Science.gov

Sample records for photometer measured precipitable

  1. Analysis of the Performance Characteristics of the Five-Channel Microtops II Sun Photometer for Measuring Aerosol Optical Thickness and Precipitable Water Vapor

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Levy, Robert; Kaufman, Yoram; Remer, Lorraine A.; Li, Rong-Rong; Martins, Vanderlei J.; Holben, Brent N.; Abuhassan, Nader; Slutsker, Ilya; Eck, Thomas F.; Pietras, Christophe; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Five Microtops II sun photometers were studied in detail at the NASA Goddard Space Flight Center (GSFC) to determine their performance in measuring aerosol optical thickness (AOT or Tau(sub alphalambda) and precipitable column water vapor (W). Each derives Tau(sub alphalambda) from measured signals at four wavelengths lambda (340, 440, 675, and 870 nm), and W from the 936 nm signal measurements. Accuracy of Tau(sub alphalambda) and W determination depends on the reliability of the relevant channel calibration coefficient (V(sub 0)). Relative calibration by transfer of parameters from a more accurate sun photometer (such as the Mauna-Loa-calibrated AERONET master sun photometer at GSFC) is more reliable than Langley calibration performed at GSFC. It was found that the factory-determined value of the instrument constant for the 936 nm filter (k= 0.7847) used in the Microtops' internal algorithm is unrealistic, causing large errors in V(sub 0(936)), Tau(sub alpha936), and W. Thus, when applied for transfer calibration at GSFC, whereas the random variation of V(aub 0) at 340 to 870 nm is quite small, with coefficients of variation (CV) in the range of 0 to 2.4%, at 936 nm the CV goes up to 19%. Also, the systematic temporal variation of V(sub 0) at 340 to 870 nm is very slow, while at 936 nm it is large and exhibits a very high dependence on W. The algorithm also computes Tau(sub alpha936) as 0.91Tau(sub alpha870), which is highly simplistic. Therefore, it is recommended to determine Tau(sub alpha936) by logarithmic extrapolation from Tau(sub alpha675) and Tau(sub alpha 870. From the operational standpoint of the Microtops, apart from errors that may result from unperceived cloud contamination, the main sources of error include inaccurate pointing to the Sun, neglecting to clean the front quartz window, and neglecting to calibrate correctly. If these three issues are adequately taken care of, the Microtops can be quite accurate and stable, with root mean square (rms

  2. Search for lightning-induced electron precipitation with rocket-borne photometers

    SciTech Connect

    Massey, R.D.; McCarthy, M.P.; Parks, G.K.

    1990-11-01

    Photometers at 3,914{angstrom} and 5,577{angstrom} and an optical imager were part of an experimental package launched on a sounding rocket in the 1987 Wave Induced Particle Precipitation (WIPP) campaign at Wallops Island, Virginia. The objective was to measure lightning-induced electron precipitation (LEP) by means of its optical signature. This was the first attempt to measure LEP using rocket-borne optical instrumentation. Launch criteria included nearby thunderstorm activity and ground-based observations of Trimpi events. Lightning flashes are clearly discernible in the data. The photometer data was also characterized by large spin and precession modulations in the photon count rate, consistent with elevated steady particle fluxes in the northern portion of the instrument field of view. No evidence of LEP was observed by the photometers or onboard particle detectors (Arnoldy and Kinter, 1989). Analysis of the data has enabled the authors to place an upper limit of 8 {times} 10{sup {minus}4} ergs-cm{sup {minus}2}-sec{sup {minus}1} on any burst precipitation energy flux that many have occurred during the rocket flight in the regions explored by the photometers.

  3. Photometer for measuring intensity and rhodopsin distributions in intact eyes

    NASA Astrophysics Data System (ADS)

    Williams, Theodore P.; Webbers, Jacob P. P.

    1995-09-01

    We describe a photometer that measures light transmitted through excised eyes. The instrument, an ocular transmission photometer, employs sensitive single photon-counting techniques, and its usefulness has been tested by the study of the absorbance of rhodopsin in retinal rod cells in situ. We find that absorbances of rat rods agree well with those predicted by microspectrophotometry without making corrections for cellular mosaics. Additional tests of the ocular transmission photometer show that (a) the instrument is sensitive to subtle differences in rhodopsin absorbance, known to exist in specific locations in the rat retina, and (b) using the rate of rhodopsin bleaching as the measure of intensity, we can determine the intensity distribution at several locations across the rat retina.

  4. A Photometer for Measuring Population Growth in Yeast.

    ERIC Educational Resources Information Center

    Tatina, Robert; Hartley, Tamela; Thomas, Danita

    1999-01-01

    Describes the construction and use of an inexpensive, portable photometer designed specifically for estimating population sizes in yeast cultures. Suggests activities for use with the photometer. (WRM)

  5. Comparison of independent integrated water vapour estimates from GPS and sun photometer measurements and a meteorological model

    NASA Astrophysics Data System (ADS)

    Pugnaghi, S.; Boccolari, M.; Fazlagić, S.; Pacione, R.; Santangelo, R.; Vedel, H.; Vespe, F.

    Measurements using the Global Positioning System (GPS) are affected by the so-called tropospheric delay. Of this, the so-called wet delay is related mainly to the amount of water vapour along the path of the GPS signal through the troposphere. Precise knowledge of the abundance of water vapour, in space and time, is important for meteorology, both in forecasting and now-casting as well as in climate studies. Both because water vapour is the predecessor of precipitation, which is a forecast product, and because a very significant fraction of the energy released to the atmosphere comes from latent heat via water vapour. Despite the high variability of water vapour compared to other meteorological fields, like pressure and wind, water vapour observations are scarce; wherefore additional measurements of water vapour are expected to benefit meteorology. Water vapour is crucial for the development of the small scale, but sometimes very severe,precipitation events which are often seen at mid latitudes, and which are very hard to predict. In this work a comparison between radiometric (sun photometer) and GPS integrated water vapour (IWV) is presented. A sun photometer has been installed at the ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiente) base of Lampedusa Island. The sun photometer is quite close (less then 4 km) to an ASI (Agenzia Spaziale Italiana) GPS permanent receiver. In Venezia an ASI GPS permanent receiver is collocated with another sun photometer. Both sun photometers are installed as part of the AERONET (AErosol and RObotic NETwork) program. A long record of sun photometric measurements, GPS data, and meteorological data is available for the Venezia site. A shorter record (summer period of the year 2000) is available for the station at Lampedusa. The comparison among the three different methods for water vapour delay estimation is presented. We find that the GPS and sun photometric data are better correlated (S.D. about 10 mm for the wet delay

  6. PHOTOMETER FOR MEASURING THE SCOTOPIC CANDLEPOWERS OF SELF-LUMINOUS OPHTHALMIC TEST OBJECTS.

    PubMed

    Stiles, W S

    1944-12-01

    A PHOTOMETER is described with which the scotopic candlepowers of very feeble light sources (down to about 10(-9) candle) can be measured. Small spots of radium paint, 2 or 3 mm. in diameter and having candlepowers in the range covered, are now used (Livingston) to plot the dark-adapted visual field, and the present photometer was designed primarily for their calibration. The radium paint emits green light but the instrument can be used for measurements of scotopic candlepowers of any colour. By tests on colour filters whose scotopic transmission factors can be calculated from their spectral transmission curves, it is shown that the photometer does, in fact, compare lights on the basis of the scotopic visibility curve of the eye, provided the conditions of measurement are those indicated. PMID:18170077

  7. An inexpensive and stable LED Sun photometer for measuring the water vapor column over South Texas from 1990 to 2001

    NASA Astrophysics Data System (ADS)

    Mims, Forrest M.

    2002-07-01

    A Sun photometer that uses near-infrared light-emitting diodes (LEDs) as spectrally-selective photodetectors has measured total column water vapor in South Texas since February 1990. The 12 years of solar noon observations to date are correlated with upper air soundings at Del Rio, Texas (r2 = 0.75), and highly correlated with measurements by a Microtops II filter Sun photometer (r2 = 0.94). LEDs are inexpensive and have far better long term stability than the interference filters in conventional Sun photometers. The LED Sun photometer therefore provides an inexpensive, stable and portable means for measuring column water vapor.

  8. Development of Ultraviolet Absorption Photometer for Atmospheric Ozone Measurements and Results from Mid - Investigations

    NASA Astrophysics Data System (ADS)

    Sen, Bhaswar

    This presentation consists of two parts. First we describe the design and construction of a dual-beam ultraviolet-absorption photometer, as a balloon payload, for ozone measurements. We then describe the construction of a rocket-borne version of the instrument and results of tests performed in the laboratory. Results of balloon flights using this instrument and a NASA-JSC/UH ultraviolet photometer are finally presented. Measurement of ozone in the atmosphere can be made using the strong photometric absorption feature of the gas at 253.7 nanometers. An ultraviolet lamp produces identical optical paths through two absorption columns. Two photodetectors measure the intensity of light through the two columns and a third detector just adjacent to the lamp provides a monitor of integrated light intensity, thus allowing detection of (and on board corrections to) changes in lamp output. A four-port valve in series with an ozone scrubber periodically reverses the two columns between ozone measurement and reference cycles. In this way, instrumental drifts and differences in the two optical paths can be monitored, and corrections, both scientific and engineering, can be deduced. Fast ozone measurements can be made along with other meteorological parameters, allowing good determination of the vertical profile of ozone. Ozone profiles computed from standard photochemical models are usually lower than those determined from satellite measurements; the discrepancies are typically forty percent of measured values at 50 km, and fifty percent at 80 km. Ozone column density measurements with ground based instruments and rocket-borne detectors agree with satellite data, but with a wide variation in accuracy and precision. In situ measurement of ozone with high accuracy, precision, and good spatial resolution would allow testing of (i) current and future photochemical models and (ii) predicted diurnal and seasonal variation in the mesosphere. Details are presented of our ultraviolet

  9. Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink

    ERIC Educational Resources Information Center

    LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina

    2013-01-01

    The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…

  10. Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Kummerow, Christian D.; Shepherd, James Marshall

    2008-01-01

    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era.

  11. Ultraviolet-absorption photometer for measurement of ozone on a rocket-boosted payload

    NASA Astrophysics Data System (ADS)

    Sen, B.; Sheldon, W. R.; Benbrook, J. R.

    1996-10-01

    We developed a rocket payload to perform in situ measurements of atmospheric ozone at the University of Houston. The ozone detector is a dual-beam UV-absorption photometer that uses the 253.7-nm radiation from a low-pressure mercury-vapor lamp to illuminate two identical absorption chambers. We describe the design features and the operation of the instrument. The fundamental resolution of the photometer is shown to be 2.7 10 15 molecules m 3 . We present the ozone profile measured during parachute descent following boosted ascent to 60 km by a Nike Orion rocket. The uncertainty in the measurement of this ozone profile is estimated to be 8.2 .

  12. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    NASA Technical Reports Server (NTRS)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  13. Global Precipitation Measurement Poster

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  14. Precipitable Water Vapor Characterization In The Gulf Of Cadiz Region (Southwestern Spain) Based On Sun Photometer, GPS And Radiosonde Data

    SciTech Connect

    Torres, B.; Cachorro, V. E.; Toledano, C.; Ortiz de Galisteo, J. P.; Berjon, A.; de Frutos, A. M.; Bennouna, Yasmine; Laulainen, Nels S.

    2010-09-16

    Column integrated water vapor (IWV) data in the Gulf of Cádiz area (Southwestern Spain) are analyzed during the period 2001 to 2005 with two aims: 1) to establish the climatology over this area using three different techniques, such as Sun-Photometer (SP), Global Position System (GPS) and Radiosondes, and 2) to take advantage of this comparative process to assess the quality of radiometric IWV data collected at the RIMA-AERONET station. The 5 years of climatological series gives a mean value of about 2 cm (STD=0.72) and a clear seasonal behavior as a general feature, with the highest values in summer and the lowest in winter. In the multi-annual monthly means basis, the highest values are reached in August-September, with a mean value of 2.5-2.6 cm, whereas the lowest are obtained in January-February, with an average of 1.4-24 1.5. However the most relevant results for this area is the observed local minimum in July, occurring during the maximum of desert dust intrusions in the southern Iberian Peninsula. A comparison process allows us to evaluate the agreement of IWV data sets between these three different techniques at different temporal scales because of different time sampling. On a daily basis and taking GPS as the reference value we have a bias or difference between Radiosonde and GPS measurements for the entire data base of 0.07 cm (relative bias of 3%) and RMSE of 0.33. For SP-GPS we have a bias of 0.14 cm (about 7%) and RMSE of 0.37. On a monthly basis the differences between Radiosonde and GPS values varies from summer with 2% to winter with -8% and between SP and GPS values from 3% in summer to -14% in winter. The observed bias between GPS and SP varies during each SP operational period, with lower values at the beginning of the measurements and increasing until the end of its measurement term and with the bias values being quite dependent on each individual SP. The observed differences highlight the importance of drift in each Sun-Photometer, because

  15. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer. PMID:27140564

  16. Global precipitation measurement (GPM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Flaming, Gilbert M.; Adams, W. James; Smith, Eric A.

    2001-12-01

    The National Aeronautics and Space Administration (NASA) is studying options for future space-based missions for the EOS Follow-on Era (post 2003), building upon the measurements made by Pre-EOS and EOS First Series Missions. One mission under consideration is the Global Precipitation Measurement (GPM), a cooperative venture of NASA, Japan, and other international partners. GPM will capitalize on the experience of the highly successful Tropical Rainfall Measurement Mission (TRMM). Its goal is to extend the measurement of rainfall to high latitudes with high temporal frequency, providing a global data set every three hours. A reference concept has been developed consisting of an improved TRMM-like primary satellite with precipitation radar and microwave radiometer to make detailed and accurate estimates of the precipitation structure and a constellation of small satellites flying compact microwave radiometers to provide the required temporal sampling of highly variable precipitation systems. Considering that DMSP spacecraft equipped with SSMIS microwave radiometers, successor NPOESS spacecraft equipped with CMIS microwave radiometers, and other relevant international systems are expected to be in operation during the timeframe of the reference concept, the total number of small satellites required to complete the constellation will be reduced. A nominal plan is to begin implementation in FY'03 with launches in 2007. NASA is presently engaged in advanced mission studies and advanced instrument technology development related to the mission.

  17. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    NASA Technical Reports Server (NTRS)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Colarco, Pete; Trepte, Charles; Winker, David; Eck, Tom; Holben, Brent; Welton, Judd; da Silva, Arlindo

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  18. [Binocular photometer for measuring light perception in diseases of the visual pathway].

    PubMed

    Stave, J; Guthoff, R

    1995-04-01

    In patients with a reduction in visual function because of optic nerve neuritis, light sensitivity is tested to detect differences between the right and left eye in combination with the swinging flashlight test and visual evoked potential (VEP). A binocular Zeiss microscope was modified to use integrated photometer-controlled binocular stimulus fields and a central light system for fixation and variation of the contrast (background illumination). For exact binocular measurements of light sensitivity on both eyes, electronically controlled test fields (visual angle 5 degrees-20 degrees) guarantees only macular or overfoveolar stimulation. In addition, splitting the light for each stimulus field from only one halogen lamp guarantees wave-length-independent testing. Patients with various retinal diseases and neuritis nervi optici pathology were examined using pattern VEP, testing of the absolute lower threshold of light sensitivity, and binocular comparison over the range of luminous density. This binocular optical photometer system allowed minimal differences to be identified in the present visual function and after the eye had recovered from optic nerve neuritis. PMID:7780279

  19. Near infrared emission photometer for measuring the oxidative stability of edible oils.

    PubMed

    Vieira, Francisco Senna; Pasquini, Celio

    2013-09-24

    Near infrared emission spectroscopy (NIRES) allows the determination of the induction time (IT) of edible oils in accelerated oxidation experiments by monitoring the emissivity of a band at 2900 nm, which corresponds to the formation of hydroperoxides. In this work, a new near infrared emission photometer dedicated to the determination of oxidative stability is described. The photometer presents several advantages compared to the previously reported NIRES instrument, such as lower cost and extreme simplicity of design and maintenance. The results obtained in the evaluation of the proposed instrument were compared with the official Rancimat method and instrument. The significant advantages include: faster analysis, lower sample consumption and operational simplicity. It is demonstrated that the procedure for determination of oxidative stability of oils can be significantly simplified and performed by measuring the sample emission at only one spectral region centered at 2900 nm. Also, the proposed instrument and method present precision equivalent to the Rancimat method (coefficient of variation=5.0%). A significant correlation between the methods has been found (R(2)=0.81). PMID:24016589

  20. Total luminous flux measurement for flexible surface sources with an integrating sphere photometer

    NASA Astrophysics Data System (ADS)

    Yu, Hsueh-Ling; Liu, Wen-Chun

    2014-01-01

    Applying an integrating sphere photometer for total luminous flux measurement is a widely used method. However, the measurement accuracy depends on the spatial uniformity of the integrating sphere, especially when the test sample has a different light distribution from that of the standard source. Therefore, spatial correction is needed to eliminate the effect caused by non-uniformity. To reduce the inconvenience of spatial correction but retain the measurement accuracy, a new type of working standard is designed for flexible and curved surface sources. Applying this new type standard source, the measurement deviation due to different orientations is reduced by an order of magnitude compared with using a naked incandescent lamp as the standard source.

  1. Development of KRISS standard reference photometer (SRP) for ambient ozone measurement

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, J.

    2014-12-01

    Surface ozone has adverse impacts on human health and ecosystem. Accurate measurement of ambient ozone concentration is essential for developing effective mitigation strategies and understanding atmospheric chemistry. Korea Research Institute of Standards and Science (KRISS) has developed new ozone standard reference photometers (SRPs) for the calibration of ambient ozone instruments. The basic principle of the KRISS ozone SRPs is to determine the absorption of ultraviolet radiation at a specific wavelength, 253.7 nm, by ozone in the atmosphere. Ozone concentration is calculated by converting UV transmittance through the Beer-Lambert Law. This study introduces the newly developed ozone SRPs and characterizes their performance through uncertainty analysis and comparison with BIPM (International Bureau of Weights and Measures) SRP.

  2. Measurements of springtime Antarctic ozone depletion and development of a balloonborne ultraviolet photometer

    SciTech Connect

    Harder, J.W.

    1987-01-01

    The research described herein consists of two parts. The first part is a description of the design of a balloon-borne ultraviolet photometer to measure ozone and the result of a flight using this instrument. The second part of this thesis describes the modifications made on the standard commercially available electrochemical ozonesonde and the results of some experiments performed both in the laboratory and during stratospheric balloon flights. Using this modified ECC system, 33 successful balloon flights were made at McMurdo Station, Antarctica during the austral spring of 1986 to study the temporal and vertical development of the so-called Antarctic Ozone Hole. The results of these flights are described in detail.

  3. A mesospheric airglow multichannel photometer and an optical method to measure mesospheric AGW intrinsic parameters

    NASA Astrophysics Data System (ADS)

    Mangognia, Anthony; Swenson, Gary; Vargas, Fabio; Liu, Alan

    2016-05-01

    A multichannel photometer (MCP) instrument, designed with filters for three specific airglow emissions, OH Meinel (5-1), (6-2), 840 nm; O2 (b) (0,1), 865 nm; and O(1S), 557.7 nm, as well as background, is used to observe atmospheric wave perturbations to layers in the local zenith with high temporal resolution (∼5 s). By measuring the relative phase of propagating waves through the layers, with known altitude separation, we deduce the vertical wavelength. We describe here the instrument attributes, a unique background subtraction technique, and the validation of a new method for determining intrinsic wave parameters via MCP and imager data that can be taken from various platforms, including ground-based and spacecraft platforms. Vertical wavelengths deduced using this method are in close agreement with those measured using LIDAR temperatures as well as those calculated with the dispersion relation using a combination of all-sky imager (horizontal wavelength) and meteor radar (winds) data.

  4. Measurements of springtime Antarctic ozone depletion and development of a balloon borne ultraviolet photometer

    SciTech Connect

    Harder, J.W.

    1987-01-01

    The research described herein consists of two parts. The first part is a description of the design of a balloon borne ultraviolet photometer to measure ozone and the results of a flight using this instrument. The second part describes modifications made on the standard commercially available electrochemical ozonesonde and the results of some experiments performed both in the laboratory and during stratospheric balloon flights. Using this modified ECC system, 33 successful balloon flights were made at McMurdo Station, Antarctica during the austral spring of 1986 to study the temporal and vertical development of the so-called Antarctic Ozone Hole. Photometric measurements of ozone in the atmosphere can be accomplished by exploiting 253.65 nanometer absorption feature of ozone. Using a single light source and beam splitting optics, matched optical paths can be generated through two absorption cells. The ozonesonde data gave a very clear picture of the development of the Ozone Hole. The results can be summarized as follows: (1) Depletion occurs between about 12 and 20 km. (2) The most efficient region of ozone depletion decreases in altitude with time. Height profiles show subregions where ozone removal is highly efficient. (3) At 18 km, the ozone mixing ratio decays with a half-life of 25 days.

  5. Sensitive Small Area Photometer

    ERIC Educational Resources Information Center

    Levenson, M. D.

    1970-01-01

    Describes a simple photometer capable of measuring small light intensities over small areas. The inexpensive, easy-to- construct instrument is intended for use in a student laboratory to measure the light intensities in a diffraction experiment from single or multiple slits. Typical experimental results are presented along with the theoretical…

  6. Polarization photometer to measure bidirectional reflectance factor R(55 deg, 0 deg, 55 deg, 180 deg) of leaves

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1986-01-01

    A polarization photometer has been developed for rapidly determining the bidirectional, polarized, and diffuse light-scattering properties of individual leavs illuminated and measured 'in vivo' at an angle of 55 deg (approximately Brewster's angle) in six wavelength bands in the visible and near-IR wavelength regions. The optical performance and data quality of the system are evaluated to estimate the magnitude of the variation in the data attributable to the instrument system and to measurement procedures. The potential to discriminate between three species of oak is demonstrated using data acquired by the polarization photometer. The instrument is being used to increase understanding of the radiation transfer process in plant canopies and specifically to determine how agronomic information of the physical and chemical processes in leaves, plants, and plant canopies is expressed in these light-scattering properties.

  7. An automated ozone photometer

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph R.

    1988-01-01

    A photometer capable of automatically measuring ozone concentration data to very high resolution during scientific research flights in the earth's atmosphere was developed at the NASA Ames Research Center. This instrument was recently deployed to study the ozone hole over Antarctica. Ozone is detected by absorbing 253.7-nm radiation from an ultraviolet lamp which shines through the sample of air and impinges on a vacuum phototube. A lower output from the phototube indicates more ozone present in the air sample. The photometer employs a CMOS 280 control, data collection, and storage.

  8. Aerosol load characterization over South East Italy for one year of AERONET sun-photometer measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; Santese, M.; Tafuro, A. M.; Holben, B.; Smirnov, A.

    2005-04-01

    Daily averaged retrievals of AERONET sun photometer measurements from March 2003 to March 2004 are used to provide preliminary results on the characterization of aerosol properties and changes over south-east Italy (40°20'N, 18°6'E). It is shown that aerosol optical and microphysical properties and the dominating aerosol types depend on seasons. Aerosol-parameter frequency distributions reveal the presence of individual modes that lead to the assumption that moderately absorbing urban-industrial and marine-polluted aerosols dominate in spring-summer and autumn-winter, respectively. It is shown that aerosol optical depths (AODs), single scattering albedos (SSAs), and Angstrom coefficients (Å) of urban-industrial (spring-summer) aerosols are characterized by lognormal distributions with peak values of 0.20±0.03, 0.94±0.01, and 1.58±0.03, respectively. On the contrary AOD, SSA and Å values of maritime-polluted (autumn-winter) aerosols are characterized by lognormal distributions with peak values of 0.049±0.008, 0.974±0.003, and 0.7±0.1, respectively. It is also shown that the frequency distribution of real n and imaginary k refractive indices permits inference of the dominant aerosol constituents: sea-salt, water soluble, soot, and mineral particles. Finally, it is shown that dust outbreaks do not significantly affect the seasonal evolution of aerosol parameters, and that sunphotometry retrievals along dust events are in satisfactory accord with experimental findings indicating that moderately-absorbing (0.005≤ k≤0.05) dust particles with a high content of illite are mainly advected over the Mediterranean basin during Sahara dust storms.

  9. Results of SPM sun photometer measurements at Mirny Antarctic station (58-60th RAE)

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry M.; Prakhov, Aleksander N.; Radionov, Vladimir F.; Sakerin, Sergey M.

    2015-11-01

    The SPM portable sun photometer observations in the wavelength range of 0.34-2.14 μm are performed at Mirny Antarctic station since fall 2013. The data obtained are used to calculate the aerosol optical depth (AOD) and water vapor content of the atmosphere. The sun photometer intercalibration results and statistical characteristics of interdiurnal and seasonal variations in spectral AOD of the atmosphere are discussed. Estimates of interannual variations in the atmospheric AOD in the region of Mirny station and in the coastal zone of Antarctica are presented. The global background level of AOD of the Antarctic atmosphere is noted to be still about 0.02 at the wavelength of 0.5 μm.

  10. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  11. Global Precipitation Measurement (GPM) implementation

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2010-10-01

    The Global Precipitation Measurement (GPM) mission will provide enhanced space-based precipitation measurements with sufficient coverage, spatial resolution, temporal sampling, retrieval accuracy, and microphysical information to advance the understanding of Earth's water and energy cycle and to improve predictions of its climate, weather, and hydrometeorological processes. Such improvements will in turn improve decision support systems in broad societal applications (e.g. water resource management, agriculture, transportation, etc). GPM is a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), building upon their highly successful partnership on the Tropical Rainfall Measuring Mission (TRMM). The GPM architecture consists of NASA satellites operating in partnership with other earth-observing satellites and instruments to produce global precipitation science data. The current generation of multi-satellite global precipitation products based on microwave/infrared sensors from uncoordinated satellite missions has for its anchor the TRMM precipitation radar and the TRMM Microwave Imager measurements over the tropics and subtropics (+/- 35 degrees latitude), with a mean sampling time of approximately 17 hours. The GPM mission will deploy a spaceborne Core Observatory as a reference standard to unify a space constellation of research and operational microwave sensors aimed at providing uniformly calibrated precipitation measurements globally every 2-4 hours. The Core Observatory measurements will provide, for the first time, quantitative information on precipitation particle size distribution needed for improving the accuracy of precipitation estimates by microwave radiometers and radars. In addition, the GPM will also include a second microwave radiometer and a Tracking and Data Relay Satellite (TDRS) communications subsystem for near real time data relay for a future partner-provided constellation satellite. This second GPM Microwave Imager (GMI

  12. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    USGS Publications Warehouse

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  13. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  14. Oceanic Precipitation Measurement - Surface Validation

    NASA Astrophysics Data System (ADS)

    Klepp, Christian

    2013-04-01

    State-of-the-art satellite derived and reanalysis based precipitation climatologies still show remarkably large differences in frequency, amount, intensity, variability and temporal behavior of precipitation over the oceans. Additionally so far appropriate in-situ validation instruments were not available for shipboard use. The uncertainties are largest for light precipitation within the ITCZ and subtropics and for cold season high-latitude precipitation including mix-phase and snowfall. Hence, a long-term issue on which IPWG and GPM-GV is urging more attention is the provision of high quality surface validation data in oceanic areas using innovative ship-based instruments. Precipitation studies would greatly benefit from systematic dataset collection and analysis as such data could also be used to constrain precipitation retrievals. To achieve this goal, the KlimaCampus and Max Planck Institute for Meteorology in Hamburg, Germany funded this project that uses automated shipboard optical disdrometers, called Eigenbrodt ODM470, that are capable of measuring liquid and solid precipitation using drop size distributions in minute intervals on moving ships with high accuracy even under high wind speeds and rough sea states. Since the project start in 2009 the statistical basis for a conclusive validation has significantly improved with comprehensive data collection of more than 3 million minutes of precipitation measurements onboard six ships. Currently, six ODM470 instrument systems are available of which three are long-term mounted onboard the German research icebreaker R/V Polarstern (Alfred Wegner Institut) since June 2010, on R/V Akademik Ioffe (P.P.Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia) since September 2010 and on R/V Maria S. Merian (Brise Research, University of Hamburg) since December 2011. Three instruments are used for additional short-term shipboard campaigns and intercomparison projects. The core regions for these

  15. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  16. Measurement of precipitation using lysimeters

    NASA Astrophysics Data System (ADS)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  17. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  18. Construction of an Inexpensive Sun Photometer for Measuring Aerosols Optical Depth (AOD) and Comparison Between the Ground Based and Satellite Based Measurements

    NASA Astrophysics Data System (ADS)

    Mamun, M.; Mondol, P.

    2012-12-01

    Aerosols influence our weather and climate because they affect the amount of sunlight reaching Earth's surface. An important way of probing the atmosphere from the ground is to measure the effects of the atmosphere on sunlight transmitted through the atmosphere to Earth's surface. These indirect techniques provide information about the entire atmosphere above the observer, not just the atmosphere that can be sampled directly. In response to global issues of air quality and climate change, and to the need to improve the quality of science education, inexpensive atmosphere monitoring instruments have been developed. This paper describes a new kind of inexpensive two channels LED Sun Photometer for monitoring aerosols that provide much better long-term stability than instruments that use expensive interference filters. Here HAZE-SPAN TERC VHS-1 model has been used for constructing sun photometer with light emitting diode as detector. Monitoring Earth's atmosphere is a challenging task. As there is no facility in our country (Bangladesh) for ground based measurement for monitoring aerosol so, this type of study is very essential. This study compares the aerosol optical depth (AOD) retrieved from the Terra and Aqua MODerate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a handheld sun photometer over the region of Rajshahi, Bangladesh for The 15 days duration of June 2012. The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the handheld sun photometer. The correlation coefficients r = 0.88 for Terra and r = 0.55 for Aqua where as r = 0.65 for Terra and Aqua themselves. AOD for another wavelength at 625 nm is documented in this study for finding out the relation of AOD at different wavelengths. In this paper it has been described and summarized briefly investigations for four important topics: LEDs used as light detectors, construction of sun photometer and its

  19. A SIMPLE PHOTOMETER FOR PRECISE DETERMINATION OF DISSOLVED OXYGEN CONCENTRATION BY THE WINKLER METHOD WITH RECOMMENDATIONS FOR IMPROVING RESPIRATION RATE MEASUREMENTS IN AQUATIC ORGANISMS

    EPA Science Inventory

    A simple inexpensive photometer designed for Winkler titration end-point detection is described. The precision of replicate dissolved oxygen measurements using this instrument was 0.06-0.22%. This high precision is needed to measure the small changes in dissolved oxygen concentra...

  20. The multichannel astrometric photometer and atmospheric limitations in the measurement of relative positions

    NASA Technical Reports Server (NTRS)

    Gatewood, George D.

    1987-01-01

    The operational Multichannel Astrometric Photometer (MAP) now in use in the Allegheny Observatory astrometric program is the culmination of a decade of design and development effort. A detailed description of the system and its related software is followed by analysis of data acquired in four stellar regions. The study indicates an accuracy (in the sense of conformity to the best model), per night, for stars of the eighth magnitude or brighter, of 0.003 arcsec or better. These data points each have approximately twice the precision of the annual normal points obtained in our photographic program. Accuracy is shown to depend on: (1) the photon-count rate of the target star (it follows that the number of photons from the reference frame is also in important factor), (2) the duration of the observation, (3) the angular size of the reference frame, and (4) the quality of the astronomical seeing. Since (4) and, to a lesser extent, (1) involve the atmospheric characteristics at the time of observation, the probable performance at more favorable sites is discussed briefly.

  1. Skylab experiment performance evaluation manual. Appendix T: Experiment T027/S073 contamination measurement, photometer and Gegenschein/zodiacal light (MSFC)

    NASA Technical Reports Server (NTRS)

    Meyers, J. E.

    1973-01-01

    A series of analyses for Experiment T027/S073, contamination measurement, photometer and gegenschein/zodiacal light (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditons is presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  2. A Simple Photometer to Study Skylight

    ERIC Educational Resources Information Center

    McIntosh Gordon

    2006-01-01

    A simple photometer constructed from an LED and an op amp can be used to measure light in a number of physical situations. A variety of LEDs exist to investigate different wavelength ranges. Combined with an inexpensive transit, the LED photometer can be used to carry out skylight studies and atmospheric optical depth measurements. The activities…

  3. NitroMAC: An instrument for the measurement of HONO and intercomparison with a long-path absorption photometer.

    PubMed

    Afif, Charbel; Jambert, Corinne; Michoud, Vincent; Colomb, Aurélie; Eyglunent, Gregory; Borbon, Agnès; Daële, Véronique; Doussin, Jean-François; Perros, Pascal

    2016-02-01

    NitroMAC (French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid (HONO). This instrument relies on wet chemical sampling and detection using high performance liquid chromatography (HPLC)-visible absorption at 540 nm. Sampling proceeds by dissolution of gaseous HONO in a phosphate buffer solution followed by derivatization with sulfanilamide/N-(1-naphthyl)-ethylenediamine. The performance of this instrument was found to be as follows: a detection limit of around 3 ppt with measurement uncertainty of 10% over an analysis time of 10 min. Intercomparison was made between the instrument and a long-path absorption photometer (LOPAP) during two experiments in different environments. First, air was sampled in a smog chamber with concentrations up to 18 ppb of nitrous acid. NitroMAC and LOPAP measurements showed very good agreement. Then, in a second experiment, ambient air with HONO concentrations below 250 ppt was sampled. While NitroMAC showed its capability of measuring HONO in moderate and highly polluted environments, the intercomparison results in ambient air highlighted that corrections must be made for minor interferences when low concentrations are measured. PMID:26969550

  4. Measurement and modeling of asphaltene precipitation

    SciTech Connect

    Burke, N.E.; Hobbs, R.E.; Kashou, S.F. )

    1990-11-01

    This paper reports on experimental asphaltene precipitation data on several live-oil/solvent mixtures at reservoir conditions measured to study the effects of temperature, pressure, and composition on precipitate formation and the relationships between critical properties, PVT phase behavior, and precipitate formation. Data generated by the model can be used to identify operating conditions conducive to precipitate formation.

  5. An automated ozone photometer

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph R.

    1988-01-01

    A photometer capable of automatically measuring ozone concentration data to very high resolution during scientific research flights in the Earth's atmosphere was developed at NASA Ames Research Center. This instrument was recently deployed to study the ozone hole over Antarctica. Ozone is detected by absorbing 253.7-nm radiation from an ultraviolet lamp which shines through the sample of air and impinges on a vacuum phototube. A lower output from the phototube indicates more ozone present in the air sample. The photometer employs a CMOS Z80 microprocessor with an STD bus system for experiment control, data collection, and storage. Data are collected and stored in nonvolatile memory for experiments lasting up to 8 hr. Data are downloaded to a portable ground-support computer and processed after the aircraft lands. An independent single-board computer in the STD bus also calculates ozone concentration in real time with less resolution than the CMOS Z80 system, and sends this value to a cockpit meter to aid the pilot in navigation.

  6. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  7. Comparison of Atmospheric Column Optical Depth Measurements for Urban Reno, NV with Three Different Sun Photometers and In Situ Measurements Combined with Boundary Layer Height Estimation

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Arnott, W. P.; Moosmuller, H.; Sumlin, B.; Karr, D.

    2011-12-01

    Reno, Nevada, USA is located in a mountain valley often characterized by very dry conditions, clear sky and red sunsets during the summer season, with rare incursions of monsoonal moisture. This city is subject to moderately strong nocturnal inversions nearly every day in summer. Urban aerosols, wind blown dust, as well as occasional biomass burning smoke from natural and non-natural fires all contribute to the optical depth. Because of its geographical position, drastic changes in weather conditions and variations in aerosol optical properties make Reno an excellent location for evaluating measurements of aerosol optical depth in order to determine particulate air pollution concentration as well as to provide input for models of atmospheric radiation transfer and evaluation of satellite-based aerosol optical sensing measurements. Aerosol optical depth can be calculated by in situ photoacoustic measurements of aerosol light absorption and reciprocal nephelometer scattering coefficients and estimation of aerosol mixing height. LED-based hand-held sun photometers are commonly used as inexpensive instruments for informal networks. However, the LED emission wavelength maximum and bandwidth are higher and narrower than the LED reception wavelength spectrum, necessitating empirical determination of an equivalent wavelength. The manually operated spectrometer and Cimel sun photometer measurements provide the most accurate and precise column aerosol optical depth. This paper makes a comparison between these four instruments for measurements obtained during the summer and fall seasons in order to study how the total and aerosol optical depth change during dry and moist conditions. Ångström exponents of extinction and absorption are also analyzed to provide insight on aerosol size distribution and composition, respectively.

  8. Global Precipitation Measurement (GPM) Mission Development Status

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  9. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; De Castro, Manuel

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  10. SeaWIFS Postlaunch Technical Report Series. Volume 13; The SeaWiFS Photometer Revision for Incident Surface Measurement (SeaPRISM) Field Commissioning

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)

    2000-01-01

    This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.

  11. Global Precipitation Measurement (GPM) L-6

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2013-10-01

    The Global Precipitation Measurement (GPM) mission will advance the measurement of global precipitation, making possible high spatial resolution precipitation measurements. GPM will provide the first opportunity to calibrate measurements of global precipitation across tropical, mid-latitude, and polar regions. The GPM mission has the following scientific objectives: (1) Advance precipitation measurement capability from space through combined use of active and passive remote-sensing techniques; (2) Advance understanding of global water/energy cycle variability and fresh water availability; (3) Improve climate prediction by providing the foundation for better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release in the Earth's atmosphere; (4) Advance Numerical Weather Prediction (NWP) skills through more accurate and frequent measurements of instantaneous rain rates; and (5) Improve high impact natural hazard (flood/drought, landslide, and hurricane hazard) prediction capabilities. The GPM mission centers on the deployment of a Core Observatory carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. GPM, jointly led with the Japan Aerospace Exploration Agency (JAXA), involves a partnership with other international space agencies including the French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory is currently being prepared for shipment to Japan for launch. Launch is scheduled for February 2014 from JAXA's Tanegashima Space Center on an H-IIA 202 launch vehicle.

  12. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir; Carlisle, Candace

    2010-01-01

    The Global Precipitation Measurement (GP!v1) mission is an international cooperative effort to advance the understanding of the physics of the Earth's water and energy cycle. Accurate and timely knowledge of global precipitation is essential for understanding the weather/climate/ecological system, for improving our ability to manage freshwater resources, and for predicting high-impact natural hazard events including floods, droughts, extreme weather events, and landslides. The GPM Core Observatory will be a reference standard to uniformly calibrate data from a constellation of spacecraft with passive microwave sensors. GPM is being developed under a partnership between the United States (US) National Aeronautics and Space Administration (NASA) and the Japanese Aerospace and Exploration Agency (JAXA). NASA's Goddard Space Flight Center (GSFC), in Greenbelt, MD is developing the Core Observatory, two GPM Microwave Imager (GMI) instruments, Ground Validation System and Precipitation Processing System for the GPM mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. The second GMI instrument will be flown on a partner-provided spacecraft. Other US agencies and international partners contribute to the GPM mission by providing precipitation measurements obtained from their own spacecraft and/or providing ground-based precipitation measurements to support ground validation activities. The Precipitation Processing System will provide standard data products for the mission.

  13. Portable light-emitting diode-based photometer with one-shot optochemical sensors for measurement in the field

    NASA Astrophysics Data System (ADS)

    Palma, A. J.; Ortigosa, J. M.; Lapresta-Fernández, A.; Fernández-Ramos, M. D.; Carvajal, M. A.; Capitán-Vallvey, L. F.

    2008-10-01

    This report describes the electronics of a portable, low-cost, light-emitting diode (LED)-based photometer dedicated to one-shot optochemical sensors. Optical detection is made through a monolithic photodiode with an on-chip single-supply transimpedance amplifier that reduces some drawbacks such as leakage currents, interferences, and parasitic capacitances. The main instrument characteristics are its high light source stability and thermal correction. The former is obtained by means of the optical feedback from the LED polarization circuit, implementing a pseudo-two light beam scheme from a unique light source with a built-in beam splitter. The feedback loop has also been used to adjust the LED power in several ranges. Moreover, the low-thermal coefficient achieved (-90 ppm/°C) is compensated by thermal monitoring and calibration function compensation in the digital processing. The hand-held instrument directly gives the absorbance ratio used as the analytical parameter and the analyte concentration after programming the calibration function in the microcontroller. The application of this photometer for the determination of potassium and nitrate, using one-shot sensors with ionophore-based chemistries is also demonstrated, with a simple analytical methodology that shortens the analysis time, eliminating some calibrating solutions (HCl, NaOH, and buffer). Therefore, this compact instrument is suitable for real-time analyte determination and operation in the field.

  14. Measuring auroral precipitation parameters without in situ microchannel plate instrumentation

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Hampton, D. L.; Zettergren, M. D.; Conde, M.; Lessard, M.; Michell, R.; Samara, M.

    2013-12-01

    Recent advances in groundbased detector technology have resulted in accurate, high-sensitivity, emission-line filtered images of aurora with sub- to a few- km resolution over a few 100 km region collected at a few second to a few Hz cadence. By combining these images with information from other groundbased instrumentation (ISR, remote photometers, and FPIs) and using well-documented empirical relationships between intensity and precipitating electron characteristics, these images hold the potential for providing an accurate, mesoscale, 2-D time history of the key parameters (characteristic energy and energy flux) of the precipitating electrons that caused the optical aurora within the imager's field of view. In situ measurements can be more accurate, but they are limited to highly localized 1-D line trajectories and are of limited use for meso-scale modeling. However, a limitation of the groundbased technique is that subvisual (low energy) precipitation is not captured. Onboard measurements of total number flux provide low resource measurements capturing specific boundary crossings and gradients as well as net precipitation including the portion not observed optically. The combination of minimal onboard instrumentation supplementing rigorous groundbased inversions can provide an optimal set of inputs for ionospheric modelling tools. Thus we are investigating the capabilities and limitations of using inversions of groundbased observations in the place of in situ precipitation monitors. While several inversion techniques are possible we will discuss two methods used in the analysis of recent rocket experiments. The first, used for the Cascades2 rocket, compares measured altitude profiles of auroral emissions to those from a 1-D electron transport code to confirm optically that two arcs transited by the rocket were produced by significantly different electron spectra. The second method, for the MICA rocket, uses the 2-D temperature maps from the Scanning Doppler

  15. Sun photometer and lidar measurements of the plume from the Hawaii Kilauea Volcano Pu'u O'o vent: Aerosol flux and SO2 lifetime

    USGS Publications Warehouse

    Porter, J.N.; Horton, K.A.; Mouginis-Mark, P. J.; Lienert, B.; Sharma, S.K.; Lau, E.; Sutton, A.J.; Elias, T.; Oppenheimer, C.

    2002-01-01

    Aerosol optical depths and lidar measurements were obtained under the plume of Hawaii Kilauea Volcano on August 17, 2001, ???9 km downwind from the erupting Pu'u O'o vent. Measured aerosol optical depths (at 500 nm) were between 0.2-0.4. Aerosol size distributions inverted from the spectral sun photometer measurements suggest the volcanic aerosol is present in the accumulation mode (0.1-0.5 micron diameter), which is consistent with past in situ optical counter measurements. The aerosol dry mass flux rate was calculated to be 53 Mg d-1. The estimated SO2 emission rate during the aerosol measurements was ???1450 Mg d-1. Assuming the sulfur emissions at Pu'u O'o vent are mainly SO2 (not aerosol), this corresponds to a SO2 half-life of 6.0 hours in the atmosphere.

  16. Airborne Sun Photometer Measurements of Aerosol Optical Depth during SOLVE II: Comparison with SAGE III and POAM III Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.

    2003-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).

  17. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarazin, Ardeshir Art; Carlisle, Candace C.

    2008-01-01

    The GIobd Precipitation hleasurement (GPM) mission is an international cooperatiee ffort to advance weather, climate, and hydrological predictions through space-based precipitation measurements. The Core Observatory will be a reference standard to uniform11 calibrate data from a constellatism of spacecraft with passive microuave sensors. GP3l mission data will be used for scientific research as well as societal applications. GPM is being developed under a partnership between the United States (US) National .Aeronautics and Space Administration (XASA) and the Japanese Aerospace and Exploration Agency (JAYA). NASA is developing the Core Observatory, a Low-Inclination Constellation Observatory, two GPM Rlicrowave Imager (GXII) instruments. Ground Validation System and Precipitation Processing System for the GPRl mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. Other US agencies and international partners contribute to the GPkf mission by providing precipitation measurements obtained from their own spacecraft and,'or providing ground-based precipitation measurements to support ground validation activities. The GPM Core Observatory will be placed in a low earth orbit (-400 krn) with 65-degree inclination, in order to calibrate partner instruments in a variety of orbits. The Core Observatory accommodates 3 instruments. The GkfI instrument provides measurements of precipitation intensity and distribution. The DPR consists of Ka and Ku band instruments, and provides threedimensional measurements of cloud structure, precipitation particle size distribution and precipitation intensitj and distribution. The instruments are key drivers for GPM Core Observatory overall size (1 1.6m x 6.5m x 5.0m) and mass (3500kg), as well as the significant (-1 950U.3 power requirement. The Core Spacecraft is being built in-house at Goddard Space Flight Center. The spacecraft structure

  18. Solar infrared photometer

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Strange, M. G.; Blaine, L. R.

    1985-01-01

    A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 microns has been developed. The instrument is a manually operated, filter wheel design and has principal applications for atmospheric aerosol studies. The wavelength filters were selected at bands with minimal gaseous absorption. A modified Langley analysis which accounts for residual gaseous absorption is employed for the instrument calibration. Calibration and stability results for the instrument are presented.

  19. Measuring winter precipitation in a mountain catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring winter precipitation (principally snowfall) in a mountain catchment is difficult. The magnitude of gauge under catch is affected by variable density during deposition, wind speed and direction, and site conditions such as vegetation and topography. Though numerous studies have been condu...

  20. Design and Engineering Aspects of a Compact Lyman Alpha Photometer (LAP) for In-situ Measurements of D/H Ratio in Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Sridhar Raja, V. L. N.; Kalyani, K.; Mohan, Aparna; Chandran, Anand; Durga Pushpavalli, J. T.; Laxmiprasad, S. A.; Kamalakar, A. J.; Viswanathan, M.; Rao, M. V. H.

    2012-07-01

    One of the most challenging multidisciplinary problems in geophysics and atmospheric science is the study of the evolution and escape of planetary atmospheres. Owing to no or little intrinsic magnetic field, the upper atmosphere of the planet Mars is always exposed to the solar wind that triggers the photo-dissociation of water by producing H and D, which are subsequently lost to space over time. Measurements of the atmospheric deuterium to hydrogen abundance ratio (D/H ratio) are significantly vital not only to examine the escape process of the current atmosphere but also to infer the loss process of water in the evolutionary history of Martian atmosphere. Till date, observations of D/H ratio measurements of Mars revealed only local values at certain time or average values over the planetary atmosphere. The exact value of the pristine Martian D/H ratio is still considered to be an open question. This paper primarily focuses on the development of a compact ultraviolet photometer capable of providing present D/H ratio of Mars from spacecraft observations. An ultraviolet photometer named `Lyman Alpha Photometer-LAP' that is currently under development at our laboratory is compact, light weight with low-power consumption and supports the spacecraft operational altitude range of 200 km to 20000 km. LAP operates on the principle of resonant scattering and absorption at Lyman-a wavelengths of H and D i.e., 121.56 nm, 121.53 nm respectively and comprises of 25 mm (Φ) x 60 mm (l) cylindrical metal/glass based gas cells filled with pure H2 and D2 gases at 3 mbar pressure. Thermally dissociated H2 and D2 molecules (due to the heating of a filament inserted in the cell) in the cells absorb the incoming H2/D2 Lyman-a incident on the cell. A 15 nm bandwidth Lyman-a filter cuts-off the undesirable radiation and a solar-blind side-on type photo multiplier tube (PMT) is selected for photon detection. Proto-LAP that is currently under development is a compact instrument that

  1. Diurnal variability of precipitation from TRMM measurements

    NASA Astrophysics Data System (ADS)

    Yang, Song; Smith, Eric A.; Kuo, Kwo-Sen

    2006-12-01

    This investigation focuses on developing a better understanding of the assorted mechanisms controlling the global distribution of diurnal rainfall variability. The horizontal distributions of precipitation's diurnal cycle, based on eight years of TRMM Microwave Imager (TMI) and TRMM Precipitation Radar (PR) measurements involving three TRMM standard algorithms, are analyzed in detail at various spatiotemporal scales. Results demonstrate the prominence of the late-evening to early-morning precipitation maxima over oceans and the mid- to late-afternoon maxima over continents, but also reveal a widespread distribution of secondary maxima occurring over both oceans and continents, maxima which generally mirror their counterpart regime's behavior. That is, many ocean regions exhibit clear-cut secondary afternoon precipitation maxima while many continental areas exhibit just as evident secondary morning maxima. Notably, this investigation represents the first comprehensive study of these secondary maxima and their widespread nature when analyzed using a global precipitation dataset. The characteristics of the secondary maxima are thoroughly mapped and described on a global grid. In addition, a Fourier harmonic decomposition scheme is used to examine detailed amplitude and phase properties of the primary and secondary maxima -- as well as tertiary and quartern modes. Accordingly, the advantages, ambiguities, and pitfalls resulting from using harmonic analysis are also examined.

  2. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Hudak, David; Petersen, Walter; Nesbitt, Stephen W.; Chandrasekar, V.; Durden, Stephen; Gleicher, Kirstin J.; Huang, Gwo-Jong; Joe, Paul; Kollias, Pavlos; Reed, Kimberly A.; Schwaller, Mathew R.; Stewart, Ronald; Tanelli, Simone; Tokay, Ali; Wang, James R.; Wolde, Mengistu

    2014-01-01

    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed.

  3. Temperature-dependent refractive index measurements of CaF2, Suprasil 3001, and S-FTM16 for the Euclid near-infrared spectrometer and photometer

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank U.

    2015-09-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.

  4. Temperature-Dependent Refractive Index Measurements of Caf2, Suprasil 3001, and S-FTM16 for the Euclid Near Infrared Spectrometer and Photometer

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d?), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.

  5. Deducing high-altitude precipitation from glacier mass balance measurements

    NASA Astrophysics Data System (ADS)

    Giesen, Rianne H.; Immerzeel, Walter W.; Wanders, Niko

    2016-04-01

    The spatial distribution of precipitation in mountainous terrain is generally not well known due to underrepresentation of gauge observations at higher elevations. Precipitation tends to increase with elevation, but since observations are mainly performed in the valleys, the vertical precipitation gradient cannot be deduced from these measurements. Furthermore, the spatial resolution of gridded meteorological data is often too coarse to resolve individual mountain chains. Still, a reliable estimate of high-elevation precipitation is required for many hydrological applications. We present a method to determine the vertical precipitation gradient in mountainous terrain, making use of glacier mass balance observations. These measurements have the advantage that they provide a basin-wide precipitation estimate at high elevations. The precipitation gradient is adjusted until the solid precipitation over the glacier area combined with the calculated melt gives the measured annual glacier mass balance. Results for the glacierized regions in Central Europe and Scandinavia reveal spatially coherent patterns, with predominantly positive precipitation gradients ranging from -4 to +28 % (100 m)‑1. In some regions, precipitation amounts at high elevations are up to four times as large as in the valleys. A comparison of the modelled winter precipitation with observed snow accumulation on glaciers shows a good agreement. Precipitation measured at the few high-altitude meteorological stations is generally lower than our estimate, which may result from precipitation undercatch. Our findings will improve the precipitation forcing for glacier modelling and hydrological studies in mountainous terrain.

