results indicate that Ce-MCM-48, especially with a Si/Ce molar ratio of 66 (i.e., Ce66-MCM-48), could significantly inhibit bromate (BrO3(-)) formation during ozonation of Br(-)-containing water, achieving 91% of inhibition efficiency at pH 7.6 and 25 °C. An acidic or alkaline pH decreased the inhibition efficiency of Ce66-MCM-48 to some extent, but reaction temperature ranging from 15 to 30 °C had no significant impact. By comparing the bromine mass balance, aqueous O3 decomposition, and newly formed H2O2 between O3 and O3/Ce66-MCM-48 processes, the inhibition mechanism was proposed: Ce66-MCM-48 promoted aqueous O3 decomposition to generate hydroxyl radicals (OH) that could merge into H2O2, so the oxidative transformation of Br(-) and HOBr/OBr(-) by O3 and OH was primarily suppressed. The catalytic ability of Ce66-MCM-48 was continuously regenerated through the circulating reactions between Ce(III) and Ce(IV) occurring on the catalyst surface. Besides its inhibition on BrO3(-) formation, Ce66-MCM-48 could also enhance the degradation of refractory organic micropollutants. Because of these distinct merits, Ce66-MCM-48 has potential applications to water treatment by ozone. PMID:26072989

  5. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation.

    PubMed

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria

    2014-01-15

    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. PMID:24095967

  6. Ozone in the upper stratosphere and mesosphere

    SciTech Connect

    Prather, M.J.

    1981-06-20

    A detailed photochemical model of the upper stratosphere and mesosphere is compared with three extensive sets of ozone observations: Atmospheric Explorer-E backscattered ultraviolet experiment (BUV), Nimbus-4 BUV, and rocket flights from Wallops Flight Center (ROCOZ). The Nimbus-4 and rocket observations are most sensitive to ozone between 30 and 50 km, whereas observations from AE-E measure the abundance of ozone up to 70 km. The photochemical model accurately reproduces the observed relationship between BUV intensity and local solar zenith angle, although the absolute calibration on AE-E appears to be in error. The AE-E observations and the model both exhibit a morning-afternoon asymmetry, with more ozone in the morning owing to the build up of HO/sub x/ species in the afternoon. Seasonal changes in atmospheric temperature produce an annual maximum in tropical mesospheric ozone during June-July-August. The amplitude of the observed effect is somewhat larger than calculated by the model. Some problems appear to remain with the presently accepted kinetic rates for HO/sub x/ species in the atmosphere. 71 references, 19 figures, 6 tables.

  7. Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006

    NASA Astrophysics Data System (ADS)

    Sommariva, R.; Brown, S. S.; Roberts, J. M.; Brookes, D. M.; Parker, A. E.; Monks, P. S.; Bates, T. S.; Bon, D.; de Gouw, J. A.; Frost, G. J.; Gilman, J. B.; Goldan, P. D.; Herndon, S. C.; Kuster, W. C.; Lerner, B. M.; Osthoff, H. D.; Tucker, S. C.; Warneke, C.; Williams, E. J.; Zahniser, M. S.

    2010-10-01

    During the Texas Air Quality Study II (TexAQS 2006) campaign, a PEroxy Radical Chemical Amplifier (PERCA) was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+ΣRO2). Day-time mixing ratios of HO2+ΣRO2 between 25 and 110 ppt were observed throughout the study area - the Houston/Galveston region and the Gulf coast of the U.S. - and analyzed in relation to measurements of nitrogen oxides, volatile organic compounds (VOC) and photolysis rates to assess radical sources and sinks in the region. The measurements of HO2+ΣRO2 were used to calculate the in-situ net photochemical formation of ozone. Measured median values ranged from 0.6 ppb/h in clean oceanic air masses up to several tens of ppb/h in the most polluted industrial areas. The results are consistent with previous studies and generally agree with observations made during the previous TexAQS 2000 field campaign. The net photochemical ozone formation rates determined at Barbours Cut, a site immediately south of the Houston Ship Channel, were analyzed in relation to local wind direction and VOC reactivity to understand the relationship between ozone formation and local VOC emissions. The measurements of HO2+ΣRO2 made during the R/V Brown TexAQS 2006 cruise indicate that ozone formation is NOx-limited in the Houston/Galveston region and influenced by highly reactive hydrocarbons, especially alkenes from urban and industrial sources and their photooxidation products, such as formaldehyde.