  6. TIMED Imaging Photometer Experiment (TIPE)

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fritts, D. C.; Hecht, James H.; Killeen, T. L.; Llewellyn, Edward J.; Lowe, Robert P.; Mcdade, Ian C.; Ross, Martin N.; Swenson, Gary R.; Turnbull, David N.

    1994-01-01

    This document contains a summary of the TIMED Imaging Photometer Experiment (TIPE) instrument study at the time of the termination of project due to TIPE being de-selected from the Thermosphere, Ionosphere and Mesosphere Energetics and Dynamics (TIMED) mission.

  7. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  8. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8

    SciTech Connect

    Livingston, J. M.; Schmid, Beat; Russell, P. B.; Podolske, James R.; Redemann, Jens; Diskin, G. S.

    2008-10-29

    In January-February 2003 the 14-channel NASA Ames Airborne Tracking Sunphotometer 30 (AATS) and the NASA Langley/Ames Diode Laser Hygrometer (DLH) were flown on the NASA DC-8 aircraft. AATS measured column water vapor on the aircraft-to-sun path, while DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements were compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7-10 km and 1.2-12.5 km). These comparisons extend, for the first time, tests of AATS water vapor retrievals to altitudes >~6 km and column contents <0.1 g cm-2. To our knowledge this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. For both profiles layer water vapor (LWV) from AATS and DLH were highly correlated, with r2 0.998, rms difference 7.2% and bias (AATS minus DLH) 0.9%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) -4.2%. These results compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <~6 km, columns ~0.1 to 5 g cm-2 and densities ~0.1 to 17 g m-3.

  9. Precipitation measurements by using of a disdrometer at Syowa station

    NASA Astrophysics Data System (ADS)

    Hirasawa, Naohiko; Yamanouchi, Takashi; Konishi, Hiroyuki

    2016-04-01

    The Laser Precipitation Monitor (LPM, manufactured by Thies) has been installed as a disdrometer at Syowa station, East Antarctica, since February 2015. We firstly explore the character of the data because, basically, our experiences in precipitation measurement in the Antarctic region have been very few and also because disdrometer is in a test phase toward the operational use in the world. Indeed, SPICE (Solid Precipitation InterComparison Experiment) project conducted by WMO at various sites around the world (including two sites in Japan) has tested several disdrometers, including LPM. LPM measures precipitation particle size and fall velocity for an individual particle, and compiles the precipitation microphysical parameters together with estimated precipitation intensity per minute. From our domestic experiences related to SPICE, we have confirmed that LPM measurements are affected by wind such as the higher intensity of precipitation under the higher wind speed. At the poster, we will discuss the precipitation intensity obtained at Syowa station, being compared with other meteorological parameters.

  10. Intercomparison between a single particle soot photometer and evolved gas analysis in an industrial area in Japan: Implications for the consistency of soot aerosol mass concentration measurements

    NASA Astrophysics Data System (ADS)

    Miyakawa, T.; Kanaya, Y.; Komazaki, Y.; Taketani, F.; Pan, X.; Irwin, M.; Symonds, J.

    2016-02-01

    Mass concentrations of soot (typically comprising black and elemental carbon; BC and EC, respectively) aerosols, were measured at Yokosuka city, an industrial region in Japan in the early summer of 2014. The results of laser-induced incandescence (LII) and evolved gas analysis (EGA) techniques were compared using a single particle soot photometer (SP2) and semi-continuous elemental/organic carbon analyzer (EC/OC analyzer), respectively. We revisited the procedure of SP2 calibration with a focus on investigating the relationship between LII intensity (SLII) and refractory BC (rBC) mass per particle (mPP) for some BC-proxies in the laboratory, as well as for ambient rBC particles in order to discuss the uncertainty of the SP2. It was found that the mPP-SLII for the fullerene soot and carbon black particles agreed well within 3% and 10%, respectively, with that for ambient rBC particles. This is the first time to suggest the use of carbon black as a reference material. We also found that the mPP-SLII for the aqueous deflocculated Acheson graphite particles with the correction factor given by Baumgardner et al. (2012) was still biased by around +20% to that for ambient rBC particles. EC quantified by the semi-continuous EC/OC analyzer using a thermal-protocol similar to that of Interagency Monitoring of Protected Visual Environments (IMPROVE-like), systematically showed higher concentrations than rBC measured by the SP2. The uncertainties related to SP2 cannot fully account for this difference. This result was likely caused by the contribution of charred organic materials to EC, which can be affected significantly by thermal-protocols for the EGA. The consistency and differences between rBC and EC are discussed with regard to comparing their respective mass concentrations.

  11. Biomass burning layers measured with an airborne Single Particle Soot Photometer (SP2) during the Deep Convective Clouds and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Heimerl, K.; Weinzierl, B.; Minikin, A.; Sauer, D. N.; Fütterer, D.; Lichtenstern, M.; Schlager, H.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.; Fahey, D. W.; Huntrieser, H.

    2013-12-01

    The 2012 wildfire season in the U.S. was one of the worst in the past decade. Coinciding with the period of intense wildfires in the western U.S., the Deep Convective Clouds and Chemistry (DC3) experiment took place in the central U.S. in May and June of 2012. Although the main goal of this experiment was to characterize chemical processes in and around thunderstorms, biomass burning plumes from wildfires were also measured during almost every flight. Measurements were performed with three different research aircraft (NCAR GV, NASA DC8 and DLR Falcon 20E), accompanied by ground based measurements with radars and radiosondes, and measurements of meteorological parameters and lightning. The instrumentation aboard the DLR Falcon included measurements of the trace gases NO, CO, O3, CO2, CH4, SO2, volatile organic compounds, and a variety of aerosol microphysical parameters. To cover a wide range of aerosol particle sizes, the DLR Falcon payload included optical particle counters (UHSAS-A, FSSP-300, FSSP-100, PCASP-100X/SPP-200 and Sky-OPC 1.129), a multi-channel CPC system for measuring total and non-volatile particle concentrations and, for absorbing particles, a three-wavelength PSAP and a Single Particle Soot Photometer (SP2). We will focus on the latter in this presentation. The SP2 measures both the mass of refractory black carbon (rBC) particles as well as their optical size, providing information about the mixing state of particles in the biomass burning layers. Most biomass burning layers were found between 3 and 8 km altitude. We will discuss measurements of plumes originating from New Mexico wildfires (Little Bear wildfire on June 11th of 2012 and Whitewater-Baldy wildfire on May 29th and 30th of 2012). Peaks of the rBC mass concentration in the plumes were as high as 2μg/m3, the fraction of rBC particles with thick coatings was higher than what is usually found in the boundary layer. During the Falcon transfer flights from Germany to the U.S. and back

  12. A photoelectric photometer for the observation of occultation

    NASA Astrophysics Data System (ADS)

    Wang, C.-J.; Shi, X.-Z.

    1980-03-01

    The paper describes a simple photoelectric photometer for the observation of occultation. Also discussed are some design problems, including the relation between measurable magnitude, signal-noise ratio and integrating time, the effect due to brightness of background, and the requirement of frequency bandwidth of the photometer. As a test, the instrument was used to observe the occulted event of star AGK+19 deg 0599 by asteroid (65) Cybele on Oct. 18, 1979 and a successful result was obtained.

  13. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  14. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  15. Uncertainty Estimation of Global Precipitation Measurement through Objective Validation Strategy

    NASA Astrophysics Data System (ADS)

    KIM, H.; Utsumi, N.; Seto, S.; Oki, T.

    2014-12-01

    Since Tropical Rainfall Measuring Mission (TRMM) has been launched in 1997 as the first satellite mission dedicated to measuring precipitation, the spatiotemporal gaps of precipitation observation have been filled significantly. On February 27th, 2014, Dual-frequency Precipitation Radar (DPR) satellite has been launched as a core observatory of Global Precipitation Measurement (GPM), an international multi-satellite mission aiming to provide the global three hourly map of rainfall and snowfall. In addition to Ku-band, Ka-band radar is newly equipped, and their combination is expected to introduce higher precision than the precipitation measurement of TRMM/PR. In this study, the GPM level-2 orbit products are evaluated comparing to various precipitation observations which include TRMM/PR, in-situ data, and ground radar. In the preliminary validation over intercross orbits of DPR and TRMM, Ku-band measurements in both satellites shows very close spatial pattern and intensity, and the DPR is capable to capture broader range of precipitation intensity than of the TRMM. Furthermore, we suggest a validation strategy based on 'objective classification' of background atmospheric mechanisms. The Japanese 55-year Reanalysis (JRA-55) and auxiliary datasets (e.g., tropical cyclone best track) is used to objectively determine the types of precipitation. Uncertainty of abovementioned precipitation products is quantified as their relative differences and characterized for different precipitation mechanism. Also, it is discussed how the uncertainty affects the synthesis of TRMM and GPM for a long-term satellite precipitation observation records which is internally consistent.

  16. NASA Measures Extreme Precipitation From Space

    NASA Video Gallery

    From Jan. 25 through Feb. 3, IMERG data estimated that the most extreme precipitation over the United States during this period was over 200mm (7.9 inches) in an area where stormy weather frequentl...

  17. Errors and correction of precipitation measurements in China

    NASA Astrophysics Data System (ADS)

    Ren, Zhihua; Li, Mingqin

    2007-05-01

    In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the “horizontal precipitation gauge” was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper. A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.

  18. Measuring Black Carbon Concentrations in Liquid Samples Using the Single Particle Soot Photometer: Addressing Black Carbon Losses During Sample Storage and Nebulization

    NASA Astrophysics Data System (ADS)

    Menking, J. A.; Kaspari, S.; Jenkins, M.

    2011-12-01

    Black Carbon (BC), an aerosol created from the incomplete combustion of fossil and bio-fuels, is the second largest contributor to global warming next to CO2. BC deposited on snow and ice reduces the surface albedo, accelerating seasonal snowmelt and glacier retreat and influencing the regional water cycle and climate (Hansen and Nazarenko, 2004). BC emissions and its post-depositional spatial distribution in snow and ice are a large uncertainty in climate change analyses, thus measurements of global BC concentrations in liquid samples of snow and ice are desirable. The Single Particle Soot Photometer (SP2) is a relatively new method for measuring BC concentrations in liquid samples with promising advantages over other commonly used methods, namely that measurements require smaller sample volumes and are not affected by the presence of other absorbing particles. Despite potential advantages over traditional methods, total BC in liquid samples cannot be quantified because of methodological uncertainties. Preliminary tests show BC losses related to (1) nebulization and (2) changes to the sample during storage. BC in storage may adhere to the vial walls, resulting in BC losses. Particles containing BC may also agglomerate to form large particles with sizes outside of the SP2 detection range (80-650nm). Further losses are indicated in a comparison of polydisperse Aquadag (BC standard) particle size distributions between the ultrasonic nebulizer and a collision-type atomizer, which shows a loss of particles > ~500nm associated with the Cetac U-5000AT+ ultrasonic nebulizer. Larger particles may not be nebulized because of inefficiencies related to the ultrasonic transducer plate, and/or highly charged particles may adhere to the glass within the nebulizer, also resulting in BC losses. The purpose of this study was to determine the methods of storage and nebulization that maximize the amount of BC delivered to the SP2 inlet. Storage and sample parameters tested include

  19. Systematic errors in precipitation measurements with different rain gauge sensors

    NASA Astrophysics Data System (ADS)

    Sungmin, O.; Foelsche, Ulrich

    2015-04-01

    Ground-level rain gauges provide the most direct measurement of precipitation and therefore such precipitation measurement datasets are often utilized for the evaluation of precipitation estimates via remote sensing and in climate model simulations. However, measured precipitation by means of national standard gauge networks is constrained by their spatial density. For this reason, in order to accurately measure precipitation it is of essential importance to understand the performance and reliability of rain gauges. This study is aimed to assess the systematic errors between measurements taken with different rain gauge sensors. We will mainly address extreme precipitation events as these are connected with high uncertainties in the measurements. Precipitation datasets for the study are available from WegenerNet, a dense network of 151 meteorological stations within an area of about 20 km × 15 km centred near the city of Feldbach in the southeast of Austria. The WegenerNet has a horizontal resolution of about 1.4-km and employs 'tripping bucket' rain gauges for precipitation measurements with three different types of sensors; a reference station provides measurements from all types of sensors. The results will illustrate systematic errors via the comparison of the precipitation datasets gained with different types of sensors. The analyses will be carried out by direct comparison between the datasets from the reference station. In addition, the dependence of the systematic errors on meteorological conditions, e.g. precipitation intensity and wind speed, will be investigated to assess the feasibility of applying the WegenerNet datasets for the study of extreme precipitation events. The study can be regarded as a pre-processing research to further studies in hydro-meteorological applications, which require high-resolution precipitation datasets, such as satellite/radar-derived precipitation validation and hydrodynamic modelling.

  20. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Near-Coincident in Situ and Satellite Sensors during INTEX/ITCT 2004

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Redemann, J.; Russell, P. B.; Ramirez, S. A.; Eilers, J.; Gore, W.; Howard, S.; Pommier, J.; Fetzer, E. J.; Seeman, S. W.; Borbas, E.; Wolfe, D. E.; Thompson, A. M.

    2007-01-01

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sun photometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004 in support of the Intercontinental Chemical Transport Experiment (INTEX)/Intercontinental Transport and Chemical Transformation (ITCT) experiments. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes and with water vapor profiles retrieved from AIRS measurements during eight Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during five Aqua and five Terra overpasses. For 35 J31 vertical profiles, mean (bias) and RMS AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1 percent and 8.8 percent, respectively. For 22 aircraft profiles within 1 hour and 130 km of radiosonde soundings, AATS-minus-sonde bias and RMS LWV differences are -5.4 percent and 10.7 percent, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3 percent and 8.4 percent, respectively. AIRS LWV retrievals within 80 lan of J31 profiles yield lower bias and RMS differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8 percent to 5.8 percent, and the RMS difference decreases from 2 1.5 percent to 16.4 percent. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2 percent to +6 percent and RMS differences of -20 percent below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5 km at nadir) are biased wet by 10.4 percent compared to AATS over-ocean near-surface retrievals. The MODIS-Aqua subset (79 grid cells

  1. A unified approach to asphaltene precipitation: Laboratory measurement and modeling

    SciTech Connect

    MacMillan, D.J.; Tackett, J.E. Jr.; Jessee, M.A.; Monger-McClure, T.G.

    1995-11-01

    A unified approach to evaluating asphaltene precipitation based on laboratory measurement and modeling is presented. This approach used an organic deposition cell for measuring asphaltene drop out onset conditions. Asphaltene precipitation was detected by changes in optical fluorescence, electrical conductance, and visual observation. A series of experiments measured the effects of changing pressure, temperature and composition on asphaltene precipitation. A fully-compositional V-L-S mathematical model completed the analysis by matching the experimental results. The model was then used to forecast asphaltene precipitation under a variety of production scenarios including response to gas-lift operations, and to evaluate the possible location of a tar-mat.

  2. Column-integrated aerosol optical properties and direct radiative forcing based on sun photometer measurements at a semi-arid rural site in Northeast China

    NASA Astrophysics Data System (ADS)

    Wu, Yunfei; Zhu, Jun; Che, Huizheng; Xia, Xiangao; Zhang, Renjian

    2015-04-01

    Ground and satellite remote sensing measurements have revealed heavy aerosol loading in China; however, aerosol optical properties and direct radiative forcing in Northeast China - important in climate modeling and remote sensing - have not been widely studied. We studied four years of continuous sun photometer measurements at Tongyu, a typical semi-arid rural site in Northeast China, to better understand column-integrated aerosol optical properties and direct radiative forcing. The annual average aerosol optical depth (AOD) at 500 nm was 0.20 ± 0.26; the Ångström exponent (AE) between 440 and 870 nm was 1.37 ± 0.64; and the single scattering albedo (SSA) at 440 nm was 0.91 ± 0.05. The AOD at this rural site was a quarter of that observed in the polluted North China Plain and Yangtze River Delta regions. Anthropogenic fine-mode particles were the dominant contributor to AOD. The AOD and AE showed generally opposite seasonal variation patterns. Relatively higher AOD values in summer (0.26 ± 0.27) and spring (0.24 ± 0.30) were likely related to long-range transportation of anthropogenic aerosols from southern industrial regions in summer, and the increased contribution of dust events in spring. The minimum AOD (0.16 ± 0.22) was concurrent with the maximum AE (1.75 ± 0.76), observed in winter. On average, the absorption AOD (AAOD) at 440 nm and its absorption Ångström exponent (AAE) between 440 and 870 nm were 0.06 ± 0.03 and 1.04 ± 0.43, respectively. The mean AAE was considerably higher than 1 in autumn and winter, indicating that brown carbon from biomass burning contributed greatly to aerosol absorption. The AAE was lower than 1 in summer and spring, related to the coating of black carbon particles. Large negative aerosol direct radiative forcing was estimated at the bottom of the atmosphere, with relatively lower values estimated at the top of the atmosphere; the means were - 26.28 and - 9.42 W m- 2, respectively. This resulted in a strong cooling

  3. CHARGE MEASUREMENTS OF PARTICLES EXITING ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The report gives results of an investigation of particle charging in positive and negative corona discharge as a function of temperature from 38 to 343C in order to establish, especially at hot-side electrostatic precipitator (ESP) temperatures, the relative effectiveness of the ...

  4. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  5. A New Approach to Measuring Precipitation over Snow Cover

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Liu, Y.; Arsenault, K. R.; Behrangi, A.

    2013-12-01

    One of the great challenges for truly global precipitation measurement is the remote sensing of precipitation over snow cover. Due to the physical limitation in the current retrieval methodology, satellite-based measurements of precipitation over snow-covered areas are unreliable and largely unavailable. In this presentation, a new satellite-based approach to the estimation of precipitation over snow cover is proposed and tested. The method is based on the principle that precipitation can be inferred by the changes in the water content of the snowpack. During the EOS era operational remote sensing of snow water equivalent is available, with similar spatial and temporal resolutions of the precipitation-sensing passive microwave sensors. With these satellite-based snow water equivalent measurements, daily precipitation amounts can be derived. We tested the method for the Northern Hemisphere for three snow-accumulation seasons, with AMSR-E snow water equivalent data, and compared with existing datasets, including CPC gauge analysis and GPCP. The new precipitation estimates captured natural- and realistic-looking storm events over largely under-instrumented regions. The spatial distribution appeared more reasonable than existing global datasets over many boreal inland areas. The results indicate this approach is feasible and promising. Besides the capability to estimate precipitation over snow cover, this new approach has the following additional advantages over the conventional methods: 1. The relationship between precipitation and the observed variable (i.e., SWE) is more direct than the conventional methods, which have to rely on scattering signals from hydrometeors (passive microwave) or cloud top brightness temperatures (infrared) to infer precipitation; 2. Temporal sampling error is small. The method will not miss any precipitation amount even if there are no instantaneous satellite overpasses during the precipitation event. The memory of the snowpack stores the

  6. Global Precipitation Measurement: GPM Microwave Imager (GMI) Algorithm Development Approach

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation reviews the approach to the development of the Global Precipitation Measurement algorithm. This presentation includes information about the responsibilities for the development of the algorithm, and the calibration. Also included is information about the orbit, and the sun angle. The test of the algorithm code will be done with synthetic data generated from the Precipitation Processing System (PPS).

  7. A bilateral comparison on illuminance using a photometer between IPT and LABELO

    NASA Astrophysics Data System (ADS)

    Ferreira Junior, A. F. G.; Bindé Junior, C. J. R.

    2016-07-01

    This work presents the result of bilateral illuminance comparison obtained from a photometer calibration. The bilateral comparison was performed comparing the calibration results from the same photometer at LABELO and IPT laboratories, which take part of Brazilian calibration network. Occasionally LABELO was chosen as a pilot laboratory and was responsible to calibrate the photometer at the beginning and end of comparison and define the reference illuminance value of photometer calibration. The illuminance calibration points ranged from 20 to 2000 lx and the comparison evaluation criterion was the normalized error (En numbers). The laboratory measurements are in agreement according to the evaluation criterion.

  8. Inconsistency in precipitation measurements across the Alaska-Yukon border

    NASA Astrophysics Data System (ADS)

    Scaff, L.; Yang, D.; Li, Y.; Mekis, E.

    2015-12-01

    This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (National Weather Service (NWS) 8 in. gauge and Nipher gauge) and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 136 % in January and 20 % for July at the Barter Island in Alaska, and about 31 % for January and 4 % for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall) than for cold month (mainly snowfall) between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the USA-Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in windy and cold conditions. This result will certainly impact regional, particularly cross-border, climate and hydrology investigations.

  9. Photometer calibration error using extended standard sources

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Hays, P. B.; Kennedy, B. C.; Torr, D. G.

    1976-01-01

    As part of a project to compare measurements of the night airglow made by the visible airglow experiment on the Atmospheric Explorer-C satellite, the standard light sources of several airglow observatories were compared with the standard source used in the absolute calibration of the satellite photometer. In the course of the comparison, it has been found that serious calibration errors (up to a factor of two) can arise when a calibration source with a reflecting surface is placed close to an interference filter. For reliable absolute calibration, the source should be located at a distance of at least five filter radii from the interference filter.

  10. The Global Precipitation Measurement Mission: NASA Status and Early Results

    NASA Astrophysics Data System (ADS)

    Skofronick-Jackson, Gail; Huffman, G.; Petersen, W.; Kidd, Chris

    The Global Precipitation Measurement (GPM) mission’s Core satellite, launched 27 February 2014, is well-designed to estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth’s water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. GPM is a joint NASA-JAXA mission. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)’s highly successful rain-sensing package. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 (°) non-Sun-synchronous orbit serving as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR provides measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements places greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM mission science objectives and instrument

  11. NASA's Global Precipitation Measurement (GPM) Mission for Science and Society

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2016-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from GPM data, an overview of the GPM mission concept and science activities in the United States

  12. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  13. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  14. Current status of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Nio, T.; Konishi, T.; Oki, R.; Masaki, T.; Kubota, T.; Iguchi, T.; Hanado, H.

    2015-10-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The GPM is a follow-on mission of the Tropical Rainfall Measuring Mission (TRMM). The objectives of the GPM mission are to observe global precipitation more frequently and accurately than TRMM. The frequent precipitation measurement about every three hours will be achieved by some constellation satellites with microwave radiometers (MWRs) or microwave sounders (MWSs), which will be developed by various countries. The accurate measurement of precipitation in mid-high latitudes will be achieved by the DPR. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. JAXA and NICT developed the DPR through procurement. The configuration of precipitation measurement using active radar and a passive radiometer is similar to TRMM. The major difference is that DPR is used in GPM instead of the precipitation radar (PR) in TRMM. The inclination of the core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sun-synchronous circular orbit is necessary for measuring the diurnal change of rainfall similarly to TRMM. The DPR consists of two radars, which are Ku-band (13.6 GHz) precipitation radar (KuPR) and Ka-band (35.5 GHz) precipitation radar (KaPR). Both KuPR and KaPR have almost the same design as TRMM PR. The DPR system design and performance were verified through the ground test. GPM core observatory was launched at 18:37:00 (UT) on February 27, 2014 successfully. DPR orbital check out was completed in May 2014. The results of orbital checkout show that DPR meets its specification on orbit. After completion of initial checkout, DPR started Normal

  15. A unified approach to asphaltene precipitation: Laboratory measurement and modeling

    SciTech Connect

    MacMillan, D.J.; Tackett, J.E. Jr.; Jessee, M.A.; Monger-McClure, T.G.

    1995-09-01

    A unified approach to evaluation of asphaltene precipitation based on laboratory measurement and modeling is presented. This approach uses an organic deposition cell (ODC) for measuring asphaltene-dropout onset conditions. Asphaltene precipitation was detected by changes in optical fluorescence, electrical conductance, and visual observation. A series of experiments measured the effects of changing pressure,m temperature, and composition on asphaltene precipitation. A fully compositional vapor/liquid/solid (V/L/S) mathematical model completed by analysis by matching the experimental results. The authors then used the model to forecast asphaltene precipitation under a variety of production scenarios, including response to gas-lift operations,and to evaluate the possible location of a tar mat.

  16. An Enhanced Global Precipitation Measurement (GPM) Validation Network Prototype

    NASA Technical Reports Server (NTRS)

    Schwaller, Matthew R.; Morris, K. Robert

    2009-01-01

    A Validation Network (VN) prototype is currently underway that compares data from the Precipitation Radar (PR) instrument on NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of NASA's Global Precipitation Measurement (GPM) mission. GPM will carry a Dual-frequency Precipitation Radar instrument (DPR) with similar characteristics to the TRMM PR. The purpose of the VN is to identify and resolve significant discrepancies between the U.S. national network of ground radar (GR) observations and satellite observations. The ultimate goal of such comparisons is to understand and resolve the first order variability and bias of precipitation retrievals in different meteorological/hydrological regimes at large scales. This paper presents a description of, and results from, an improved algorithm for volume matching and comparison of PR and ground radar observations.

  17. Quality Assessment of Vertical Angular Deviations for Photometer Calibration Benches

    NASA Astrophysics Data System (ADS)

    Silva Ribeiro, A.; Costa Santos, A.; Alves Sousa, J.; Forbes, A. B.

    2015-02-01

    Lighting, both natural and electric, constitutes one of the most important aspects of the life of human beings, allowing us to see and perform our daily tasks in outdoor and indoor environments. The safety aspects of lighting are self-evident in areas such as road lighting, urban lighting and also indoor lighting. The use of photometers to measure lighting levels requires traceability obtained in accredited laboratories, which must provide an associated uncertainty. It is therefore relevant to study the impact of known uncertainty sources like the vertical angular deviation of photometer calibration benches, in order to define criteria to its quality assessment.

  18. Photometer for tracking a moving light source

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W. (Inventor)

    2009-01-01

    A photometer that tracks a path of a moving light source with little or no motion of the photometer components. The system includes a non-moving, truncated paraboloid of revolution, having a paraboloid axis, a paraboloid axis, a small entrance aperture, a larger exit aperture and a light-reflecting inner surface, that receives and reflects light in a direction substantially parallel to the paraboloid axis. The system also includes a light processing filter to receive and process the redirected light, and to issue the processed, redirected light as processed light, and an array of light receiving elements, at least one of which receives and measures an associated intensity of a portion of the processed light. The system tracks a light source moving along a path and produces a corresponding curvilinear image of the light source path on the array of light receiving elements. Undesired light wavelengths from the light source may be removed by coating a selected portion of the reflecting inner surface or another light receiving surface with a coating that absorbs incident light in the undesired wavelength range.

  19. Sun photometer aerosol retrievals during SALTRACE

    NASA Astrophysics Data System (ADS)

    Toledano, Carlos; Torres, Benjamin; Althausen, Dietrich; Groß, Silke; Freudenthaler, Volker; Weinzierl, Bernadett; Gasteiger, Josef; Ansmann, Albert; Wiegner, Matthias; González, Ramiro; Cachorro, Victoria

    2015-04-01

    The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE), aims at investigating the long-range transport of Saharan dust across the Atlantic Ocean. A large set of ground-based and airborne aerosol and meteorological instrumentation was used for this purpose during a 5-week campaign that took place during June-July 2013. Several Sun photometers were deployed at Barbados Island during this campaign. Two Cimels included in AERONET and the Sun and Sky Automatic Radiometer (SSARA) were co-located with the ground-based lidars BERTHA and POLIS. A set of optical and microphysical aerosol properties derived from Sun and Sky spectral observations (principal plane and almucantar configurations) in the range 340-1640nm are analyzed, including aerosol optical depth (AOD), volume size distribution, complex refractive index, sphericity and single scattering albedo. The Sun photometers include polarization capabilities, therefore apart from the inversion of sky radiances as it is routinely done in AERONET, polarized radiances are also inverted. Several dust events are clearly identified in the measurement period, with moderated AOD (500nm) in the range 0.3 to 0.6. The clean marine background was also observed during short periods. The retrieved aerosol properties are compared with the lidar and in-situ observations carried out within SALTRACE, as well as with data collected during the SAMUM campaigns in Morocco and Cape Verde, in order to investigate possible changes in the dust plume during the transport.

  20. A rocket-borne airglow photometer

    NASA Technical Reports Server (NTRS)

    Paarmann, L. D.; Smith, L. G.

    1977-01-01

    The design of a rocket-borne photometer to measure the airglow emission of ionized molecular nitrogen in the 391.4 nm band is presented. This airglow is a well known and often observed phenomenon of auroras, where the principal source of ionization is energetic electrons. It is believed that at some midlatitude locations energetic electrons are also a source of nighttime ionization in the E region of the ionosphere. If this is so, then significant levels of 391.4 nm airglow should be present. The intensity of this airglow will be measured in a rocket payload which also contains instrumentation to measured in a rocket payload which also contains instrumentation to measure energetic electron differential flux and the ambient electron density. An intercomparison of the 3 experiments in a nightime launch will allow a test of the importance of energetic electrons as a nighttime source of ionization in the upper E region.

  1. Inter-comparison of precipitation retrievals from the Global Precipitation Measurement mission constellation.

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Matsui, Toshihisa; Randel, Dave; Stocker, Erich; Kummerow, Chris

    2015-04-01

    The Global Precipitation Measurement mission (GPM) is an international satellite mission that brings together a number of different component satellites and sensors, each contributing observations capable of providing information on precipitation. The joint US-Japan core observatory, launched on 27 February 2014, carries the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The core observatory serves as a standard against which other sensors in the constellation are calibrated, providing a consistent observational dataset to ensure the highest quality precipitation retrievals to be made. Precipitation retrievals from the constellation of partner satellites are generated through the common framework of the Goddard-PROFiling (GPROF) scheme, and is applied to both the conically-scanning sensors and the cross-track sensors; the provision of precipitation estimates from all the constellation sensors contributing to the better-than 3-hour average temporal sampling. This study focuses upon the inter-comparison of the products from the different sensors during the first year of GPM operations; March 2014-February 2015. The two regions chosen for the inter-comparison, are the United States and Western Europe, and utilize the extensive radar networks of these regions. Statistical results were generated for instantaneous precipitation retrievals for each of the constellation sensors. Results show that overall the retrievals from the cross-track observations produce higher correlations with the surface radar data sets than the retrievals from the conically-scanning observations, although they tend to have higher root-mean squared errors. Some variation in performance between the individual types of sensors is also noted, which may be attributed to assumptions within the retrieval scheme (e.g. resolution, background fields, etc); other differences require further investigation.

  2. Polarimetric measurements of precipitation over urban environments

    NASA Astrophysics Data System (ADS)

    Pereira Filho, A. J.

    2009-04-01

    This study presents recent results of weather radar polarimetric measurements of clouds and rainfall system over Eastern S„o Paulo, Brazil, more specifically in the metropolitan area of S„o Paulo (MASP). Local direct circulation associated to its urban heat island and sea breeze inflow tends to generate very deep convection similar to the Amazon region in a matter of minutes. It is investigated the impact of pollutants on the cloud microphysics and induced effects on downdrafts, lighting, hail and others such as flash floods.

  3. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  4. New Approaches For Validating Satellite Global Precipitation Measurements

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The scientific successes of the Tropical Rainfall Measuring Mission (TRMM) and additional recent satellite-focused precipitation retrieval projects, particularly those based on use of passive microwave radiometer measurements, have paved the way for a more advanced mission currently under development as the Global Precipitation Measurement (GPM) mission. This new mission is motivated by a number of scientific questions that TRMM research has posed over a range of space-time scales and within a variety of scientific disciplines that are becoming more integrated into earth system science modeling.

  5. Ten-color Gegenschein-zodiacal light photometer. [onboard Skylab

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Weinberg, J. L.; Hahn, R. C.

    1977-01-01

    A ten-color Fabry photometer was used during Skylab missions SL-2 and SL-3 to measure sky brightness and polarization associated with zodiacal light, background starlight, F region airglow, and spacecraft corona. A brief description is given of the design, calibration, and performance of the instrument.

  6. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  7. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  8. Multipurpose computer-controlled scanning photometer

    SciTech Connect

    Kleckner, E.W.; Michalsky, J.J.; Smith, L.L.; Schmelzer, J.R.; Severtsen, R.H.; Berndt, J.L.

    1981-11-01

    This paper presents a design for a multipurpose computer-controlled scanning photometer capable of measuring optical radiation ranging in intensity from the subvisual light levels associated with night sky airglow emissions to the intense flux levels of direct sunlight. The instrument has twelve interference filters for wavelength selection, a 2.5/sup 0/ field of view for nighttime observations, and a 1.5/sup 0/ field of view for daytime observations. A photomultiplier tube is used as the low light-level detector, and a silicon-PIN photodiode serves as the insolation detector. A particular measurement sequence is programmed into the instrument and can be modified by reading a cassette tape in the field. Normal operation is fully automatic.

  9. Analysis of precipitation teleconnections in CMIP models as a measure of model fidelity in simulating precipitation

    NASA Astrophysics Data System (ADS)

    Langenbrunner, B.; Neelin, J.; Meyerson, J.

    2011-12-01

    The accurate representation of precipitation is a recurring issue in global climate models, especially in the tropics. Poor skill in modeling the variability and climate teleconnections associated with El Niño/Southern Oscillation (ENSO) also persisted in the latest Climate Model Intercomparison Project (CMIP) campaigns. Observed ENSO precipitation teleconnections provide a standard by which we can judge a given model's ability to reproduce precipitation and dynamic feedback processes originating in the tropical Pacific. Using CMIP3 Atmospheric Model Intercomparison Project (AMIP) runs as a baseline, we compare precipitation teleconnections between models and observations, and we evaluate these results against available CMIP5 historical and AMIP runs. Using AMIP simulations restricts evaluation to the atmospheric response, as sea surface temperatures (SSTs) in AMIP are prescribed by observations. We use a rank correlation between ENSO SST indices and precipitation to define teleconnections, since this method is robust to outliers and appropriate for non-Gaussian data. Spatial correlations of the modeled and observed teleconnections are then evaluated. We look at these correlations in regions of strong precipitation teleconnections, including equatorial S. America, the "horseshoe" region in the western tropical Pacific, and southern N. America. For each region and season, we create a "normalized projection" of a given model's teleconnection pattern onto that of the observations, a metric that assesses the quality of regional pattern simulations while rewarding signals of correct sign over the region. Comparing this to an area-averaged (i.e., more generous) metric suggests models do better when restrictions on exact spatial dependence are loosened and conservation constraints apply. Model fidelity in regional measures remains far from perfect, suggesting intrinsic issues with the models' regional sensitivities in moist processes.

  10. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  11. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  12. Study of accuracy of precipitation measurements using simulation method

    NASA Astrophysics Data System (ADS)

    Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián

    2013-04-01

    Hungarian Meteorological Service1 Budapest University of Technology and Economics2 Precipitation is one of the the most important meteorological parameters describing the state of the climate and to get correct information from trends, accurate measurements of precipitation is very important. The problem is that the precipitation measurements are affected by systematic errors leading to an underestimation of actual precipitation which errors vary by type of precipitaion and gauge type. It is well known that the wind speed is the most important enviromental factor that contributes to the underestimation of actual precipitation, especially for solid precipitation. To study and correct the errors of precipitation measurements there are two basic possibilities: · Use of results and conclusion of International Precipitation Measurements Intercomparisons; · To build standard reference gauges (DFIR, pit gauge) and make own investigation; In 1999 at the HMS we tried to achieve own investigation and built standard reference gauges But the cost-benefit ratio in case of snow (use of DFIR) was very bad (we had several winters without significant amount of snow, while the state of DFIR was continously falling) Due to the problem mentioned above there was need for new approximation that was the modelling made by Budapest University of Technology and Economics, Department of Fluid Mechanics using the FLUENT 6.2 model. The ANSYS Fluent package is featured fluid dynamics solution for modelling flow and other related physical phenomena. It provides the tools needed to describe atmospheric processes, design and optimize new equipment. The CFD package includes solvers that accurately simulate behaviour of the broad range of flows that from single-phase to multi-phase. The questions we wanted to get answer to are as follows: · How do the different types of gauges deform the airflow around themselves? · Try to give quantitative estimation of wind induced error. · How does the use

  13. A Tracking Sun Photometer Without Moving Parts

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.

    2012-01-01

    This innovation is small, lightweight, and consumes very little electricity as it measures the solar energy attenuated by gases and aerosol particles in the atmosphere. A Sun photometer is commonly used on the Earth's surface, as well as on aircraft, to determine the solar energy attenuated by aerosol particles in the atmosphere and their distribution of sizes. This information is used to determine the spatial and temporal distribution of gases and aerosols in the atmosphere, as well as their distribution sizes. The design for this Sun photometer uses a combination of unique optics and a charge coupled device (CCD) array to eliminate moving parts and make the instrument more reliable. It could be selfcalibrating throughout the year. Data products would be down-welling flux, the direct-diffuse flux ratio, column abundance of gas phase constituents, aerosol optical depth at multiple-wavelengths, phase functions, cloud statistics, and an estimate of the representative size of atmospheric particles. These measurements can be used to obtain an estimate of aerosol size distribution, refractive index, and particle shape. Incident light is received at a light-reflecting (inner) surface, which is a truncated paraboloid. Light arriving from a hemispheric field of view (solid angle 2 steradians) enters the reflecting optic at an entrance aperture at, or adjacent to, the focus of the paraboloid, and is captured by the optic. Most of this light is reflected from an inner surface. The light proceeds substantially parallel to the paraboloid axis, and is detected by an array detector located near an exit aperture. Each of the entrance and exit apertures is formed by the intersection of the paraboloid with a plane substantially perpendicular to the paraboloid axis. Incident (non-reflected) light from a source of limited extent (the Sun) illuminates a limited area on the detector array. Both direct and diffuse illumination may be reflected, or not reflected, before being received on

  14. Online Control of a Photoelectric Stellar Photometer

    NASA Astrophysics Data System (ADS)

    Reimann, H. G.; Pfau, W.; Stecklum, B.

    On-line-control of a photon-counting photometer with the aid of the mini computer KSR 4100 and the extended programming language INKA is described. Characteristic quantities of the photometer (coefficients of the colour-equations and dead time) are given. The dead time was derived using a new method based on photon statistics at milli-second time resolution.

  15. Simple photometer circuits using modular electronic components

    NASA Technical Reports Server (NTRS)

    Wampler, J. E.

    1975-01-01

    Operational and peak holding amplifiers are discussed as useful circuits for bioluminescence assays. Circuit diagrams are provided. While analog methods can give a good integration on short time scales, digital methods were found best for long term integration in bioluminescence assays. Power supplies, a general photometer circuit with ratio capability, and variations in the basic photometer design are also considered.

  16. Cross-track sensor precipitation retrievals for the Global Precipitation Measurement mission

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Randel, David; Stocker, Erich; Kummerow, Christian

    2014-05-01

    The utilization of observations from passive microwave cross-track, or sounders, for global precipitation estimation provides a number of distinct advantages including the potential to retrieve precipitation over cold surface backgrounds and improvements in temporal sampling. As part of the Global Precipitation Measurement (GPM) mission, observations from these cross-track instruments are being incorporated into the overall retrieval framework to enable better temporal and spatial sampling, particularly over regions where surface conditions provide a challenging background against which to observe precipitation. GPM is an international satellite mission and brings together a number of different component satellites and sensors, each contributing observations capable of providing information on precipitation. The joint US-Japan core observatory was launched in early 2014 and carries the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The core observatory serves as a standard against which other sensors in the constellation are calibrated, providing a consistent observational dataset to ensure the highest quality precipitation retrievals to be made. The conically-scanning GMI provides observations from 10.65 GHz through to 166 GHz with dual polarization capabilities, and two 183 GHz channels (+-1 and +-3 GHz) with vertical polarization. The highest frequencies provide resolutions in the order of 4.4x7.3 km. 885 km swath width. The DPR operates at 35.5 GHz and 13.6 GHz with swath widths 120 and 245 km respectively, and a vertical resolution of 250 m. The higher frequency radar will provide a sensitivity down to 12 dBZ, or about 0.2 mmh-1 equivalent rainrate, particularly useful for higher latitudes where light precipitation dominates. Integration of the cross-track sensors into the overall retrieval scheme of the GPM mission is achieved through the GPROF retrieval scheme, utilizing databases based upon observational and modelled data sets

  17. Precipitation Measurements From Space: Workshop report. An element of the climate observing system study

    NASA Technical Reports Server (NTRS)

    Atlas, D. (Editor); Thiele, O. W. (Editor)

    1981-01-01

    Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed.

  18. Far ultraviolet nighttime ionospheric photometer

    NASA Astrophysics Data System (ADS)

    Fu, Liping; Peng, Ruyi; Shi, Entao; Peng, Jilong; Wang, Tianfang; Jiang, Fang; Jia, Nan; Li, Xiaoyin; Wang, Yongmei

    2015-01-01

    Far Ultraviolet Nighttime Ionopsheric Photometer (FNIP) is a newly-designed instrument for low earth orbit missions, observing the earth night airglow nadir at OI 135.6 nm emission produced by ionospheric O++e recombination and receiving the horizontal information on nighttime ionosphere with a spatial resolution of about 1.6∘×3.8∘. This simple, highly robust instrument excludes OI 130.4 nm emission and Herzberg oxygen bands with lower power and approximately achieves a sensitivity of about 400 counts/s/Rayleigh at 135.6 nm with stray light less than 2 %. Some tests of the instrument have been conducted and the results will be discussed in the end.

  19. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65 degrees inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperature/humidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global water/energy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in

  20. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core SpacecraR in a non-Sun-synchronous orbit at 65 deg. inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperaturethumidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near-realtime monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global watertenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in 2014

  1. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65' inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperaturelhumidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approx.40deg) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global waterlenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 201 3, followed by the launch of the GPM Low- Inclination Observatory in 2014. An

  2. Creating synergy between ground and space-based precipitation measurements

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Hong, Y.; Petersen, W. A.; Howard, K.; Flamig, Z.; Wen, Y.

    2010-12-01

    As the successor of the Tropical Rainfall Measuring Mission (TRMM) satellite launched in 1997, the multi-national Global Precipitation Measurement (GPM) Mission, to be launched in 2013, will provide next-generation global precipitation estimates from space within a unified framework. On the ground, several countries worldwide are in the throes of expanding their weather radar networks with gap-filling radars and upgrading them to include polarimetric capabilities. While significant improvements in precipitation estimation capabilities have been realized from space- and ground-based platforms separately, little effort has been focused on aligning these communities for synergistic, joint development of algorithms. In this study, we demonstrate the integration of real-time rainfall products from the Tropical Rainfall Measurement Mission (TRMM) into the National Severe Storms Laboratory’s (NSSL) National Mosaic and QPE (NMQ/Q2; http://nmq.ou.edu) system. The NMQ system enables a CONUS-wide comparison of TRMM products to NEXRAD-based Q2 rainfall products. Moreover, NMQ’s ground validation software ingests and quality controls data from all automatic-reporting rain gauge networks throughout the US and provides robust graphical and statistical validation tools, accessible by anyone with internet access. This system will readily incorporate future products from GPM as well as those from the dual-polarization upgrade to the NEXRAD network. While initial efforts are on the intercomparison of rainfall products, we envision this system will ultimately promote the development of precipitation algorithms that capitalize on the strengths of spatiotemporal and error characteristics of space and ground remote-sensing data. An example algorithm is presented where the vertical structure of precipitating systems over complex terrain is more completely resolved using combined information from NMQ and TRMM precipitation radar (PR), leading to more accurate surface rainfall estimates.

  3. Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan

    2013-01-01

    The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.

  4. Continuous Light Absorption Photometer (CLAP) Final Campaign Report

    SciTech Connect

    Jefferson, Anne

    2014-05-01

    The Continuous Light Absorption Photometer (CLAP) measures the aerosol absorption of radiation at three visible wavelengths; 461, 522, and 653 nanometers (nm). Data from this measurement is used in radiative forcing calculations, atmospheric heating rates, and as a prediction of the amount of equivalent black carbon in atmospheric aerosol and in models of aerosol semi-direct forcing. Aerosol absorption measurements are essential to modeling the energy balance of the atmosphere.

  5. Global Precipitation Measurement (GPM) launch, commissioning, and early operations

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2014-10-01

    The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). The mission centers on the GPM Core Observatory and consists of an international network, or constellation, of additional satellites that together will provide next-generation global observations of precipitation from space. The GPM constellation will provide measurements of the intensity and variability of precipitation, three-dimensional structure of cloud and storm systems, the microphysics of ice and liquid particles within clouds, and the amount of water falling to Earth's surface. Observations from the GPM constellation, combined with land surface data, will improve weather forecast models; climate models; integrated hydrologic models of watersheds; and forecasts of hurricanes/typhoons/cylcones, landslides, floods and droughts. The GPM Core Observatory carries an advanced radar/radiometer system and serves as a reference standard to unify precipitation measurements from all satellites that fly within the constellation. The GPM Core Observatory improves upon the capabilities of its predecessor, the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM), with advanced science instruments and expanded coverage of Earth's surface. The GPM Core Observatory carries two instruments, the NASA-supplied GPM Microwave Imager (GMI) and the JAXA-supplied Dual-frequency Precipitation Radar (DPR). The GMI measures the amount, size, intensity and type of precipitation, from heavy-tomoderate rain to light rain and snowfall. The DPR provides three-dimensional profiles and intensities of liquid and solid precipitation. The French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. Department of Defense are partners with NASA and

  6. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  7. Measurement of Global Precipitation: Introduction to International GPM Program

    NASA Technical Reports Server (NTRS)

    Hwang, P.

    2004-01-01

    The Global Precipitation Measurement (GPM) Program is an international cooperative effort whose objectives are to (a) obtain better understanding of rainfall processes, and (b) make frequent rainfall measurements on a global basis. The National Aeronautics and Space Administration (NASA) of the United States and the Japanese Aviation and Exploration Agency (JAXA) have entered into a cooperative agreement for the formulation and development of GPM. This agreement is a continuation of the partnership that developed the highly successful Tropical Rainfall Measuring Mission (TRMM) that was launched in November 1997; this mission continues to provide valuable scientific and meteorological information on rainfall and the associated processes. International collaboration on GPM from other space agencies has been solicited, and discussions regarding their participation are currently in progress. NASA has taken lead responsibility for the planning and formulation of GPM. Key elements of the Program to be provided by NASA include a Core satellite instrumented with a multi-channel microwave radiometer, a Ground Validation System and a ground-based Precipitation Processing System (PPS). JAXA will provide a Dual-frequency Precipitation Radar for installation on the Core satellite and launch services. Other United States agencies and international partners may participate in a number of ways, such as providing rainfall measurements obtained from their own national space-borne platforms, providing local rainfall measurements to support the ground validation activities, or providing hardware or launch services for GPM constellation spacecraft.

  8. Dual-frequency precipitation radar (DPR) development on the global precipitation measurement (GPM) core observatory

    NASA Astrophysics Data System (ADS)

    Kojima, M.; Miura, T.; Furukawa, K.; Hyakusoku, Y.; Ishikiri, T.; Kai, H.; Iguchi, T.; Hanado, H.; Nakagawa, K.

    2012-11-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core observatory is developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). GPM objective is to observe global precipitation more frequently and accurately. GPM contributes to climate and water cycle change studies, flood prediction and numerical weather forecast. GPM consists of GPM core observatory and constellation satellites carrying microwave radiometers (MWRs) and/or sounders (MWSs). The frequent measurement will be achieved by constellation satellites, and the accurate measurement will be achieved by DPR with high sensitivity and dual frequency capability. GPM core observatory is jointly developed by National Aeronautics and Space Administration (NASA) and JAXA. NASA is developing the satellite bus and GPM microwave radiometer (GMI), and JAXA is developing DPR. GPM algorithms for data processing are developed jointly. The DPR consists of Ku-band (13.6 GHz) radar suitable for heavy rainfall in the tropical region, and Ka-band (35.55 GHz) radar suitable for light rainfall in higher latitude region. Drop size distribution information will be derived which contributes to the improvement of rainfall estimate accuracy. DPR will also play a key role to improve rainfall estimation accuracy of constellation satellites. DPR proto-flight test at JAXA Tsukuba space center is finished and it is delivered to NASA for integration to the GPM observatory. In this paper, DPR PFT test result at Tsukuba space center, DPR status in the GPM observatory environmental test, and DPR on-orbit calibration plan will be presented.

  9. Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbation experiments

    NASA Astrophysics Data System (ADS)

    Arnott, W. Patrick; Walker, John W.; Moosmüller, Hans; Elleman, Robert A.; Jonsson, Haflidi H.; Buzorius, Gintautas; Conant, William C.; Flagan, Richard C.; Seinfeld, John H.

    2006-03-01

    Aerosol light absorption can be intense close to local sources such as wildland and oil fires, with smoke that disperses into the boundary layer and, with enough lift, into the upper atmosphere where it may be transported around the globe. Filter-based methods such as the Particle Soot Absorption Photometer (PSAP) are most commonly used to quantify aerosol light absorption aloft. This paper reports first measurements of aerosol light absorption aloft with photoacoustic instrumentation (PA). Three examples of aerosol light absorption are presented. The first one illustrates a case of detached layers aloft arising from intercontinental, interoceanic transport of smoke from wildland fires in Siberia to the North American continent and the measurement campaign held at the Department of Energy Atmospheric Radiation Measurement Program Climate Research Facility in north central Oklahoma. Then, two examples of intense local fire smoke light absorption from the Coastal Stratocumulus Imposed Perturbation Experiment near Marina, California, USA, are presented. The first local fire was an oil fire burning in a storage tank near Moss Landing, California, USA, and smoke from this fire was very dark, indicating a low single scattering albedo. By contrast, the second local fire was predominantly burning wood, vegetation, and structures near Fort Ord in Marina, California, USA, and the smoke was very bright, indicating a high single scattering albedo. In all examples, PA measurements at 676 nm were compared with those from a PSAP modified to measure at three wavelengths, including 660 nm.

  10. Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Hou, Arthur Y.

    2008-01-01

    For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.

  11. Global Precipitation Measurement, Validation, and Applications Integrated Hydrologic Validation to Improve Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidar, Christa D.; Tian, Yudong; Kenneth, Tian; Harrison, Kenneth; Kumar, Sujay

    2011-01-01

    Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization Working Group. Specifically, we will demonstrate the performance of the Land Information System (LIS; http://lis.gsfc.nasa.gov; Peters-Lidard et aI., 2007; Kumar et al., 2006) coupled to the Joint Center for Satellite Data Assimilation (JCSDA's) Community Radiative Transfer Model (CRTM; Weng, 2007; van Deist, 2009). The land surface is characterized by complex physical/chemical constituents and creates temporally and spatially heterogeneous surface properties in response to microwave radiation scattering. The uncertainties in surface microwave emission (both surface radiative temperature and emissivity) and very low polarization ratio are linked to difficulties in rainfall detection using low-frequency passive microwave sensors (e.g.,Kummerow et al. 2001). Therefore, addressing these issues is of utmost importance for the GPM mission. There are many approaches to parameterizing land surface emission and radiative transfer, some of which have been customized for snow (e.g., the Helsinki University of Technology or HUT radiative transfer model;) and soil moisture (e.g., the Land Surface Microwave Emission Model or LSMEM).

  12. Current Status of Japanese Global Precipitation Measurement (GPM) Research Project

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Oki, Riko; Kubota, Takuji; Masaki, Takeshi; Kida, Satoshi; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is a mission led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) under collaboration with many international partners, who will provide constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory, which carries the Dual-frequency Precipitation Radar (DPR) developed by JAXA and the National Institute of Information and Communications Technology (NICT), and the GPM Microwave Imager (GMI) developed by NASA. The GPM Core Observatory is scheduled to be launched in early 2014. JAXA also provides the Global Change Observation Mission (GCOM) 1st - Water (GCOM-W1) named "SHIZUKU," as one of constellation satellites. The SHIZUKU satellite was launched in 18 May, 2012 from JAXA's Tanegashima Space Center, and public data release of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the SHIZUKU satellite was planned that Level 1 products in January 2013, and Level 2 products including precipitation in May 2013. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research including production of research products. In addition, we promote collaboration studies in Japan and Asian countries, and public relations activities to extend potential users of satellite precipitation products. In pre-launch phase, most of our activities are focused on the algorithm development and the ground validation related to the algorithm development. As the GPM standard products, JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and the DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map product as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. All standard algorithms including Japan-US joint algorithm will be reviewed by the Japan-US Joint

  13. New Features of the Global Precipitation Measurement (GPM) Validation Network

    NASA Astrophysics Data System (ADS)

    Schwaller, M.; Morris, K. R.

    2014-12-01

    Various enhancements have been added to the Global Precipitation Measurement (GPM) Validation Network (VN) to evaluate the GPM satellite's instrument and data product performance. The GPM VN acquires data from the Dual-frequency Precipitation Radar (DPR) on GPM, the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) satellite, from microwave imagers on GPM, TRMM, and GPM constellation satellites, and from ground radar (GR) networks in the continental U.S. and participating international sites. The VN characterizes the variability and bias of precipitation retrievals between the satellite products and the GR in various precipitation regimes, with the goal of improving precipitation retrieval algorithms for the GPM instruments. The core VN dataset consists of WSR-88D GR data and matching satellite orbit subset data, primarily covering the eastern US. TRMM data range from August, 2006 to the present, and GPM and constellation data range from March, 2014 to the present. New features of the VN include the extension of the observation network from 21 weather service ground radars in the southeast US to 66 radars covering most of the eastern half of the US, and a radar in Alaska was also added to the network. Additional comparison parameters have also been added to the VN. These include ground radar polarimetric variables (Zdr, Kdp, RHOhv), microphysical variables (Dzero, Nw), and hydrometeor type classifications. New visualization tools and statistical methods are now also available to help compare ground radar and GPM DPR measurements for validation purposes. The VN also now includes an experimental GPM Microwave Imager (GMI)-to-ground radar geometry matching technique. For this product, the GMI near-surface rain rate field from the GPM GPROF algorithm is matched to the GR reflectivity and dual-polarization fields a) along the GMI line- of-sight, and b) as a vertical column above the GMI surface. The full VN software suite to produce the

  14. Calibration Plans for the Global Precipitation Measurement (GPM)

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Flaming, G. M.; Adams, W. J.; Everett, D. F.; Mendelsohn, C. R.; Smith, E. A.; Turk, J.

    2002-01-01

    The Global Precipitation Measurement (GPM) is an international effort led by the National Aeronautics and Space Administration (NASA) of the U.S.A. and the National Space Development Agency of Japan (NASDA) for the purpose of improving research into the global water and energy cycle. GPM will improve climate, weather, and hydrological forecasts through more frequent and more accurate measurement of precipitation world-wide. Comprised of U.S. domestic and international partners, GPM will incorporate and assimilate data streams from many spacecraft with varied orbital characteristics and instrument capabilities. Two of the satellites will be provided directly by GPM, the core satellite and a constellation member. The core satellite, at the heart of GPM, is scheduled for launch in November 2007. The core will carry a conical scanning microwave radiometer, the GPM Microwave Imager (GMI), and a two-frequency cross-track-scanning radar, the Dual-frequency Precipitation Radar (DPR). The passive microwave channels and the two radar frequencies of the core are carefully chosen for investigating the varying character of precipitation over ocean and land, and from the tropics to the high-latitudes. The DPR will enable microphysical characterization and three-dimensional profiling of precipitation. The GPM-provided constellation spacecraft will carry a GMI radiometer identical to that on the core spacecraft. This paper presents calibration plans for the GPM, including on-board instrument calibration, external calibration methods, and the role of ground validation. Particular emphasis is on plans for inter-satellite calibration of the GPM constellation. With its Unique instrument capabilities, the core spacecraft will serve as a calibration transfer standard to the GPM constellation. In particular the Dual-frequency Precipitation Radar aboard the core will check the accuracy of retrievals from the GMI radiometer and will enable improvement of the radiometer retrievals

  15. Measuring Snow Precipitation in New Zealand- Challenges and Opportunities.

    NASA Astrophysics Data System (ADS)

    Renwick, J. A.; Zammit, C.

    2015-12-01

    Monitoring plays a pivotal role in determining sustainable strategy for efficient overall management of the water resource. Though periodic monitoring provides some information, only long-term monitoring can provide data sufficient in quantity and quality to determine trends and develop predictive models. These can support informed decisions about sustainable and efficient use of water resources in New Zealand. However the development of such strategies is underpinned by our understanding and our ability to measure all inputs in headwaters catchments, where most of the precipitation is falling. Historically due to the harsh environment New Zealand has had little to no formal high elevation monitoring stations for all climate and snow related parameters outside of ski field climate and snow stations. This leads to sparse and incomplete archived datasets. Due to the importance of these catchments to the New Zealand economy (eg irrigation, hydro-electricity generation, tourism) NIWA has developed a climate-snow and ice monitoring network (SIN) since 2006. This network extends existing monitoring by electricity generator and ski stations and it is used by a number of stakeholders. In 2014 the network comprises 13 stations located at elevation above 700masl. As part of the WMO Solid Precipitation Intercomparison Experiment (SPICE), NIWA is carrying out an intercomparison of precipitation data over the period 2013-2015 at Mueller Hut. The site was commissioned on 11 July 2013, set up on the 17th September 2013 and comprises two Geonor weighing bucket raingauges, one shielded and the other un-shielded, in association with a conventional tipping bucket raingauge and conventional climate and snow measurements (temperature, wind, solar radiation, relative humidity, snow depth and snow pillow). The presentation aims to outline the state of the current monitoring network in New Zealand, as well as the challenge and opportunities for measurement of precipitation in alpine

  16. A Plan for Measuring Climatic Scale Global Precipitation Variability: The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The outstanding success of the Tropical Rainfall Measuring Mission (TRMM) stemmed from a near flawless launch and deployment, a highly successful measurement campaign, achievement of all original scientific objectives before the mission life had ended, and the accomplishment of a number of unanticipated but important additional scientific advances. This success and the realization that satellite rainfall datasets are now a foremost tool in the understanding of decadal climate variability has helped motivate a comprehensive global rainfall measuring mission, called 'The Global Precipitation Mission' (GPM). The intent of this mission is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction, the global carbon budget, and atmosphere-biosphere-cryosphere chemistry. This paper addresses the status of that mission currently planed for launch in the early 2007 time frame. The GPM design involves a nine-member satellite constellation, one of which will be an advanced TRMM-like 'core' satellite carrying a dual-frequency Ku-Ka band radar (df-PR) and a TMI-like radiometer. The other eight members of the constellation can be considered drones to the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range, likely based on both real and synthetic aperture antenna technology and to include a combination of new lightweight dedicated GPM drones and both co-existing operational and experimental satellites carrying passive microwave radiometers (i.e., SSM/l, AMSR, etc.). The constellation is designed to provide a minimum of three-hour sampling at any spot on the globe using sun-synchronous orbit architecture, with the core satellite providing relevant measurements on internal cloud precipitation microphysical processes. The core satellite also enables 'training' and 'calibration' of the drone retrieval process. Additional

  17. Probabilistic quantitative precipitation estimation using dual polarization radar measurements

    NASA Astrophysics Data System (ADS)

    Lim, S.; Noh, S.; Lee, D.

    2013-12-01

    Weather radars have become a popular tool for meteorological applications such as quantitative precipitation estimation (QPE) with high spatiotemporal resolution. Especially, in the last decade, QPE performance has been improved by introduction of polarimetric technology. However, QPEs using dual polarization radar data are still subject to uncertainties resulted in rainfall conversion relationships, combination methods of different parameters, and sampling errors. Deterministic QPE typically based on decision tree method ignores such uncertainties which exacerbate performance in hydrologic flood forecasting. Probabilistic precipitation models provide an alternative framework for QPE to understand temporal and spatial variations of uncertainty. In this study, we propose a probabilistic QPE method from dual polarization radar measurements via data assimilation. The proposed method utilizes QPE ensembles based on different parameters of a polarimetric radar considering uncertainty of conversion equations and rainfall parameters. Ground observations are assimilated with QPE ensembles at each measurement time step. Rejection sampling based on Bayesian filtering is implemented to estimate posterior distribution of QPE and compare multiple models. The strength of the proposed method is that it can improve accuracy of QPE compared to deterministic QPE, identify uncertainty of QPE, and provide sound spatial precipitation fields including error structure, which is essential for hydrological data assimilation to improve flood forecasting. The real experiments are implemented to demonstrate applicability of this method using S-band dual polarization radar located in Mt. Biseul, Korea. The discussion will be focused on analysis of multi-model selection results by Bayesian filtering and comparison of accuracy between deterministic and probabilistic QPE methods.

  18. Evaluation of a portable photometer for estimating diesel particulate matter concentrations in an underground limestone mine.

    PubMed

    Watts, Winthrop F; Gladis, David D; Schumacher, Matthew F; Ragatz, Adam C; Kittelson, David B

    2010-07-01

    A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-mum impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071

  19. Evaluation of a Portable Photometer for Estimating Diesel Particulate Matter Concentrations in an Underground Limestone Mine

    PubMed Central

    Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; Kittelson, David B.

    2010-01-01

    A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071

  20. Status of the Japanese Global Precipitation Measurement (GPM) Research Project

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2014-05-01

    The Global Precipitation Measurement (GPM) mission is a mission led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) under collaboration with many international partners, who will provide constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory, which carries the Dual-frequency Precipitation Radar (DPR) developed by JAXA and the National Institute of Information and Communications Technology (NICT), and the GPM Microwave Imager (GMI) developed by NASA. JAXA also provides the Global Change Observation Mission (GCOM) 1st - Water (GCOM-W1) named "SHIZUKU," as one of constellation satellites. The SHIZUKU satellite was launched on May 18, 2012, and all products, including the precipitation product, have been available to general users since May 2013. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research including production of research products. In addition to those activities, we promote collaboration studies in Japan and Asian countries, and seek potential users of satellite precipitation products. JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map algorithm, which is anew version of the Global Satellite Mapping of Precipitation (GSMaP,) as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. In the GPM era, the GSMaP algorithm will be improved by refining rainfall retrievals over land, considered the orographic rainfall effects, added the rain gauge corrected rainfall product. In the future, information from the Dual-frequency Precipitation Radar (DPR) will be compiled as a database to improve the retrieval accuracy of weak rainfall in mid-to-high latitudes. The GPM Core Observatory is scheduled to be launched from the JAXA

  1. Impacts of Light Precipitation Detection with Dual Frequency Radar on Global Precipitation Measurement Core Observatory (GPM/DPR)

    NASA Astrophysics Data System (ADS)

    Takayabu, Y. N.; Hamada, A.; Oki, R.; Kachi, M.; Kubota, T.; Iguchi, T.; Shige, S.; Nakamura, K.

    2014-12-01

    The Dual-frequency Precipitation Radar (DPR) on board the GPM Core Observatory consists of Ku-band (13.6 GHz) and Ka-band (35.5 GHz) radars, with an improved minimum detection sensitivity of precipitation compared to the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). We have studied impacts of improved detection sensitivity with the GPM DPR compared with the TRMM PR. One example of light precipitation is, a scattered rainfall around a trough over the subtropical South Pacific Ocean, which consists of weak but erect precipitation reaching over the melting level of ~2.5 km and trailing precipitation above, which reaches as high as 5km. Another example is a light anvil precipitation spreading from convective cores of a storm in the upper troposphere, overcasting shallow convective precipitation below. The ability of globally detecting such light precipitation will improve our knowledge of precipitation processes. Utilizing an early version of the DPR product, a quick evaluation on statistical impacts of increasing the detection sensitivity from 17dBZ to 12dBZ has been performed. Here, 17dBZ is the value which is mostly accepted as the performed detection sensitivity of the TRMM PR, and 12dBZ is the guaranteed sensitivity for GPM Ka-band radar. For the near surface precipitation, impacts are significant in terms of numbers, but limited to several regions in terms of the rainfall volume. Volume impacts are much larger at the upper troposphere, which is indicated by the detection of the anvil precipitation, for example. The upper level improvements are mostly found where the deep precipitation systems exist. Quantitative discussions utilizing the latest version of the DPR data, which is scheduled to be released to the public in September, will be presented at the session.

  2. Global Precipitation Measurement (GPM) Safety Inhibit Timeline Tool

    NASA Technical Reports Server (NTRS)

    Dion, Shirley

    2012-01-01

    The Global Precipitation Measurement (GPM) Observatory is a joint mission under the partnership by National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), Japan. The NASA Goddard Space Flight Center (GSFC) has the lead management responsibility for NASA on GPM. The GPM program will measure precipitation on a global basis with sufficient quality, Earth coverage, and sampling to improve prediction of the Earth's climate, weather, and specific components of the global water cycle. As part of the development process, NASA built the spacecraft (built in-house at GSFC) and provided one instrument (GPM Microwave Imager (GMI) developed by Ball Aerospace) JAXA provided the launch vehicle (H2-A by MHI) and provided one instrument (Dual-Frequency Precipitation Radar (DPR) developed by NTSpace). Each instrument developer provided a safety assessment which was incorporated into the NASA GPM Safety Hazard Assessment. Inhibit design was reviewed for hazardous subsystems which included the High Gain Antenna System (HGAS) deployment, solar array deployment, transmitter turn on, propulsion system release, GMI deployment, and DPR radar turn on. The safety inhibits for these listed hazards are controlled by software. GPM developed a "pathfinder" approach for reviewing software that controls the electrical inhibits. This is one of the first GSFC in-house programs that extensively used software controls. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As part of this process a new tool "safety inhibit time line" was created for management of inhibits and their controls during spacecraft buildup and testing during 1& Tat GSFC and at the Range in Japan. In addition to understanding inhibits and controls during 1& T the tool allows the safety analyst to better communicate with others the changes in inhibit states with each phase of hardware and software testing. The tool was very

  3. Absolute spectral radiance responsivity calibration of sun photometers

    SciTech Connect

    Xu Qiuyun; Zheng Xiaobing; Zhang Wei; Wang Xianhua; Li Jianjun; Li Xin; Li Zhengqiang

    2010-03-15

    Sun photometers are designed to measure direct solar irradiance and diffused sky radiance for the purpose of atmospheric parameters characterization. A sun photometer is usually calibrated by using a lamp-illuminated integrating sphere source for its band-averaged radiance responsivity, which normally has an uncertainty of 3%-5% at present. Considering the calibration coefficients may also change with time, a regular high precision calibration is important to maintain data quality. In this paper, a tunable-laser-based facility for spectral radiance responsivity calibration has been developed at the Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences. A reference standard radiance radiometer, calibrated against cryogenic radiometer, is used to determine the radiance from a laser-illuminated integrating sphere source. Spectral radiance responsivity of CIMEL CE318-2 sun photometer is calibrated using this new calibration system with a combined standard uncertainty of about 0.8%. As a validation, the derived band-averaged radiance responsivity are compared to that from a Goddard Space Flight Center lamp-based sphere calibration and good agreements (difference <1.4%) are found from 675 to 1020 nm bands.

  4. Rocket measurements of energetic particles in the midlatitude precipitation zone

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  5. Global Precipitation Measurement (GPM) Orbit Design and Autonomous Maneuvers

    NASA Technical Reports Server (NTRS)

    Folta, David; Mendelsohn, Chad; Mailhe, Laurie

    2003-01-01

    The NASA Goddard Space Flight Center's Global Precipitation Measurement (GPM) mission must meet the challenge of measuring worldwide precipitation every three hours. The GPM core spacecraft, part of a constellation, will be required to maintain a circular orbit in a high drag environment at a near-critical inclination. Analysis shows that a mean orbit altitude of 407 km is necessary to prevent ground track repeating. Combined with goals to minimize maneuver operation impacts to science data collection and to enable reasonable long-term orbit predictions, the GPM project has decided to fly the GSFC autonomous maneuver system, AutoCon(TM). This system is a follow-up version of the highly successful New Millennium Program technology flown onboard the Earth Observing-1 formation flying mission. This paper presents the driving science requirements and goals of the GPM mission and shows how they will be met. Selection of the mean semi-major axis, eccentricity, and the AV budget for several ballistic properties are presented. The architecture of the autonomous maneuvering system to meet the goals and requirements is presented along with simulations using GPM parameters. Additionally, the use of the GPM autonomous system to mitigate possible collision avoidance and to aid other spacecraft systems during navigation outages is explored.

  6. Global Precipitation Measurement (GPM) Mission Data and Data Access

    NASA Astrophysics Data System (ADS)

    Stocker, Erich Franz

    2014-05-01

    If all goes as plans, the core satellite of the GPM mission will have launched on February 28, 2014 from the Tanegashima Space Center in Japan. The core satellite is the center of the GPM mission as it carries both an imagining radiometer with high frequency channels and a dual-frequency precipitation radar. In addition, the core satellite is at a 65 degree inclination so that it affords many opportunities of coincident measurements with the polar orbiting radiometers that form the GPM constellation. This allows the science team to intercalibrate the brightness temperature data retrieved from the constellation satellites by using the core satellite data as the reference satellite. This will ensure that GPM produces consistent mission brightness temperatures that should lead to consistent precipitation retrievals. The paper will also present the data production status as of the week before the conference. The precipitation community will, of course, be very interested in the data generated by the core satellite instruments as well as the intercalibrated brightness temperatures and precipitation retrievals from the partner constellation satellites. This paper will present the various data products, from the instrument count data through the monthly precipitation retrievals, produced as part of the mission. It will present the key parameters available in the products; provide information of the purpose of the various products; and provide some preliminary information about the weaknesses of the new products when compared to Tropical Rainfall Measuring Mission (TRMM) products. If the official public release of the first image has taken place before the conference, then the paper will provide some early examples of the data products. Near realtime (NRT) products from the core satellite radiometer and radar are available in both near-realtime and research mode. NRT precipitation retrievals will also be made from each of the partner radiometers. All these retrievals

  7. Precipitation measurement using SIR-C: A feasibility study

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq; Moore, Richard K.

    1993-01-01

    A precipitation detection and measurement experiment is planned for the SIR-C/X-SAR mission. This study was conducted to determine under what conditions an off-nadir experiment is feasible. The signal-to-clutter ratio, the signal-to-noise ratio, and the minimum detectable rain rate were investigated. Available models, used in previous studies, were used for the surface clutter and the rain echo. The study also considers the attenuation of the returns at X band. It was concluded that an off-nadir rain-measurement experiment is feasible only for rain rates greater than 10 mm/hr for look angles greater than 60 deg. For the range of look angles 5 less than theta(sub 1) less than 50, the rain rate required is very high for adequate signal-to-clutter ratio, and hence the feasibility of the experiment.

  8. Detailed Precipitation Measurements for GV: Advances in Video-Distrometers

    NASA Astrophysics Data System (ADS)

    Schwinzerl, Martin; Lammer, Günter; Schönhuber, Michael

    2014-05-01

    The 2D-Video-Distrometer (2DVD) is an established instrument for in-situ measurements of precipitation, delivering per-particle data for solid, liquid and mixed-phase precipitation and having over 80 successful deployments world-wide to its record. At its core, two orthogonally oriented, vertically displaced and precisely aligned high-speed cameras sample hydrometeors like rain, snow, hail, graupel, ice-pellets, etc. as they fall through a sampling area of approx. 100 cm². This measurement principle, i.e. having two projections for each detected particle while gathering statistically significant data by sampling over a substantial measurement area, allows capturing and evaluation of observables like diameter, oblateness and shape, vertical velocity, and contributions to the rain rate and to the cumulative amount of rain for each individual detected particle. If particles display rotational symmetry, estimation of horizontal velocity and (for particles exceeding a diameters of approx. 1.5 mm) canting angles can be gauged, again on a per-hydrometeor basis, as well. While the 2DVD has been successfully deployed during many ground validation campaigns, some of the inherent cost and complexity constraints have so far prevented the use of 2DVD's for some applications and in some environments. In order to address these limitations of the 2DVD, research has been conducted to develop a 1D-Video-Distrometer (1DVD) which employs only one camera system but tries to retain the capability to capture as many observables on a per-particle basis as possible. First results from our activities towards such a system with reduced complexity and deployment costs are presented and comparison of data sets gathered with both 1DVD and current generation 2DVD systems are provided. Current generations of the 2DVD can yield exceptionally high data rates, especially during extreme rain events like for example tropical storms. Therefore, the software suite which accompanies each device employs

  9. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

    NASA Astrophysics Data System (ADS)

    Bordi, Isabella; Zhu, Xiuhua; Fraedrich, Klaus

    2016-01-01

    Monthly means of ground-based GPS measurements of precipitable water vapor (PWV) from six stations in the USA covering the period January 2007-December 2012 are analyzed to investigate their usefulness for monitoring meteorological wet/dry spells. For this purpose, the relationship between PWV and the Standardized Precipitation Index (SPI) on 1-month timescale is investigated. The SPI time series at grid points close to the stations are computed using gridded precipitation records from the NOAA Climate Prediction Center (CPC) unified precipitation dataset (January 1948-April 2012). GPS measurements are first verified against PWV data taken from the latest ECMWF reanalysis ERA-Interim; these PWV reanalysis data, which extend back to 1979, are then used jointly with CPC precipitation to compute precipitation efficiency (PE), defined as the percentage of total water vapor content that falls onto the surface as measurable precipitation in a given time period. The overall results suggest that (i) PWV time series are dominated by the seasonal cycle with maximum values during summer months, (ii) the comparison between GPS and ERA-Interim PWV monthly data shows good agreement with differences less than 4 mm, (iii) at all stations and for almost all months, PWV is only poorly correlated with recorded precipitation and the SPI, while PE correlates highly with the SPI, providing an estimate of the water availability at a given location and useful information on wet/dry spell occurrence, and (iv) long data records would allow, for each month of the year, the identification of PE thresholds associated with different SPI classes that, in turn, have potential for forecasting meteorological wet/dry spells. Thus, it is through PE that ground-based GPS measurements appear of relevance for assessing wet/dry spells, although there is not a direct relationship between PWV and SPI.

  10. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  11. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

    NASA Technical Reports Server (NTRS)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

    2013-01-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  12. Inference of precipitation through thermal infrared measurements of soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.; Atlas, D.

    1981-01-01

    The physics of microwave radiative transfer is well understood so that causal models can be assembled which relate the observed brightness temperatures to assumed distributions of hydrometeors (both liquid and ice), non-precipitating clouds, water vapor oxygen, and surface conditions. Present models assume a Marshall Palmer size distribution of liquid hydrometers from the surface to the freezing level (near the 0 C isotherm) and a variable thickness of frozen hydrometeors above that with various reasonable distribution of the other relevant constituents. The validity of such models is discussed. All uncertainties in the rain rate retrieval algorithms can be expressed in terms of specific model uncertainties which can be addressed through appropriate measurements. Those factors which must be known to achieve umambiguous results can be identified so that rainfall measuring algorithms can be developed and improved. The emissivity of the underlying surface significantly affects the contrast that may be measured between areas covered by rain and those which are dry. Sensing strategies for measuring rain over the ocean and rain over land are reviewed.

  13. Filter type rotor for multistation photometer

    DOEpatents

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  14. Comparison of Water Vapor Measurements by Airborne Sun photometer and Near-Coincident In Situ and Satellite Sensors during INTEX-ITCT 2004

    SciTech Connect

    Livingston, J.; Schmid, Beat; Redemann, Jens; Russell, P. B.; Ramirez, Samuel; Eilers, J.; Gore, W.; Howard, Samuel; Pommier, J.; Fetzer, E. J.; Seemann, S. W.; Borbas, E.; Wolfe, Daniel; Thompson, Anne M.

    2007-06-06

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes, and with water vapor profiles retrieved from AIRS measurements during 8 Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during 5 Aqua and 5 Terra overpasses. For 35 J31 vertical profiles mean (bias) and rms AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1% and 8.8%, respectively. For 22 aircraft profiles within 1 h and 130 km of radiosonde soundings, AATS-minus-sonde bias and rms LWV differences are -5.4% and 8.8%, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3% and 8.4%, respectively. AIRS LWV retrievals within 80 km of J31 profiles yield lower bias and rms differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8% to 5.8%, and the rms difference decreases from 21.5% to 16.4%. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2% to +6% and rms differences of ~20% below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5-km at nadir) are biased wet by 10.4% compared to AATS over-ocean near surface retrievals. The MODIS Aqua subset (79 grid cells) exhibits a wet bias of 5.1%, and the MODIS-Terra subset (126 grid cells) yields a wet bias of 13.2%.

  15. Orbital checkout result of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Kojima, M.; Miura, T.; Hyakusoku, Y.; Kai, H.; Ishikiri, T.; Iguchi, T.; Hanado, H.; Nakagawa, K.; Okumura, M.

    2014-10-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The GPM is a follow-on mission of the Tropical Rainfall Measuring Mission (TRMM). The objectives of the GPM mission are to observe global precipitation more frequently and accurately than TRMM. The frequent precipitation measurement about every three hours will be achieved by some constellation satellites with microwave radiometers (MWRs) or microwave sounders (MWSs), which will be developed by various countries. The accurate measurement of precipitation in mid-high latitudes will be achieved by the DPR. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. JAXA and NICT developed the DPR through procurement. The contract for DPR was awarded to NEC TOSHIBA Space Systems, Ltd. The configuration of precipitation measurement using active radar and a passive radiometer is similar to TRMM. The major difference is that DPR is used in GPM instead of the precipitation radar (PR) in TRMM. The inclination of the core satellite is 65 degrees, and the flight altitude is about 407 km. The non-sun-synchronous circular orbit is necessary for measuring the diurnal change of rainfall similarly to TRMM. The DPR consists of two radars, which are Ku-band (13.6 GHz) precipitation radar (KuPR) and Ka-band (35.5 GHz) precipitation radar (KaPR). Both KuPR and KaPR have almost the same design as TRMM PR. The DPR system design and performance were verified through the development test and the proto flight test. DPR had handed over to NASA and integration of the DPR to the GPM core spacecraft had completed in May 2012. GPM core spacecraft satellite system test had completed in November 2013

  16. Ambient flow studies and particulate collection measurements: A laminar flow, reduced entrainment electrostatic precipitator

    SciTech Connect

    Greiner, G.P.; Furlong, D.A.; Bahner, M.A.

    1989-05-01

    This report describes ambient temperature testing of an electrostatic precipitator having a portion of the main precipitator flow drawn through porous (fabric) plates. The effects of flow through the plates (side flow) on precipitator turbulence and particulate removal efficiency are investigated. Ambient temperature particulate removal efficiency measurements are conducted on both indoor air dust, and on injected coal fly ash. 24 figs., 10 tabs.

  17. Propulsion Options for the Global Precipitation Measurement Core Satellite

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Davis, Gary T.; Folta, David C.

    2003-01-01

    This study was conducted to evaluate several propulsion system options for the Global Precipitation Measurement (GPM) core satellite. Orbital simulations showed clear benefits for the scientific data to be obtained at a constant orbital altitude rather than with a decay/reboost approach. An orbital analysis estimated the drag force on the satellite will be 1 to 12 mN during the five-year mission. Four electric propulsion systems were identified that are able to compensate for these drag forces and maintain a circular orbit. The four systems were the UK-10/TS and the NASA 8 cm ion engines, and the ESA RMT and RITl0 EVO radio-frequency ion engines. The mass, cost, and power requirements were examined for these four systems. The systems were also evaluated for the transfer time from the initial orbit of 400 x 650 km altitude orbit to a circular 400 km orbit. The transfer times were excessive, and as a consequence a dual system concept (with a hydrazine monopropellant system for the orbit transfer and electric propulsion for drag compensation) was examined. Clear mass benefits were obtained with the dual system, but cost remains an issue because of the larger power system required for the electric propulsion system. An electrodynamic tether was also evaluated in this trade study.

  18. Measurements of Asian dust optical properties over the Yellow Sea of China by shipboard and ground-based photometers, along with satellite remote sensing: A case study of the passage of a frontal system during April 2006

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Yang, Dongxu; Chen, Wenzhong; Zhang, Hua

    2010-04-01

    Aerosol optical properties were measured by a POM-01 MarkII Sun and sky photometer onboard the Dongfanghong Number 2 Research Ship on the Yellow Sea of China during the passage of a cold front surrounded by airborne dust that originated in Mongolia between 21 and 24 April 2006. The aerosol size distributions in clean marine environment were dominated by an accumulate mode with radius of 0.15 μm and a coarse mode with radius of 4.5 μm. The mean aerosol optical depth (AOD) and Ångström exponent were 0.26 and 1.26, respectively. In the frontal zone the aerosol size distribution was dominated by an accumulate mode with radius of 0.25 μm and two coarse modes with radii of 1.69 and 7.73 μm, and the AOD and Ångström exponent were 2.46 and 0.84, respectively. In the nonfrontal dust conditions, the concentration of coarse modes with radii of 2.5 μm increased to a maximum of 0.3 μm3/μm2, and the mean AOD and Ångström exponent were 0.70 and 0.30, respectively. Aerosol Robotic Network (AERONET) observations combined with shipboard measurements reveal the decreasing concentration of dust aerosol during its transport from continent to Japan. The spatial distribution of dust aerosol was studied using the Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) and Aura/Ozone Monitoring Instrument (OMI) products. On 22 April, for frontal dust, their AOD and UV aerosol index (UVAI) increased with decreasing distance to the frontal line, peaked with values of 4.36 and 5.21 in the frontal zone, and decreased rapidly with increasing distance off the frontal line. On 23 April, nonfrontal dust showed the lower AOD and UVAI with peak values of 2.0 and 2.7, respectively.

  19. A fibre optic, four channel comparative photometer

    NASA Technical Reports Server (NTRS)

    Walker, E. N.

    1988-01-01

    Development of a four channel comparative photometer is described. Tests have shown that it is stable from night to night and is capable of working in very poor sky conditions. Even when the sky conditions are so poor that stars are barely visible, light curves can still be obtained with an r.m.s. value of 0.0016 mag., provided that integration times that are long compared with the transparancy changes are possible.

  20. ISIS-II Scanning Auroral Photometer.

    PubMed

    Anger, C D; Fancott, T; McNally, J; Kerr, H S

    1973-08-01

    The ISIS-II dual wavelength scanning auroral photometer is designed to map the distribution of auroral emissions at 5577 A and 3914 A over the portion of the dark earth visible to the spacecraft. A combination of internal electronic scanning and the natural orbital and rotational motions of the spacecraft causes a dual wavelength photometer to be scanned systematically across the earth. The data will be reproduced directly in the form of separate pictures representing emissions at each wavelength, which will be used to study the large-scale distribution and morphology of auroras, to study the ratio of 3914-A and 5577-A emissions thought to depend upon the energies of exciting particles), and to compare with results from other instruments on board the spacecraft and on the ground. The Red Line Photometer experiment on the same spacecraft is described in an accompanying paper by Shepherd et al. [Appl. Opt. 12, 1767 (1973)]. The instrument can be thought of as the photometric equivalent of an all-sky color camera which will view the aurora from above instead of below and with a much wider vantage point unobstructed by cloud and haze. In one satellite pass, the instrument will be capable of surveying (in one hemisphere) the entire polar region in which auroras normally occur. PMID:20125605

  1. Advanced Precipitation Radar Antenna to Measure Rainfall From Space

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen

    2008-01-01

    To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds

  2. Low-cost photometers and open source software for Light Pollution research

    NASA Astrophysics Data System (ADS)

    Zamorano, Jaime; Nievas, Miguel; Sánchez de Miguel, Alejandro; Tapia, Carlos; García, Cristóbal; Pascual, Sergio; Ocaña, Francisco; Gallego, Jesús

    2015-08-01

    Astronomical observatories have been measuring the brightness of the sky (NSB) using the methods of astronomical photometry with telescopes, photoelectric photometers and CCD cameras. The observations are disperse and sporadic. This is why some dedicated devices (including all-sky cameras) have been designed to automatically monitor the sky brightness at the observatories.These sophisticated and expensive instruments are restricted to research groups since they are out of reach for the interested citizens who wish to make a contribution to light pollution research. Most of them are using sky photometers (sky quality meter, SQM) a commercial photometer, designed to measure NSB in a photometric band that mimics the human eye response, that provide reliable data at an affordable budget.We are designing and building low cost devices to measure night sky brightness that could be widely distributed. The final designs will be calibrated and distributed to the community as open hardware. The researchers and also the interested people could acquire the parts and replicate the photometers from the instructions provided. Among the new features for these photometers we plan to add the capability to automatically send data to a repository located in a server, the autonomous operation with solar panels and batteries in remote places and the ability to measure in different spectral bands.We also present open source software for NSB research. PySQM, designed for SQM photometers, records the NSB data in the IDA-IAU standard data format and also builds the plots along the night. PyASB analyses all-sky images to determine photometric parameters and to build all-sky NSB maps

  3. On the microwave measurement of precipitation in tropics

    NASA Technical Reports Server (NTRS)

    Weng, Fuzhong; Vonder Haar, Thomas H.

    1992-01-01

    The difference between the brightness temperature structure over a typical tropical rain system and that of the midlatitude thunderstorms is examined. It is also determined how the brightness temperature and the rain rate relationship at the microwave frequencies deviates from that in the thunderstorms. It is shown, in particular, that the theoretical brightness temperature and rain rate relationship at 19.35 GHz provides good estimates of the surface rain rates for either convective or stratiform precipitation, but the relationship at 37 and 85.5 GHz may result in a significant overestimation of surface rain rate, especially for stratiform precipitation.

  4. A white super-stable source for the metrology of astronomical photometers

    NASA Astrophysics Data System (ADS)

    Wildi, F. P.; Deline, A.; Chazelas, B.

    2015-09-01

    The testing of photometers and in particular the testing of high precision photometers for the detection of planetary transits requires a light source which photometric stability is to par or better than the goal stability of the photometer to be tested. In the frame of the CHEOPS mission, a comprehensive calibration bench has been developed. Aside from measuring the sensibility of the CHEOPS payload to the different environmental conditions, this bench will also be used to test the relative accuracy of the payload. A key element of this bench is an extremely stable light source that is used to create an artificial star which is then projected into the payload's telescope. We present here the development of this payload and the performance achieved.

  5. New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Blum, L. W.; Schiller, Q.; Li, X.; Millan, R. M.; Halford, A.; Woodger, L. A.; Anderson, B.

    2013-12-01

    Particle precipitation into the atmosphere is a critical part of radiation belt electron loss, and without quantified understanding of this loss mechanism, we are unable to fully understand acceleration mechanisms. In particular, rapid electron precipitation is often observed at low altitude on a variety of timescales ranging from short bursts of less than 1 second (microbursts) to broader regions of precipitation extending a few degrees in latitude (termed precipitation bands, following Blake et al., 1996). These precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss but quantification of their net effect is still needed. Here we investigate precipitation bands as measured from low earth orbit (LEO) by the NSF/CSSWE CubeSat. Two precipitation bands of MeV electrons were observed by CSSWE on Jan 18 and 19, 2013, concurrent with precipitation seen by the 2013 NASA/BARREL campaign. Using the array of BARREL balloon measurements to constrain the temporal and spatial features of the precipitation event measured by CSSWE, we estimate the net electron loss due to these precipitation bands. This loss is found to be significant in the context of the total outer radiation belt content at the time, suggesting precipitation bands can play a critical role in radiation belt losses. These observations are placed in context by examining the statistical distributions of precipitation bands observed by the SAMPEX satellite, also at LEO, over the course of its 20 year mission to understand the role of these rapid precipitation events in storm-time radiation belt dynamics.

  6. Atmospheric attenuation of solar radiation and calibration of multiple wavelength sun photometers

    SciTech Connect

    Price, D.M.; Mulholland, G.P.; Matthews, L.K.; King, D.L.

    1986-01-01

    The activities detailed in this report include a review of the literature pertaining to the atmospheric attenuation of solar radiation, the maintenance and calibration of Volz and Sandia designed sun photometers, a comparison of the SOLTRAN5 and LOW-TRAN6 spectral irradiance models, an evaluation of the Li-Cor LI-1800 spectral radiometer, and a comparison between Li-Cor measurements of solar spectral irradiance and the modeled results from LOWTRAN6. Suggestions for the improvement of the sun photometers and the Li-Cor are also given.

  7. Correction of electronic record for weighing bucket precipitation gauge measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electronic sensors generate valuable streams of forcing and validation data for hydrologic models, but are often subject to noise, which must be removed as part of model input and testing database development. We developed Automated Precipitation Correction Program (APCP) for weighting bucket preci...

  8. Specifics of the hail parameter measurements using the optical precipitation gauge

    NASA Astrophysics Data System (ADS)

    Kalchikhin, V. V.; Kobzev, A. A.; Korolkov, V. A.; Tikhomirov, A. A.

    2015-11-01

    There are specifics of use of the obtaining and analyzing precipitation particle shadow images method for the hail precipitation investigations. Descriptions of the method and operation of the new optical rain gauge measuring system are presented. There are estimations of the device capabilities and prospects of its use for measurement of hail characteristics.

  9. The oceanic shipboard precipitation measurement network for surface validation - OceanRAIN

    NASA Astrophysics Data System (ADS)

    Klepp, Christian

    2015-09-01

    Systematic high quality oceanic in-situ precipitation measurements are requested on an international science level and are essential for improved understanding and validation of hydrological processes in satellite, re-analysis and model data. OceanRAIN, the shipboard "Ocean Rainfall And Ice-phase precipitation measurement Network" for surface validation is, to date, the only systematic long-term disdrometer-based oceanic shipboard precipitation data collection effort to establish a comprehensive statistical basis of precipitation for all climate related hotspots over the global oceans. OceanRAIN utilizes automated disdrometer systems (ODM470) capable of measuring precipitation occurrence, intensity and accumulation and discriminates for rain, snow and mixed-phase precipitation through minute-based particle size distributions. The ODM470 was especially designed for shipboard operation under high and frequently varying wind speeds and rough sea states. This paper provides an overview on the OceanRAIN project, the instrumentation, algorithms, methodology, and data products. The procedure of the data processing chain is outlined, including calibration, shipboard operation, data ingest and quality control. The selected research ships do not circumvent high impact weather, allowing for a collection of the full precipitation spectrum including extremes. By October 2014 the fast growing OceanRAIN database comprised more than 3.7 million minutes of precipitation measurements (including true zeros) since its start in 2010. OceanRAIN aims at increasing knowledge about oceanic precipitation, improving error characterization of GPM (Global Precipitation Measurement) era precipitation retrievals, adding to the continual improvement of the satellite retrieval algorithms, as well as benchmarking existing satellite-based climatologies, re-analysis and model data. The accumulating data volume can be utilized for statistical and process study applications on different temporal and

  10. MIPS - The Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  11. Precipitation charge and size measurements inside a New Mexico mountain thunderstorm

    NASA Astrophysics Data System (ADS)

    Bateman, Monte G.; Marshall, Thomas C.; Stolzenburg, Maribeth; Rust, W. David

    1999-04-01

    We measured the charge and size of precipitation particles with an instrumented free balloon in a convective mountain thunderstorm over Langmuir Laboratory in central New Mexico. Using an instrument that measured precipitation charge from 2 to 220 pC and equivalent particle diameters from 0.6 to 3.8 mm, we deduced that (1) the charge of the main positive charge region is carried by cloud particles, the charge of the main negative charge region is carried by a mixture of negative charge bearing cloud particles and precipitation particles, and the charge of the lower positive charge region is carried almost entirely by precipitation; (2) there was a mixture of both polarities of precipitation charge at nearly all altitudes; (3) there was no relationship between precipitation charge and size; (4) our charge data appear to support the noninductive ice-ice collisional charging mechanism; and (5) the sign of charge carried by the precipitation reverses with ambient temperature. In comparing these data to previous measurements that were collected in New Mexico mountain thunderstorms with different instrumentation, we found that in most ways our precipitation charge data are similar to the previous measurements. In comparing these data with data that we previously collected in the trailing stratiform regions of mesoscale convective systems, we found that there are substantial differences in the precipitation charge data between these different cloud types.

  12. Influence of sea ice cover on high latitude precipitation: Inferences from precipitation isotope measurements and a 2D model

    NASA Astrophysics Data System (ADS)

    Posmentier, E. S.; Faiia, A.; Feng, X.; Michel, F. A.

    2009-12-01

    The most widely cited climate feedback in the Arctic region is ice cover. Warming climate reduces the sea ice extent, which causes a lower surface albedo, resulting in more absorbed insolation and further warming - a positive feedback. Conversely, warming is also likely to result in increased Arctic evaporation and precipitation, leading to increased snow cover and a higher Arctic terrestrial albedo, which would cause cooling - a negative feedback. The balance between these feedbacks must be understood and quantified in order to predict climate response to influences such as increased greenhouse gases. Here, we use measurements of high latitude precipitation isotopes and a 2D model to investigate interannual variability in the contributions of subtropical and Arctic vapor sources to Arctic precipitation. In a previous study, we used isotopic ratios alone to investigate the sources of moisture to the Arctic. We found significant positive relationships between ice area and the d-excess of precipitation on both interannual and seasonal timescales, an expected result under the assumption that sea ice prevents evaporation from the sea surface and consequently reduces the contribution of Arctic moisture with low d-excess values to Arctic precipitation. In this work, we go a step further with an attempt to estimate the influence of sea ice cover on Arctic evaporation using a 2D model and constraining it with high latitude isotopic measurements. The 2D model is a vertical-meridional mass conservation model for H2O, HDO, and H218O with prescribed atmospheric circulation and temperatures. For each isotope, the rates of surface evaporation, sublimation, precipitation, and reevaporation of falling hydrometeors are calculated, and values of the humidity and isotopic concentrations of both vapor and hydrometeors are computed interdependently with the four process rates.. The model fractionation associated with the four processes is based primarily on the work of Jouzel and

  13. CHARGE MEASUREMENTS ON INDIVIDUAL PARTICLES EXITING LABORATORY PRECIPITATORS WITH POSITIVE AND NEGATIVE CORONA AT VARIOUS TEMPERATURES

    EPA Science Inventory

    The paper reports measurements of charge values on individual particles exiting three different laboratory electrostatic precipitators (ESPs) in an experimental apparatus containing a Millikan cell. Dioctylphthalate (DOP) droplets and fly ash particles were measured at temperatur...

  14. Determination of nocturnal aerosol properties from a combination of lunar photometer and lidar observations

    NASA Astrophysics Data System (ADS)

    Li, Donghui; Li, Zhengqiang; Lv, Yang; Zhang, Ying; Li, Kaitao; Xu, Hua

    2015-10-01

    Aerosol plays a key role in the assessment of global climate change and environmental health, while observation is one of important way to deepen the understanding of aerosol properties. In this study, the newly instrument - lunar photometer is used to measure moonlight and nocturnal column aerosol optical depth (AOD, τ) is retrieved. The AOD algorithm is test and verified with sun photometer both in high and low aerosol loading. Ångström exponent (α) and fine/coarse mode AOD (τf, τc) 1 is derived from spectral AOD. The column aerosol properties (τ, α, τf, τc) inferred from the lunar photometer is analyzed based on two month measurement in Beijing. Micro-pulse lidar has advantages in retrieval of aerosol vertical distribution, especially in night. However, the typical solution of lidar equation needs lidar ratio(ratio of aerosol backscatter and extinction coefficient) assumed in advance(Fernald method), or constrained by AOD2. Yet lidar ratio is varied with aerosol type and not easy to fixed, and AOD is used of daylight measurement, which is not authentic when aerosol loading is different from day and night. In this paper, the nocturnal AOD measurement from lunar photometer combined with mie scattering lidar observations to inverse aerosol extinction coefficient(σ) profile in Beijing is discussed.

  15. The new sun-sky-lunar Cimel CE318-T multiband photometer - a comprehensive performance evaluation

    NASA Astrophysics Data System (ADS)

    Barreto, África; Cuevas, Emilio; Granados-Muñoz, María-José; Alados-Arboledas, Lucas; Romero, Pedro M.; Gröbner, Julian; Kouremeti, Natalia; Almansa, Antonio F.; Stone, Tom; Toledano, Carlos; Román, Roberto; Sorokin, Mikhail; Holben, Brent; Canini, Marius; Yela, Margarita

    2016-02-01

    assess the CE318-T performance as well as to confirm its estimated uncertainty. Daytime AOD evaluation, performed at Izaña station from March to June 2014, encompassed measurements from a reference CE318-T, a CE318-AERONET master instrument, a Precision Filter Radiometer (PFR) and a Precision Spectroradiometer (PSR) prototype, reporting low AOD discrepancies between the four instruments (up to 0.006). The nocturnal AOD evaluation was performed using CE318-T- and star-photometer-collocated measurements and also by means of a day/night coherence transition test using the CE318-T master instrument and the CE318 daytime data from the CE318-AERONET master instrument. Results showed low discrepancies with the star photometer at 870 and 500 nm channels ( ≤ 0.013) and differences with AERONET daytime data (1 h after and before sunset and sunrise) in agreement with the estimated uNAOD values at all illumination conditions in the case of channels within the visible spectral range, and only for high moon's illumination conditions in the case of near-infrared channels.Precipitable water vapour (PWV) validation showed a good agreement between CE318-T and Global Navigation Satellite System (GNSS) PWV values for all illumination conditions, within the expected precision for sun photometry.Finally, two case studies have been included to highlight the ability of the new CE318-T to capture the diurnal cycle of aerosols and water vapour as well as short-term atmospheric variations, critical for climate studies.

  16. Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer

    NASA Astrophysics Data System (ADS)

    Ying, Shang-Ping; Chou, P. T.; Fu, Han-Kuei

    2013-10-01

    Accurate optical measurements of LEDs are crucial because of the increasing popularity of LEDs. However, a photometer with a V(λ) filter spectrum curve may yield large errors when it is used for photometric measurements of colored LEDs. The junction-dependent light output and spectral distribution of LEDs also introduce measurement errors of the measured photometric characteristics. For the accurate measurements of LEDs, the c(St,Ss) factors were used to estimate the possible deviation in the photometric measurement of colored LEDs with various junction temperatures using commercial and industrial grade photometer heads. The spectral measurements of LEDs with specified junction temperature were conducted using a miniature fiber-optic spectrometer, and the relative spectral power distributions of LEDs were used to calculate the spectral mismatch correction c(St,Ss) factors of the photometer heads. Therefore, the c(St,Ss) factors of colored LEDs were calculated according to the temperature dependent spectral power distributions with various junction temperatures, and these factors were used to estimate the possible deviation in the photometric measurement of colored LEDs. The estimation of the possible deviation in the photometric measurement shows that photometers with excellent relative spectral responsitivities must be used for accurate measurement; otherwise, careful calibration must be conducted when using a photometer with inferior relative spectral responsitivity of the photopic filter.

  17. A New Fast Silicon Photomultiplier Photometer

    NASA Astrophysics Data System (ADS)

    Meddi, F.; Ambrosino, F.; Nesci, R.; Rossi, C.; Sclavi, S.; Bruni, I.; Ruggieri, A.; Sestito, S.

    2012-05-01

    The realization of low-cost instruments with high technical performance is a goal that deserves some efforts in an epoch of fast technological developments; indeed, such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM technology, using commercially available modules. Using low-cost components, we have developed a custom electronic chain to extract the signal produced by a commercial MPPC module produced by Hamamatsu Photonics, in order to obtain submillisecond sampling of the light curve of astronomical sources (typically, pulsars). In the early 2011 February, we observed the Crab pulsar with the Cassini telescope with our prototype photometer, deriving its period and power spectrum and the shape of its light curve, in very good agreement with the results obtained in the past with other instruments. Based on observations made with the 152 cm Cassini telescope at the Loiano station of the Bologna Observatory and with the 50 cm telescope of the Università di Roma "La Sapienza" at Vallinfreda (Rome).

  18. The Global Precipitation Measurement (GPM) Mission contributions to terrestrial hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Skofronick Jackson, G.; Huffman, G. J.

    2015-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission is an international constellation of satellites coordinated through a partnership with NASA and the Japan Aerospace Exploration Agency (JAXA) to provide next-generation global observations of rain and snow. The GPM mission centers on the deployment of a Core Observatory satellite that serves as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. This satellite launched from Tanegashima Space Complex in Japan on January 28th, 2014 and carries advanced instruments setting a new standard for precipitation measurements from space. The GPM Core Observatory satellite measures rain and snow using two science instruments: the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The GMI captures precipitation intensities and horizontal patterns, while the DPR provides insights into the three dimensional structure of precipitating particles. Together these two instruments provide a database of measurements against which other partner satellites' microwave observations can be meaningfully compared and combined to make a global precipitation dataset. GPM has already provided unprecedented views of typhoons, extratropical systems, light rain, snow storms and extreme precipitation. Through improved measurements of precipitation globally, the GPM mission provides new insights into measuring the fluxes of Earth's water cycle. This presentation will outline new findings and advancements of GPM in understanding and modeling of Earth's water and energy cycles, improving forecasting of extreme events that cause natural hazards and disasters, and extending current

  19. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2015-06-01

    Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.

  20. The new sun-sky-lunar Cimel CE318-T multiband photometer - a comprehensive performance evaluation

    NASA Astrophysics Data System (ADS)

    Barreto, A.; Cuevas, E.; Granados-Muñoz, M. J.; Alados-Arboledas, L.; Romero, P. M.; Gröbner, J.; Kouremeti, N.; Almansa, A. F.; Stone, T.; Sorokin, M.; Holben, B.; Canini, M.; Yela, M.

    2015-10-01

    0.006). The nocturnal AOD evaluation was performed using CE318-T and star photometer collocated measurements and also by means of a day/night coherence transition test using the master CE318-T and the CE318 daytime data from the CE318-AERONET master. Results showed low discrepancies with star photometer at 870 and 500 nm channels (≤ 0.013) and differences with AERONET daytime data (1 h after and before sunset and sunrise) in agreement with the estimated uNAOD values at all illumination conditions in case of channels within the visible spectral range, and only for high moon's illumination conditions in case of near infrared channels. Precipitable water vapor (PWV) validation showed a good agreement between CE318-T and Global Navigation Satellite System (GNSS) PWV values for all illumination conditions, within the expected precision for sun photometry. Finally, two case studies have been included to highlight the ability of the new CE318-T to capture the diurnal cycle of aerosols and water vapor as well as short-term atmospheric variations, critical for climate studies.

  1. Retrieval of Ozone Column Content from Airborne Sun Photometer Measurements During SOLVE II: Comparison with SAGE III, POAM III,THOMAS and GOME Measurements. Comparison with SAGE 111, POAM 111, TOMS and GOME Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Russell, P.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Pitts, M.