  8. Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006

    NASA Astrophysics Data System (ADS)

    Sommariva, R.; Brown, S. S.; Roberts, J. M.; Brookes, D. M.; Parker, A. E.; Monks, P. S.; Bates, T. S.; Bon, D.; de Gouw, J. A.; Frost, G. J.; Gilman, J. B.; Goldan, P. D.; Herndon, S. C.; Kuster, W. C.; Lerner, B. M.; Osthoff, H. D.; Tucker, S. C.; Warneke, C.; Williams, E. J.; Zahniser, M. S.

    2011-03-01

    During the Texas Air Quality Study II (TexAQS 2006) campaign, a PEroxy Radical Chemical Amplifier (PERCA) was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+Σ RO2). Day-time mixing ratios of HO2+Σ RO2 between 25 and 110 ppt were observed throughout the study area - the Houston/Galveston region and the Gulf coast of the US - and analyzed in relation to measurements of nitrogen oxides, volatile organic compounds (VOC) and photolysis rates to assess radical sources and sinks in the region. The measurements of HO2+Σ RO2 were used to calculate the in-situ net photochemical formation of ozone. Measured median values ranged from 0.6 ppb/h in clean oceanic air masses up to several tens of ppb/h in the most polluted industrial areas. The results are consistent with previous studies and generally agree with observations made during the previous TexAQS 2000 field campaign. The net photochemical ozone formation rates determined at Barbours Cut, a site immediately south of the Houston Ship Channel, were analyzed in relation to local wind direction and VOC reactivity to understand the relationship between ozone formation and local VOC emissions. The measurements of HO2+Σ RO2 made during the R/V Brown TexAQS 2006 cruise indicate that ozone formation is NOx-limited in the Houston/Galveston region and influenced by highly reactive hydrocarbons, especially alkenes from urban and industrial sources and their photo-oxidation products, such as formaldehyde.

  9. Analysis of a 7 year tropospheric ozone vertical distribution at the Observatoire de Haute Provence

    NASA Technical Reports Server (NTRS)

    Beekmann, Matthias; Ancellet, Gerard; Megie, Gerard

    1994-01-01

    A seven year (1984-90) climatology of tropospheric vertical ozone soundings, performed by electrochemical sondes at the OHP (44 deg N, 6 deg E, 700 m ASL) in Southern France, is presented. Its seasonal variation shows a broad spring/summer maximum in the troposphere. The contribution of photochemical ozone production and transport from the stratosphere to this seasonal variation are studied by a correlative analysis of ozone concentrations and meteorological variables, with emphasis on potential vorticity. This analysis shows the impact of dynamical and photochemical processes on the spatial and temporal ozone variability. In particular, a positive correlation (r = 04.0, significance greater than 99.9 percent) of ozone with potential vorticity is observed in the middle troposphere, reflecting the impact of stratosphere-troposphere exchange on the vertical ozone distribution.

  10. Photochemical trajectory modelling studies of the 1987 Antarctic spring vortex

    NASA Technical Reports Server (NTRS)

    Austin, J.; Jones, R. L.; Mckenna, D. S.