    2003-01-01

    During the Second SAGE 111 Ozone Loss and Validation Experiment (SOLVE II), the 14- channel NASA Ames Airborne Trackmg Sunphotometer (AATS-14) was mounted on the NASA DC-8 and successfully measured spectra of total and aerosol optical depth (TOD and AOD) during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 data by using a linear least squares method. For each AATS-14 measured TOD spectrum, this method iteratively finds the ozone column content that yields the best match between measured and calculated TOD. The calculations assume the known Chappuis ozone band shape and a three-parameter AOD shape (quadratic in log-log space). Seven of the AATS-14 channels (each employing an interference filter with a nominal full-width at half maximum bandpass of -5 nm) are within the Chappuis band, with center wavelengths between 452.9 nm and 864.5 nm. One channel (604.4 nm) is near the peak, and three channels (499.4, 519.4 and 675.1 nm) have ozone absorption within 30-40% of that at the peak. For the typical DC-8 SOLVE II cruising altitudes of approx. 8-12 km and the background stratospheric aerosol conditions that prevailed during SOLVE 11, absorption of incoming solar radiation by ozone comprised a significant fraction of the aerosol-plus-ozone optical depth measured in the four AATS-14 channels centered between 499.4 and 675.1 nm. Typical AODs above the DC-8 ranged from 0.003-0.008 in these channels. For comparison, an ozone overburden of 0.3 atm-cm (300 DU) translates to ozone optical depths of 0.009,0.014, 0.041, and 0.012, respectively, at these same wavelengths. In this paper, we compare AATS-14 values of ozone column content with temporally and spatially near-coincident values derived from measurements acquired by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement 111 (POAM III) satellite sensors. We also compare AATS-14 ozone

  2. GOES Satellite Data Validation Via Hand-held 4 LED Sun Photometer at Norfolk State University

    NASA Technical Reports Server (NTRS)

    Reynolds, Arthur, Jr.; Jackson, Tyrone; Reynolds, Kevin; Davidson, Cassy; Coope-Pabis, Barbara

    2005-01-01

    Sun photometry is a passive means of measuring a quantity of light radiation. The GIFTS- IOMI/GLOBE Water Vapor/Haze Sun photometer contains four light emitting diodes (LEDs), which are used to convert photocurrent to voltage. The intensity of the incoming and outgoing radiation as detected on the Earth s surface can be affected by aerosols and gases in the atmosphere. The focus of this research is primarily on aerosol and water vapor particles that absorb and reemit energy. Two LEDs in the photometer correspond to light scattered at 530 nm (green spectrum) and 620 nm (red spectrum). They collect data pertaining to aerosols that scatter light. The other two LEDs detect the light scattered by water vapor at wavelengths of 820 nm and 920 nm. The water vapor measurements will be compared to data collected by the Geostationary Observation Environmental Satellite (GOES). Before a comparison can be made, the extraterrestrial constant (ET), which is intrinsic to each sun photometer, must be measured. This paper will present determination of the ET constant, from which the aerosol optical thickness (AOT) can be computed for comparison to the GOES satellite to ascertain the reliability of the sun photometer.

  3. Characterization of intermetallic precipitates in a Nimonic alloy by ultrasonic velocity measurements

    SciTech Connect

    Murthy, G.V.S. Sridhar, G.; Kumar, Anish; Jayakumar, T.

    2009-03-15

    Ultrasonic velocity measurements have been carried out in Nimonic 263 specimens thermally aged at 923 and 1073 K for durations up to 75 h and correlated with the results of hardness measurements and electron microscopy studies. The ultrasonic velocities and hardness results obtained in the specimens thermally aged at both temperatures clearly indicated that ultrasonic velocity is more sensitive to the initiation of the precipitation, whereas the influence of precipitation on hardness can be observed only after the precipitates attain a minimum size to influence the movement of dislocations. Further, ultrasonic velocity measurements also revealed faster kinetics and a lesser amount of precipitation at 1073 K compared to 923 K due to higher solubility of precipitate-forming elements.

  4. Use of Dual Polarization Radar in Validation of Satellite Precipitation Measurements: Rationale and Opportunities

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Hou, Arthur; Smith, Eric; Bringi, V. N.; Rutledge, S. A.; Gorgucci, E.; Petersen, W. A.; SkofronickJackson, Gail

    2008-01-01

    Dual-polarization weather radars have evolved significantly in the last three decades culminating in the operational deployment by the National Weather Service. In addition to operational applications in the weather service, dual-polarization radars have shown significant potential in contributing to the research fields of ground based remote sensing of rainfall microphysics, study of precipitation evolution and hydrometeor classification. Furthermore the dual-polarization radars have also raised the awareness of radar system aspects such as calibration. Microphysical characterization of precipitation and quantitative precipitation estimation are important applications that are critical in the validation of satellite borne precipitation measurements and also serves as a valuable tool in algorithm development. This paper presents the important role played by dual-polarization radar in validating space borne precipitation measurements. Starting from a historical evolution, the various configurations of dual-polarization radar are presented. Examples of raindrop size distribution retrievals and hydrometeor type classification are discussed. The quantitative precipitation estimation is a product of direct relevance to space borne observations. During the TRMM program substantial advancement was made with ground based polarization radars specially collecting unique observations in the tropics which are noted. The scientific accomplishments of relevance to space borne measurements of precipitation are summarized. The potential of dual-polarization radars and opportunities in the era of global precipitation measurement mission is also discussed.

  5. HOAPS and ERA-Interim precipitation over the sea: validation against shipboard in situ measurements

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; König-Langlo, Gert; Kinzel, Julian; Schröder, Marc

    2016-06-01

    The satellite-derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) and ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis data sets have been validated against in situ precipitation measurements from ship rain gauges and optical disdrometers over the open ocean by applying a statistical analysis for binary estimates. For this purpose collocated pairs of data were merged within a certain temporal and spatial threshold into single events, according to the satellites' overpass, the observation and the ERA-Interim times. HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially in the tropics and subtropics. Although precipitation rates are difficult to compare because along-track point measurements are collocated with areal estimates and the number of available data are limited, we find that HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide average precipitation rate is close to measurements. However, when regionally averaged over latitudinal belts, deviations between the observed mean precipitation rates and ERA-Interim exist. The most obvious ERA-Interim feature is an overestimation of precipitation in the area of the intertropical convergence zone and the southern subtropics over the Atlantic Ocean. For a limited number of snow measurements by optical disdrometers, it can be concluded that both HOAPS and ERA-Interim are suitable for detecting the occurrence of solid precipitation.

  6. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  7. Basic Requirements for Collecting, Documenting, and Reporting Precipitation and Stormwater-Flow Measurements

    USGS Publications Warehouse

    Church, Peter E.; Granato, Gregory E.; Owens, David W.

    1999-01-01

    Accurate and representative precipitation and stormwater-flow data are crucial for use of highway- or urban-runoff study results, either individually or in a regional or national synthesis of stormwater-runoff data. Equally important is information on the level of accuracy and representativeness of this precipitation and stormwaterflow data. Accurate and representative measurements of precipitation and stormwater flow, however, are difficult to obtain because of the rapidly changing spatial and temporal distribution of precipitation and flows during a storm. Many hydrologic and hydraulic factors must be considered in performing the following: selecting sites for measuring precipitation and stormwater flow that will provide data that adequately meet the objectives and goals of the study, determining frequencies and durations of data collection to fully characterize the storm and the rapidly changing stormwater flows, and selecting methods that will yield accurate data over the full range of both rainfall intensities and stormwater flows. To ensure that the accuracy and representativeness of precipitation and stormwater-flow data can be evaluated, decisions as to (1) where in the drainage system precipitation and stormwater flows are measured, (2) how frequently precipitation and stormwater flows are measured, (3) what methods are used to measure precipitation and stormwater flows, and (4) on what basis are these decisions made, must all be documented and communicated in an accessible format, such as a project description report, a data report or an appendix to a technical report, and (or) archived in a State or national records center. A quality assurance/quality control program must be established to ensure that this information is documented and reported, and that decisions made in the design phase of a study are continually reviewed, internally and externally, throughout the study. Without the supporting data needed to evaluate the accuracy and representativeness

  8. Drop Size Distribution Measurements Supporting the NASA Global Precipitation Measurement Mission: Infrastructure and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Carey, Lawerence D.; Gatlin, Patrick N.; Wingo, Matthew; Tokay, Ali; Wolff, David B.; Bringi, V. N.

    2011-01-01

    Global Precipitation Measurement Mission (GPM) retrieval algorithm validation requires datasets that characterize the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (5 -- 50 km). Key to this process is the combined use of disdrometer and polarimetric radar platforms. Here the disdrometer measurements serve as a reference for up-scaling dual-polarimetric radar observations of the PSD to the much larger volumetric sampling domain of the radar. The PSD observations thus derived provide a much larger data set for assessing DSD variability, and satellite-based precipitation retrieval algorithm assumptions, in all three spatial dimensions for a range of storm types and seasons. As one component of this effort, the GPM Ground Validation program recently acquired five 3rd generation 2D Video disdrometers as part of its Disdrometer and Radar Observations of Precipitation Facility (DROP), currently hosted in northern Alabama by the NASA Marshall Space Flight Center and the University of Alabama in Huntsville. These next-generation 2DVDs were operated and evaluated in different phases of data collection under the scanning domain of the UAH ARMOR C-band dual-polarimetric radar. During this period approximately 7500 minutes of PSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSDs were then used as input to T-matrix code for computation of polarimetric radar moments at C-band. The combined dataset was then analyzed with two basic objectives in mind: 1) the investigation of seasonal variability in the rain PSD parameters as observed by the 2DVDs; 2) the use of combined polarimetric moments and observed gamma distribution parameters in a functional form to retrieve PSD parameters in 4-D using the ARMOR radar for precipitation occurring in different

  9. Measuring and modelling precipitation components in an Oriental beech stand of the Hyrcanian region, Iran

    NASA Astrophysics Data System (ADS)

    Rahmani, Ramin; Sadoddin, Amir; Ghorbani, Somayeh

    2011-07-01

    SummaryInterception loss from the canopy is a major pathway for the loss of water from forest ecosystems. This study was conducted in an Oriental beech stand, neighboring Gorgan, representing typical forest characteristics of the Hyrcanian region. The Hyrcanian region is situated to the south of the Caspian Sea and covers approximately 1.8 million ha of the northern foothills of the Alborz Mountains in northern Iran. This region is characterised by temperate deciduous forests with Oriental beech stands, formed mainly of Fagus orientalis. Because these beech stands occupy 80% of the Hyrcanian region, rainfall interception via the tree canopy is an important pathway for water loss in this region. The main objectives of this study were to determine and model the precipitation components including stemflow, throughfall, net precipitation, and interception loss using gross precipitation and to understand how the diameter classes influence precipitation partitioning by comparing precipitation components across the tree diameter classes. A total of 31 beech trees with the following classes of diameter were randomly chosen: 11 trees of 30-60 cm (young), 10 trees of 60-100 cm (middle-aged), and 10 trees of 100-130 cm (old) of Diameter at Breast Height (DBH). Field measurements of gross precipitation, stemflow, and throughfall were made for 33 rainfall events over a period of 12 months from November 2005. Then, based on these measurements, net precipitation and interception loss were calculated. The value of gross precipitation was approximately 827 mm. Interception loss estimated to be about 53%, 57%, and 60% of gross precipitation corresponding to the tree diameter classes of 30-60, 60-100, and 100-130 cm, respectively. ANOVA results show that the values of the mean of precipitation components were significantly different across the diameter classes. There was an indirect relationship between tree diameter and the volumes of stemflow, throughfall, and net precipitation

  10. The Orbital Checkout Status of the Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core observatory

    NASA Astrophysics Data System (ADS)

    Miura, Takeshi; Kojima, Masahiro; Furukawa, Kinji; Hyakusoku, Yasutoshi; Ishikiri, Takayuki; Kai, Hiroki; Iguchi, Toshio; Hanado, Hiroshi; Nakagawa, Katsuhiro

    2014-05-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core observatory is developed by Japan Aerospace Exploration Agency (JAXA) with National Institute of Information and Communications Technology (NICT). GPM objective is to observe global precipitation more frequently and accurately. GPM contributes to climate and water cycle change studies, flood prediction and numerical weather forecast. GPM consists of the GPM core observatory and constellation satellites carrying microwave radiometers (MWRs) and/or sounders (MWSs). The frequent measurement will be achieved by constellation satellites, and the accurate measurement will be achieved by the DPR with high sensitivity and dual frequency capability. The GPM core observatory is jointly developed by National Aeronautics and Space Administration (NASA) and JAXA. NASA is developing the satellite bus and GPM microwave radiometer (GMI), and JAXA is developing the DPR. The DPR consists of Ku-band (13.6 GHz) radar suitable for heavy rainfall in the tropical region, and Ka-band (35.55 GHz) radar suitable for light rainfall in higher latitude region. Drop size distribution information will be derived which contributes to the improvement of rainfall estimate accuracy. DPR will also play a key role to improve rainfall estimation accuracy of constellation satellites. DPR proto-flight test at JAXA Tsukuba space center has been completed in February 2012. The DPR has handed over to NASA and integrated to the core observatory in May 2012. The system test of the core observatory has completed in November 2013 and DPR test results satisfied its system requirements. The core observatory was shipped to launch site of JAXA Tanegashima space center in Japan. Launch site activities have started on November 2013 and GPM core observatory will be launched in early 2014. DPR orbital check out will be started in March 2014 and it will be completed in April 2014. In this presentation, the orbital check out

  11. OPTIMA: A Photon Counting High-Speed Photometer

    NASA Astrophysics Data System (ADS)

    Straubmeier, C.; Kanbach, G.; Schrey, F.

    OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed lightcurve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal.

  12. Quantification of precipitation measurement discontinuity induced by wind shields on national gauges

    USGS Publications Warehouse

    Yang, D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.; Leavesley, G.; Emerson, D.; Hanson, C.L.; Golubev, V.S.; Elomaa, E.; Gunther, T.; Pangburn, T.; Kang, E.; Milkovic, J.

    1999-01-01

    Various combinations of wind shields and national precipitation gauges commonly used in countries of the northern hemisphere have been studied in this paper, using the combined intercomparison data collected at 14 sites during the World Meteorological Organization's (WMO) Solid Precipitation Measurement Intercomparison Project. The results show that wind shields improve gauge catch of precipitation, particularly for snow. Shielded gauges, on average, measure 20-70% more snow than unshielded gauges. Without a doubt, the use of wind shields on precipitation gauges has introduced a significant discontinuity into precipitation records, particularly in cold and windy regions. This discontinuity is not constant and it varies with wind speed; temperature, and precipitation type. Adjustment for this discontinuity is necessary to obtain homogenous precipitation data for climate change and hydrological studies. The relation of the relative catch ratio (RCR, ratio of measurements of shielded gauge to unshielded gauge) versus wind speed and temperature has been developed for Alter and Tretyakov wind shields. Strong linear relations between measurements of shielded gauge and unshielded gauge have also been found for different precipitation types. The linear relation does not fully take into account the varying effect of wind and temperature on gauge catch. Overadjustment by the linear relation may occur at those sites with lower wind speeds, and underadjustment may occur at those stations with higher wind speeds. The RCR technique is anticipated to be more applicable in a wide range of climate conditions. The RCR technique and the linear relation have been tested at selected WMO intercomparison stations, and reasonable agreement between the adjusted amounts and the shielded gauge measurement was obtained at most of the sites. Test application of the developed methodologies to a regional or national network is therefore recommended to further evaluate their applicability in

  13. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  14. Airborne Doppler radar velocity measurements of precipitation seen in ocean surface reflection

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Matejka, T. J.

    1985-01-01

    The use of airborne or spaceborne radars to observe precipitation simultaneously directly and in reflection could provide significant new opportunities for measuring the properties of the precipitation, wind field, and ocean surface. Atlas and Meneghini (1983) have proposed that the difference between direct and reflected precipitation echo intensities observed with a nadir-directed beam is a measure of two-way attenuation and thus of path average rain rate, taking into account an employment of direct and reflected echoes from very near the ocean surface to normalize for ocean surface scatter. In the present paper, some key meteorological and oceanographic research applications are illustrated, giving particular attention to airborne Doppler radar velocity measurements of the precipitation.

  15. Beryllium-7 and (210)Pb atmospheric deposition measured in moss and dependence on cumulative precipitation.

    PubMed

    Krmar, M; Mihailović, D T; Arsenić, I; Radnović, D; Pap, I

    2016-01-15

    This paper focuses on analysis of the time series of (7)Be and (210)Pb activity measured in moss, and the amount, as well as duration of precipitation, to gain a better understanding of the possible relationships between airborne radionuclide deposition and precipitation. Here we consider whether the amount of these airborne radionuclides in moss samples is a cumulative measure of radionuclide deposition and decay, and a new approach for analyses of the relationships between precipitation and moss activity concentrations is suggested. Through these analyses it was shown that comparison of cumulative activity measured at one location using moss, normalized by values of cumulative amount or duration of precipitation, showed different regimes of airborne radionuclide deposition. PMID:26461139

  16. Classification of Tropical Oceanic Precipitation Using High Altitude Aircraft Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; LaFontaine, Frank J.; Hood, Robbie E.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald

    2004-01-01

    A physically intuitive and computationally simple precipitation mapping algorithm has been developed for use with the airborne Advanced Microwave Precipitation Radiometer (AMPR). The algorithm is based on microwave emission and scattering properties of precipitation. Specifically, emission by liquid water allows increasing brightness temperatures at low frequencies to be interpreted as increasing rain rates. Scattering by large hydrometeors (particularly graupel and hail) causes relative minima in the brightness temperatures, with progressively larger hydrometeors scattering progressively longer wavelengths. The vigor of convection is therefore ascertained according to which wavelengths are being significantly scattered. The combination of emission and scattering information from four microwave channels is used to assign a precipitation category, which is related to the liquid rain rate, the vertical extent of precipitation, and the vigor of convection. The qualitative precipitation categories output by the passive microwave algorithm have been verified using coincident radar (ER-2 Doppler Radar - EDOP) and electric field measurements (Lightning Instrument Package - LIP). These coincident measurements can subsequently be used to quantify rain rates, hydrometeor contents, and vertical profiles that are typical for each precipitation category. This algorithm has been developed using an airborne platform. Comparisons are being made with other airborne, satellite, and ground-based radar and radiometer data. This technique shows promise both as a research tool and potentially as a real-time analysis tool, which could be applied to either traditional or uninhabited aerial vehicles.

  17. The Status of NASA's Global Precipitation Measurement (GPM) Mission 26 Months After Launch

    NASA Astrophysics Data System (ADS)

    Jackson, Gail; Huffman, George

    2016-04-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products [1-2]. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). The unique 65o non-Sun-synchronous orbit at an altitude of 407 km for the GPM Core Observatory allows for highly sophisticated observations of precipitation in the mid-latitudes where a majority of the population lives. Indeed, the GOM Core Observatory serves as the cornerstone, as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. GPM's requirements are to measure rain rates from 0.2 to 110 mm/hr and to detect and estimate falling snow. GPM has several retrieval product levels ranging from raw instrument data to Core and partner swath precipitation estimates to gridded and accumulated products and finally to multi-satellite merged products. The latter merged product, called IMERG, is available with a 5-hour latency with temporal resolution of 30 minutes and spatial resolution of 0.1o x 0.1o (~10km x 10km) grid box. Some products have a 1-hour latency for societal applications such as floods, landslides, hurricanes, blizzards, and typhoons and all have late-latency high-quality science products. The GPM mission is well on its way to providing essential data on precipitation (rain and snow) from micro to local to global scales via providing precipitation

  18. Microburst Precipitation Measured with the FIREBIRD-II CubeSats

    NASA Astrophysics Data System (ADS)

    Crew, A. B.; Spence, H. E.; Blake, J. B.; Klumpar, D. M.; Larsen, B.; O'Brien, T. P., III; Driscoll, S.; Handley, M.; Legere, J.; Longworth, S.; Mosleh, E.; Smith, S. S.; Springer, L.; Widholm, M.

    2015-12-01

    Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics II (FIREBIRD-II) is an NSF CubeSat mission specifically designed to address key science questions about microbursts. Launched on January 31, 2015 it consists of a pair of identical 1.5U CubeSats, which measure electron microburst precipitation in low-Earth Orbit. Microbursts, which are short (~100ms) intense bursts of electron precipitation to the Earth's atmosphere, are one particular form of electron loss from the Earth's radiation belts and have often been associated with intense chorus wave activity. Each spacecraft carries a pair of solid state detectors to measure the precipitating electrons in 6 energy channels from 200 keV to 1 MeV in energy at 18.75 ms time resolution. We present observations of both individual microburst events (timing, size scales, spectra) as well as larger trends in microburst precipitation observed over the course of the entire mission to date.

  19. Millimeter wave radiative transfer studies for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Vivekanandan, J.; Evans, Frank

    1989-01-01

    Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.

  20. A global ETCCDI based precipitation climatology from satellite and rain gauge measurements

    NASA Astrophysics Data System (ADS)

    Dietzsch, Felix; Andersson, Axel; Schröder, Marc; Ziese, Markus; Becker, Andreas

    2016-04-01

    The project framework MiKlip ("Mittelfristige Klimaprognosen") is focused onto the development of an operational forecast system for decadal climate predictions. The objective of the "Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized" (DAPAGLOCO) project, is the development and operationalization of a global precipitation dataset for forecast validation of the MPI-ESM experiments used in MiKlip. The dataset is a combination of rain gauge measurement data over land and satellite-based precipitation retrievals over ocean. Over land, gauge data from the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst (DWD) are used. Over ocean, retrievals from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) dataset are used as data source. The currently available dataset consists of 21 years of data (1988-2008) and has a spatial resolution of 1°. So far, the MiKlip forecast validation is based upon the Expert Team on Climate Change and Detection Indices (ETCCDI). These indices focus on precipitation extrema in terms of spell durations, percentiles, averaged precipitation amounts and further more. The application of these indices on the DAPAGLOCO dataset in its current state delivers insight into the global distribution of precipitation characteristics and extreme events. The resulting global patterns of these characteristics and extrema are the main objective of the presentation.

  1. Central Andean temperature and precipitation measurements and its homogenization

    NASA Astrophysics Data System (ADS)

    Hunziker, Stefan; Gubler, Stefanie

    2015-04-01

    Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.

  2. The High Speed Photometer for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Bless, R. C.

    1982-01-01

    An overview of the high speed photometer (HSP), its optics and detectors, its electronics, its mechanical structure, and some observational considerations are presented. The capabilities and limitations of the HSP are outlined.

  3. Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth R.; Schwaller, Mathew

    2010-01-01

    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data.

  4. The SPIRE Photometer Interactive Analysis Package SPIA

    NASA Astrophysics Data System (ADS)

    Schulz, B.

    2011-07-01

    The Herschel Common Science System (HCSS) is a substantial Java software package, accompanying the development of the Herschel Mission, supporting all of its phases. In particular, the reduction of data from the scientific instruments for instrument checkout, calibration, and astronomical analysis is one of its major applications. The data reduction software is split up into modules, called "tasks". Agreed-upon sequences of tasks form pipelines that deliver well defined standard products for storage in a web-accessible Herschel Science Archive (HSA). However, as astronomers and instrument scientists continue to characterize instrumental effects, astronomers already need to publish scientific results and may not have the time to acquire a sufficiently deep understanding of the system to apply necessary fixes. There is a need for intermediate level analysis tools that offer more flexibility than rigid pipelines. The task framework within the HCSS and the highly versatile Herschel Interactive Processing Environment (HIPE), together with the rich set of libraries provide the necessary tools to develop GUI-based interactive analysis packages for the Herschel instruments. The SPIRE Photometer Interactive Analysis (SPIA) package, described in this paper, proves the validity of the concept for the SPIRE instrument, breaking up the pipeline reduction into logical components, making all relevant processing parameters available in GUIs, and providing a more controlled and user-friendly access to the complexities of the system.

  5. Operational Simulation of the GPM Constellation and Evaluation of its Efficiency in Measuring Precipitation

    NASA Astrophysics Data System (ADS)

    Fotopoulos, F.; Bras, R. L.

    2002-05-01

    The purpose of this research is to simulate the operation of the GPM constellation and to evaluate its efficiency in measuring precipitation by comparing the actual precipitation recorded by ground instruments to the precipitation profile obtained by solely utilizing the snapshots taken by the satellites over an area. The GPM constellation consists of one mothership satellite and several drones. It is dynamic in its nature, so that one or more satellites can be added or subtracted from the constellation without significantly altering its functionality. For the time being, six satellites are considered to be part of the GPM constellation: DMSP-F13, DMSP-F14, DMSP-F15, ADEOS-II, AQUA (EOS-PM) and TRMM. The study area is the Rondonia basin in Amazon, Brazil. The ground data set used comes from the LBA experiment, conducted from November 1st 1998 to February 28th 1999. During most of this period, four rain gages networks and the SPOL radar were in operation. The rain gages record rainfall every hour while the SPOL radar takes several snapshots every hour. Due to the orbit characteristics of the satellites, the duration of each visit is small, practically less than a minute. Therefore, in order to obtain comparable measurements, the areal precipitation is estimated using GIS techniques, and then it is disaggregated into one-minute time intervals. The satellites collect one-minute snapshots of this areal precipitation, and after the end of the simulation the snapshots are aggregated in order to reproduce the measured areal precipitation. By comparing the measured areal precipitation with that recorded by the ground instruments, a measure of the constellation's efficiency is acquired.

  6. MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  7. Developing a Stand Alone Sun Photometer for Ships and Buoys

    NASA Technical Reports Server (NTRS)

    Porter, John N.

    1997-01-01

    During November and December 1995 the first Aerosol Characterization Experiment (ACE 1) was carried to characterize the aerosol physical and optical properties in the clean marine atmosphere near Tasmania in the South Pacific. As part of this effort, and with funding from this proposal, we installed a sun photometer on the R/V Discoverer and a spectro-photometer on the NOAA C-130 aircraft.

  8. A multichannel fiber optic photometer present performance and future developments

    NASA Technical Reports Server (NTRS)

    Barwig, H.; Schoembs, R.; Huber, G.

    1988-01-01

    A three channel photometer for simultaneous multicolor observations was designed with the aim of making possible highly efficient photometry of fast variable objects like cataclysmic variables. Experiences with this instrument over a period of three years are presented. Aspects of the special techniques applied are discussed with respect to high precision photometry. In particular, the use of fiber optics is critically analyzed. Finally, the development of a new photometer concept is discussed.

  9. Effects of precipitation on sonic anemometer measurements of turbulent fluxes in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Zhang, Rongwang; Huang, Jian; Wang, Xin; Zhang, Jun A.; Huang, Fei

    2016-06-01

    Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the -2/3 and -4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.

  10. A Data System Architecture for Measurement Based Systems: Precipitation Processing System

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2003-01-01

    NASA s Earth Science Enterprise (ESE) is changing focus from single satellite missions to measurement oriented programs. An example of this paradigm shift is the Global Precipitation Measurement (GPM) project. GPM is conceptualized as a rolling-wave of measurement possibilities all focused on the key precipitation parameter. In response to this shift to measurement programs and also integral to the ESE s new strategy for processing and management its data, a measurement based approach is also critical for data processing system that support measurement programs like GPM. This paper provides an overview of the paradigm shift from mission to measurement. It also presents a summary of the ESE s new strategy for its data systems. Building on this background the paper details the architectural, design and implementation aspects of the Precipitation Processing System (PPS). The PPS is an evolution of a single point system developed for the Tropical Rainfall Measurement Mission to a generic precipitation data system. The paper provides the context within which PPS will support the GPM program.

  11. Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, R.; Liu, J.; Kang, E.; Yang, Y.; Han, C.; Liu, Z.; Song, Y.; Qing, W.; Zhu, P.

    2015-10-01

    An experimental field study of wind-induced bias in precipitation measurements was conducted from September 2010 to April 2015 at a grassland site (99°52.9´ E, 38°16.1´ N; 2980 m) in the Hulu watershed in the Qilian Mountains, on the north-eastern Tibetan Plateau, in China. The experiment included (1) an unshielded Chinese standard precipitation gauge (CSPGUN; orifice diameter = 20 cm, height = 70 cm), (2) a single Alter shield around a CSPG (CSPGSA), (3) a CSPG in a pit (CSPGPIT) and (4) a Double-Fence International Reference (DFIR) with a Tretyakov-shielded CSPG (CSPGDFIR). The catch ratio (CR) used the CSPGDFIR as a reference (CR = CSPGX/CSPGDFIR, %; X denotes UN, SA or PIT). The results show that the CSPGSA, CSPGPIT and CSPGDIFR caught 0.9, 4.5 and 3.4 % more rainfall; 7.7, 15.6 and 14.2 % more mixed precipitation (snow with rain, rain with snow); 11.1, 16.0 and 20.6 % more snowfall and 2.0, 6.0 and 5.3 % more precipitation (of all types), respectively, than the CSPGUN from September 2012 to April 2015. The CSPGPIT and CSPGDFIR caught 3.6 and 2.5 % more rainfall; 7.3 and 6.0 % more mixed precipitation; 4.4 and 8.5 % more snowfall; and 3.9 and 3.2 % more total precipitation, respectively, than the CSPGSA. However, the CSPGDFIR caught 1.0 % less rainfall; 1.2 % less mixed precipitation; 3.9 % more snowfall and 0.6 % less total precipitation than the CSPGPIT. From most to least precipitation measured, the instruments ranked as follows: for rain and mixed precipitation, CSPGPIT > CSPGDFIR > CSPGSA > CSPGUN; for snowfall, CSPGDFIR > CSPGPIT > CSPGSA > CSPGUN. The CR vs. 10 m wind speed for the period of precipitation indicated that with increasing wind speed from 0 to 8.0 m s-1, the CRUN/DFIR and CRSA/DFIR for rainfall decreased slightly. For mixed precipitation, the wind speed showed no significant effect on CRUN/DFIR and CRSA/DFIR below 3.5 m s-1. For snowfall, the CRUN/DFIR and CRSA/DFIR vs. wind speed showed that CR decreased with increasing wind speed. The

  12. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2015-05-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman-Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in the literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (< 8%) on a monthly basis between both methods are found in summer. ETa was close to ETPM, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter and EC were mainly related to differences in grass height caused by harvest and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for the high-precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data differ significantly from precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16 % higher precipitation amount than the tipping bucket. After a correction of the tipping bucket measurements by the method of Richter (1995) this amount was reduced to 3%. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket, in part related to the detection of rime and dew, which contribute 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total

  13. Precipitation water stable isotope measurements and analyses in Middle and Polar Ural

    NASA Astrophysics Data System (ADS)

    Stukova, Olga; Gribanov, Konstantin; Zakharov, Vyacheslav; Cattani, Olivier; Jouzel, Jean

    2015-11-01

    In this paper, we present results of precipitation (rain, snow) water stable isotope measurements, which were collected on two places. Measuring was made on laser spectroscopy analyzer PICARRO L2130-i equipped with liquid auto sampler. We describe method of sample collecting, preparing, measuring and continuing analysis of experimental data. Stored data include results of 177 samples measuring from Kourovka collected from November 2012 to March 2014 and 73 samples from Labytnangi collected from March 2013 to December 2013.

  14. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Stocker, Erich F.

    2013-04-01

    The Global Precipitation Measurement (GPM) Mission is a satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors provided by a consortium of international partners. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite for precipitation measurements by the constellation sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR, the first dual-frequency radar in space, will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will serve as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. In addition to the Core Observatory, the GPM constellation consists of (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar

  15. Comprehensive comparison of precipitation measurement systems for convective and non-convective events

    NASA Astrophysics Data System (ADS)

    Filipović, N.; Steinacker, R.; Dorninger, M.; Tüchler, L.

    2012-04-01

    During the field phase of Convective and Orographically-induced Precipitation Study (COPS) the supersite "S" was equipped with several collocated precipitation measuring devices including rainfall weighing gauge, tipping bucket gauge, optical disdrometer, and vertically pointing micro rain radar. Precipitation measurements from two scanning C-band radars covering the area of the eastern Black Forest were available for comparison with the surface-based measurements, as well as data of a wind-temperature radar collocated with above mentioned rainfall instruments at the supersite "S". In this study we present a comprehensive comparison of precipitation measurements for selected IOP-days during the COPS field phase. One issue of this study was to compare the rainfall amount estimated by several measurement devices during defined rainfall episodes under consideration of the differences in sampling strategy of the different instruments. Another goal was to test the rainfall sensors for their ability to catch the temporal variability of rainfall. We investigate time correlation of the rainfall and the autocorrelation of the measurements stratified after convective and non-convective events. Dependence of the observed measurement differences on the rainfall intensity was also investigated. Since the sampling characteristics (sample volume, sampling time) varies notably between the instruments used for comparison appropriate matching of the temporal and spatial scale of the different observations was done with a particular attention given to the differences in the height of the measurements. Due to the simultaneous observations of the two scanning C-band radars over the area of the supersite "S" it is possible to estimate the specific measurement error of the radars, relative to the precipitation amount observed on the ground. Using disdrometer and vertically pointing micro rain radar in conjunction with scanning radar data above, reflectivity factor of a scanned

  16. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2014-12-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and potential crop evapotranspiration according to FAO (ETc-FAO) for the Rollesbroich site in the Eifel (Western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (<8%) on monthly basis between both methods are found in summer. ETa was close to ETc-FAO, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter, ETc-FAO, and EC were mainly related to differences in grass height caused by harvesting management and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for high precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data show significant differences compared to the precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16% higher precipitation amount than the tipping bucket. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket in part related to the detection of rime and dew, which contributes 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total difference. Larger differences are also recorded for snow and sleet situations. During snowfall, the

  17. HOAPS precipitation validation with ship-borne rain and snow measurements over the Ocean

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; Schröder, Marc; Fennig, Karsten

    2013-04-01

    Measuring precipitation over the oceans is still a challenging task. The main reason for a lack of such data can be attributed to the difficulty of measuring precipitation on moving platforms under high wind speeds. The progress in satellite technology has provided the possibility to retrieve global data sets from space, including precipitation. Levizzani et al. (2007) showed that precipitation over the oceans can be derived with sufficient accuracy from passive microwave radiometry. On the other hand, Andersson et al. (2011) pointed out that even state-of-the-art satellite retrievals and reanalysis data sets still disagree on global precipitation with respect to amounts, patterns, variability and temporal behaviour. This creates the need for ship-based precipitation validation data using instruments capable of accurately measuring rain rates even under high wind speed conditions. In the present study we use ship rain gauges (Hasse et al., 1998) and optical disdrometers (Großklaus et al., 1998), the latter is also capable to measure snow (Lempio et al., 2007). Measurements are point-to-area collocated against Hamburg Ocean Atmosphere Parameters and fluxes from Satellite (HOAPS) data (Andersson et al., 2011). The used HOAPS-S data subset contains all retrieved physical parameters at the native SSM/I (Special Sensor Microwave Imager) pixel-level resolution of approximately 50 km for each individual satellite. The algorithm does not discriminate between rain and snowfall. The satellite data is compared to the in situ measurement by the nearest neighbour approach. Therefore, it must be ensured that both observations are related to each other, which can be determined by the decorrelation length. At least a number of 660 precipitation events are at our disposal including 127 snow events. The statistical analysis follows the recommendations given by the World Meteorological Organization (WMO) for dichotomous or binary forecasts (WWRP/WGNE: http://www

  18. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2010-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the NPP, POES, JPSS, and MetOp satellites, which are used to improve the precipitation sampling over land. Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave

  19. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur; Azarbarzin, Ardeshir; Kakar, Ramesh; Neeck, Steven

    2010-05-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. In addition, NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. Currently, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more

  20. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Chen, Sheng; Bao, Anming; Behrangi, Ali; Hong, Yang; Ndayisaba, Felix; Hu, Junjun; Stepanian, Phillip M.

    2016-07-01

    Two post-real time precipitation products from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) are systematically evaluated over China with China daily Precipitation Analysis Product (CPAP) as reference. The IMERG products include the gauge-corrected IMERG product (IMERG_Cal) and the version of IMERG without direct gauge correction (IMERG_Uncal). The post-research TRMM Multisatellite Precipitation Analysis version 7 (TMPA-3B42V7) is also evaluated concurrently with IMERG for better perspective. In order to be consistent with CPAP, the evaluation and comparison of selected products are performed at 0.25° and daily resolutions from 12 March 2014 through 28 February 2015. The results show that: Both IMERG and 3B42V7 show similar performances. Compared to IMERG_Uncal, IMERG_Cal shows significant improvement in overall and conditional bias and in the correlation coefficient. Both IMERG_Cal and IMERG_Uncal perform relatively poor in winter and over-detect slight precipitation events in northwestern China. As an early validation of the GPM-era IMERG products that inherit the TRMM-era global satellite precipitation products, these findings will provide useful feedbacks and insights for algorithm developers and data users over China and beyond.

  1. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2007-01-01

    The Global Precipitation Measurement (GPM) Mission, an international satellite mission to unify and advance space-based precipitation measurements around the globe, is a science mission with integrated application goals. The mission is designed to (1) advance the knowledge of the global water cycle and freshwater availability, and (2) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The cornerstone of GPM is the deployment of a Core Spacecraft in a unique 65 deg-inclined orbit to serve as a physics observatory and a calibration reference to improve the accuracy of precipitation measurements by a heterogeneous constellation of dedicated and operational passive microwave sensors. The Core Spacecraft will carry a dual-frequency (Ku-Ka band) radar and a multi-channel microwave radiometer with high-frequency capabilities to provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improved retrieval algorithms for passive microwave radiometers. The GPM constellation is envisioned to comprise 5 or more conical-scanning microwave radiometers provided by partners, augmented by cross-track microwave sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and MetOp satellites for improved sampling over land. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional international partners in constellation satellites and ground validation. An overview of the GPM mission concept and science activities in the United States will be presented.

  2. Scaling precipitation input to distributed hydrological models by measured snow distribution

    NASA Astrophysics Data System (ADS)

    Voegeli, Christian; Lehning, Michael; Wever, Nander; Bavay, Mathias; Bühler, Yves; Marty, Mauro; Molnar, Peter

    2016-04-01

    Precise knowledge about the snow distribution in alpine terrain is crucial for various applications such as flood risk assessment, avalanche warning or water supply and hydropower. To simulate the seasonal snow cover development in alpine terrain, the spatially distributed, physics-based model Alpine3D is suitable. The model is often driven by spatial interpolations from automatic weather stations (AWS). As AWS are sparsely spread, the data needs to be interpolated, leading to errors in the spatial distribution of the snow cover - especially on subcatchment scale. With the recent advances in remote sensing techniques, maps of snow depth can be acquired with high spatial resolution and vertical accuracy. Here we use maps of the snow depth distribution, calculated from summer and winter digital surface models acquired with the airborne opto-electronic scanner ADS to preprocess and redistribute precipitation input data for Alpine3D to improve the accuracy of spatial distribution of snow depth simulations. A differentiation between liquid and solid precipitation is made, to account for different precipitation patterns that can be expected from rain and snowfall. For liquid precipitation, only large scale distribution patterns are applied to distribute precipitation in the simulation domain. For solid precipitation, an additional small scale distribution, based on the ADS data, is applied. The large scale patterns are generated using AWS measurements interpolated over the domain. The small scale patterns are generated by redistributing the large scale precipitation according to the relative snow depth in the ADS dataset. The determination of the precipitation phase is done using an air temperature threshold. Using this simple approach to redistribute precipitation, the accuracy of spatial snow distribution could be improved significantly. The standard deviation of absolute snow depth error could be reduced by a factor of 2 to less than 20 cm for the season 2011/12. The

  3. Supporting Hydrometeorological Research and Applications with Global Precipitation Measurement (GPM) Products and Services

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; MacRitchie, K.; Greene, M.; Kempler, S.

    2016-01-01

    Precipitation is an important dataset in hydrometeorological research and applications such as flood modeling, drought monitoring, etc. On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data. The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). GPM products currently available include the following:1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products2. Goddard Profiling Algorithm (GPROF) GMI and partner products (Level-2 and Level-3)3. GPM dual-frequency precipitation radar and their combined products (Level-2 and Level-3)4. Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final run)GPM data can be accessed through a number of data services (e.g., Simple Subset Wizard, OPeNDAP, WMS, WCS, ftp, etc.). A newly released Unified User Interface or UUI is a single interface to provide users seamless access to data, information and services. For example, a search for precipitation products will not only return TRMM and GPM products, but also other global precipitation products such as MERRA (Modern Era Retrospective-Analysis for Research and Applications), GLDAS (Global Land Data Assimilation Systems), etc.New features and capabilities have been recently added in GIOVANNI to allow exploring and inter-comparing GPM IMERG (Integrated Multi-satelliE Retrievals for GPM) half-hourly and monthly precipitation

  4. Comparison of energy calibration of Prognoz 5, 6, 7, and 8 and other hard-X-ray solar photometers

    NASA Astrophysics Data System (ADS)

    Farnik, F.; Valnicek, B.; Sylwester, B.; Sylwester, J.; Jakimiec, J.

    1984-08-01

    The data obtained by the Prognoz 5, 6, 7, and 8 hard-X-ray photometers are compared with the measurements carried out by similar instruments aboard Solrad 11, ISEE 3, SMM, and Hinotori satellites. Using the method of relative-amplitude analysis, the apparent disagreement in the energy-discrimination-level calibration between the instruments is pointed out. The results of the comparison and possible sources of disagreement are given. An international effort to develop a system of uniform prelaunch calibration of photometers based on a reference calibration source is suggested.

  5. A new, low-cost sun photometer for student use

    NASA Astrophysics Data System (ADS)

    Espinoza, A.; Pérez-Álvarez, H.; Parra-Vilchis, J. I.; Fauchey-López, E.; Fernando-González, L.; Faus-Landeros, G. E.; Celarier, E. A.; Robinson, D. Q.; Zepeda-Galbez, R.

    2011-12-01

    We have designed a sun photometer for the measurement of aerosol optical thickness (AOT) at 505 nm and 620 nm, using custom-made glass filters (9.5 nm bandpass, FWHM) and photodiodes. The recommended price-point (US150 - US200) allowed us to incorporate technologies such as microcontrollers, a sun target, a USB port for data uploading, nonvolatile memory to contain tables of up to 127 geolocation profiles, extensive calibration data, and a log of up to 2,000 measurements. The instrument is designed to be easy to use, and to provide instant display of AOT estimates. A diffuser in the fore-optics limits the sensitivity to pointing error. We have developed postprocessing software to refine the AOT estimates, format a spreadsheet file, and upload the data to the GLOBE website. We are currently finalizing hardware and firmware, and conducting extensive calibration/validation experiments. These instruments will soon be in production and available to the K-12 education community, including and especially the GLOBE program.

  6. GPS Precipitable Water Measurements Used in the Analysis of California and Nevada Climate

    NASA Astrophysics Data System (ADS)

    Means, James Douglas

    Precipitable water (integrated water vapor) can be obtained from zenith travel-time delays of Global Positioning System (GPS) signals, if the atmospheric pressure and temperature at the site are known. There have been large numbers of GPS receivers deployed for geophysics research programs, but unfortunately most of these receivers do not have co-located barometers and thermometers. In this paper archived zenith delays are combined with estimates of GPS site station pressure and temperature from the North American Regional Reanalysis, in order to generate a seven year record of precipitable water at more than 500 sites. The precipitable water values calculated using this method have been found to be in good agreement with GPS precipitable water values from stations with barometers, as well as with radiosonde measurements of precipitable water. Precipitable water has a wide variation across the region, from just a few millimeters in the driest conditions to over 50 mm during strong episodes of the North American Monsoon. The spatial and temporal variations of precipitable water are examined, including the annual and diurnal cycles. Strong annual cycles are seen at almost all sites, and diurnal cycles are also present, increasing away from bodies of water and toward the south, where they reach more than 10% of the daily mean. Precipitable water is found to follow a lognormal distribution at all sites in the region, with some stations showing a small bimodal characteristic due to the influence of the North American Monsoon. An index is proposed that measures the bimodality and hence the "monsooniness" of a site. The elevation dependence of the precipitable water is examined and found to have an exponential decrease which is quite tightly followed in the fall, winter and spring, but more loosely in the summer. It has a greater scale height than has previously been measured elsewhere, ranging from 2.4 km in the winter to 3.1 km in the summer. The landward penetration of

  7. Current Scientific Progress and Future Scientific Prospects Enabled by Spaceborne Precipitation Radar Measurements

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Im, Eastwood; Tripoli, Gregory J.; Yang, Song

    2008-01-01

    First, we examine current scientific progress and understanding that have been possible through use of spaceborne precipitation radar measurements being provided by the TRMM and CloudSat satellites. Second, we look across a future 20-year time frame to assess how and why anticipated improvements in space radar systems will further advance scientific progress into topic areas once considered beyond the realm of space-based remote sensing. JAXA's 13.8 GHz Ku-band cross-track scanning Precipitation Radar (PR) developed for flight on NASA's non-sun-synchronous, diurnally-precessing TRMM satellite, was the first Earth radar flown in space that was designed specifically for precipitation measurement. Its proven accuracy in measuring global rainfall in the tropics and sub-tropics and its unanticipated longevity in continuing these measurements beyond a full decade have established the standards against which all follow-up and future space radars will be evaluated. In regards to the current PR measurement time series, we will discuss a selection of major scientific discoveries and impacts which have set the stage for future radar measuring systems. In fact, the 2nd contemporary space radar applicable for terrestrial precipitation measurement, i.e., JPL-CSA's 94 GHz nadir-staring Cloud Profiling Radar (CPR) flown on NASA's sun-synchronous CloudSat satellite, although designed primarily for measurement of non-precipitating cloud hydrometeors and aerosols, has also unquestionably advanced precipitation measurement because CPR's higher frequency and greatly increased sensitivity (approximately 30 dBZ) has enabled global observations of light rain rate spectrum processes (i.e., rain rates below 0.05 mm per hourand of precipitation processes in the high troposphere (particularly ice phase processes). These processes are beyond reach of the TRMM radar because the PR sensitivity limit is approximately 17 dBZ which means its lower rain rate cutoff is around 0.3 mm per hour and its

  8. Developments and applications of the Global Satellite Mapping of Precipitation (GSMaP) for the Global Precipitation Measurement (GPM)

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Aonashi, Kazumasa; Kubota, Takuji; Shige, Shoichi; Ushio, Tomoo; Mega, Tomoaki; Yamamoto, Munehisa; Hamada, Atsushi; Seto, Shinta; Takayabu, Yukari N.; Oki, Riko

    2016-04-01

    The Global Satellite Mapping of Precipitation (GSMaP) is a global rainfall map based on a blended Microwave-Infrared product and has been developed in Japan for the Global Precipitation Measurement (GPM) mission. To fulfill gaps of passive microwave observations, we developed a method to interpolate observations between each microwave imager by utilizing information from the Infrared imagers on board the geostationary satellites, and achieved production of an hourly global rainfall map in 0.1-degree latitude/longitude grid. The latest GSMaP version 6 product was released in September 2014 to the public as one of Japanese GPM products after the launch of the GPM Core Observatory, which is Japan and U.S. joint mission and carrying both the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI), in February 2014. In the next version (version 7), which is scheduled to be released in the summer 2016, we plan to apply databases produced from DPR instead of those from PR, and to introduce snow retrieval algorithm for the passive microwave instruments that have higher frequency channels. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. To assure near-real-time data availability, the GSMaP_NRT system simplified part of the algorithm and its processing procedure. Therefore, the GSMaP_NRT product gives higher priority to data latency than accuracy. Since its data release, GSMaP_NRT data has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There are, however, several requirements from users for GSMaP improvements not only for accuracy but also specification. Among those requests for data specification, the most popular ones are shortening of data latency time and higher horizontal resolution. To reduce

  9. Low resolution radar digital interface. [with data recorder for precipitation measurements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This document describes the design and operation of a low resolution radar data recording system for precipitation measurements. This system records a full azimuth scan on seven track magnetic tapes every five minutes. It is designed to operate on a continuous basis with operator intervention required only for changing tape reels and calibration.

  10. Simultaneous measurements of waves and precipitating electrons near the equator in the outer radiation belt

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Robinson, R. M.; Collin, H. L.; Wygant, J. R.; Anderson, R. R.

    1994-01-01

    An investigation of wave-particle interactions is made using several simultaneous electron and wave measurements performed at near-equatorial positions from the Combined Release and Radiation Effects Satellite (CRRES) satellite. Bursts of electron precipitation were observed, most frequently at local times near dawn. Examples of bursts are presented in which the fluxes of the precipitating electrons and the wave intensities are correlated with coefficients as high as 0.7. During bursts the frequencies of the enhanced waves spanned a wide range from 311 Hz to 3.11 kHz, and the energies of the enhanced electrons were in the range 1.7 keV to 288 keV. The changes of the precipitating fluxes were generally less pronounced at the lowest energies. On the basis of electron-cyclotron resonant calculations using the cold plasma densities and ambient magnetic fields taken from the CRRES measurements it was found that the wave frequencies and precipitating electron energies were generally consistent with those expected from electron resonance with parallel propagating whistler waves. The electron data of principal concern here were acquired in and about the loss cone with narrow angular resolution spectrometers covering the energy range 340 eV to 5 MeV. The wave data included electric field measurements spanning frequencies from 5 Hz to 400 kHz and magnetic field measurements from 5 Hz to 10 kHz.

  11. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, A.; Azarbarzin, A.; Kakar, R.; Neeck, S.

    2009-04-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors to provide next-generation precipitation data products for scientific research and societal applications. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and calibration reference for constellation radiometers. NASA will deploy the GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms, and JAXA will contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Partnerships are under development to include additional conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. In addition, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). As a science mission with integrated application goals, GPM is expected to (1) provide new measurement standards for precipitation estimation from space, (2) improve understanding of precipitation physics, the global water cycle variability, and freshwater availability, and (3) advance weather/climate/hydrological prediction capabilities to directly benefit the society. An overview of the GPM mission concept, program

  12. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  13. Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.

    1980-10-01

    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current).

  14. Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1980-01-01

    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current).

  15. Remote sensing of precipitable water over the oceans from Nimbus-7 microwave measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Change, H. D.; Chang, A. T. C.

    1981-01-01

    Global maps of precipitable water over derived from scanning multichannel microwave radiometer (SMMR) data reveal salient features associated with ocean currents and the large scale general circulation in the atmosphere. Nimbus-7 SMMR brightness temperature measurements in the 21 and 18 GHz channels are used to sense the precipitable water in the atmospheric over oceans. The difference in the brightness temperature (T sub 21 -T sub 18), both in the horizontal and vertical polarization, is found to be essentially a function of the precipitable water in the atmosphere. An equation, based on the physical consideration of the radiative transfer in the microwave region, is developed to relate the precipitable water to (T sub 21 - T sub 18). It shows that the signal (T sub 21- T sub 18) does not suffer severely from the noise introduced by variations in the sea surface temperature, surface winds, and liquid water content in non rain clouds. The rms deviation between the estimated precipitable water from SMMR data and that given by the closely coincident ship radiosondes is about 0.25 g/ sq cm

  16. Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Woodley, William L.; Axisa, Duncan; Freud, Eyal; Hudson, James G.; Givati, Amir

    2008-08-01

    Recent publications suggest that anthropogenic aerosols suppress orographic precipitation in California and elsewhere. A field campaign (SUPRECIP: Suppression of Precipitation) was conducted to investigate this hypothesized aerosol effect. The campaign consisted of in situ aircraft measurements of the polluting aerosols, the composition of the clouds ingesting them, and the way the precipitation-forming processes are affected. SUPRECIP was conducted during February and March of 2005 and February and March of 2006. The flights documented the aerosols and orographic clouds flowing into the central Sierra Nevada from the upwind densely populated industrialized/urbanized areas and contrasted them with the aerosols and clouds downwind of the sparsely populated areas in the northern Sierra Nevada. SUPRECIP found that the aerosols transported from the coastal regions are augmented greatly by local sources in the Central Valley resulting in high concentrations of aerosols in the eastern parts of the Central Valley and the Sierra foothills. This pattern is consistent with the detected patterns of suppressed orographic precipitation, occurring primarily in the southern and central Sierra Nevada, but not in the north. The precipitation suppression occurs mainly in the orographic clouds that are triggered from the boundary layer over the foothills and propagate over the mountains. The elevated orographic clouds that form at the crest are minimally affected. The clouds are affected mainly during the second half of the day and the subsequent evening, when solar heating mixes the boundary layer up to cloud bases. Local, yet unidentified nonurban sources are suspected to play a major role.

  17. Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Modolo, R.; Curry, S.; Luhmann, J.; Lillis, R.; Chaufray, J. Y.; Hara, T.; McFadden, J.; Halekas, J.; Eparvier, F.; Larson, D.; Connerney, J.; Jakosky, B.

    2015-11-01

    In the absence of an intrinsic dipole magnetic field, Mars' O+ planetary ions are accelerated by the solar wind. Because of their large gyroradius, a population of these planetary ions can precipitate back into Mars' upper atmosphere with enough energy to eject neutrals into space via collision. This process, referred to as sputtering, may have been a dominant atmospheric loss process during earlier stages of our Sun. Yet until now, a limited number of observations have been possible; Analyzer of Space Plasmas and Energetic Atoms-3/Mars Express observed such a precipitation only during extreme conditions, suggesting that sputtering might be not as intense as theoretically predicted. Here we describe one example of precipitation of heavy ions during quiet solar conditions. Between November 2014 and April 2015, the average precipitating flux is significant and in agreement with predictions. From these measured precipitating fluxes, we estimate that a maximum of 1.0 × 1024 O/s could have been lost due to sputtering.

  18. Global precipitation measurement (GPM) mission and its application for flood monitoring

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Oki, Riko; Shimizu, Shuji; Kojima, Masahiro

    2006-12-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission of the current Tropical Rainfall Measuring Mission (TRMM). The concept of GPM is, 1) TRMM-like, non-sun-synchronous core satellite carrying the Dual-frequency Precipitation Radar (DPR) to be developed by Japan and a microwave radiometer to be developed by United States, and 2) constellation of satellites in polar orbit, each carrying a microwave radiometer provided by international partner. The constellation system of GPM will make it possible every three-hour global precipitation measurement. Because of its concept on focusing high-accurate and high-frequent global precipitation observation, GPM has a unique position among future Earth observation missions. GPM international partnerships will embody concept of GEOSS. Observation data acquired by the GPM mission are expected to be used for both Earth environmental research and various societal benefit areas. One of most expected application fields is weather prediction. Use of high-frequent observation in numerical weather prediction models will improve weather forecasting especially for extreme events such as tropical cyclones and heavy rain. Another example is application to flood monitoring and forecasting. Recent increasing needs of real-time flood information required from many countries especially in Asia will strongly support operational application of GPM products in this field.

  19. Methods and Results for a Global Precipitation Measurement (GPM) Validation Network Prototype

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth R.; Schwaller, Mathew R.

    2010-01-01

    As one component of a ground validation system to meet requirements for the upcoming Global Precipitation Measurement (GPM) mission, a quasi-operational prototype a system to compare satellite- and ground-based radar measurements has been developed. This prototype, the GPM Validation Network (VN), acquires data from the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) satellite and from ground radar (GR) networks in the continental U.S. and participating international sites. PR data serve as a surrogate for similar observations from the Dual-frequency Precipitation Radar (DPR) to be present on GPM. Primary goals of the VN prototype are to understand and characterize the variability and bias of precipitation retrievals between the PR and GR in various precipitation regimes at large scales, and to improve precipitation retrieval algorithms for the GPM instruments. The current VN capabilities concentrate on comparisons of the base reflectivity observations between the PR and GR, and include support for rain rate comparisons. The VN algorithm resamples PR and GR reflectivity and other 2-D and 3-D data fields to irregular common volumes defined by the geometric intersection of the instrument observations, and performs statistical comparisons of PR and GR reflectivity and estimated rain rates. Algorithmic biases and uncertainties introduced by traditional data analysis techniques are minimized by not performing interpolation or extrapolation of data to a fixed grid. The core VN dataset consists of WSR-88D GR data and matching PR orbit subset data covering 21 sites in the southeastern U. S., from August, 2006 to the present. On average, about 3.5 overpass events per month for these WSR-88D sites meet VN criteria for significant precipitation, and have matching PR and GR data available. This large statistical sample has allowed the relative calibration accuracy and stability of the individual ground radars, and the quality of the PR reflectivity

  20. [Research on absolute calibration of sun channel of sun photometer using laser raster scanning method].

    PubMed

    Xu, Wen-Bin; Li, Jian-Jun; Zheng, Xiao-Bing

    2013-01-01

    In the present paper, a new calibration method of absolute spectral irradiance responsivity of sun channel of sun photometer was developed. A tunable laser was used as source and a standard tranfer detector, calibrated against cryogenic absolute radiometer, was used to measure laser beam power. By raster scanning of a single collimated laser beam to generate the uniform irradiance field at the plane of effective aperture stop of sun photometer, the absolute irradiance responsivity of center wavelength of the 870 nm unpolarized sun channels of sun photometer was obtained accurately. The relative spectral irradiance responsivity of corresponding channel was obtained by using lamp-monochromator system and then used to acquire the absolute spectral irradiance responsivity in the laboratory. On the basis of the above results, the top-of-the-atmosphere responsive constant V0 was obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration result with that from GSFC, NASA in 2009, the difference is only 3.75%. In the last, the uncertainties of calibration were evaluated and reached to 2.06%. The principle feasibility of the new method was validated. PMID:23586268

  1. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    SciTech Connect

    Guo, Y.R.; Zou, X.; Kuo, Y.H.

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  2. Photometer Performance Assessment in Kepler Science Data Processing

    NASA Technical Reports Server (NTRS)

    Li, Jie; Allen, Christopher; Bryson, Stephen T.; Caldwell, Douglas A.; Chandrasekaran, Hema; Clarke, Bruce D.; Gunter, Jay P.; Jenkins, Jon M.; Klaus, Todd C.; Quintana, Elisa V.; Tenenbaum, Peter; Twicken, Joseph D.; Wohler, Bill; Wu, Hayley

    2010-01-01

    This paper describes the algorithms of the Photometer Performance Assessment (PPA) software component in the science data processing pipeline of the Kepler mission. The PPA performs two tasks: One is to analyze the health and performance of the Kepler photometer based on the long cadence science data down-linked via Ka band approximately every 30 days. The second is to determine the attitude of the Kepler spacecraft with high precision at each long cadence. The PPA component is demonstrated to work effectively with the Kepler flight data.

  3. Tests of a multichannel photometer based on silicon diode detectors

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Allen, L. E.; Taylor, S. W.; Torbet, E. B.; Schaefer, A. R.; Fowler, J.

    1988-01-01

    A breadboard photometer was constructed that demonstrates a precision of 2 times 10 to the 4th power in the laboratory and scintillation-limited performance when used with an 0.5 m aperture telescope. Because the detectors and preamps are not cooled, only stars with m sub v approx. less than 4 are bright enough to allow the photometer to attain a precision of 1 times 10 to the 3rd power for three minute observations with an 0.5 m aperature telescope. Cooling the telescope should allow much fainter stars to be observed. Increasing the aperture of the telescope will allow higher precision and the observation of fainter stars.

  4. Agile: A Time-series CCD Photometer To Observe Blue Variables

    NASA Astrophysics Data System (ADS)

    Mukadam, Anjum S.; Owen, R.; Mannery, E. J.

    2007-05-01

    We use differential time-series photometry to study phenomena variable at short timescales. A good time-series photometer not only requires an accurate measurement of the start time of an exposure, but also the exposure duration. Elements that cause a jitter in these measurements are undesirable, such as an undisciplined clock used for timing, a mechanical shutter, and an unregulated time-share data acquisition system. Besides accuracy in timing, a good time-series photometer must be able to provide sufficient time resolution to sample the variable phenomena well. This requires that the photometer allow a short exposure time and also introduce an insignificant dead time between consecutive exposures. Frame transfer CCDs are ideal for time-series photometry as they can provide back-to-back exposures with no dead time. We have assembled a time-series photometer called Agile, optimized to observe the rapid oscillations of blue variables such as pulsating white dwarfs and subdwarfs, cataclysmic variables, and flare stars. Agile is based on the design of a time-series photometer called Argos at McDonald Observatory (Nather & Mukadam 2004), and utilizes a commercial frame transfer CCD camera from Princeton Instruments with 1024x1024 active pixels. This instrument mounts at the Nasmyth focus of the 3.5m telescope at Apache Point Observatory, where we expect a field-of-view of 2.6x2.6 arcmin and a platescale of 0.15 arcsec/pixel using a focal reducer. We use a GPS-based programmable timer card to generate pulses that initiate frame transfer in the CCD camera, giving us complete control over both the exposure start time and its duration to high precision. We expect to read an unbinned full frame in 1.1s using a low noise amplifier operating at 1MHz with a read noise of order <8 electrons RMS. The CCD is back-illuminated and thinned for improved blue sensitivity and provides a quantum efficiency >80% in the wavelength range 4500-7500A.

  5. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological

  6. A Study of Realistic Sampling-Variability Effects on Precipitation Measurements

    NASA Astrophysics Data System (ADS)

    O'Dell, K.; Larsen, M.

    2015-12-01

    Previous studies have investigated the effects of sampling variability on precipitation measurements using analytically driven simulation models. To explore the effects with more realism, data-derived distribution functions were used to develop a drop­-by-drop rain event simulation. Data based probability distributions for the number of raindrop arrivals in each sample and the event averaged drop size distribution were found using measurements of several precipitation events recorded by a two dimensional video disdrometer. Using these probability distribution functions, Monte-Carlo simulated rain events were developed and explored. The simulated events were sampled at intervals of several different durations associated with different average numbers of raindrops in each sample. The simulations reveal new insights to exploring the sample-size dependent convergence and distribution of bulk rainfall quantities (e.g. Z, R, Dm) as compared to the intrinsic ensemble values.

  7. Coordinated measurements of low-energy electron precipitation and scintilations/TEC in the auroral oval

    SciTech Connect

    Basu, S.; Mackenzie, E.; Basu, S.

    1983-11-01

    A geostationary satellite transmitting at 244 MHz was employed in a coordinated observation study of low energy electron precipitation in the auroral oval from DMSP/F2 (a satellite in sun-synchronous circular orbit) and phase and amplitude scintillations from Goose Bay, Labrador. Total electron content and magnetometer measurements indicate that the precipitation event onset was 10 min prior to the DMSP pass. Within this time scale, the ionization generated in the F region could reach the topside, so that the thermal sensor on board the DMSP satellite could measure a factor of 2-3 density enhancement. The phase-to-amplitude ratio changed drastically by comparison to quiet magnetic times, implying that increased convection velocities during magnetic disturbances were partially responsible for the enhanced phase scintillation. 49 references.

  8. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  9. A method to measure winter precipitation and sublimation under global warming conditions

    NASA Astrophysics Data System (ADS)

    Herndl, Markus; Slawitsch, Veronika; von Unold, Georg

    2016-04-01

    Winter precipitation and snow sublimation are fundamental components of the alpine moisture budget. Much work has been done in the study of these processes and its important contribution to the annual water balance. Due to the above-average sensitivity of the alpine region to climate change, a change in the importance and magnitude of these water balance parameters can be expected. To determine these effects, a lysimeter-facility enclosed in an open-field climate manipulation experiment was established in 2015 at AREC Raumberg-Gumpenstein which is able to measure winter precipitation and sublimation under global warming conditions. In this facility, six monolithic lysimeters are equipped with a snow cover monitoring system, which separates the snow cover above the lysimeter automatically from the surrounding snow cover. Three of those lysimeters were exposed to a +3°C scenario and three lysimeters to ambient conditions. Weight data are recorded every minute and therefore it is possible to get high-resolution information about the water balance parameter in winter. First results over two snow event periods showed that the system can measure very accurately winter precipitation and sublimation especially in comparison with other measurement systems and usually used models. Also first trends confirm that higher winter temperatures may affect snow water equivalent and snow cover duration. With more data during the next years using this method, it is possible to quantify the influence of global warming on water balance parameters during the winter periods.

  10. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail

    2015-01-01

    The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.

  11. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  12. A Performance Comparison for Two Versions of the Vulcan Photometer

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Caldwell, D. A.; Koch, D. G.; Jenkins, J. M.; Showen, R. L.

    2001-01-01

    Analysis of the images produced by the first version (V1) of the Vulcan photometer indicated that two major sources of noise were sky brightness and image motion. To reduce the effect of the sky brightness, a second version (V2) with a longer focal length and a larger format detector was developed and tested. The first version consisted of 15-centimeter (cm) focal length, F/1.5 Aerojet Delft reconnaissance lens, and a 2048 x 2048 format front-illuminated charged coupled device (CCD) with 9 microns micropixels (Mpixels). The second version used a 30-cm focal length, F/2.5 Kodak AeroEktar lens, and a 4096 x 4096 format CCD with 9 micro pixels. Both have a 49-square-degree field of view (FOV) but the area of the sky subtended by each pixel in the V2 version is one-fourth that of the V1 version. This modification substantially reduces the shot noise due to the sky background and allows fainter stars to be monitored for planetary transits. To remove the data gap and consequent signal-level change caused by flipping the photometer around the declination axis and to reduce image movement on the detector, several other modifications were incorporated. These include modifying the mount and stiffening the photometer and autoguider structures to reduce flexure. This paper compares the performance characteristics of each photometer and discusses tests to identify sources of systematic noise.

  13. Functional characteristics of the OGO main body airglow photometer

    NASA Technical Reports Server (NTRS)

    Reed, E. I.; Fowler, W. B.; Blamont, J. E.

    1972-01-01

    The OGO-4 main body airglow photometer used a trialkali cathode photomultiplier to sense light at selected wavelengths between 2500 and 6300A corresponding to important emissions in the aurora and night airglow at emission rates ranging from a few rayleighs to about 200 kilorayleighs. The optical, electronic, and mechanical systems are described in terms of their functional characteristics.

  14. Testing of a photoelectric photometer. 1: Determination of operational parameters

    NASA Technical Reports Server (NTRS)

    Dawson, D. W.; Tedesco, E. F.

    1976-01-01

    Observations over four months are used to evaluate magnitude and color transformations, extinction coefficients, and a gain table for the photoelectric photometer of the 41 cm. reflector at the Tortugas Mountain site. Ways of increasing the efficiency and accuracy of this system are discussed.

  15. Rapid and precise determination of ATP using a modified photometer

    USGS Publications Warehouse

    Shultz, David J.; Stephens, Doyle W.

    1980-01-01

    An inexpensive delay timer was designed to modify a commercially available ATP photometer which allows a disposable tip pipette to be used for injecting either enzyme or sample into the reaction cuvette. The disposable tip pipette is as precise and accurate as a fixed-needle syringe but eliminates the problem of sample contamination and decreases analytical time. (USGS)

  16. 21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Colorimeter, photometer, or spectrophotometer for... Clinical Laboratory Instruments § 862.2300 Colorimeter, photometer, or spectrophotometer for clinical use. (a) Identification. A colorimeter, a photometer, or a spectrophotometer for clinical use is...

  17. 21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Colorimeter, photometer, or spectrophotometer for... Clinical Laboratory Instruments § 862.2300 Colorimeter, photometer, or spectrophotometer for clinical use. (a) Identification. A colorimeter, a photometer, or a spectrophotometer for clinical use is...

  18. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  19. Regional extreme rainfalls observed globally with 17 years of the Tropical Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward

    2015-04-01

    While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation

  20. On the consistency of 2-D video disdrometers in measuring microphysical parameters of solid precipitation

    NASA Astrophysics Data System (ADS)

    Bernauer, F.; Hürkamp, K.; Rühm, W.; Tschiersch, J.

    2015-08-01

    Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D video disdrometer devices are well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify these devices especially for detailed characterization of nonsymmetric solid hydrometeors. However, in case of solid precipitation, problems related to the matching algorithm have to be considered and the user must be aware of the limited spatial resolution when size and shape descriptors are analyzed. Clarifying the potential of 2-D video disdrometers in deriving size, velocity and shape parameters from single recorded pictures is the aim of this work. The need of implementing a matching algorithm suitable for mixed- and solid-phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped Styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 38 cases of real snowfall. As a result, it was found that reliable size and shape characterization with a relative standard deviation of less than 5 % is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22 % for the volume, 17 % for size parameters and 14 % for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with Styrofoam particles, a mismatch probability of less than 3 % was found. For shape parameter measurements in case of real solid-phase precipitation, the 2-DVD shows self-consistent behavior.

  1. The Southern-Appalachians Precipitation Measurement and Hydrology Project - A Prototype for Middle Mountains Everywhere

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Wilson, A. M.; Tao, J.; Miller, D.

    2012-12-01

    -mountains of the Himalayas and the cloud forests of the American Cordillera. The TRMM (Tropical Rainfall Measurement Mission) prompted a great leap forward in our understanding of the water cycle in mountainous regions. However, estimates of rainfall errors indicate that near 90% of the instances when raingauges record rainfall and the PR misses detection correspond to LR events. The upcoming Global Precipitation Measurement (GPM) mission will bring much improved temporal sampling frequency and higher accuracy. Nevertheless, to capture the spatial (and temporal) variability of precipitation in mountainous regions at the resolution required by science and applications, there is a critical need to downscale satellite-based precipitation products to the space-time scales at which hydrological processes work. One approach is the integration of satellite- and ground-based observations and models. This implies that a set of observations can be interpreted and placed in the correct environmental context to provide physically-meaningful constraints to the models. An overview of findings of the Southern-Appalachians Precipitation Measurement (PMM) project including headwater hydrology and ongoing downscaling efforts will be presented.

  2. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  3. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Shepherd, J. M.; Manyin, M.; Negri, A.

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025,60% of the world s population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause- effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  4. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Manyin, M.; Negri, Andrew

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  5. The effect of aerosol on the formation and radar-measurement of precipitation

    NASA Astrophysics Data System (ADS)

    Steiner, M.; Phillips, V. T. J.

    2003-04-01

    The concentrations of cloud condensation nuclei (CCN) and ice nuclei (IN) have a significant effect on the formation of precipitation, particularly the former on warm-rain processes. This effect is visualized through comparison of numerical simulations of precipitating clouds that are evolving within an environment of (low) maritime and (high) continental background aerosol concentrations, respectively. Maritime clouds may generate surface rainfall sooner than continental clouds, however, the latter produce more intense instantaneous rain rates. Rainfall from maritime and continental clouds differs significantly in the average size of raindrops, which needs to be accounted for when measuring rainfall by radar. The present study is designed to highlight the effect of aerosol on the formation of precipitation and the resulting raindrop size distribution. Four different scenarios are investigated, involving low (maritime) and high (continental) concentrations of CNN/IN, and low (stratiform) and high (convective) updraft strengths. The derived rainfall and radar reflectivity patterns will be analyzed in terms of changes in the drop size-dependent relationship between reflectivity and rain rate as a function of storm type, but also in terms of variability with a given storm.

  6. MARG - A Low Cost Solid State Microwave Areal Precipitation Measurement System

    NASA Astrophysics Data System (ADS)

    Paulitsch, Helmut; Dombai, Ferenc; Cremonini, Roberto; Bechini, Renzo

    2014-05-01

    Water is an essential resource for us so the measurements of its movement throughout the whole cycle is very important. The rainfall is discontinuous in space and in time having large natural variability unlike many other meteorological parameters. The widely used method for getting relatively accurate precipitation data over land is the combination of radar rainfall estimations and rain gauge data. The typically used radar data is coming from long-range weather radars operating in C or S band, or from mini radars operating in X band which is attenuating heavily in strong precipitation. Using such radar data we are facing several constraints: operating costs and limitations of long range radars, X band radars can be blocked totally in heavy thunderstorms even in short range, dual polarization solutions are expensive, etc. Recognizing that an important gap exists in instrumental precipitation measurements over land a consortium has been organized and a project has been established to develop a new measurement device, the so called Microwave Areal Rain Gauge (MARG). MARG is based on FMCW radar principle using solid state transmitter and digital signal processing and operating in C band. The MARG project aims to provide an innovative, real-time, low-cost, user friendly and accurate sensor technology to monitor and to measure continuously the rainfall intensity distribution over an area around some thousand square km. The MARG project proposal has been granted by the EU in FP7-SME-2012 funding scheme. The developed instrument is able to monitor in real-time intensity and spatial distribution of rainfall in rural and urban environments and can be operated by commercial weather data and value-added forecast product suppliers. To achieve sufficient isolation between the transmitter and receiver modules, and to avoid using complex and expensive microwave components, two parabolic antennae are used to transmit and receive the FMCW signal. The radar frontend operates in the

  7. Assessment of the State of Precipitation in Aluminum Casting A356.2 Alloy Using Nondestructive Microstructure Electronic Property Measurements

    NASA Astrophysics Data System (ADS)

    Kiattisaksri, P.; Gibbs, P. J.; Koenig, K.; Pfeif, E. A.; Lasseigne, A. N.; Mendez, P. F.; Mishra, B.; Olson, D. L.

    2010-02-01

    Application of nondestructive electronic property measurements to assess the strengthening of Mg2Si precipitates in aluminum A356.2 casting has been demonstrated. The results indicated the evolution of precipitation phase through over aging with increased cooling time or thickness of the cast part. The classical optimum precipitation behavior has been characterized and verified with thermal analysis, thermoelectric power, low frequency impedance, and micro hardness measurements. A proposed practice to use nondestructive electronic property measurement tools to assess aluminum casting for acceptable mechanical properties after mold shake out is presented.

  8. Initial Evaluation of Dual Frequency Radar (DPR) on Global Precipitation Measurement (GPM) Core Observatory and Global Precipitation Map (GSMaP)

    NASA Astrophysics Data System (ADS)

    Oki, R.; Kachi, M.; Kubota, T.; Masaki, T.; Kaneko, Y.; Takayabu, Y. N.; Iguchi, T.; Nakamura, K.

    2014-12-01

    The Global Precipitation Measurement (GPM) Core Observatory was successfully launched on February 28, 2014 (JST) from the JAXA Tanegashima Space Center by the H-IIA F23 rocket. The GPM mission is a satellite program led by Japan and the U.S. to measure the global distribution of precipitation accurately in a sufficient frequency. The GPM Core Observatory carries the Dual-frequency Precipitation Radar (DPR) developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and GPM Microwave Imager (GMI) developed by the National Aeronautics and Space Administration (NASA). The frequent precipitation measurement about every three hours will be achieved by constellation satellites with microwave radiometers or microwave sounders, which are provided by international partners. JAXA also provides the Global Change Observation Mission (GCOM) - Water (GCOM-W) named "SHIZUKU," as one of the constellation satellites. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research. JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level 2 algorithms. JAXA also develops the new version of Global Satellite Mapping of Precipitation (GSMaP) algorithm, which is hourly and 0.1-degree spatial resolution rain map, as one of the national products.After the 2-months initial checkout of the satellite and the sensors, calibration and validation of DPR and other products have been implemented toward the public release. For DPR evaluation includes: (1) sensitivity, observation range, etc., (2) consistency with TRMM, (3) comparison with ground rain gauge data, (4) ground based Ka radar validation and others. Initial results of quick data evaluation, validation and status of data processing will be presented.

  9. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven

    2012-01-01

    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014.

  10. Evaluation of TRMM multi-satellite precipitation analysis (TMPA) against terrestrial measurement over a humid sub-tropical basin, India

    NASA Astrophysics Data System (ADS)

    Kumar, Dheeraj; Gautam, Amar Kant; Palmate, Santosh S.; Pandey, Ashish; Suryavanshi, Shakti; Rathore, Neha; Sharma, Nayan

    2016-04-01

    To support the GPM mission which is homologous to its predecessor, the Tropical Rainfall Measuring Mission (TRMM), this study has been undertaken to evaluate the accuracy of Tropical Rainfall Measuring Mission multi-satellite precipitation analysis (TMPA) daily-accumulated precipitation products for 5 years (2008-2012) using the statistical methods and contingency table method. The analysis was performed on daily, monthly, seasonal and yearly basis. The TMPA precipitation estimates were also evaluated for each grid point i.e. 0.25° × 0.25° and for 18 rain gauge stations of the Betwa River basin, India. Results indicated that TMPA precipitation overestimates the daily and monthly precipitation in general, particularly for the middle sub-basin in the non-monsoon season. Furthermore, precision of TMPA precipitation estimates declines with the decrease of altitude at both grid and sub-basin scale. The study also revealed that TMPA precipitation estimates provide better accuracy in the upstream of the basin compared to downstream basin. Nevertheless, the detection capability of daily TMPA precipitation improves with increase in altitude for drizzle rain events. However, the detection capability decreases during non-monsoon and monsoon seasons when capturing moderate and heavy rain events, respectively. The veracity of TMPA precipitation estimates was improved during the rainy season than during the dry season at all scenarios investigated. The analyses suggest that there is a need for better precipitation estimation algorithm and extensive accuracy verification against terrestrial precipitation measurement to capture the different types of rain events more reliably over the sub-humid tropical regions of India.

  11. Design of absorbency photometer used in a fully automatic ELISA analyzer

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Zhu, Lianqing; Dong, Mingli; Niu, Shouwei

    2008-03-01

    Absorbency measurement is the most important step in the ELISA analysis. Based on the spectrophotometry, absorbency photometer system used in a fully automatic ELISA analyzer is developed. The system is one core module of the fully automatic ELISA analyzer. The principle and function of the system is analyzed. Three main units of the system, the photoelectric transform unit, the data processing unit and the communication and control unit, are designed and debugged. Finally, the test of the system is carried out using the verification plate. The experiment results agree well with the requirements.

  12. AMPS definition study on Optical Band Imager and Photometer System (OBIPS)

    NASA Technical Reports Server (NTRS)

    Davis, T. N.; Deehr, C. S.; Hallinan, T. J.; Wescott, E. M.

    1975-01-01

    A study was conducted to define the characteristics of a modular optical diagnostic system (OBIPS) for AMPS, to provide input to Phase B studies, and to give information useful for experiment planning and design of other instrumentation. The system described consists of visual and UV-band imagers and visual and UV-band photometers; of these the imagers are most important because of their ability to measure intensity as a function of two spatial dimensions and time with high resolution. The various subsystems of OBIPS are in themselves modular with modules having a high degree of interchangeability for versatility, economy, and redundancy.

  13. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development

  14. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    PubMed

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations. PMID:24416199

  15. High resolution hydrological modeling with measured precipitation data for the city of Amsterdam

    NASA Astrophysics Data System (ADS)

    van Vossen, Jojanneke; Schuurmans, Hanneke; Siemerink, Martijn; van Leeuwen, Elgard; Oudhuis, Richard

    2014-05-01

    Assessing measures to reduce flooding in densely populated urban areas require a high level of detail to properly analyse the hydrological response to precipitation events. This means detailed data (for example elevation and landuse) and fast models that can cope with this level of detail. This also indicates the value of having a similar level of detail in precipitation data. We present an approach in which Dutch National Rainfall Radar data are combined with a new approach to hydrological modeling called 3di. This is illustrated for a case in the city of Amsterdam to assess the effects of precipitation events and the possibilities for suitable measures in the public space to reduce the effects of flooding. Dutch National Rainfall Radar is a consortium of water authorities and the industry and scientific experts/universities/research centers to improve the available radar data in the Netherlands. This is achieved by making a composite of the radar stations in The Netherlands together with German and Belgian radar stations. In addition, the composite image is calibrated with local rainfall stations. 3Di is a novel approach to calculate the hydrological response of catchments as a function of properties, such as surface elevation and land use. Because of the ability of the model to take the detail of the elevation and land-use (both 0,5x0m5 meter) into the calculations, this model allows for a very detailed modeling of the hydrological response of urban areas to precipitation events. In addition, the model is extremely fast and allows for real-time and interactive changes in the geometry, making it a very powerful tool to assess the effects of measures in the public space for reducing flooding. We illustrate this approach for a case for the city of Amsterdam, a densely populated, low-lying city in The Netherlands. The obtained level of detail allows to study which houses are flooded, which roads remain available for emergency services etc. The model is used to show

  16. Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System

    NASA Technical Reports Server (NTRS)

    Scroggins, Ashley R.; Fiebig, Mark D.

    2014-01-01

    The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.

  17. Variability of precipitation in complex terrain and the investigation of representativeness of measurements for the Matre catchment area, Western Norway.

    NASA Astrophysics Data System (ADS)

    Skjerdal, M.; Reuder, J.; Villanger, F.

    2009-04-01

    Orography is strongly affecting precipitation. Especially over complex terrain, the precipitation fields can show high spatial variability even over very small scales. Along the Western coast of Norway with its large precipitation amounts of up to above 3000 mm per year, an improved understanding of the spatial precipitation patterns is of large socio-economic impact, as it can improve both the prediction of floods and landslides and the water management for hydro power plants. The producers of hydroelectric power continuously want the water resources to be utilized in the best suited way. Control and supervision of the water resources are therefore of the utmost economic importance. To get an overview over the water resource situation, it is essential to know about the spatial and temporal distribution of precipitation. In cooperation with the Norwegian power company BKK, 20 HOBO rain gauges and two Aanderaa weather stations have been deployed between 22 and 898 meters above sea level in the catchment area for the Matre water system in Western Norway in the period May - October 2009. The main purpose of the project is to investigate the horizontal variability and the altitude dependence of precipitation in complex terrain under different synoptic conditions in this catchment area. Moreover, the representativeness of a few single point measurements on the total precipitation amount of the whole catchment area has been addressed. The total amount of precipitation recorded by the 20 rain gauges during the deployment period ranges between 535 mm and 1190 mm, which indicate the large variability within the catchment area. Analysis of the data with respect to wind direction shows that 75 % of the total precipitation amount during the measurement period arrives when the wind direction is S - SW. During a high precipitation event, which will be investigated in more detail, amounts of precipitation between 58 mm - 121 mm within a 24-hour period have been observed during a

  18. The Scanning Ionospheric Photometer for CubeSats

    NASA Astrophysics Data System (ADS)

    Fish, C. S.; Crowley, G.; Pilinski, M.; Azeem, I.; Reynolds, A.; Noto, J.; Migliozzi, M.; Doe, R.

    2015-12-01

    Sponsored by the Air Force, our team is developing a system capable of providing night-time images of the ionosphere from a 6U CubeSat. Called SIPS (Scanning Ionospheric Photometer System), it integrates a photometer with a scanning mirror providing almost continuous monitoring of the night-side ionosphere. SIPS will be able to monitor features such as plasma irregularities, which can have deleterious effects on satellite positioning and HF communications. SIPS will help understand the nature of geospace perturbations as well as predict space weather. Requiring minimal power and volume, SIPS enables a number of research and science missions for NSF and NASA, as well as space situational awareness operational missions for the Air Force, that can be conducted from low cost to access to space platforms. In this paper we review the novel sensor observation technique and the modular design which makes SIPS compatible with nano and μsatellites, enabling big missions from small packages.

  19. In situ measurements and radar observations of a severe storm - Electricity, kinematics, and precipitation

    NASA Technical Reports Server (NTRS)

    Byrne, G. J.; Few, A. A.; Stewart, M. F.; Conrad, A. C.; Torczon, R. L.

    1987-01-01

    Electric field measurements made inside a multicell severe storm in Oklahoma in 1983 with a balloon-borne instrument are presented. The properties of the electric charge regions, such as altitude, thickness, and charge concentrations, are studied. These measurements are analzyed with meteorological measurements of temperature and humidity, and balloon tracking and radar observations. The relation between the electric charge structure and the precipitation and kinematic features of the storm is examined. The data reveal that the cell exhibits a bipolar charge structure with negative charge below positive charge. The average charge concentrations of the two regions are estimated as -1.2 and 0.15 nC/cu m, respectively; the upper positive charge is about 6 km in vertical extent, and the lower negative charge is less than 1 km in vertical extent.

  20. Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great ...

    SciTech Connect

    Lesht, B.M.; Liljegren, J.C.

    1996-12-31

    Comparisons between the precipitable water vapor (PWV) estimated by passive microwave radiometers (MWRs) and that obtained by integrating the vertical profile of water vapor density measured by radiosondes (BBSS) have generally shown good agreement. These comparisons, however, have usually been done over rather short time periods and consequently within limited ranges of total PWV and with limited numbers of radiosondes. We have been making regular comparisons between MWR and BBSS estimates of PWV at the Southern Great Plains Cloud and Radiation Testbed (SGP/CART) site since late 1992 as part of an ongoing quality measurement experiment (QME). This suite of comparisons spans three annual cycles and a relatively wide range of total PWV amounts. Our findings show that although for the most part the agreement is excellent, differences between the two measurements occur. These differences may be related to the MWR retrieval of PWV and to calibration variations between radiosonde batches.

  1. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  2. Performance analysis of the multichannel astrometric photometer

    NASA Technical Reports Server (NTRS)

    Huang, Chunsheng; Lawrence, George N.; Levy, Eugene H.; Mcmillan, Robert S.

    1987-01-01

    It has been proposed that extrasolar planetary systems may be observed if perturbations in star position due to the orbit of Jupiter-type planets could be detected. To see this motion, high accuracy measurements of 0.01 milliarcsecond are required over a relatively large field of view. Techniques using a moving Ronchi grating have been proposed for this application and have been successful in ground-based lower resolution tests. The method may have application to other precision angular measurement problems. This paper explores the theoretical description of the method, considers certain of the error sources, and presents a preliminary calculation of the performance which may be achieved.

  3. The comparison of IR and MW ground-based measurements of total precipitable water

    NASA Astrophysics Data System (ADS)

    Berezin, I. A.; Virolainen, Ya. A.; Timofeyev, Yu. M.; Poberovskii, A. V.

    2016-05-01

    Water vapor is one of the basic climate gases playing a key role in various processes at different altitudes of the Earth's atmosphere. An intercomparison and validation of different total precipitable water (TPW) measurement methods are important for determining the true accuracy of these methods, the shared use of data from multiple sources, the creation of data archives of different measurements, etc. In this paper, the TPW values obtained from measurements of solar IR spectral radiation (~8-9 μm absorption band) and thermal MW radiation of the atmosphere (1.35 cm absorption line) for 138 days of observation are compared. Measurements have been carried out from March 2013 to June 2014 at Peterhof station of the St. Petersburg State University in (59.88° N, 29.82° E). It is shown that MW measurements usually give higher TPW values than IR measurements. The bias between the two methods varies from 1 to 8% for small and large TPW values, respectively. With increasing TPW values, the bias reduces and for TPW > 1 cm it is ~1%. Standard deviation (SD) between the two methods reaches 7% for TPW < 0.4 cm and 3-5% for TPW > 1 cm. These data show the high quality of both remote sensing methods. Moreover, the IR measurements have a higher accuracy than MW measurements for small TPW values.

  4. Global Precipitation Measurement. Report 1; Summary of the First GPM Partners Planning Workshop

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Mehta, Amita; Smith, Eric A. (Editor); Adams, W. James (Editor)

    2002-01-01

    This report provides a synopsis of the proceedings of the First Global Precipitation Measurement (GPM) Partners Planning Workshop held at the University of Maryland, College Park, from May 16 to 18, 2001. GPM consists of a multi-member global satellite constellation (i.e., an international set of satellite missions) and the accompanying scientific research program, with the main goal of providing frequent, accurate, and globally distributed precipitation measurements essential in understanding several fundamental issues associated with the global water and energy cycle (GWEC). The exchange of scientific and technical information at this and subsequent GPM workshops between representatives from around the world represents a key step in the formulation phase of GPM mission development. The U.S. National Aeronautics and Space Agency (NASA), the National Space Development Agency of Japan (NASDA), and other interested agencies from nations around the world seek to observe, understand, and model the Earth system to learn how it is changing and what consequences these changes have on life, particularly as they pertain to hydrological processes and the availability of fresh water resources. GWEN processes are central to a broader understanding of the Earth system.

  5. Global variability of precipitation according to the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Haddad, Ziad S.; Meagher, Jonathan P.; Adler, Robert F.; Smith, Eric A.; Im, Eastwood; Durden, Stephen L.

    2004-01-01

    Numerous studies have documented the effect of El Nino-Southern Oscillation (ENSO) on rainfall in many regions of the globe. The question of whether ENSO is the single most important factor in interannual rainfall variability has received less attention, mostly because the kind of data that would be required to make such an assessment were simply not available. Until 1979 the evidence linking El Nino with changes in rainfall around the world came from rain gauges measuring precipitation over land masses and a handful of islands. From 1980 until the launch of the Tropical Rainfall Measuring Mission (TRMM) in November 1997 the remote sensing evidence was confined to ocean rainfall because of the very poor sensitivity of the instruments over land. In this paper we summarize the results of a principal component analysis of TRMM's 60-month (January 1998 to December 2002) global land and ocean remote-sensing record of monthly rainfall accumulations. Contrary to the first principal component of the rainfall itself, the first three indices of the anomaly are most sensitive to precipitation over the ocean rather than over the land. With the help of archived surface station data the first TRMM rain anomaly index is extended back several decades. Comparison of the extended index with the Southern Oscillation Index confirms that the first principal component of the rainfall anomaly is strongly correlated with the ENSO indices.

  6. Calcite precipitation rates in the field: Measurement and prediction for a travertine-depositing stream

    SciTech Connect

    Herman, J.S.; Lorah, M.M. )

    1988-10-01

    Rates of calcite precipitation from a travertine-depositing stream were determined from changes in stream composition between consecutive sampling points and were compared with rates predicted from a laboratory-derived rate law. The agreement in rates was generally within an order of magnitude and routinely within a factor of 3. Least agreement between measured and predicted rates was obtained for sections of flowpath where relatively little change in bulk chemical composition occurred, which were the sections with the greatest mass transfer calculation error, and for the stream segment including a waterfall, which was the section with the greatest error in estimated surface area. Reaction rate obtained from the mass of calcite precipitated onto seed crystals placed in the stream significantly underestimated the mass transfer rate. For the travertine-depositing stream of Warm River Cave and Falling Spring Creek, Virginia, the coupling of equilibrium speciation models with mass balance calculations and simple field measurements allowed successful field-based quantification of reaction rates.

  7. Characterizing a high resolution color display performance using a Prichard photometer

    NASA Astrophysics Data System (ADS)

    Kaur, Balvinder; Olson, Jeff T.; Hixson, Jonathan G.; Richardson, Philip I.; Flug, Eric A.

    2015-05-01

    Measuring the performance of a cathode ray tube (CRT) or liquid crystal display (LCD) is necessary to enable end-to-end system modeling and characterization of currently used high performance analog imaging systems, such as 2nd Generation FLIR systems. If the display is color, the performance measurements are made more difficult because of the underlying structure of the color pixel as compared to a monochrome pixel. Out of the various characteristics of interest, we focus on determining the gamma value of a display. Gamma quantifies the non-linear response between the input gray scale and the displayed luminance. If the displayed image can be corrected for the display's gamma, an accurate scene can be presented or characterized for laboratory measurements such as MRT (Minimum Resolvable Temperature) and CTF (Contrast Threshold Function). In this paper, we present a method to determine the gamma to characterize a color display using the Prichard 1980A photometer. Gamma corrections were applied to the test images for validating the accuracy of the computed gamma value. The method presented here is a simple one easily implemented employing a Prichard photometer.

  8. EGPM - The proposed European contribution to the Global Precipitation Measurement (GPM) mission

    NASA Astrophysics Data System (ADS)

    Mugnai, A.; Egpm Mission Advisory Group

    2003-04-01

    At the beginning of January 2002, an international scientific consortium (the EGPM Science Team) constituted by numerous scientists involved in several disciplines related to precipitation, submitted to the European Space Agency (ESA) a proposal titled "EGPM: European contribution to the Global Precipitation Mission" in response to ESA's second call for proposals for Earth Explorer Opportunity Missions (EEOMs). The principle objective of the EGPM proposal was to encourage ESA to directly engage in the international organization for the Global Precipitation Measurement (GPM) mission formulated by NASA and NASDA, by providing one member of the GPM constellation of satellites aimed at providing frequent global rainfall observations for an extended operations period starting in the time frame of 2007. Noteworthy, a large part of the European scientific and operational community is strongly interested in GPM. Especially, the operational community related to NWP, nowcasting and hydrological hazards would take advantage of Europe being part of the constellation, because this would guarantee direct access to real-time data. The proposed EGPM satellite should satisfy, in association with the overall GPM constellation, the following "regional" requirements: - Improve the rainfall estimation accuracy with respect to SSM/I; - Enhance the detectability of light rain and snowfall, specifically over land, as appropriate for Northern Europe and Canada and in mid-latitude oceanic perturbations; - Provide a significant contribution to the monitoring and the understanding of hazardous and flash-flood producing storms along the Mediterranean coasts; - Improve the forecast skill of global and regional NWP models through data assimilation of precipitation measurements; - Provide direct-read-out data for real-time applications, as well as global data acquisition. To this end, the scientific payload of the EGPM satellite would consist of an advanced conically scanning microwave radiometer

  9. Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995-2004

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Shaw, Michael J.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rothert, Jane E.

    2010-01-01

    Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H + , Ca2+  , Mg2+  , Na + , K + , NH+4 , Cl − , NO−3 , and SO2−4 . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except NO−3 , SO2−4 , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.

  10. Simultaneous measurements of stable water isotopes in near-surface vapor and precipitation to constrain below-cloud processes

    NASA Astrophysics Data System (ADS)

    Graf, Pascal; Sodemann, Harald; Pfahl, Stephan; Schneebeli, Marc; Ventura, Jordi Figueras i.; Leuenberger, Andreas; Grazioli, Jacopo; Raupach, Tim; Berne, Alexis; Wernli, Heini

    2016-04-01

    Present-day observations of stable water isotopes (SWI) in precipitation on monthly time scales are abundant and the processes governing the variation of SWI on these time scales have been investigated by many studies. However, also on much shorter time scales of hours mesoscale meteorological processes lead to significant variations of SWIs, which are important to understand. There are only few studies investigating the variations of SWI on this short time scale, for which, e.g., frontal dynamics, convection and cloud microphysics play an essential role. In particular, the isotopic composition of both near-surface vapor and precipitation is significantly influenced by below-cloud processes that include precipitation evaporation and isotopic exchange between falling precipitation and surrounding vapor. In this study, simultaneous measurements of SWI in near-surface vapor and precipitation with high (sub-hourly) temporal resolution in combination with observational data from radars, disdrometers, radiosondes and standard meteorological instruments are used for a detailed analysis of the relative importance of below-cloud and in-cloud (i.e., precipitation formation) processes during the course of three rain events in Switzerland in spring 2014. Periods are identified when the isotopic composition of near-surface vapor and equilibrium vapor above liquid rain drops agree and when they differ due to either evaporation of precipitation or incomplete equilibration of precipitation with surrounding vapor. These findings are verified by the supporting observational data. In addition, calculations with a simple rain-shaft model fed with observational data are compared to the actual isotopic composition of precipitation. This combination of isotope measurements and model calculations allows us to test the sensitivity of the precipitation isotope signal to rain intensity, drop-size distribution and temperature and humidity profiles.

  11. Lessons Learned during Thermal Hardware Integration on the Global Precipitation Measurement Satellite

    NASA Technical Reports Server (NTRS)

    Cottingham, Christine; Dwivedi, Vivek H.; Peters, Carlton; Powers, Daniel; Yang, Kan

    2012-01-01

    The Global Precipitation Measurement mission is a joint NASA/JAXA mission scheduled for launch in late 2013. The integration of thermal hardware onto the satellite began in the Fall of 2010 and will continue through the Summer of 2012. The thermal hardware on the mission included several constant conductance heat pipes, heaters, thermostats, thermocouples radiator coatings and blankets. During integration several problems arose and insights were gained that would help future satellite integrations. Also lessons learned from previous missions were implemented with varying degrees of success. These insights can be arranged into three categories. 1) the specification of flight hardware using analysis results and the available mechanical resources. 2) The integration of thermal flight hardware onto the spacecraft, 3) The preparation and implementation of testing the thermal flight via touch tests, resistance measurements and thermal vacuum testing.

  12. At-line benzene monitor for measuring benzene in precipitate hydrolysis aqueous

    SciTech Connect

    Jenkins, W.J.

    1992-10-14

    A highly accurate and repeatable at-line benzene monitor (ALBM) has been developed to measure the benzene concentration in precipitate hydrolysis aqueous (PHA) in the DWPF. This analyzer was conceived and jointly developed within SRTC by the Analytical Development and the Defense Waste Process Technology Sections with extensive support from the Applied Statistics Group and the TNX Operations Section. It is recommended that an ALBM specifically adapted to DWPF analytical requirements be used to measure benzene in PHA; calibrations be performed using a 10% methanol solution matrix (for standard stability); and based on experience gained in development at TNX, the services of ADS and ASG be employed to both adapt the ALBM to DWPF requirements and develop statistical control procedures.

  13. Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5

    NASA Technical Reports Server (NTRS)

    Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei

    2015-01-01

    The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.

  14. Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.

    1995-01-01

    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.

  15. Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Westwater, Ed R.; Han, Yong; Gasiewski, Albin J.; Klein, Marian; Cimini, Domenico; Jones, David C.; Manning, WIll; Kim, Edward J.; Wang, James R.

    2003-01-01

    Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as as 1-2 mm commonly occur in high-latitude regions during the winter months. While such atmospheres carry only a few percent of the latent heat energy compared to tropical atmospheres, the effects of low vapor amounts on the polar radiation budget - both directly through modulation of longwave radiation and indirectly through the formation of clouds - are considerable. Accurate measurements of precipitable water vapor (PWV) during such dry conditions are needed to improve polar radiation models for use in understanding and predicting change in the climatically sensitive polar regions. To this end, the strong water vapor absorption at 183.310 GHz provides a unique means of measuring low amounts of PWV. Weighting function analysis, forward model calculations based upon a 7-year radiosonde dataset, and retrieval simulations consistently predict that radiometric measurements made using several millimeter-wavelength (MMW) channels near the 183 GHz line, together with established microwave (MW) measurements at the 22.235 GHz water vapor line and -3 1 GHz atmospheric absorption window can be used to determine within 5% uncertainty the full range of PWV expected in the Arctic. This unique collective capability stands in spite of accuracy limitations stemming from uncertainties due to the sensitivity of the vertical distribution of temperature and water vapor at MMW channels. In this study the potential of MMW radiometry using the 183 GHz line for measuring low amounts of PWV is demonstrated both theoretically and experimentally. The study uses data obtained during March 1999 as part of an experiment conducted at the Department of Energy s Cloud and Radiation Testbed (CART) near Barrow, Alaska. Several radiometers from both NOAA and NASA were deployed during the experiment to provide the first combined MMW and MW ground-based data set during dry arctic conditions. Single-channel retrievals

  16. Calibration and first light of the Diabolo photometer at the Millimetre and Infrared Testa Grigia Observatory

    NASA Astrophysics Data System (ADS)

    Benoit, A.; Zagury, F.; Coron, N.; De Petris, M.; Désert, F.-X.; Giard, M.; Bernard, J.-P.; Crussaire, J.-P.; Dambier, G.; de Bernardis, P.; Delabrouille, J.; De Luca, A.; de Marcillac, P.; Jegoudez, G.; Lamarre, J.-M.; Leblanc, J.; Lepeltier, J.-P.; Leriche, B.; Mainella, G.; Narbonne, J.; Pajot, F.; Pons, R.; Puget, J.-L.; Pujol, S.; Recouvreur, G.; Serra, G.; Soglasnova, V.; Torre, J.-P.; Vozzi, B.

    2000-02-01

    We have designed and built a large-throughput dual channel photometer, Diabolo. This photometer is dedicated to the observation of millimetre continuum diffuse sources, and in particular, of the Sunyaev-Zel'dovich effect and of anisotropies of the 3 K background. We describe the optical layout and filtering system of the instrument, which uses two bolometric detectors for simultaneous observations in two frequency channels at 1.2 and 2.1 mm. The bolometers are cooled to a working temperature of 0.1 K provided by a compact dilution cryostat. The photometric and angular responses of the instrument are measured in the laboratory. First astronomical light was detected in March 1995 at the focus of the new Millimetre and Infrared Testa Grigia Observatory (MITO) Telescope. The established sensitivity of the system is of 7 mKRJ\\ s1/2. For a typical map of at least 10 beams, with one hour of integration per beam, one can achieve the rms values of y_SZ =~ 7\\ 10-5 and the 3 K background anisotropy {Delta T/ T} =~ 7\\ 10-5, in winter conditions. We also report on a novel bolometer AC readout circuit which allows for the first time total power measurements on the sky. This technique alleviates (but does not forbid) the use of chopping with a secondary mirror. This technique and the dilution fridge concept will be used in future scan-modulated space instrument like the ESA Planck mission project.

  17. Analysis of aerosol properties derived from sun photometer and lidar over Dunhuang radiometric calibration site

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Jing, Yingying; Zhang, Peng; Hu, Xiuqing

    2016-05-01

    Duhuang site has been selected as China Radiation Calibration Site (CRCS) for Remote Sensing Satellite Sensors since 1996. With the economic development of Dunhuang city, the ambient of the radiation calibration field has changed in recent years. Taking into account the key role of aerosol in radiometric calibration, it is essential to investigate the aerosol optical properties over Dunhuang radiometric calibration site. In this paper, the CIMEL sun photometer (CE-318) and Mie-scattering Lidar are simultaneously used to measure aerosol optical properties in Dunhuang site. Data from aerosol-bands of sun photometer are used in a Langley method to determine spectral optical depths of aerosol. And Lidar is utilized to obtain information of vertical profile and integrated aerosol optical depths at different heights. The results showed that the aerosol optical depth at 500 nm wavelength during the in-situ measurement campaigns varied from 0.1 to 0.3 in Dunhuang site. And the observation results also indicated that high aerosol concentration layer mostly located at the height of about 2~4 km. These results implies that the aerosol concentration of atmosphere in Dunhuang was relatively small and suitable for in-flight calibration for remote sensing satellite sensors.

  18. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Hong, Y.; Gourley, J. J.; Carr, N.; Petersen, W. A.; Schwaller, M.; Anagnostou, E. N.; Kummerow, C. D.; Ferraro, R. R.; Wang, N. Y.; Tanelli, S.; Turk, J.; Huffman, G. J.

    2015-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the NEXRAD-based precipitation estimates derived from NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. The NEXRAD network has undergone an upgrade in technology with dual-polarization capabilities and the MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes any GPM estimates. They are used by a number of NASA investigators to evaluate Level II and Level III satellite precipitation algorithms. A comparison framework was developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, typology (e.g. convective, stratiform) and quantification. At the Level II precipitation features are introduced to analyze satellite estimates under various precipitation processes. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for DPR) sensors are investigated. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Comparison with TRMM products serves as a benchmark to evaluate GPM precipitation estimates. A the Level III the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the propagation of errors. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates

  19. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Estuary Management in Acadia National Park

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2007-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the Acadia National Park NLERDSS. Simulated GPM data should provide measurements that would enable analysis of how precipitation affects runoff and nutrient load in the park?s wetlands. This solution benefits society by aiding park and resource managers in making predictions based on hypothetical changes and in identifying effective mitigation scenarios. This solution supports the Coastal Management, Water Management, and Ecological Forecasting National Applications.

  20. A study of aerosol optical properties using a lightweight optical particle spectrometer and sun photometer from an unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Telg, H.; Murphy, D. M.; Bates, T. S.; Johnson, J. E.; Gao, R. S.

    2015-12-01

    A miniaturized printed optical particle spectrometer (POPS) and sun photometer (miniSASP) have been developed recently for unmanned aerial systems (UAS) and balloon applications. Here we present the first scientific data recorded by the POPS and miniSASP from a Manta UAS during a field campaign on Svalbard, Norway, in April 2015. As part of a payload composed of five different aerosol instruments (absorption photometer, condensation particle counter, filter sampler, miniSASP and POPS) we collected particle size distributions, the optical depth (OD) and the sky brightness from 0 to 3000 m altitude. The complementary measurement approaches of the miniSASP and POPS allow us to calculate aerosol optical properties such as the aerosol optical depth and the angstrom exponent or the asymmetry parameter independently. We discuss deviation between results with respect to aerosol properties, e.g. hygroscopicity and absorption, as well as instrumental limitations.

  1. Aerosol Properties derived from the PREDE POM-01 Mark II Sun Photometer

    NASA Astrophysics Data System (ADS)

    Pietras, C. M.; Frouin, R.; Nakajima, T.; Yamano, M.; Knobelspiesse, K.; Werdell, J.; Meister, G.; Fargion, G.; McClain, C.