    1988-01-01

    Simulations of Antarctic ozone photochemistry performed using a photochemical model integrated along air parcel trajectories are described. This type of model has a major advantage at high latitudes of being able to simulate correctly the complex interaction between photolysis and temperature fields, which, because of the polar night cannot be represented accurately in a zonally averaged framework. Isentropic air parcel trajectories were computed using Meteorological Office global model analyses and forecast fields from positions along the ER-2 flight paths during the Airborne Antarctic Ozone Experiment in Austral Spring 1987. A photochemical model is integrated along these trajectories using the aircraft observations to initialize constituent concentrations. The model includes additional reactions of the ClO dimer and also bromine reactions, which are thought to play a significant role in Antarctica. The model also includes heterogeneous reactions which are invoked when the air parcel passes through a polar stratospheric cloud (PSC). The existence of a PSC is determined throughout the course of the model integration from the parcel temperature and the saturated vapour pressure of water over an assumed H2O/HNO3 mixture. The air parcel temperature is used to determine the saturated vapor pressure of HNO3 over the same mixture. Mixing ratios which exceed saturation result in condensation of the excess in the model and hence lead to a reduction of the amount of gas phase NO2 available for chemical reaction.

  11. A photochemical model of the martian atmosphere

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Anbar, Ariel D.; Yung, Yuk L; Clancy, R. Todd

    1994-01-01

    The factors governing the amounts of CO, O2, and O3 in the martian atmposphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller that observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constraints for the reaction CO + OH and OH + HO2 within their specified uncertainties. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. We also consider the possiblity that HO(x) radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity.

  12. Box model studies of ClO[sub x] deactivation and ozone loss during the 1991/92 northern hemisphere winter

    SciTech Connect

    Lutman, E.R.; Toumi, R.; Jones, R.L.; Lary, D.J.; Pyle, J.A. )

    1994-06-22

    The authors present the results of a box type photochemical model applied to study the evolution of chlorine oxides in the arctic stratosphere. Earlier studies have shown that during the January 1992 time frame, cold temperatures, and the presence of polar stratospheric clouds mediated the formation of excess quantities of chlorine oxides in the stratosphere. In practice these active gasses did not significantly impact ozone because of the lack of sunlight to drive photochemical reactions. As temperature warmed, this excess active chlorine level relaxed back to more stable reservoir molecules such as ClONO[sub 2]. The authors use their model to study the time evolution of this change, and the impact volcanic aerosols had on the rates.

  13. Tunguska meteor fall of 1908: effects on stratospheric ozone

    SciTech Connect

    Turco, R.P.; Toon, O.B.; Park, C.; Whitten, R.C.; Pollack, J.B.; Noerdlinger, P.

    1981-10-02

    In 1908, when the giant Tunguska meteor disintegrated in the earth's atmosphere over Siberia, it may have generated as much as 30 million metric tons of nitric oxide (NO) in the stratosphere and mesosphere. The photochemical aftereffects of the event have been simulated using a comprehensive model of atmospheric trace composition. Calculations indicate that up to 45 percent of the ozone in the Northern Hemisphere may have been depleted by Tunguska's nitric oxide cloud early in 1909 and large ozone reductions may have persisted until 1912. Measurements of atmospheric transparency by the Smithsonian Astrophysical Observatory for the years 1909 to 1911 show evidence of a steady ozone recovery from unusually low levels in early 1909, implying a total ozone deficit of 30 +- 15 percent. The coincidence in time between the observed ozone recovery and the Tungska meteor fall indicates that the event may provide a test of current ozone depletion theories.

  14. Rate of formation of the ClO dimer in the polar stratosphere: Implications for ozone loss

    SciTech Connect

    Sander, S.P.; Friedl, R.R.; Yung, Y.L. )

    1989-09-08

    The gas-phase recombination of chlorine monoxide (ClO) has been investigated under the conditions of pressure and temperature that prevail in the Antarctic stratosphere during the period of maximum ozone (O{sub 3}) disappearance. Measured rate constants are less than one-half as great as the previously accepted values. One-dimensional model calculations based on the new rate data indicate that currently accepted chemical mechanisms can quantitatively account for the observed O{sub 3} losses in late spring (17 September to 7 October). A qualitative assessment indicates that the existing mechanisms can only account for at most one-half of the measured O{sub 3} depletion in the early spring (28 August to 17 September), indicating that there may be additional catalytic cycles, besides those currently recognized, that destroy O{sub 3}. 27 refs., 2 figs.

  15. Polar stratospheric clouds and ozone depletion

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between t