    2001-12-01

    The Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is dedicated to ensure the comparison and possible merging of data products from multiple ocean color missions. The correction of the atmospheric contribution is a crucial procedure in the analysis of the ocean color imagery. In situ measurements of atmospheric and bio-optical components are, therefore, needed for comparing and validating satellite measurements. Aerosol optical thickness and sky radiance measurements from hand-held and shipboard sun photometers have been made by SIMBIOS investigators on many experiment cruises. The SIMBIOS project manages and maintains the instrumental pool for the ocean and atmospheric measurements including two PREDE POM-01 Mark II radiometers, one MPL LIDAR, one SIMBAD and two SIMBADa, twelve MicroTops, and twelve CIMEL sun photometers. This report describes the aerosol properties derived from measurements using the marine version of the PREDE sun/sky radiometer stabilized for ship deployment. The features of the PREDE ship version take into account the movements of the ship enabling the direct and diffuse sky radiation measurements. The characterization and calibration of the instrument managed by the PREDE Company in Japan and by the SIMBIOS project at Goddard Space Flight Center are presented. Two PREDE Mark II units were deployed during ACE-ASIA campaign in March and April 2001. The aerosol properties derived from the PREDE measurements are compared with other in situ measurements. Retrieval of the aerosol size distribution from the PREDE sky measurements is also possible and presented for the ACE-ASIA campaign.

  2. A New Method for Common Calibration of Sun-Sky-Lunar Photometer

    NASA Astrophysics Data System (ADS)

    Li, Kaitao; Li, Zhengqiang; Li, Donghui; Xu, Hua; Xie, Yisong; Li, Li; Chen, Xingfeng; Ma, Yan

    2016-04-01

    A new calibration method is introduced to transfer extraterrestrial calibration coefficients to the moon measurements for a new sun-sky-lunar photometer, trade name CE318-T from CIMEL. The new transfer method has no relationship with lunar phase, therefore, the precision of the results is improved, and error analysis suggests that the uncertainty of the transferred method is about 2.2-2.6%, smaller than the lunar Langley calibrations. At the same time, the calibration time is also saved. The Sun-Sky-Lunar photometer numbered #1202 and located on the roof of Institute of remote sensing and digital earth (RADI) in Beijing was used in this study. The extraterrestrial calibration coefficients were got by using Langley calibration performed at Ali with a height of 5053 m above sea level in Tibet. The new lunar calibration coefficients were obtained with the new transfer method. And then the nocturnal AODs were calculated, which are well consistent with the daytime observations. The differences between two AODs obtained with transferred calibration coefficients and lunar Langley method were also compared in this paper. In this study, Lidar observation results was also presented to compare with the lunar observations, the results show that the nocturnal AODs have the same variation tendency with the Lidar observations.

  3. The Puoko-nui CCD Time-Series Photometer

    NASA Astrophysics Data System (ADS)

    Chote, P.; Sullivan, D. J.

    2013-01-01

    Puoko-nui (te reo Maori for ‘big eye’) is a precision time series photometer developed at Victoria University of Wellington, primarily for use with the 1m McLellan telescope at Mt John University Observatory (MJUO), at Lake Tekapo, New Zealand. GPS based timing provides excellent timing accuracy, and online reduction software processes frames as they are acquired. The user is presented with a simple user interface that includes instrument control and an up to date lightcurve and Fourier amplitude spectrum of the target star. Puoko-nui has been operating in its current form since early 2011, where it is primarily used to monitor pulsating white dwarf stars.

  4. SiFAP: a Simple Sub-Millisecond Astronomical Photometer

    NASA Astrophysics Data System (ADS)

    Ambrosino, F.; Meddi, F.; Nesci, R.; Rossi, C.; Sclavi, S.; Bruni, I.

    2013-09-01

    A new fast photometer based on SiPM technology was developed at the University of Rome "La Sapienza" starting from 2009. A first prototype was successfully tested observing the Crab pulsar at the Loiano telescope of the Bologna Observatory. In this paper we illustrate the improvements we applied to our instrument, concerning new cooled commercial sensors, a new version of our custom dedicated electronics and an upgraded control timing software. Finally we report the results obtained with this instrument on December 2012 on the Crab pulsar at the Loiano telescope to show its goodness and capabilities.

  5. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, B.K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  6. Measurements of temporal and spatial sequences of events in periodic precipitation processes

    NASA Astrophysics Data System (ADS)

    Kai, Shoichi; Müller, Stefan C.; Ross, John

    1982-02-01

    A series of new experiments on Liesegang ring (or band) formation is presented which is concerned with the temporal and spatial evolution of the process of structure formation. We have chosen NH4OH and MgSO4 to form rings of Mg(OH)2 precipitate in a gelatin gel, as well as KI and Pb(NO3)2 for periodic precipitation of PbI2 in an agar gel. A temporal sequence of events during the entire period from the start of a Liesegang experiment in a test tube to the completion of the final ring pattern has been determined at many locations in the tube by visual observations and by measurements of transmitted light, of scattered light, of deflection of the transmitted light beam, and of gravity effects. After diffusion of one electrolyte into the gel medium containing the second electrolyte results in an ion product larger than three times the solubility product, at any and all points in space, we observe the onset of homogeneous nucleation of colloidal particles by a steplike increase of the index of refraction. The colloid concentration and the particle number density at the nucleation site are estimated to be 10-2 mol/l and 1015 to 1016 cm-3, respectively. Nucleation is followed by the growth of colloidal particles which gives rise to distinct light scattering (turbidity). Both nucleation and colloid formation take place in space continuously; the fronts of these phenomena move through the system and obey a simple diffusion law. A substantial time interval after their passage, there arises a localized gradient of the index of refraction at the prospective ring positions which indicates onset of structure formation by means of a focusing mechanism. While the localized gradient becomes more pronounced and narrower in space, the turbidity in the regions on either side of the ring location decreases, which indicates a depletion in colloidal material in the neighboring zones. Eventually, a sharp band of visible precipitate appears, which is clearly separated from the preceding

  7. Evaluation of candidate rain gages for upgrading precipitation measurement tools for the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Gordon, John D.

    2003-01-01

    The National Atmospheric Deposition Program (NADP) was established in 1977 to investigate atmospheric deposition and its effects on the environment. Since its establishment, precipitation records have been obtained at all NADP sites using a gage developed approximately 50 years ago-the Belfort 5-780 mechanical rain gage. In 1998 and 1999, a study was done by the U.S. Geological Survey to evaluate four recently developed, technologically advanced rain gages as possible replacement candidates for the mechanical gage currently (2002) in use by the NADP. The gage types evaluated were the Belfort 3200, Geonor T-200, ETI Noah II, and the OTT PLUVIO. The Belfort 5-780 was included in the study to compare the performance of the rain gage currently (2002) used by NADP to the performance of the more recently developed gages. As a reference gage, the NovaLynx Model 260-2510 National Weather Service type stick gage also was included in the study. Two individual gages of each type were included in the study to evaluate precision between gages of the same type. A two-phase evaluation was completed. Phase I consisted of indoor bench tests with known amounts of simulated rainfall applied in 20 individual tests. Phase II consisted of outdoor testing by collecting precipitation during a 26-week period near Bay St. Louis, Mississippi. The ETI Noah II, OTT PLUVIO, and NovaLynx stick gages consistently recorded depths more commensurate with the amounts of applied simulated rainfall in Phase I testing than the Geonor T-200, Belfort 5-780, and Belfort 3200 gages. Gages where both the median difference between the measured and applied simulated rainfall and the interquartile range of all of their measured minus applied simulated rainfall differences were small (less than or equal to 0.01 inch) were judged to have performed very well in Phase I testing. The median and interquartile-range values were 0.01 inch or less for each of the ETI Noah II gages, OTT PLUVIO gages, and NovaLynx stick

  8. Measuring Dust Exposure with the Thermal Precipitator in Collieries and Foundries

    PubMed Central

    Roach, S. A.

    1959-01-01

    The standard thermal precipitator has been modified for field surveys of airborne dust exposure so as to make it more portable. A microprojector is used when assessing the samples and for coal-mine dusts the counts are restricted to the range 0·5 to 5 microns. In industrial environments the dust concentration appears to vary with a standard deviation of more than 50% of the mean. Part of this variability is due to errors of the thermal precipitator. The standard error of a count of a sample is about 10% to 15% in practical work and the combined effect of this and other errors is that the standard error of a single result is about 15%. However, in practice this can be neglected since the dust concentration itself is so variable. A more important source of error is the bias, due to overlapping among the particles on the cover glasses. The count may give a serious underestimate of the number of airborne particles if high sample densities are used. The product of average concentration and duration of exposure is probably a good index of the dose of dust retained in a man's lungs. The duration of exposure is measured by a simple time study made at the same time as the concentration is measured. Samples are taken near workers chosen at random to give unbiased estimates of the dust exposure. Ideally successive samples are taken alongside different workers. However, in a survey at a colliery it was not possible to do this and each day had to be spent with one collier. The mean dust exposure of the coal-getters was 2,860 particle-hours per shift, of those on stone work 2,250 particle-hours per shift, and the remainder had a mean dust exposure of 1,010 particle-hours per shift. In a survey at a steel works successive samples could be taken alongside different workers. It was found that the dustiness was unrelated to the apparently dusty processes and as the dust was very fine it was suspected that it was the normal atmospheric pollution of the neighbourhood. This was

  9. Global Precipitation Measurement (GPM) Microwave Imager Falling Snow Retrieval Algorithm Performance

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, Gail; Munchak, Stephen J.; Johnson, Benjamin T.

    2015-04-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges and uncertainties remaining. This work reports on the development and post-launch testing of retrieval algorithms for the NASA Global Precipitation Measurement (GPM) mission Core Observatory satellite launched in February 2014. In particular, we will report on GPM Microwave Imager (GMI) radiometer instrument algorithm performance with respect to falling snow detection and estimation. Since GPM's launch, the at-launch GMI precipitation algorithms, based on a Bayesian framework, have been used with the new GPM data. The at-launch database is generated using proxy satellite data merged with surface measurements (instead of models). One year after launch, the Bayesian database will begin to be replaced with the more realistic observational data from the GPM spacecraft radar retrievals and GMI data. It is expected that the observational database will be much more accurate for falling snow retrievals because that database will take full advantage of the 166 and 183 GHz snow-sensitive channels. Furthermore, much retrieval algorithm work has been done to improve GPM retrievals over land. The Bayesian framework for GMI retrievals is dependent on the a priori database used in the algorithm and how profiles are selected from that database. Thus, a land classification sorts land surfaces into ~15 different categories for surface-specific databases (radiometer brightness temperatures are quite dependent on surface characteristics). In addition, our work has shown that knowing if the land surface is snow-covered, or not, can improve the performance of the algorithm. Improvements were made to the algorithm that allow for daily inputs of ancillary snow cover

  10. Photometer dewar system for NASA C141 airborne telescope (Kuiper Flying Observatory). [design analysis/performance tests

    NASA Technical Reports Server (NTRS)

    Ney, E. P.

    1974-01-01

    The design, calibration, and testing of a photometer to be used in an airborne telescope is described. A description of the cryogenics of the photometer is given, and photographs and blueprints of the photometer are included. The photometer is designed with a focal plane beam switching system so that the airplane telescope can be used in a normal optical mode at the bent Cassegrain focus and with the photometer operating in the pressurized cabin of the airplane. The concept was to produce a system which could be used in almost the same manner as ground based infrared photometers and dewars of the O'Brien Observatory at the University of Minnesota.

  11. Lead precipitation fluxes at tropical oceanic sites determined from /sup 210/Pb measurements

    SciTech Connect

    Settle, D.M.; Patterson, C.C.; Turekian, K.K.; Cochran, J.K.

    1982-02-20

    Concentrations of lead, /sup 210/Pb, and /sup 210/Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm /sup 210/Pb in rain were 250--900 for Pigeon Key (assuming 12% adsorption for /sup 210/Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources). The corresponding fluxes of lead to the oceans, based on measured or modeled /sup 210/Pb precipitation fluxes, are about 4 ng Pb/cm/sup 2/y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key.

  12. Measurement of irradiation effects in precipitate hardened aluminum using nonlinear ultrasonic principles (in-situ)

    NASA Astrophysics Data System (ADS)

    Reinhardt, B. T.; Parks, D. A.; Tittmann, B. R.

    2012-05-01

    Currently nuclear power plants are reaching the end of their initial design life. Yet, in order to meet the energy demands, twenty year extensions have been granted to many nuclear reactor facilities. These extensions will be ending by the year 2035, leaving a large gap in the available energy supply. In order to extend the life of these facilities it will imperative to develop techniques capable detecting damage in the aging nuclear facilities. However, the high temperature and high neutron flux environment limits the materials available for use in the nuclear reactor. Because of this limitation little NDE based inspection has been implemented in high radiation environments. Yet recent developments in the understanding of Aluminum Nitride (AlN) piezoelectric sensors high temperature and radiation dependent behavior have opened the door for in-situ experimentation. An experiment was designed to monitor the propagation of an ultrasonic wave in a precipitate hardened aluminum specimen while being subjected to radiation at the Pennsylvania State Universities Breazeale Reactor. Measurements of harmonic generation were made up to 1.85×1018 fluence with significant spectral difference between the pre-irradiated state and the post irradiated state. The connection between micro-structural material changes and harmonic measurements are addressed.

  13. Remote Sensing of Atmospheric Optical Depth Using a Smartphone Sun Photometer

    PubMed Central

    Cao, Tingting; Thompson, Jonathan E.

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12–0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations. PMID:24416199

  14. Using Wildlife Water Developments to Measure Precipitation and Estimate Runoff in Remote Catchments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Nevada, available data on precipitation and runoff in remote catchments is extremely limited. The National Weather Service’s Cooperative Observer Network (COOP) includes 178 weather stations, most of which collect precipitation data and qualitative weather observations. Most of these stations a...

  15. Instrumenting Wildlife Water Developments to Measure Precipitation and Estimate Runoff in Remote Catchments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Nevada, available data on precipitation and runoff in remote catchments are extremely limited. The National Weather Service’s Cooperative Observer Network (COOP) includes 178 weather stations, most of which collect precipitation data and qualitative weather observations. Most of these stations ar...

  16. Snowfall Measurements at a Boreal Forest Site in Saskatchewan/Canada: Contribution to WMO Solid Precipitation Intercomparison Experiment (SPICE)

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2015-12-01

    Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). As part of Canada's contribution to the WMO SPICE project, a test site has been set up in the southern Canadian Boreal forest to compare the DFIR and bush gauge and test other instruments. Snowfall and meteorological data have been collected over the past 2 winters. This presentation will summarize the results of recent data analyses, evaluate the performance of various gauges for snowfall observations in the northern regions, and discuss future perspectives regarding cold/mountain region precipitation research. The methods and results of this research will improve precipitation measurements and data quality over the cold and mountain regions, directly supporting the WMO SPICE and the MOUNTerrain projects.

  17. Effect of Combined Spaceborne Microwave and Continuous Lightning Measurements on Precipitation Forecasts of the 1998 Ground-Hog Day Storm

    NASA Technical Reports Server (NTRS)

    Weinman, James A.; Chang, Dong-Eon; Morales, Carlos A.

    2000-01-01

    We evaluated the impact of several newly available sources of meteorological data on mesoscale model forecasts of precipitation produced by the extra-tropical cyclone that struck Florida on February 2, 1998. Precipitation distributions of convective rainfall events were derived from Special Sensor Microwave Imager (SSM/I) and Multi-Channel Passive Microwave Sensor (TMI) microwave radiometric data by means of the Goddard PROFiling (GPROF) algorithm. Continuous lightning distributions were obtained from sferics measurements obtained from a network of VLF radio receivers. Histograms of coincident sferics frequency distributions were matched to those of precipitation to derive bogus convective rainfall rates from the continuously available sferics measurements. SSM/I and TMI microwave data were used to derive Integrated Precipitable Water (IPW) distributions. The TMI also provided sea surface temperatures (SSTS) of the Loop Current and Gulf Stream with improved structural detail. A series of experiments assimilated IPW and latent heating from the bogus convective rainfall for six-hours in the MM5 mesoscale forecast model to produce nine-hour forecasts of all rainfall as well as other weather parameters. Although continuously assimilating latent heating only slightly improved the surface pressure distribution forecast, it significantly improved the precipitation forecasts. Correctly locating convective rainfall was found critical for assimilating latent heating in the forecast model, but measurement of the rainfall intensity proved to be less important. The improved SSTs also had a positive impact on rainfall forecasts for this case. Assimilating bogus rainfall in the model produced nine-hour forecasts of radar reflectivity distributions that agreed well with coincident observations from the TRMM spaceborne precipitation radar, ground based radar and spaceborne microwave measurements.

  18. 21 CFR 862.2540 - Flame emission photometer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2540 Flame emission photometer for clinical use. (a) Identification. A flame emission... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Flame emission photometer for clinical use....

  19. 21 CFR 862.2540 - Flame emission photometer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2540 Flame emission photometer for clinical use. (a) Identification. A flame emission... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Flame emission photometer for clinical use....

  20. 21 CFR 862.2540 - Flame emission photometer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2540 Flame emission photometer for clinical use. (a) Identification. A flame emission... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Flame emission photometer for clinical use....

  1. 21 CFR 862.2540 - Flame emission photometer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2540 Flame emission photometer for clinical use. (a) Identification. A flame emission... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flame emission photometer for clinical use....

  2. Global Precipitation Measurement. Report 2; Benefits of Partnering with GPM Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich F.; Smith, Eric A. (Editor); Adams, W. James (Editor); Starr, David OC. (Technical Monitor)

    2002-01-01

    An important goal of the Global Precipitation Measurement (GPM) mission is to maximize participation by non-NASA partners both domestic and international. A consequence of this objective is the provision for NASA to provide sufficient incentives to achieve partner buy-in and commitment to the program. NASA has identified seven specific areas in which substantive incentives will be offered: (1) partners will be offered participation in governance of GPM mission science affairs including definition of data products; (2) partners will be offered use of NASA's TDRSS capability for uplink and downlink of commands and data in regards to partner provided spacecraft; (3) partners will be offered launch support for placing partner provided spacecraft in orbit conditional upon mutually agreeable co-manifest arrangements; (4) partners will be offered direct data access at the NASA-GPM server level rather than through standard data distribution channels; (5) partners will be offered the opportunity to serve as regional data archive and distribution centers for standard GPM data products; and (6) partners will be offered the option to insert their own specialized filtering and extraction software into the GPM data processing stream or to obtain specialized subsets and products over specific areas of interest (7) partners will be offered GPM developed software tools that can be run on their platforms. Each of these incentives, either individually or in combination, represents a significant advantage to partners who may wish to participate in the GPM mission.

  3. Precipitation of radiation belt electrons by man-made waves A comparison between theory and measurement

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Chang, H. C.; Helliwell, R. A.; Imhof, W. L.; Reagan, J. B.; Walt, M.

    1985-01-01

    The temporal and spectral shape and the absolute flux level of particle pulses precipitated by a VLF transmitter are examined from a theoretical point of view. A test-particle model of the gyroresonant wave-particle interaction is applied to the parameters of the observed cases for calculating the precipitation characteristics. The temporal shapes of the precipitation pulses are found to be controlled (1) by the pitch angle dependence of the particle distribution near the edge of the loss cone and (2) by the multiple interaction of the particles with the waves due to significant atmospheric backscatter.

  4. Energy parameters of precipitating auroral electrons obtained by using photometric observations

    SciTech Connect

    Ono, Takayuki; Morishima, Kei )

    1994-02-15

    The authors present a ground based photometric method for measuring both the average energy and total energy flux for active discrete auroras. They make use of a multichannel photometer, with a narrow field of view. They monitor auroral emissions from atomic states and molecular bands, and by determining intensity ratios, are able to infer information relative to energy parameters of precipitating electrons in discrete arcs. They are able to look along magnetic axes. One observation is that there is a relationship between the energy flux and average energy, which can be considered ohmic in character, consistent with a model that precipitating electrons are accelerated along field lines by potential differences which can exist along these field lines.

  5. Space telescope phase B definition study. Volume 2A: Science instruments, high speed point/area photometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The analysis and preliminary design of a high speed point/area photometer for the space telescope are summarized. The scientific objectives, photometer requirements, and design concepts are presented.

  6. Performance Test of Automated Photographic Photometer and Photometry of Cluster Byur 2

    NASA Astrophysics Data System (ADS)

    Cho, Dong-Hwan; Lee, See-Woo; Lee, Hyun-Gon

    1993-12-01

    The Automated Eichner Iris Photometer(AEIP) at the Korea Basic Science Center was tested for its function and the proper procedure for photographic photometry. The AEIP requires about three hours for reaching the electrical stability. When the iris is controlled automatically, the repeatability of density unit(DU) is accurate in the uncertainty of (0.0028~0.0048)DU. The iris reading is found to be accurate within the mean error of 0.05m, which could be reduced to 0.02m by the manual control. To check the applicability of the AEIP, each two photographic plates for UBV colors which were taken by Dupuy and Zukauskas(1976) for the open cluster Byur 2, were measured by using the AEIP, and the photographic magnitudes and colors of the stars in Byur 2 were determined, discussing the previous results.

  7. An extreme ultraviolet photometer for solar observations from the Atmosphere Explorer satellites

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Osantowski, J. F.

    1972-01-01

    A broadband photometer experiment is being fabricated for the Atmosphere Explorer C, D and E missions to record the solar irradiance in the 40 to 1250 A region with seven distinct passbands. The experiment consists principally of four spinal electron multipliers located behind a moving eight position filter wheel. Six metallic filters are used to spectrally isolate the solar irradiance. In addition three Al2O3 diodes, two with filters, are being used to record the solar irradiance over the range of orbital altitudes from perigee through apogee. A principal goal of the experiment will be to measure time dependence of the solar irradiance with respect to a storage ring synchrotron light source which has been calibrated in terms of the best currently available standards of irradiance.

  8. The 2 deg/90 deg laboratory scattering photometer. [particulate refractivity in hydrosols

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R. (Inventor)

    1977-01-01

    A scattering photometer for measuring the light scattered by particles in a hydrosol at substantially 2 deg and 90 deg simultaneously is described. Light from a source is directed by a first optical system into a scattering cell containing the hydrosol under study. Light scattered at substantially 90 deg to the incident beam is focused onto a first photoelectric detector to generate an electrical signal indicative of the amount of scattered light at substantially 90 deg. Light scattered at substantially 2 deg to the incident beam is directed through an annular aperture symmetrically located about the axis of the illuminating beam which is linearly transmitted undeviated through the hydrosol and focused onto a second photoelectric detector to generate an electrical signal indicative of the amount of light scattered at substantially 2 deg.

  9. Taxonomic classification of phytoplankton with multivariate optical computing, part II: design and experimental protocol of a shipboard fluorescence imaging photometer.

    PubMed

    Swanstrom, Joseph A; Bruckman, Laura S; Pearl, Megan R; Abernathy, Elizabeth; Richardson, Tammi L; Shaw, Timothy J; Myrick, Michael L

    2013-06-01

    Differential pigmentation between phytoplankton allows use of fluorescence excitation spectroscopy for the discrimination and classification of different taxa. Here, we describe the design and performance of a fluorescence imaging photometer that exploits taxonomic differences for discrimination and classification. The fluorescence imaging photometer works by illuminating individual phytoplankton cells through an asynchronous spinning filter wheel, which produces bar code-like streaks in a fluorescence image. A filter position is covered with an opaque filter to create a reference dark position in the filter wheel rotation that is used to match each fluorescence streak with the corresponding filter. Fluorescence intensities of the imaged streaks are then analyzed for the purpose of spectral analysis, which allows taxonomic classification of the organism that produced the streaks. The theoretical performance and signal-to-noise ratio (SNR) specifications of these MOEs are described in Part I of this series. This report describes optical layout, flow cell design, magnification, depth of field, constraints on filter wheel and flow velocities, procedures for blank subtraction and flat-field correction, the measurement scheme of the instrument, and measurement of SNR as a measurement of filter wheel frequency. This is followed by an analysis of the sources of variance in measurements made by the photometer on the coccolithophore Emiliania huxleyi. We conclude that the SNR of E. huxleyi measurements is not limited by the sensitivity or noise attributes of the measurement system, but by dynamics in the fluorescence efficiency of the E. huxleyi cells. Even so, the minimum SNR requirements given in Part I for the instrument are met. PMID:23735248

  10. Ultraviolet three-channel photographic photometer: the S183 experiment.

    PubMed

    Laget, M; Saïsse, M; Vuillemin, A

    1977-04-01

    An uv three-channel photographic photometer designed for broadband photometry of uv-rich stars is described. The optical design consists of two instruments. First, an off-axis telescope, imaging a 7 degrees x 9 degrees field of view, simultaneously records two channels centered at 1878 A and 2970 A (636-A FWHM). The second is a Schmidt-Cassegrainian telescope imaging a 5 degrees x 7 degrees field of view at lambda(eff) = 2574 A (358-A FWHM). Thirty-four star fields have been observed including the Large and Small Magellanic clouds, the nucleus of the Andromeda galaxy, and galactic nebulae in the Carina, Orion, and Taurus regions. More than 3000 stars have been recorded at 2574 A with a limiting visual magnitude approaching 12. A short discussion concerning the behavior of the emulsions is given. PMID:20168619

  11. Extreme ultraviolet photometer for observations of helium in interplanetary space.

    PubMed

    Bowyer, S; Freeman, J; Paresce, F; Lampton, M

    1977-03-01

    A four-channel photometer sensitive to two solar EUV lines which are resonantly scattered by helium gas was developed for flight on the Apollo-Soyuz Test Project. Two channels observed the 58.4-nm line of He I and used helium gas resonant absorption cells to determine the intensities of the center and wings of that line. The other two channels observed the 30.4-nm line of He II. The instrument surveyed much of the celestial sphere during a series of slow rolling maneuvers by the Apollo spacecraft. The experiment operated properly, and usable data were obtained. Study of the distributions of flux seen, and of the ratio of 58.4-nm fluxes seen with gas cells full and empty, will refine current understanding of several poorly known properties of the local interstellar medium. Study of the 30.4-nm flux distribution will refine present knowledge of the structure of the earth's plasmasphere. PMID:20168575

  12. observation and analysis of the structure of winter precipitation-generating clouds using ground-based sensor measurements

    NASA Astrophysics Data System (ADS)

    Menéndez José Luis, Marcos; Gómez José Luis, Sánchez; Campano Laura, López; Ortega Eduardo, García; Suances Andrés, Merino; González Sergio, Fernández; Salvador Estíbaliz, Gascón; González Lucía, Hermida

    2015-04-01

    In this study, we used a 28-day database corresponding to December, January and February of 2011/2012 and 2012/2013 campaigns to analyze cloud structure that produced precipitation in the Sierra Norte near Madrid, Spain. We used remote sensing measurements, both active type like the K-band Micro Rain Radar (MRR) and passive type like the Radiometrics MP-3000A multichannel microwave radiometer. Using reflectivity data from the MRR, we determined the important microphysical parameters of Ice Water Content (IWC) and its integrated value over the atmospheric column, or Ice Water Path (IWP). Among the measurements taken by the MP-3000A were Liquid Water Path (LWP) and Integrated Water Vapor (IWV). By representing these data together, sharp declines in LWP and IWV were evident, coincident with IWP increases. This result indicates the ability of a K-band radar to measure the amount of ice in the atmospheric column, simultaneously revealing the Wegener-Bergeron-Findeisen mechanism. We also used a Present Weather Sensor (VPF-730; Biral Ltd., Bristol, UK) to determine the type and amount of precipitation at the surface. With these data, we used regression equations to establish the relationship between visibility and precipitation intensity. In addition, through theoretical precipitation visibility-intensity relationships, we estimated the type of crystal, degree of accretion (riming), and moisture content of fallen snow crystals.

  13. The Joint Analyses of Single- and Dual-Frequency/Experimental Dual-Polarization SIR-C and X-SAR Measurements in Precipitation

    NASA Technical Reports Server (NTRS)

    Jameson, Arthur R.; Li, Fuk

    1996-01-01

    Progress, future plans and publications regarding the following objectives are presented: (1) Determine the vertical and horizontal spatial distribution of hydrometeors in precipitating clouds; (2) Measure the spatial distribution of liquid water and ice in the clouds; and (3) Measure and determine the limits of measurement of the polarization characteristics related to the shapes and orientations of hydrometeors in precipitating clouds.

  14. Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures

    PubMed Central

    2014-01-01

    Background Predictive models of malaria vector larval habitat locations may provide a basis for understanding the spatial determinants of malaria transmission. Methods We used four landscape variables (topographic wetness index [TWI], soil type, land use-land cover, and distance to stream) and accumulated precipitation to model larval habitat locations in a region of western Kenya through two methods: logistic regression and random forest. Additionally, we used two separate data sets to account for variation in habitat locations across space and over time. Results Larval habitats were more likely to be present in locations with a lower slope to contributing area ratio (i.e. TWI), closer to streams, with agricultural land use relative to nonagricultural land use, and in friable clay/sandy clay loam soil and firm, silty clay/clay soil relative to friable clay soil. The probability of larval habitat presence increased with increasing accumulated precipitation. The random forest models were more accurate than the logistic regression models, especially when accumulated precipitation was included to account for seasonal differences in precipitation. The most accurate models for the two data sets had area under the curve (AUC) values of 0.864 and 0.871, respectively. TWI, distance to the nearest stream, and precipitation had the greatest mean decrease in Gini impurity criteria in these models. Conclusions This study demonstrates the usefulness of random forest models for larval malaria vector habitat modeling. TWI and distance to the nearest stream were the two most important landscape variables in these models. Including accumulated precipitation in our models improved the accuracy of larval habitat location predictions by accounting for seasonal variation in the precipitation. Finally, the sampling strategy employed here for model parameterization could serve as a framework for creating predictive larval habitat models to assist in larval control efforts. PMID:24903736

  15. Classification of Tropical Oceanic Precipitation using High-Altitude Aircraft Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Cecil, Daniel J.; LaFontaine, Frank J.; Blakeslee, Richard J.; Mach, Douglas m.; Heymsfield, Gerald M.; Marks, Frank D., Jr.; Zipser, Edward J.

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the NASA ER-2 high-altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower-altitude horizontal reflectivity scans collected by the NOAA WP3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  16. Classification of Tropical Oceanic Precipitation using High Altitude Aircraft: Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Cecil, Daniel; LaFontaine, Frank J.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald; Marks, Frank, Jr.; Zipser, Edward

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration ER-2 high altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scans collected by the National Oceanic and Atmospheric Administration WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  17. Satellite remote sensing, GIS and sun-photometers for monitoring PM10 in Cyprus: issues on public health

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Nisantzi, Argyro; Themistocleous, Kyriacos; Matsas, Alexandros; Trigkas, Vassilis

    2010-10-01

    PM10 and PM 2.5 particles are very significant issues for the public health of the community. Such parameters are measured from air-pollution stations that are scarcely distributed in the Cyprus region. Satellite remote sensing can provide synoptic coverage of the Cyprus area either daily from MODIS sensor or every 16 days from Landsat. Sunphotometers are used to measure the aerosol optical thickness (AOT) on ground during the satellite overpass. Several different campaigns have been made both for two urban areas in Paphos and Limassol area. For the period 28/10/09 - 30/12/09, the regression analysis between PM10 and ΡΜ2.5 for the Paphos town (central) gave coefficient of determination of R2=0,78 and R2=0,61 respectively. Coefficient of determination R2 =0.61 was found for the period May-June 2009 for the centre of Limassol when PM10 was regressed against AOT measured from MICROTOPS handheld sun-photometer. The AOT data retrieved from MODIS AOT (at 550 nm) and CIMEL sun-photometer (AERONET) also provided a high correlation (r=0.9, R2 = 0.81) for the centre of Limassol for April to July 2010 measurements. Results obtained by correlating MODIS AOT (at 550 nm) against hand-held MICROTOPS sun-photometer in the centre of Limassol for the period January 2009 to March 2010 gave R2=0,81. Using the PM10 limit of 50μg/m3 as prescribed by the European Union and the regression model found for the Limassol area, a threshold value of AOT for this area of 0.6 was found. Such value can be used as threshold AOT values for alerts either using the MODIS or Landsat satellite imagery. An example of how a GIS can provide temporal variations of AOT over the Cyprus area is shown.

  18. Retrieval of Total Precipitable Water over High-Latitude Regions Using Radiometric Measurements near 90 and 183 GHz.

    NASA Astrophysics Data System (ADS)

    Wang, J. R.; Boncyk, W. C.; Dod, L. R.; Sharma, A. K.

    1992-12-01

    Radiometric measurements at 90 GHz and three sideband frequencies near the peak water vapor absorption line of 183.3 GHz were made with Advanced Microwave Moisture Sounder (AMMS) aboard the NASA DC-8 aircraft during the Global Aerosol Backscatter Experiment (GLOBE) mission over the Pacific Ocean in November 1989. Some of the measurements over the high-latitude regions (>50°N or 50°S) were analyzed for the retrieval of total precipitable water less than 0.5 g cm2 both over land and ocean surfaces. The results show that total precipitable water from a relatively dry atmosphere could be estimated with high sensitivity from these radiometric measurements. The retrieved values over ocean surface show a decrease toward the polar region as expected. The retrieved total precipitable water over land correlates positively with the aircraft radar altitude. This positive correlation is expected because the aircraft radar altitude provides a measure of atmospheric water vapor burden above the surface. Retrieved high reflectivities over land surface at 90 GHz and 183 GHz are presumably related to snow cover on the ground. This suggests that radiometric measurements at these frequencies could be used to map snow at high-latitude regions.

  19. Precipitation-attenuation studies based on measurements of ATS-6 20/30-GHz beacon signals at Clarksburg, Maryland

    NASA Technical Reports Server (NTRS)

    Fang, D. J.; Harris, J. M.

    1976-01-01

    Radiometric sky temperature and minute precipitation measurements were intended to broaden the data base required to advance the understanding of the propagation characteristics of the earth-satellite path at frequencies over 10 GHz. Analyses of the data collected from the measurement program have established a detailed correlation between the satellite signal and the signals from auxiliary ground-based measurements. The indirectly derived statistics agreed reasonably well (or can be reconciled) with the earlier published results. The correlations may therefore be used for indirectly estimating long term cumulative attenuation statistics in the absence of direct satellite signal measurements.

  20. Evaluating the Global Precipitation Measurement Mission with NOAA/NSSL Multi-Radar Multisensor: Past, Current Status and Future Directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Hong, Y.; Gourley, J. J.; Carr, N.; Petersen, W. A.; Schwaller, M.; Anagnostou, E. N.; Kummerow, C. D.; Ferraro, R. R.; Wang, N. Y.

    2014-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. GPM precipitation level II estimates are compared to the NEXRAD-based precipitation estimates derived from NOAA/NSSL's Multi-Radar, Multisensor (MRMS) platform. The NEXRAD network has undergone an upgrade in technology with dual-polarization capabilities. These new polarimetric variables are being incorporated in MRMS to improve quality control of reflectivity data and to correct for partial beam blockages. The MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes of the GPM radar and radiometer observations. They are used by a number of NASA investigators to evaluate level II and level III satellite rainfall algorithms. The at-launch GPM Radiometer algorithm uses matches of coincident overpasses of various radiometers with surface rainfall from the MRMS database developed for the GPM project. Statistics from TRMM level II products serve as a benchmark to evaluate GPM precipitation estimates. Comparisons have been carried out at fine scale (e.g. instantaneous and 5 km for DPR) within a comparison framework developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, characterization (e.g. convective, stratiform) and quantification. Specific error factors for passive (e.g. surface conditions for GMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for DPR) sensors are investigated. Systematic biases and random errors quantified at the satellite estimation scale are useful for satellite-based Level III precipitation products. An online validation tool was designed to provide, for the first

  1. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements

    NASA Astrophysics Data System (ADS)

    Li, Zhenhong; Muller, Jan-Peter; Cross, Paul

    2003-10-01

    Atmospheric water vapor is highly variable in both space and time across the Earth, and knowledge of the distribution of water vapor is essential in understanding weather and global climate. In addition, knowledge of the amount of atmospheric water vapor is required for high-precision interferometric synthetic aperture radar (InSAR) applications due to its significant impact on microwave signals, which is the principal motivation for this study. In order to assess the performance of different instruments, i.e., radiosondes (RS), Global Positioning System (GPS), and the Moderate-Resolution Imaging Spectroradiometer (MODIS) and for measuring precipitable water vapor (PWV), coincident observations collected at the Atmospheric Radiation Measurement Southern Great Plains site and at the Herstmonceux site over a 8-11 month period are used for time series intercomparisons. In this study, the Terra MODIS near-infrared water vapor products (Collection 3) were examined. In addition, a first spatial comparison of MODIS PWV and GPS PWV was performed using data covering all of Germany and kindly supplied by the GeoForschungsZentrum Potsdam. Time series comparisons of PWV between radiosondes and GPS show that the scale factors of PWV from radiosondes and GPS agreed to 4% with correlation coefficients higher than 0.98 and standard deviations about 1 mm. A significant day-night difference was found for Vaisala RS90 radiosondes in comparison with GPS PWV, with nighttime launches having a scale factor 4% larger, but agreeing overall better. It is also shown that GPS PWV and RS PWV agreed better with each other than with MODIS PWV, and the differences of MODIS PWV relative to GPS or RS were larger than those between GPS PWV and RS PWV. MODIS PWV appeared to overestimate PWV against RS, with scale factors from 1.14 to 1.20 and standard deviations from 1.6 to 2.2 mm. MODIS PWV appeared to overestimate PWV against GPS, with scale factors from 1.07 to 1.14 and standard deviations varying

  2. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    SciTech Connect

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-10-23

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  3. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    NASA Astrophysics Data System (ADS)

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-11-01

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  4. Testing data evaluation strategies for estimating precipitation and actual evaporation from precision lysimeter measurements

    NASA Astrophysics Data System (ADS)

    Schrader, Frederik; Durner, Wolfgang; Fank, Johann; Pütz, Thomas; Wollschläger, Ute

    2014-05-01

    Weighing lysimeters have long been recognized as valuable tools not only for monitoring of groundwater recharge and solute transport, but also for the determination of the soil water balance and quantification of water exchange processes at the soil-plant-atmosphere interface. If well embedded into an equally-vegetated environment, they reach a hitherto unprecedented accuracy in estimating precipitation (P) by rain, dew, fog, rime and snow, as well as actual evapotranspiration (ET). At the same time, they largely avoid errors made by traditional micrometeorological instruments, such as the wind error of Hellman rain samplers or the influence of subsurface heterogeneity on readings from in situ instrumentation of soil water state variables. Beginning in 2008, the Helmholtz Association established a network of terrestrial environmental observatories (TERENO) that aim at long-term monitoring of climate and land-use change consequences. A total of 126 identically designed large weighing lysimeters, operating at a sampling frequency of 1 min-1, were installed for this purpose, which raises the demand for standardized data processing methods. In theory, estimating P and ET from these measurements is straightforward: An increase in the combined mass of the soil monolith and the collected seepage water indicates P, while a decrease indicates ET. However, in practice, lysimeter data are prone to numerous sources of error, including, but not limited to, outliers, systematic errors due to plant growth and removal, data gaps, and stochastic fluctuations. The latter pose a particularly challenging problem - if we would directly calculate P and ET from a time-series that is affected by random noise, every positive fluctuation would be interpreted as P and every negative one as ET. Consequently, we would overestimate both quantities by far. The aim of this study was to evaluate algorithms that focus on eliminating the effect of these fluctuations and to estimate actual fluxes

  5. Near-infrared extension of a visible spectrum airborne Sun photometer

    NASA Astrophysics Data System (ADS)

    Starace, Marco; von Bismarck, Jonas; Hollstein, André; Ruhtz, Thomas; Preusker, René; Fischer, Jürgen

    2013-05-01

    The continuously-measuring, multispectral airborne Sun and aureole photometers FUBISS-ASA and FUBISSASA2 were developed at the Institute for Space Sciences of the Freie Universität Berlin in 2002 and 2006 respectively, for the retrieval of aerosol optical and microphysical parameters at wavelengths ranging from 400 to 900 nm. A multispectral near-infrared direct sun radiometer measuring in a spectral range of 1000 to 1700 nm has now been added to FUBISS-ASA2. The main objective of this NIR extension is to enhance the characterization of larger aerosol particles, as Mie scattering theory offers a more accurate approximation for their interaction with electromagnetic radiation, if both the VIS and NIR parts of the spectrum are considered, than it does for the VIS part only. The spectral transmissivity of atmospheric models was computed using the HITRAN2008 database in order to determine local absorption minima suitable for aerosol retrieval. Measurements were first carried out aboard the research vessel FS Polarstern on its transatlantic voyage ANT-XXVI/1. Additional measurements were performed from the Sphinx High Altitude Research Station on the Jungfraujoch and in the nearby Kleine Scheidegg locality during the CLACE2010 measurement campaign. Aerosol optical parameters derived from VIS aureole and direct sun measurements were compared to those of simulated aerosol mixtures in order to estimate the composition of the measured aerosol.

  6. In-situ measurements of cloud-precipitation microphysics in the East Asian monsoon region since 1960

    NASA Astrophysics Data System (ADS)

    Wang, Donghai; Yin, Jinfang; Zhai, Guoqing

    2015-04-01

    A large number of in-situ measurements of cloud-precipitation microphysical properties have been made since 1960, including measurements of particle size distribution, particle concentration, and liquid water content of clouds and rain. These measurements have contributed to considerable progress in understanding microphysical processes in clouds and precipitation and significant improvements in parameterizations of cloud microphysics in numerical models. This work reviews key findings regarding cloud-precipitation microphysics over China. The total number concentrations of various particles vary significantly, with certain characteristic spatial scales. The size distributions of cloud droplets in stratiform clouds can generally be fit with gamma distributions, but the fit parameters cover a wide range. Raindrop size distributions (RSDs) associated with stratiform clouds can be fit with either exponential or gamma distributions, while RSDs associated with convective or mixed stratiform-cumuliform clouds are best fit with gamma distributions. Concentrations of ice nuclei (IN) over China are higher than those observed over other regions, and increase exponentially as temperature decreases. The particle size distributions of ice crystals, snow crystals, and hailstones sampled at a variety of locations can be reliably approximated by using exponential distributions, while aerosol particle size distributions are best described as the sum of a modified gamma distribution and a Junge power-law distribution. These results are helpful for evaluating and improving the fidelity of physical processes and hydrometeor fields simulated by microphysical parameterizations. The comprehensive summary and analysis of previous work presented here also provide useful guidelines for the design of future observational programs.

  7. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    The main scientific goal of the GPM mission, currently planned for start in the 2007 time frame, is to investigate important scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing Operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, currently involving a partnership between NASA in the US and the National Space Development Agency in Japan. Additionally, the program is actively pursuing agreements with other international partners and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave

  8. Precipitation-chemistry measurements from the California Acid Deposition Monitoring Program, 1985-1990

    USGS Publications Warehouse

    Blanchard, Charles L.; Tonnessen, Kathy A.

    1993-01-01

    The configuration of the California Acid Deposition Monitoring Program (CADMP) precipitation network is described and quality assurance results summarized. Comparison of CADMP and the National Acid Deposition Program/National Trends Network (NADP/NTN) data at four parallel sites indicated that mean depth-weighted differences were less than 3 μeq ℓ−1 for all ions, being statistically significant for ammonium, sulfate and hydrogen ion. These apparently small differences were 15–30% of the mean concentrations of ammonium, sulfate and hydrogen ion. Mean depth-weighted concentrations and mass deposition rates for the period 1985–1990 are summarized; the latter were highest either where concentrations or precipitation depths were relatively high.

  9. Novel Hyperspectral Sun Photometer for Satellite Remote Sensing Data Radiometric Calibration and Atmospheric Aerosol Studies

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy

    2006-01-01

    A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.

  10. SphinX: The Solar Photometer in X-Rays

    NASA Astrophysics Data System (ADS)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Kordylewski, Zbigniew; Podgorski, Piotr; Plocieniak, Stefan; Siarkowski, Marek; Sylwester, Barbara; Trzebinski, Witold; Kuzin, Sergey V.; Pertsov, Andrey A.; Kotov, Yurij D.; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2013-04-01

    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed.

  11. The pulsed response of soil respiration to precipitation in an African savanna ecosystem: a coupled measurement and modeling approach

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Neff, J. C.; Hanan, N. P.

    2014-12-01

    Savannas cover 60% of the African continent and play an essential role in the global carbon (C) cycle. To better characterize the physical controls over soil respiration in these settings, half-hourly observations of volumetric soil-water content, temperature, and the concentration of carbon dioxide (CO2) at different soil depths were continually measured from 2005 to 2007 under trees ("sub-canopy") and between trees ("inter-canopy") in a savanna vegetation near Skukuza, Kruger National Park, South Africa. The measured soil climate and CO2 concentration data were assimilated into a process-based model that estimates the CO2 production and flux with coupled dynamics of dissolved organic C (DOC) and microbial biomass C. Our results show that temporal and spatial variations in CO2 flux were strongly influenced by precipitation and vegetation cover, with two times greater CO2 flux in the sub-canopy plots (~2421 g CO2 m-2 yr-1) than in the inter-canopy plots (~1290 g CO2 m-2 yr-1). Precipitation influenced soil respiration by changing soil temperature and moisture; however, our modeling analysis suggests that the pulsed response of soil respiration to precipitation [known as "Birch effect (BE)"] is a key control on soil fluxes at this site. At this site, BE contributed to approximately 50% and 65% of heterotrophic respiration or 20% and 39% of soil respiration in the sub-canopy and inter-canopy plots, respectively. These results suggest that pulsed response of respiration to precipitation is an important component of the C cycle of savannas and should be considered in both measurement and modeling studies of carbon exchange in similar ecosystems.

  12. MicroCameras and Photometers (MCP) instrument on board TARANIS satellite: scientific objectives, design, characterization results and products

    NASA Astrophysics Data System (ADS)

    Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Cansot, E.; Offroy, M.; Ravel, K.; Gaillac, S.; Sato, M.; Blanc, E.

    2015-12-01

    TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched from late 2017 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose of this poster is to present the MicroCameras and Photometers (MCP) scientific objectives and the sensor design, to show the performances of this instrument using the recent characterization, and at last to promote its products. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. The calibration results will be detailed. Simulation results of the differentiation method will be shown. Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. It is a key instrument because of its on-board detection of the TLEs which can trigger the whole payload. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The calibration results will also be detailed. The on-board TLE detection algorithm remote-controlled parameters will be tuned before launch using the electronic board and simulated or real events waveforms. Automatic classification tools are now tested to produce for the Scientific Mission Center some lists of elves, sprites or lightning without TLE following the recent work of Offroy et al. [2015] using ISUAL spectrophotometer data.

  13. Estimating Watershed-Averaged Precipitation and Evapotranspiration Fluxes using Streamflow Measurements in a Semi-Arid, High Altitude Montane Catchment

    NASA Astrophysics Data System (ADS)

    Herrington, C.; Gonzalez-Pinzon, R.

    2014-12-01

    Streamflow through the Middle Rio Grande Valley is largely driven by snowmelt pulses and monsoonal precipitation events originating in the mountain highlands of New Mexico (NM) and Colorado. Water managers rely on results from storage/runoff models to distribute this resource statewide and to allocate compact deliveries to Texas under the Rio Grande Compact agreement. Prevalent drought conditions and the added uncertainty of climate change effects in the American southwest have led to a greater call for accuracy in storage model parameter inputs. While precipitation and evapotranspiration measurements are subject to scaling and representativeness errors, streamflow readings remain relatively dependable and allow watershed-average water budget estimates. Our study seeks to show that by "Doing Hydrology Backwards" we can effectively estimate watershed-average precipitation and evapotranspiration fluxes in semi-arid landscapes of NM using fluctuations in streamflow data alone. We tested this method in the Valles Caldera National Preserve (VCNP) in the Jemez Mountains of central NM. This method will be further verified by using existing weather stations and eddy-covariance towers within the VCNP to obtain measured values to compare against our model results. This study contributes to further validate this technique as being successful in humid and semi-arid catchments as the method has already been verified as effective in the former setting.

  14. Ames ER-2 ozone measurements

    NASA Technical Reports Server (NTRS)

    Pearson, R., Jr.; Vedder, James F.; Starr, W. L.

    1990-01-01

    The objective of this research is to study ozone (O3) in the stratosphere. Measurements of the ozone mixing ratio at 1 s intervals are obtained with an ultraviolet photometer which flies on the ER-2 aircraft. The photometer determines the amount of ozone in air by measuring the transmission of ultraviolet light through a fixed path with and without ambient O3 present.

  15. Summer cloud and precipitation properties at Utsteinen, Dronning Maud Land, Antarctica, measured by ground-based remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Gorodetskaya, I. V.; van Lipzig, N. P. M.; Kneifel, S.; Maahn, M.; Crewell, S.; Van den Broeke, M.

    2012-04-01

    A unique comprehensive observatory on meteorological-cloud-precipitation interactions has been built at the new Belgian Princess Elisabeth station, situated on the Utsteinen ridge, at the foot of Sør Rondane mountains in East Antarctica (http://ees.kuleuven.be/hydrant). The instruments already installed include an automatic weather station (AWS) and three ground-based cloud and precipitation remote sensing instruments (ceilometer, infra-red pyrometer and 24GHz vertically pointing radar). The cloud and precipitation instruments have been operating during three summer periods (2009-2010, 2010-2011 and 2011-2012), while the AWS has been operating almost continuously since February 2009 through present time. The measurements are combined in order to obtain basic statistics of clouds properties (height and cloud base temperature), their radiative forcing, as well as frequency and vertical extension of snowfall events, together with the meteorological situation at Utsteinen. Measurements during the first two summer campaigns showed that cloud base temperatures ranged between -200C for low-level clouds (1-1.5 km agl) and -350C - -400C for midlevel clouds (2-4 km agl). The 1-3 km height range was found to have the highest cloud frequency. Synoptic events with and without snowfall have been related to the water vapor transport and local cloud properties. One of the analyzed storms with snowfall in February 2010 showed a two-day evolution with low-level and mid-level clouds observed during the first day, forming multiple layers with short periods of light precipitation, and lowering cloud bases during the second day followed by snowfall and blowing snow. Increase in the cloud base temperature associated both with warm air advection and cloud base lowering (to 1-1.5 km agl) before the snowfall resulted in significant increase in downwelling longwave flux (up to 20 W m-2) recorded by the AWS pyrgeometer. While ceilometer measurements are limited during the storm due to the

  16. On the potential of 2-D-Video Disdrometer technique to measure micro physical parameters of solid precipitation

    NASA Astrophysics Data System (ADS)

    Bernauer, F.; Hürkamp, K.; Rühm, W.; Tschiersch, J.

    2015-03-01

    Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D-video disdrometer technique is well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify this technique especially for detailed characterization of non symmetric solid hydrometeors. However, in case of solid precipitation problems related to the matching algorithm have to be considered and the user must be aware of the limited spacial resolution when size and shape descriptors are analyzed. This work has the aim of clarifying the potential of 2-D-video disdrometer technique in deriving size, velocity and shape parameters from single recorded pictures. The need of implementing a matching algorithm suitable for mixed and solid phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 40 cases of real snow fall. As result it was found, that reliable size and shape characterization with a relative standard deviation of less than 5% is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22% for the volume, 17% for size parameters and 14% for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with styrofoam particles a mismatch probability of less than 2.5% was found. For shape parameter measurements in case of real solid phase precipitation the 2DVD shows self-consistent behavior.

  17. Duskside relativistic electron precipitation as measured by SAMPEX: A statistical survey

    NASA Astrophysics Data System (ADS)

    Comess, Max D.; Smith, David M.; Selesnick, Richard S.; Millan, Robyn M.; Sample, John G.

    2013-08-01

    Evidence for duskside relativistic electron precipitation (DREP) within the Earth's outer radiation belt has historically been seen in a few sets of high altitude balloon data (MAXIS, MINIS, INTERBOA), and in satellite data. We present statistical evidence that the relativistic electron precipitation events from the outer radiation belt with e-folding energies > 0.5 MeV are concentrated in the dusk-to-midnight sector, based on a survey of data collected by the SAMPEX satellite from 1992 to 2004. A correlation between spectral hardness and duskside MLT is observed in our sample, the largest studied to date. Out of 9380 precipitation events within the bounce loss cone, 1048 are observed to have exponentially falling spectra with e-folding energies above 0.5 MeV ("hard events") and 1648 events below 0.2 MeV. Of the hard events, 81% occur within 12 h to 24 h MLT, compared to only 37% of events having e-folding energies below 0.2 MeV. With microbursts removed from this softer population the percentage of duskside events rises to 46%. The hard events occur at slightly elevated levels of geomagnetic activity (Ap and Dst) relative to softer nonmicroburst events, but these correlations are much weaker than for microbursts. The hard events are observed to peak in occurrence at L ~ 5.5, significantly higher than nonmicroburst softer events, even though the opposite might be expected from compression of the magnetosphere due to the more negative average Dst of the hard events. The hard events are most prevalent during the declining phase of the 11 year solar cycle.

  18. A comparison of NEXRAD WSR-88D rain estimates with gauge measurements for high and low reflectivity gradient precipitation events.

    SciTech Connect

    Jendrowski, P.; Kelly, D. S.; Klazura, G. E.; Thomale, J. M.

    1999-04-14

    Rain gauge measurements were compared with radar-estimated storm total precipitation for 43 rain events that occurred at ten locations. Gauge-to-radar ratios (G/R) were computed for each case. The G/R ratio is strongly related to precipitation type, with the mean G/R slightly less than 1.00 for high-reflectivity gradient cases and greater than 2.00 (factor of 2 radar underestimation) for low-reflectivity gradient cases. both precipitation types indicated radar underestimate at the nearest ranges. However, the high-reflectivity gradient cases indicated radar overestimation at further ranges, while the low-reflectivity gradient cases indicated significant radar underestimation at all ranges. Occurrences of radar overestimates may have been related to high reflectivity returns from melting ice, bright-band effects in stratiform systems and hail from convective systems. Bright-band effects probably were responsible for improving the radar underestimates in the second range interval (50-99.9 km) for the low-reflectivity gradient cases. Other possibilities for radar overestimates are anomalous propagation (AP) of the radar beam. Smith, et al. (1996) concluded that bright band and AP lead to systematic overestimate of rainfall at intermediate ranges.

  19. Global monitoring at the United States baseline stations with emphasis on precipitation chemistry measurements.

    PubMed

    Artz, R S

    1989-07-01

    The National Oceanic and Atmospheric Administration Geophysical Monitoring for Climatic Change program has operated four remote precipitation chemistry stations at two polar and two tropical Pacific locations for over a decade. Station geography and meteorology is discussed and a summary of the hydrogen, sulfate, and nitrate ion data collected since 1980 is presented. Results show that at all four locations, the ions which have major anthropogenic sources were far less concentrated than in samples collected in heavily industrialized areas in the northeastern United States and Europe. Concentrations at American Samoa and the South Pole showed little variability over the year whereas concentrations at Point Barrow, Alaska and Mauna Loa, Hawaii were highly variable. PMID:24249191

  20. A physical split window technique for the retrieval of precipitable water from satellite measurements

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Jedlovec, Gary L.; Fuelberg, Henry E.

    1992-01-01

    The split-window precipitable water algorithm developed by Jedlovec (1987) is described, and its advantages are examined. In particular, it is noted that the algorithm can be applied to multispectral imaging data, available half-hourly from VAS; it uses only limited spatial averaging and can be applied to instruments that lack sounding channels. Here, previous work is reviewed, and the procedure is extended to the Advanced Very High Resolution Radiometer (AVHRR) and GOES-NEXT using simulated data. Root mean square errors for the simulated and actual retrievals are below +/- 5.8 mm. Of the instruments examined, AVHRR appears to have the greatest potential, with the rms errors below +/- 2.3 mm.

  1. COSMO-SkyMed measurements in precipitation over the sea: analysis of Louisiana summer thunderstorms by simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Gorgucci, E.; Facheris, L.; Chandrasekar, V.

    2012-04-01

    Radar signatures of rain cells are investigated using X-band synthetic aperture radar (X-SAR) images acquired from COSMO-SkyMed constellation over oceans off the coast of Louisiana in summer 2010 provided by ASI archive. COSMO-SkyMed (CSK) monitoring of Deepwater Horizon oil spill provided a big amount of data during the period April-September 2010 and in July-August when several thunderstorms occurred in that area. In X-SAR images, radar signatures of rain cells over the sea usually consist of irregularly shaped bright and dark patches. These signatures originate from 1) the scattering and attenuation of radiation by hydrometers in the rain cells and 2) the modification of the sea roughness induced by the impact of raindrops and by wind gusts associated with rain cell. However, the interpretation of precipitation signatures in X-SAR images is not completely straightforward, especially over sea. Coincident measurements from ground based radars and an electromagnetic (EM) model predicting radar returns from the sea surface corrugated by rainfall are used to support the analysis. A dataset consisting of 4 CSK images has been collected over Gulf of Mexico while a WSR-88D NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the nearby portion of ocean. Terrestrial measurements have been used to reconstruct the component of X-SAR returns due to precipitation by modifying the known technique applied on measurements over land (Fritz et al. 2010, Baldini et al. 2011). Results confirm that the attenuation signature in X-SAR images collected over land, particularly pronounced in the presence of heavy precipitation cells, can be related to the S-band radar reflectivity integrated along the same path. The Normalized Radar Cross Section (NRCS) of land is considered to vary usually up to a few dBs in case of rain but with strong dependency on the specific type and conditions of land cover. While the NRCS of sea surface in clear weather condition can be

  2. Application of the Precipitation Runoff Modeling System to measure impacts of forest fire on watershed hydrology

    NASA Astrophysics Data System (ADS)

    Driscoll, J. M.

    2015-12-01

    Precipitation in the southwestern United States falls primarily in areas of higher elevation. Drought conditions over the past five years have limited snowpack and rainfall, increasing the vulnerability to and frequency of forest fires in these montane regions. In June 2012, the Little Bear fire burned approximately 69 square miles (44,200 acres) in high-elevation forests of the Rio Hondo headwater catchments, south-central New Mexico. Burn severity was high or moderate on 53 percent of the burn area. The Precipitation Runoff Modeling System (PRMS) is a publically-available watershed model developed by the U.S. Geological Survey (USGS). PRMS data are spatially distributed using a 'Geospatial Fabric' developed at a national scale to define Hydrologic Response Units (HRUs), based on topography and points of interest (such as confluences and streamgages). The Little Bear PRMS study area is comprised of 22 HRUs over a 587 square-mile area contributing to the Rio Hondo above Chavez Canyon streamgage (USGS ID 08390020), in operation from 2008 to 2014. Model input data include spatially-distributed climate data from the National Aeronautics and Space Administration (NASA) DayMet and land cover (such as vegetation and soil properties) data from the USGS Geo Data Portal. Remote sensing of vegetation over time has provided a spatial distribution of recovery and has been applied using dynamic parameters within PRMS on the daily timestep over the study area. Investigation into the source and timing of water budget components in the Rio Hondo watershed may assist water planners and managers in determining how the surface-water and groundwater systems will react to future land use/land cover changes. Further application of PRMS in additional areas will allow for comparison of streamflow before and following wildfire conditions, and may lead to better understanding of the changes in watershed-scale hydrologic processes in the Southwest through post-fire watershed recovery.

  3. Precipitation measurements with GNSS polarimetric Radio Occultations: Status of the ROHP-PAZ mission and anticipated retrievals

    NASA Astrophysics Data System (ADS)

    Padullés, Ramon; Cardellach, Estel; de la Torre Juárez, Manuel; Tomás, Sergio; Turk, F. Joseph; Ao, Chi O.; Rius, Toni; Oliveras, Santi

    2016-04-01

    The upcoming ROHP-PAZ (Radio Occultations and Heavy Precipitation experiment aboard the spanish PAZ satellite) mission aims to detect, for the first time, precipitation using Global Navigation Satellite System Radio Occultations (GNSS-RO). The electromagnetic signals coming from the GNSS satellites travel tangentially through the atmosphere and will be collected in the PAZ Low Earth Orbiter at two polarizations (vertical and horizontal). This sounding-like technique of the atmosphere will measure all the atmospheric phenomena that are inducing depolarization effects, in addition to all the thermodynamic profiles that standard RO are nowadays providing. The main contributors to depolarization in the troposphere are known to be the hydrometeors, both rain drops from heavy precipitation events and horizontally oriented ice particles in the top of clouds. Their effects on the GNSS signals were predicted in Cardellach et. al. 2015 (IEEE Trans. Geosci. Remote Sens.), and measured in the ROHP-PAZ field campaign Padullés et. al. 2016 (Atmos. Chem. Phys.). Prior to the launch, a complete characterization of all the possible effects, including hydrometeors but also taking into account other elements was needed. To do so, actual data from the COSMIC - FORMOSAT 3 mission (Radio Occultation events) have been collocated with the TRMM, GPM and CloudSat missions (precipitation and clouds missions). Thousands of events have been analyzed, in terms of SNR and phase delays. For the same events, the effect of hydrometeors has been simulated as well as the most known ionospheric effects, such as Faraday Rotation and Cotton-Mouton effects. And finally, the predicted noise, actual measurements of the antenna pattern and some tolerance in the purity of the emitted signal have been included. This has resulted in an extensive data base that is key in the understanding of the upcoming actual data, as well as for the characterization of all the unpredicted effects. We will discuss here the

  4. Cluster analysis of diurnal variations in BC concentration from Multi-Angle Absorption Photometer

    NASA Astrophysics Data System (ADS)

    Han, Y.; KIM, C.; Park, J.; Choi, Y.; Ghim, Y.

    2013-12-01

    Black carbon (BC) is emitted from incomplete combustion of carbon-containing fuels, such as fossil fuels (diesel and coal) and biomass burning (forest fires and burning of agricultural waste). We have measured BC concentration using MAAP (Multi-Angle Absorption Photometer, Model 5012, Thermo Scientific) during the past few years. The measurement site is on the rooftop of the five-story building on the hill (37.02 °N, 127.16 °E, 167 m above sea level), about 35 km southeast of Seoul; there are no major emission sources nearby except a 4-lane road running about 1.4 km to the west. Previous studies reveal that the effects of vehicle emissions are not as direct as urban sites but those of biomass burning are general. Diurnal variations of BC concentration are classified using cluster analysis. Typical patterns are determined to identify the primary emissions and their effects on the concentration level. High concentration episodes are discriminated and major factors that influence the evolution of the episodes are investigated.

  5. Lidar depolarization measurements of ice-precipitating liquid cloud layers during the 2012 Canadian Arctic ACE Validation Campaign

    NASA Astrophysics Data System (ADS)

    McCullough, E. M.; Perro, C. W.; Nott, G. J.; Hopper, J.; Duck, T. J.; Sica, R. J.; Drummond, J. R.

    2012-12-01

    There is still great uncertainty in the relative abundance of liquid and solid particles in polar clouds, particularly in winter. Measurements of these quantities are important for the correct estimate of the local radiation budget. Depolarization measurements by the CANDAC Rayleigh-Mie-Raman Lidar (CRL) at Eureka, Nunavut, Canada (80°N, 86°W) are improving our understanding in this area. The 2012 Canadian Arctic ACE Validation Campaign provided an opportunity to run the CRL depolarization channel nearly continuously (both day and night) throughout the polar sunrise season, measuring cloud particle phase with 7.5 m resolution in altitude and 1-minute time resolution in the troposphere. More than 10 co-located instruments, and additional detection channels of the CRL itself, make for a data set which is well-supported for intercomparison analyses. The CRL is a versatile instrument with eight detection channels, capable of measuring 532 nm (visible) and 355 nm (ultraviolet) elastic and nitrogen Raman backscatter, aerosol extinction, water vapour mixing ratio, tropospheric temperature profiles, as well as particulate properties including density and colour ratio. The 532 nm depolarization channel measures the extent to which the polarization state of the lidar beam is changed by scattering interactions with cloud particles in the sky, providing the ability to discern between ice crystals and liquid water droplets in polar clouds. This paper will focus on such measurements of early springtime clouds over Eureka. A nearly-continuous time series of depolarization was collected from late February through early April 2012 and provides a detailed case study of several distinct cloud features. Particular attention is paid to thin ice clouds of several varieties (both precipitating and non-precipitating, as well as some possible examples of mixed-phase clouds) and to ice-precipitating liquid cloud layers, examined in the context of local meteorological measurements. The

  6. Estimating surface visibility at Hong Kong from ground-based LIDAR, sun photometer and operational MODIS products.

    PubMed

    Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W

    2013-09-01

    Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong. PMID:24151685

  7. A Feasibility Study for Simultaneous Measurements of Water Vapor and Precipitation Parameters using a Three-frequency Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.; Tian, L.

    2005-01-01

    The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. The coupling between the precipitation and water vapor estimates is generally weak but increases with bandwidth and the amount of non-Rayleigh scattering of the hydrometeors. The coupling leads to biases in the estimates of water vapor absorption that are related primarily to the phase state and the median mass diameter of the hydrometeors. For a down-looking radar, path-averaged estimates of water vapor absorption are possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Simulations of the water vapor attenuation retrieval show that the largest source of error typically arises from the variance in the measured radar return powers. Although the error can be mitigated by a combination of a high pulse repetition frequency, pulse compression, and averaging in range and time, the radar receiver must be stable over the averaging period. For fractional bandwidths of 20% or less, the potential exists for simultaneous measurements at the three frequencies with a single antenna and transceiver, thereby significantly reducing the cost and mass of the system.

  8. Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer

    NASA Astrophysics Data System (ADS)

    Morys, Marian; Mims, Forrest M., III; Hagerup, Scott; Anderson, Stanley E.; Baker, Aaron; Kia, Jesse; Walkup, Travis

    2001-07-01

    MICROTOPS II is a five-channel, handheld Sun photometer that can be configured to measure total ozone, total water vapor, or aerosol optical thickness at various wavelengths. The instrument measures 10×20×4.3 cm and weighs 600 g. A principal design goal was the measurement of total ozone to within 1% of ozone measurements made by much larger, heavier, and more expensive Dobson and Brewer spectrophotometers. This goal has been met for a maximum air mass of up to ˜2.5, as demonstrated by comparisons of MICROTOPS II and its immediate predecessor, Supertops, with Dobson and Brewer instruments at various locations. Conventional interference filters are subject to gradual and unpredictable degradation. MICROTOPS II avoids these problems by using highly stable ultraviolet filters manufactured with an ion deposition process. The 2.4 nm (FWHM) band pass of the UV filters was selected to balance noise and ozone measurement performance. The optical collimators and electronics of the instrument were carefully designed to optimize pointing accuracy, stray light rejection, thermal and long-term stability, signal-to-noise ratio, and data analysis. An internal microcomputer automatically calculates the total ozone column based on measurements at three UV wavelengths, the site's geographic coordinates, and universal time, altitude, and pressure. The coordinates can be entered manually or by a Global Positioning System (GPS) receiver. A built-in pressure transducer automatically measures pressure. MICROTOPS II saves in nonvolatile memory up to 800 scans of the raw and calculated data. Measurements can be read from a liquid crystal display or transferred to an external computer.

  9. Design and performances of microcameras and photometers instruments on TARANIS satellite for an advanced characterization of Transient Luminous Event in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Le Mer-Dachard, Fanny; Cansot, Elodie; Hébert, Philippe; Farges, Thomas; Ravel, Karen; Gaillac, Stéphanie

    2015-10-01

    The TARANIS mission aims at studying upper atmosphere coupling with a scientific nadir-pointing microsatellite - CNES Myriade family - at a low-altitude orbit (700 km). The main objectives are to measure the occurrence of Transient Luminous Event (TLE), impulsive energetic optical phenomena generated by storms according to recently discovered process, and Terrestrial Gamma-ray Flash (TGF), their emissions and trigger factors. TARANIS instruments are currently in manufacturing, assembly, integration and testing phase. The MicroCameras and Photometers instruments (MCP) are in charge of the remote sensing of the sprites and the lightning in optical wavelengths. MicroCameras instrument [MCP-MC] is an imager in the visible and Photometers instrument [MCP-PH] is a radiometer with four bands from UV to NIR, able to detect TLEs on-board and to trigger the whole payload. The satellite will provide a complete survey of the atmosphere in low resolution together with a high resolution data of sites of interest automatically detected on board. For MC and PH instruments, CEA defined scientific needs and is in charge of processing data and providing scientific results. CNES described the technical requirements of these two instruments and will run in-flight commissioning. Design, manufacturing and testing is under responsibility of Sodern for MicroCameras and Bertin Technologies for Photometers. This article shortly describes physical characteristics of TLEs and presents the final design of these instruments and first measured performances.

  10. Lidar and Radar Measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Vaughan, Geraint; Norton, Emily; Peters, Gerhard

    2009-03-01

    During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark bands were observed by the Univ. of BASILicata Raman lidar system (BASIL) on several IOPs and SOPs (among others, 23 July, 15 August, 17 August). Dark band signatures appear in the lidar measurements of particle backscattering at 355, 532 and 1064 nm and particle extinction at 355 and 532 nm, as well as in particle depolarization measurements. Lidar data are supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester Radio UHF clear air wind profiler (1.29 GHz). Results from BASIL and the radars are illustrated and discussed to support in the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar dark band and radar bright band.

  11. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  12. ESOLIP - estimate of solid and liquid precipitation at sub-daily time resolution by combining snow height and rain gauge measurements

    NASA Astrophysics Data System (ADS)

    Mair, E.; Bertoldi, G.; Leitinger, G.; Della Chiesa, S.; Niedrist, G.; Tappeiner, U.

    2013-07-01

    Measuring precipitation in mountain areas is a demanding task, but essential for hydrological and environmental themes. Especially in small Alpine catchments with short hydrological response, precipitation data with high temporal resolution are required for a better understanding of the hydrological cycle. Since most climate/meteorological stations are situated at the easily accessible bottom of valleys, and the few heated rain gauges installed at higher elevation sites are problematic in winter conditions, an accurate quantification of winter (snow) precipitation at high elevations remains difficult. However, there are an increasing number of micro-meteorological stations and snow height sensors at high elevation locations in Alpine catchments. To benefit from data of such stations, an improved approach to estimate solid and liquid precipitation (ESOLIP) is proposed. ESOLIP allows gathering hourly precipitation data throughout the year by using unheated rain gauge data, careful filtering of snow height sensors as well as standard meteorological data (air temperature, relative humidity, global shortwave radiation, wind speed). ESOLIP was validated at a well-equipped test site in Stubai Valley (Tyrol, Austria), comparing results to winter precipitation measured with a snow pillow and a heated rain gauge. The snow height filtering routine and indicators for possible precipitation were tested at a field site in Matsch Valley (South Tyrol, Italy). Results show a good match with measured data because variable snow density is taken into account, which is important when working with freshly fallen snow. Furthermore, the results show the need for accurate filtering of the noise of the snow height signal and they confirm the unreliability of heated rain gauges for estimating winter precipitation. The described improved precipitation estimate ESOLIP at sub-daily time resolution is helpful for precipitation analysis and for several hydrological applications like monitoring

  13. Precipitation Climate Data Records

    NASA Astrophysics Data System (ADS)

    Nelson, B. R.; Prat, O.; Vasquez, L.

    2015-12-01

    Five precipitation CDRs are now or soon will be transitioned to NOAA's CDR program. These include the PERSIANN data set, which is a 30-year record of daily adjusted global precipitation based on retrievals from satellite microwave data using artificial neural networks. The AMSU-A/B/Hydrobundle is an 11-year record of precipitable water, cloud water, ice water, and other variables. CMORPH (the NOAA Climate Prediction Center Morphing Technique) is a 17-year record of daily and sub-daily adjusted global precipitation measured from passive microwave and infrared data at high spatial and temporal resolution. GPCP (the Global Precipitation Climatology Project) is an approximately 30-year record of monthly and pentad adjusted global precipitation and a 17-year record of daily adjusted global precipitation. The NEXRAD Reanalysis is a 10-year record of high resolution NEXRAD radar based adjusted CONUS-wide hourly and daily precipitation. This study provides an assessment of the existing and transitioned long term precipitation CDRs and includes the verification of the five precipitation CDRs using various methods including comparison with in-situ data sets and trend analysis. As all of the precipitation related CDRs are transitioned, long term analyses can be performed. Comparisons at varying scales (hourly, daily and longer) of the precipitation CDRs with in-situ data sets are provided as well as a first look at what could be an ensemble long term precipitation data record.

  14. Novel Hyperspectral Sun Photometer for Satellite Remote Sensing Data Radiometeic Calibration and Atmospheric Aerosol Studies

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy

    2006-01-01

    A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers but also the potential of hyperspectral optical depth and diffuse-to-global products. As compared to traditional sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross-calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.

  15. Comparison of modeled optical properties of Saharan mineral dust aerosols with SAMUM lidar and photometer observations

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Wiegner, Matthias

    2013-05-01

    Mineral dust aerosols are, for example, relevant for the radiative transfer in Earth's atmosphere. An important source of information on this aerosol type is provided by remote sensing using lidar systems and sun/sky photometers. We investigate the sensitivity of lidar and photometer observations to the microphysical aerosol properties in a numerical study. Knowledge of this sensitivity is required for the development of microphysical retrieval algorithms. Until recently, such retrieval algorithms were applied only to lidar or photometer observations. Quite different sensitivities for lidar and photometer are found in our study, suggesting that synergistic effects can be expected from combining the observations from both techniques. Furthermore, we compare the modeled aerosol properties to observations of Saharan mineral dust aerosols performed during the SAMUM field campaign. We determined aerosol ensembles that are consistent with the lidar as well as the photometer observations, confirming the feasibility of combining the observations from both techniques. The consistent aerosol ensembles are based on the desert mixture from the OPAC aerosol dataset, and were improved by considering mixing of absorbing and non-absorbing irregularly shaped particles.

  16. Circulation time estimates of optically active nanoparticles using a pulse photometer

    NASA Astrophysics Data System (ADS)

    Michalak, Gregory J.; Schwartz, Jon A.; O'Neal, D. Patrick

    2009-02-01

    Researchers employ increasingly complex sub-micron particles for oncological applications to deliver bioactive therapeutic or imaging compounds to known and unknown in vivo tumor targets. In practice, experimental homogeneity using nanoparticles can be difficult to achieve. While several imaging techniques have been previously shown to follow the accumulation of nanoparticles into tumor targets, a more rapid sensor that provides a quantifiable estimate of dose delivery and short-term systemic response could increase the clinical efficacy and greatly reduce the variability of these treatments. We have developed a pulse photometer that when placed on an optically accessible location will estimate the concentration of near-infrared absorbing nanoparticles. The goal is to monitor the accuracy of the delivered dose and the effective circulation time of nanoparticles immediately after intravenous delivery but prior to therapeutic intervention. We present initial tests of our prototype using murine models to assess its ability to quantify circulation half-life and nanoparticle concentration. Four mice were injected with nanoparticles and circulation half-life estimates ranged from 3- 43 minutes. UV-Vis spectrophotometry was used to independently verify these measurements using 5μL blood samples. Linear models relating the two methods produced R2 values of 0.91, 0.99, 0.88, and 0.24.

  17. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  18. ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Dhillon, V. S.; Marsh, T. R.; Atkinson, D. C.; Bezawada, N.; Bours, M. C. P.; Copperwheat, C. M.; Gamble, T.; Hardy, L. K.; Hickman, R. D. H.; Irawati, P.; Ives, D. J.; Kerry, P.; Leckngam, A.; Littlefair, S. P.; McLay, S. A.; O'Brien, K.; Peacocke, P. T.; Poshyachinda, S.; Richichi, A.; Soonthornthum, B.; Vick, A.

    2014-11-01

    ULTRASPEC is a high-speed imaging photometer mounted permanently at one of the Nasmyth focii of the 2.4-m Thai National Telescope (TNT) on Doi Inthanon, Thailand's highest mountain. ULTRASPEC employs a 1024 × 1024 pixel frame-transfer, electron-multiplying CCD (EMCCD) in conjunction with re-imaging optics to image a field of 7.7 × 7.7 arcmin2 at (windowed) frame rates of up to ˜200 Hz. The EMCCD has two outputs - a normal output that provides a readout noise of 2.3 e- and an avalanche output that can provide essentially zero readout noise. A six-position filter wheel enables narrow-band and broad-band imaging over the wavelength range 330-1000 nm. The instrument saw first light on the TNT in 2013 November and will be used to study rapid variability in the Universe. In this paper we describe the scientific motivation behind ULTRASPEC, present an outline of its design and report on its measured performance on the TNT.

  19. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR.

    PubMed

    Hill, Thomas C J; Moffett, Bruce F; Demott, Paul J; Georgakopoulos, Dimitrios G; Stump, William L; Franc, Gary D

    2014-02-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼10(8) ina genes g(-1) fresh weight of foliage on cereals and 10(5) to 10(7) g(-1) on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at -10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at -10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at -10°C, suggesting a significant contribution to this sample. PMID:24317082

  20. Measurement of Ice Nucleation-Active Bacteria on Plants and in Precipitation by Quantitative PCR

    PubMed Central

    Moffett, Bruce F.; DeMott, Paul J.; Georgakopoulos, Dimitrios G.; Stump, William L.; Franc, Gary D.

    2014-01-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼108 ina genes g−1 fresh weight of foliage on cereals and 105 to 107 g−1 on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at −10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at −10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at −10°C, suggesting a significant contribution to this sample. PMID:24317082

  1. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data

    NASA Astrophysics Data System (ADS)

    Bovchaliuk, Valentyn; Goloub, Philippe; Podvin, Thierry; Veselovskii, Igor; Tanre, Didier; Chaikovsky, Anatoli; Dubovik, Oleg; Mortier, Augustin; Lopatin, Anton; Korenskiy, Mikhail; Victori, Stephane

    2016-07-01

    Aerosol particles are important and highly variable components of the terrestrial atmosphere, and they affect both air quality and climate. In order to evaluate their multiple impacts, the most important requirement is to precisely measure their characteristics. Remote sensing technologies such as lidar (light detection and ranging) and sun/sky photometers are powerful tools for determining aerosol optical and microphysical properties. In our work, we applied several methods to joint or separate lidar and sun/sky-photometer data to retrieve aerosol properties. The Raman technique and inversion with regularization use only lidar data. The LIRIC (LIdar-Radiometer Inversion Code) and recently developed GARRLiC (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) inversion methods use joint lidar and sun/sky-photometer data. This paper presents a comparison and discussion of aerosol optical properties (extinction coefficient profiles and lidar ratios) and microphysical properties (volume concentrations, complex refractive index values, and effective radius values) retrieved using the aforementioned methods. The comparison showed inconsistencies in the retrieved lidar ratios. However, other aerosol properties were found to be generally in close agreement with the AERONET (AErosol RObotic NETwork) products. In future studies, more cases should be analysed in order to clearly define the peculiarities in our results.

  2. Validation of TRMM Precipitation Radar Through Comparison of its Multi-Year Measurements to Ground-Based Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    A procedure to accurately resample spaceborne and ground-based radar data is described, and then applied to the measurements taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D or WSR) for the validation of the PR measurements and estimates. Through comparisons with the well-calibrated, non-attenuated WSR at Melbourne, Florida for the period 1998-2007, the calibration of the Precipitation Radar (PR) aboard the TRMM satellite is checked using measurements near the storm top. Analysis of the results indicates that the PR, after taking into account differences in radar reflectivity factors between the PR and WSR, has a small positive bias of 0.8 dB relative to the WSR, implying a soundness of the PR calibration in view of the uncertainties involved in the comparisons. Comparisons between the PR and WSR reflectivities are also made near the surface for evaluation of the attenuation-correction procedures used in the PR algorithms. It is found that the PR attenuation is accurately corrected in stratiform rain but is underestimated in convective rain, particularly in heavy rain. Tests of the PR estimates of rainfall rate are conducted through comparisons in the overlap area between the TRMM overpass and WSR scan. Analyses of the data are made both on a conditional basis, in which the instantaneous rain rates are compared only at those pixels where both the PR and WSR detect rain, and an unconditional basis, in which the area-averaged rain rates are estimated independently for the PR and WSR. Results of the conditional rain comparisons show that the PR-derived rain is about 9% greater and 19% less than the WSR estimates for stratiform and convective storms, respectively. Overall, the PR tends to underestimate the conditional mean rain rate by 8% for all rain categories, a finding that conforms to the results of the area-averaged rain (unconditional) comparisons.

  3. Runoff, precipitation, mass balance, and ice velocity measurements at South Cascade Glacier, Washington, 1993 balance year

    USGS Publications Warehouse

    Krimmel, R.M.

    1994-01-01

    Winter snow accumulation and summer snow, firn, and ice ablation were measured at South Cascade Glacier, Wash., to determine the winter and net balance for the 1993 balance year. The 1993 winter balance, averaged over the glacier, was 1.98 meters, and the net balance was -1.23 meters. This negative valance continued a trend of negative balance years beginning in 1977. Air temperature, barometric pressure, and runoff from this glacier basin and an adjacent non-glacierized basin were also continuously measured. Surface ice velocity was measured over an annual period. This report makes all these data available to users throughout the glaciological and climato1ogical community.

  4. Precipitation measurement using SIR-C: A feasibility study. Investigation at nadir

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq; Moore, Richard K.

    1993-01-01

    The most significant limitation of the imaging SAR in rain measurements is the ground return coupled to the rain cell. Here we report a study of the possibility of using the X-SAR and the C-band channel of SIR-C for rain measurement. Earlier signal-to-clutter calculations rule out the use of X-SAR at steeper off-vertical angles of incidence (i.e., 20 less than theta less than 50). Only rain rates greater than 30 mm/hr at angles of incidence greater than 60 degrees showed good signal-to-clutter ratio (SCR). This study involved calculations at vertical incidence. There is adequate signal-to-noise ratio (SNR) at vertical incidence, but the presence of high-range side-lobe levels leads to small SCR for measurement over oceans at both X and C bands. For larger rain thickness (greater than two km), the SCR gets better and smaller rain rates (greater than 10 mm/hr) can be measured. However, rain measurements over forests seem to be feasible at nadir even for smaller rain thickness (less than two km). We conclude that X band may be usable over the forest at vertical incidence to measure rain rates greater than five mm/hr even for shallow rain thickness and over ocean for large rain thickness.

  5. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Wilhelm, Heribert; Nestola, Fabrizio

    2015-03-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. The mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet-orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatized at ~4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometres and negative crystal shapes. Infilling minerals (spinel: 10-20 vol%; amphibole, chlorite, talc, mica: 80-90 vol%) occur with constant volume proportions and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by synchrotron radiation at Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Such information is discussed in relation to the physico-chemical aspects of nucleation and growth, shedding light on the mode of mineral crystallization from a fluid phase trapped at supercritical conditions.

  6. An f/35 submillimeter photometer for the NASA infrared telescope facility

    NASA Technical Reports Server (NTRS)

    Whitcomb, S. E.; Hildebrand, R. H.; Keene, J.

    1981-01-01

    The design and performance of an f/35 submillimeter photometer are discussed. It is noted that the instrument provides for both broad- and medium-width passbands between 350 microns and 2 mm and for beam sizes between 28 arcsec and 100 arcsec FWHM. Under good atmospheric conditions, a broad-band 400 micron sensitivity of approximately 1.5 Jy is found to be obtainable in one hour. A description is given of the photometer's support housing, submillimeter radiometer, and electronics and data-handling system. In evaluating the performance, attention is given to sensitivity, beam profiles, and the effect of changes in the aperture on the signal.

  7. Comparison of sprinkler droplet size and velocity measurements using a laser precipitation meter and photographic method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kinetic energy of water droplets has a substantial effect on development of a soil surface seal and infiltration rate of bare soil. Methods for measuring sprinkler droplet size and velocity needed to calculate droplet kinetic energy have been developed and tested over the past 50 years, each with ad...

  8. Laser precipitation monitor for measurement of drop size and velocity of moving spray-plate sprinklers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sprinkler drop size distribution and associated drop velocities have a major influence on sprinkler performance in regards to application intensity, uniformity of water application, wind drift, evaporation losses and kinetic energy transferred to the soil surface. Sprinkler drop size measurements a...

  9. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Phosphorus Reduction Efforts in the Florida Everglades

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2009-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the CERP. Specifically, GPM measurements could augment in situ precipitation data that are used to model agricultural phosphorus discharged into the Everglades. This solution benefits society by aiding water resource managers in identifying effective phosphorus reduction scenarios and thereby returning the Everglades to a more natural state. This solution supports the Water Management, Coastal Management, and Ecological Forecasting National Applications.

  10. EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations

    NASA Astrophysics Data System (ADS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Woods, T.; Jones, A.

    2012-01-01

    The Extreme ultraviolet SpectroPhotometer (ESP) is one of five channels of the Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO). The ESP channel design is based on a highly stable diffraction transmission grating and is an advanced version of the Solar Extreme ultraviolet Monitor (SEM), which has been successfully observing solar irradiance onboard the Solar and Heliospheric Observatory (SOHO) since December 1995. ESP is designed to measure solar Extreme UltraViolet (EUV) irradiance in four first-order bands of the diffraction grating centered around 19 nm, 25 nm, 30 nm, and 36 nm, and in a soft X-ray band from 0.1 to 7.0 nm in the zeroth-order of the grating. Each band’s detector system converts the photo-current into a count rate (frequency). The count rates are integrated over 0.25-second increments and transmitted to the EVE Science and Operations Center for data processing. An algorithm for converting the measured count rates into solar irradiance and the ESP calibration parameters are described. The ESP pre-flight calibration was performed at the Synchrotron Ultraviolet Radiation Facility of the National Institute of Standards and Technology. Calibration parameters were used to calculate absolute solar irradiance from the sounding-rocket flight measurements on 14 April 2008. These irradiances for the ESP bands closely match the irradiance determined for two other EUV channels flown simultaneously: EVE’s Multiple EUV Grating Spectrograph (MEGS) and SOHO’s Charge, Element and Isotope Analysis System/ Solar EUV Monitor (CELIAS/SEM).

  11. Simultaneous measurements of wire electrode surface contamination and corona discharge characteristics in an air-cleaning electrostatic precipitator

    SciTech Connect

    Kanazawa, Seiji; Ohkubo, Toshikazu; Nomoto, Yukiharu; Adachi, Takayoshi; Chang, J.S.

    1997-01-01

    Contamination of the corona wire in a wire-to-plate type air-cleaning electrostatic precipitator is studied experimentally. In order to enhance the contamination of wire, air containing dusts is directly supplied to a part of the wire electrode. Spores of Lycopodium and cigarette smoke particles are used as test dusts. Simultaneous measurements of wire electrode optical images and corona discharge modes are carried out during contamination processes. Results show that corona discharge modes and optical emission from the wire electrode change with time due to the surface contamination. In the case of cigarette smoke, after a time elapsed, streamer coronas appear due to the buildup of smoke particles on the wire surface. After the first streamer generation, the corona current fluctuates with time because the formation and diminution of the projections occur alternately at the different parts on the wire electrode surface.

  12. Performance of and Uncertainties in the Global Precipitation Measurement (GPM) Microwave Imager Retrieval Algorithm for Falling Snow Estimates

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, G.; Munchak, S. J.; Johnson, B. T.

    2014-12-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges and uncertainties remaining. This work reports on the development and early post-launch testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Observatory satellite launched in February 2014. In particular, we will report on GPM Microwave Imager (GMI) radiometer instrument algorithm performance with respect to falling snow detection and estimation. Throughout 2014, the at-launch GMI precipitation algorithms, based on a Bayesian framework, have been used with the new GPM data. The Bayesian framework for GMI retrievals is dependent on the a priori database used in the algorithm and how profiles are selected from that database. Our work has shown that knowing if the land surface is snow-covered, or not, can improve the performance of the algorithm. Improvements were made to the algorithm that allow for daily inputs of ancillary snow cover values and also updated Bayesian channel weights for various surface types. We will evaluate the algorithm that was released to the public in July 2014 and has already shown that it can detect and estimate falling snow. Performance factors to be investigated include the ability to detect falling snow at various rates, causes of errors, and performance for various surface types. A major source of ground validation data will be the NOAA NMQ dataset. We will also provide qualitative information on known uncertainties and errors associated with both the satellite retrievals and the ground validation measurements. We will report on the analysis of our falling snow validation completed by the time of the AGU conference.

  13. Intercomparison of total precipitable water measurements made by satellite-borne microwave radiometers and ground-based GPS instruments

    NASA Astrophysics Data System (ADS)

    Mears, Carl A.; Wang, Junhong; Smith, Deborah; Wentz, Frank J.

    2015-03-01

    High-quality, high temporal resolution measurements of total precipitable water (TPW) can be made by evaluating the vapor-dependent delay of radio signals reaching land-based Global Positioning System (GPS) receivers from GPS satellites. These measurements are available since the mid-1990s when the GPS system became operational. Over the world's oceans, satellite-borne microwave imaging radiometers have been making measurements of TPW for more than 25 years. In this work, we perform an intercomparison of collocated TPW measurements made by these two disparate systems using measurements from 26 GPS stations located on small islands. The two types of measurements agree well, with typical satellite-station mean differences of less than 1.0 kg m-2. Analysis revealed several cases of inhomogeneities in the GPS data set, and two deficiencies in the Remote Sensing Systems satellite data, demonstrating the usefulness of intercomparison for improving the accuracy of both types of data. After the individual station, biases were removed, the standard deviation of the overall differences between individual satellites and GPS measurements ranged between 1.60 and 1.94 kg m-2. Twelve GPS stations had overlap time periods long enough to evaluate difference trends, yielding 59 satellite-station pairs when paired with different satellites. More than half of the pairs (39 of 59) did not show a significant trend. The 20 pairs with significant trends did not show trends of predominantly one sign, suggesting that neither system is plagued by a system-wide drift in TPW.

  14. Development of photomultiplier electronics and computer interfacing software for a high speed photoelectric photometer-Stoke's meter

    NASA Technical Reports Server (NTRS)

    Flesch, T. R.

    1982-01-01

    Preliminary stages in the design, construction, and development of a photoelectric photometer system interfaced with an IMSAI 8080 microcomputer. The instrument will also include magnetic tape and magnetic disk storage capabilities to enable rapid data storage. The capability of the instrument to make observations with very high time resolution, as high as 10 msec, and measure the intensity and polarization of radiation emitted by objects which show very rapid light variations, pulsars and optical counterparts of X-ray sources was of concern. A better understanding of the magnetic fields and interstellar material which characterize the immediate environment of these stellar systems and an expansion of the observational capabilities of even modest-sized telescopes are expected.

  15. Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements

    SciTech Connect

    Matrosov, Sergey

    2010-12-15

    The main objective of this project was to develop, validate and apply remote sensing methods to retrieve vertical profiles of precipitation over the DOE ARM CART sites using currently available remote sensors. While the ARM Program invested very heavily into developments of remote sensing methods and instruments for water vapor and non-precipitating cloud parameter retrievals, precipitation retrievals and studies lagged behind. Precipitation, however, is a crucial part of the water cycle, and without detailed information on rainfall and snowfall, significant improvements in the atmospheric models of different scales (i.e., one of the ARM Program's main goals) is difficult to achieve. Characterization of the vertical atmospheric column above the CART sites is also incomplete without detailed precipitation information, so developments of remote sensing methods for retrievals of parameters in precipitating cloud condition was essential. Providing modelers with retrieval results was also one of the key objectives of this research project.

  16. Build Your Own Photometer: A Guided-Inquiry Experiment to Introduce Analytical Instrumentation

    ERIC Educational Resources Information Center

    Wang, Jessie J.; Nun´ez, Jose´ R. Rodríguez; Maxwell, E. Jane; Algar, W. Russ

    2016-01-01

    A guided-inquiry project designed to teach students the basics of spectrophotometric instrumentation at the second year level is presented. Students design, build, program, and test their own single-wavelength, submersible photometer using low-cost light-emitting diodes (LEDs) and inexpensive household items. A series of structured prelaboratory…

  17. 21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... clinical use. 862.2300 Section 862.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2300 Colorimeter, photometer, or spectrophotometer for clinical...

  18. 21 CFR 862.2540 - Flame emission photometer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flame emission photometer for clinical use. 862.2540 Section 862.2540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. 21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Colorimeter, photometer, or spectrophotometer for clinical use. 862.2300 Section 862.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY...

  20. Effect of Pre-Treatment on Copper Precipitation Characteristics in a Copper-Alloyed Interstitial Free Steel Studied by Thermoelectric Power Measurement

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Massardier, Véronique; Singh, Shiv Brat; Mohanty, Omkar Nath

    2013-01-01

    Copper precipitation has been studied by thermoelectric power measurements in a high strength interstitial free steel processed under various conditions like batch annealing (BA) (4 hours at 973 K (700 °C)), continuous annealing (CA) (1 minute at 1093 K (820 °C)) and full annealing (FA) (2 hours at 1173 K (900 °C)). The results show that the kinetics of copper precipitation depend on the annealing pre-treatments which influence the amount of copper in solid solution before aging. Extensive copper precipitation associated with a marked increase in hardness was observed in the CA and FA material aged between 773 K and 873 K (500 °C and 600 °C), however, this precipitation was not detected when the steel was subjected to BA before aging.

  1. Interaction between HfC precipitates and vacancies in quenched Cu:Hf as studied by TDPAC and positron lifetime measurements

    NASA Astrophysics Data System (ADS)

    Govindaraj, R.; Rajaraman, R.

    2004-09-01

    A Cu:Hf sample with 1 wt% Hf as prepared by arc melting is characterized by TEM and microdiffraction analysis to contain HfC precipitates. HfC precipitates in a Cu matrix bind vacancies and divacancies strongly in the quenched Cu:Hf sample as deduced by time differential perturbed angular correlation (TDPAC) studies. Isochronal annealing studies using TDPAC and positron lifetime measurements indicate the stability of these vacancy complexes in the quenched sample for annealing treatments up to 1200 K, beyond which the de-trapping of the vacancies from HfC precipitates is observed to occur. This shows that HfC precipitates present in Cu inhibit the formation of voids by strongly binding quenched vacancies.

  2. Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements

    NASA Technical Reports Server (NTRS)

    Mehta, Amita V.; Yang, Song

    2008-01-01

    Climatological features of mesoscale rain activities over the Mediterranean region between 5 W-40 E and 28 N-48 N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25 deg x 0.25 deg spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3-5 mm/day) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (approximately 0.5 mm/day). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November-December. Over the Mediterranean Sea, an average rainrate of approximately 1-2 mm/day is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.

  3. The impact of a windshield in a tipping bucket rain gauge on the reduction of losses in precipitation measurements during snowfall events

    NASA Astrophysics Data System (ADS)

    Buisan, Samuel T.; Collado, Jose Luis; Alastrue, Javier

    2016-04-01

    The amount of snow available controls the ecology and hydrological response of mountainous areas and cold regions and affects economic activities including winter tourism, hydropower generation, floods and water supply. An accurate measurement of snowfall accumulation amount is critical and source of error for a better evaluation and verification of numerical weather forecast, hydrological and climate models. It is well known that the undercatch of solid precipitation resulting from wind-induced updrafts at the gauge orifice is the main factor affecting the quality and accuracy of the amount of snowfall precipitation. This effect can be reduced by the use of different windshields. Overall, Tipping Bucket Rain Gauges (TPBRG) provide a large percentage of the precipitation amount measurements, in all climate regimes, estimated at about 80% of the total of observations by automatic instruments. In the frame of the WMO-SPICE project, we compared at the Formigal-Sarrios station (Spanish Pyrenees, 1800 m a.s.l.) the measured precipitation in two heated TPBRGs, one of them protected with a single alter windshield in order to reduce the wind bias. Results were contrasted with measured precipitation using the SPICE reference gauge (Pluvio2 OTT) in a Double Fence Intercomparison Reference (DFIR). Results reported that shielded reduces undercatch up to 40% when wind speed exceeds 6 m/s. The differences when compared with the reference gauge reached values higher than 70%. The inaccuracy of these measurements showed a significant impact in nowcasting operations and climatology in Spain, especially during some heavy snowfall episodes. Also, hydrological models showed a better agreement with the observed rivers flow when including the precipitation not accounted during these snowfall events. The conclusions of this experiment will be used to take decisions on the suitability of the installation of windshields in stations characterized by a large quantity of snowfalls during the

  4. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.

    PubMed

    Li, Ying; Suriyawong, Achariya; Daukoru, Michael; Zhuang, Ye; Biswas, Pratim

    2009-05-01

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 microm at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 microm, and 10 microm. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. PMID:19583155

  5. The Magnitude and Variability of Global and Regional Precipitation Based on the 22-Year GPCP (Global Precipitation Climatology Project) and Three-Year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Curtis, Scott; Huffman, George; Bolvin, David; Nelkin, Eric

    2001-01-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. Identifying regional trends in precipitation may be more practical. From 1979 to 1999 the northern mid-latitudes appear to be drying, the southern mid-latitudes have gotten wetter, and there is a mixed signal in the tropics. The relation between this field of trends and the relation to the frequency of El Nino events during this time period is explored. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. These El Nino minus La Nina composites of normalized precipitation show the usual positive, or wet, anomaly over the central and eastern Pacific Ocean with the negative, or dry, anomaly over the maritime continent along with an additional negative anomaly over Brazil and the Atlantic Ocean extending into Africa and a positive anomaly over the Horn of Africa and the western Indian Ocean. A number of the features are shown to extend into high latitudes. Positive anomalies

  6. Variations and Trends in Global and Regional Precipitation Based on the 22-Year GPCP (Global Precipitation Climatology Project) and Three-Year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Curtis, Scott; Huffman, George; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO events is quantified with no significant signal when land and ocean are combined. Identifying regional trends in precipitation may be more practical. From 1979 to 2000 the tropics have pattern of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe

  7. Langley method applied in study of aerosol optical depth in the Brazilian semiarid region using 500, 670 and 870 nm bands for sun photometer calibration

    NASA Astrophysics Data System (ADS)

    Cerqueira, J. G.; Fernandez, J. H.; Hoelzemann, J. J.; Leme, N. M. P.; Sousa, C. T.

    2014-10-01

    Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.

  8. NASA Dual Precipitation Radar Arrives at Goddard

    NASA Video Gallery

    The Dual-frequency Precipitation Radar (DPR) built by the Japan Aerospace Exploration Agency (JAXA) for the Global Precipitation Measurement (GPM) mission's Core Observatory arrived on Friday, Marc...

  9. Measurements of the artificially stimulated precipitation of electrons from the inner radiation belt in the experiment 'Spolokh-2'

    NASA Astrophysics Data System (ADS)

    Zhulin, I. A.; Kostin, V. M.; Pimenov, I. A.; Ruzhin, Iu. Ia.; Skomarovskii, V. S.; Zhuchenko, Iu. M.; Romanovskii, Iu. A.

    Artificial ionospheric disturbances, resulting from a barium shaped charge release from Spolokh-2 rocket payload, launched on June 29, 1978, are described. Geiger counters were used to detect the stimulated fluxes of the precipitated electrons with energies greater than 40 keV. The spectral analysis of the counter data was used to find the short- and long-term charges of the electron fluxes after the charge explosion. Artificial precipitation of electrons was observed more than 100 s after the explosion.

  10. Large-scale precipitation estimation using Kalpana-1 IR measurements and its validation using GPCP and GPCC data

    NASA Astrophysics Data System (ADS)

    Prakash, Satya; Mahesh, C.; Gairola, Rakesh M.

    2011-12-01

    Large-scale precipitation estimation is very important for climate science because precipitation is a major component of the earth's water and energy cycles. In the present study, the GOES precipitation index technique has been applied to the Kalpana-1 satellite infrared (IR) images of every three-hourly, i.e., of 0000, 0300, 0600,…., 2100 hours UTC, for rainfall estimation as a preparatory to the INSAT-3D. After the temperatures of all the pixels in a grid are known, they are distributed to generate a three-hourly 24-class histogram of brightness temperatures of IR (10.5-12.5 μm) images for a 1.0° × 1.0° latitude/longitude box. The daily, monthly, and seasonal rainfall have been estimated using these three-hourly rain estimates for the entire south-west monsoon period of 2009 in the present study. To investigate the potential of these rainfall estimates, the validation of monthly and seasonal rainfall estimates has been carried out using the Global Precipitation Climatology Project and Global Precipitation Climatology Centre data. The validation results show that the present technique works very well for the large-scale precipitation estimation qualitatively as well as quantitatively. The results also suggest that the simple IR-based estimation technique can be used to estimate rainfall for tropical areas at a larger temporal scale for climatological applications.

  11. IMERG Global Precipitation Rates

    NASA Video Gallery

    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration betwee...

  12. A compact photometer based on metal-waveguide-capillary: application to detecting glucose of nanomolar concentration.

    PubMed

    Bai, Min; Huang, Hui; Hao, Jian; Zhang, Ji; Wu, Haibo; Qu, Bo

    2015-01-01

    Trace analysis of liquid samples has wide applications in life science and environmental monitor. In this paper, a compact and low-cost photometer based on metal-waveguide-capillary (MWC) was developed for ultra-sensitive absorbance detection. The optical-path can be greatly enhanced and much longer than the physical length of MWC, because the light scattered by the rippled and smooth metal sidewall can be confined inside the capillary regardless of the incident-angle. For the photometer with a 7 cm long MWC, the detection limit is improved ~3000 fold compared with that of commercial spectrophotometer with 1 cm-cuvette, owing to the novel nonlinear optical-path enhancement as well as fast sample switching, and detecting glucose of a concentration as low as 5.12 nM was realized with conventional chromogenic reagent. PMID:26020222

  13. A compact photometer based on metal-waveguide-capillary: application to detecting glucose of nanomolar concentration

    PubMed Central

    Bai, Min; Huang, Hui; Hao, Jian; Zhang, Ji; Wu, Haibo; Qu, Bo

    2015-01-01

    Trace analysis of liquid samples has wide applications in life science and environmental monitor. In this paper, a compact and low-cost photometer based on metal-waveguide-capillary (MWC) was developed for ultra-sensitive absorbance detection. The optical-path can be greatly enhanced and much longer than the physical length of MWC, because the light scattered by the rippled and smooth metal sidewall can be confined inside the capillary regardless of the incident-angle. For the photometer with a 7 cm long MWC, the detection limit is improved ~3000 fold compared with that of commercial spectrophotometer with 1 cm-cuvette, owing to the novel nonlinear optical-path enhancement as well as fast sample switching, and detecting glucose of a concentration as low as 5.12 nM was realized with conventional chromogenic reagent. PMID:26020222

  14. In-line multiwavelength photometer for the determination of heavy metal concentrations

    SciTech Connect

    Bostick, D.T.; Strain, J.E.; Dixon, D.M.; McCue, D.D.; Bauer, M.L.

    1981-01-01

    An in-line photometer has been developed for continuous monitoring of uranium and plutonium concentrations in high radiation environments of nuclear fuel reprocessing plants. The instrument is equipped with multiple narrow band interference filters to monitor sample transmission in the 400- to 800-nm range. The filters are mounted in a rotating filter wheel which is located in front of a stationary tungsten halide light source. The monochromatic light from the respective optical filters is transmitted through a fiber optic cable of up to 10 m in length to the in-line sample flow cell located within the reprocessing area. A similar length of cable returns the optical signal to the photometer where the light intensity is detected with a photomultiplier tube, amplified, and processed with an LSI-11 computer system.

  15. A 5-kg time-resolved luminescence photometer with multiple excitation sources.

    PubMed

    Chen, Guoying

    2012-03-01

    A luminescence photometer was developed based on lanthanide-sensitized luminescence to detect environmental pollutants and residues in foods including, in particular, two classes of antibiotics: tetracyclines and fluoroquinolones. Multiple excitation sources, a xenon flashlamp and ultraviolet light-emitting diodes (UV LEDs), were used to their advantages. A photomultiplier tube module, gated to reject time-domain interferences, was used as a photodetector. Using danofloxacin as a model analyte, luminescence signal was linear in more than three decades (0.5-2000 ng/mL) with R(2) > 0.998 in each decade. This photometer achieved a limit of detection of 2.0 ng/mL with 1.3% average relative standard deviation. It is field deployable at 4.6 kg and 15 W power consumption. PMID:22449313

  16. Pixon deconvolution of far-infrared images from the UT multichannel photometer

    NASA Technical Reports Server (NTRS)

    Koresko, Chris D.; Harvey, Paul M.; Curran, Dian; Puetter, Rick

    1995-01-01

    Experiments with Pixon-based image deconvolution demonstrate that this technique can significantly enhance the spatial resolution of two-dimensional images acquired by the UT multichannel far-infrared photometer. A deconvolved 100 micron image of the giant HII region NGC 3603 reveals a bright, asymmetrical central peak some 40 x 55 arcsec in size, possibly surrounded by several secondary peaks. The results using the pixon technique are compared with those obtained using the standard Maximum Entropy and Richardson-Lucy methods.

  17. CV population densities: Using CFHT as the worlds largest time-series photometer

    NASA Astrophysics Data System (ADS)

    Lott, D. A.; Haswell, C. A.; Abbott, T. M. C.; Ringwald, F.

    2002-01-01

    Known samples of cataclysmic variables (CVs) are sparse and/or rife with selection effects and do not provide adequate tests of theories of their evolution. We have used the CFHT12k mosaic camera as the worlds largest time-series photometer, observing a 0.3 sq.deg. Galactic field with 3 minute time-resolution. The resulting unbiased, magnitude-limited sample of CVs, and their progenitors will be used to test the predictions of CV population models.

  18. Investigation of differences between field and laboratory pH measurements of national atmospheric deposition program/national trends network precipitation samples

    USGS Publications Warehouse

    Latysh, N.; Gordon, J.

    2004-01-01

    A study was undertaken to investigate differences between laboratory and field pH measurements for precipitation samples collected from 135 weekly precipitation-monitoring sites in the National Trends Network from 12/30/1986 to 12/28/1999. Differences in pH between field and laboratory measurements occurred for 96% of samples collected during this time period. Differences between the two measurements were evaluated for precipitation samples collected before and after January 1994, when modifications to sample-handling protocol and elimination of the contaminating bucket o-ring used in sample shipment occurred. Median hydrogen-ion and pH differences between field and laboratory measurements declined from 3.9 ??eq L-1 or 0.10 pH units before the 1994 protocol change to 1.4 ??eq L-1 or 0.04 pH units after the 1994 protocol change. Hydrogen-ion differences between field and laboratory measurements had a high correlation with the sample pH determined in the field. The largest pH differences between the two measurements occurred for high-pH samples (>5.6), typical of precipitation collected in Western United States; however low- pH samples (<5.0) displayed the highest variability in hydrogen-ion differences between field and laboratory analyses. Properly screened field pH measurements are a useful alternative to laboratory pH values for trend analysis, particularly before 1994 when laboratory pH values were influenced by sample-collection equipment.

  19. Improvement on the competitive binding assay for the measurement of cyclic AMP by using ammonium sulphate precipitation.

    PubMed Central

    Santa-Coloma, T A; Bley, M A; Charreau, E H

    1987-01-01

    The protein-binding assay developed by Brown, Albano, Ekins, Sgherzi & Tampion [(1971) Biochem. J. 121, 561-562] and Brown, Ekins & Albano [(1972) Adv. Cyclic Nucleotide Res. 2, 25-40] was modified by using precipitation with (NH4)2SO4 of the protein-cyclic AMP complex instead of adsorption of the free nucleotide on charcoal. The half-life of the protein-cyclic AMP complex obtained in the presence of charcoal was lower than that of the (NH4)2SO4-precipitated complex. In consequence, owing to the great stability of the precipitated protein-cyclic AMP complex, this method allows more accurate and reproducible determinations. PMID:2822033

  20. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  1. STRONTIUM PRECIPITATION

    DOEpatents

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  2. Responses of Soil Respiration to Precipitation in a Savannah Ecosystem: Fine Temporal Measurements of Soil CO2 Efflux 1876

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Woody plant encroachment into grassland has the potential to affect net primary production, in part by changing the sensitivities of photosynthesis and respiration to precipitation. Encroachment of mesquite (Prosopis) into floodplain sacaton (Sporobolus) grassland along the San Pedro River in southe...

  3. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  4. Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)

    DOE Data Explorer

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

  5. Development of Ground-Based Auroral Photometry Techniques Using In-Situ Electron Precipitation Measurements from the GREECE Mission

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A., II; Samara, M.; Michell, R.; Hampton, D.

    2014-12-01

    The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska on 03 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km during a luminous auroral event. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska and aimed along magnetic zenith in order to observe the brightness of different auroral emission lines (427.8, 557.7, and 844.6 nm with a 47 degree field of view) at the magnetic footpoint of the payload, near apogee. Emission line brightness data are presented at the footpoint of the rocket flight and correlated with electron characteristics taken by the Acute Precipitating Electron Spectrometer (APES) on-board instrument. Ratios of different auroral emission lines are also compared to previously published methods and models. This research aims to describe the auroral emissions produced from a known precipitating electron distribution, such that we can more accurately use ground-based imaging and photometry to infer the characteristics of the precipitating electrons. These techniques can then be applied over larger scales and longer times, when only multi-spectral imaging data are available with no corresponding in situ data.

  6. The little photometer that could: technical challenges and science results from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Dunnuck, Jeb

    2011-09-01

    The Kepler spacecraft launched on March 7, 2009, initiating NASA's first search for Earth-size planets orbiting Sun-like stars. Since launch, Kepler has announced the discovery of 17 exoplanets, including a system of six transiting a Sun-like star, Kepler-11, and the first confirmed rocky planet, Kepler-10b, with a radius of 1.4 that of Earth. Kepler is proving to be a cornucopia of discoveries: it has identified over 1200 candidate planets based on the first 120 days of observations, including 54 that are in or near the habitable zone of their stars, and 68 that are 1.2 Earth radii or smaller. An astounding 408 of these planetary candidates are found in 170 multiple systems, demonstrating the compactness and flatness of planetary systems composed of small planets. Never before has there been a photometer capable of reaching a precision near 20 ppm in 6.5 hours and capable of conducting nearly continuous and uninterrupted observations for months to years. In addition to exoplanets, Kepler is providing a wealth of astrophysics, and is revolutionizing the field of asteroseismology. Designing and building the Kepler photometer and the software systems that process and analyze the resulting data to make the discoveries presented a daunting set of challenges, including how to manage the large data volume. The challenges continue into flight operations, as the photometer is sensitive to its thermal environment, complicating the task of detecting 84 ppm drops in brightness corresponding to Earth-size planets transiting Sun-like stars.

  7. Stellar Calibration of the WIC and SI Imagers and the GEO Photometers on IMAGE/FUV

    NASA Technical Reports Server (NTRS)

    Gladstone, R.; Mende, S. B.; Frey, H. U.; Geller, S. P.; Immel, T. J.; Lampton, M.; Gerard, J.-C.; Spann, J.; Habraken, S.; Renotte, E.; Jamar, C.; Rochus, P.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The FUV instrument on the IMAGE spacecraft comprises three wide-field imagers, the Wide-Band Imaging Camera (WIC) of observing N2 Lyman-Birge-Hopfield (LBH) (140-190 nm) emissions and the Spectrographic Imager (SI), which has a 121.8 nm channel for observing red-shifted HI Lya photons and a 135.6 run channel for observing 01 135.6 nm emissions. In addition, three HI Lya photometers (GEO) are used to monitor the geocorona. The fields of view are 17 degrees x 17 degrees for the WIC imagers, 15 degrees x 15 degrees for the two SI imagers, and 10 diameter for the three GEO photometers. As the IMAGE spacecraft spins every 120 seconds, the GEO photometers sweep out circles on the sky (at 0 degrees and plus or minus 30 degrees with respect to the spacecraft spin plane), and the WIC and SI imagers use the Time Delay Integration (TDI) method to construct images centered on the Earth. Many FUV-bright stars are seen in the WIC, SI and even the GEO data. WE have used archived International Ultraviolet Explorer (IUE) far-ultraviolet flux spectra for 22 of the brightest of these stars to help refine the FUV instrumental sensitivities. The stars chosen range in spectral type form B0V to A11V, with magnitudes ranging from V- 1.3 (a Cru) to V=4.7 (G Cen) (although many more fainter stars are also seen). The initial results of this stellar calibration will be presented and compared with the pre-flight and dayglow modeling results.

  8. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  9. Hubble Space Telescope: High speed photometer instrument handbook. Version 2.0

    NASA Technical Reports Server (NTRS)

    White, Richard L. (Editor)

    1990-01-01

    This manual is a guide for astronomers who intend to use the High Speed Photometer (HSP), one of the scientific instruments onboard the Hubble Space Telescope (HST). All the information needed for ordinary uses of the HSP is presented, including: (1) an overview of the instrument; (2) a detailed description of some details of the HSP-ST system that may be important for some observations; (3) tables and figures describing the sensitivity and limitations of the HSP; (4) how to go about planning an observation with the HSP; and (5) a description of the standard calibration to be applied to HSP data and the resulting data products.

  10. Precipitation Matters

    ERIC Educational Resources Information Center

    McDuffie, Thomas

    2007-01-01

    Although weather, including its role in the water cycle, is included in most elementary science programs, any further examination of raindrops and snowflakes is rare. Together rain and snow make up most of the precipitation that replenishes Earth's life-sustaining fresh water supply. When viewed individually, raindrops and snowflakes are quite…

  11. Performance evaluation of interpolation methods for incorporating rain gauge measurements into NEXRAD precipitation data: A case study in the Upper Guadalupe River Basin

    SciTech Connect

    Xie, Hongjie; Zhang, Xuesong; Yu, Beibei; Sharif, Hatim

    2011-04-21

    High spatial and temporal resolution of precipitation data is critical input for hydrological budget estimation and flash flood modeling. This study evaluated four methods (Bias Adjustment (BA), Simple Kriging with varying Local Means (SKlm), Kriging with External Drift (KED), and Regression Kriging (RK)) for their performances in incorporating gauge rainfall measurements into NEXRAD (Next Generation Weather Radar) Multisensor Precipitation Estimator (MPE) (hourly and 4 x 4 km{sup 2}). Measurements from a network of 50 gauges at the Upper Guadalupe River Basin, Central Texas and MPE data for the year 2004 were used in the study. We used three evaluation coefficients Percentage Bias (PB), Coefficient of Determination (R2), and Nash-Sutcliffe efficiency (NSE) to examine the performance of the four methods for preserving regional and local scale characteristics of observed precipitation data. The results show that the two Kriging-based methods (SKlm and RK) are in generally better than BA and KED and that the PB and NSE criteria are better than the R2 criterion in assessing the performance of the four methods. It is also worth noting that the performance of one method at regional scale may be different from its performance at local scale. Critical evaluation of the performance of different methods at local or regional scale should be conducted according to the different purposes. The results obtained in this study are expected to contribute to the development of more accurate spatial rainfall products for hydrologic budget and flash flood modeling.

  12. Fast multichannel astronomical photometer based on silicon photo multipliers mounted at the Telescopio Nazionale Galileo

    NASA Astrophysics Data System (ADS)

    Ambrosino, Filippo; Meddi, Franco; Rossi, Corinne; Sclavi, Silvia; Nesci, Roberto; Bruni, Ivan; Ghedina, Adriano; Riverol, Luis; Di Fabrizio, Luca

    2014-07-01

    The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier) technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good agreement with the results obtained in the past with other much more expensive instruments. After the successful run at the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more versatile.

  13. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  14. Dynamics of mineral crystallization at inclusion-garnet interface from precipitated slab-derived fluid phase: first in-situ synchrotron x-ray measurements

    NASA Astrophysics Data System (ADS)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Nestola, Fabrizio

    2015-04-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. These inclusions are frequently hosted by minerals stable at mantle depths, such as garnet, and show the same textural features as fluid inclusions. The mineral infillings of the solid multiphase inclusions are generally assumed to have crystallized by precipitation from the solute load of dense supercritical fluids equilibrating with the host rock. Notwithstanding the validity of this assumption, the mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ~ 4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometers and negative crystal shapes. Infilling minerals (spinel: 10-20 vol.%; amphibole, chlorite, talc, mica: 80- 90 vol.%) occur with constant volume ratios and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by means of Synchrotron Radiation at DLS-Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and their reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Epitaxy drives a first-stage nucleation of spinel under near-to-equilibrium conditions

  15. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE PAGESBeta

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; Dubey, Manvendra K.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (dme), enabling application for microphysical studies. However, the removal of particles ≤100 nm dme is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  16. A consideration of the use of optical fibers to remotely couple photometers to telescopes

    NASA Technical Reports Server (NTRS)

    Heacox, William D.

    1988-01-01

    The possible use of optical fibers to remotely couple photometers to telescopes is considered. Such an application offers the apparent prospect of enhancing photometric stability as a consequence of the benefits of remote operation and decreased sensitivity to image details. A properly designed fiber optic coupler will probably show no significant changes in optical transmisssion due to normal variations in the fiber configuration. It may be more difficult to eliminate configuration-dependent effects on the pupil of the transmitted beam, and thus achieve photometric stability to guiding and seeing errors. In addition, there is some evidence for significant changes in the optical throughputs of fibers over the temperature range normally encountered in astronomical observatories.

  17. Carl Friedrich Richard Foerster (1825-1902) - the inventor of perimeter and photometer.

    PubMed

    Grzybowski, Andrzej; Sobolewska, Bianka

    2015-09-01

    Carl Friedrich Richard Foerster (1825-1902) was a German who was born in the Polish city Leszno. He studied medicine at the Medical Faculty of Breslau (now Wroclaw, Poland) University, and later in Heidelberg and Berlin. From 1855, he worked in Breslau, where he established in 1857 the first ophthalmology clinic. Later, he became a professor in ophthalmology, the first director of the Department of Ophthalmology at the University of Breslau, and even the rector of this University. Forster did many pioneering works on visual fields, invented a photometer and the first perimeter, known for many years as the Foerster perimeter. Moreover, he studied night blindness, visual field changes due to different pathologies, and many eye diseases, including glaucoma, cataract, retinal and choroidal diseases. PMID:25833059

  18. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  19. Euclid Near Infrared Spectro Photometer: a tool to investigate the Dark Universe

    NASA Astrophysics Data System (ADS)

    Valenziano, Luca

    The Euclid mission objective is to map the geometry of the dark Universe by investigating the distance-redshift relationship and the evolution of cosmic structures. The Euclid project is part of ESA's program Cosmic Vision program with its launch planned for 2020. The NISP (Near Infrared Spectro-Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (0.9-2μm) as a photometer and spectrometer. The instrument is composed of: - a cold (140K) optomechanical subsystem consisting of a SiC structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control sytem - a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG cooled to 100K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with Molybdenum and Aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via a Spacewire links for science data This paper describes the potential of the NISP instrument for the investigation of the Dark universe with respect to the current and future experiments. The architecture of the instrument at the end of the phase B (Preliminary Design Review), expected performance, technological key challenges will also be presented.

  20. The HyMeX Special Observation Period in Central Italy: precipitation measurements, retrieval techniques and preliminary results

    NASA Astrophysics Data System (ADS)

    Silvio Marzano, Frank; Baldini, Luca; Picciotti, Errico; Colantonio, Matteo; Barbieri, Stefano; Di Fabio, Saverio; Montopoli, Mario; Vulpiani, Gianfranco; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Anagnostou, Marios N.; Kalogiros, John; Anagnostou, Emmanouil N.; Ferretti, Rossella; Gatlin, Patrick.; Wingo, Matt; Petersen, Walt

    2013-04-01

    The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. The capability to predict such high-impact events remains weak because of the contribution of very fine-scale processes and their non-linear interactions with the larger scale processes. These societal and science issues motivate the HyMeX (Hydrological cycle in the Mediterranean Experiment, http://www.hymex.org/) experimental programme. HyMeX aims at a better quantification and understanding of the water cycle in the Mediterranean with emphasis on intense events. The observation strategy of HyMEX is organized in a long-term (4 years) Enhanced Observation Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). HyMEX has identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE). Within each target area several hydrometeorological sites for heavy rainfall and flash flooding have been set up. The hydrometeorological site in Central Italy (CI) is interested by both western and eastern fronts coming from the Atlantic Ocean and Siberia, respectively. Orographic precipitations play an important role due to the central Apennine range, which reaches nearly 3000 m (Gran Sasso peak). Moreover, convective systems commonly develop in CI during late summer and beginning of autumn, often causing localized hailstorms with cluster organized cells. Western fronts may heavily hit the Tiber basin crossing large urban areas (Rome), whereas eastern fronts can cause flash floods along the Adriatic coastline. Two major basins are involved within CI region: Tiber basin (1000 km long) and its tributary Aniene and the Aterno-Pescara basin (300 km long). The first HyMeX SOP1.1 was carried out from Sept. till Nov. 2012 in the NW target area. The Italian SOP1.1 was coordinated by the Centre of Excellence CETEMPS, University of L'Aquila, a city located in the CI heart. The CI area

  1. The HyMeX Special Observation Period in Central Italy: Precipitation Measurements, Retrieval Techniques and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick; Wingo, Matt; Petersen, Walt; Marzano, Frank Silvio; Baldini, Luca; Picciotti, Errico; Colantonio, Matteo; Barbieri, Stefano; Di Fabio, Saverio; Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Anagnostou, Emmanoil N..; Ferretti, Rossella

    2013-01-01

    The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. The capability to predict such high-impact events remains weak because of the contribution of very fine-scale processes and their non-linear interactions with the larger scale processes. These societal and science issues motivate the HyMeX (Hydrological cycle in the Mediterranean Experiment, http://www.hymex.orgl) experimental programme. HyMeX aims at a better quantification and understanding of the water cycle in the Mediterranean with emphasis on intense events. The observation strategy of HyMEX is organized in a long-term (4 years) Enhanced Observation Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). HyMEX has identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE). Within each target area several hydrometeorological sites for heavy rainfall and flash flooding have been set up. The hydrometeorological sire in Central Italy (CI) is interested by both western and eastern fronts coming from the Atlantic Ocean and Siberia, respectively. Orographic precipitations play an important role due to the central Apennine range, which reaches nearly 3000 m (Gran Sasso peak). Moreover, convective systems commonly develop in CI during late summer and beginning of autumn, often causing localized hailstorms with cluster organized cells. Western fronts may heavily hit the Tiber basin crossing large urban areas (Rome), whereas eastern fronts can cause flash floods along the Adriatic coastline. Two major basins are involved within Cl region: Tiber basin (1000 km long) and its tributary Aniene and the Aterno-Pescara basin (300 km long). The first HyMeX SOP1.1 was carried out from Sept. till Nov. 2012 in the NW target area The Italian SOP1.1 was coordinated by the Centre of Excellence CETEMPS, University of L'Aquila, a city located in the CI heart. The CI area

  2. Analysis of precipitable water vapor from GPS measurements in Chengdu region: Distribution and evolution characteristics in autumn

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wei, Ming; Li, Guoping; Zhou, Shenghui; Zeng, Qingfeng

    2013-08-01

    The rainfall process of Chengdu region in autumn has obvious regional features. Especially, the night-time rain rate of this region in this season is very high in China. Studying the spatial distribution and temporal variation of regional atmospheric precipitable water vapor (PWV) is important for our understanding of water vapor related processes, such as rainfall, evaporation, convective activity, among others in this area. Since GPS detection technology has the unique characteristics, such as all-weather, high accuracy, high spatial and temporal resolution as well as low cost, tracking and monitoring techniques on water vapor has achieved rapid developments in recent years. With GPS-PWV data at 30-min interval gathered from six GPS observational stations in Chengdu region in two autumns (September 2007-December 2007 and September 2008-December 2008), it is revealed that negative correlations exist between seasonally averaged value of GPS-PWV as well as its variation amplitude and local terrain altitude. The variation of PWV in the upper atmosphere of this region results from the water vapor variation from surface to 850 hPa. With the help of Fast Fourier Transform (FFT), it is found that the autumn PWV in Chengdu region has a multi-scale feature, which includes a seasonal cycle, 22.5 days period (quasi-tri-weekly oscillation). The variation of the GPS-PWV is related to periodical change in the transmitting of the water vapor caused by zonal and meridional wind strengths’ change and to the East Asian monsoon system. According to seasonal variation characteristics, we concluded that the middle October is the critical turning point in PWV content. On a shorter time scale, the relationship between autumn PWV and ground meteorological elements was obtained using the composite analysis approach.

  3. Black carbon aerosol characterization in a coastal city in South China using a single particle soot photometer

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Feng; Sun, Tian-Le; Zeng, Li-Wu; Yu, Guang-He; Luan, Sheng-Ji

    2012-05-01

    Black carbon (BC) is the dominant light-absorbing aerosol component in the atmosphere and plays an important role in atmospheric pollution and climate change. The light-absorbing properties of BC rely on particle size, shape, composition, as well as the BC mixing state with other aerosol components, thus more thorough exploration of BC aerosol characteristics is critical in understanding its atmospheric sources and effects. In this study, a newly-developed Single Particle Soot Photometer (SP2) was deployed in Shenzhen, China, for continuous BC measurements to obtain the important information about size distribution and mixing state of BC under severe air pollution conditions of China. The mean BC mass concentrations were found to be 6.0 and 4.1 μg m-3 at an urban site (UT) in the fall and winter, respectively, while it is much lower (2.6 μg m-3) at a rural site (BG) in the fall. The mass size distributions of BC in volume equivalent diameter (VED) at the three sites showed a similar lognormal pattern, with the peak diameter at BG (222 nm) slightly larger than at the UT (210 nm) site. As to mixing state, the average percentage of internally mixed BC at the UT site was detected to be 40% and 46% in the fall and winter, respectively, while that at the BG site in the fall was only a slightly higher (47%), which implies that fresh local fossil fuel combustions were still significant at this rural site. The analysis of extremely high BC concentrations (>20 μg m-3) at UT indicates that they were a complex of comparable contributions from both local fresh emissions and regional transport under unfavorable meteorology. Other characteristics of BC aerosol and their influencing factors in Shenzhen were also discussed.

  4. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  5. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time

  6. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  7. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    PubMed Central

    Ning, Zhi; Sillanpää, Markus; Pakbin, Payam; Sioutas, Constantinos

    2008-01-01

    Background A newly designed electrostatic precipitator (ESP) in tandem with Versatile Aerosol Concentration Enrichment System (VACES) was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38). While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the reference filter sampler

  8. Definition and impact of a quality index for radar-based reference measurements in the H-SAF precipitation product validation

    NASA Astrophysics Data System (ADS)

    Rinollo, A.; Vulpiani, G.; Puca, S.; Pagliara, P.; Kaňák, J.; Lábó, E.; Okon, L'.; Roulin, E.; Baguis, P.; Cattani, E.; Laviola, S.; Levizzani, V.

    2013-10-01

    The EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) provides rainfall estimations based on infrared and microwave satellite sensors on board polar and geostationary satellites. The validation of these satellite estimations is performed by the H-SAF Precipitation Product Validation Group (PPVG). A common validation methodology has been defined inside the PPVG in order to make validation results from several institutes comparable and understandable. The validation of the PR-OBS-3 (blended infrared-microwave (IR-MW) instantaneous rainfall estimation) product using radar-based rainfall estimations as ground reference is described herein. A network of C-band and Ka-band radars throughout Europe ensures a wide area coverage with different orographic configurations and climatological regimes, but the definition of a quality control protocol for obtaining consistent ground precipitation fields across several countries is required. Among the hydro-meteorological community, the evaluation of the data quality is a quite consolidated practice, even though a unique definition of a common evaluation methodology between different countries and institutions has not been set up yet. Inside H-SAF, the first definition of the quality index of the radar rainfall observations has been introduced at the Italian Civil Protection Department (DPC). In the evaluation of the DPC quality index, several parameters are considered, some measured by the radar itself (static clutter map, range distance, radial velocity, texture of differential reflectivity, texture of co-polar correlation coefficient and texture of differential phase shift) and some obtained by external sources (digital elevation model, freezing layer height). In some cases, corrections were applied for clutter and beam blocking. The DPC quality index was calculated and applied to some relevant meteorological events reported by a radar test site in Italy. The precipitation

  9. The Community Collaborative Rain, Hail and Snow Network (CoCoRaHS): Timely Volunteer Precipitation Measurements to Supplement Existing Hydrometeorological Networks

    NASA Astrophysics Data System (ADS)

    Reges, H. W.; Doesken, N. J.; Cifelli, R. C.; Turner, J. S.

    2005-12-01

    The Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) is a community-based, education-focused high density network of individual and family volunteers of all ages and backgrounds, who take daily measurements of rain, hail and snow at their homes, schools and businesses. Precipitation is measured using low-cost high capacity 4" diameter plastic rain gauges and Styrofoam wrapped in aluminum foil "hail pads". Thanks to the "low-tech/low-cost" approach, thousands of volunteers can afford to participate, giving the end user a large collection of data points that fill in gaps in many existing networks and data sets. Where feasible, CoCoRaHS is striving to achieve a station density approaching one observation per km-squared providing exceptional detail on cumulative storm precipitation over populated areas. These observations are collected and made available on the CoCoRaHS website: www.cocorahs.org in map and table format. The data are already being used daily by federal, state and community organizations and businesses for many resource management and hydrologic monitoring and predication applications. CoCoRaHS "Intense Rain Reports" and "Hail Reports" are used in "real time" by the National Weather Service in the issuing of flash flood warnings and severe thunderstorm warnings. While only providing once-daily and occasional event reports, CoCoRaHS does provide excellent observational consistency and accuracy including snowfall, depth and water content measurements, as well as the only comprehensive hail data currently being gathered in the U.S. The CoCoRaHS network currently engages over 2,000 volunteer observers in communities across six states, and the network continues to grow.

  10. Aerosol and precipitation chemistry measurements in a remote site in Central Amazonia: the role of biogenic contribution

    NASA Astrophysics Data System (ADS)

    Pauliquevis, T.; Lara, L. L.; Antunes, M. L.; Artaxo, P.

    2012-06-01

    In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1°55' S, 59°29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 μm) and coarse mode (2.5 μm < d < 10.0 μm) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 μg m-3). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those

  11. Advancements in rainfall measurement and analysis technology for validating remote sensing observations of precipitation from space and aircraft

    NASA Technical Reports Server (NTRS)

    Thiele, Otto W.; Short, David A.

    1991-01-01

    The use of remote sensing by the Tropical Rainfall Measuring Mission to determine the reflectivity-rain rate relation for a tropical squall line event is discussed. The implications of the findings for convective-stratiform budget studies are briefly addressed.

  12. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  13. Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Jung, Sung-Hwa; Park, Hong-Mok; Kwon, Soohyun; Lin, Pay-Liam; Lee, GyuWon

    2015-09-01

    Fall velocity-diameter relationships for four different snowflake types (dendrite, plate, needle, and graupel) were investigated in northeastern South Korea, and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships. Falling ice crystals (approximately 40 000 particles) were measured with a two-dimensional video disdrometer (2DVD) during a winter experiment from 15 January to 9 April 2010. The fall velocity-diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements: the coefficients (exponents) for different snowflake types were 0.82 (0.24) for dendrite, 0.74 (0.35) for plate, 1.03 (0.71) for needle, and 1.30 (0.94) for graupel, respectively. These new relationships established in the present study (PS) were compared with those from two previous studies. Hydrometeor types were classified with the derived fall velocity-diameter relationships, and the classification algorithm was evaluated using 3× 3 contingency tables for one rain-snow transition event and three snowfall events. The algorithm showed good performance for the transition event: the critical success indices (CSIs) were 0.89, 0.61 and 0.71 for snow, wet-snow and rain, respectively. For snow events, the algorithm performance for dendrite and plate (CSIs = 1.0 and 1.0, respectively) was better than for needle and graupel (CSIs = 0.67 and 0.50, respectively).

  14. Behavior of an inversion-based precipitation retrieval algorithm with high-resolution AMPR measurements including a low-frequency 10.7-GHz channel

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Xiang, X.; Mugnai, A.; Hood, R. E.; Spencer, R. W.

    1994-01-01

    A microwave-based, profile-type precipitation retrieval algorithm has been used to analyze high-resolution passsive microwave measurements over an ocean background, obtained by the Advanced Microwave Precipitation Radiometer (AMPR) flown on a NASA ER-2 aircraft. The analysis is designed to first determine the improvements that can be gained by adding brightness temperature information from the AMPR low-frequency channel (10.7 GHz) to a multispectral retrieval algorithm nominally run with satellite information at 19, 37, and 85 GHz. The impact of spatial resolution degradation of the high-resolution brightness temperature information on the retrieved rain/cloud liquid water contents and ice water contents is then quantified in order to assess the possible biases inherent to satellite-based retrieval. Careful inspection of the high-resolution aircraft dataset reveals five distinctive brightness temperature features associated with cloud structure and scattering effects that are not generally detectable in current passive microwave satellite measurements. Results suggest that the inclusion of 10.7-GHz information overcomes two basic problems associated with three-channel retrieval. Intercomparisons of retrievals carried out at high-resolution and then averaged to a characteristic satellite scale to the corresponding retrievals in which the brightness temperatures are first convolved down to the satellite scale suggest that with the addition of the 10.7-GHz channel, the rain liquid water contents will not be negatively impacted by special resolution degradation. That is not the case with the ice water contents as they appear ti be quite sensitive to the imposed scale, the implication being that as spatial resolution is reduced, ice water contents will become increasingly underestimated.

  15. Time-dependent Measurements of Dissolution-precipitation Reactions Caused by Caustic Waste Solutions At the Hanford Site Using Synchrotron Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Wang, G.; Jones, K. W.; Um, W.; Rockhold, M. L.; Crandell, L. E.; Peters, C. A.; Lindquist, W. B.

    2012-12-01

    Leaking of caustic (hyper-alkaline) radioactive wastes, generated from plutonium production during the Cold War and stored in underground storage tanks at Hanford Site (Richland, WA), has been detected in the subsurface. The caustic wastes leachate induces primary mineral dissolution (releasing Si) and subsequent secondary precipitation (feldspathoids, such as sodalite and cancrinite) in the sediments. The dissolution-precipitation reactions affect the transport of radioactive elements (90Sr and 137Cs) in the sub-surface through changing the morphology of the sediments. We studied here the changes of the morphology of the sediments caused by exposure of quartz sand or Hanford sediments to simulated tank waste leachates (2 M Na+, 1 M OH-, 1.053 M NO3-, 0.05 M Al3+ and 10-5 M Sr2+) using a series of steady-state-flow saturated column experiments. The 3D structures were determined using synchrotron computed microtomography (CMT) at the National Synchrotron Light Source. Sequential measurements were made at intervals over an exposure time of up to ~620 days with a pixel size of 4 μm in mini columns (ID2.1 mm) packed with quartz sand, or with a pixel size of 11 μm in intermediate size columns (ID19 mm) packed with Hanford sediments. Values for porosity as a function of treatment time were obtained showing major changes. Good agreement was found between the microstructure porosity determinations with results obtained from measurements on the composition of the treatment fluids. The results also show the changes in the three dimensional morphology of the sediment structures as a function of the treatment time. Good agreement was also found between observed and simulated porosity and aqueous chemistry obtained using the reactive transport simulator STOMP. A comparison of the CMT results with complementary high-resolution scanning electron microscopy scans will also be presented.

  16. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  17. Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky

    NASA Technical Reports Server (NTRS)

    Mims, Forrest M., III; Chambers, Lin H.; Brooks, David R.

    2011-01-01

    A 2-year study affirms that the temperature (Tz) indicated by an inexpensive ($20 to $60) IR thermometer pointed at the cloud-free zenith sky provides an approximate indication of the total column water vapor (precipitable water or PW). PW was measured by a MICROTOPS II sun photometer. The coefficient of correlation (r2) of the PW and Tz was 0.90, and the rms difference was 3.2 mm. A comparison of the Tz data with the PW provided by a GPS site 31 km NNE yielded an r2 of 0.79, and an rms difference of 5.8 mm. An expanded study compared Tz from eight IR thermometers with PW at various times during the day and night from 17 May to 18 October 2010, mainly at the Texas site and 10 days at Hawaii's Mauna Loa Observatory (MLO). The best results of this comparison were provided by two IR thermometers models that yielded an r2 of 0.96 and an rms difference with the PW of 2.7 mm. The results of both the ongoing 2-year study and the 5-month instrument comparison show that IR thermometers can measure PW with an accuracy (rms difference/mean PW) approaching 10%, the accuracy typically ascribed to sun photometers.

  18. Stable Auroral Red arc occurrences detected by the Pacific Northwest Laboratory photometer network: A decade of observations, 1978--1988

    SciTech Connect

    Slater, D.W.; Kleckner, E.W.

    1989-11-01

    Using data obtained from a network of all-sky scanning photometers designed to operate routinely for long periods of time, a comprehensive inspection of observations covering the time period 1978--1988 has revealed features that we interpret to be Stable Auroral Red (SAR) arcs during 250 nighttime observing periods. These arcs result from high temperature within the ionospheric electron gas that is maintained by slow leakage of energy from the earth's magnetosphere. A listing of these events, the most complete available for this time interval, is presented for the purpose of complementing observations reported for earlier dates. This listing is composed of location of the observing photometer, date, time, photometric intensity, and location (as defined by the earth's magnetic coordinate system). The intent is to make these observations available to a broad range of researchers and thereby initiate further investigations of these features. 22 refs., 3 figs., 2 tabs.

  19. Spatio-temporal statistical model for the optimal combination of precipitation measured at different time scales for estimating unobserved point values and disaggregating to finer timescales

    NASA Astrophysics Data System (ADS)

    Bàrdossy, Andràs; Pegram, Geoffrey

    2015-04-01

    Precipitation observations are unique in space and time, so if not observed, the values can only be estimated. Many applications, such as the calculation of water balances, calibration of hydrological models or the provision of unbiased ground truth for remote sensing require full datasets. Thus a reliable estimation of the missing observations is of great importance. The problem is exacerbated by the ubiquitous decimation of gauge networks. We consider 2 problems as examples of the methodology: (i) infilling monthly data where some days are missing in the monthly records and (ii) infilling missing hourly values in daily records with the assistance of some nearby pluviometers. The key is that we need estimates of the distributions of the infilled values, not just their expectations, as we have found that the traditional 'best' values bias the spatial estimates. We first performed monthly precipitation interpolation using 311 full records, 31 stations of which were randomly decimated to artificially create incomplete records as inequality constraints. Interpolation was carried out (i) without using these 31 in any way and (ii) using them as inequality constraints, in the sense that we determine a lower limit by aggregating the surviving data in a decimated record. We compare the errors if (i) the 31 stations with incomplete records are not considered against (ii) the errors if the incomplete records are considered as inequalities, and found that the partially decimated data add considerable value, as compared to neglecting them. In a second application we performed a disaggregation in time. We take a set of complete hourly pluviometer data, then aggregate some stations to days. These then have their hourly missing data reconstructed and we evaluate the success of the procedure by cross-validation. In this application the daily sums for a location are considered as a constraint and the disaggregated daily data are compared to their observed hourly precipitation. The

  20. Lidar and radar measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study: observations of dark and bright band phenomena

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Bhawar, R.; di Iorio, T.; Norton, E. G.; Peters, G.; Dufournet, Y.

    2011-11-01

    During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark and bright bands were observed by the University of BASILicata Raman lidar system (BASIL) during several intensive (IOPs) and special (SOPs) observation periods (among others, 23 July, 15 August, and 17 August 2007). Lidar data were supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Results from BASIL and the radars for 23 July 2007 are illustrated and discussed to support the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar and radar dark and bright bands. Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE.

  1. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: acidity and possible sources

    NASA Astrophysics Data System (ADS)

    Al-Momani, I. F.

    Rainwater samples were collected in a rural region in Northern Jordan using 24-h sampling periods from December 1998 to April 2000. All samples were analyzed for major ions (Na +, K +, Ca 2+, H +, Mg 2+, NH 4+, Cl -, NO 3- and SO 42-) and trace metals (Pb, Cd, Zn, Cu, Al, Fe, Mn, Mo, Ni, Sb and V). The majority of the rain samples collected had pH values higher than 5.6. The average pH was 6.4±0.9. High values of pH were attributed to the neutralization by natural alkaline local dusts which contain large fractions of calcite. The annual average SO 42--to-NO 3- ratio is 1.8, which is close to that observed in more polluted regions. Concentrations of measured species were lower than those reported for other rural sites worldwide. Elements of anthropogenic origins (Zn, Pb, As, Sb, Ag and Cd) were highly enriched with respect to crustal composition. Factor analysis permitted the identification of four source groups, namely crustal dust, sea-salt spray, road traffic and combustion and secondary aerosol formation processes.

  2. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  3. A filter wheel mechanism for the Euclid near-infrared imaging photometer

    NASA Astrophysics Data System (ADS)

    Holmes, Rory; Grözinger, Ulrich; Krause, Oliver; Schweitzer, Mario

    2010-07-01

    The Euclid mission is currently being developed within the European Space Agency's Cosmic Vision Program. The five year mission will survey the entire extragalactic sky (~ 20 000 deg2) with the aim of constraining the nature of dark energy and dark matter. The spacecraft's payload consists of two instruments: one imaging instrument, which has both a visible and a near-infrared channel, and one spectroscopic instrument operating in the near-infrared wavelength regime. The two channels of the imaging instrument, the Visible Imaging Channel (VIS) and the Near-Infrared Imaging Photometer Channel (NIP), will focus on the weak lensing science probe. The large survey area and the need to not only image each patch of sky in multiple bands, but also in multiple dithers, requires over 640 000 operations of the NIP channel's filter wheel mechanism. With a 127 mm diameter and a mass of ~ 330 g per element, these brittle infrared filters dictate highly demanding requirements on this single-point-failure mechanism. To accommodate the large filters the wheel must have an outer diameter of ~ 400 mm, which will result in significant loads being applied to the bearing assembly during launch. The centrally driven titanium filter wheel will house the infrared filters in specially designed mounts. Both stepper motor and brushless DC drive systems are being considered and tested for this mechanism. This paper presents the design considerations and details the first prototyping campaign of this mechanism. The design and finite element analysis of the filter mounting concept are also presented.

  4. Synoptic maps for the heliospheric Thomson scattering brightness as observed by the Helios photometers

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Schwenn, R.

    1991-01-01

    A method for displaying the electron Thomson scattering intensity in the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps is presented. The method is based on the assumption that the bulk of the scattering electrons along the line of sight is located near the point closest to the sun. Inner-heliospheric structures will generally be represented properly in these synoptic maps only if they are sufficiently long-lived (that is, a significant fraction of a solar rotation period). The examples of Helios synoptic maps discussed (from data in April 1976 and November 1978), indicate that it is possible to identify large-scale, long-lived density enhancements in the inner heliosphere. It is expected that the Helios synoptic maps will be particularly useful in the study of corotating structures (e.g., streamers), and the maps will be most reliable during periods when few transient featurs are present in the corona, i.e., during solar minimum.

  5. Low-cost, high-performance and efficiency computational photometer design

    NASA Astrophysics Data System (ADS)

    Siewert, Sam B.; Shihadeh, Jeries; Myers, Randall; Khandhar, Jay; Ivanov, Vitaly

    2014-05-01

    Researchers at the University of Alaska Anchorage and University of Colorado Boulder have built a low cost high performance and efficiency drop-in-place Computational Photometer (CP) to test in field applications ranging from port security and safety monitoring to environmental compliance monitoring and surveying. The CP integrates off-the-shelf visible spectrum cameras with near to long wavelength infrared detectors and high resolution digital snapshots in a single device. The proof of concept combines three or more detectors into a single multichannel imaging system that can time correlate read-out, capture, and image process all of the channels concurrently with high performance and energy efficiency. The dual-channel continuous read-out is combined with a third high definition digital snapshot capability and has been designed using an FPGA (Field Programmable Gate Array) to capture, decimate, down-convert, re-encode, and transform images from two standard definition CCD (Charge Coupled Device) cameras at 30Hz. The continuous stereo vision can be time correlated to megapixel high definition snapshots. This proof of concept has been fabricated as a fourlayer PCB (Printed Circuit Board) suitable for use in education and research for low cost high efficiency field monitoring applications that need multispectral and three dimensional imaging capabilities. Initial testing is in progress and includes field testing in ports, potential test flights in un-manned aerial systems, and future planned missions to image harsh environments in the arctic including volcanic plumes, ice formation, and arctic marine life.

  6. A Ground-Based 200/350 Micrometer Polarization-Sensitive Photometer

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Benford, D. J.; Novak, G.; Staguhn, J. G.

    2004-01-01

    We describe a concept for a polarization-sensitive photometer for use at the South Pole and Atacama that employs Transition-Edge Sensor (TES) detectors. We will use two 8x8 element array architecture originally developed at NASA Goddard for a 3 mm camera.for the Green Bank Telescope. The elements will be tuned to have absorption peaks in both the 200 and 350 micron atmospheric windows. This instrument will provide a testbed for three major issues confronting a future far-infrared polarimeter for SOFIA. The first is the TES detector technology. The second is a polarization modulator that can be quickly reconfigured for different passbands. The third is the ability to optimize polarimetric and photometric detection capabilities in the same instrument. Scientifically, this instrument will explore the emission from Galactic star-forming regions in two spectral bands, giving valuable information concerning their spectral energy distributions. Polarimetrically, this instrument will allow coverage of the polarization spectrum for bright Galactic sources, giving new insights into dust grain physics.

  7. Observations of Plasma Blobs by OI 630 nm Using ASI and Photometer over Kolhapur, India

    NASA Astrophysics Data System (ADS)

    Nade, D. P.; Sharma, A. K.; Nikte, S. S.; Chavan, G. A.; Ghodpage, R. N.; Patil, P. T.; Gurubaran, S.

    2014-08-01

    This paper presents observations of plasma blobs by nightglow OI 630.0 nm emissions using ground-based techniques, all sky imager and photometer from Kolhapur. The nightglow observations have been made at low latitude station, Kolhapur (16.42°N, 74.2°E, and 10.6°N dip lat.) during clear moonless nights for period of October 2011-April 2012. Generally, these occur 3 h after sunset (18:00 IST). Herein we have calculated velocities of plasma blobs using scanning method, introduced by Pimenta et al. (Adv Space Res 27:1219-1224, 2001). The average zonal drift velocity (eastward) of the plasma blobs were found to be 133 ms-1 and vary between 100 and 200 ms-1. The width (east-west expansion) and length (north-south expansion) of plasma blobs is calculated by recently developed method of Sharma et al. (Curr Sci 106(08):1085-1093, 2014b). Their mean width and length were in the range of 70-180 and 500-950 km respectively. The study shows that localized eastward polarization electric field plays an important role in the generation of plasma blobs.

  8. Synoptic maps of heliospheric Thomson scattering brightness from 1974-1985 as observed by the Helios photometers

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Schwenn, R.

    1992-01-01

    We display the electron Thomson scattering intensity of the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps. The technique extrapolates the brightness information from each photometer sector near the Sun and constructs a latitude/longitude map at a given solar height. These data are unique in that they give a determination of heliospheric structures out of the ecliptic above the primary region of solar wind acceleration. The spatial extent of bright, co-rotating heliospheric structures is readily observed in the data north and south of the ecliptic plane where the Helios photometer coverage is most complete. Because the technique has been used on the complete Helios data set from 1974 to 1985, we observe the change in our synoptic maps with solar cycle. Bright structures are concentrated near the heliospheric equator at solar minimum, while at solar maximum bright structures are found at far higher heliographic latitudes. A comparison of these maps with other forms of synoptic data are shown for two available intervals.

  9. Precipitation Indices Low Countries

    NASA Astrophysics Data System (ADS)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  10. Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 Reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China

    NASA Astrophysics Data System (ADS)

    Ma, Lijuan; Zhang, Tingjun; Frauenfeld, Oliver W.; Ye, Baisheng; Yang, Daqing; Qin, Dahe

    2009-05-01

    We assess the correspondence between precipitation products from atmospheric reanalyses (ERA-40, NCEP-1, and NCEP-2), the Climate Prediction Center (CPC) Merged Analyses of Precipitation (CMAP-1 and CMAP-2), and the Global Precipitation Climatology Project Version 2 (GPCP-2) with adjusted observational precipitation (AOP) from China for 1979-2001 and also for ERA-40 and NCEP-1 over 1958-1978. In general, we conclude that CMAP-1 and GPCP-2 agree more closely with AOP than the reanalysis products do, although ERA-40 data agree more closely with AOP than NCEP data. The percentages of precipitation differences (PPDs) across China between annual ERA-40, NCEP-1, NCEP-2, CMAP-1, CMAP-2, and GPCP-2 data and AOP are -12, 22, 14, -8, -7, and -15%, respectively, for 1979-2001. Although relatively small biases are evident for China as a whole, maximum PPDs, usually occurring around the Qinghai-Tibetan Plateau, can exceed 1000%, indicating a strong terrain dependence of gridded precipitation data. GPCP-2, although characterized by greater underestimation for most of China compared with CMAP-1, exhibits a smaller biases range and hence may be better than CMAP-1. Compared with the NCEP-1 system, NCEP-2 represents an improvement as NCEP-2 precipitation agrees more closely with AOP than NCEP-1 data. However, the coherence of NCEP-2 precipitation needs further improvement. In addition, we find worse consistency and accuracy and larger positive biases in some parts of China for CMAP-2 versus CMAP-1, illustrating an advantage of including reanalysis data in CMAP, as CMAP-1 does. CMAP-1 could be further improved if they used the more skillful ERA-40 precipitation instead of the NCEP/NCAR data.

  11. PRECIPITATION OF PLUTONOUS PEROXIDE

    DOEpatents

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  12. Crystallographic measurement of the β to α phase transformation and δ-hydride precipitation in a laser-welded Zircaloy-2 tube by electron backscattering diffraction

    NASA Astrophysics Data System (ADS)

    Une, K.; Ishimoto, S.

    2009-06-01

    Crystallographic measurement of the β to α phase transformation and δ-hydride precipitation in a laser-welded Zircaloy-2 ferrule tube were carried out using an electron backscattering diffraction pattern (EBSP). A basket-weave structure with sub-micron lath width caused by quenching from the β to α phase was observed in the heat-affected and fusion zones, and mainly showed a grain boundary misorientation angle of 60° with an <1 1 2¯ 0> rotation axis. This result is consistent with the Burgers orientation relationship of {1 1 0} β//(0 0 0 1) α and <1 1 1> β//<1 1 2¯ 0> α for the β to α phase transformation. The texture of the quenched α' phase was strongly inherited from the original α phase, having a radial (0 0 0 1) basal pole and axial {1 1 2¯ 0} textures, even in the fusion zone. The primary hydride habit plane in the welded Zircaloy-2 was (0 0 0 1) α//{1 1 1} δ, matching previously obtained results for recrystallized cladding tubes. In addition to the primary habit plane, secondary habit planes were observed for the other low-index planes {1 0 1¯ 0} and {1 0 1¯ 1} in the fusion zone. The heterogeneous accumulation of hydrides in the transition zone between heat-affected and unaffected zones was mainly due to the residual stress distribution in the narrow region.

  13. Assessment of small-scale variability of rainfall and multisatellite precipitation estimates using a meso-rain gauge network measurements from southern peninsular India

    NASA Astrophysics Data System (ADS)

    Sunilkumar, K.; Narayana Rao, T.; Satheeshkumar, S.

    2015-10-01

    This paper describes the establishment of a dense rain gauge network and small-scale variability in rain storms (both in space and time) over a complex hilly terrain in southeast peninsular India. Three years of high-resolution gauge measurements are used to evaluate 3 hourly rainfall and sub-daily variations of four widely used multisatellite precipitation estimates (MPEs). The network consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of ~ 10 km. Morphological features of rainfall in two principal monsoon seasons (southwest monsoon: SWM and northeast monsoon: NEM) show marked seasonal differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale systems (in wet spells), whereas the contribution from small-scale systems is considerable in SWM. Rain storms with longer duration and copious rainfall are seen mostly in the western quadrants in SWM and northern quadrants in NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits marked spatiotemporal variability with strong diurnal cycle at all the stations (except for 1) during the SWM and insignificant diurnal cycle at many stations during the NEM. On average, the diurnal amplitudes are a factor 2 larger in SWM than in NEM. The 24 h harmonic explains about 70 % of total variance in SWM and only ~ 30 % in NEM. The late night-mid night peak (20:00-02:00 LT) observed during the SWM is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both the monsoons. The 1 h resolution data shows the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ~30

  14. Comparison of the Changes in the Visible and Infrared Irradiance Observed by the SunPhotometers on EURECA to the UARS Total Solar and UV Irradiances

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1995-01-01

    Solar irradiance in the near-UV (335 nm), visible (500 nm) and infrared (778 nm) spectral bands has been measured by the SunPhotometers developed at the World Radiation Center, Davos, Switzerland on board the European Retrievable Carrier between August 1992 and May 1993. Study of the variations in the visible and infrared irradiance is important for both solar and atmospheric physics. The purpose of this paper is to examine the temporal variations observed in the visible and infrared spectral bands after eliminating the trend in the data mainly related to instrument degradation. The effect of active regions in these spectral irradiances is clearly resolved. Variations in the visible and infrared irradiances are compared to total solar irradiance observed by the SOVA2 radiometer on the EURECA platform and by the ACRIMII radiometer on UARS as well as to UV observations of the UARS and NOAA9 satellites. The space-borne spectral irradiance observations are compared to the photometric sunspot deficit and CaII K irradiance measured at the San Fernando Observatory, California State University at Northridge in order to study the effect of active regions in detail.

  15. Analysis of precipitation appearance in time

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Matean, D.

    1999-08-01

    This paper analyses precipitation occurrence in time. The calculations were made with the data from continuous precipitation measurements by two automatic float-type rainfall recorders (Hellmann type) during the 10-year period 1984-1993. The measurement increment was 5 minutes with 0.1 mm resolution. The effect of different time increments on precipitation duration in a year has been researched. Calculations show that a smaller time increment diminishes the duration of precipitation in a year. If a 5-minute time increment is used for calculation, the precipitation duration is about 3% of the year. If a 24-hour time increment is used, the precipitation duration is 33% of the year. The real mean duration of yearly precipitation has been evaluated as 216 hours, that is 2.47% of the year. The appearance of a precipitation intensity higher than 0·2 mm/min has been researched during the year and over 24 hours. Analyses show that intensive precipitation appears during the warmer part of the year, from June to August. The precipitation distribution is not uniform over a day. In the city of Zagreb, where both rain gauge stations are situated, in 90% of the cases, the precipitation intensity higher than 1·2 mm/min falls during the night, from 9 p.m. to 1 a.m., at the same time causing floods.

  16. Preliminary design report, Large Space Telescope OTA/SI Phase B study: High speed area photometer. [systems analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.

  17. Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India

    NASA Astrophysics Data System (ADS)

    Sunilkumar, K.; Narayana Rao, T.; Satheeshkumar, S.

    2016-05-01

    This paper describes the establishment of a dense rain gauge network and small-scale variability in rain events (both in space and time) over a complex hilly terrain in Southeast India. Three years of high-resolution gauge measurements are used to validate 3-hourly rainfall and sub-daily variations of four widely used multi-satellite precipitation estimates (MPEs). The network, established as part of the Megha-Tropiques validation program, consists of 36 rain gauges arranged in a near-square grid area of 50 km